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  † Both texts also are available in a single volume,  Vector Mechanics for Engineers: Statics 
and Dynamics,  tenth edition. 

  ‡ In a parallel text,  Mechanics for Engineers: Dynamics,  fifth edition, the use of vector 
algebra is limited to the addition and subtraction of vectors, and vector differentiation is 
omitted. 

 Preface 

xix

  OBJECTIVES  
 The main objective of a first course in mechanics should be to 
develop in the engineering student the ability to analyze any problem 
in a simple and logical manner and to apply to its solution a few, 
well-understood, basic principles. It is hoped that this text, as well 
as the preceding volume,  Vector Mechanics for Engineers: Statics,
will help the instructor achieve this goal.  †    

    GENERAL APPROACH 
 Vector algebra was introduced at the beginning of the first volume and 
is used in the presentation of the basic principles of statics, as well as 
in the solution of many problems, particularly three-dimensional prob-
lems. Similarly, the concept of vector differentiation will be introduced 
early in this volume, and vector analysis will be used throughout the 
presentation of dynamics. This approach leads to more concise deriva-
tions of the fundamental principles of mechanics. It also makes it pos-
sible to analyze many problems in kinematics and kinetics which could 
not be solved by scalar methods. The emphasis in this text, however, 
remains on the correct understanding of the principles of mechanics 
and on their application to the solution of engineering problems, and 
vector analysis is presented chiefly as a convenient tool.  ‡    

   Practical Applications Are Introduced Early.   One of the char-
acteristics of the approach used in this book is that mechanics of 
particles  is clearly separated from the mechanics of  rigid bodies.  This 
approach makes it possible to consider simple practical applications 
at an early stage and to postpone the introduction of the more dif-
ficult concepts. For example:

   •   In  Statics,  the statics of particles is treated first, and the principle 
of equilibrium of a particle was immediately applied to practical 
situations involving only concurrent forces. The statics of rigid 
bodies is considered later, at which time the vector and scalar 
products of two vectors were introduced and used to define the 
moment of a force about a point and about an axis.  

  •   In  Dynamics,  the same division is observed. The basic con-
cepts of force, mass, and acceleration, of work and energy, and 
of impulse and momentum are introduced and first applied to 
problems involving only particles. Thus, students can familiarize 

FORCES IN A PLANE

2.2  FORCE ON A PARTICLE. RESULTANT 
OF TWO FORCES

A force represents the action of one body on another and is generally 
characterized by its point of application, its magnitude, and its direc-
tion. Forces acting on a given particle, however, have the same point 
of application. Each force considered in this chapter will thus be 
completely defined by its magnitude and direction.
 The magnitude of a force is characterized by a certain num-
ber of units. As indicated in Chap. 1, the SI units used by engi-
neers to measure the magnitude of a force are the newton (N) and 
its multiple the kilonewton (kN), equal to 1000 N, while the U.S. 
customary units used for the same purpose are the pound (lb) and 
its multiple the kilopound (kip), equal to 1000 lb. The direction 
of a force is defined by the line of action and the sense of the 
force. The line of action is the infinite straight line along which 
the force acts; it is characterized by the angle it forms with some 
fixed axis (Fig. 2.1). The force itself is represented by a segment of 

Fig. 2.1 (a)

A 30°
10 lb

(b)

A 30°
10 lb

Line of 

t Forces 

e in Space
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themselves with the three basic methods used in dynamics and 
learn their respective advantages before facing the difficulties 
associated with the motion of rigid bodies.      

 New Concepts Are Introduced in Simple Terms.   Since this 
text is designed for the first course in dynamics, new concepts are 
presented in simple terms and every step is explained in detail. On 
the other hand, by discussing the broader aspects of the problems 
considered, and by stressing methods of general applicability, a defi-
nite maturity of approach has been achieved. For example, the con-
cept of potential energy is discussed in the general case of a 
conservative force. Also, the study of the plane motion of rigid bodies 
is designed to lead naturally to the study of their general motion in 
space. This is true in kinematics as well as in kinetics, where the 
principle of equivalence of external and effective forces is applied 
directly to the analysis of plane motion, thus facilitating the transition 
to the study of three-dimensional motion.   

 Fundamental Principles Are Placed in the Context of Simple 
Applications.   The fact that mechanics is essentially a  deductive  
science based on a few fundamental principles is stressed. Derivations 
have been presented in their logical sequence and with all the rigor 
warranted at this level. However, the learning process being largely 
 inductive,  simple applications are considered first. For example:

   •   The kinematics of particles (Chap. 11) precedes the kinematics 
of rigid bodies (Chap. 15).  

  •   The fundamental principles of the kinetics of rigid bodies are first 
applied to the solution of two-dimensional problems (Chaps. 16 
and 17), which can be more easily visualized by the student, while 
three-dimensional problems are postponed until Chap. 18.      

 The Presentation of the Principles of Kinetics Is Unified.   The 
tenth edition of  Vector Mechanics for Engineers  retains the unified 
presentation of the principles of kinetics which characterized the previ-
ous nine editions. The concepts of linear and angular momentum are 
introduced in Chap. 12 so that Newton’s second law of motion can be 
presented not only in its conventional form  F  5  m  a , but also as a law 
relating, respectively, the sum of the forces acting on a particle and the 
sum of their moments to the rates of change of the linear and angular 
momentum of the particle. This makes possible an earlier introduction 
of the principle of conservation of angular momentum and a more 
meaningful discussion of the motion of a particle under a central force 
(Sec. 12.9). More importantly, this approach can be readily extended 
to the study of the motion of a system of particles (Chap. 14) and leads 
to a more concise and unified treatment of the kinetics of rigid bodies 
in two and three dimensions (Chaps. 16 through 18).   

 Free-Body Diagrams Are Used Both to Solve Equilibrium Prob-
lems and to Express the Equivalence of Force Systems.   
Free-body diagrams were introduced early in statics, and their impor-
tance was emphasized throughout. They were used not only to solve 
equilibrium problems but also to express the equivalence of two 

xx Preface

17.1 INTRODUCTION
In this chapter the method of work and energy and the method of 
impulse and momentum will be used to analyze the plane motion of 
rigid bodies and of systems of rigid bodies.
 The method of work and energy will be considered first. In 
Secs. 17.2 through 17.5, the work of a force and of a couple will be 
defined, and an expression for the kinetic energy of a rigid body in 
plane motion will be obtained. The principle of work and energy will 
then be used to solve problems involving displacements and veloci-
ties. In Sec. 17.6, the principle of conservation of energy will be 
applied to the solution of a variety of engineering problems.
 In the second part of the chapter, the principle of impulse and 
momentum will be applied to the solution of problems involving veloc-
ities and time (Secs. 17.8 and 17.9) and the concept of conservation 
of angular momentum will be introduced and discussed (Sec. 17.10).
 In the last part of the chapter (Secs. 17.11 and 17.12), problems 
involving the eccentric impact of rigid bodies will be considered. As 
was done in Chap. 13, where we analyzed the impact of particles, 
the coefficient of restitution between the colliding bodies will be 
used together with the principle of impulse and momentum in the 
solution of impact problems. It will also be shown that the method 
used is applicable not only when the colliding bodies move freely 
after the impact but also when the bodies are partially constrained 
in their motion.

17.2  PRINCIPLE OF WORK AND ENERGY 
FOR A RIGID BODY

The principle of work and energy will now be used to analyze the 
plane motion of rigid bodies. As was pointed out in Chap. 13, the 
method of work and energy is particularly well adapted to the solu-
tion of problems involving velocities and displacements. Its main 
advantage resides in the fact that the work of forces and the kinetic 
energy of particles are scalar quantities.
 In order to apply the principle of work and energy to the analy-
sis of the motion of a rigid body, it will again be assumed that the 
rigid body is made of a large number n of particles of mass Dmi. 
Recalling Eq. (14.30) of Sec. 14.8, we write

 T1 1 U1y2 5 T2 (17.1)

where T1, T2 5  initial and final values of total kinetic energy of particles 
forming the rigid body

  U1y2 5  work of all forces acting on various particles of the body 

 The total kinetic energy

 T 5
1
2

 On

i51
¢mi v

2
i  (17.2)

is obtained by adding positive scalar quantities and is itself a positive 
scalar quantity. You will see later how T can be determined for vari-
ous types of motion of a rigid body.
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xxiPreface systems of forces or, more generally, of two systems of vectors. The 
advantage of this approach becomes apparent in the study of the 
dynamics of rigid bodies, where it is used to solve three-dimensional 
as well as two-dimensional problems. By placing the emphasis on 
“free-body-diagram equations” rather than on the standard alge-
braic equations of motion, a more intuitive and more complete 
understanding of the fundamental principles of dynamics can be 
achieved. This approach, which was first introduced in 1962 in the 
first edition of  Vector Mechanics for Engineers,  has now gained 
wide acceptance among mechanics teachers in this country. It is, 
therefore, used in preference to the method of dynamic equilib-
rium and to the equations of motion in the solution of all sample 
problems in this book.  

 A Careful Balance between SI and U.S. Customary Units Is 
Consistently Maintained.   Because of the current trend in the 
American government and industry to adopt the international system 
of units (SI metric units), the SI units most frequently used in 
mechanics are introduced in Chap. 1 and are used throughout the 
text. Approximately half of the sample problems and 60 percent of 
the homework problems are stated in these units, while the remain-
der are in U.S. customary units. The authors believe that this 
approach will best serve the need of the students, who, as engineers, 
will have to be conversant with both systems of units. 
  It also should be recognized that using both SI and U.S. cus-
tomary units entails more than the use of conversion factors. Since 
the SI system of units is an absolute system based on the units of 
time, length, and mass, whereas the U.S. customary system is a gravi-
tational system based on the units of time, length, and force, differ-
ent approaches are required for the solution of many problems. For 
example, when SI units are used, a body is generally specified by its 
mass expressed in kilograms; in most problems of statics it will be 
necessary to determine the weight of the body in newtons, and an 
additional calculation will be required for this purpose. On the other 
hand, when U.S. customary units are used, a body is specified by its 
weight in pounds and, in dynamics problems, an additional calcula-
tion will be required to determine its mass in slugs (or lb ? s 2 /ft). The 
authors, therefore, believe that problem assignments should include 
both systems of units. 
  The  Instructor’s and Solutions Manual  provides six different 
lists of assignments so that an equal number of problems stated in 
SI units and in U.S. customary units can be selected. If so desired, 
two complete lists of assignments can also be selected with up to 
75 percent of the problems stated in SI units. 

 Optional Sections Offer Advanced or Specialty Topics.   A 
large number of optional sections have been included. These sections 
are indicated by asterisks and thus are easily distinguished from those 
which form the core of the basic dynamics course. They can be omit-
ted without prejudice to the understanding of the rest of the text. 
  The topics covered in the optional sections include graphical 
methods for the solution of rectilinear-motion problems, the  trajectory 

  1.3   SYSTEMS OF UNITS   
 With the four fundamental concepts introduced in the preceding sec-
tion are associated the so-called  kinetic units , i.e., the units of  length, 
time, mass , and  force . These units cannot be chosen independently if 
Eq. (1.1) is to be satisfied. Three of the units may be defined arbi-
trarily; they are then referred to as  basic units . The fourth unit, how-
ever, must be chosen in accordance with Eq. (1.1) and is referred to as 
a  derived unit . Kinetic units selected in this way are said to form a 
 consistent system of units .  

  International System of Units (SI Units †).     In this system, which 
will be in universal use after the United States has completed its con-
version to SI units, the base units are the units of length, mass, and 
time, and they are called, respectively, the  meter  (m), the  kilogram  
(kg), and the  second  (s). All three are arbitrarily defined. The second, 

†SI stands for  Système International d’Unités  (French).  
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national Bureau of Weights and Measures at Sèvres, near Paris, France. 
The unit of force is a derived unit. It is called the  newton  (N) and is 
defined as the force which gives an acceleration of 1 m/s 2  to a mass of 
1 kg ( Fig. 1.2 ). From Eq. (1.1) we write 

  1 N 5 (1 kg)(1 m/s2) 5 1 kg ? m/s2 (1.5) 

  The SI units are said to form an  absolute  system of units. This means 
that the three base units chosen are independent of the location where 
measurements are made. The meter, the kilogram, and the second 
may be used anywhere on the earth; they may even be used on another 
planet. They will always have the same significance. 
    The  weight  of a body, or the  force of gravity  exerted on that body, 
should, like any other force, be expressed in newtons. From Eq. (1.4) 
it follows that the weight of a body of mass 1 kg ( Fig. 1.3 ) is 

  W 5 mg
  5 (1 kg)(9.81 m/s2) 
  5 9.81 N  

   Multiples and submultiples of the fundamental SI units may be 
obtained through the use of the prefixes defined in  Table 1.1 . The 
multiples and submultiples of the units of length, mass, and force most 
frequently used in engineering are, respectively, the  kilometer  (km) 
and the  millimeter  (mm); the  megagram  †    (Mg) and the  gram  (g); and 
the  kilonewton  (kN). According to  Table 1.1 , we have 

  1 km 5 1000 m       1 mm 5 0.001 m
  1 Mg 5 1000 kg   1 g 5 0.001 kg

 1 kN 5 1000 N

  The conversion of these units into meters, kilograms, and  newtons, 
respectively, can be effected by simply moving the decimal point 
three places to the right or to the left. For example, to convert 
3.82 km into meters, one moves the decimal point three places to the 
right: 

 3.82 km 5 3820 m 

   Similarly, 47.2 mm is converted into meters by moving the decimal 
point three places to the left: 

 47.2 mm 5 0.0472 m

  Fig. 1.2      

a = 1 m/s2

m = 1 kg F = 1 N

  Fig. 1.3 
      

a = 9.81 m/s2

m = 1 kg

W = 9.81 N
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xxii Preface of a particle under a central force, the deflection of fluid streams, 
problems involving jet and rocket propulsion, the kinematics and 
kinetics of rigid bodies in three dimensions, damped mechanical 
vibrations, and electrical analogues. These topics will be found of 
particular interest when dynamics is taught in the junior year. 
  The material presented in the text and most of the problems 
requires no previous mathematical knowledge beyond algebra, trigo-
nometry, elementary calculus, and the elements of vector algebra pre-
sented in Chaps. 2 and 3 of the volume on statics.  †   However, special 
problems are included, which make use of a more advanced knowl-
edge of calculus, and certain sections, such as Secs. 19.8 and 19.9 on 
damped vibrations, should be assigned only if students possess the 
proper mathematical background. In portions of the text using ele-
mentary calculus, a greater emphasis is placed on the correct under-
standing and application of the concepts of differentiation and 
integration, than on the nimble manipulation of mathematical formu-
las. In this connection, it should be mentioned that the determination 
of the centroids of composite areas precedes the calculation of cen-
troids by integration, thus making it possible to establish the concept 
of moment of area firmly before introducing the use of integration. 

†Some useful definitions and properties of vector algebra have been summarized in Ap-
pendix A at the end of this volume for the convenience of the reader. Also, Secs. 9.11 
through 9.18 of the volume on statics, which deal with the moments of inertia of masses, 
have been reproduced in Appendix B.
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xxiii

SAMPLE PROBLEM 4.10

A 450-lb load hangs from the corner C of a rigid piece of 
pipe ABCD which has been bent as shown. The pipe is 
supported by the ball-and-socket joints A and D, which are 
fastened, respectively, to the floor and to a vertical wall, 
and by a cable attached at the midpoint E of the portion 
BC of the pipe and at a point G on the wall. Determine 
(a) where G should be located if the tension in the cable 
is to be minimum, (b) the corresponding minimum value 
of the tension.

12 ft

12 ft

450 lb

A

B
C DE

G

6 ft6 ft

6 ft

A

B C DE

x

y

z

T

�

Dxi

Dy j
Dzk

A x i

Ay j

Azk

W = –450 j

6 ft

6 ft

12 ft

12 ft

12 ft

A

B
C

D

G(x, y, 0)

E(6, 12, 6)

x

y

z

W

Tmin

SOLUTION

Free-Body Diagram. The free-body diagram of the pipe includes the load 
W 5 (2450 lb)j, the reactions at A and D, and the force T exerted by the 
cable. To eliminate the reactions at A and D from the computations, we 
express that the sum of the moments of the forces about AD is zero. Denot-
ing by l the unit vector along AD, we write

 oMAD 5 0:    L ? (AE
¡

3 T) 1 L ? (AC
¡

3 W) 5 0 (1)

 The second term in Eq. (1) can be computed as follows:

 AC
¡

3 W 5 (12i 1 12j) 3 (2450j) 5 25400k

 L 5
AD
¡

AD
5

12i 1 12j 2 6k

18
5 2

3 i 1 2
3 j 2 1

3 k

 L ? (AC
¡

3 W) 5 (2
3 i 1 2

3 j 2 1
3 k) ? (25400k) 5 11800

Substituting the value obtained into Eq. (1), we write

 L ? (AE
¡

3 T) 5 21800 lb ? ft (2)

Minimum Value of Tension. Recalling the commutative property for 
mixed triple products, we rewrite Eq. (2) in the form

 T ? (L 3 AE
¡

) 5 21800 lb ? ft (3)

which shows that the projection of T on the vector L 3 AE
¡

 is a constant. 
It follows that T is minimum when parallel to the vector

L 3 AE
¡

5 (2
3 i 1 2

3 j 2 1
3 k) 3 (6i 1 12j) 5 4i 2 2j 1 4k

Since the corresponding unit vector is 2
3 i 2 1

3 j 1 2
3 k, we write

 Tmin 5 T(2
3 i 2 1

3 j 1 2
3 k) (4)

Substituting for T and L 3 AE
¡

 in Eq. (3) and computing the dot products, 
we obtain 6T 5 21800 and, thus, T 5 2300. Carrying this value into (4), 
we obtain

Tmin 5 2200i 1 100j 2 200k  Tmin 5 300 lb ◀

Location of G. Since the vector EG
¡

 and the force Tmin have the same 
direction, their components must be proportional. Denoting the coordinates 
of G by x, y, 0, we write

x 2 6
2200

5
y 2 12

1100
5

0 2 6
2200

    x 5 0    y 5 15 ft ◀
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 Chapter Introduction.   Each chapter begins 
with an introductory section setting the purpose 
and goals of the chapter and describing in sim-
ple terms the material to be covered and its 
application to the solution of engineering prob-
lems. New chapter outlines provide students 
with a preview of chapter topics.   

 Chapter Lessons.   The body of the text is 
divided into units, each consisting of one or sev-
eral theory sections, one or several sample prob-
lems, and a large number of problems to be 
assigned. Each unit corresponds to a well-defined 
topic and generally can be covered in one lesson. 
In a number of cases, however, the instructor will 
find it desirable to devote more than one lesson 
to a given topic.  The Instructor’s and Solutions Manual  contains sug-
gestions on the coverage of each lesson.   

 Sample Problems.   The sample problems are set up in much the 
same form that students will use when solving the assigned problems. 
They thus serve the double purpose of amplifying the text and dem-
onstrating the type of neat, orderly work that students should culti-
vate in their own solutions.   

 Solving Problems on Your Own.   A section entitled  Solving Prob-
lems on Your Own  is included for each lesson, between the sample 
problems and the problems to be assigned. The purpose of these 
sections is to help students organize in their own minds the preced-
ing theory of the text and the solution methods of the sample prob-
lems so that they can more successfully solve the homework problems. 
Also included in these sections are specific suggestions and strate-
gies  that  will enable the students to more efficiently attack any 
assigned problems.   

 Homework Problem Sets.   Most of the problems are of a practical 
nature and should appeal to engineering students. They are primarily 
designed, however, to illustrate the material presented in the text and 
to help students understand the principles of mechanics. The problems 
are grouped according to the portions of material they illustrate and 
are arranged in order of increasing difficulty. Problems requiring spe-
cial attention are indicated by asterisks. Answers to 70 percent of the 
problems are given at the end of the book. Problems for which the 
answers are given are set in straight type in the text, while problems 
for which no answer is given are set in italic.  

a Introduction

 In the latter part of the seventeenth 

century, Sir Isaac Newton stated the 

fundamental principles of mechanics, 

which are the foundation of much of 

today’s engineering. 
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    Chapter Review and Summary.   Each chapter ends with a 
review and summary of the material covered in that chapter. Mar-
ginal notes are used to help students organize their review work, and 
cross-references have been included to help them find the portions 
of material requiring their special attention.   

 Review Problems.   A set of review problems is included at the end 
of each chapter. These problems provide students further opportunity 
to apply the most important concepts introduced in the chapter.   

 Computer Problems.   Each chapter includes a set of problems 
designed to be solved with computational software. Many of these 
problems provide an introduction to the design process. For  example, 
they may involve the determination of the motion of a particle under 
initial conditions, the kinematic or kinetic analysis of mechanisms in 
successive positions, or the numerical integration of various equations 
of motion. Developing the algorithm required to solve a given mechan-
ics problem will benefit the students in two different ways: (1) It will 
help them gain a better understanding of the mechanics principles 
involved; (2) it will provide them with an opportunity to apply their 
computer skills to the solution of a meaningful engineering problem.    

Concept Questions. Educational research has shown that students 
can often choose appropriate equations and solve algorithmic prob-
lems without having a strong conceptual understanding of mechanics 
principles.† To help assess and develop student conceptual understand-
ing, we have included Concept Questions, which are multiple choice 
problems that require few, if any, calculations. Each possible incorrect 
answer typically represents a common misconception (e.g., students 
often think that a vehicle moving in a curved path at constant speed 
has zero acceleration). Students are encouraged to solve these prob-
lems using the principles and techniques discussed in the text and to 
use these principles to help them develop their intuition. Mastery and 
discussion of these Concept Questions will deepen students’ concep-
tual understanding and help them to solve dynamics problems.

Free Body and Impulse-Momentum Practice Problems. Drawing 
diagrams correctly is a critical step in solving kinetics problems in 
dynamics. A new type of problem has been added to the text to empha-
size the importance of drawing these diagrams. In Chaps. 12 and 16 the 
Free Body Practice Problems require students to draw a free-body dia-
gram (FBD) showing the applied forces and an equivalent diagram 
called a “kinetic diagram” (KD) showing ma or its components and A.
These diagrams provide students with a pictorial representation of 
 Newton’s second law and are critical in helping students to correctly 
solve kinetic problems. In Chaps. 13 and 17 the Impulse-Momentum 
Practice Problems require students to draw diagrams showing the 
momenta of the bodies before impact, the impulses exerted on the body 
during impact, and the final momenta of the bodies. The answers to all 
of these questions are provided at www.mhhe.com/beerjohnston.

REVIEW AND SUMMARY

This chapter was devoted to the method of work and energy and to 
the method of impulse and momentum. In the first half of the 
 chapter we studied the method of work and energy and its applica-
tion to the analysis of the motion of particles.

We first considered a force F acting on a particle A and defined the 
work of F corresponding to the small displacement dr [Sec. 13.2] as 
the quantity

Work of a force
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COMPUTER PROBLEMS

 13.C1 A 12-lb collar is attached to a spring anchored at point C and can 
slide on a frictionless rod forming an angle of 30° with the vertical. The 
spring is of constant k and is unstretched when the collar is at A. Knowing 
that the collar is released from rest at A, use computational software to 
determine the velocity of the collar at point B for values of k from 0.1 to 
2.0 lb/in.

A C

B

20 in.

20 in.

30°

Fig. P13.C1

bee02324_ch13_762-865.indd Page 864  21/09/11  7:35 AM user-f501 /204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles

REVIEW PROBLEMS

 13.190 A 32,000-lb airplane lands on an aircraft carrier and is caught by an 
arresting cable. The cable is inextensible and is paid out at A and B 
from mechanisms located below deck and consisting of pistons mov-
ing in long oil-filled cylinders. Knowing that the piston-cylinder 
system maintains a constant tension of 85 kips in the cable during 
the entire landing, determine the landing speed of the airplane if it 
travels a distance d 5 95 ft after being caught by the cable.

A

B

C

d

35 ft

35 ft

Fig. P13.190
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1057ProblemsFREE BODY PRACTICE PROBLEMS

 16.F1 A 6-ft board is placed in a truck with one end resting against a 
block secured to the floor and the other leaning against a verti-
cal partition. Draw the FBD and KD necessary to determine the 
maximum allowable acceleration of the truck if the board is to 
remain in the position shown.

 16.F2 A uniform circular plate of mass 3 kg is attached to two links AC 
and BD of the same length. Knowing that the plate is released 
from rest in the position shown, in which lines joining G to A and 
B are, respectively, horizontal and vertical, draw the FBD and KD 
for the plate.

A

B

78°

Fig. P16.F1

75°

75°
C

A

D

B

G

Fig. P16.F2
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†Hestenes, D., Wells, M., and Swakhamer, G (1992). The force concept inventory. The Phys-
ics Teacher, 30: 141–158.
Streveler, R. A., Litzinger, T. A., Miller, R. L., and Steif, P. S. (2008). Learning conceptual 
knowledge in the engineering sciences: Overview and future research directions, JEE, 279–294.
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xxv 

What Resources Support This Textbook?

 Instructor’s and Solutions Manual.    The Instructor’s and  Solutions 
Manual  that accompanies the tenth edition features typeset, one- 
per-page solutions to the end of chapter problems. This Manual also 
features a number of tables designed to assist instructors in creating 
a schedule of assignments for their course. The various topics cov-
ered in the text have been listed in Table I and a suggested number 
of periods to be spent on each topic has been indicated. Table II 
prepares a brief description of all groups of problems and a classifica-
tion of the problems in each group according to the units used. 
Sample lesson schedules are shown in Tables III, IV, and V, together 
with various alternative lists of assigned homework problems.  

 McGraw-Hill Connect Engineering   McGraw-Hill Connect Engi-
neering is a web-based assignment and assessment platform that 
gives students the means to better connect with their coursework, 
their instructors, and the important concepts that they will need to 
know for success now and in the future. With Connect Engineering, 
instructors can deliver assignments, quizzes, and tests easily online. 
Students can practice important skills at their own pace and on their 
own schedule. 
  Connect Engineering for  Vector Mechanics for Engineers  is 
available at  www.mhhe.com/beerjohnston  and includes algorith-
mic problems from the text, Lecture PowerPoints, an image bank, 
and animations.   

 Hands-on Mechanics.   Hands-on Mechanics is a website designed for 
instructors who are interested in incorporating three-dimensional, 
hands-on teaching aids into their lectures. Developed through a partner-
ship between the McGraw-Hill Engineering Team and the Department 
of Civil and Mechanical Engineering at the United States Military Acad-
emy at West Point, this website not only provides detailed instructions 
for how to build 3-D teaching tools using materials found in any lab or 
local hardware store, but also provides a community where educators 
can share ideas, trade best practices, and submit their own original dem-
onstrations for posting on the site. Visit  www.handsonmechanics.com .  

 CourseSmart.   This text is offered through CourseSmart for both 
instructors and students. CourseSmart is an online browser where 
students can purchase access to this and other McGraw-Hill textbooks 
in a digital format. Through their browser, students can access the 
complete text online at almost half the cost of a traditional text. Pur-
chasing the eTextbook also allows students to take advantage of 
CourseSmart’s web tools for learning, which include full text search, 
notes and highlighting, and e-mail tools for sharing notes among class-
mates. To learn more about CourseSmart options, contact your sales 
representative or visit www.coursesmart.com. 

engineering
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McGraw-Hill Higher Education.

McGraw-Hill Higher Education’s mission is to help prepare students for the world that awaits. McGraw-Hill 
provides textbooks, eBooks and other digital instructional content, as well as experiential learning and 
assignment/assessment platforms, that connect instructors and students to valuable course content—and 
connect instructors and students to each other.

With the highest quality tools and content, students can engage with their coursework when, where, and 
however they learn best, enabling greater learning and deeper comprehension. 

In turn, students can learn to their full potential and, thus, succeed academically now and in the real world.

Learn more at www.mhhe.com
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Mcgraw-Hill Tegrity®

Tegrity is a service that makes class time available all the time by 
automatically capturing every lecture in a searchable format for students 

to review when they study and complete assignments. With a simple one-click start-and-stop process, 
you capture all computer screens and corresponding audio. Students replay any part of any class with 
easy-to-use browser-based viewing on a PC or Mac. Educators know that the more students can see, hear, 
and experience class resources, the better they learn. With Tegrity, students quickly recall key moments by 
using Tegrity’s unique search feature. This search helps students efficiently find what they need, when they 
need it across an entire semester of class recordings. Help turn all your students’ study time into learning 
moments immediately supported by your lecture. 

To learn more about Tegrity watch a 2-minute Flash demo at http://tegritycampus.mhhe.com.
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    List of Symbols       

       a, a Acceleration
a Constant; radius; distance; semimajor axis of ellipse

a, a Acceleration of mass center
aB/A Acceleration of B relative to frame in translation with A
aP/f Acceleration of P relative to rotating frame f

ac Coriolis acceleration
A, B, C, . . . Reactions at supports and connections
A, B, C, . . . Points

A Area
b Width; distance; semiminor axis of ellipse
c Constant; coefficient of viscous damping

C Centroid; instantaneous center of rotation; capacitance
d Distance

en, et Unit vectors along normal and tangent
er, eu Unit vectors in radial and transverse directions

e Coefficient of restitution; base of natural logarithms
E Total mechanical energy; voltage
f Scalar function
ff Frequency of forced vibration
fn Natural frequency
F Force; friction force
g Acceleration of gravity

G Center of gravity; mass center; constant of gravitation
h Angular momentum per unit mass

HO Angular momentum about point O
H? G Rate of change of angular momentum HG with 

 respect to frame of fixed orientation
(H? G)Gxyz Rate of change of angular momentum HG with 

 respect to rotating frame Gxyz
 i, j, k Unit vectors along coordinate axes
 i Current
 I, Ix, . . .  Moments of inertia
 I Centroidal moment of inertia
 Ixy, . . .  Products of inertia
 J Polar moment of inertia
 k Spring constant
 kx, ky, kO Radii of gyration
 k Centroidal radius of gyration
 l Length
 L Linear momentum
 L Length; inductance
 m Mass
 m9 Mass per unit length
 M Couple; moment
 MO Moment about point O
 MR

O Moment resultant about point O
 M Magnitude of couple or moment; mass of earth
 MOL Moment about axis OL
 n Normal direction
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xxxi N Normal component of reaction
 O Origin of coordinates
 P Force; vector
 P

.
 Rate of change of vector P with respect to frame of 

 fixed orientation
 q Mass rate of flow; electric charge
 Q Force; vector
 Q

.
 Rate of change of vector Q with respect to frame of 

 fixed orientation
 (Q

.
)Oxyz Rate of change of vector Q with respect to frame Oxyz

 r Position vector
 rB/A Position vector of B relative to A
 r Radius; distance; polar coordinate
 R Resultant force; resultant vector; reaction
 R Radius of earth; resistance
 s Position vector
 s Length of arc
 t Time; thickness; tangential direction
 T Force
 T Tension; kinetic energy
 u Velocity
 u Variable
 U Work
 v, v Velocity
 v Speed
 v, v Velocity of mass center
 vB/A Velocity of B relative to frame in translation with A
 vP/f Velocity of P relative to rotating frame f
 V Vector product
 V Volume; potential energy
 w Load per unit length
 W, W Weight; load
 x, y, z Rectangular coordinates; distances
 x

.
, y

.
, z

.
 Time derivatives of coordinates x, y, z

 x, y, z Rectangular coordinates of centroid, center of 
 gravity, or mass center

 A, a Angular acceleration
 a, b, g Angles
 g Specific weight
 d Elongation
 e Eccentricity of conic section or of orbit
 L Unit vector along a line
 h Efficiency
 u Angular coordinate; Eulerian angle; angle; polar 

 coordinate
 m Coefficient of friction
 r Density; radius of curvature
 t Periodic time
 tn Period of free vibration
 f Angle of friction; Eulerian angle; phase angle; angle
 w Phase difference
 c Eulerian angle
 V, v Angular velocity
 vf Circular frequency of forced vibration
 vn Natural circular frequency
 V Angular velocity of frame of reference         
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a Introduction

 In the latter part of the seventeenth 

century, Sir Isaac Newton stated the 

fundamental principles of mechanics, 

which are the foundation of much of 

today’s engineering. 
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2

 1.1 WHAT IS MECHANICS?
Mechanics can be defined as that science which describes and predicts 
the conditions of rest or motion of bodies under the action of forces. It 
is divided into three parts: mechanics of rigid bodies, mechanics of 
deformable bodies, and mechanics of fluids.
 The mechanics of rigid bodies is subdivided into statics and 
dynamics, the former dealing with bodies at rest, the latter with bodies 
in motion. In this part of the study of mechanics, bodies are assumed 
to be perfectly rigid. Actual structures and machines, however, are 
never absolutely rigid and deform under the loads to which they are 
subjected. But these deformations are usually small and do not appre-
ciably affect the conditions of equilibrium or motion of the structure 
under consideration. They are important, though, as far as the resis-
tance of the structure to failure is concerned and are studied in 
mechanics of materials, which is a part of the mechanics of deformable 
bodies. The third division of mechanics, the mechanics of fluids, is 
subdivided into the study of incompressible fluids and of compressible 
fluids. An important subdivision of the study of incompressible fluids 
is hydraulics, which deals with problems involving water.
 Mechanics is a physical science, since it deals with the study of 
physical phenomena. However, some associate mechanics with math-
ematics, while many consider it as an engineering subject. Both these 
views are justified in part. Mechanics is the foundation of most engi-
neering sciences and is an indispensable prerequisite to their study. 
However, it does not have the empiricism found in some engineering 
sciences, i.e., it does not rely on experience or observation alone; by its 
rigor and the emphasis it places on deductive reasoning it resembles 
mathematics. But, again, it is not an abstract or even a pure science; 
mechanics is an applied science. The purpose of mechanics is to 
explain and predict physical phenomena and thus to lay the founda-
tions for engineering applications.

1.2 FUNDAMENTAL CONCEPTS AND PRINCIPLES
Although the study of mechanics goes back to the time of Aristotle 
(384–322 b.c.) and Archimedes (287–212 b.c.), one has to wait until 
Newton (1642–1727) to find a satisfactory formulation of its funda-
mental principles. These principles were later expressed in a modi-
fied form by d’Alembert, Lagrange, and Hamilton. Their validity 
remained unchallenged, however, until Einstein formulated his theory 
of relativity (1905). While its limitations have now been recognized, 
newtonian mechanics still remains the basis of today’s engineering 
sciences.
 The basic concepts used in mechanics are space, time, mass, and 
force. These concepts cannot be truly defined; they should be accepted 
on the basis of our intuition and experience and used as a mental frame 
of reference for our study of mechanics.
 The concept of space is associated with the notion of the position 
of a point P. The position of P can be defined by three lengths mea-
sured from a certain reference point, or origin, in three given direc-
tions. These lengths are known as the coordinates of P.

Chapter 1  Introduction
 1.1 What Is Mechanics?
 1.2 Fundamental Concepts and 

Principles
 1.3 Systems of Units
 1.4 Conversion from One System of 

Units to Another
 1.5 Method of Problem Solution
 1.6 Numerical Accuracy
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3    To define an event, it is not sufficient to indicate its position in 
space. The  time  of the event should also be given. 
    The concept of  mass  is used to characterize and compare bodies 
on the basis of certain fundamental mechanical experiments. Two bod-
ies of the same mass, for example, will be attracted by the earth in the 
same manner; they will also offer the same resistance to a change in 
translational motion. 
    A  force  represents the action of one body on another. It can be 
exerted by actual contact or at a distance, as in the case of gravitational 
forces and magnetic forces. A force is characterized by its  point of 
application , its  magnitude , and its  direction ; a force is represented by 
a  vector  (Sec. 2.3). 
    In newtonian mechanics, space, time, and mass are absolute con-
cepts, independent of each other. (This is not true in  relativistic 
mechanics , where the time of an event depends upon its position, and 
where the mass of a body varies with its velocity.) On the other hand, 
the concept of force is not independent of the other three. Indeed, one 
of the fundamental principles of newtonian mechanics listed below 
indicates that the resultant force acting on a body is related to the mass 
of the body and to the manner in which its velocity varies with time. 
    You will study the conditions of rest or motion of particles and 
rigid bodies in terms of the four basic concepts we have introduced. By 
 particle  we mean a very small amount of matter which may be assumed 
to occupy a single point in space. A  rigid body  is a combination of a 
large number of particles occupying fixed positions with respect to 
each other. The study of the mechanics of particles is obviously a pre-
requisite to that of rigid bodies. Besides, the results obtained for a 
particle can be used directly in a large number of problems dealing 
with the conditions of rest or motion of actual bodies. 
    The study of elementary mechanics rests on six fundamental 
principles based on experimental evidence.  

 The Parallelogram Law for the Addition of Forces.   This states 
that two forces acting on a particle may be replaced by a single force, 
called their  resultant , obtained by drawing the diagonal of the paral-
lelogram which has sides equal to the given forces (Sec. 2.2).   

 The Principle of Transmissibility.   This states that the conditions 
of equilibrium or of motion of a rigid body will remain unchanged if a 
force acting at a given point of the rigid body is replaced by a force of 
the same magnitude and same direction, but acting at a different point, 
provided that the two forces have the same line of action (Sec. 3.3).   

 Newton’s Three Fundamental Laws.   Formulated by Sir Isaac 
Newton in the latter part of the seventeenth century, these laws can be 
stated as follows:  

 FIRST LAW.   If the resultant force acting on a particle is zero, the 
particle will remain at rest (if originally at rest) or will move with con-
stant speed in a straight line (if originally in motion) (Sec. 2.10).   

1.2 Fundamental Concepts and Principles
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4 Introduction  SECOND LAW.   If the resultant force acting on a particle is not zero, 
the particle will have an acceleration proportional to the magnitude of 
the resultant and in the direction of this resultant force. 
  As you will see in Sec. 12.2, this law can be stated as 

    F 5 ma (1.1)  

 where  F ,  m , and  a  represent, respectively, the resultant force acting on 
the particle, the mass of the particle, and the acceleration of the parti-
cle, expressed in a consistent system of units.   

 THIRD LAW.   The forces of action and reaction between bodies in 
contact have the same magnitude, same line of action, and opposite 
sense (Sec. 6.1).    

 Newton’s Law of Gravitation.   This states that two particles of 
mass  M  and  m  are mutually attracted with equal and opposite forces  F  
and  2F  ( Fig. 1.1 ) of magnitude  F  given by the formula 

   F 5 G 

Mm
r 

2  (1.2)  

    where  r  5 distance between the two particles 
     G  5 universal constant called the  constant of gravitation  

   Newton’s law of gravitation introduces the idea of an action exerted at 
a distance and extends the range of application of Newton’s third law: 
the action  F  and the reaction  2F  in  Fig. 1.1  are equal and opposite, 
and they have the same line of action. 
    A particular case of great importance is that of the attraction of 
the earth on a particle located on its surface. The force  F  exerted by 
the earth on the particle is then defined as the  weight   W  of the parti-
cle. Taking  M  equal to the mass of the earth,  m  equal to the mass of the 
particle, and  r  equal to the radius  R  of the earth, and introducing the 
constant 

   g 5
GM
R2  (1.3)  

   the magnitude  W  of the weight of a particle of mass  m  may be ex-
pressed as †  

  W 5 mg (1.4) 

  The value of  R  in formula (1.3) depends upon the elevation of the 
point considered; it also depends upon its latitude, since the earth is 
not truly spherical. The value of  g  therefore varies with the position of 
the point considered. As long as the point actually remains on the sur-
face of the earth, it is sufficiently accurate in most engineering compu-
tations to assume that  g  equals 9.81 m/s 2  or 32.2 ft/s 2 . 

  Fig. 1.1      

M

–F

F

m

r

Photo 1.1 When in earth orbit, people and 
objects are said to be weightless even though the 
gravitational force acting is approximately 90% of 
that experienced on the surface of the earth. This 
apparent contradiction will be resolved in Chapter 
12 when we apply  Newton’s second law to the 
motion of particles.

  †A more accurate definition of the weight  W  should take into account the rotation of the 
earth.  
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5    The principles we have just listed will be introduced in the course 
of our study of mechanics as they are needed. The study of the statics 
of particles carried out in Chap. 2 will be based on the parallelogram 
law of addition and on Newton’s first law alone. The principle of trans-
missibility will be introduced in Chap. 3 as we begin the study of the 
statics of rigid bodies, and Newton’s third law in Chap. 6 as we analyze 
the forces exerted on each other by the various members forming a 
structure. In the study of dynamics, Newton’s second law and Newton’s 
law of gravitation will be introduced. It will then be shown that Newton’s 
first law is a particular case of Newton’s second law (Sec. 12.2) and that 
the principle of transmissibility could be derived from the other prin-
ciples and thus eliminated (Sec. 16.5). In the meantime, however, 
Newton’s first and third laws, the parallelogram law of addition, and 
the principle of transmissibility will provide us with the necessary and 
sufficient foundation for the entire study of the statics of particles, 
rigid bodies, and systems of rigid bodies. 
    As noted earlier, the six fundamental principles listed above are 
based on experimental evidence. Except for Newton’s first law and the 
principle of transmissibility, they are independent principles which 
cannot be derived mathematically from each other or from any other 
elementary physical principle. On these principles rests most of the 
intricate structure of newtonian mechanics. For more than two centu-
ries a tremendous number of problems dealing with the conditions of 
rest and motion of rigid bodies, deformable bodies, and fluids have 
been solved by applying these fundamental principles. Many of the 
solutions obtained could be checked experimentally, thus providing a 
further verification of the principles from which they were derived. It 
is only in the twentieth century that Newton’s mechanics was found at 
fault, in the study of the motion of atoms and in the study of the motion 
of certain planets, where it must be supplemented by the theory of 
relativity. But on the human or engineering scale, where velocities are 
small compared with the speed of light, Newton’s mechanics has yet to 
be disproved.     

  1.3   SYSTEMS OF UNITS   
 With the four fundamental concepts introduced in the preceding sec-
tion are associated the so-called  kinetic units , i.e., the units of  length, 
time, mass , and  force . These units cannot be chosen independently if 
Eq. (1.1) is to be satisfied. Three of the units may be defined arbi-
trarily; they are then referred to as  basic units . The fourth unit, how-
ever, must be chosen in accordance with Eq. (1.1) and is referred to as 
a  derived unit . Kinetic units selected in this way are said to form a 
 consistent system of units .  

  International System of Units (SI Units †).     In this system, which 
will be in universal use after the United States has completed its con-
version to SI units, the base units are the units of length, mass, and 
time, and they are called, respectively, the  meter  (m), the  kilogram  
(kg), and the  second  (s). All three are arbitrarily defined. The second, 

†SI stands for  Système International d’Unités  (French).  

1.3   Systems of Units
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6 Introduction which was originally chosen to represent 1/86 400 of the mean solar 
day, is now defined as the duration of 9 192 631 770 cycles of the radia-
tion corresponding to the transition between two levels of the funda-
mental state of the cesium-133 atom. The meter, originally defined as 
one ten-millionth of the distance from the equator to either pole, is 
now defined as 1 650 763.73 wavelengths of the orange-red light cor-
responding to a certain transition in an atom of krypton-86. The kilo-
gram, which is approximately equal to the mass of 0.001 m 3  of water, 
is defined as the mass of a platinum-iridium standard kept at the Inter-
national Bureau of Weights and Measures at Sèvres, near Paris, France. 
The unit of force is a derived unit. It is called the  newton  (N) and is 
defined as the force which gives an acceleration of 1 m/s 2  to a mass of 
1 kg ( Fig. 1.2 ). From Eq. (1.1) we write 

  1 N 5 (1 kg)(1 m/s2) 5 1 kg ? m/s2 (1.5) 

  The SI units are said to form an  absolute  system of units. This means 
that the three base units chosen are independent of the location where 
measurements are made. The meter, the kilogram, and the second 
may be used anywhere on the earth; they may even be used on another 
planet. They will always have the same significance. 
    The  weight  of a body, or the  force of gravity  exerted on that body, 
should, like any other force, be expressed in newtons. From Eq. (1.4) 
it follows that the weight of a body of mass 1 kg ( Fig. 1.3 ) is 

  W 5 mg
  5 (1 kg)(9.81 m/s2) 
  5 9.81 N  

   Multiples and submultiples of the fundamental SI units may be 
obtained through the use of the prefixes defined in  Table 1.1 . The 
multiples and submultiples of the units of length, mass, and force most 
frequently used in engineering are, respectively, the  kilometer  (km) 
and the  millimeter  (mm); the  megagram  †    (Mg) and the  gram  (g); and 
the  kilonewton  (kN). According to  Table 1.1 , we have 

  1 km 5 1000 m       1 mm 5 0.001 m
  1 Mg 5 1000 kg   1 g 5 0.001 kg

 1 kN 5 1000 N

  The conversion of these units into meters, kilograms, and  newtons, 
respectively, can be effected by simply moving the decimal point 
three places to the right or to the left. For example, to convert 
3.82 km into meters, one moves the decimal point three places to the 
right: 

 3.82 km 5 3820 m 

   Similarly, 47.2 mm is converted into meters by moving the decimal 
point three places to the left: 

 47.2 mm 5 0.0472 m

  Fig. 1.2      

a = 1 m/s2

m = 1 kg F = 1 N

  Fig. 1.3 
      

a = 9.81 m/s2

m = 1 kg

W = 9.81 N

† Also known as a  metric ton .
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7

  Using scientific notation, one may also write 

  3.82 km 5 3.82 3 103 m  
  47.2 mm 5 47.2 3 1023 m 

    The multiples of the unit of time are the  minute  (min) and the 
 hour  (h). Since 1 min 5 60 s and 1 h 5 60 min 5 3600 s, these multi-
ples cannot be converted as readily as the others. 
   By using the appropriate multiple or submultiple of a given unit, 
one can avoid writing very large or very small numbers. For example, 
one usually writes 427.2 km rather than 427 200 m, and 2.16 mm 
rather than 0.002 16 m. † 

 Units of Area and Volume.  The unit of area is the  square meter  
(m 2 ), which represents the area of a square of side 1 m; the unit of vol-
ume is the  cubic meter  (m 3 ), equal to the volume of a cube of side 1 m. 
In order to avoid exceedingly small or large numerical values in the 
computation of areas and volumes, one uses systems of subunits 
obtained by respectively squaring and cubing not only the millimeter 
but also two intermediate submultiples of the meter, namely, the 
  decimeter  (dm) and the  centimeter  (cm). Since, by definition, 

   1 dm 5 0.1 m 5 1021 m   
   1 cm 5 0.01 m 5 1022 m
 1 mm 5 0.001 m 5 1023 m

 †It should be noted that when more than four digits are used on either side of the decimal 
point to express a quantity in SI units—as in 427 200 m or 0.002 16 m—spaces, never 
commas, should be used to separate the digits into groups of three. This is to avoid 
confusion with the comma used in place of a decimal point, which is the convention in 
many countries. 

1.3   Systems of Units TABLE 1.1   Sl Prefixes 

 Multiplication Factor   Prefix †   Symbol 

    1 000 000 000 000 5 10 12    tera   T  
   1 000 000 000 5 10 9    giga   G  
   1 000 000 5 10 6    mega   M  
   1 000 5 10 3    kilo   k  
  100 5 10 2    hecto ‡   h
   10 5 10 1    deka ‡    da  
  0.1 5 10 21   deci ‡   d 
  0.01 5 10 22   centi ‡   c 
  0.001 5 10 23   milli   m 
  0.000 001 5 10 26   micro   m 
  0.000 000 001 5 10 29   nano   n 
  0.000 000 000 001 5 10 212   pico   p 
  0.000 000 000 000 001 5 10 215   femto   f 
  0.000 000 000 000 000 001 5 10 218   atto   a 

 †The first syllable of every prefix is accented so that the prefix will retain its identity. Thus, the 
preferred pronunciation of kilometer places the accent on the first syllable, not the second. 
 ‡The use of these prefixes should be avoided, except for the measurement of areas and volumes 
and for the nontechnical use of centimeter, as for body and clothing measurements.   
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8 Introduction   the submultiples of the unit of area are 

  1 dm2 5 (1 dm)2 5 (1021 m)2 5 1022 m2   
  1 cm2 5 (1 cm)2 5 (1022 m)2 5 1024 m2   
  1 mm2 5 (1 mm)2 5 (1023 m)2 5 1026 m2  

  and the submultiples of the unit of volume are 

   1 dm3 5 (1 dm)3 5 (1021 m)3 5 1023 m3   
   1 cm3 5 (1 cm)3 5 (1022 m)3 5 1026 m3   
   1 mm3 5 (1 mm)3 5 (1023 m)3 5 1029 m3  

  It should be noted that when the volume of a liquid is being measured, 
the cubic decimeter (dm 3 ) is usually referred to as a  liter  (L). 
    Other derived SI units used to measure the moment of a force, 
the work of a force, etc., are shown in  Table 1.2 . While these units will 
be introduced in later chapters as they are needed, we should note an 
important rule at this time: When a derived unit is obtained by divid-
ing a base unit by another base unit, a prefix may be used in the 
numerator of the derived unit but not in its denominator. For example, 
the constant  k  of a spring which stretches 20 mm under a load of 
100 N will be expressed as 

  
k 5

100 N
20 mm

5
100 N

0.020 m
5 5000 N/m

    
or
    

k 5 5 kN/m
   

but never as  k  5 5 N/mm.  

 TABLE 1.2   Principal SI Units Used in Mechanics          

  Quantity   Unit   Symbol   Formula    

  Acceleration   Meter per second squared   . . .   m/s 2   
  Angle   Radian   rad    †  
Angular acceleration   Radian per second squared   . . .   rad/s 2   
 Angular velocity   Radian per second   . . .   rad/s  
  Area   Square meter   . . .   m 2   
  Density   Kilogram per cubic meter   . . .   kg/m 3   
  Energy   Joule   J   N ? m 
  Force   Newton   N   kg ? m/s 2   
 Frequency   Hertz   Hz  s 21 
 Impulse   Newton-second   . . .   kg ? m/s  
  Length   Meter   m    ‡  
Mass   Kilogram   kg    ‡   
  Moment of a force   Newton-meter   . . .   N ? m  
  Power   Watt   W   J/s  
  Pressure   Pascal   Pa   N/m 2   
  Stress   Pascal   Pa   N/m 2   
  Time   Second   s    ‡   
  Velocity   Meter per second   . . .   m/s  
  Volume  
   Solids   Cubic meter   . . .   m 3   
   Liquids   Liter   L   10 23 m 3   
  Work   Joule   J   N ? m 

†Supplementary unit (1 revolution 5 2p rad 5 3608).    
‡Base unit.      
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9 U.S. Customary Units.  Most practicing American engineers still 
commonly use a system in which the base units are the units of length, 
force, and time. These units are, respectively, the  foot  (ft), the  pound  
(lb), and the  second  (s). The second is the same as the corresponding 
SI unit. The foot is defined as 0.3048 m. The pound is defined as the 
 weight  of a platinum standard, called the  standard pound , which is 
kept at the National Institute of Standards and Technology outside 
Washington, the mass of which is 0.453 592 43 kg. Since the weight of 
a body depends upon the earth’s gravitational attraction, which varies 
with location, it is specified that the standard pound should be placed 
at sea level and at a latitude of 458 to properly define a force of 1 lb. 
Clearly the U.S. customary units do not form an absolute system of 
units. Because of their dependence upon the gravitational attraction of 
the earth, they form a  gravitational  system of units. 
   While the standard pound also serves as the unit of mass in com-
mercial transactions in the United States, it cannot be so used in engi-
neering computations, since such a unit would not be consistent with 
the base units defined in the preceding paragraph. Indeed, when acted 
upon by a force of 1 lb, that is, when subjected to the force of gravity, 
the standard pound receives the acceleration of gravity,  g  5 32.2 ft/s 2  
( Fig. 1.4 ), not the unit acceleration required by Eq. (1.1). The unit of 
mass consistent with the foot, the pound, and the second is the mass 
which receives an acceleration of 1 ft/s 2  when a force of 1 lb is applied 
to it ( Fig. 1.5 ). This unit, sometimes called a  slug , can be derived from 
the equation  F 5 ma  after substituting 1 lb and 1 ft/s 2  for  F  and  a , 
respectively. We write 

  F 5 ma    1 lb 5 (1 slug)(1 ft/s2)
  and obtain 

   1 slug 5
1 lb

1 ft/s2 5 1 lb ? s2/ft  (1.6)

   Comparing  Figs. 1.4  and  1.5 , we conclude that the slug is a mass 32.2 
times larger than the mass of the standard pound. 
    The fact that in the U.S. customary system of units bodies are 
characterized by their weight in pounds rather than by their mass in 
slugs will be a convenience in the study of statics, where one constantly 
deals with weights and other forces and only seldom with masses. 
However, in the study of dynamics, where forces, masses, and acceler-
ations are involved, the mass  m  of a body will be expressed in slugs 
when its weight  W  is given in pounds. Recalling Eq. (1.4), we write 

   m 5
W
g

 (1.7)  

   where  g  is the acceleration of gravity ( g  5 32.2 ft/s 2 ). 
    Other U.S. customary units frequently encountered in engineer-
ing problems are the  mile  (mi), equal to 5280 ft; the  inch  (in.), equal to 
1

12 ft; and the  kilopound  (kip), equal to a force of 1000 lb. The  ton  is 
often used to represent a mass of 2000 lb but, like the pound, must be 
converted into slugs in engineering computations. 
    The conversion into feet, pounds, and seconds of quantities 
expressed in other U.S. customary units is generally more involved and 

  Fig. 1.4       

a = 32.2 ft /s2

m = 1 lb

F = 1 lb

Fig. 1.5      

a = 1 ft /s2

m = 1 slug
(= 1 lb • s2/ft) 

F = 1 lb

1.3   Systems of Units
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10 Introduction requires greater attention than the corresponding operation in SI 
units. If, for example, the magnitude of a velocity is given as  v  5 
30 mi/h, we convert it to ft/s as follows. First we write 

  v 5 30  

mi
h

  

   Since we want to get rid of the unit miles and introduce instead the 
unit feet, we should multiply the right-hand member of the equation 
by an expression containing miles in the denominator and feet in the 
numerator. But, since we do not want to change the value of the right-
hand member, the expression used should have a value equal to unity. 
The quotient (5280 ft)/(1 mi) is such an expression. Operating in a 
similar way to transform the unit hour into seconds, we write 

  v 5 a30 

mi
h
b a5280 ft

1 mi
b a 1 h

3600 s
b  

   Carrying out the numerical computations and canceling out units which 
appear in both the numerator and the denominator, we obtain 

  v 5 44 
ft
s 5 44 ft/s    

 1.4   CONVERSION FROM ONE SYSTEM OF UNITS 
TO ANOTHER  

 There are many instances when an engineer wishes to convert into SI 
units a numerical result obtained in U.S. customary units or vice versa. 
Because the unit of time is the same in both systems, only two kinetic 
base units need be converted. Thus, since all other kinetic units can be 
derived from these base units, only two conversion factors need be 
remembered.  

 Units of Length.   By definition the U.S. customary unit of length is 

   1 ft 5 0.3048 m (1.8)  

   It follows that 

  1 mi 5 5280 ft 5 5280(0.3048 m) 5 1609 m  
   or 
 1 mi 5 1.609 km (1.9)  
   Also

 1 in. 5 1
12 ft 5 1

12 (0.3048 m) 5 0.0254 m  
   or 
 1 in. 5 25.4 mm     (1.10)

 Units of Force.   Recalling that the U.S. customary unit of force 
(pound) is defined as the weight of the standard pound (of mass 
0.4536 kg) at sea level and at a latitude of 458 (where  g  5 9.807 m/s 2 ) 
and using Eq. (1.4), we write 
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11   W 5 mg   
   1 lb 5 (0.4536 kg)(9.807 m/s2) 5 4.448 kg ? m/s2  

   or, recalling Eq. (1.5), 

   1 lb 5 4.448 N (1.11)    

 Units of Mass.  The U.S. customary unit of mass (slug) is a derived 
unit. Thus, using Eqs. (1.6), (1.8), and (1.11), we write 

  1 slug 5 1 lb ? s2/ft 5
1 lb

1 ft/s2 5
4.448 N

0.3048 m/s2 5 14.59 N ? s2/m  

   and, recalling Eq. (1.5), 

   1 slug 5 1 lb ? s2/ft 5 14.59 kg (1.12)  

   Although it cannot be used as a consistent unit of mass, we recall that 
the mass of the standard pound is, by definition, 

   1 pound mass 5 0.4536 kg (1.13)  

   This constant may be used to determine the  mass  in SI units (kilo-
grams) of a body which has been characterized by its  weight  in U.S. 
customary units (pounds). 
    To convert a derived U.S. customary unit into SI units, one sim-
ply multiplies or divides by the appropriate conversion factors. For 
example, to convert the moment of a force which was found to be  
M  5 47 lb ? in. into SI units, we use formulas (1.10) and (1.11) and 
write 

   M 5 47 lb ? in. 5 47(4.448 N)(25.4 mm)   
   5 5310 N ? mm 5 5.31 N ? m  

    The conversion factors given in this section may also be used to 
convert a numerical result obtained in SI units into U.S. customary 
units. For example, if the moment of a force was found to be  M  5 
40 N ? m, we write, following the procedure used in the last paragraph 
of Sec. 1.3, 

  M 5 40 N ? m 5 (40 N ? m) a 1 lb
4.448 N

b a 1 ft
0.3048 m

b  
   Carrying out the numerical computations and canceling out units 
which appear in both the numerator and the denominator, we obtain 

  M 5 29.5 lb ? ft  

    The U.S. customary units most frequently used in mechanics are 
listed in  Table 1.3  with their SI equivalents.  

       1.5  METHOD OF PROBLEM SOLUTION  
 You should approach a problem in mechanics as you would approach 
an actual engineering situation. By drawing on your own experience 
and intuition, you will find it easier to understand and formulate the 
problem. Once the problem has been clearly stated, however, there is 

1.5  Method of Problem Solution
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12 Introduction

no place in its solution for your particular fancy.  The solution must be 
based on the six fundamental principles stated in Sec. 1.2 or on theo-
rems derived from them.  Every step taken must be justified on that 
basis. Strict rules must be followed, which lead to the solution in an 
almost automatic fashion, leaving no room for your intuition or “feel-
ing.” After an answer has been obtained, it should be checked. Here 
again, you may call upon your common sense and personal experience. 
If not completely satisfied with the result obtained, you should carefully 
check your formulation of the problem, the validity of the methods 
used for its solution, and the accuracy of your computations. 
    The  statement  of a problem should be clear and precise. It should 
contain the given data and indicate what information is required. A 
neat drawing showing all quantities involved should be included. Sepa-
rate diagrams should be drawn for all bodies involved, indicating 
clearly the forces acting on each body. These diagrams are known as 
 free-body diagrams  and are described in detail in Secs. 2.11 and 4.2. 

 TABLE 1.3  U.S. Customary Units and Their SI Equivalents 

          Quantity U.S. Customary Unit   SI Equivalent 

    Acceleration  ft/s 2    0.3048 m/s2  
     in./s2  0.0254 m/s2  
  Area  ft2   0.0929 m2 
     in 2  645.2 mm2 
  Energy ft ? lb   1.356 J  
 Force   kip  4.448 kN  
   lb   4.448 N 
    oz   0.2780 N 
 Impulse  lb ? s   4.448 N ? s  
 Length   ft  0.3048 m 
   in.   25.40 mm  
   mi   1.609 km 
 Mass   oz mass   28.35 g  
    lb mass 0.4536 kg  
  slug   14.59 kg  
   ton   907.2 kg  
 Moment of a force   lb ? ft   1.356 N ? m  
    lb ? in.  0.1130 N ? m 
 Moment of inertia      
   Of an area in 4    0.4162 3 106 mm 4   
   Of a mass  lb ? ft ? s 2    1.356 kg ? m2  
  Momentum lb ? s   4.448 kg ? m/s 
  Power   ft ? lb/s   1.356 W  
    hp   745.7 W 
  Pressure or stress   lb/ft 2    47.88 Pa 
   lb/in 2 (psi)   6.895 kPa  
 Velocity  ft/s   0.3048 m/s 
    in./s  0.0254 m/s 
    mi/h (mph)  0.4470 m/s 
    mi/h (mph)  1.609 km/h 
 Volume   ft 3   0.02832 m 3 
     in 3  16.39 cm3 
   Liquids  gal  3.785 L 
    qt   0.9464 L 
 Work   ft ? lb  1.356 J  
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13    The  fundamental principles  of mechanics listed in Sec. 1.2  will 
be used to write equations  expressing the conditions of rest or motion 
of the bodies considered. Each equation should be clearly related to 
one of the free-body diagrams. You will then proceed to solve the 
problem, observing strictly the usual rules of algebra and recording 
neatly the various steps taken. 
    After the answer has been obtained, it should be  carefully checked.  
Mistakes in  reasoning  can often be detected by checking the units. For 
example, to determine the moment of a force of 50 N about a point 
0.60 m from its line of action, we would have written (Sec. 3.12) 

  M 5 Fd 5 (50 N)(0.60 m) 5 30 N ? m 

   The unit N ? m obtained by multiplying newtons by meters is the cor-
rect unit for the moment of a force; if another unit had been obtained, 
we would have known that some mistake had been made. 
    Errors in computation  will usually be found by substituting the 
numerical values obtained into an equation which has not yet been 
used and verifying that the equation is satisfied. The importance of 
correct computations in engineering cannot be overemphasized.    

 1.6   NUMERICAL ACCURACY  
 The accuracy of the solution of a problem depends upon two items: 
(1) the accuracy of the given data and (2) the accuracy of the computa-
tions performed. 
    The solution cannot be more accurate than the less accurate of 
these two items. For example, if the loading of a bridge is known to be 
75,000 lb with a possible error of 100 lb either way, the relative error 
which measures the degree of accuracy of the data is 

  
100 lb

75,000 lb
5 0.0013 5 0.13 percent  

   In computing the reaction at one of the bridge supports, it would then 
be meaningless to record it as 14,322 lb. The accuracy of the solution 
cannot be greater than 0.13 percent, no matter how accurate the com-
putations are, and the possible error in the answer may be as large as 
(0.13/100)(14,322 lb) < 20 lb. The answer should be properly recorded 
as 14,320 6 20 lb. 
    In engineering problems, the data are seldom known with an 
accuracy greater than 0.2 percent. It is therefore seldom justified to 
write the answers to such problems with an accuracy greater than 0.2 
percent. A practical rule is to use 4 figures to record numbers begin-
ning with a “1” and 3 figures in all other cases. Unless otherwise indi-
cated, the data given in a problem should be assumed known with a 
comparable degree of accuracy. A force of 40 lb, for example, should 
be read 40.0 lb, and a force of 15 lb should be read 15.00 lb. 
    Pocket electronic calculators are widely used by practicing engi-
neers and engineering students. The speed and accuracy of these cal-
culators facilitate the numerical computations in the solution of many 
problems. However, students should not record more significant fig-
ures than can be justified merely because they are easily obtained. As 
noted above, an accuracy greater than 0.2 percent is seldom necessary 
or meaningful in the solution of practical engineering problems.                 

1.6   Numerical Accuracy
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14

Many engineering problems can be 

solved by considering the equilibrium of 

a “particle.” In the case of this 

excavator, which is being loaded onto 

a ship, a relation between the tensions 

in the various cables involved can be 

obtained by considering the equilibrium 

of the hook to which the cables are 

attached.
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Statics of Particles
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16

2.1 INTRODUCTION
In this chapter you will study the effect of forces acting on particles. 
First you will learn how to replace two or more forces acting on a 
given particle by a single force having the same effect as the original 
forces. This single equivalent force is the resultant of the original 
forces acting on the particle. Later the relations which exist among 
the various forces acting on a particle in a state of equilibrium will 
be derived and used to determine some of the forces acting on the 
particle.
 The use of the word “particle” does not imply that our study 
will be limited to that of small corpuscles. What it means is that the 
size and shape of the bodies under consideration will not significantly 
affect the solution of the problems treated in this chapter and that 
all the forces acting on a given body will be assumed to be applied 
at the same point. Since such an assumption is verified in many 
practical applications, you will be able to solve a number of engineer-
ing problems in this chapter.
 The first part of the chapter is devoted to the study of forces 
contained in a single plane, and the second part to the analysis of 
forces in three-dimensional space.

FORCES IN A PLANE

2.2  FORCE ON A PARTICLE. RESULTANT 
OF TWO FORCES

A force represents the action of one body on another and is generally 
characterized by its point of application, its magnitude, and its direc-
tion. Forces acting on a given particle, however, have the same point 
of application. Each force considered in this chapter will thus be 
completely defined by its magnitude and direction.
 The magnitude of a force is characterized by a certain num-
ber of units. As indicated in Chap. 1, the SI units used by engi-
neers to measure the magnitude of a force are the newton (N) and 
its multiple the kilonewton (kN), equal to 1000 N, while the U.S. 
customary units used for the same purpose are the pound (lb) and 
its multiple the kilopound (kip), equal to 1000 lb. The direction 
of a force is defined by the line of action and the sense of the 
force. The line of action is the infinite straight line along which 
the force acts; it is characterized by the angle it forms with some 
fixed axis (Fig. 2.1). The force itself is represented by a segment of 

Fig. 2.1 (a)

A 30°
10 lb

(b)

A 30°
10 lb

 Chapter 2 Statics of Particles
 2.1 Introduction
 2.2  Force on a Particle. Resultant of 

Two Forces
 2.3 Vectors
 2.4 Addition of Vectors
 2.5 Resultant of Several Concurrent 

Forces
 2.6 Resolution of a Force into 

Components
 2.7 Rectangular Components of a 

Force. Unit Vectors
 2.8 Addition of Forces by Summing

X and Y Components
 2.9 Equilibrium of a Particle
 2.10 Newton’s First Law of Motion
 2.11 Problems Involving the Equilibrium 

of a Particle. Free-Body Diagrams
 2.12 Rectangular Components of a 

Force in Space
 2.13 Force Defined by Its Magnitude 

and Two Points on Its Line of 
Action

 2.14 Addition of Concurrent Forces 
in Space

 2.15 Equilibrium of a Particle in Space
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17that line; through the use of an appropriate scale, the length of this 
segment may be chosen to represent the magnitude of the force. 
Finally, the sense of the force should be indicated by an arrowhead. 
It is important in defining a force to indicate its sense. Two forces 
having the same magnitude and the same line of action but different 
sense, such as the forces shown in Fig. 2.1a and b, will have directly 
opposite effects on a particle.
 Experimental evidence shows that two forces P and Q acting 
on a particle A (Fig. 2.2a) can be replaced by a single force R which 
has the same effect on the particle (Fig. 2.2c). This force is called 
the resultant of the forces P and Q and can be obtained, as shown 
in Fig. 2.2b, by constructing a parallelogram, using P and Q as two 
adjacent sides of the parallelogram. The diagonal that passes through 
A represents the resultant. This method for finding the resultant is 
known as the parallelogram law for the addition of two forces. This 
law is based on experimental evidence; it cannot be proved or derived 
mathematically.

2.3 VECTORS
It appears from the above that forces do not obey the rules of addi-
tion defined in ordinary arithmetic or algebra. For example, two 
forces  acting at a right angle to each other, one of 4 lb and the other 
of 3 lb, add up to a force of 5 lb, not to a force of 7 lb. Forces are 
not the only quantities which follow the parallelogram law of addi-
tion. As you will see later, displacements, velocities, accelerations, and 
momenta are other examples of physical quantities possessing mag-
nitude and direction that are added according to the parallelogram 
law. All these quantities can be represented mathematically by vec-
tors, while those physical quantities which have magnitude but not 
direction, such as volume, mass, or energy, are represented by plain 
numbers or scalars.
 Vectors are defined as mathematical expressions possessing 
 magnitude and direction, which add according to the parallelo-
gram law. Vectors are represented by arrows in the illustrations 
and will be distinguished from scalar quantities in this text through 
the use of boldface type (P). In longhand writing, a vector may be 
denoted by drawing a short arrow above the letter used to repre-
sent it (P

S
) or by underlining the letter (P). The last method may 

be preferred since underlining can also be used on a typewriter 
or computer. The magnitude of a vector defines the length of the 
arrow used to represent the vector. In this text, italic type will be 
used to denote the magnitude of a vector. Thus, the magnitude of 
the vector P will be denoted by P.
 A vector used to represent a force acting on a given particle 
has a well-defined point of application, namely, the particle itself. 
Such a vector is said to be a fixed, or bound, vector and cannot be 
moved without modifying the conditions of the problem. Other 
physical quantities, however, such as couples (see Chap. 3), are 
represented by vectors which may be freely moved in space; these 

A

P

Q

(a)

A

P
R

Q

(b)

A

R

(c)

Fig. 2.2

2.3   Vectors
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18 Statics of Particles vectors are called free vectors. Still other physical quantities, such 
as forces acting on a rigid body (see Chap. 3), are represented by 
vectors which can be moved, or slid, along their lines of action; 
they are known as sliding vectors.†
 Two vectors which have the same magnitude and the same 
direction are said to be equal, whether or not they also have the same 
point of application (Fig. 2.4); equal vectors may be denoted by the 
same letter.
 The negative vector of a given vector P is defined as a vector 
 having the same magnitude as P and a direction opposite to that of 
P (Fig. 2.5); the negative of the vector P is denoted by 2P. The 
vectors P and 2P are commonly referred to as equal and opposite 
vectors. Clearly, we have

P 1 (2P) 5 0

2.4 ADDITION OF VECTORS
We saw in the preceding section that, by definition, vectors add 
according to the parallelogram law. Thus, the sum of two vectors P 
and Q is obtained by attaching the two vectors to the same point A 
and constructing a parallelogram, using P and Q as two sides of the 
parallelogram (Fig. 2.6). The diagonal that passes through A repre-
sents the sum of the vectors P and Q, and this sum is denoted by 
P 1 Q. The fact that the sign 1 is used to denote both vector and 
scalar addition should not cause any confusion if vector and scalar 
quantities are always carefully distinguished. Thus, we should note 
that the magnitude of the vector P 1 Q is not, in general, equal to 
the sum P 1 Q of the magnitudes of the vectors P and Q.
 Since the parallelogram constructed on the vectors P and Q does 
not depend upon the order in which P and Q are selected, we con-
clude that the addition of two vectors is commutative, and we write

 P 1 Q 5 Q 1 P (2.1)

†Some expressions have magnitude and direction, but do not add according to the 
 parallelogram law. While these expressions may be represented by arrows, they cannot 
be considered as vectors.
 A group of such expressions is the finite rotations of a rigid body. Place a closed 
book on a table in front of you, so that it lies in the usual fashion, with its front cover 
up and its binding to the left. Now rotate it through 180° about an axis parallel to the 
binding (Fig. 2.3a); this rotation may be represented by an arrow of length equal to 
180 units and oriented as shown. Picking up the book as it lies in its new position, rotate 

Fig. 2.3 Finite rotations of a rigid body

= =

(a) (b)
180°

180°

Fig. 2.4

P

P

Fig. 2.5

P

–P

A

P
P + Q

Q

Fig. 2.6
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19 From the parallelogram law, we can derive an alternative 
method for determining the sum of two vectors. This method, known 
as the triangle rule, is derived as follows. Consider Fig. 2.6, where 
the sum of the vectors P and Q has been determined by the paral-
lelogram law. Since the side of the parallelogram opposite Q is equal 
to Q in magnitude and direction, we could draw only half of the 
parallelogram (Fig. 2.7a). The sum of the two vectors can thus be 
found by arranging P and Q in tip-to-tail fashion and then connect-
ing the tail of P with the tip of Q. In Fig. 2.7b, the other half of the 
parallelogram is considered, and the same result is obtained. This 
confirms the fact that vector addition is commutative.
 The subtraction of a vector is defined as the addition of the 
corresponding negative vector. Thus, the vector P 2 Q representing 
the difference between the vectors P and Q is obtained by adding 
to P the negative vector 2Q (Fig. 2.8). We write

 P 2 Q 5 P 1 (2Q) (2.2)

Here again we should observe that, while the same sign is used to 
denote both vector and scalar subtraction, confusion will be avoided 
if care is taken to distinguish between vector and scalar quantities.
 We will now consider the sum of three or more vectors. The 
sum of three vectors P, Q, and S will, by definition, be obtained by 
first adding the vectors P and Q and then adding the vector S to the 
vector P 1 Q. We thus write

 P 1 Q 1 S 5 (P 1 Q) 1 S (2.3)

Similarly, the sum of four vectors will be obtained by adding the 
fourth vector to the sum of the first three. It follows that the sum 
of any number of vectors can be obtained by applying repeatedly the 
parallelogram law to successive pairs of vectors until all the given 
vectors are replaced by a single vector.

=
=

y

x

z

y

x

z

(c) (d)

180° 180°

180°

180°

it now through 180° about a horizontal axis perpendicular to the binding (Fig. 2.3b); this 
second rotation may be represented by an arrow 180 units long and oriented as shown. 
But the book could have been placed in this final position through a single 180° rotation 
about a vertical axis (Fig. 2.3c). We conclude that the sum of the two 180° rotations repre-
sented by arrows directed respectively along the z and x axes is a 180° rotation represented 
by an arrow directed along the y axis (Fig. 2.3d). Clearly, the finite rotations of a rigid 
body do not obey the parallelogram law of addition; therefore, they cannot be represented 
by vectors.

A

A

P

P

Q

Q

P + Q

P + Q

(a)

(b)

Fig. 2.7

P 
– 

Q

P
P

Q

–Q

(a) (b)

Fig. 2.8

2.4 Addition of Vectors
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20 Statics of Particles  If the given vectors are coplanar, i.e., if they are contained in 
the same plane, their sum can be easily obtained graphically. For this 
case, the repeated application of the triangle rule is preferred to the 
application of the parallelogram law. In Fig. 2.9 the sum of three 
vectors P, Q, and S was obtained in that manner. The triangle rule 
was first applied to obtain the sum P 1 Q of the vectors P and Q; 
it was applied again to obtain the sum of the vectors P 1 Q and S. 
The determination of the vector P 1 Q, however, could have been 
omitted and the sum of the three vectors could have been obtained 
directly, as shown in Fig. 2.10, by arranging the given vectors in tip-
to-tail fashion and connecting the tail of the first vector with the tip 
of the last one. This is known as the polygon rule for the addition of 
vectors.
 We observe that the result obtained would have been unchanged 
if, as shown in Fig. 2.11, the vectors Q and S had been replaced by 
their sum Q 1 S. We may thus write

 P 1 Q 1 S 5 (P 1 Q) 1 S 5 P 1 (Q 1 S) (2.4)

which expresses the fact that vector addition is associative. Recalling 
that vector addition has also been shown, in the case of two vectors, 
to be commutative, we write

  P 1 Q 1 S 5 (P 1 Q) 1 S 5 S 1 (P 1 Q) 
(2.5)  5 S 1 (Q 1 P) 5 S 1 Q 1 P

This expression, as well as others which may be obtained in the same 
way, shows that the order in which several vectors are added together 
is immaterial (Fig. 2.12).

Product of a Scalar and a Vector. Since it is convenient to 
denote the sum P 1 P by 2P, the sum P 1 P 1 P by 3P, and, 
in  general, the sum of n equal vectors P by the product nP, we 
will define the product nP of a positive integer n and a vector P 
as a vector having the same direction as P and the magnitude nP. 
Extending this definition to include all scalars, and recalling the 
definition of a negative vector given in Sec. 2.3, we define the 
product kP of a scalar k and a vector P as a vector having the same 
direction as P (if k is positive), or a direction opposite to that of 
P (if k is negative), and a magnitude equal to the product of P and 
of the absolute value of k (Fig. 2.13).

2.5 RESULTANT OF SEVERAL CONCURRENT FORCES
Consider a particle A acted upon by several coplanar forces, i.e., by 
several forces contained in the same plane (Fig. 2.14a). Since the 
forces considered here all pass through A, they are also said to be 
concurrent. The vectors representing the forces acting on A may be 
added by the polygon rule (Fig. 2.14b). Since the use of the polygon 
rule is equivalent to the repeated application of the parallelogram 
law, the vector R thus obtained represents the resultant of the given 
concurrent forces, i.e., the single force which has the same effect on 

Fig. 2.13

P 1.5 P

–2 P

Fig. 2.12

P

P

Q

Q S

S

P + Q + S

= S + Q + P

A

Fig. 2.11

A

P

Q S

Q + S

P + Q + S

Fig. 2.10

P

Q S

P + Q + S

A

Fig. 2.9

A

P

Q S

P +
 Q

P + Q + S
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21

the particle A as the given forces. As indicated in the previous sec-
tion, the order in which the vectors P, Q, and S representing the 
given forces are added together is immaterial.

2.6 RESOLUTION OF A FORCE INTO COMPONENTS
We have seen that two or more forces acting on a particle may be 
replaced by a single force which has the same effect on the particle. 
Conversely, a single force F acting on a particle may be replaced by 
two or more forces which, together, have the same effect on the 
particle. These forces are called the components of the original force 
F, and the process of substituting them for F is called resolving the 
force F into components.
 Clearly, for each force F there exist an infinite number of pos-
sible sets of components. Sets of two components P and Q are the 
most important as far as practical applications are concerned. But, 
even then, the number of ways in which a given force F may be 
resolved into two components is unlimited (Fig. 2.15). Two cases are 
of particular interest:

 1. One of the Two Components, P, Is Known. The second com-
ponent, Q, is obtained by applying the triangle rule and join-
ing the tip of P to the tip of F (Fig. 2.16); the magnitude and 
direction of Q are determined graphically or by trigonometry. 
Once Q has been determined, both components P and Q 
should be applied at A.

 2. The Line of Action of Each Component Is Known. The magni-
tude and sense of the components are obtained by applying the 
parallelogram law and drawing lines, through the tip of F, par-
allel to the given lines of action (Fig. 2.17). This process leads 
to two well-defined components, P and Q, which can be deter-
mined graphically or computed trigonometrically by applying 
the law of sines.

 Many other cases can be encountered; for example, the direc-
tion of one component may be known, while the magnitude of the 
other component is to be as small as possible (see Sample Prob. 2.2). 
In all cases the appropriate triangle or parallelogram which satisfies 
the given conditions is drawn.

A

P

Q
F

Fig. 2.17

Fig. 2.16

A

P

Q

F

A
A

P

P

Q

Q

S

S

(a)

R

(b)

Fig. 2.14

A

A
A

P

P P

Q

Q

Q

F

F
F

(a) (b)

(c)

Fig. 2.15

2.6 Resolution of a Force into Components
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SAMPLE PROBLEM 2.1

The two forces P and Q act on a bolt A. Determine their resultant.
25°

20°
A

Q = 60 N

P = 40 N

SOLUTION

Graphical Solution. A parallelogram with sides equal to P and Q is drawn 
to scale. The magnitude and direction of the resultant are measured and 
found to be

R 5 98 N  a 5 35°  R 5 98 N a35° ◀

 The triangle rule may also be used. Forces P and Q are drawn in tip-to-
tail fashion. Again the magnitude and direction of the resultant are measured.

R 5 98 N  a 5 35°  R 5 98 N a35° ◀

Trigonometric Solution. The triangle rule is again used; two sides and the 
included angle are known. We apply the law of cosines.

 R2 5 P2 1 Q2 2 2PQ cos B
 R2 5 (40 N)2 1 (60 N)2 2 2(40 N)(60 N) cos 155°
 R 5 97.73 N

Now, applying the law of sines, we write

 
 sin A

Q
5

 sin B
R

     sin A
60 N

5
 sin 155°
97.73 N

 (1)

Solving Eq. (1) for sin A, we have

 sin A 5
(60 N) sin 155°

97.73 N

 Using a calculator, we first compute the quotient, then its arc sine, 
and obtain

A 5 15.04°  a 5 20° 1 A 5 35.04°

We use 3 significant figures to record the answer (cf. Sec. 1.6):

R 5 97.7 N a35.0° ◀

Alternative Trigonometric Solution. We construct the right triangle BCD 
and compute

CD 5 (60 N) sin 25° 5 25.36 N
BD 5 (60 N) cos 25° 5 54.38 N

Then, using triangle ACD, we obtain

  tan  A 5
25.36 N
94.38 N

     A 5 15.04°

 R 5
25.36
 sin A

 R 5 97.73 N

Again, a 5 20° 1 A 5 35.04° R 5 97.7 N a35.0° ◀

A
P

Q

R

a

A
P

Q

R

�

155º 25°

20°

R

B

C

P = 40 N

Q = 60 N

aA

25°

20°

= 60 NQ

R

B

C

D

40

25.36

54.38

94.38

a
A
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SAMPLE PROBLEM 2.2

A barge is pulled by two tugboats. If the resultant of the forces exerted by 
the tugboats is a 5000-lb force directed along the axis of the barge, determine 
(a) the tension in each of the ropes knowing that a 5 45°, (b) the value of a 
for which the tension in rope 2 is minimum.

30°
1

2
a

A

C

B

SOLUTION

a. Tension for a 5 45°. Graphical Solution. The parallelogram law is 
used; the diagonal (resultant) is known to be equal to 5000 lb and to be 
directed to the right. The sides are drawn parallel to the ropes. If the draw-
ing is done to scale, we measure

T1 5 3700 lb  T2 5 2600 lb ◀

Trigonometric Solution. The triangle rule can be used. We note that the 
triangle shown represents half of the parallelogram shown above. Using the 
law of sines, we write

T1

 sin 45°
5

T2

 sin 30°
5

5000 lb
 sin 105°

 With a calculator, we first compute and store the value of the last quo-
tient. Multiplying this value successively by sin 45° and sin 30°, we obtain

T1 5 3660 lb  T2 5 2590 lb ◀

b. Value of a for Minimum T2. To determine the value of a for which the 
tension in rope 2 is minimum, the triangle rule is again used. In the sketch 
shown, line 1-19 is the known direction of T1. Several possible directions of T2 
are shown by the lines 2-29. We note that the minimum value of T2 occurs 
when T1 and T2 are perpendicular. The minimum value of T2 is

T2 5 (5000 lb) sin 30° 5 2500 lb

Corresponding values of T1 and a are

T1 5 (5000 lb) cos 30° 5 4330 lb
 a 5 90° 2 30° a 5 60° ◀

30° 45°

30°45°

5000 lb

T1

T2

B

45° 30°

5000 lb

105°
T1

T2

B

1

2
2

2

5000 lb
1'

2'

2'

2'

30°

5000 lb

T1
T2 90°

a
B
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SOLVING PROBLEMS 
ON YOUR OWN

The preceding sections were devoted to the parallelogram law for the addition 
of vectors and to its applications.

Two sample problems were presented. In Sample Prob. 2.1, the parallelogram law 
was used to determine the resultant of two forces of known magnitude and direc-
tion. In Sample Prob. 2.2, it was used to resolve a given force into two components 
of known direction.

You will now be asked to solve problems on your own. Some may resemble one 
of the sample problems; others may not. What all problems and sample problems 
in this section have in common is that they can be solved by the direct application 
of the parallelogram law.

Your solution of a given problem should consist of the following steps:

1. Identify which of the forces are the applied forces and which is the resul-
tant. It is often helpful to write the vector equation which shows how the forces 
are related. For example, in Sample Prob. 2.1 we would have

R 5 P 1 Q

You may want to keep that relation in mind as you formulate the next part of your 
solution.

2. Draw a parallelogram with the applied forces as two adjacent sides and 
the resultant as the included diagonal (Fig. 2.2). Alternatively, you can use the 
triangle rule, with the applied forces drawn in tip-to-tail fashion and the resultant 
extending from the tail of the first vector to the tip of the second (Fig. 2.7).

3. Indicate all dimensions. Using one of the triangles of the parallelogram, or 
the triangle constructed according to the triangle rule, indicate all dimensions—
whether sides or angles—and determine the unknown dimensions either graphi-
cally or by trigonometry. If you use trigonometry, remember that the law of cosines 
should be applied first if two sides and the included angle are known [Sample 
Prob. 2.1], and the law of sines should be applied first if one side and all angles 
are known [Sample Prob. 2.2].

If you have had prior exposure to mechanics, you might be tempted to ignore the 
solution techniques of this lesson in favor of resolving the forces into rectangular 
components. While this latter method is important and will be considered in the 
next section, use of the parallelogram law simplifies the solution of many problems 
and should be mastered at this time.

24
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PROBLEMS†

25

 2.1 Two forces are applied at point B of beam AB. Determine graphi-
cally the magnitude and direction of their resultant using (a) the 
parallelogram law, (b) the triangle rule.

A

B C D

10 ft

8 ft 6 ft

Fig. P2.2

2 kN

3 kN40° 60°

A

B

Fig. P2.1

†Answers to all problems set in straight type (such as 2.1) are given at the end of the 
book. Answers to problems with a number set in italic type (such as 2.3) are not given.

C

A

B
25°

50°

P

Q

Fig. P2.3 and P2.4

120 N P

α25°

Fig. P2.5

 2.2 The cable stays AB and AD help support pole AC. Knowing that the 
tension is 120 lb in AB and 40 lb in AD, determine graphically the 
magnitude and direction of the resultant of the forces exerted by 
the stays at A using (a) the parallelogram law, (b) the triangle rule.

 2.3 Two structural members B and C are bolted to bracket A. Know-
ing that both members are in tension and that P 5 10 kN and 
Q 5 15 kN, determine graphically the magnitude and direction 
of the resultant force exerted on the bracket using (a) the paral-
lelogram law, (b) the triangle rule.

 2.4 Two structural members B and C are bolted to bracket A. Know-
ing that both members are in tension and that P 5 6 kips and 
Q 5 4 kips, determine graphically the magnitude and direction 
of the resultant force exerted on the bracket using (a) the paral-
lelogram law, (b) the triangle rule.

 2.5 A stake is being pulled out of the ground by means of two ropes 
as shown. Knowing that a 5 308, determine by trigonometry (a) the 
magnitude of the force P so that the resultant force exerted on the 
stake is vertical, (b) the corresponding magnitude of the resultant.
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26 Statics of Particles  2.6 A trolley that moves along a horizontal beam is acted upon by two 
forces as shown. (a) Knowing that a 5 258, determine by trigo-
nometry the magnitude of the force P so that the resultant force 
exerted on the trolley is vertical. (b) What is the corresponding 
magnitude of the resultant?

 2.7 A trolley that moves along a horizontal beam is acted upon by two 
forces as shown. Determine by trigonometry the magnitude and 
direction of the force P so that the resultant is a vertical force of 
2500 N.

 2.8 A telephone cable is clamped at A to the pole AB. Knowing that 
the tension in the left-hand portion of the cable is T1 5 800 lb, 
determine by trigonometry (a) the required tension T2 in the right-
hand portion if the resultant R of the forces exerted by the cable 
at A is to be vertical, (b) the corresponding magnitude of R.

 2.9 A telephone cable is clamped at A to the pole AB. Knowing that 
the tension in the right-hand portion of the cable is T2 5 1000 lb, 
determine by trigonometry (a) the required tension T1 in the left-
hand portion if the resultant R of the forces exerted by the cable 
at A is to be vertical, (b) the corresponding magnitude of R.

 2.10 Two forces are applied as shown to a hook support. Knowing that 
the magnitude of P is 35 N, determine by trigonometry (a) the 
required angle a if the resultant R of the two forces applied to the 
support is to be horizontal, (b) the corresponding magnitude of R.

425 lb
A

P

30° a

Fig. P2.11, P2.12, and P2.13

1600 N

P

15°

a

A

Fig. P2.6 and P2.7

A

B

25°15°

T1 T2

Fig. P2.8 and P2.9

50 N

25°

P

a

Fig. P2.10

 2.11 A steel tank is to be positioned in an excavation. Knowing that 
a 5 208, determine by trigonometry (a) the required magnitude 
of the force P if the resultant R of the two forces applied at A is 
to be vertical, (b) the corresponding magnitude of R.

 2.12 A steel tank is to be positioned in an excavation. Knowing that the 
magnitude of P is 500 lb, determine by trigonometry (a) the 
required angle a if the resultant R of the two forces applied at A 
is to be vertical, (b) the corresponding magnitude of R.

 2.13 A steel tank is to be positioned in an excavation. Determine by 
trigonometry (a) the magnitude and direction of the smallest force 
P for which the resultant R of the two forces applied at A is verti-
cal, (b) the corresponding magnitude of R.

 2.14 For the hook support of Prob. 2.10, determine by trigonometry 
(a) the magnitude and direction of the smallest force P for which 
the resultant R of the two forces applied to the support is hori-
zontal, (b) the corresponding magnitude of R.
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 2.15 Solve Prob. 2.2 by trigonometry.

 2.16 Solve Prob. 2.4 by trigonometry.

 2.17 For the stake of Prob. 2.5, knowing that the tension in one rope 
is 120 N, determine by trigonometry the magnitude and direction 
of the force P so that the resultant is a vertical force of 160 N.

 2.18 For the hook support of Prob. 2.10, knowing that P 5 75 N and 
a 5 508, determine by trigonometry the magnitude and direction 
of the resultant of the two forces applied to the support.

 2.19 Two forces P and Q are applied to the lid of a storage bin as shown. 
Knowing that P 5 48 N and Q 5 60 N, determine by trigonometry 
the magnitude and direction of the resultant of the two forces.

 2.20 Two forces P and Q are applied to the lid of a storage bin as shown. 
Knowing that P 5 60 N and Q 5 48 N, determine by trigonometry 
the magnitude and direction of the resultant of the two forces.

†The properties established in Secs. 2.7 and 2.8 may be readily extended to the 
rectangular components of any vector quantity.

2.7  RECTANGULAR COMPONENTS OF A FORCE. 
UNIT VECTORS†

In many problems it will be found desirable to resolve a force into 
two components which are perpendicular to each other. In Fig. 2.18, 
the force F has been resolved into a component Fx along the x axis 
and a component Fy along the y axis. The parallelogram drawn to 
obtain the two components is a rectangle, and Fx and Fy are called 
rectangular components.

O

F
Fy

Fx
x

y

�

Fig. 2.18

Fy
Fx

F
x

y

O

�

Fig. 2.19

 The x and y axes are usually chosen horizontal and vertical, 
respectively, as in Fig. 2.18; they may, however, be chosen in any 
two perpendicular directions, as shown in Fig. 2.19. In determining 
the rectangular components of a force, the student should think of 
the construction lines shown in Figs. 2.18 and 2.19 as being parallel 
to the x and y axes, rather than perpendicular to these axes. This 
practice will help avoid mistakes in determining oblique compo-
nents as in Sec. 2.6.

272.7 Rectangular Components of a Force. 
Unit Vectors

A

55°

25°

85°
P

Q

Fig. P2.19 and P2.20
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28 Statics of Particles  Two vectors of unit magnitude, directed respectively along the 
positive x and y axes, will be introduced at this point. These vectors 
are called unit vectors and are denoted by i and j, respectively 
(Fig. 2.20). Recalling the definition of the product of a scalar and a 
vector given in Sec. 2.4, we note that the rectangular components 
Fx and Fy of a force F may be obtained by multiplying respectively 
the unit vectors i and j by appropriate scalars (Fig. 2.21). We write

 Fx 5 Fxi  Fy 5 Fyj (2.6)

and

 F 5 Fxi 1 Fyj (2.7)

While the scalars Fx and Fy may be positive or negative, depending 
upon the sense of Fx and of Fy, their absolute values are respectively 
equal to the magnitudes of the component forces Fx and Fy. The 
scalars Fx and Fy are called the scalar components of the force F, 
while the actual component forces Fx and Fy should be referred to 
as the vector components of F. However, when there exists no pos-
sibility of  confusion, the vector as well as the scalar components of 
F may be referred to simply as the components of F. We note that 
the scalar component Fx is positive when the vector component Fx 
has the same sense as the unit vector i (i.e., the same sense as the 
positive x axis) and is negative when Fx has the opposite sense. A 
similar conclusion may be drawn regarding the sign of the scalar 
component Fy.
 Denoting by F the magnitude of the force F and by u the angle 
between F and the x axis, measured counterclockwise from the posi-
tive x axis (Fig. 2.21), we may express the scalar components of F as 
follows:

 Fx 5 F cos u  Fy 5 F sin u (2.8)

We note that the relations obtained hold for any value of the angle 
u from 0° to 360° and that they define the signs as well as the abso-
lute values of the scalar components Fx and Fy.

EXAMPLE 1. A force of 800 N is exerted on a bolt A as shown in 
Fig. 2.22a. Determine the horizontal and vertical components of the force.
 In order to obtain the correct sign for the scalar components Fx and 
Fy, the value 180° 2 35° 5 145° should be substituted for u in Eqs. (2.8). 
However, it will be found more practical to determine by inspection the 
signs of Fx and Fy (Fig. 2.22b) and to use the trigonometric functions of the 
angle a 5 35°. We write, therefore,

 Fx 5 2F cos a 5 2(800 N) cos 35° 5 2655 N
 Fy 5 1F sin a 5 1(800 N) sin 35° 5 1459 N

The vector components of F are thus

Fx 5 2(655 N)i Fy 5 1(459 N)j

and we may write F in the form

F 5 2(655 N)i 1 (459 N)j ◾

F = 800 N

F = 800 N

35º

A

A

(a)

(b)

x

y

Fy

Fx

� = 35º

� = 145º

Fig. 2.22

x

y

Magnitude = 1j

i

Fig. 2.20

F

x

y

Fy = Fy j

Fx = Fx i

j

i

�

Fig. 2.21
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29EXAMPLE 2. A man pulls with a force of 300 N on a rope attached to 
a building, as shown in Fig. 2.23a. What are the horizontal and vertical 
components of the force exerted by the rope at point A?
 It is seen from Fig. 2.23b that

Fx 5 1(300 N) cos a Fy 5 2(300 N) sin a

Observing that AB 5 10 m, we find from Fig. 2.23a

 cos a 5
8 m
AB

5
8 m
10 m

5
4
5
       sin a 5

6 m
AB

5
6 m
10 m

5
3
5

We thus obtain

Fx 51(300 N)4
5 51240 N       Fy 52(300 N)3

5 52180 N

and write

F 5 (240 N)i 2 (180 N)j ◾

 When a force F is defined by its rectangular components Fx 
and Fy (see Fig. 2.21), the angle u defining its direction can be 
obtained by writing

  tan u 5
Fy

Fx
 (2.9)

The magnitude F of the force can be obtained by applying the 
Pythagorean theorem and writing

 F 5 2F2
x 1 F2

y (2.10)

or by solving for F one of the Eqs. (2.8).

EXAMPLE 3. A force F 5 (700 lb)i 1 (1500 lb)j is applied to a bolt A. 
Determine the magnitude of the force and the angle u it forms with the 
horizontal.
 First we draw a diagram showing the two rectangular components of 
the force and the angle u (Fig. 2.24). From Eq. (2.9), we write

 tan u 5
Fy

Fx
5

1500 lb
700 lb

 Using a calculator,† we enter 1500 lb and divide by 700 lb; computing 
the arc tangent of the quotient, we obtain u 5 65.0°. Solving the second of 
Eqs. (2.8) for F, we have

F 5
Fy

 sin u
5

1500 lb
 sin 65.0°

5 1655 lb

The last calculation is facilitated if the value of Fy is stored when originally 
entered; it may then be recalled to be divided by sin u. ◾

†It is assumed that the calculator used has keys for the computation of trigonometric 
and inverse trigonometric functions. Some calculators also have keys for the direct 
 conversion of rectangular coordinates into polar coordinates, and vice versa. Such 
 calculators eliminate the need for the computation of trigonometric functions in 
 Examples 1, 2, and 3 and in problems of the same type.

A x

y

F

Fx = (700 lb) i

F
y 

= 
(1

50
0 

lb
)j

�

Fig. 2.24

2.7 Rectangular Components of a Force. 
Unit Vectors

(b)
Fig. 2.23

(a)

F = 300 N

6 m

8 m

A

A

B

Fy

Fx

x

y

�

�

�
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30 Statics of Particles 2.8  ADDITION OF FORCES BY SUMMING 
X AND Y COMPONENTS

It was seen in Sec. 2.2 that forces should be added according to the 
parallelogram law. From this law, two other methods, more readily 
applicable to the graphical solution of problems, were derived in 
Secs. 2.4 and 2.5: the triangle rule for the addition of two forces and 
the polygon rule for the addition of three or more forces. It was also 
seen that the force triangle used to define the resultant of two forces 
could be used to obtain a trigonometric solution.
 When three or more forces are to be added, no practical trigo-
nometric solution can be obtained from the force polygon which 
defines the resultant of the forces. In this case, an analytic solution 
of the problem can be obtained by resolving each force into two 
rectangular components. Consider, for instance, three forces P, Q, 
and S acting on a particle A (Fig. 2.25a). Their resultant R is 
defined by the relation

 R 5 P 1 Q 1 S (2.11)

Resolving each force into its rectangular components, we write

 Rxi 1 Ryj 5 Pxi 1 Pyj 1 Qxi 1 Qyj 1 Sxi 1 Syj
 5 (Px 1 Qx 1 Sx)i 1 (Py 1 Qy 1 Sy)j

from which it follows that

 Rx 5 Px 1 Qx 1 Sx  Ry 5 Py 1 Qy 1 Sy (2.12)

or, for short,

 Rx 5 oFx  Ry 5 oFy (2.13)

We thus conclude that the scalar components Rx and Ry of the 
resultant R of several forces acting on a particle are obtained by 
adding algebraically the corresponding scalar components of the 
given forces.†
 In practice, the determination of the resultant R is carried out 
in three steps as illustrated in Fig. 2.25. First the given forces shown 
in Fig. 2.25a are resolved into their x and y components (Fig. 2.25b). 
Adding these components, we obtain the x and y components of R 
(Fig. 2.25c). Finally, the resultant R 5 Rxi 1 Ryj is determined by 
applying the parallelogram law (Fig. 2.25d). The procedure just 
described will be carried out most efficiently if the computations are 
arranged in a table. While it is the only practical analytic method for 
adding three or more forces, it is also often preferred to the trigo-
nometric solution in the case of the addition of two forces.

†Clearly, this result also applies to the addition of other vector quantities, such as 
velocities, accelerations, or momenta.

(b)

(c)

S

P

Q

A

A

A

(a)

(d )

A

R

q

Py j

Sy j

Sx i

Qy j

Qxi

Ry j

R x i

Px i

Fig. 2.25
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31

SAMPLE PROBLEM 2.3

Four forces act on bolt A as shown. Determine the resultant of the forces 
on the bolt.

F2 = 80 N F1 = 150 N

F3 = 110 N

F4 = 100 N

20°

30°

15° x

y

A

SOLUTION

The x and y components of each force are determined by trigonometry as 
shown and are entered in the table below. According to the convention 
adopted in Sec. 2.7, the scalar number representing a force component is 
positive if the force component has the same sense as the corresponding 
coordinate axis. Thus, x components acting to the right and y components 
acting upward are represented by positive numbers.

(F2 cos 20°) j

(F1 sin 30°) j

(F1 cos 30°) i

–(F2 sin 20°) i
(F4 cos 15°) i

–(F4 sin 15°) j

–F3 j
Force Magnitude, N x Component, N y Component, N

F1 150 1129.9 175.0
F2  80 227.4 175.2
F3 110 0 2110.0
F4 100 196.6 225.9

  Rx 5 1199.1 Ry 5 114.3

 Thus, the resultant R of the four forces is

R 5 Rxi 1 Ryj  R 5 (199.1 N)i 1 (14.3 N)j ◀

 The magnitude and direction of the resultant may now be deter-
mined. From the triangle shown, we have

   tan a 5
Ry

Rx
5

14.3 N
199.1 N

    a 5 4.1°

  R 5
14.3 N

 sin a
5 199.6 N R 5 199.6 N a4.1° ◀

 With a calculator, the last computation may be facilitated if the value 
of Ry is stored when originally entered; it may then be recalled to be divided 
by sin a. (Also see the footnote on p. 29.)

R

Ry = (14.3 N) j Rx = (199.1 N) i

a
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You saw in the preceding lesson that the resultant of two forces may be deter-
mined either graphically or from the trigonometry of an oblique triangle.

A. When three or more forces are involved, the determination of their resultant 
R is best carried out by first resolving each force into rectangular components.
Two cases may be encountered, depending upon the way in which each of the 
given forces is defined:

Case 1. The force F is defined by its magnitude F and the angle a it forms 
with the x axis. The x and y components of the force can be obtained by mul-
tiplying F by cos a and sin a, respectively [Example 1].

Case 2. The force F is defined by its magnitude F and the coordinates of two 
points A and B on its line of action (Fig. 2.23). The angle a that F forms with 
the x axis may first be determined by trigonometry. However, the components of 
F may also be obtained directly from proportions among the various dimensions 
involved, without actually determining a [Example 2].

B. Rectangular components of the resultant. The components Rx and Ry of the 
resultant can be obtained by adding algebraically the corresponding components 
of the given forces [Sample Prob. 2.3].

You can express the resultant in vectorial form using the unit vectors i and j, which 
are directed along the x and y axes, respectively:

R 5 Rxi 1 Ryj

Alternatively, you can determine the magnitude and direction of the resultant by 
solving the right triangle of sides Rx and Ry for R and for the angle that R forms 
with the x axis.

32

SOLVING PROBLEMS 
ON YOUR OWN
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 2.21 and 2.22 Determine the x and y components of each of the 
forces shown.

33

PROBLEMS

2.23 and 2.24 Determine the x and y components of each of the 
forces shown.

80 N

120 N

150 N 30°

35° 40°

y

x

Fig. P2.21

60 lb

50 lb
40 lb

25°

y

x

60°

50°

Fig. P2.22

O

Dimensions
in mm

424 N 408 N

800 N

x

y

900

800

600

560 480

Fig. P2.23 Fig. P2.24

106 lb102 lb

200 lb x

y

24 in. 28 in.

45 in.

40 in.

30 in.

O

 2.25 The hydraulic cylinder BD exerts on member ABC a force P 
directed along line BD. Knowing that P must have a 750-N com-
ponent perpendicular to member ABC, determine (a) the magni-
tude of the force P, (b) its component parallel to ABC.

Fig. P2.25

60°

50°

B

C

D

A

Q
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34 Statics of Particles  2.26 Cable AC exerts on beam AB a force P directed along line AC. 
Knowing that P must have a 350-lb vertical component, determine 
(a) the magnitude of the force P, (b) its horizontal component.

 2.29 The guy wire BD exerts on the telephone pole AC a force P 
directed along BD. Knowing that P must have a 720-N component 
perpendicular to the pole AC, determine (a) the magnitude of the 
force P, (b) its component along line AC.

 2.30 The hydraulic cylinder BC exerts on member AB a force P directed 
along line BC. Knowing that P must have a 600-N component 
perpendicular to member AB, determine (a) the magnitude of the 
force P, (b) its component along line AB.

 2.31 Determine the resultant of the three forces of Prob. 2.23.

 2.32 Determine the resultant of the three forces of Prob. 2.21.

 2.33 Determine the resultant of the three forces of Prob. 2.22.

 2.34 Determine the resultant of the three forces of Prob. 2.24.

A

B

C

55°

Q

Fig. P2.26

A

C

B

720 mm

650 mm

Fig. P2.27

40°
Q

D

A B C

Fig. P2.28

45°
30°

B

A

M

C

Fig. P2.30

A

B

C D

7 m

2.4 m

Fig. P2.29

 2.27 Member BC exerts on member AC a force P directed along line BC. 
Knowing that P must have a 325-N horizontal component, deter-
mine (a) the magnitude of the force P, (b) its vertical component.

 2.28 Member BD exerts on member ABC a force P directed along line 
BD. Knowing that P must have a 240-lb vertical component, deter-
mine (a) the magnitude of the force P, (b) its horizontal component.
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 2.35 Knowing that a 5 358, determine the resultant of the three forces 
shown.

35

A

100 lb

100 lb

Fig. 2.26

2.9 Equilibrium of a Particle

2.9 EQUILIBRIUM OF A PARTICLE
In the preceding sections, we discussed the methods for determining 
the resultant of several forces acting on a particle. Although it has 
not occurred in any of the problems considered so far, it is quite 
possible for the resultant to be zero. In such a case, the net effect 
of the given forces is zero, and the particle is said to be in equilibrium. 
We thus have the following definition: When the resultant of all the 
forces acting on a particle is zero, the particle is in equilibrium.
 A particle which is acted upon by two forces will be in equi-
librium if the two forces have the same magnitude and the same line 
of action but opposite sense. The resultant of the two forces is then 
zero. Such a case is shown in Fig. 2.26.

200 N

150 N

100 N
30°

aa

Fig. P2.35

500 N

200 N

7
25

24

5
3

4

A B

C

L = 1460 mm

1100 mm

960 mm

Fig. P2.36

120 lb

80 lb

60 lb

a

a'

α
α

20°

Fig. P2.37 and P2.38

 2.36 Knowing that the tension in rope AC is 365 N, determine the 
resultant of the three forces exerted at point C of post BC.

 2.37 Knowing that a 5 408, determine the resultant of the three forces 
shown.

 2.38 Knowing that a 5 758, determine the resultant of the three forces 
shown.

 2.39 For the collar of Prob. 2.35, determine (a) the required value of a 
if the resultant of the three forces shown is to be vertical, (b) the 
corresponding magnitude of the resultant.

 2.40 For the post of Prob. 2.36, determine (a) the required tension in 
rope AC if the resultant of the three forces exerted at point C is to 
be horizontal, (b) the corresponding magnitude of the resultant.

 2.41 A hoist trolley is subjected to the three forces shown. Knowing that 
a 5 408, determine (a) the required magnitude of the force P if 
the resultant of the three forces is to be vertical, (b) the corre-
sponding magnitude of the resultant.

 2.42 A hoist trolley is subjected to the three forces shown. Knowing that 
P 5 250 lb, determine (a) the required value of a if the resultant 
of the three forces is to be vertical, (b) the corresponding magni-
tude of the resultant.

a

a

200 lb
400 lb

P

Fig. P2.41 and P2.42
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36 Statics of Particles  Another case of equilibrium of a particle is represented in 
Fig. 2.27, where four forces are shown acting on A. In Fig. 2.28, 
the resultant of the given forces is determined by the polygon rule. 
Starting from point O with F1 and arranging the forces in tip-to-tail 
fashion, we find that the tip of F4 coincides with the starting point 
O. Thus the resultant R of the given system of forces is zero, and 
the particle is in equilibrium.
 The closed polygon drawn in Fig. 2.28 provides a graphical 
expression of the equilibrium of A. To express algebraically the con-
ditions for the equilibrium of a particle, we write

 R 5 oF 5 0 (2.14)

Resolving each force F into rectangular components, we have

o(Fxi 1 Fyj) 5 0  or  (oFx)i 1 (oFy)j 5 0

We conclude that the necessary and sufficient conditions for the 
equilibrium of a particle are

 oFx 5 0  oFy 5 0 (2.15)

Returning to the particle shown in Fig. 2.27, we check that the equi-
librium conditions are satisfied. We write

 oFx 5 300 lb 2 (200 lb) sin 30° 2 (400 lb) sin 30°
 5 300 lb 2 100 lb 2 200 lb 5 0
 oFy 5 2173.2 lb 2 (200 lb) cos 30° 1 (400 lb) cos 30°
 5 2173.2 lb 2 173.2 lb 1 346.4 lb 5 0

2.10 NEWTON’S FIRST LAW OF MOTION
In the latter part of the seventeenth century, Sir Isaac Newton for-
mulated three fundamental laws upon which the science of mechan-
ics is based. The first of these laws can be stated as follows:
 If the resultant force acting on a particle is zero, the particle 
will remain at rest (if originally at rest) or will move with constant 
speed in a straight line (if originally in motion).
 From this law and from the definition of equilibrium given in 
Sec. 2.9, it is seen that a particle in equilibrium either is at rest or 
is moving in a straight line with constant speed. In the following 
section, various problems concerning the equilibrium of a particle 
will be considered.

2.11  PROBLEMS INVOLVING THE EQUILIBRIUM 
OF A PARTICLE. FREE-BODY DIAGRAMS

In practice, a problem in engineering mechanics is derived from an 
actual physical situation. A sketch showing the physical conditions of 
the problem is known as a space diagram.
 The methods of analysis discussed in the preceding sections 
apply to a system of forces acting on a particle. A large number of 
problems involving actual structures, however, can be reduced to 
problems concerning the equilibrium of a particle. This is done by 

A

F1 = 300 lb

F2 = 173.2 lb

F4 = 400 lb

F3 = 200 lb

30º

30º

Fig. 2.27

F4 = 400 lb

F1 = 300 lb

F3 = 200 lb

F2 = 173.2 lb

O

Fig. 2.28
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37choosing a significant particle and drawing a separate diagram show-
ing this particle and all the forces acting on it. Such a diagram is 
called a free-body diagram.
 As an example, consider the 75-kg crate shown in the space 
diagram of Fig. 2.29a. This crate was lying between two buildings, 
and it is now being lifted onto a truck, which will remove it. The crate 
is supported by a vertical cable, which is joined at A to two ropes 
which pass over pulleys attached to the buildings at B and C. It is 
desired to determine the tension in each of the ropes AB and AC.
 In order to solve this problem, a free-body diagram showing a 
particle in equilibrium must be drawn. Since we are interested in 
the rope tensions, the free-body diagram should include at least one 
of these tensions or, if possible, both tensions. Point A is seen to be 
a good free body for this problem. The free-body diagram of point 
A is shown in Fig. 2.29b. It shows point A and the forces exerted on 
A by the vertical cable and the two ropes. The force exerted by the 
cable is directed downward, and its magnitude is equal to the weight 
W of the crate. Recalling Eq. (1.4), we write

W 5 mg 5 (75 kg)(9.81 m/s2) 5 736 N

and indicate this value in the free-body diagram. The forces exerted 
by the two ropes are not known. Since they are respectively equal 
in magnitude to the tensions in rope AB and rope AC, we denote 
them by TAB and TAC and draw them away from A in the directions 
shown in the space diagram. No other detail is included in the free-
body diagram.
 Since point A is in equilibrium, the three forces acting on it 
must form a closed triangle when drawn in tip-to-tail fashion. This 
force triangle has been drawn in Fig. 2.29c. The values TAB and TAC 
of the tension in the ropes may be found graphically if the triangle 
is drawn to scale, or they may be found by trigonometry. If the latter 
method of solution is chosen, we use the law of sines and write

TAB

 sin 60°
5

TAC

 sin 40°
5

736 N
 sin 80°

TAB 5 647 N  TAC 5 480 N

 When a particle is in equilibrium under three forces, the problem 
can be solved by drawing a force triangle. When a particle is in equi-
librium under more than three forces, the problem can be solved graph-
ically by drawing a force polygon. If an analytic solution is desired, the 
equations of equilibrium given in Sec. 2.9 should be solved:

 oFx 5 0  oFy 5 0 (2.15)

These equations can be solved for no more than two unknowns; 
similarly, the force triangle used in the case of equilibrium under 
three forces can be solved for two unknowns.
 The more common types of problems are those in which the 
two unknowns represent (1) the two components (or the magnitude 
and direction) of a single force, (2) the magnitudes of two forces, 
each of known direction. Problems involving the determination of 
the maximum or minimum value of the magnitude of a force are also 
encountered (see Probs. 2.57 through 2.62).

TAB
TAC

A

A

B

C

50º 30º

50º 30º

(a) Space diagram

(b) Free-body diagram (c) Force triangle

736 N

TAB

TAC

736 N

40º

60º
80º

Fig. 2.29

2.11 Problems Involving the Equilibrium of a 
Particle. Free-Body Diagrams

Photo 2.1 As illustrated in the above example, 
it is possible to determine the tensions in the 
cables supporting the shaft shown by treating 
the hook as a particle and then applying the 
equations of equilibrium to the forces acting on 
the hook.
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SAMPLE PROBLEM 2.4

In a ship-unloading operation, a 3500-lb automobile is supported by a cable. 
A rope is tied to the cable at A and pulled in order to center the automobile 
over its intended position. The angle between the cable and the vertical is 2°, 
while the angle between the rope and the horizontal is 30°. What is the 
tension in the rope?

SOLUTION

Free-Body Diagram. Point A is chosen as a free body, and the complete 
free-body diagram is drawn. TAB is the tension in the cable AB, and TAC is 
the tension in the rope.

Equilibrium Condition. Since only three forces act on the free body, we draw 
a force triangle to express that it is in equilibrium. Using the law of sines, we 
write

TAB

 sin 120°
5

TAC

 sin 2°
5

3500 lb
 sin 58°

 With a calculator, we first compute and store the value of the last quotient. 
Multiplying this value successively by sin 120° and sin 2°, we obtain

 TAB 5 3570 lb TAC 5 144 lb ◀

TAB

TAC

TAB

TAC

2°

2°

30°
A

3500 lb

3500 lb

120°

58°

38

SAMPLE PROBLEM 2.5

Determine the magnitude and direction of the smallest force F which will 
maintain the package shown in equilibrium. Note that the force exerted by 
the rollers on the package is perpendicular to the incline.

SOLUTION

Free-Body Diagram. We choose the package as a free body, assuming that 
it can be treated as a particle. We draw the corresponding free-body 
diagram.

Equilibrium Condition. Since only three forces act on the free body, we 
draw a force triangle to express that it is in equilibrium. Line 1-19 represents 
the known direction of P. In order to obtain the minimum value of the force 
F, we choose the direction of F perpendicular to that of P. From the geom-
etry of the triangle obtained, we find

F 5 (294 N) sin 15° 5 76.1 N  a 5 15°
 F 5 76.1 N b15° ◀

2°

30°
A

C

B

15°

30 kg F
�

15°

FP

W = (30 kg)(9.81 m/s2)
     = 294 N

�

F

P

15°

1

1'

294 N

�
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SOLUTION

Determination of the Angles. First, the angles a and b defining the direc-
tion of cables AB and AC are determined. We write

  tan a 5
7 ft
4 ft

5 1.75         tan b 5
1.5 ft
4 ft

5 0.375

 a 5 60.26°      b 5 20.56°

Free-Body Diagram. Choosing the hull as a free body, we draw the free-
body diagram shown. It includes the forces exerted by the three cables on 
the hull, as well as the drag force FD exerted by the flow.

Equilibrium Condition. We express that the hull is in equilibrium by writ-
ing that the resultant of all forces is zero:

 R 5 TAB 1 TAC 1 TAE 1 FD 5 0  (1)

Since more than three forces are involved, we resolve the forces into x and y 
components:

 TAB 5 2(40 lb) sin 60.26°i 1 (40 lb) cos 60.26°j
 5 2(34.73 lb)i 1 (19.84 lb)j
 TAC 5 TAC sin 20.56°i 1 TAC cos 20.56°j
 5 0.3512TACi 1 0.9363TACj
 TAE 5 2(60 lb)j
 FD 5 FDi

Substituting the expressions obtained into Eq. (1) and factoring the unit 
vectors i and j, we have

(234.73 lb 1 0.3512TAC 1 FD)i 1 (19.84 lb 1 0.9363TAC 2 60 lb)j 5 0

This equation will be satisfied if, and only if, the coefficients of i and j are 
equal to zero. We thus obtain the following two equilibrium equations, 
which express, respectively, that the sum of the x components and the sum 
of the y components of the given forces must be zero.

(oFx 5 0:) 234.73 lb 1 0.3512TAC 1 FD 5 0  (2)
(oFy 5 0:) 19.84 lb 1 0.9363TAC 2 60 lb 5 0  (3)

From Eq. (3) we find  TAC 5 142.9 lb ◀

and, substituting this value into Eq. (2),  FD 5 119.66 lb ◀

In drawing the free-body diagram, we assumed a sense for each unknown 
force. A positive sign in the answer indicates that the assumed sense is correct. 
The complete force polygon may be drawn to check the results.

TAC

FD

TAB = 40 lb

TAE = 60 lb

a = 60.26°

b = 20.56°

A

FDi

TAC sin 20.56°i

TAC cos 20.56°j

20.56°
60.26°

(40 lb) cos 60.26°j

–(40 lb) sin 60.26°i

–(60 lb)j

y

xA

TAC = 42.9 lb

TAE = 60 lb

TAB = 40 lb

FD = 19.66 lb

b = 20.56°

a = 60.26°

39

Flow A

B C

E

4 ft

4 ft

7 ft 1.5 ft

a
b

SAMPLE PROBLEM 2.6

As part of the design of a new sailboat, it is desired to determine the drag force 
which may be expected at a given speed. To do so, a model of the proposed hull 
is placed in a test channel and three cables are used to keep its bow on the cen-
terline of the channel. Dynamometer readings indicate that for a given speed, 
the tension is 40 lb in cable AB and 60 lb in cable AE. Determine the drag force 
exerted on the hull and the tension in cable AC.
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40

When a particle is in equilibrium, the resultant of the forces acting on the 
particle must be zero. Expressing this fact in the case of a particle under 

coplanar forces will provide you with two relations among these forces. As you saw 
in the preceding sample problems, these relations may be used to determine two 
unknowns—such as the magnitude and direction of one force or the magnitudes 
of two forces.

Drawing a free-body diagram is the first step in the solution of a problem 
involving the equilibrium of a particle. This diagram shows the particle and all the 
forces acting on it. Indicate in your free-body diagram the magnitudes of known 
forces, as well as any angle or dimensions that define the direction of a force. Any 
unknown magnitude or angle should be denoted by an appropriate symbol. Noth-
ing else should be included in the free-body diagram.

Drawing a clear and accurate free-body diagram is a must in the solution of any 
equilibrium problem. Skipping this step might save you pencil and paper, but is very 
likely to lead you to a wrong solution.

Case 1. If only three forces are involved in the free-body diagram, the rest of 
the solution is best carried out by drawing these forces in tip-to-tail fashion to 
form a force triangle. This triangle can be solved graphically or by trigonometry 
for no more than two unknowns [Sample Probs. 2.4 and 2.5].

Case 2. If more than three forces are involved, it is to your advantage to use 
an analytic solution. You select x and y axes and resolve each of the forces shown 
in the free-body diagram into x and y components. Expressing that the sum of the 
x components and the sum of the y components of all the forces are both zero, 
you will obtain two equations which you can solve for no more than two unknowns 
[Sample Prob. 2.6].

It is strongly recommended that when using an analytic solution the equations of 
equilibrium be written in the same form as Eqs. (2) and (3) of Sample Prob. 2.6. 
The practice adopted by some students of initially placing the unknowns on the 
left side of the equation and the known quantities on the right side may lead to 
confusion in assigning the appropriate sign to each term.

We have noted that regardless of the method used to solve a two-dimensional 
equilibrium problem we can determine at most two unknowns. If a two-dimensional 
problem involves more than two unknowns, one or more additional relations must 
be obtained from the information contained in the statement of the problem.

SOLVING PROBLEMS 
ON YOUR OWN
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PROBLEMS

FREE BODY PRACTICE PROBLEMS

  2.F1 Two cables are tied together at C and loaded as shown. Draw the 
free-body diagram needed to determine the tension in AC and BC.

 2.F2 A chairlift has been stopped in the position shown. Knowing 
that each chair weighs 250 N and that the skier in chair E weighs 
765 N, draw the free-body diagrams needed to determine the 
weight of the skier in chair F.

2.F3 Two cables are tied together at A and loaded as shown. Draw the 
free-body diagram needed to determine the tension in each cable.

2.F4 The 60-lb collar A can slide on a frictionless vertical rod and is con-
nected as shown to a 65-lb counterweight C. Draw the free-body 
diagram needed to determine the value of h for which the system 
is in equilibrium.

40°

30°

A

B

C

200 lb

Fig. P2.F1

14 m 24 m 6 m

8.25 m

10 m

1.10 m

A

B

C

DF

E

Fig. P2.F2

A

B

C

960 mm

280 mm

640 N

960 N

3

4

Fig. P2.F3

65 lb

60 lb

C

A

B

h

15 in.

Fig. P2.F4
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42 Statics of Particles END-OF-SECTION PROBLEMS

 2.43 and 2.44  Two cables are tied together at C and are loaded as 
shown. Determine the tension (a) in cable AC, (b) in cable BC.

Fig. P2.45

5°

A

C

B

α

1200 lb30° 20°

α

300 lb

A

B

C

Fig. P2.46

 2.45 Knowing that a 5 208, determine the tension (a) in cable AC, 
(b) in rope BC.

 2.46 Knowing that a 5 558 and that boom AC exerts on pin C a force 
directed along line AC, determine (a) the magnitude of that force, 
(b) the tension in cable BC.

 2.47 Two cables are tied together at C and loaded as shown. Determine 
the tension (a) in cable AC, (b) in cable BC.

A B

C

1600 kg

960 mm

1100 mm
400 mm

Fig. P2.43

A

B

C

660 N

3 m

1.4 m

2.25 m

Fig. P2.44

3.4 m
2 m

4.8 m 3 m

1.98 kN

A B

C 3.6 m

Fig. P2.47

 2.48 Two cables are tied together at C and are loaded as shown. Know-
ing that P 5 500 N and a 5 608, determine the tension (a) in 
cable AC, (b) in cable BC.

45º

A B

C

P

25º

a

Fig. P2.48
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43Problems 2.49 Two forces of magnitude TA 5 8 kips and TB 5 15 kips are applied 
as shown to a welded connection. Knowing that the connection is 
in equilibrium, determine the magnitudes of the forces TC and TD.

 2.50 Two forces of magnitude TA 5 6 kips and TC 5 9 kips are applied 
as shown to a welded connection. Knowing that the connection is 
in equilibrium, determine the magnitudes of the forces TB and TD.

 2.51 Two cables are tied together at C and loaded as shown. Knowing that 
P 5 360 N, determine the tension (a) in cable AC, (b) in cable BC.

 2.52 Two cables are tied together at C and loaded as shown. Determine 
the range of values of P for which both cables remain taut.

 2.53 A sailor is being rescued using a boatswain’s chair that is suspended 
from a pulley that can roll freely on the support cable ACB and is 
pulled at a constant speed by cable CD. Knowing that a 5 308 and 
b 5 108 and that the combined weight of the boatswain’s chair and 
the sailor is 900 N, determine the tension (a) in the support cable 
ACB, (b) in the traction cable CD.

A
B

Cα
β

D

Fig. P2.53 and P2.54

 2.54 A sailor is being rescued using a boatswain’s chair that is suspended 
from a pulley that can roll freely on the support cable ACB and is 
pulled at a constant speed by cable CD. Knowing that a 5 258 and 
b 5 158 and that the tension in cable CD is 80 N, determine 
(a) the combined weight of the boatswain’s chair and the sailor, 
(b) the tension in the support cable ACB.

 2.55 Two forces P and Q are applied as shown to an aircraft connection. 
Knowing that the connection is in equilibrium and that P 5 500 lb 
and Q 5 650 lb, determine the magnitudes of the forces exerted 
on the rods A and B.

 2.56 Two forces P and Q are applied as shown to an aircraft connection. 
Knowing that the connection is in equilibrium and that the mag-
nitudes of the forces exerted on rods A and B are FA 5 750 lb and 
FB 5 400 lb, determine the magnitudes of P and Q.

40° TBTA

TC

TD

Fig. P2.49 and P2.50

Fig. P2.51 and P2.52

A B

P

Q = 480 N

C

3
4

600 mm

250 mm

50°

40°

A

B

P

Q

FA

FB

Fig. P2.55 and P2.56
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44 Statics of Particles  2.57 Two cables tied together at C are loaded as shown. Knowing that 
the maximum allowable tension in each cable is 800 N, determine 
(a) the magnitude of the largest force P that can be applied at C, 
(b) the corresponding value of a.

 2.58 Two cables tied together at C are loaded as shown. Knowing that 
the maximum allowable tension is 1200 N in cable AC and 600 N 
in cable BC, determine (a) the magnitude of the largest force P 
that can be applied at C, (b) the corresponding value of a.

 2.59 For the situation described in Fig. P2.45, determine (a) the value 
of a for which the tension in rope BC is as small as possible, 
(b) the corresponding value of the tension.

 2.60 For the structure and loading of Prob. 2.46, determine (a) the 
value of a for which the tension in cable BC is as small as possible, 
(b) the corresponding value of the tension.

 2.61 For the cables of Prob. 2.48, it is known that the maximum allow-
able tension is 600 N in cable AC and 750 N in cable BC. Deter-
mine (a) the maximum force P that can be applied at C, (b) the 
corresponding value of a.

 2.62 A movable bin and its contents have a combined weight of 2.8 kN. 
Determine the shortest chain sling ACB that can be used to lift 
the loaded bin if the tension in the chain is not to exceed 5 kN.

 2.63 Collar A is connected as shown to a 50-lb load and can slide on 
a frictionless horizontal rod. Determine the magnitude of the 
force P required to maintain the equilibrium of the collar when 
(a) x 5 4.5 in., (b) x 5 15 in.

Fig. P2.57 and P2.58

35º
A B

C

P

50º

a

50 lb

x

C

B

A

P

20 in.

Fig. P2.63 and P2.64

A

C

0.7 m

B

1.2 m

Fig. P2.62

 2.64 Collar A is connected as shown to a 50-lb load and can slide on a 
frictionless horizontal rod. Determine the distance x for which the 
collar is in equilibrium when P 5 48 lb.

 2.65 Three forces are applied to a bracket as shown. The directions of 
the two 150-N forces may vary, but the angle between these forces 
is always 508. Determine the range of values of a for which the 
magnitude of the resultant of the forces acting at A is less than 
600 N.

500 N

150 N

150 N

50°

30°
A

α

Fig. P2.65
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45Problems

A

D

B

C

P

25°

55°

Q

Fig. P2.69 and P2.70

 2.66 A 200-kg crate is to be supported by the rope-and-pulley arrange-
ment shown. Determine the magnitude and direction of the force 
P that must be exerted on the free end of the rope to maintain 
equilibrium. (Hint: The tension in the rope is the same on each side 
of a simple pulley. This can be proved by the methods of Chap. 4.)

2.4 m

P

A

α

200 kg

0.75 m

B

Fig. P2.66

T

T
T T T

(a) (b) (c) (d) (e)

Fig. P2.67

 2.67 A 600-lb crate is supported by several rope-and-pulley arrange-
ments as shown. Determine for each arrangement the tension in 
the rope. (See the hint for Prob. 2.66.)

 2.68 Solve parts b and d of Prob. 2.67, assuming that the free end of 
the rope is attached to the crate.

 2.69 A load Q is applied to the pulley C, which can roll on the cable 
ACB. The pulley is held in the position shown by a second cable 
CAD, which passes over the pulley A and supports a load P. Know-
ing that P 5 750 N, determine (a) the tension in cable ACB, 
(b) the magnitude of load Q.

 2.70 An 1800-N load Q is applied to the pulley C, which can roll on 
the cable ACB. The pulley is held in the position shown by a sec-
ond cable CAD, which passes over the pulley A and supports a 
load P. Determine (a) the tension in cable ACB, (b) the magnitude 
of load P.
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46 Statics of Particles FORCES IN SPACE

2.12  RECTANGULAR COMPONENTS 
OF A FORCE IN SPACE

The problems considered in the first part of this chapter involved 
only two dimensions; they could be formulated and solved in a single 
plane. In this section and in the remaining sections of the chapter, 
we will discuss problems involving the three dimensions of space.
 Consider a force F acting at the origin O of the system of 
rectangular coordinates x, y, z. To define the direction of F, we draw 
the vertical plane OBAC containing F (Fig. 2.30a). This plane passes 
through the vertical y axis; its orientation is defined by the angle f 
it forms with the xy plane. The direction of F within the plane is 
defined by the angle uy that F forms with the y axis. The force F 
may be resolved into a vertical component Fy and a horizontal com-
ponent Fh; this operation, shown in Fig. 2.30b, is carried out in plane 
OBAC according to the rules developed in the first part of the chap-
ter. The corresponding scalar components are

 Fy 5 F cos uy  Fh 5 F sin uy (2.16)
But Fh may be resolved into two rectangular components Fx and Fz 
along the x and z axes, respectively. This operation, shown in Fig. 2.30c, 
is carried out in the xz plane. We obtain the following expressions for 
the corresponding scalar components:

Fx 5 Fh cos f 5 F sin uy cos f
 Fz 5 Fh sin f 5 F sin uy sin f 

(2.17)

The given force F has thus been resolved into three rectangular vec-
tor components Fx, Fy, Fz, which are directed along the three coor-
dinate axes.
 Applying the Pythagorean theorem to the triangles OAB and 
OCD of Fig. 2.30, we write

 F2 5 (OA)2 5 (OB)2  1 (BA)2  5 F2
y 1 F2

h

 F2
h 5 (OC)2 5 (OD)2 1 (DC)2 5 F2

x 1 F2
z

Eliminating F2
h from these two equations and solving for F, we obtain 

the following relation between the magnitude of F and its rectangular 
scalar components:

 F 5 2F2
x 1 F2

y 1 F2
z  (2.18)

 The relationship existing between the force F and its three 
components Fx, Fy, Fz is more easily visualized if a “box” having 
Fx, Fy, Fz for edges is drawn as shown in Fig. 2.31. The force F is 
then represented by the diagonal OA of this box. Figure 2.31b 
shows the right triangle OAB used to derive the first of the formu-
las (2.16): Fy 5 F cos uy. In Fig. 2.31a and c, two other right tri-
angles have also been drawn: OAD and OAE. These triangles are 
seen to occupy in the box positions comparable with that of triangle 
OAB. Denoting by ux and uz, respectively, the angles that F forms 

(a)

A

B

C

z

y

x
O

F

�

�y

(b)

Fh

Fy A

B

C

z

y

x
O

F�y

(c)

Fh

Fy

Fx

Fz

E

D

B

C
z

y

x
O

�

Fig. 2.30
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47

with the x and z axes, we can derive two formulas similar to Fy 5 
F cos uy. We thus write

 Fx 5 F cos ux  Fy 5 F cos uy  Fz 5 F cos uz (2.19)

The three angles ux, uy, uz define the direction of the force F; they are 
more commonly used for this purpose than the angles uy and f intro-
duced at the beginning of this section. The cosines of ux, uy, uz are 
known as the direction cosines of the force F.
 Introducing the unit vectors i, j, and k, directed respectively 
along the x, y, and z axes (Fig. 2.32), we can express F in the form

 F 5 Fxi 1 Fyj 1 Fzk (2.20)

where the scalar components Fx, Fy, Fz are defined by the relations 
(2.19).

EXAMPLE 1. A force of 500 N forms angles of 60°, 45°, and 120°, 
respectively, with the x, y, and z axes. Find the components Fx, Fy, and Fz 
of the force.
 Substituting F 5 500 N, ux 5 60°, uy 5 45°, uz 5 120° into formulas 
(2.19), we write

 Fx 5 (500 N) cos 60° 5 1250 N
 Fy 5 (500 N) cos 45° 5 1354 N
 Fz 5 (500 N) cos 120° 5 2250 N

Carrying into Eq. (2.20) the values obtained for the scalar components of 
F, we have

F 5 (250 N)i 1 (354 N)j 2 (250 N)k

As in the case of two-dimensional problems, a plus sign indicates that the 
component has the same sense as the corresponding axis, and a minus sign 
indicates that it has the opposite sense. ◾

 The angle a force F forms with an axis should be measured from 
the positive side of the axis and will always be between 0 and 180°. An 
angle ux smaller than 90° (acute) indicates that F (assumed attached to 
O) is on the same side of the yz plane as the positive x axis; cos ux and 
Fx will then be positive. An angle ux larger than 90° (obtuse) indicates 

Fx

Fy

Fz

F �x
x

y

A

D

E

O

B

C
z

(a)

Fx

Fy

Fz

F
x

y

A

D

E

O

B

C
z

(b)

�y

Fx

Fy

Fz

F

�z

x

y

A

D

E

O

B

C
z

(c)

Fig. 2.31

2.12 Rectangular Components of a Force 
in Space

y

x

z

ik

j

Fig. 2.32
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48 Statics of Particles that F is on the other side of the yz plane; cos ux and Fx will then be 
negative. In Example 1 the angles ux and uy are acute, while uz is 
obtuse; consequently, Fx and Fy are positive, while Fz is negative.
 Substituting into (2.20) the expressions obtained for Fx, Fy, Fz 
in (2.19), we write

 F 5 F(cos uxi 1 cos uyj 1 cos uzk) (2.21)

which shows that the force F can be expressed as the product of the 
scalar F and the vector

 l 5 cos uxi 1 cos uyj 1 cos uzk (2.22)

Clearly, the vector l is a vector whose magnitude is equal to 1 and 
whose direction is the same as that of F (Fig. 2.33). The vector l is 
referred to as the unit vector along the line of action of F. It follows 
from (2.22) that the components of the unit vector l are respectively 
equal to the direction cosines of the line of action of F:

 lx 5 cos ux  ly 5 cos uy  lz 5 cos uz (2.23)

 We should observe that the values of the three angles ux, uy, uz 
are not independent. Recalling that the sum of the squares of the 
components of a vector is equal to the square of its magnitude, we 
write

l 

2
x 1 l2

y 1 l2
z 5 1

or, substituting for lx, ly, lz from (2.23),

  cos2 ux 1  cos2 uy 1  cos2 uz 5 1 (2.24)

In Example 1, for instance, once the values ux 5 60° and uy 5 45° 
have been selected, the value of uz must be equal to 60° or 120° in 
order to satisfy identity (2.24).
 When the components Fx, Fy, Fz of a force F are given, the 
magnitude F of the force is obtained from (2.18).† The relations 
(2.19) can then be solved for the direction cosines,

  cos ux 5
Fx

F
  cos uy 5

Fy

F
  cos uz 5

Fz

F
 (2.25)

and the angles ux, uy, uz characterizing the direction of F can be 
found.

EXAMPLE 2. A force F has the components Fx 5 20 lb, Fy 5 230 lb, Fz 5 
60 lb. Determine its magnitude F and the angles ux, uy, uz it forms with the 
coordinate axes.
 From formula (2.18) we obtain†

 F 5 2F2
x 1 F2

y 1 F2
z

 5 2(20 lb)2 1 (230 lb)2 1 (60 lb)2

 5 14900 lb 5 70 lb

†With a calculator programmed to convert rectangular coordinates into polar coordinates, 
the following procedure will be found more expeditious for computing F: First determine 
Fh from its two rectangular components Fx and Fz (Fig. 2.30c), then determine F from 
its two rectangular components Fh and Fy (Fig. 2.30b). The actual order in which the 
three components Fx, Fy, Fz are entered is immaterial.

x

y

z

λλ (Magnitude = 1)

F = F λλ

Fy j

Fxi

Fzk

cos �y j

cos �zk

cos �xi

Fig. 2.33
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49Substituting the values of the components and magnitude of F into Eqs. 
(2.25), we write

cos ux 5
Fx

F
5

20 lb
70 lb

 cos uy 5
Fy

F
5

230 lb
70 lb

 cos uz 5
Fz

F
5

60 lb
70 lb

Calculating successively each quotient and its arc cosine, we obtain

ux 5 73.4°  uy 5 115.4°  uz 5 31.0°

These computations can be carried out easily with a calculator. ◾

2.13  FORCE DEFINED BY ITS MAGNITUDE AND TWO 
POINTS ON ITS LINE OF ACTION

In many applications, the direction of a force F is defined by the 
coordinates of two points, M(x1, y1, z1) and N(x2, y2, z2), located on its
line of action (Fig. 2.34). Consider the vector MN

¡
 joining M and N

2.13 Force Defi ned by its Magnitude and 
Two Points on its Line of Action

y

x

z

O

M(x1, y1, z1)

N(x2, y2, z2)

dy = y2 –  y1

dz = z2 –  z1 < 0

d x = x2 –  x1

F

λ

Fig. 2.34

and of the same sense as F. Denoting its scalar components by dx, dy, 
dz, respectively, we write

 MN
¡

5 dxi 1 dyj 1 dzk (2.26)

The unit vector l along the line of action of F (i.e., along the line MN)
may be obtained by dividing the vector MN

¡
 by its magnitude MN. 

Substituting for MN
¡

 from (2.26) and observing that MN is equal to 
the distance d from M to N, we write

 L 5
MN
¡

MN
5

1
d

 (dxi 1 dy j 1 dzk) (2.27)

Recalling that F is equal to the product of F and l, we have

 F 5 FL 5
F
d

 (dxi 1 dyj 1 dzk) (2.28)

from which it follows that the scalar components of F are, 
respectively,

 Fx 5
Fdx

d
  Fy 5

Fdy

d
  Fz 5

Fdz

d
 (2.29)
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50 Statics of Particles  The relations (2.29) considerably simplify the determination of 
the components of a force F of given magnitude F when the line of 
action of F is defined by two points M and N. Subtracting the coor-
dinates of M from those of N, we first determine the components of
the vector MN

¡
 and the distance d from M to N:

dx 5 x2 2 x1  dy 5 y2 2 y1  dz 5 z2 2 z1

d 5 2d2
x 1 d2

y 1 d2
z

Substituting for F and for dx, dy, dz, and d into the relations (2.29), 
we obtain the components Fx, Fy, Fz of the force.
 The angles ux, uy, uz that F forms with the coordinate axes can 
then be obtained from Eqs. (2.25). Comparing Eqs. (2.22) and (2.27), 
we can also write

  cos ux 5
dx

d
    cos uy 5

dy

d
    cos uz 5

dz

d
 (2.30)

and determine the angles ux, uy, uz directly from the components and
magnitude of the vector MN

¡
.

2.14 ADDITION OF CONCURRENT FORCES IN SPACE
The resultant R of two or more forces in space will be determined by 
summing their rectangular components. Graphical or trigonometric 
methods are generally not practical in the case of forces in space.
 The method followed here is similar to that used in Sec. 2.8 
with coplanar forces. Setting

R 5 oF

we resolve each force into its rectangular components and write

 Rxi 1 Ryj 1 Rzk 5 o(Fxi 1 Fyj 1 Fzk)
 5 (oFx)i 1 (oFy) j 1 (oFz)k

from which it follows that

 Rx 5 oFx  Ry 5 oFy  Rz 5 oFz (2.31)

The magnitude of the resultant and the angles ux, uy, uz that the 
resultant forms with the coordinate axes are obtained using the 
method discussed in Sec. 2.12. We write

 R 5 2R2
x 1 R2

y 1 R2
z  (2.32)

  cos ux 5
Rx

R
   cos uy 5

Ry

R
   cos uz 5

Rz

R
 (2.33)
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SOLUTION

a. Components of the Force. The line of action of the force acting on the 
bolt passes through A and B, and the force is directed from A to B. The 
components of the vector AB

¡
, which has the same direction as the force, 

are

dx 5 240 m  dy 5 180 m  dz 5 130 m

The total distance from A to B is

AB 5 d 5 2d2
x 1 d2

y 1 d2
z 5 94.3 m

 Denoting by i, j, k the unit vectors along the coordinate axes, we have

AB
¡

5 2(40 m)i 1 (80 m)j 1 (30 m)k

Introducing the unit vector L 5 AB
¡

/AB, we write

F 5 FL 5 F 

AB
¡

AB
5

2500 N
94.3 m

  AB
¡

Substituting the expression found for AB
¡

, we obtain

 F 5
2500 N
94.3 m

 [2(40 m)i 1 (80 m)j 1 (30 m)k]

 F 5 2(1060 N)i 1 (2120 N)j 1 (795 N)k

The components of F, therefore, are

  Fx 5 21060 N  Fy 5 12120 N  Fz 5 1795 N ◀

b. Direction of the Force. Using Eqs. (2.25), we write

cos ux 5
Fx

F
5

21060 N
2500 N

    cos uy 5
Fy

F
5

12120 N
2500 N

 cos uz 5
Fz

F
5

1795 N
2500 N

Calculating successively each quotient and its arc cosine, we obtain

 ux 5 115.1°  uy 5 32.0°  uz 5 71.5° ◀

(Note. This result could have been obtained by using the components and 
magnitude of the vector AB

¡
 rather than those of the force F.)

A

B

F

y

z

x
k

j

i

80 m 40 m

30 m

λ

A

B

y

z

x

qy

qx

qz

SAMPLE PROBLEM 2.7

A tower guy wire is anchored by means of a bolt at A. The tension in the 
wire is 2500 N. Determine (a) the components Fx, Fy, Fz of the force acting 
on the bolt, (b) the angles ux, uy, uz defining the direction of the force.

A

B

80 m 40 m

30 m
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SAMPLE PROBLEM 2.8

A wall section of precast concrete is temporarily held by the cables shown. 
Knowing that the tension is 840 lb in cable AB and 1200 lb in cable AC, 
determine the magnitude and direction of the resultant of the forces exerted 
by cables AB and AC on stake A.

C

B

A

16 ft

16 ft
8 ft

11 ft

y

z

x

ik

j
TAB = (840 lb) λλAB

TAC = (1200 lb) λλAC

λλAB

λλAC

SOLUTION

Components of the Forces. The force exerted by each cable on stake A 
will be resolved into x, y, and z components. We first determine the com-
ponents and magnitude of the vectors AB

¡
 and AC

¡
, measuring them from 

A toward the wall section. Denoting by i, j, k the unit vectors along the 
coordinate axes, we write

 AB
¡

5 2(16 ft)i 1 (8 ft)j 1 (11 ft)k    AB 5 21 ft
 AC
¡

5 2(16 ft)i 1 (8 ft)j 2 (16 ft)k    AC 5 24 ft

Denoting by lAB the unit vector along AB, we have

TAB 5 TABLAB 5 TAB
AB
¡

AB
5

840 lb
21 ft

 AB
¡

Substituting the expression found for AB
¡

, we obtain

 TAB 5
840 lb
21 ft

[2(16 ft)i 1 (8 ft)j 1 (11 ft)k]

  TAB 5 2(640 lb)i 1 (320 lb)j 1 (440 lb)k

Denoting by lAC the unit vector along AC, we obtain in a similar way

  TAC 5 TACLAC 5 TAC
AC
¡

AC
5

1200 lb
24 ft

 AC
¡

 TAC 5 2(800 lb)i 1 (400 lb)j 2 (800 lb)k

Resultant of the Forces. The resultant R of the forces exerted by the two 
cables is

R 5 TAB 1 TAC 5 2(1440 lb)i 1 (720 lb)j 2 (360 lb)k

The magnitude and direction of the resultant are now determined:

R 5 2R2
x 1 R2

y 1 R2
z 5 2(21440)2 1 (720)2 1 (2360)2

   R 5 1650 lb ◀

From Eqs. (2.33) we obtain

 cos ux 5
Rx

R
5

21440 lb
1650 lb

    cos uy 5
Ry

R
5

1720 lb
1650 lb

 cos uz 5
Rz

R
5

2360 lb
1650 lb

Calculating successively each quotient and its arc cosine, we have

  ux 5 150.8°  uy 5 64.1°  uz 5 102.6° ◀

27 ft

C

D

A

B

8 ft

16 ft

11 ft
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In this lesson we saw that forces in space may be defined by their magnitude 
and direction or by the three rectangular components Fx, Fy, and Fz.

A. When a force is defined by its magnitude and direction, its rectangular 
components Fx, Fy, and Fz may be found as follows:

Case 1. If the direction of the force F is defined by the angles uy and f shown 
in Fig. 2.30, projections of F through these angles or their complements will yield 
the components of F [Eqs. (2.17)]. Note that the x and z components of F are 
found by first projecting F onto the horizontal plane; the projection Fh obtained 
in this way is then resolved into the components Fx and Fz (Fig. 2.30c).

 Case 2. If the direction of the force F is defined by the angles ux, uy, uz that F 
forms with the coordinate axes, each component can be obtained by multiplying the 
magnitude F of the force by the cosine of the corresponding angle [Example 1]:

Fx 5 F cos ux  Fy 5 F cos uy  Fz 5 F cos uz

Case 3. If the drection of the force F is defined by two points M and N located
on its line of action (Fig. 2.34), you will first express the vector MN

¡
 drawn from 

M to N in terms of its components dx, dy, dz and the unit vectors i, j, k:

MN
¡

5 dxi1dy j1dzk

Next, you will determine the unit vector l along the line of action of F by dividing
the vector MN

¡
 by its magnitude MN. Multiplying l by the magnitude of F, you 

will obtain the desired expression for F in terms of its rectangular components 
[Sample Prob. 2.7]:

F 5 FL 5
F
d

(dxi 1 dyj 1 dzk)

It is advantageous to use a consistent and meaningful system of notation when 
determining the rectangular components of a force. The method used in this text is 
illustrated in Sample Prob. 2.8 where, for example, the force TAB acts from stake A 
toward point B. Note that the subscripts have been ordered to agree with the direc-
tion of the force. It is recommended that you adopt the same notation, as it will 
help you identify point 1 (the first subscript) and point 2 (the second subscript).

When forming the vector defining the line of action of a force, you may think of 
its scalar components as the number of steps you must take in each coordinate 
direction to go from point 1 to point 2. It is essential that you always remember 
to assign the correct sign to each of the components.

SOLVING PROBLEMS 
ON YOUR OWN

(continued)
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B. When a force is defined by its rectangular components Fx, Fy, Fz, you can 
obtain its magnitude F by writing

F 5 2F2
x 1 F2

y 1 F2
z

You can determine the direction cosines of the line of action of F by dividing the 
components of the force by F:

 cos ux 5
Fx

F
  cos uy 5

Fy

F
  cos uz 5

Fz

F

From the direction cosines you can obtain the angles ux, uy, uz that F forms with 
the coordinate axes [Example 2].

C. To determine the resultant R of two or more forces in three-dimensional 
space, first determine the rectangular components of each force by one of the 
procedures described above. Adding these components will yield the components 
Rx, Ry, Rz of the resultant. The magnitude and direction of the resultant may then 
be obtained as indicated above for a force F [Sample Prob. 2.8].
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PROBLEMS

55

2.71 Determine (a) the x, y, and z components of the 900-N force, 
(b) the angles ux, uy, and uz that the force forms with the coordinate 
axes.

 2.72 Determine (a) the x, y, and z components of the 750-N force, 
(b) the angles ux, uy, and uz that the force forms with the coordinate 
axes.

 2.73 A gun is aimed at a point A located 358 east of north. Knowing 
that the barrel of the gun forms an angle of 408 with the horizontal 
and that the maximum recoil force is 400 N, determine (a) the x, 
y, and z components of that force, (b) the values of the angles ux, 
uy, and uz defining the direction of the recoil force. (Assume that 
the x, y, and z axes are directed, respectively, east, up, and south.)

 2.74 Solve Prob. 2.73, assuming that point A is located 158 north of west 
and that the barrel of the gun forms an angle of 258 with the 
horizontal.

 2.75 Cable AB is 65 ft long, and the tension in that cable is 3900 lb. 
Determine (a) the x, y, and z components of the force exerted by 
the cable on the anchor B, (b) the angles ux, uy, and uz defining the 
direction of that force.

 2.76 Cable AC is 70 ft long, and the tension in that cable is 5250 lb. 
Determine (a) the x, y, and z components of the force exerted by 
the cable on the anchor C, (b) the angles ux, uy, and uz defining the 
direction of that force.

 2.77 The end of the coaxial cable AE is attached to the pole AB, which 
is strengthened by the guy wires AC and AD. Knowing that the 
tension in wire AC is 120 lb, determine (a) the components of the 
force exerted by this wire on the pole, (b) the angles ux, uy, and uz 
that the force forms with the coordinate axes.

 2.78 The end of the coaxial cable AE is attached to the pole AB, which 
is strengthened by the guy wires AC and AD. Knowing that the 
tension in wire AD is 85 lb, determine (a) the components of the 
force exerted by this wire on the pole, (b) the angles ux, uy, and uz 
that the force forms with the coordinate axes.

 2.79 Determine the magnitude and direction of the force F 5 (690 lb)i 1 
(300 lb)j 2 (580 lb)k.

 2.80 Determine the magnitude and direction of the force F 5 (650 N)i 2 
(320 N)j 1 (760 N)k.

 2.81 A force acts at the origin of a coordinate system in a direction 
defined by the angles ux 5 758 and uz 5 1308. Knowing that the y 
component of the force is 1300 lb, determine (a) the angle uy, 
(b) the other components and the magnitude of the force.

Fig. P2.71 and P2.72

y

x

z

900 N

750 N

35º

25º

20º

65º

O

x

D

A

y

56 ft

α
O

50°

20°
B

Cz

Fig. P2.75 and P2.76

Fig. P2.77 and P2.78

36°
60°

48°

20°
x

y

z

A

B
C

E

D
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56 Statics of Particles  2.82 A force acts at the origin of a coordinate system in a direction 
defined by the angles uy 5 558 and uz 5 458. Knowing that the x 
component of the force is 2500 N, determine (a) the angle ux, 
(b) the other components and the magnitude of the force.

 2.83 A force F of magnitude 230 N acts at the origin of a coordinate 
system. Knowing that ux 5 32.58, Fy 5 260 N, and Fz . 0, deter-
mine (a) the components Fx and Fz, (b) the angles uy and uz.

 2.84 A force F of magnitude 210 N acts at the origin of a coordinate 
system. Knowing that Fx 5 80 N, uz 5 151.28, and Fy , 0, deter-
mine (a) the components Fy and Fz, (b) the angles ux and uy.

 2.85 In order to move a wrecked truck, two cables are attached at A 
and pulled by winches B and C as shown. Knowing that the tension 
in cable AB is 2 kips, determine the components of the force 
exerted at A by the cable.

 2.86 In order to move a wrecked truck, two cables are attached at A 
and pulled by winches B and C as shown. Knowing that the tension 
in cable AC is 1.5 kips, determine the components of the force 
exerted at A by the cable.

 2.87 Knowing that the tension in cable AB is 1425 N, determine the 
components of the force exerted on the plate at B.

56
Fig. P2.89

y

x
z

A

B

E
D

C

O

600 mm

400 mm

480 mm

510 mm

280 mm
210 mm

36 ft

28.8 ft

18 ft

45 ft

54 ft

30°
A

B

C

Fig. P2.85 and P2.86

Fig. P2.87 and P2.88

x

y

z

A

B

D

C

O

600 mm

920 mm

360 mm

900 mm

 2.88 Knowing that the tension in cable AC is 2130 N, determine the 
components of the force exerted on the plate at C.

 2.89 A frame ABC is supported in part by cable DBE that passes 
through a frictionless ring at B. Knowing that the tension in the 
cable is 385 N, determine the components of the force exerted by 
the cable on the support at D.

 2.90 For the frame and cable of Prob. 2.89, determine the components 
of the force exerted by the cable on the support at E.
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57Problems 2.91 Find the magnitude and direction of the resultant of the two forces 
shown knowing that P 5 600 N and Q 5 450 N.

z

xO

y

30°

25°

40°

55°
P

Q

Fig. P2.91 and P2.92

Fig. P2.93 and P2.94

y

xz

A

B

C

D

O

40 in.

60 in.

60 in.
45 in.

 2.92 Find the magnitude and direction of the resultant of the two forces 
shown knowing that P 5 450 N and Q 5 600 N.

 2.93 Knowing that the tension is 425 lb in cable AB and 510 lb in cable 
AC, determine the magnitude and direction of the resultant of the 
forces exerted at A by the two cables.

 2.94 Knowing that the tension is 510 lb in cable AB and 425 lb in cable 
AC, determine the magnitude and direction of the resultant of the 
forces exerted at A by the two cables.

 2.95 For the frame of Prob. 2.89, determine the magnitude and direc-
tion of the resultant of the forces exerted by the cable at B knowing 
that the tension in the cable is 385 N.

bee02286_ch02_014-073.indd Page 57  8/19/11  5:03 PM user-f494bee02286_ch02_014-073.indd Page 57  8/19/11  5:03 PM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


 2.96 For the cables of Prob. 2.87, knowing that the tension is 1425 N 
in cable AB and 2130 N in cable AC, determine the magnitude 
and direction of the resultant of the forces exerted at A by the two 
cables.

 2.97 The boom OA carries a load P and is supported by two cables as 
shown. Knowing that the tension in cable AB is 183 lb and that 
the resultant of the load P and of the forces exerted at A by the 
two cables must be directed along OA, determine the tension in 
cable AC.

Photo 2.2 While the tension in the four cables 
supporting the car cannot be found using the 
three equations of (2.34), a relation between the 
tensions can be obtained by considering the 
equilibrium of the hook.

z

24 in.

29 in.

25 in.

48 in.
A

C

B

O

y

36 in.

x

P

Fig. P2.97

 2.98 For the boom and loading of Prob. 2.97, determine the magnitude 
of the load P.

58 Statics of Particles

2.15 EQUILIBRIUM OF A PARTICLE IN SPACE
According to the definition given in Sec. 2.9, a particle A is in equi-
librium if the resultant of all the forces acting on A is zero. The 
components Rx, Ry, Rz of the resultant are given by the relations 
(2.31); expressing that the components of the resultant are zero, we 
write

 oFx 5 0  oFy 5 0  oFz 5 0 (2.34)

Equations (2.34) represent the necessary and sufficient conditions 
for the equilibrium of a particle in space. They can be used to solve 
problems dealing with the equilibrium of a particle involving no 
more than three unknowns.
 To solve such problems, you first should draw a free-body dia-
gram showing the particle in equilibrium and all the forces acting 
on  it. You can then write the equations of equilibrium (2.34) and 
solve them for three unknowns. In the more common types of prob-
lems, these unknowns will represent (1) the three components of 
a  single force or (2) the magnitude of three forces, each of known 
direction.
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SAMPLE PROBLEM 2.9

A 200-kg cylinder is hung by means of two cables AB and AC, which are 
attached to the top of a vertical wall. A horizontal force P perpendicular to 
the wall holds the cylinder in the position shown. Determine the magnitude 
of P and the tension in each cable.A

B

C

P

8 m

10 m

1.2 m

2 m200kg
12 m

SOLUTION

Free-Body Diagram. Point A is chosen as a free body; this point is sub-
jected to four forces, three of which are of unknown magnitude.
 Introducing the unit vectors i, j, k, we resolve each force into rect-
angular components.
  P 5 Pi
 W 5 2mgj 5 2(200 kg)(9.81 m/s2)j 5 2(1962 N)j 

(1)

In the case of TAB and TAC, it is necessary first to determine the com-
ponents and magnitudes of the vectors AB

¡
 and AC

¡
. Denoting by LAB the 

unit vector along AB, we write

AB
¡

5 2(1.2 m)i 1 (10 m)j 1 (8 m)k    AB 5 12.862 m

LAB 5
AB
¡

12.862 m
5 20.09330i 1 0.7775j 1 0.6220k

 TAB 5 TABLAB 5 20.09330TABi 1 0.7775TABj 1 0.6220TABk (2)

Denoting by lAC the unit vector along AC, we write in a similar way

AC
¡

5 2(1.2 m)i 1 (10 m)j 2 (10 m)k  AC 5 14.193 m

LAC 5
AC
¡

14.193 m
5 20.08455i 1 0.7046j 2 0.7046k

 TAC 5 TAClAC 5 20.08455TACi 1 0.7046TACj 2 0.7046TACk (3)

Equilibrium Condition. Since A is in equilibrium, we must have
oF 5 0: TAB 1 TAC 1 P 1 W 5 0
or, substituting from (1), (2), (3) for the forces and factoring i, j, k,
(20.09330TAB 2 0.08455TAC 1 P)i

1 (0.7775TAB 1 0.7046TAC 2 1962 N)j
1 (0.6220TAB 2 0.7046TAC)k 5 0

Setting the coefficients of i, j, k equal to zero, we write three scalar equa-
tions, which express that the sums of the x, y, and z components of the 
forces are respectively equal to zero.
(oFx 5 0:)  20.09330TAB 2 0.08455TAC 1 P 5 0
(oFy 5 0:)  10.7775TAB 1 0.7046TAC 2 1962 N 5 0
(oFz 5 0:)  10.6220TAB 2 0.7046TAC 5 0
Solving these equations, we obtain

P 5 235 N  TAB 5 1402 N  TAC 5 1238 N ◀

W

12 m

C

B

z

y

x

A
O

P

8 m

10 m

1.2 m

2 m

TAB

j
TAC

k

i

�AB

��AC
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60

We saw earlier that when a particle is in equilibrium, the resultant of the forces 
acting on the particle must be zero. Expressing this fact in the case of the 

equilibrium of a particle in three-dimensional space will provide you with three 
relations among the forces acting on the particle. These relations may be used to 
determine three unknowns—usually the magnitudes of three forces.

Your solution will consist of the following steps:

1. Draw a free-body diagram of the particle. This diagram shows the particle 
and all the forces acting on it. Indicate on the diagram the magnitudes of known 
forces, as well as any angles or dimensions that define the direction of a force. 
Any unknown magnitude or angle should be denoted by an appropriate symbol. 
Nothing else should be included in your free-body diagram.

2. Resolve each of the forces into rectangular components. Following the 
method used in the preceding lesson, you will determine for each force F the unit 
vector l defining the direction of that force and express F as the product of its 
magnitude F and the unit vector l. You will obtain an expression of the form

F 5 FL 5
F
d

 (dxi 1 dyj 1 dzk)

where d, dx, dy, and dz are dimensions obtained from the free-body diagram of 
the particle. If a force is known in magnitude as well as in direction, then F is 
known and the expression obtained for F is well defined; otherwise F is one of 
the three unknowns that should be determined.

3. Set the resultant, or sum, of the forces exerted on the particle equal to 
zero. You will obtain a vectorial equation consisting of terms containing the unit 
vectors i, j, or k. You will group the terms containing the same unit vector and 
factor that vector. For the vectorial equation to be satisfied, the coefficient of each 
of the unit vectors must be set equal to zero. This will yield three scalar equations 
that you can solve for no more than three unknowns [Sample Prob. 2.9].

SOLVING PROBLEMS 
ON YOUR OWN
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61

PROBLEMS

FREE BODY PRACTICE PROBLEMS

2.F5 A 36-lb triangular plate is supported by three cables as shown. Draw 
the free-body diagram needed to determine the tension in each wire.

y

16 in.
8 in.

6 in.
6 in.

24 in.

A
C

D

B

x

z

Fig. P2.F5
O

B

C

A

y

x
z

5 m

2.4 m

1.2 m

3.6 m
3.6 m

P

Fig. P2.F6

180 lb

D

A

B

C

18 in.

16 in.

22 in.

24 in.

24 in.

Fig. P2.F7

 2.F6 A 70-kg cylinder is supported by two cables AC and BC, which are 
attached to the top of vertical posts. A horizontal force P, perpen-
dicular to the plane containing the posts, holds the cylinder in the 
position shown. Draw the free-body diagram needed to determine 
the magnitude of P and the force in each cable.

 2.F7 Three cables are connected at point D, which is located 18 in. be-
low the T-shaped pipe support ABC. The cables support a 180-lb 
cylinder as shown. Draw the free-body diagram needed to deter-
mine the tension in each cable.

 2.F8 A 100-kg container is suspended from ring A, to which cables AC 
and AE are attached. A force P is applied to end F of a third cable 
that passes over a pulley at B and through ring A and then is at-
tached to a support at D. Draw the free-body diagram needed to 
determine the magnitude of P. (Hint: The tension is the same in 
all portions of cable FBAD.)

y

xz

0.78 m

0.40 m

0.40 m
P

O

B

F

E

C

W

A

D

1.60 m

0.86 m

1.20 m

1.30 m

Fig. P2.F8
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62 Statics of Particles

62

END-OF-SECTION PROBLEMS

 2.99 A container is supported by three cables that are attached to a 
ceiling as shown. Determine the weight W of the container, know-
ing that the tension in cable AB is 6 kN.

A

B

C

D

O
4.20 m

4.20 m

3.30 m

5.60 m

2.40 m
x

y

z

Fig. P2.101 and P2.102

 2.100 A container is supported by three cables that are attached to a 
ceiling as shown. Determine the weight W of the container, know-
ing that the tension in cable AD is 4.3 kN.

 2.101 Three cables are used to tether a balloon as shown. Determine the 
vertical force P exerted by the balloon at A knowing that the ten-
sion in cable AD is 481 N.

y

x

z

450 mm 500 mm

360 mm

320 mm

600 mm

A

C

D

B

Fig. P2.99 and P2.100

 2.102 Three cables are used to tether a balloon as shown. Knowing that 
the balloon exerts an 800-N vertical force at A, determine the ten-
sion in each cable.
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63Problems 2.103 A crate is supported by three cables as shown. Determine the 
weight of the crate knowing that the tension in cable AB is 750 lb.

 2.104 A crate is supported by three cables as shown. Determine 
the weight of the crate knowing that the tension in cable AD is 
616 lb.

 2.105 A crate is supported by three cables as shown. Determine 
the weight of the crate knowing that the tension in cable AC is 
544 lb.

 2.106 A 1600-lb crate is supported by three cables as shown. Determine 
the tension in each cable.

 2.107 Three cables are connected at A, where the forces P and Q are 
applied as shown. Knowing that Q 5 0, find the value of P for 
which the tension in cable AD is 305 N.

y

x

z

220 mm

240 mm

960 mm

Q

P

A
B

C

D

O

380 mm

320 mm

960 mm

Fig. P2.107 and P2.108

 2.108 Three cables are connected at A, where the forces P and Q are 
applied as shown. Knowing that P 5 1200 N, determine the values 
of Q for which cable AD is taut.

 2.109 A rectangular plate is supported by three cables as shown. Knowing 
that the tension in cable AC is 60 N, determine the weight of the 
plate.

 2.110 A rectangular plate is supported by three cables as shown. Knowing 
that the tension in cable AD is 520 N, determine the weight of the 
plate.

x

y

z

A

B

C

DO

250

130
360

360

320
450

480

Dimensions in mm

Fig. P2.109 and P2.110

x

y

z

A

B

C

D
O

36 in.

27 in.

60 in.

32 in.

40 in.

Fig. P2.103, P2.104, P2.105, and P2.106 
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64 Statics of Particles  2.111 A transmission tower is held by three guy wires attached to a pin 
at A and anchored by bolts at B, C, and D. If the tension in wire 
AB is 630 lb, determine the vertical force P exerted by the tower 
on the pin at A.

y

xz

60°
40°

50°
A C

D

B

O

Fig. P2.120

Fig. P2.111 and P2.112

y

A
90 ft

30 ft

O
B

30 ft

20 ft

45 ft

z

D

C

60 ft

65 ft
x

z
16 ft

8 ft

B

A

C
O

x

y

4 ft

30 ft

32 ft

12 ft

Fig. P2.113

 2.112 A transmission tower is held by three guy wires attached to a pin 
at A and anchored by bolts at B, C, and D. If the tension in wire 
AC is 920 lb, determine the vertical force P exerted by the tower 
on the pin at A.

 2.113 In trying to move across a slippery icy surface, a 180-lb man uses 
two ropes AB and AC. Knowing that the force exerted on the man 
by the icy surface is perpendicular to that surface, determine the 
tension in each rope.

 2.114 Solve Prob. 2.113, assuming that a friend is helping the man at A 
by pulling on him with a force P 5 2(60 lb)k.

 2.115 For the rectangular plate of Probs. 2.109 and 2.110, determine the 
tension in each of the three cables knowing that the weight of the 
plate is 792 N.

 2.116 For the cable system of Probs. 2.107 and 2.108, determine the 
tension in each cable knowing that P 5 2880 N and Q 5 0.

 2.117 For the cable system of Probs. 2.107 and 2.108, determine the 
tension in each cable knowing that P 5 2880 N and Q 5 576 N.

 2.118 For the cable system of Probs. 2.107 and 2.108, determine the 
tension in each cable knowing that P 5 2880 N and Q 5 2576 N 
(Q is directed downward).

 2.119 For the transmission tower of Probs. 2.111 and 2.112, determine 
the tension in each guy wire knowing that the tower exerts on the 
pin at A an upward vertical force of 2100 lb.

 2.120 A horizontal circular plate weighing 60 lb is suspended as shown 
from three wires that are attached to a support at D and form 308 
angles with the vertical. Determine the tension in each wire.
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65Problems 2.121 Cable BAC passes through a frictionless ring A and is attached to 
fixed supports at B and C, while cables AD and AE are both tied 
to the ring and are attached, respectively, to supports at D and E. 
Knowing that a 200-lb vertical load P is applied to ring A, deter-
mine the tension in each of the three cables.

 2.122 Knowing that the tension in cable AE of Prob. 2.121 is 75 lb, 
determine (a) the magnitude of the load P, (b) the tension in cables 
BAC and AD.

 2.123 A container of weight W is suspended from ring A. Cable BAC 
passes through the ring and is attached to fixed supports at B and 
C. Two forces P 5 Pi and Q 5 Qk are applied to the ring to 
maintain the container in the position shown. Knowing that W 5 
376 N, determine P and Q. (Hint: The tension is the same in both 
portions of cable BAC.)

 2.124 For the system of Prob. 2.123, determine W and Q knowing that 
P 5 164 N.

 2.125 Collars A and B are connected by a 525-mm-long wire and can 
slide freely on frictionless rods. If a force P 5 (341 N)j is applied 
to collar A, determine (a) the tension in the wire when y 5 155 mm, 
(b) the magnitude of the force Q required to maintain the equi-
librium of the system.

 2.126 Solve Prob. 2.125 assuming that y 5 275 mm.

D

x

E
OB

25 in.

17.5 in. 45 in.

60 in.

80 in.

y

C

A

z

P

Fig. P2.121

Fig. P2.123

Q
P

O

A

C

B

y

x
z

W

160 mm

400 mm

130 mm

150 mm

240 mm

Fig. P2.125

200 mm

x

y

y

z zB

Q

P

A

O
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66

REVIEW AND SUMMARY

In this chapter we have studied the effect of forces on particles, i.e., 
on bodies of such shape and size that all forces acting on them may 
be assumed applied at the same point.

Forces are vector quantities; they are characterized by a point of 
application, a magnitude, and a direction, and they add according to 
the parallelogram law (Fig. 2.35). The magnitude and direction of 
the resultant R of two forces P and Q can be determined either 
graphically or by trigonometry, using successively the law of cosines 
and the law of sines [Sample Prob. 2.1].

Any given force acting on a particle can be resolved into two or more 
components, i.e., it can be replaced by two or more forces which 
have the same effect on the particle. A force F can be resolved into 
two components P and Q by drawing a parallelogram which has F
for its diagonal; the components P and Q are then represented by 
the two adjacent sides of the parallelogram (Fig. 2.36) and can be 
determined either graphically or by trigonometry [Sec. 2.6].

 A force F is said to have been resolved into two rectangular 
components if its components Fx and Fy are perpendicular to each 
other and are directed along the coordinate axes (Fig. 2.37). Intro-
ducing the unit vectors i and j along the x and y axes, respectively, 
we write [Sec. 2.7]

 Fx 5 Fxi  Fy 5 Fyj (2.6)

and

 F 5 Fxi 1 Fyj (2.7)

where Fx and Fy are the scalar components of F. These components, 
which can be positive or negative, are defined by the relations

 Fx 5 F cos u  Fy 5 F sin u (2.8)

 When the rectangular components Fx and Fy of a force F are 
given, the angle u defining the direction of the force can be obtained 
by writing

  tan u 5
Fy

Fx
 (2.9)

The magnitude F of the force can then be obtained by solving one 
of the equations (2.8) for F or by applying the Pythagorean theorem 
and writing

 F 5 2F2
x 1 F2

y (2.10)

Resultant of two forces

Components of a force

Rectangular components 
Unit vectors

Q

R

P

A
Fig. 2.35

Q
F

P

A

Fig. 2.36

F

x

y

Fy = Fy j

Fx = Fx i

j

i

�

Fig. 2.37
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67Review and SummaryWhen three or more coplanar forces act on a particle, the rectangular 
components of their resultant R can be obtained by adding algebra-
ically the corresponding components of the given forces [Sec. 2.8]. 
We have

 Rx 5 oFx  Ry 5 oFy (2.13)

The magnitude and direction of R can then be determined from 
relations similar to Eqs. (2.9) and (2.10) [Sample Prob. 2.3].

 A force F in three-dimensional space can be resolved into 
 rectangular components Fx, Fy, and Fz [Sec. 2.12]. Denoting by ux, 
uy, and uz, respectively, the angles that F forms with the x, y, and z 
axes (Fig. 2.38), we have

 Fx 5 F cos ux  Fy 5 F cos uy  Fz 5 F cos uz (2.19)

Resultant of several coplanar forces

Forces in space

x

y

z

A

B

C

D

E

F

Fx

Fy

Fz

�x

�y

�z

(a)

x

y

z

A

B

C

D

E

F

Fx

Fy

Fz

x

y

z

A

B

C

D

E

F

Fx

Fy

Fz

(b) (c)

OOO

Fig. 2.38

Fig. 2.39

x

y

z

λλ (Magnitude = 1)

F = F λλ

Fy j

Fxi

Fzk

cos �y j

cos �zk

cos �xi

The cosines of ux, uy, uz are known as the direction cosines of the 
force F. Introducing the unit vectors i, j, k along the coordinate axes, 
we write

 F 5 Fxi 1 Fyj 1 Fzk (2.20)

or

 F 5 F(cos uxi 1 cos uyj 1 cos uzk) (2.21)

which shows (Fig. 2.39) that F is the product of its magnitude F and 
the unit vector

l 5 cos uxi 1 cos uyj 1 cos uzk

Since the magnitude of l is equal to unity, we must have

 cos2 ux 1 cos2 uy 1 cos2 uz 5 1 (2.24)

 When the rectangular components Fx, Fy, Fz of a force F are 
given, the magnitude F of the force is found by writing

 F 5 2F2
x 1 F2

y 1 F2
z  (2.18)

and the direction cosines of F are obtained from Eqs. (2.19). We have

 cos ux 5
Fx

F
  cos uy 5

Fy

F
  cos uz 5

Fz

F
 (2.25)

Direction cosines
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68 Statics of Particles  When a force F is defined in three-dimensional space by its 
magnitude F and two points M and N on its line of action [Sec. 2.13], 
its rectangular components can be obtained as follows. We first express 
the vector MN

¡
 joining points M and N in terms of its components 

dx, dy, and dz (Fig. 2.40); we write

MN
¡

5 dxi 1 dyj 1 dzk (2.26)

We next determine the unit vector l along the line of action of F
by dividing MN

¡
 by its magnitude MN 5 d:

 L 5
MN
¡

MN
5

1
d

(dxi 1 dyj 1 dzk) (2.27)

Recalling that F is equal to the product of F and l, we have

 F 5 FL 5
F
d

(dxi 1 dy 
j 1 dzk) (2.28)

from which it follows [Sample Probs. 2.7 and 2.8] that the scalar 
components of F are, respectively,

 Fx 5
Fdx

d
    Fy 5

Fdy

d
    Fz 5

Fdz

d
 (2.29)

When two or more forces act on a particle in three-dimensional 
space, the rectangular components of their resultant R can be 
obtained by adding algebraically the corresponding components of 
the given forces [Sec. 2.14]. We have

 Rx 5 oFx  Ry 5 oFy  Rz 5 oFz (2.31)

The magnitude and direction of R can then be determined from 
relations similar to Eqs. (2.18) and (2.25) [Sample Prob. 2.8].

A particle is said to be in equilibrium when the resultant of all the 
forces acting on it is zero [Sec. 2.9]. The particle will then remain 
at rest (if originally at rest) or move with constant speed in a straight 
line (if originally in motion) [Sec. 2.10].

To solve a problem involving a particle in equilibrium, one first should 
draw a free-body diagram of the particle showing all the forces acting 
on it [Sec. 2.11]. If only three coplanar forces act on the particle, a 
force triangle may be drawn to express that the particle is in equilib-
rium. Using graphical methods of trigonometry, this triangle can be 
solved for no more than two unknowns [Sample Prob. 2.4]. If more 
than three coplanar forces are involved, the equations of equilibrium

 oFx 5 0  oFy 5 0 (2.15)

should be used. These equations can be solved for no more than two 
unknowns [Sample Prob. 2.6].

When a particle is in equilibrium in three-dimensional space [Sec. 
2.15], the three equations of equilibrium

 oFx 5 0  oFy 5 0  oFz 5 0 (2.34)

should be used. These equations can be solved for no more than 
three unknowns [Sample Prob. 2.9].

Resultant of forces in space

Equilibrium of a particle

Free-body diagram

Equilibrium in space

Fig. 2.40

x

y

z

F

O

M(x1, y1, z1)  

N(x2, y2, z2)  

dy = y2 – y1  

dx = x2 – x1  

dz = z2 – z1 < 0  λ
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69

REVIEW PROBLEMS

 2.127 Two structural members A and B are bolted to a bracket as shown. 
Knowing that both members are in compression and that the force 
is 15 kN in member A and 10 kN in member B, determine by 
trigonometry the magnitude and direction of the resultant of the 
forces applied to the bracket by members A and B.

 2.128 Member BD exerts on member ABC a force P directed along line 
BD. Knowing that P must have a 300-lb horizontal component, 
determine (a) the magnitude of the force P, (b) its vertical 
component.

 2.129 Determine (a) the required tension in cable AC, knowing that the 
resultant of the three forces exerted at point C of boom BC must 
be directed along BC, (b) the corresponding magnitude of the 
resultant.

 2.130 Two cables are tied together at C and are loaded as shown. Deter-
mine the tension (a) in cable AC, (b) in cable BC.

 2.131 A welded connection is in equilibrium under the action of the four 
forces shown. Knowing that FA 5 8 kN and FB 5 16 kN, determine 
the magnitudes of the other two forces.

A B

40° 20°

Fig. P2.127

A

B

C D

35°

Q

Fig. P2.128
75 lb

50 lb

25°

65°

35°

A

B

C

Fig. P2.129

75°

75°

200 kg

C

A

B

Fig. P2.130
FD

FC

FA

FB

B

A

D

C

3
4

Fig. P2.131
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70 Statics of Particles  2.132 Two cables tied together at C are loaded as shown. Determine the 
range of values of Q for which the tension will not exceed 60 lb in 
either cable.

 2.133 A horizontal circular plate is suspended as shown from three wires 
that are attached to a support at D and form 308 angles with the 
vertical. Knowing that the x component of the force exerted by 
wire AD on the plate is 110.3 N, determine (a) the tension in wire 
AD, (b) the angles ux, uy, and uz that the force exerted at A forms 
with the coordinate axes.

 2.134 A force acts at the origin of a coordinate system in a direction 
defined by the angles uy 5 558 and uz 5 458. Knowing that the x 
component of the force is 2500 lb, determine (a) the angle ux, 
(b)  the other components and the magnitude of the force.

 2.135 Find the magnitude and direction of the resultant of the two forces 
shown knowing that P 5 300 N and Q 5 400 N.

A

B

C

P = 75 lb

30º

30º

60º

Q

Fig. P2.132

y

xz

60°
40°

50°
A C

D

B

O

Fig. P2.133

z

x

y

30°

20°

15°

50°P

Q

Fig. P2.135
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71Review Problems 2.136 Three cables are used to tether a balloon as shown. Determine the 
vertical force P exerted by the balloon at A knowing that the ten-
sion in cable AC is 444 N.

A

B

C

D

O
4.20 m

4.20 m

3.30 m

5.60 m

2.40 m
x

y

z

Fig. P2.136

20 in.

x

x

y

z

z

B
Q

P

A

O

Fig. P2.137 and P2.138

 2.137 Collars A and B are connected by a 25-in.-long wire and can slide 
freely on frictionless rods. If a 60-lb force Q is applied to collar B 
as shown, determine (a) the tension in the wire when x 5 9 in., 
(b) the corresponding magnitude of the force P required to main-
tain the equilibrium of the system.

 2.138 Collars A and B are connected by a 25-in.-long wire and can slide 
freely on frictionless rods. Determine the distances x and z for which 
the equilibrium of the system is maintained when P 5 120 lb and 
Q 5 60 lb.
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72

COMPUTER PROBLEMS

 2.C1 Write a computer program that can be used to determine the magni-
tude and direction of the resultant of n coplanar forces applied at a point A. 
Use this program to solve Probs. 2.32, 2.33, 2.35, and 2.38.

Fi

Fn

F1

A

qi

q1qn

x

Fig. P2.C1

 2.C2 A load P is supported by two cables as shown. Write a computer pro-
gram that can be used to determine the tension in each cable for any given 
value of P and for values of u ranging from u1 5 b 2 90° to u2 5 90° 2 a, 
using given increments Du. Use this program to determine for the following 
three sets of numerical values (a) the tension in each cable for values of u
ranging from u1 to u2, (b) the value of u for which the tension in the two 
cables is as small as possible, (c) the corresponding value of the tension:

 (1) a 5 35°, b 5 75°, P 5 400 lb, Du 5 5°
 (2) a 5 50°, b 5 30°, P 5 600 lb, Du 5 10°
 (3) a 5 40°, b 5 60°, P 5 250 lb, Du 5 5°

 2.C3 An acrobat is walking on a tightrope of length L 5 20.1 m attached 
to supports A and B at a distance of 20.0 m from each other. The combined 
weight of the acrobat and his balancing pole is 800 N, and the friction 
between his shoes and the rope is large enough to prevent him from slip-
ping. Neglecting the weight of the rope and any elastic deformation, write 
a computer program to calculate the deflection y and the tension in portions 
AC and BC of the rope for values of x from 0.5 m to 10.0 m using 0.5-m 
increments. From the data obtained, determine (a) the maximum deflection 
of the rope, (b) the maximum tension in the rope, (c) the smallest values of 
the tension in portions AC and BC of the rope.

A

C

B

x

y

20.0 m

Fig. P2.C3

A B

C

P

a
b

qFig. P2.C2
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73Computer Problems 2.C4 Write a computer program that can be used to determine the magni-
tude and direction of the resultant of n forces Fi, where i 5 1, 2, . . . , n, 
that are applied at point A0 of coordinates x0, y0, and z0, knowing that the 
line of action of Fi passes through point Ai of coordinates xi, yi, and zi. Use 
this program to solve Probs. 2.93, 2.94, and 2.95.

x

y

z

O

A2(x2,  y2, z2)
A1(x1, y1, z1)

A0(x0, y0, z0)

Ai(xi, yi, zi)

An(xn, yn, zn)

F2

Fi

Fn

F1

Fig. P2.C4

x

y

z

O
P

A3(x3, y3, z3)

A2(x2, y2, z2)

A1(x1, y1, z1)

A0(x0, y0, z0)

AP(xP, yP, zP)

Fig. P2.C5

 2.C5 Three cables are attached at points A1, A2, and A3, respectively, and 
are connected at point A0, to which a given load P is applied as shown. Write 
a computer program that can be used to determine the tension in each of 
the cables. Use this program to solve Probs. 2.102, 2.106, 2.107, and 2.115.
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 The battleship USS New Jersey is 

maneuvered by four tugboats at 

Bremerton Naval Shipyard. It will be 

shown in this chapter that the forces 

exerted on the ship by the tugboats 

could be replaced by an equivalent 

force exerted by a single, more 

powerful, tugboat.    

74
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 Chapter 3 Rigid Bodies: 
Equivalent Systems of Forces

 3.1 Introduction
 3.2 External and Internal Forces
 3.3 Principle of Transmissibility. 

Equivalent Forces
 3.4 Vector Product of Two Vectors
 3.5 Vector Products Expressed in 

Terms of Rectangular 
Components

 3.6 Moment of a Force about a Point
 3.7 Varignon’s Theorem
 3.8 Rectangular Components of the 

Moment of a Force
 3.9 Scalar Product of Two Vectors
 3.10 Mixed Triple Product of Three 

Vectors
 3.11 Moment of a Force about a 

Given Axis
 3.12 Moment of a Couple
 3.13 Equivalent Couples
 3.14 Addition of Couples
 3.15 Couples Can Be Represented 

by Vectors
 3.16 Resolution of a Given Force into 

a Force at O and a Couple
 3.17 Reduction of a System of Forces 

to One Force and One Couple
 3.18 Equivalent Systems of Forces
 3.19 Equipollent Systems of Vectors
 3.20 Further Reduction of a System 

of Forces
 3.21 Reduction of a System of Forces 

to a Wrench

 3.1   INTRODUCTION  
 In the preceding chapter it was assumed that each of the bodies con-
sidered could be treated as a single particle. Such a view, however, is 
not always possible, and a body, in general, should be treated as a com-
bination of a large number of particles. The size of the body will have 
to be taken into consideration, as well as the fact that forces will act on 
different particles and thus will have different points of application. 
    Most of the bodies considered in elementary mechanics are 
assumed to be  rigid,  a  rigid body  being defined as one which does 
not deform. Actual structures and machines, however, are never 
absolutely rigid and deform under the loads to which they are sub-
jected. But these deformations are usually small and do not appre-
ciably affect the conditions of equilibrium or motion of the structure 
under consideration. They are important, though, as far as the resis-
tance of the structure to failure is concerned and are considered in 
the study of mechanics of materials. 
    In this chapter you will study the effect of forces exerted on a 
rigid body, and you will learn how to replace a given system of forces 
by a simpler equivalent system. This analysis will rest on the funda-
mental assumption that the effect of a given force on a rigid body 
remains unchanged if that force is moved along its line of action ( prin-
ciple of transmissibility ). It follows that forces acting on a rigid body 
can be represented by  sliding vectors,  as indicated earlier in Sec. 2.3. 
    Two important concepts associated with the effect of a force 
on a rigid body are the  moment of a force about a point  (Sec. 3.6) 
and the  moment of a force about an axis  (Sec. 3.11). Since the deter-
mination of these quantities involves the computation of vector prod-
ucts and scalar products of two vectors, the fundamentals of vector 
algebra will be introduced in this chapter and applied to the solution 
of problems involving forces acting on rigid bodies. 
    Another concept introduced in this chapter is that of a  couple,  
i.e., the combination of two forces which have the same magnitude, 
parallel lines of action, and opposite sense (Sec. 3.12). As you will 
see, any system of forces acting on a rigid body can be replaced by 
an equivalent system consisting of one force acting at a given point 
and one couple. This basic system is called a  force-couple system.  In 
the case of concurrent, coplanar, or parallel forces, the equivalent 
force-couple system can be further reduced to a single force, called 
the  resultant  of the system, or to a single couple, called the  resultant 
couple  of the system.    

 3.2   EXTERNAL AND INTERNAL FORCES  
 Forces acting on rigid bodies can be separated into two groups: 
(1)  external forces  and (2)  internal forces.   

   1.   The  external forces  represent the action of other bodies on the 
rigid body under consideration. They are entirely responsible 
for the external behavior of the rigid body. They will either 
cause it to move or ensure that it remains at rest. We shall be 
concerned only with external forces in this chapter and in 
Chaps. 4 and 5.  
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77   2.   The  internal forces  are the forces which hold together the par-
ticles forming the rigid body. If the rigid body is structurally 
composed of several parts, the forces holding the component 
parts together are also defined as internal forces. Internal forces 
will be considered in Chaps. 6 and 7.   

    As an example of external forces, let us consider the forces 
acting on a disabled truck that three people are pulling forward by 
means of a rope attached to the front bumper ( Fig. 3.1 ). The external 
forces acting on the truck are shown in a  free-body diagram  ( Fig. 3.2 ). 
Let us first consider the  weight  of the truck. Although it embodies 
the effect of the earth’s pull on each of the particles forming the 
truck, the weight can be represented by the single force  W . The 
 point of application  of this force, i.e., the point at which the force 
acts, is defined as the  center of gravity  of the truck. It will be seen 
in Chap. 5 how centers of gravity can be determined. The weight  W  
tends to make the truck move vertically downward. In fact, it would 
actually cause the truck to move downward, i.e., to fall, if it were not 
for the presence of the ground. The ground opposes the downward 
motion of the truck by means of the reactions  R  1  and  R  2 . These 
forces are exerted  by  the ground  on  the truck and must therefore 
be included among the external forces acting on the truck. 
    The people pulling on the rope exert the force  F . The point of 
application of  F  is on the front bumper. The force  F  tends to make 
the truck move forward in a straight line and does actually make it 
move, since no external force opposes this motion. (Rolling resistance 
has been neglected here for simplicity.) This forward motion of the 
truck, during which each straight line keeps its original orientation 
(the floor of the truck remains horizontal, and the walls remain verti-
cal), is known as a  translation . Other forces might cause the truck to 
move differently. For example, the force exerted by a jack placed 
under the front axle would cause the truck to pivot about its rear axle. 
Such a motion is a  rotation . It can be concluded, therefore, that each 
of the  external forces  acting on a  rigid body  can, if unopposed, impart 
to the rigid body a motion of translation or rotation, or both.    

 3.3    PRINCIPLE OF TRANSMISSIBILITY. 
EQUIVALENT FORCES  

 The  principle of transmissibility  states that the conditions of equi-
librium or motion of a rigid body will remain unchanged if a force 
 F  acting at a given point of the rigid body is replaced by a force  F 9 of 
the same magnitude and same direction, but acting at a different point, 
 provided that the two forces have the same line of action  ( Fig. 3.3 ). 
The two forces  F  and  F 9 have the same effect on the rigid body and 
are said to be  equivalent . This principle, which states that the action 
of a force may be  transmitted  along its line of action, is based on 
experimental evidence. It  cannot  be derived from the properties 
established so far in this text and must therefore be accepted as an 
experimental law. However, as you will see in Sec. 16.5, the principle 
of transmissibility can be derived from the study of the dynamics of 
rigid bodies, but this study requires the introduction of Newton’s 

  Fig. 3.1    

W

F

R1 R2

  Fig. 3.2    

=

F

F'

  Fig. 3.3    

3.3 Principle of Transmissibility. 
Equivalent Forces
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78 Rigid Bodies: Equivalent Systems of Forces second and third laws and of a number of other concepts as well. 
Therefore, our study of the statics of rigid bodies will be based on 
the three principles introduced so far, i.e., the parallelogram law of 
addition, Newton’s first law, and the principle of transmissibility. 
    It was indicated in Chap. 2 that the forces acting on a particle 
could be represented by vectors. These vectors had a well-defined 
point of application, namely, the particle itself, and were therefore 
fixed, or bound, vectors. In the case of forces acting on a rigid body, 
however, the point of application of the force does not matter, as 
long as the line of action remains unchanged. Thus, forces acting on 
a rigid body must be represented by a different kind of vector, known 
as a  sliding vector , since forces may be allowed to slide along their 
lines of action. We should note that all the properties which will be 
derived in the following sections for the forces acting on a rigid body 
will be valid more generally for any system of sliding vectors. In 
order to keep our presentation more intuitive, however, we will carry 
it out in terms of physical forces rather than in terms of mathematical 
sliding vectors. 

W

F

R1 R2

W

F'

R1 R2

=

  Fig. 3.4    

    Returning to the example of the truck, we first observe that the 
line of action of the force  F  is a horizontal line passing through both 
the front and the rear bumpers of the truck ( Fig. 3.4 ). Using the 
principle of transmissibility, we can therefore replace  F  by an  equiva-
lent force   F 9 acting on the rear bumper. In other words, the condi-
tions of motion are unaffected, and all the other external forces 
acting on the truck ( W ,  R  1 ,  R  2 ) remain unchanged if the people push 
on the rear bumper instead of pulling on the front bumper. 
    The principle of transmissibility and the concept of equivalent 
forces have limitations, however. Consider, for example, a short bar 
 AB  acted upon by equal and opposite axial forces  P  1  and  P  2 , as shown 
in  Fig. 3.5  a . According to the principle of transmissibility, the force 
 P  2  can be replaced by a force  P 9 2  having the same magnitude, the 
same direction, and the same line of action but acting at  A  instead 
of  B  (Fig. 3.5 b ). The forces  P  1  and  P 9 2  acting on the same particle 

=P1 P2

A B

(a)

=P1
P'2

A B

(b)

A B

(c)

=P1P2

A B

(d)

=P1

P'2

A B

(e)

A B

( f )

  Fig. 3.5    
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79can be added according to the rules of Chap. 2, and, as these forces 
are equal and opposite, their sum is equal to zero. Thus, in terms of 
the external behavior of the bar, the original system of forces shown 
in Fig. 3.5 a  is equivalent to no force at all (Fig. 3.5 c ). 
    Consider now the two equal and opposite forces  P  1  and  P  2  
acting on the bar  AB  as shown in Fig. 3.5 d . The force  P  2  can be 
replaced by a force P92 having the same magnitude, the same direction, 
and the same line of action but acting at  B  instead of at  A  (Fig. 3.5 e ). 
The forces  P  1  and P92 can then be added, and their sum is again zero 
(Fig. 3.5 f  ). From the point of view of the mechanics of rigid bodies, 
the systems shown in Fig. 3.5 a  and  d  are thus equivalent. But the 
 internal forces  and  deformations  produced by the two systems are 
clearly different. The bar of Fig. 3.5 a  is in  tension  and, if not abso-
lutely rigid, will increase in length slightly; the bar of Fig. 3.5 d  is in 
 compression  and, if not absolutely rigid, will decrease in length 
slightly. Thus, while the principle of transmissibility may be used 
freely to determine the conditions of motion or equilibrium of rigid 
bodies and to compute the external forces acting on these bodies, it 
should be avoided, or at least used with care, in determining internal 
forces and deformations.    

 3.4   VECTOR PRODUCT OF TWO VECTORS  
 In order to gain a better understanding of the effect of a force on a 
rigid body, a new concept, the concept of  a moment of a force about a 
point , will be introduced at this time. This concept will be more clearly 
understood, and applied more effectively, if we first add to the mathe-
matical tools at our disposal the  vector product  of two vectors. 
    The vector product of two vectors  P  and  Q  is defined as the 
vector  V  which satisfies the following conditions.  

   1.   The line of action of  V  is perpendicular to the plane containing 
 P  and  Q  ( Fig. 3.6  a ).  

   2.   The magnitude of  V  is the product of the magnitudes of  P  and 
 Q  and of the sine of the angle u formed by  P  and  Q  (the mea-
sure of which will always be 180° or less); we thus have

   V 5 PQ sin u     (3.1)

   3.   The direction of  V  is obtained from the  right-hand rule . Close 
your right hand and hold it so that your fingers are curled in 
the same sense as the rotation through u which brings the vec-
tor  P  in line with the vector  Q ; your thumb will then indicate 
the direction of the vector  V  (Fig. 3.6 b ). Note that if  P  and  Q  
do not have a common point of application, they should first 
be redrawn from the same point. The three vectors  P ,  Q,  and 
 V —taken in that order—are said to form a  right-handed 
triad.  †  

 †We should note that the  x, y,  and  z  axes used in Chap. 2 form a right-handed system 
of orthogonal axes and that the unit vectors  i ,  j ,  k  defined in Sec. 2.12 form a 
right-handed orthogonal triad. 

Q

P

V = P × Q

θ

(a)

V

(b)

  Fig. 3.6     

3.4 Vector Product of Two Vectors
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80 Rigid Bodies: Equivalent Systems of Forces         As stated above, the vector  V  satisfying these three conditions 
(which define it uniquely) is referred to as the vector product of  P  
and  Q ; it is represented by the mathematical expression

   V 5 P 3 Q (3.2)   

   Because of the notation used, the vector product of two vectors  P  
and  Q  is also referred to as the  cross product  of  P  and  Q . 
    It follows from Eq. (3.1) that, when two vectors  P  and  Q  have 
either the same direction or opposite directions, their vector product 
is zero. In the general case when the angle u formed by the two vectors 
is neither 0° nor 180°, Eq. (3.1) can be given a simple geometric inter-
pretation: The magnitude  V  of the vector product of  P  and  Q  is equal 
to the area of the parallelogram which has  P  and  Q  for sides ( Fig. 3.7 ). 
The vector product  P 3 Q  will therefore remain unchanged if we 
replace  Q  by a vector  Q 9 which is coplanar with  P  and  Q  and such 
that the line joining the tips of  Q  and  Q 9 is parallel to  P . We write

   V 5 P 3 Q 5 P 3 Q9 (3.3)   

    From the third condition used to define the vector product  V  
of  P  and  Q , namely, the condition stating that  P ,  Q , and  V  must 
form a right-handed triad, it follows that vector products  are not 
commutative , i.e.,  Q 3 P  is not equal to  P 3 Q . Indeed, we can 
easily check that  Q 3 P  is represented by the vector  2V , which is 
equal and opposite to  V.  We thus write

   Q 3 P 5 2(P 3 Q) (3.4)    

 EXAMPLE   Let us compute the vector product  V 5 P 3 Q  where the 
vector  P  is of magnitude 6 and lies in the  zx  plane at an angle of 30° with 
the  x  axis, and where the vector  Q  is of magnitude 4 and lies along the 
 x  axis ( Fig. 3.8 ). 
    It follows immediately from the definition of the vector product that 
the vector  V  must lie along the  y  axis, have the magnitude

  V 5 PQ sin u 5 (6)(4) sin 30° 5 12   

   and be directed upward.  ◾

    We saw that the commutative property does not apply to vector 
products. We may wonder whether the  distributive  property holds, 
i.e., whether the relation

   P 3 (Q1 1 Q2) 5 P 3 Q1 1 P 3 Q2 (3.5)   

   is valid. The answer is  yes . Many readers are probably willing to accept 
without formal proof an answer which they intuitively feel is correct. 
However, since the entire structure of both vector algebra and statics 
depends upon the relation (3.5), we should take time out to derive it. 
    We can, without any loss of generality, assume that  P  is directed 
along the  y  axis ( Fig. 3.9  a ). Denoting by  Q  the sum of  Q  1  and  Q  2 , 
we drop perpendiculars from the tips of  Q ,  Q  1 , and  Q  2  onto the  zx  
plane, defining in this way the vectors  Q9 ,  Q9  1 , and  Q9  2 . These vectors 
will be referred to, respectively, as the  projections  of  Q ,  Q  1 , and  Q  2  
on the  zx  plane. Recalling the property expressed by Eq. (3.3), we 

Q
Q'

P

V

  Fig. 3.7    

  Fig. 3.8    
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81note that the left-hand member of Eq. (3.5) can be replaced by 
 P 3 Q9  and that, similarly, the vector products  P 3 Q  1  and  P 3 Q  2  
can respectively be replaced by  P 3 Q91  and  P 3 Q92   . Thus, the 
relation to be proved can be written in the form

 P 3 Q9 5 P 3 Q91 1 P 3 Q92 (3.59) 

    We now observe that  P 3 Q 9 can be obtained from  Q 9 by 
multiplying this vector by the scalar  P  and rotating it counterclock-
wise through 90° in the  zx  plane (Fig. 3.9 b ); the other two vector 

products     in (3.59) can be obtained in the same manner from  Q 9 1  and 
 Q 9 2 , respectively. Now, since the projection of a parallelogram onto 
an arbitrary plane is a parallelogram, the projection  Q 9 of the sum 
 Q  of  Q  1  and  Q  2  must be the sum of the projections  Q 9 1  and  Q 9 2  of 
 Q  1  and  Q  2  on the same plane (Fig. 3.9 a ). This relation between the 
vectors  Q 9,  Q 9 1 , and  Q 9 2  will still hold after the three vectors have 
been multiplied by the scalar  P  and rotated through 90° (Fig. 3.9 b ). 
Thus, the relation (3.59) has been proved, and we can now be sure 
that the distributive property holds for vector products. 
    A third property, the associative property, does not apply to 
vector products; we have in general

   (P 3 Q) 3 S fi P 3 (Q 3 S) (3.6)       

 3.5    VECTOR PRODUCTS EXPRESSED IN TERMS 
OF RECTANGULAR COMPONENTS  

Let us now determine the vector product of any two of the unit 
vectors  i ,  j , and  k , which were defined in Chap. 2. Consider first the 
product  i 3 j  ( Fig. 3.10  a ). Since both vectors have a magnitude 
equal to 1 and since they are at a right angle to each other, their 
vector product will also be a unit vector. This unit vector must be  k , 
since the vectors  i ,  j , and  k  are mutually perpendicular and form a 
right-handed triad. On the other hand, it follows from the right-hand 
rule given on page 79 that the product  j 3 i  will be equal to  2k  
(Fig. 3.10 b ). Finally, it should be observed that the vector product 

P × Q'2

P × Q'1

P × Q'

Q'1

Q'

Q'2

(b)

P

x

y

z

  Fig. 3.9    

Q'

Q1

Q2

(a)

Q

P

x

y

z
Q'1

Q'2

y

x

z

i

j

i × j = k

(a)

y

x

z

i

j

(b)

j × i = –k

  Fig. 3.10    

3.5 Vector Products Expressed in Terms 
of Rectangular Components
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82 Rigid Bodies: Equivalent Systems of Forces of a unit vector with itself, such as  i 3 i , is equal to zero, since both 
vectors have the same direction. The vector products of the various 
possible pairs of unit vectors are

 i 3 i 5 0 j 3 i 5 2k k 3 i 5 j
 i 3 j 5 k j 3 j 5 0 k 3 j 5 2i (3.7)
 i 3 k 5 2j j 3 k 5 i k 3 k 5 0

   By arranging in a circle and in counterclockwise order the three let-
ters representing the unit vectors ( Fig. 3.11 ), we can simplify the 
determination of the sign of the vector product of two unit vectors: 
The product of two unit vectors will be positive if they follow each 
other in counterclockwise order and will be negative if they follow 
each other in clockwise order. 
    We can now easily express the vector product  V  of two given 
vectors  P  and  Q  in terms of the rectangular components of these 
vectors. Resolving  P  and  Q  into components, we first write

  V 5 P 3 Q 5 (Pxi 1 Pyj 1 Pzk) 3 (Qxi 1 Qyj 1 Qzk)   

   Making use of the distributive property, we express  V  as the sum of 
vector products, such as  P x   i  3  Q y   j . Observing that each of the 
expressions obtained is equal to the vector product of two unit vec-
tors, such as  i  3  j , multiplied by the product of two scalars, such as 
 P x Q y  , and recalling the identities (3.7), we obtain, after factoring out 
 i ,  j,  and  k ,

   V 5 (PyQz 2 PzQy)i 1 (PzQx 2 PxQz)j 1 (PxQy 2 PyQx)k    (3.8)

   The rectangular components of the vector product  V  are thus found 
to be

   
Vx 5 PyQz 2 PzQy

Vy 5 PzQx 2 PxQz

Vz 5 PxQy 2 PyQx

    (3.9)

   Returning to Eq. (3.8), we observe that its right-hand member repre-
sents the expansion of a determinant. The vector product  V  can thus 
be expressed in the following form, which is more easily memorized: † 

     V 5 †
i j k

Px Py Pz

Qx Qy Qz

†  (3.10)

j 

ik

  Fig. 3.11    

  †Any determinant consisting of three rows and three columns can be evaluated by 
repeating the first and second columns and forming products along each diagonal line. 
The sum of the products obtained along the red lines is then subtracted from the sum 
of the products obtained along the black lines.  

i j k i j

Px Py Pz Px Py

Qx Qy Qz Qx Qy
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83 3.6   MOMENT OF A FORCE ABOUT A POINT  
 Let us now consider a force  F  acting on a rigid body ( Fig. 3.12  a ). As we 
know, the force  F  is represented by a vector which defines its magnitude 
and direction. However, the effect of the force on the rigid body depends 
also upon its point of application  A . The position of  A  can be conve-
niently defined by the vector  r  which joins the fixed reference point  O  
with  A ; this vector is known as the  position vector  of  A.  †  The position 
vector  r  and the force  F  define the plane shown in Fig. 3.12 a.  
    We will define the  moment of   F   about O  as the vector product 
of  r  and  F :

   MO 5 r 3 F    (3.11)

    According to the definition of the vector product given in Sec. 3.4, 
the moment  M   O   must be perpendicular to the plane containing  O  and 
the force  F.  The sense of  M   O   is defined by the sense of the rotation 
which will bring the vector  r  in line with the vector  F ; this rotation will 
be observed as  counterclockwise  by an observer located at the tip of 
 M   O  . Another way of defining the sense of  M   O   is furnished by a variation 
of the right-hand rule: Close your right hand and hold it so that your 
fingers are curled in the sense of the rotation that  F  would impart to 
the rigid body about a fixed axis directed along the line of action of  M   O  ; 
your thumb will indicate the sense of the moment  M   O   (Fig. 3.12 b ). 
    Finally, denoting by u the angle between the lines of action of 
the position vector  r  and the force  F , we find that the magnitude of 
the moment of  F  about  O  is

   MO 5 rF sin u 5 Fd    (3.12)

   where  d  represents the perpendicular distance from  O  to the line of 
action of  F . Since the tendency of a force  F  to make a rigid body 
rotate about a fixed axis perpendicular to the force depends upon the 
distance of  F  from that axis as well as upon the magnitude of  F , we 
note that  the magnitude of   M   O    measures the tendency of the force   F   
to make the rigid body rotate about a fixed axis directed along   M   O  . 
    In the SI system of units, where a force is expressed in newtons 
(N) and a distance in meters (m), the moment of a force is expressed 
in newton-meters (N ? m). In the U.S. customary system of units, 
where a force is expressed in pounds and a distance in feet or inches, 
the moment of a force is expressed in lb ? ft or lb ? in. 
    We can observe that although the moment  M   O   of a force about 
a point depends upon the magnitude, the line of action, and the 
sense of the force, it does  not  depend upon the actual position of 
the point of application of the force along its line of action. Con-
versely, the moment  M   O   of a force  F  does not characterize the posi-
tion of the point of application of  F . 

3.6 Moment of a Force about a Point

  †We can easily verify that position vectors obey the law of vector addition and, thus, are 
truly vectors. Consider, for example, the position vectors  r  and  r 9 of  A  with respect to two 
reference points  O  and  O 9 and the position vector  s  of  O  with respect to  O 9 (Fig. 3.40 a , 
Sec. 3.16). We verify that the position vector  r 9 5 O¿A

¡
   can be obtained from the position 

vectors s 5  O¿O
¡

    and  r  5  OA
¡

    by applying the triangle rule for the addition of vectors.  

MO

d A

F

r
q

O

(a)

MO

(b)

  Fig. 3.12    
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84 Rigid Bodies: Equivalent Systems of Forces     However, as it will be seen presently, the moment  M   O   of a force 
 F  of given magnitude and direction  completely defines the line of 
action of   F.  Indeed, the line of action of  F  must lie in a plane 
through  O  perpendicular to the moment  M   O  ; its distance  d  from  O  
must be equal to the quotient  M   O  / F  of the magnitudes of  M   O   and 
 F ; and the sense of  M   O   determines whether the line of action of  F  
is to be drawn on one side or the other of the point  O.  
    We recall from Sec. 3.3 that the principle of transmissibility 
states that two forces  F  and  F 9 are equivalent (i.e., have the same 
effect on a rigid body) if they have the same magnitude, same direc-
tion, and same line of action. This principle can now be restated as 
follows:  Two forces   F   and   F 9  are equivalent if, and only if, they are 
equal  (i.e., have the same magnitude and same direction)  and have 
equal moments about a given point O . The necessary and sufficient 
conditions for two forces  F  and  F 9 to be equivalent are thus

   F 5 F9  and  MO 5 M9O    (3.13)

   We should observe that it follows from this statement that if the rela-
tions (3.13) hold for a given point  O , they will hold for any other point.  

 Problems Involving Only Two Dimensions.   Many applications 
deal with two-dimensional structures, i.e., structures which have length 
and breadth but only negligible depth and which are subjected to 
forces contained in the plane of the structure. Two-dimensional struc-
tures and the forces acting on them can be readily represented on a 
sheet of paper or on a blackboard. Their analysis is therefore consider-
ably simpler than that of three-dimensional structures and forces. 

F

(b) MO = – Fd

MO

d

O
MO

F

d

O

(a) MO = + Fd

  Fig. 3.13    

    Consider, for example, a rigid slab acted upon by a force  F  
( Fig. 3.13 ). The moment of  F  about a point  O  chosen in the plane 
of the figure is represented by a vector  M   O   perpendicular to that 
plane and of magnitude  Fd . In the case of Fig. 3.13 a  the vector  M   O   
points  out of  the paper, while in the case of Fig. 3.13 b  it points  into  
the paper. As we look at the figure, we observe in the first case that 
 F  tends to rotate the slab counterclockwise and in the second case 
that it tends to rotate the slab clockwise. Therefore, it is natural to 
refer to the sense of the moment of  F  about  O  in Fig. 3.13 a  as 
counterclockwise l, and in Fig. 3.13 b  as clockwise i. 
    Since the moment of a force  F  acting in the plane of the figure 
must be perpendicular to that plane, we need only specify the  magni-
tude  and the  sense  of the moment of  F  about  O . This can be done by 
assigning to the magnitude  M   O   of the moment a positive or negative sign 
according to whether the vector  M   O   points out of or into the paper.     
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85 3.7   VARIGNON’S THEOREM  
The distributive property of vector products can be used to deter-
mine the moment of the resultant of several  concurrent forces . If 
several forces  F  1 ,  F  2 , . . . are applied at the same point  A  ( Fig. 3.14 ), 
and if we denote by  r  the position vector of  A , it follows immediately 
from Eq. (3.5) of Sec. 3.4 that

 r 3 (F1 1 F2 1 . . .) 5 r 3 F1 1 r 3 F2 1 . . . (3.14)

   In words,  the moment about a given point O of the resultant of several 
concurrent forces is equal to the sum of the moments of the various 
forces about the same point O . This property, which was originally 
established by the French mathematician Varignon (1654–1722) long 
before the introduction of vector algebra, is known as  Varignon’s 
theorem.  
    The relation (3.14) makes it possible to replace the direct deter-
mination of the moment of a force  F  by the determination of the 
moments of two or more component forces. As you will see in the 
next section,  F  will generally be resolved into components parallel 
to the coordinate axes. However, it may be more expeditious in some 
instances to resolve  F  into components which are not parallel to the 
coordinate axes (see Sample Prob. 3.3).   

 3.8    RECTANGULAR COMPONENTS OF THE MOMENT 
OF A FORCE 

 In general, the determination of the moment of a force in space will 
be considerably simplified if the force and the position vector of its 
point of application are resolved into rectangular  x ,  y , and  z  compo-
nents. Consider, for example, the moment  M   O   about  O  of a force  F  
whose components are  F x  ,  F y  , and  F z   and which is applied at a point 
 A  of coordinates  x ,  y , and  z  ( Fig. 3.15 ). Observing that the compo-
nents of the position vector  r  are respectively equal to the coordi-
nates  x ,  y , and  z  of the point  A , we write

    r 5 xi 1 yj 1 zk   (3.15) 
    F 5 Fxi 1 Fyj 1 Fzk    (3.16)

   Substituting for  r  and  F  from (3.15) and (3.16) into

   MO 5 r 3 F (3.11)   

   and recalling the results obtained in Sec. 3.5, we write the moment 
 M   O   of  F  about  O  in the form

   MO 5 Mxi 1 My j 1 Mzk  (3.17)  

   where the components  M x  ,  M y  , and  M z   are defined by the relations

    
Mx 5 yFz 2 zFy

My 5 zFx 2 xFz

Mz 5 xFy 2 yFx

    (3.18)

  Fig. 3.14    
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  Fig. 3.15    

3.8 Rectangular Components of the 
Moment of a Force
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86 Rigid Bodies: Equivalent Systems of Forces   As you will see in Sec. 3.11, the scalar components  M x ,  M y,  and  M z  
of the moment  M O  measure the tendency of the force  F  to impart 
to a rigid body a motion of rotation about the  x ,  y , and  z  axes, respec-
tively. Substituting from (3.18) into (3.17), we can also write  M O  in 
the form of the determinant

   MO 5 †
i j k
x y z
Fx Fy Fz

†    (3.19)

    To compute the moment  M  B  about an arbitrary point  B  of a 
force  F  applied at  A  ( Fig. 3.16 ), we must replace the position vector 
 r  in Eq. (3.11) by a vector drawn from  B  to  A . This vector is the 
 position vector of A relative to B  and will be denoted by  r  A/B.  Observ-
ing that  r  A/B  can be obtained by subtracting  r  B  from  r  A , we write

   MB 5 rA/B 3 F 5 (rA 2 rB) 3 F (3.20)  

   or, using the determinant form,

   MB 5 †
i j k

xA/B yA/B zA/B

Fx Fy Fz

†  (3.21)  

   where  x  A/B ,  y  A/B , and  z  A/B  denote the components of the vector  r  A/B :

  xA/B 5 xA 2 xB    yA/B 5 yA 2 yB    zA/B 5 zA 2 zB  

    In the case of  problems involving only two dimensions,  the 
force  F  can be assumed to lie in the  xy  plane ( Fig. 3.17 ). Setting
 z  5 0 and  F z   5 0 in Eq. (3.19), we obtain

  MO 5 (xFy 2 yFx)k  

 We verify that the moment of  F  about  O  is perpendicular to the plane 
of the figure and that it is completely defined by the scalar

   MO 5 Mz 5 xFy 2 yFx (3.22)  

  As noted earlier, a positive value for  M O  indicates that the vector  M O  
points out of the paper (the force  F  tends to rotate the body counter-
clockwise about  O ), and a negative value indicates that the vector  M O  
points into the paper (the force  F  tends to rotate the body clockwise 
about  O ). 
   To compute the moment about  B ( x B ,  y B ) of a force lying in the 
 xy  plane and applied at  A ( x A ,  y A ) ( Fig. 3.18 ), we set  z A/B  5 0 and 
 F z  5 0 in the relations (3.21) and note that the vector  M B  is perpen-
dicular to the  xy  plane and is defined in magnitude and sense by the 
scalar

   MB 5 (xA 2 xB)Fy 2 (yA 2 yB)Fx (3.23) 

 Fig. 3.16 
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87

 SAMPLE PROBLEM 3.1 

 A 100-lb vertical force is applied to the end of a lever which is attached to a shaft 
at  O . Determine ( a ) the moment of the 100-lb force about  O ; ( b ) the horizontal 
force applied at  A  which creates the same moment about  O ; ( c ) the smallest 
force applied at  A  which creates the same moment about  O ; ( d ) how far from 
the shaft a 240-lb vertical force must act to create the same moment about  O ; 
( e ) whether any one of the forces obtained in parts  b ,  c , and  d  is equivalent to 
the original force. 

100 lb

60°

A

O

24 in.

  SOLUTION  

 a.   Moment about  O.   The perpendicular distance from  O  to the line of 
action of the 100-lb force is

 d 5 (24 in.) cos 60° 5 12 in. 

 The magnitude of the moment about  O  of the 100-lb force is

  MO 5 Fd 5 (100 lb)(12 in.) 5 1200 lb ? in.  

  Since the force tends to rotate the lever clockwise about  O , the moment 
will be represented by a vector  M   O   perpendicular to the plane of the figure 
and pointing  into  the paper. We express this fact by writing

 MO 5 1200 lb ? in. i ◀ 

 b.   Horizontal Force.   In this case, we have

 d 5 (24 in.) sin 60° 5 20.8 in. 

 Since the moment about  O  must be 1200 lb · in., we write

  MO 5 Fd 
  1200 lb ? in. 5 F(20.8 in.) 
   F 5 57.7 lb F 5 57.7 lb y ◀ 

 c.   Smallest Force.   Since  M O  5  Fd , the smallest value of  F  occurs when 
 d  is maximum. We choose the force perpendicular to  OA  and note that  
d  5 24 in.; thus

  MO 5 Fd 
  1200 lb ? in. 5 F(24 in.) 
   F 5 50 lb F 5 50 lb c30° ◀   

 d.   240-lb Vertical Force.   In this case  M   O   5 Fd  yields

  1200 lb ? in. 5 (240 lb)d  d 5 5 in. 
 but  OB cos 60° 5 d OB 5 10 in. ◀ 

 e.   None of the forces considered in parts  b ,  c , and  d  is equivalent to the 
original 100-lb force. Although they have the same moment about  O , they 
have different  x  and  y  components. In other words, although each force 
tends to rotate the shaft in the same manner, each causes the lever to pull 
on the shaft in a different way. 

60°

MO

100 lb

A

O

24 in.

d

F

60°

MO

A

O

24 in.
d

F

MO

60°

A

O

24 in.

240 lb

MO
60°

A

B

O
d
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88

 SAMPLE PROBLEM 3.3 

 A 30-lb force acts on the end of the 3-ft lever as shown. Determine the 
moment of the force about  O.  

 SAMPLE PROBLEM 3.2 

 A force of 800 N acts on a bracket as shown. Determine the moment of the 
force about  B.  

      SOLUTION 

 The moment  M  B  of the force  F  about  B  is obtained by forming the vector 
product

  MB 5 rA/B 3 F 

  where  r  A/B  is the vector drawn from  B  to  A . Resolving  r  A/B  and  F  into 
rectangular components, we have

  rA/B 5 2(0.2 m)i 1 (0.16 m)j 
   F 5 (800 N) cos 60°i 1 (800 N) sin 60°j 
  5 (400 N)i 1 (693 N)j 

   Recalling the relations (3.7) for the cross products of unit vectors (Sec. 3.5), 
we obtain

   MB 5 rA/B 3 F 5 [2(0.2 m)i 1 (0.16 m)j] 3 [(400 N)i 1 (693 N)j] 
  5 2(138.6 N ? m)k 2 (64.0 N ? m)k 
   5 2(202.6 N ? m)k MB 5 203 N ? m i ◀ 

  The moment  M  B  is a vector perpendicular to the plane of the figure and 
pointing  into  the paper.      

60°

Fy = (693 N) j

Fx = (400 N) i

rA/B

MB

F = 800 N

+ (0.16 m) j

– (0.2 m) i

A

B

800 N

60°

B

A

160 mm

200 mm

A

O

20°

50°

30 lb

3 ft

MO

P

Q

A

O

20° 30 lb

3 ft

  SOLUTION 

 The force is replaced by two components, one component  P  in the direction 
of  OA  and one component  Q  perpendicular to  OA . Since  O  is on the line 
of action of  P , the moment of  P  about  O  is zero and the moment of the 
30-lb force reduces to the moment of  Q , which is clockwise and, thus, is 
represented by a negative scalar. 

 Q 5 (30 lb) sin 20° 5 10.26 lb 
  MO 5 2Q(3 ft) 5 2(10.26 lb)(3 ft) 5 230.8 lb ? ft 

  Since the value obtained for the scalar  M   O   is negative, the moment  M   O   
points  into  the paper. We write

  MO 5 30.8 lb ? ft i ◀        
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89

 SAMPLE PROBLEM 3.4 

  A rectangular plate is supported by brackets at  A  and  B  and by a wire  CD . 
Knowing that the tension in the wire is 200 N, determine the moment about 
 A  of the force exerted by the wire on point  C .   80 mm

80 mm

A

B

C

D

240 mm

240 mm

300 mm

SOLUTION 

 The moment  M  A  about  A  of the force  F  exerted by the wire on point  C  is 
obtained by forming the vector product

   MA 5 rC/A 3 F (1) 

  where  r  C/A  is the vector drawn from  A  to  C ,

   rC/A 5 AC
¡

5 (0.3 m)i 1 (0.08 m)k  (2)

  and  F  is the 200-N force directed along  CD . Introducing the unit vector
L 5 CD

¡
/CD, we write

   F 5 FL 5 (200 N) 
CD
¡

CD
  (3)     

 Resolving the vector CD
¡

 into rectangular components, we have

   CD
¡

5 2(0.3 m)i 1 (0.24 m)j 2 (0.32 m)k    CD 5 0 .50 m  

  Substituting into (3), we obtain

    F 5
200 N
0.50 m

 [2(0.3 m)i 1 (0.24 m)j 2 (0.32 m)k]  

    5 2(120 N)i 1 (96 N)j 2 (128 N)k    (4)

   Substituting for  r  C/A  and  F  from (2) and (4) into (1) and recalling the 
relations (3.7) of Sec. 3.5, we obtain

   MA 5 rC/A 3 F 5 (0.3i 1 0.08k) 3 (2120i 1 96j 2 128k)  
  5 (0.3)(96)k 1 (0.3)(2128)(2j) 1 (0.08)(2120)j 1 (0.08)(96)(2i)  

  MA 5 2(7.68 N ? m)i 1 (28.8 N ? m)j 1 (28.8 N ? m)k ◀         

Alternative Solution.   As indicated in Sec. 3.8, the moment  M  A  can be 
expressed in the form of a determinant:

    MA 5 †
i j k

xC 2 xA yC 2 yA zC 2 zA

Fx Fy Fz

† 5 †
i j k

0.3 0 0.08
2120 96 2128

†

MA 5 2(7.68 N ? m)i 1 (28.8 N ? m)j 1 (28.8 N ? m)k     ◀

rC/A

A

B

C

D

x

y

z

O0.08 m

0.08 m 0.3 m

200 N
0.24 m

0.24 m

A

C

D

(28.8 N•m) j

(28.8 N•m) k

– (7.68 N•m) i

F = (200 N)�
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90

 SOLVING PROBLEMS
ON YOUR OWN  

In this lesson we introduced the  vector product  or  cross product  of two vectors. 
In the following problems, you may want to use the vector product to compute 

the  moment of a force about a point  and also to determine the  perpendicular 
distance  from a point to a line. 

 We defined the moment of the force  F about the point  O of a rigid body as

   MO 5 r 3 F   (3.11)

 where  r is the position vector  from O to any point  on the line of action of  F.  Since 
the vector product is not commutative, it is absolutely necessary when computing 
such a product that you place the vectors in the proper order and that each vector 
have the correct sense. The moment  M O  is important because its magnitude is a 
measure of the tendency of the force  F to cause the rigid body to rotate about an 
axis directed along  M O . 

 1.  Computing the moment M  O  of a force in two dimensions.  You can use one 
of the following procedures: 
  a.   Use Eq. (3.12),  M O  5  Fd , which expresses the magnitude of the moment 
as the product of the magnitude of  F and the  perpendicular distance d  from  O to 
the line of action of  F [Sample Prob. 3.1].  
  b.   Express  r and  F in component form and formally evaluate the vector prod-
uct  M O  5  r 3 F  [Sample Prob. 3.2].  
  c.   Resolve  F into components respectively parallel and perpendicular to the 
position vector  r.  Only the perpendicular component contributes to the moment 
of  F [Sample Prob. 3.3].  
  d.   Use Eq. (3.22),  M O  5  Mz  5  xF y  2  yF x . When applying this method, the 
simplest approach is to treat the scalar components of  r and  F as positive and then 
to assign, by observation, the proper sign to the moment produced by each force 
component. For example, applying this method to solve Sample Prob. 3.2, we 
observe that both force components tend to produce a clockwise rotation about  B. 
Therefore, the moment of each force about  B should be represented by a negative 
scalar. We then have for the total moment

  MB 5 2(0.16 m)(400 N) 2 (0.20 m)(693 N) 5 2202 .6 N ? m  

 2.    Computing the moment M  O  of a force F in three dimensions . Following the 
method of Sample Prob. 3.4, the first step in the process is to select the most 
convenient (simplest) position vector  r. You should next express  F in terms of its 
rectangular components. The final step is to evaluate the vector product  r 3 F  to 
determine the moment. In most three-dimensional problems you will find it easiest 
to calculate the vector product using a determinant.  

 3.   Determining the perpendicular distance d from a point A to a given line . 
First assume that a force  F of known magnitude  F lies along the given line. Next 
determine its moment about  A by forming the vector product  M A 5  r 3 F , and 
calculate this product as indicated above. Then compute its magnitude  M A. Finally, 
substitute the values of  F and  M A into the equation  M A 5  Fd  and solve for  d.  
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PROBLEMS

91

PPPPPPPPPPPPPRRRRRRRRRRRRROOOOOOOOOOOOBBBBBBBBBBBBBLLLLLLLLLLLLLEEEEEEEEEEEEEMMMMMMMMMMMMMSSSSSSSSSSSSSPROBLEMS  

3.1 A 20-lb force is applied to the control rod AB as shown. Knowing 
that the length of the rod is 9 in. and that a 5 258, determine the 
moment of the force about point B by resolving the force into 
horizontal and vertical components.

 3.2 A 20-lb force is applied to the control rod AB as shown. Knowing 
that the length of the rod is 9 in. and that a 5 258, determine the 
moment of the force about point B by resolving the force into 
components along AB and in a direction perpendicular to AB.

3.3 A 20-lb force is applied to the control rod AB as shown. Knowing 
that the length of the rod is 9 in. and that the moment of the force 
about B is 120 lb ? in. clockwise, determine the value of a.

3.4 A crate of mass 80 kg is held in the position shown. Determine 
(a) the moment produced by the weight W of the crate about E, 
(b) the smallest force applied at B that creates a moment of equal 
magnitude and opposite sense about E.

3.5 A crate of mass 80 kg is held in the position shown. Determine 
(a) the moment produced by the weight W of the crate about E, 
(b) the smallest force applied at A that creates a moment of equal 
magnitude and opposite sense about E, (c) the magnitude, sense, 
and point of application on the bottom of the crate of the smallest 
vertical force that creates a moment of equal magnitude and oppo-
site sense about E.

 3.6 A 300-N force P is applied at point A of the bell crank shown. 
(a) Compute the moment of the force P about O by resolving it 
into horizontal and vertical components. (b) Using the result of 
part a, determine the perpendicular distance from O to the line of 
action of P.

A

B

20 lb

65°

a

 Fig. P3.1  ,  P3.2,   and P3.3  

A B

C
E

W

0.85 m

0.5 m

0.6 m 0.6 m

D

 Fig. P3.4   and   P3.5  

A

P
30°

B

O

40°
120 mm

48°
200 mm

 Fig. P3.6   and   P3.7  

3.7 A 400-N force P is applied at point A of the bell crank shown. 
(a) Compute the moment of the force P about O by resolving it 
into components along line OA and in a direction perpendicular to 
that line. (b) Determine the magnitude and direction of the smallest 
force Q applied at B that has the same moment as P about O.
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92 Rigid Bodies: Equivalent Systems of Forces  3.8 It is known that a vertical force of 200 lb is required to remove the 
nail at C from the board. As the nail first starts moving, determine 
(a) the moment about B of the force exerted on the nail, (b) the mag-
nitude of the force P that creates the same moment about B if a 5 
108, (c) the smallest force P that creates the same moment about B.

 3.9 and 3.10 It is known that the connecting rod AB exerts on the 
crank BC a 500-lb force directed down and to the left along the 
centerline of AB. Determine the moment of the force about C.

A

B

C

D

E

d

0.875 m

0.2 m

 Fig. P3.11  ,  P3.12,   and  P3.1 3

 3.11 A winch puller AB is used to straighten a fence post. Knowing that 
the tension in cable BC is 1040 N and length d is 1.90 m, deter-
mine the moment about D of the force exerted by the cable at C 
by resolving that force into horizontal and vertical components 
applied (a) at point C, (b) at point E.

 3.12 It is known that a force with a moment of 960 N ? m about D is 
required to straighten the fence post CD. If d 5 2.80 m, determine 
the tension that must be developed in the cable of winch puller 
AB to create the required moment about point D.

 3.13 It is known that a force with a moment of 960 N ? m about D is 
required to straighten the fence post CD. If the capacity of winch 
puller AB is 2400 N, determine the minimum value of distance d 
to create the specified moment about point D.

 Fig. P3.8  

4 in.

A

B

P

18 in.

C

a

70°

A

B

B

C C

A

1.68 in.

5.76 in.

2.24 in.
3.52 in.

2.24 in.

1.68 in.
 Fig. P3.9    Fig. P3.10  
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93Problems

 3.15 Form the vector products B 3 C and B9 3 C, where B 5 B9, and 
use the results obtained to prove the identity

sin a cos b 5 1
2  sin (a 1 b) 1 1

2  sin (a 2 b).

 3.16 The vectors P and Q are two adjacent sides of a parallelogram. 
Determine the area of the parallelogram when (a) P 5 27i 1 3j 2 
3k and Q 5 2i 1 2j 1 5k, (b) P 5 6i 2 5j 2 2k and Q 5 22i 1 
5j 2 k.

 3.17 A plane contains the vectors A and B. Determine the unit vector 
normal to the plane when A and B are equal to, respectively, (a) i 1 
2j 2 5k and 4i 2 7j 2 5k, (b) 3i 2 3j 1 2k and 22i 1 6j 2 4k.

 3.18 A line passes through the points (20 m, 16 m) and (21 m, 24 m). 
Determine the perpendicular distance d from the line to the origin 
O of the system of coordinates.

 3.19 Determine the moment about the origin O of the force F 5 4i 2 
3j 1 5k that acts at a point A. Assume that the position vector of 
A is (a) r 5 2i 1 3j 2 4k, (b) r 5 28i 1 6j 2 10k, (c) r 5 8i 2 
6j 1 5k.

 3.20 Determine the moment about the origin O of the force F 5 2i 1 
3j 2 4k that acts at a point A. Assume that the position vector of A 
is (a) r 5 3i 2 6j 1 5k, (b) r 5 i 2 4j 2 2k, (c) r 5 4i 1 6j 2 8k.

 3.21 The wire AE is stretched between the corners A and E of a bent 
plate. Knowing that the tension in the wire is 435 N, determine 
the moment about O of the force exerted by the wire (a) on 
corner A, (b) on corner E.

 3.14 A mechanic uses a piece of pipe AB as a lever when tightening an 
alternator belt. When he pushes down at A, a force of 485 N is 
exerted on the alternator at B. Determine the moment of that force 
about bolt C if its line of action passes through O.

 Fig. P3.14  

A

B

C

120 mm

90 mm

72 mm

65 mm

O

y

x

C

B

B'

a

b
b

 Fig. P3.15  

y

z
x

B

D

O

E

C

A

160 mm

90 mm

120 mm

120 mm

 Fig. P3.21  
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94 Rigid Bodies: Equivalent Systems of Forces

 Fig. P3.24  

A

O

B

E

C
D

2 m

2.5 m

2 m
1 m

y

z x

3 ft

x

y

z

A

C

D7.75 ft

6 ft

B

 Fig. P3.22 

 Fig. P3.25  

B

A

x

y

z
50 mm

60 mm

25 mm

200 N

30°
60°

C

 3.22 A small boat hangs from two davits, one of which is shown in the 
figure. The tension in line ABAD is 82 lb. Determine the moment 
about C of the resultant force RA exerted on the davit at A.

 3.23 A 6-ft-long fishing rod AB is securely anchored in the sand of a beach. 
After a fish takes the bait, the resulting force in the line is 6 lb. Deter-
mine the moment about A of the force exerted by the line at B.

x

y

z

A

B

D

C

45°
30°

8°

 Fig. P3.23

 3.24 A precast concrete wall section is temporarily held by two cables as 
shown. Knowing that the tension in cable BD is 900 N, determine 
the moment about point O of the force exerted by the cable at B.

 3.25 A 200-N force is applied as shown to the bracket ABC. Determine 
the moment of the force about A.
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95Problems 3.26 The 6-m boom AB has a fixed end A. A steel cable is stretched 
from the free end B of the boom to a point C located on the verti-
cal wall. If the tension in the cable is 2.5 kN, determine the 
moment about A of the force exerted by the cable at B.

 3.27 In Prob. 3.21, determine the perpendicular distance from point O 
to wire AE.

 3.28 In Prob. 3.21, determine the perpendicular distance from point B 
to wire AE.

 3.29 In Prob. 3.22, determine the perpendicular distance from point C 
to portion AD of the line ABAD.

 3.30 In Prob. 3.23, determine the perpendicular distance from point A 
to a line drawn through points B and C.

 3.31 In Prob. 3.23, determine the perpendicular distance from point D 
to a line drawn through points B and C.

 3.32 In Prob. 3.24, determine the perpendicular distance from point O 
to cable BD.

 3.33 In Prob. 3.24, determine the perpendicular distance from point C 
to cable BD.

 3.34 Determine the value of a that minimizes the perpendicular dis-
tance from point C to a section of pipeline that passes through 
points A and B.

B

C

A

x

y

z

2.4 m

6 m

4 m

 Fig. P3.26  

 Fig. P3.34  

x

y

z

A

B

C

8 ft
3 ft
2 ft

10 ft

a

24 ft

18 ft

16 ft
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96 Rigid Bodies: Equivalent Systems of Forces 3.9   SCALAR PRODUCT OF TWO VECTORS  
The  scalar product  of two vectors  P  and  Q  is defined as the product 
of the magnitudes of  P  and  Q  and of the cosine of the angle u formed 
by  P  and  Q  ( Fig. 3.19 ). The scalar product of  P  and  Q  is denoted 
by  P ? Q . We write therefore

   P ? Q 5 PQ cos u (3.24)  

   Note that the expression just defined is not a vector but a   scalar , 
which explains the name  scalar product ; because of the notation 
used,  P ? Q  is also referred to as the  dot product  of the vectors  P  
and  Q.  
   It follows from its very definition that the scalar product of two 
vectors is  commutative , i.e., that

   P ? Q 5 Q ? P   (3.25)

  To prove that the scalar product is also  distributive,  we must prove 
the relation

   P ? (Q1 1 Q2) 5 P ? Q1 1 P ? Q2 (3.26)  

  We can, without any loss of generality, assume that  P  is directed 
along the  y  axis ( Fig. 3.20 ). Denoting by  Q  the sum of  Q  1  and  Q  2  
and by u  y   the angle  Q  forms with the  y  axis, we express the left-hand 
member of (3.26) as follows:

   P ? (Q1 1 Q2) 5 P ? Q 5 PQ cos uy 5 PQy (3.27)  

  where  Q y   is the  y  component of  Q . We can, in a similar way, express 
the right-hand member of (3.26) as

   P ? Q1 1 P ? Q2 5 P(Q1)y 1 P(Q2)y (3.28)  

  Since  Q  is the sum of  Q  1  and  Q  2 , its  y  component must be equal to 
the sum of the  y  components of  Q  1  and  Q  2 . Thus, the expressions 
obtained in (3.27) and (3.28) are equal, and the relation (3.26) has 
been proved. 
   As far as the third property—the associative property—is con-
cerned, we note that this property cannot apply to scalar products. 
Indeed, ( P ?  Q) ?  S has no meaning, since  P ?  Q is not a vector but 
a scalar. 
    The scalar product of two vectors  P  and  Q  can be expressed 
in terms of their rectangular components. Resolving  P  and  Q  into 
components, we first write

  P ? Q 5 (Pxi 1 Pyj 1 Pzk) ? (Qxi 1 Qyj 1 Qzk)  

   Making use of the distributive property, we express  P ? Q  as the sum 
of scalar products, such as  Px i ?  Qx i and  Px i ?  Qy j. However, from the 

Fig. 3.19   

Q

P

q

 Fig. 3.20  

y

x

z

P
Q

Qy

Q1

Q2
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97definition of the scalar product it follows that the scalar products of 
the unit vectors are either zero or one.

   
i ? i 5 1   j ? j

  5 1   k ? k 5 1
i ? j 5 0    j ? k 5 0    k ? i 5 0  (3.29)  

  Thus, the expression obtained for  P ?  Q  reduces to

   P ? Q 5 PxQx 1 PyQy 1 PzQz (3.30)  

 In the particular case when  P and  Q are equal, we note that

   P ? P 5 P2
x 1 P2

y 1 P2
z 5 P2 (3.31)  

Applications  

  1.    Angle formed by two given vectors .  Let two vectors be given 
in terms of their components:

   P 5 Pxi 1 Py j 1 Pzk   
  Q 5 Qxi 1 Qy j 1 Qzk  

   To determine the angle formed by the two vectors, we equate 
the expressions obtained in (3.24) and (3.30) for their scalar 
product and write

  PQ cos u 5 PxQx 1 PyQy 1 PzQz  

   Solving for cos u, we have

   cos u 5
PxQx 1 PyQy 1 PzQz

PQ
 (3.32)  

  2.   Projection of a vector on a given axis .  Consider a vector  P 
forming an angle u with an axis, or directed line,  OL  
( Fig. 3.21 ). The  projection of   P  on the axis OL  is defined as 
the scalar

   POL 5 P cos u (3.33)  

   We note that the projection  P OL  is equal in absolute value to 
the length of the segment  OA ; it will be positive if  OA  has the 
same sense as the axis  OL , that is, if u is acute, and negative 
otherwise. If  P and  OL  are at a right angle, the projection of 
 P on  OL  is zero. 

    Consider now a vector  Q directed along  OL  and of the 
same sense as  OL  ( Fig. 3.22 ). The scalar product of  P and  Q 
can be expressed as

   P ? Q 5 PQ cos u 5 POLQ (3.34)  

 Fig. 3.21  

y

x

z

O

A

P

L

q

 Fig. 3.22  

y

x

z

A

P

L

q

Q

O

3.9   Scalar Product of Two Vectors
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98 Rigid Bodies: Equivalent Systems of Forces    from which it follows that

   POL 5
P ? Q

Q
5

PxQx 1 PyQy 1 PzQz

Q
 (3.35)  

   In the particular case when the vector selected along  OL  is the 
unit vector l ( Fig. 3.23 ), we write

   POL 5 P ? l (3.36)  

   Resolving  P and l into rectangular components and recalling 
from Sec. 2.12 that the components of l along the coordinate 
axes are respectively equal to the direction cosines of  OL , we 
express the projection of  P on  OL  as

   POL 5 Px cos ux 1 Py cos uy 1 Pz cos uz (3.37)  

   where u  x , u  y , and u  z  denote the angles that the axis  OL  forms 
with the coordinate axes.  

3.10   MIXED TRIPLE PRODUCT OF THREE VECTORS  
We define the  mixed triple product  of the three vectors  S ,  P , and  Q  
as the scalar expression

   S ? (P 3 Q) (3.38)  

 obtained by forming the scalar product of  S with the vector product 
of  P and  Q.  †  
  A simple geometrical interpretation can be given for the 
mixed triple product of  S,  P, and  Q ( Fig. 3.24 ). We first recall 
from Sec. 3.4 that the vector  P 3 Q  is perpendicular to the plane 
containing  P and  Q and that its magnitude is equal to the area of 
the parallelogram which has  P and  Q for sides. On the other hand, 
Eq. (3.34) indicates that the scalar product of  S and  P 3  Q can 
be obtained by multiplying the magnitude of  P 3  Q (i.e., the area 
of the parallelogram defined by  P and  Q) by the projection of  S 
on the vector  P 3  Q (i.e., by the projection of  S on the normal 
to the plane containing the parallelogram). The mixed triple prod-
uct is thus equal, in absolute value, to the volume of the parallel-
epiped having the vectors  S,  P, and  Q for sides ( Fig. 3.25 ). We 
note that the sign of the mixed triple product will be positive if  S, 
 P, and  Q form a right-handed triad and negative if they form a 
left-handed triad [that is,  S ? ( P 3  Q) will be negative if the rotation 
which brings  P into line with  Q is observed as clockwise from the 

†Another kind of triple product will be introduced later (Chap. 15): the  vector triple 
product   S 3 ( P 3  Q).  

 Fig. 3.24  

S

P

Q

P × Q

 Fig. 3.25   

S

P

Q

y

x

z

O

A

P

L

� qx

qy

qz

 Fig. 3.23  
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99tip of  S]. The mixed triple product will be zero if  S,  P, and  Q are 
coplanar. 
  Since the parallelepiped defined in the preceding paragraph is 
independent of the order in which the three vectors are taken, the 
six mixed triple products which can be formed with  S,  P, and  Q will 
all have the same absolute value, although not the same sign. It is 
easily shown that

  S ? (P 3 Q) 5 P ? (Q 3 S) 5 Q ? (S 3 P)  
  5 2S ? (Q 3 P) 5 2P ? (S 3 Q) 5 2Q ? (P 3 S)

(3.39)     

 Arranging in a circle and in counterclockwise order the letters rep-
resenting the three vectors ( Fig. 3.26 ), we observe that the sign of 
the mixed triple product remains unchanged if the vectors are per-
muted in such a way that they are still read in counterclockwise 
order. Such a permutation is said to be a  circular permutation . It 
also follows from Eq. (3.39) and from the commutative property of 
scalar products that the mixed triple product of  S,  P, and  Q can be 
defined equally well as  S ? ( P 3  Q) or ( S 3  P) ?  Q.  
  The mixed triple product of the vectors  S,  P, and  Q can be 
expressed in terms of the rectangular components of these vectors. 
Denoting  P 3  Q by  V and using formula (3.30) to express the scalar 
product of  S and  V, we write

  S ? (P 3 Q) 5 S ? V 5 SxVx 1 SyVy 1 SzVz  

 Substituting from the relations (3.9) for the components of  V, we 
obtain

  S ? (P 3  Q) 5 Sx(PyQz 2 PzQy) 1 Sy(PzQx 2 PxQz)
1 Sz(PxQy 2 PyQx) (3.40)  

 This expression can be written in a more compact form if we observe 
that it represents the expansion of a determinant:

   S ? (P 3 Q) 5 †
Sx Sy Sz

Px Py Pz

Qx Qy Qz

†  (3.41)  

 By applying the rules governing the permutation of rows in a deter-
minant, we could easily verify the relations (3.39) which were derived 
earlier from geometrical considerations.  

3.11    MOMENT OF A FORCE ABOUT A GIVEN AXIS  
Now that we have further increased our knowledge of vector alge-
bra, we can introduce a new concept, the concept of  moment of a 
force about an axis . Consider again a force  F  acting on a rigid body 
and the moment  M   O   of that force about  O  ( Fig. 3.27 ). Let  OL  be 
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100 Rigid Bodies: Equivalent Systems of Forces an axis through  O; we define the moment M OL  of   F   about OL as the 
projection OC of the moment   M   O    onto the axis OL . Denoting by L 
the unit vector along  OL  and recalling from Secs. 3.9 and 3.6, 
respectively, the expressions (3.36) and (3.11) obtained for the pro-
jection of a vector on a given axis and for the moment  M   O   of a force 
 F , we write

   MOL 5 L ? MO 5 L ? (r 3 F) (3.42)  

 which shows that the moment  M OL  of  F about the axis  OL  is the 
scalar obtained by forming the mixed triple product of L,  r, and  F. 
Expressing  M OL  in the form of a determinant, we write

   MOL 5 †
lx ly lz

x y z
Fx Fy Fz

†  (3.43)  

 where l  x , l  y , l  z  5 direction cosines of axis  OL 
               x,  y,  z 5 coordinates of point of application of  F 
           Fx ,  Fy ,  Fz  5 components of force  F 

  The physical significance of the moment  M OL  of a force  F 
about a fixed axis  OL  becomes more apparent if we resolve  F into 
two rectangular components  F 1 and  F 2, with  F 1 parallel to  OL  and 
 F 2 lying in a plane  P perpendicular to  OL  ( Fig. 3.28 ). Resolving  r 
similarly into two components  r  1  and  r  2  and substituting for  F  and  r  
into (3.42), we write

  MOL 5 L ? [(r1 1 r2) 3 (F1 1 F2)]  
 5 L ? (r1 3 F1) 1 L ? (r1 3 F2) 1 L ? (r2 3 F1) 1 l ? (r2 3 F2)  

  Noting that all of the mixed triple products except the last one are 
equal to zero, since they involve vectors which are coplanar when 
drawn from a common origin (Sec. 3.10), we have

   MOL 5 L ? (r2 3 F2)  (3.44) 

  The vector product  r  2 3  F  2  is perpendicular to the plane  P  and 
represents the moment of the component  F  2  of  F  about the point 
 Q  where  OL  intersects  P . Therefore, the scalar  M  OL , which will 
be positive if  r  2 3  F  2  and  OL  have the same sense and negative 
otherwise, measures the tendency of  F  2  to make the rigid body 
rotate about the fixed axis  OL . Since the other component  F  1  of  F  
does not tend to make the body rotate about  OL , we conclude that 
 the moment M OL  of   F   about OL measures the tendency of the force  
 F   to impart to the rigid body a motion of rotation about the fixed 
axis OL.  
   It follows from the definition of the moment of a force about 
an axis that the moment of  F  about a coordinate axis is equal to 
the component of  M   O   along that axis. Substituting successively each 
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101of the unit vectors  i ,  j , and  k  for L in (3.42), we observe that the 
expressions thus obtained for the  moments of   F  about the coordinate 
axes  are respectively equal to the expressions obtained in Sec. 3.8 
for the components of the moment  M O  of  F about  O:

   
Mx 5 yFz 2 zFy

My 5 zFx 2 xFz

Mz 5 xFy 2 yFx

   (3.18)

   We observe that just as the components  F x  ,  F y  , and  F z   of a force  F  
acting on a rigid body measure, respectively, the tendency of  F  to 
move the rigid body in the  x ,  y , and  z  directions, the moments  M x  , 
 M y  , and  M z   of  F  about the coordinate axes measure the tendency of 
 F  to impart to the rigid body a motion of rotation about the  x ,  y , 
and  z  axes, respectively. 
   More generally, the moment of a force  F  applied at  A  about 
an axis which does not pass through the origin is obtained by 
choosing an arbitrary point  B  on the axis ( Fig. 3.29 ) and determin-
ing the projection on the axis  BL  of the moment  M  B  of  F  about  B . 
We write

   MBL 5 L ? MB 5 L ? (rA/B 3 F) (3.45)  

 where  r  A/B  5  r  A 2  r  B  represents the vector drawn from  B  to  A . 
Expressing  M BL   in the form of a determinant, we have

   MBL 5 †
lx ly lz

xA/B yA/B zA/B

Fx Fy Fz

†  (3.46)  

 where l  x , l  y , l  z  5 direction cosines of axis  BL 
xA/B 5 xA 2 xB  yA/B 5 yA 2 yB  zA/B 5 zA 2 zB

 Fx ,  Fy ,  Fz  5 components of force  F 

  It should be noted that the result obtained is independent of the 
choice of the point  B  on the given axis. Indeed, denoting by  M  CL  the 
result obtained with a different point  C , we have

   MCL 5 L ? [(rA 2 rC) 3 F]
 5 L ? [(rA 2 rB) 3 F] 1 L ? [(rB 2 rC) 3 F]

  But, since the vectors L and  r  B 2  r  C  lie in the same line, the vol-
ume of the parallelepiped having the vectors L,  r  B 2  r  C , and  F  
for sides is zero, as is the mixed triple product of these three vec-
tors (Sec. 3.10). The expression obtained for  M  CL  thus reduces to 
its first term, which is the expression used earlier to define  M  BL . 
In addition, it follows from Sec. 3.6 that, when computing the 
moment of  F  about the given axis,  A  can be any point on the line 
of action of  F.   
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SAMPLE PROBLEM 3.5 

 A cube of side  a  is acted upon by a force  P  as shown. Determine the 
moment of  P  ( a ) about  A , ( b ) about the edge  AB , ( c ) about the diagonal 
 AG  of the cube, ( d ). Using the result of part  c , determine the perpendicular 
distance between  AG  and  FC.   
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z
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� P
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SOLUTION  

 a.   Moment about A.   Choosing  x ,  y , and  z  axes as shown, we resolve into
rectangular components the force  P  and the vector  r  F/A  5 AF

¡
 drawn from 

 A  to the point of application  F  of  P. 

  rF/A 5 ai 2 aj 5 a(i 2 j)   
  P 5 (P/ 12)j 2 (P/ 12)k 5 (P/ 12)( j 2 k)  

The moment of  P about  A is

  MA 5 rF/A 3 P 5 a(i 2 j) 3 (P/ 12)(j 2 k)
MA 5 (aP/ 12)(i 1 j 1 k)   ◀

      b.  Moment about  AB. Projecting  M A on  AB , we write

  MAB 5 i ? MA 5 i ? (aP/ 12)(i 1 j 1 k)  
MAB 5 aP/ 12  ◀

We verify that, since  AB  is parallel to the  x axis,  M AB  is also the  x component 
of the moment  M A. 

c.  Moment about Diagonal  AG.  The moment of P about  AG  is obtained 
by projecting  M A on  AG . Denoting by L the unit vector along  AG , we have

  L 5
AG
¡

AG
5

ai 2 aj 2 ak

a13
5 (1/ 13)(i 2 j 2 k)  

 MAG 5 L ? MA 5 (1/ 13)(i 2 j 2 k) ? (aP/ 12)(i 1 j 1 k)  
 MAG 5 (aP/ 16)(1 2 1 2 1)  MAG 5 2aP/ 16   ◀

 Alternative Method.  The moment of  P about  AG  can also be expressed 
in  the form of a determinant:

  MAG 5 †
lx ly lz

xF/A yF/A zF/A

Fx Fy Fz

† 5 †
1/ 13 21/ 13 21/ 13

a 2a 0
0 P/ 12 2P/ 12

† 5 2aP/ 16  

 d.  Perpendicular Distance between  AG  and  FC.  We first observe that  P 
is perpendicular to the diagonal  AG . This can be checked by forming the 
scalar product  P ? L and verifying that it is zero:

  P ? L 5 (P/ 12)(j 2 k) ? (1/ 13)(i 2 j 2 k) 5 (P16)(0 2 1 1 1) 5 0  

The moment  M AG  can then be expressed as 2 Pd , where  d is the perpen-
dicular distance from  AG  to  FC . (The negative sign is used since the rotation 
imparted to the cube by  P appears as clockwise to an observer at  G.) Recall-
ing the value found for  M AG  in part  c,

  MAG 5 2Pd 5 2aP/ 16       d 5 a/ 16 ◀
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103

 SOLVING PROBLEMS
ON YOUR OWN  

In the problems for this lesson you will apply the  scalar product  or  dot product  
of two vectors to determine the  angle formed by two given vectors  and the 

 projection of a force on a given axis . You will also use the  mixed triple product  of 
three vectors to find the  moment of a force about a given axis  and the  perpendicu-
lar distance between two lines.   

 1.    Calculating the angle formed by two given vectors.  First express the vectors 
in terms of their components and determine the magnitudes of the two vectors. 
The cosine of the desired angle is then obtained by dividing the scalar product of 
the two vectors by the product of their magnitudes [Eq. (3.32)].  

  2.    Computing the projection of a vector  P  on a given axis OL.  In general, 
begin by expressing  P  and the unit vector L, that defines the direction of the axis, 
in component form. Take care that L has the correct sense (that is, L is directed 
from  O  to  L ). The required projection is then equal to the scalar product  P ? L.  
However, if you know the angle u formed by  P  and L, the projection is also given 
by  P  cos u.  

  3.    Determining the moment M OL  of a force about a given axis OL.  We defined 
 M  OL  as

   MOL 5 L ? MO 5 L ? (r 3 F) (3.42)  

  where L is the unit vector along  OL  and  r is a position vector  from any point  on 
the line  OL   to any point  on the line of action of  F.  As was the case for the moment 
of a force about a point, choosing the most convenient position vector will simplify 
your calculations. Also, recall the warning of the previous lesson: The vectors  r  and  F  
must have the correct sense, and they must be placed in the proper order. The 
procedure you should follow when computing the moment of a force about an axis 
is illustrated in part  c  of Sample Prob. 3.5. The two essential steps in this proce-
dure are to first express L,  r , and  F  in terms of their rectangular components and 
to then evaluate the mixed triple product L ? ( r 3  F ) to determine the moment 
about the axis. In most three-dimensional problems the most convenient way to 
compute the mixed triple product is by using a determinant. 

 As noted in the text, when L is directed along one of the coordinate axes,  M OL  is 
equal to the scalar component of  M O  along that axis.  

(continued)
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104

  4.    Determining the perpendicular distance between two lines.  You should 
remember that it is the perpendicular component F 2  of the force  F  that tends to 
make a body rotate about a given axis  OL  (Fig. 3.28). It then follows that

  MOL 5 F2 d  

   where  M  OL  is the moment of  F  about axis  OL  and  d  is the perpendicular distance 
between  OL  and the line of action of  F . This last equation gives us a simple tech-
nique for determining  d . First assume that a force  F  of known magnitude  F  lies 
along one of the given lines and that the unit vector L lies along the other line. 
Next compute the moment  M  OL  of the force  F  about the second line using the 
method discussed above. The magnitude of the parallel component,  F  1 , of  F  is 
obtained using the scalar product:

  F1 5 F ? L  

 The value of  F 2 is then determined from

    F2 5 2F2 2 F2
1

  Finally, substitute the values of  M OL and  F 2 into the equation  M OL 5  F 2 d and solve 
for d.   

You should now realize that the calculation of the perpendicular distance in part  d  
of Sample Prob. 3.5 was simplified by  P  being perpendicular to the diagonal  AG. 
In general, the two given lines will not be perpendicular, so that the technique 
just outlined will have to be used when determining the perpendicular distance 
between them.  
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 3.35 Given the vectors P 5 3i 2 j 1 2k, Q 5 4i 1 5j 2 3k, and S 5 
22i 1 3j 2 k, compute the scalar products P ? Q, P ? S, and Q ? S.

 3.36 Form the scalar product B ? C and use the result obtained to prove 
the identity

cos (a 2 b) 5 cos a cos b 1 sin a sin b

 3.37 Consider the volleyball net shown. Determine the angle formed by 
guy wires AB and AC.

 3.38 Consider the volleyball net shown. Determine the angle formed by 
guy wires AC and AD.

 3.39 Three cables are used to support a container as shown. Determine 
the angle formed by cables AB and AD.
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 Fig. P3.39    and P3.40

 3.40 Three cables are used to support a container as shown. Determine 
the angle formed by cables AC and AD.
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106 Rigid Bodies: Equivalent Systems of Forces  3.41 The 20-in. tube AB can slide along a horizontal rod. The ends A and 
B of the tube are connected by elastic cords to the fixed point C. 
For the position corresponding to x 5 11 in., determine the angle 
formed by the two cords, (a) using Eq. (3.32), (b) applying the law 
of cosines to triangle ABC.

 3.42 Solve Prob. 3.41 for the position corresponding to x 5 4 in.

 3.43 Ropes AB and BC are two of the ropes used to support a tent. The 
two ropes are attached to a stake at B. If the tension in rope AB 
is 540 N, determine (a) the angle between rope AB and the stake, 
(b) the projection on the stake of the force exerted by rope AB at 
point B.

 3.44 Ropes AB and BC are two of the ropes used to support a tent. The 
two ropes are attached to a stake at B. If the tension in rope BC 
is 490 N, determine (a) the angle between rope BC and the stake, 
(b) the projection on the stake of the force exerted by rope BC at 
point B.

 3.45 Given the vectors P 5 4i 2 2j 1 3k, Q 5 2i 1 4j 2 5k, and S 5 
Sxi 2 j 1 2k, determine the value of Sx for which the three vectors 
are coplanar.

 3.46 Determine the volume of the parallelepiped of Fig. 3.25 when 
(a) P 5 4i 2 3j 1 2k, Q 5 22i 2 5j 1 k, and S 5 7i 1 j 2 k, 
(b) P 5 5i 2 j 1 6k, Q 5 2i 1 3j 1 k, and S 5 23i 2 2j 1 4k.

 3.47 Knowing that the tension in cable AB is 570 N, determine the 
moment about each of the coordinate axes of the force exerted on 
the plate at B.

 3.48 Knowing that the tension in cable AC is 1065 N, determine the 
moment about each of the coordinate axes of the force exerted on 
the plate at C.
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107Problems 3.49 A small boat hangs from two davits, one of which is shown in the 
figure. It is known that the moment about the z axis of the resultant 
force RA exerted on the davit at A must not exceed 279 lb ? ft in 
absolute value. Determine the largest allowable tension in line 
ABAD when x 5 6 ft.

 3.50 For the davit of Prob. 3.49, determine the largest allowable dis-
tance x when the tension in line ABAD is 60 lb.

 3.51 A farmer uses cables and winch pullers B and E to plumb one side 
of a small barn. If it is known that the sum of the moments about 
the x axis of the forces exerted by the cables on the barn at points 
A and D is equal to 4728 lb ? ft, determine the magnitude of TDE 
when TAB 5 255 lb.

 3.52 Solve Prob. 3.51 when the tension in cable AB is 306 lb.

 3.53 A single force P acts at C in a direction perpendicular to the handle 
BC of the crank shown. Knowing that Mx 5 120 N ? m and My 5 
28.75 N ? m, and Mz 5 230 N ? m, determine the magnitude of 
P and the values of f and u.
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 Fig. P3.53    and P3.54

 3.54 A single force P acts at C in a direction perpendicular to the handle 
BC of the crank shown. Determine the moment Mx of P about the 
x axis when u 5 658, knowing that My 5 215 N ? m and Mz 5 
236 N ? m.
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108 Rigid Bodies: Equivalent Systems of Forces  3.55 The triangular plate ABC is supported by ball-and-socket joints at 
B and D and is held in the position shown by cables AE and CF. 
If the force exerted by cable AE at A is 55 N, determine the 
moment of that force about the line joining points D and B.

 3.56 The triangular plate ABC is supported by ball-and-socket joints at 
B and D and is held in the position shown by cables AE and CF. 
If the force exerted by cable CF at C is 33 N, determine the 
moment of that force about the line joining points D and B.

 3.57 The 23-in. vertical rod CD is welded to the midpoint C of the 
50-in. rod AB. Determine the moment about AB of the 235-lb 
force P.
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 3.58 The 23-in. vertical rod CD is welded to the midpoint C of the 
50-in. rod AB. Determine the moment about AB of the 174-lb 
force Q.
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109Problems 3.59 The frame ACD is hinged at A and D and is supported by a cable 
that passes through a ring at B and is attached to hooks at G and H. 
Knowing that the tension in the cable is 450 N, determine the 
moment about the diagonal AD of the force exerted on the frame 
by portion BH of the cable.

 3.60 In Prob. 3.59, determine the moment about the diagonal AD of 
the force exerted on the frame by portion BG of the cable.

 3.61 A regular tetrahedron has six edges of length a. A force P is 
directed as shown along edge BC. Determine the moment of P 
about edge OA.

 3.62 A regular tetrahedron has six edges of length a. (a) Show that two 
opposite edges, such as OA and BC, are perpendicular to each 
other. (b) Use this property and the result obtained in Prob. 3.61 
to determine the perpendicular distance between edges OA 
and BC.

 3.63 Two forces F1 and F2 in space have the same magnitude F. Prove 
that the moment of F1 about the line of action of F2 is equal to 
the moment of F2 about the line of action of F1.

 *3.64 In Prob. 3.55, determine the perpendicular distance between cable 
AE and the line joining points D and B.

 *3.65 In Prob. 3.56, determine the perpendicular distance between cable 
CF and the line joining points D and B.

 *3.66 In Prob. 3.57, determine the perpendicular distance between rod 
AB and the line of action of P.

 *3.67 In Prob. 3.58, determine the perpendicular distance between rod 
AB and the line of action of Q.

 *3.68 In Prob. 3.59, determine the perpendicular distance between por-
tion BH of the cable and the diagonal AD.

 *3.69 In Prob. 3.60, determine the perpendicular distance between por-
tion BG of the cable and the diagonal AD.
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B
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D
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0.875 m

0.75 m

0.75 m

0.925 m

0.5 m
0.5 m

 Fig. P3.59
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 Fig. P3.61    and P3.62
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110 Rigid Bodies: Equivalent Systems of Forces  3.12   MOMENT OF A COUPLE  
  Two forces   F   and  2 F   having the same magnitude, parallel lines of 
action, and opposite sense are said to form a couple  ( Fig. 3.30 ). 
Clearly, the sum of the components of the two forces in any direction 
is zero. The sum of the moments of the two forces about a given 
point, however, is not zero. While the two forces will not translate 
the body on which they act, they will tend to make it rotate. 
 Denoting by  r   A   and  r   B  , respectively, the position vectors of the 
points of application of  F  and 2 F  ( Fig. 3.31 ), we find that the sum 
of the moments of the two forces about  O  is

  rA 3 F 1 rB 3 (2F) 5 (rA 2 rB) 3 F  

Setting  r  A 2  r  B 5 r , where  r  is the vector joining the points of 
application of the two forces, we conclude that the sum of the 
moments of  F  and 2 F  about  O  is represented by the vector

   M 5 r 3 F (3.47)   

The vector  M  is called the  moment of the couple ; it is a vector 
perpendicular to the plane containing the two forces, and its mag-
nitude is

   M 5 rF sin u 5 Fd (3.48)   

 where  d  is the perpendicular distance between the lines of action of 
 F  and 2F. The sense of  M  is defined by the right-hand rule. 
    Since the vector  r  in (3.47) is independent of the choice of the 
origin  O  of the coordinate axes, we note that the same result would 
have been obtained if the moments of  F  and 2 F  had been computed 
about a different point  O 9. Thus, the moment  M  of a couple is a  free 
vector  (Sec. 2.3) which can be applied at any point ( Fig. 3.32 ). 
   From the definition of the moment of a couple, it also follows 
that two couples, one consisting of the forces F 1  and 2F 1 , the other 
of the forces F 2  and 2F 2  ( Fig. 3.33 ), will have equal moments if

   F1d1 5 F2d2 (3.49)   

and if the two couples lie in parallel planes (or in the same plane) 
and have the same sense. 
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 Fig. 3.30    
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Fig. 3.31   
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F
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Fig. 3.32   

– F1

F1

d1

– F2

F2
d2

 Fig. 3.33   

Photo 3.1 The parallel upward and downward 
forces of equal magnitude exerted on the arms of 
the lug nut wrench are an example of a couple.
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111 3.13   EQUIVALENT COUPLES  
 Figure 3.34 shows three couples which act successively on the same 
rectangular box. As seen in the preceding section, the only motion a 
couple can impart to a rigid body is a rotation. Since each of the 
three couples shown has the same moment  M  (same direction and 
same magnitude  M  5 120 lb ? in.), we can expect the three couples 
to have the same effect on the box. 

  As reasonable as this conclusion appears, we should not accept 
it hastily. While intuitive feeling is of great help in the study of mechan-
ics, it should not be accepted as a substitute for logical reasoning. 
Before stating that two systems (or groups) of forces have the same 
effect on a rigid body, we should prove that fact on the basis of the 
experimental evidence introduced so far. This evidence consists of 
the parallelogram law for the addition of two forces (Sec. 2.2) and 
the principle of transmissibility (Sec. 3.3). Therefore, we will state 
that  two systems of forces are equivalent  (i.e., they have the same 
effect on a rigid body)  if we can transform one of them into the other 
by means of one or several of the following operations : (1) replacing 
two forces acting on the same particle by their resultant; (2) resolving 
a force into two components; (3) canceling two equal and opposite 
forces acting on the same particle; (4) attaching to the same particle 
two equal and opposite forces; (5) moving a force along its line of 
action. Each of these operations is easily justified on the basis of the 
parallelogram law or the principle of transmissibility. 
    Let us now prove that  two couples having the same moment   M   
are equivalent . First consider two couples contained in the same 
plane, and assume that this plane coincides with the plane of the 
figure ( Fig. 3.35 ). The first couple consists of the forces F 1  and 2F 1  
of magnitude F 1 , which are located at a distance  d  1  from each other 
(Fig. 3.35 a ), and the second couple consists of the forces F 2  and 2F 2  
of magnitude  F  2 , which are located at a distance  d  2  from each other 
(Fig. 3.35 d ). Since the two couples have the same moment M, which 
is perpendicular to the plane of the figure, they must have the same 
sense (assumed here to be counterclockwise), and the relation

   F1d1 5 F2d2 (3.49)   

 must be satisfied. To prove that they are equivalent, we shall show 
that the first couple can be transformed into the second by means 
of the operations listed above. 

3.13   Equivalent Couples  
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M

y
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z

30 lb

30 lb

4 in.

M

 Fig. 3.34    
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112 Rigid Bodies: Equivalent Systems of Forces
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 Fig. 3.35     Denoting by  A, B, C, and D  the points of intersection of the 
lines of action of the two couples, we first slide the forces F 1  and 2F 1  
until they are attached, respectively, at  A  and  B , as shown in Fig. 3.35 b . 
The force F 1  is then resolved into a component  P  along line  AB  and 
a component  Q  along  AC  (Fig. 3.35 c ); similarly, the force 2F 1  is 
resolved into 2 P  along  AB  and 2 Q  along  BD . The forces  P  and 2 P  
have the same magnitude, the same line of action, and opposite sense; 
they can be moved along their common line of action until they are 
applied at the same point and may then be canceled. Thus the couple 
formed by F 1  and 2F 1  reduces to a couple consisting of  Q  and 2Q. 
    We will now show that the forces  Q  and 2 Q  are respectively 
equal to the forces 2F 2  and F 2 . The moment of the couple formed 
by  Q  and 2 Q  can be obtained by computing the moment of  Q  about 
 B ; similarly, the moment of the couple formed by F 1  and 2F 1  is the 
moment of F 1  about  B.  But, by Varignon’s theorem, the moment of 
F 1  is equal to the sum of the moments of its components  P  and Q. 
Since the moment of  P  about  B  is zero, the moment of the couple 
formed by  Q  and 2 Q  must be equal to the moment of the couple 
formed by F 1  and 2F 1 . Recalling (3.49), we write

 Qd2 5 F1d1 5 F2d2  and  Q 5 F2   

  Thus the forces  Q  and 2 Q  are respectively equal to the forces 2F 2  
and F 2 , and the couple of Fig. 3.35 a is equivalent to the couple of 
Fig. 3.35 d .
    Next consider two couples contained in parallel planes  P  1  and 
 P  2 ; we will prove that they are equivalent if they have the same 
moment. In view of the foregoing, we can assume that the couples 
consist of forces of the same magnitude  F  acting along parallel lines 
( Fig. 3.36  a  and  d ). We propose to show that the couple contained 
in plane  P  1  can be transformed into the couple contained in plane 
 P  2  by means of the standard operations listed above. 
   Let us consider the two planes defined respectively by the lines of 
action of F 1  and 2F 2  and by those of 2F 1  and F 2  (Fig. 3.36b ). At 
a point on their line of intersection we attach two forces  F  3  and 2 F  3 , 
respectively equal to  F  1  and 2F  1 . The couple formed by  F  1  and 2 F  3  
can be replaced by a couple consisting of  F  3  and 2 F  2  (Fig. 3.36 c ), 
since both couples clearly have the same moment and are contained 
in the same plane. Similarly, the couple formed by 2 F  1  and  F  3  can 
be replaced by a couple consisting of 2 F  3  and  F  2 . Canceling the two 
equal and opposite forces  F  3  and 2 F  3 , we obtain the desired couple 
in plane  P  2  (Fig. 3.36 d ). Thus, we conclude that two couples having 
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 Fig. 3.36   
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113the same moment  M  are equivalent, whether they are contained in 
the same plane or in parallel planes. 
  The property we have just established is very important for the 
correct understanding of the mechanics of rigid bodies. It indicates 
that when a couple acts on a rigid body, it does not matter where 
the two forces forming the couple act or what magnitude and direc-
tion they have. The only thing which counts is the  moment  of the 
couple (magnitude and direction). Couples with the same moment 
will have the same effect on the rigid body.    

 3.14   ADDITION OF COUPLES  
 Consider two intersecting planes  P  1  and  P  2  and two couples acting 
respectively in  P  1  and  P  2 . We can, without any loss of generality, 
assume that the couple in  P  1  consists of two forces  F  1  and 2 F  1  per-
pendicular to the line of intersection of the two planes and acting 
respectively at  A  and  B  ( Fig. 3.37  a ). Similarly, we assume that the 
couple in  P  2  consists of two forces  F  2  and 2 F  2  perpendicular to  AB  
and acting respectively at  A  and  B . It is clear that the resultant  R  of 
 F  1  and  F  2  and the resultant 2 R  of 2 F  1  and  2    F  2  form a couple. 
Denoting by  r  the vector joining  B  to  A  and recalling the definition 
of the moment of a couple (Sec. 3.12), we express the moment  M  
of the resulting couple as follows:

  M 5 r 3 R 5 r 3 (F1 1 F2)  

and, by Varignon’s theorem,

  M 5 r 3 F1 1 r 3 F2   

But the first term in the expression obtained represents the moment 
 M  1  of the couple in  P  1 , and the second term represents the moment 
 M  2  of the couple in  P  2 . We have

   M 5 M1 1 M2 (3.50)   

 and we conclude that the sum of two couples of moments  M  1  and 
 M  2  is a couple of moment  M  equal to the vector sum of  M  1  and  M  2  
(Fig. 3.37 b )    .

 3.15   COUPLES CAN BE REPRESENTED BY VECTORS  
 As we saw in Sec. 3.13, couples which have the same moment, 
whether they act in the same plane or in parallel planes, are equiva-
lent. There is therefore no need to draw the actual forces forming a 
given couple in order to define its effect on a rigid body ( Fig. 3.38  a ). 
It is sufficient to draw an arrow equal in magnitude and direction to 
the moment  M  of the couple (Fig. 3.38 b ). On the other hand, we 
saw in Sec. 3.14 that the sum of two couples is itself a couple and 
that the moment  M  of the resultant couple can be obtained by form-
ing the vector sum of the moments  M  1  and  M  2  of the given couples. 
Thus, couples obey the law of addition of vectors, and the arrow used 
in Fig. 3.38 b to represent the couple defined in Fig. 3.38 a  can truly 
be considered a vector. 

Fig. 3.37   
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3.15   Couples Can Be Represented by Vectors  
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114 Rigid Bodies: Equivalent Systems of Forces    The vector representing a couple is called a  couple vector . Note 
that, in Fig. 3.38, a red arrow is used to distinguish the couple vector, 
 which represents the couple itself , from the  moment  of the couple, 
which was represented by a green arrow in earlier figures. Also note 
that the symbol   l is added to this red arrow to avoid any confusion 
with vectors representing forces. A couple vector, like the moment 
of a couple, is a free vector. Its point of application, therefore, can 
be chosen at the origin of the system of coordinates, if so desired 
(Fig. 3.38 c ). Furthermore, the couple vector  M  can be resolved into 
component vectors  M  x ,  M  y , and  M  z , which are directed along the 
coordinate axes (Fig. 3.38 d ). These component vectors represent cou-
ples acting, respectively, in the  yz, zx , and  xy  planes. 
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 Fig. 3.38   

 3.16    RESOLUTION OF A GIVEN FORCE INTO A 
FORCE AT O AND A COUPLE  

 Consider a force  F  acting on a rigid body at a point  A  defined by 
the position vector  r  ( Fig. 3.39  a ). Suppose that for some reason we 
would rather have the force act at point  O . While we can move  F  
along its line of action (principle of transmissibility), we cannot move 
it to a point  O  which does not lie on the original line of action with-
out modifying the action of  F  on the rigid body. 

 We can, however, attach two forces at point  O , one equal to  F  
and the other equal to 2 F , without modifying the action of the origi-
nal force on the rigid body (Fig. 3.39 b ). As a result of this transforma-
tion, a force  F  is now applied at  O ; the other two forces form a 
couple of moment  M  O  5  r  3  F . Thus,  any force   F   acting on a rigid 
body can be moved to an arbitrary point O provided that a couple 
is added whose moment is equal to the moment of   F   about O.  The 

 Fig. 3.39   
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115couple tends to impart to the rigid body the same rotational motion 
about  O  that the force  F  tended to produce before it was transferred 
to  O.  The couple is represented by a couple vector  M   O     perpendicular 
to the plane containing  r  and  F . Since  M   O    is a free vector, it may 
be applied anywhere; for convenience, however, the couple vector is 
usually attached at  O , together with  F , and the combination obtained 
is referred to as a  force-couple system  (Fig. 3.39 c ). 
 If the force  F  had been moved from  A  to a different point  O 9 
( Fig. 3.40  a  and  c ), the moment  M  O 9 5  r 9 3  F  of  F  about  O 9 should 
have been computed, and a new force-couple system, consisting of 
 F  and of the couple vector  M  O9, would have been attached at  O 9. 
The relation existing between the moments of  F  about  O  and  O 9 is 
obtained by writing

  MO9 5 r9 3 F 5 (r 1 s) 3 F 5 r 3 F 1 s 3 F  

 MO9 5 MO 1 s 3 F (3.51)   

where s is the vector joining  O 9 to  O . Thus, the moment  M  O9 of  F  
about  O 9 is obtained by adding to the moment  M  O of  F  about  O  the 
vector product s 3  F  representing the moment about  O 9 of the force 
 F  applied at  O . 

 Fig. 3.40   
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 This result could also have been established by observing that, 
in order to transfer to  O 9 the force-couple system attached at  O  
(Fig. 3.40 b  and  c ), the couple vector  M  O can be freely moved to  O 9; 
to move the force  F  from  O  to  O 9, however, it is necessary to add 
to  F  a couple vector whose moment is equal to the moment about 
 O 9 of the force  F  applied at  O . Thus, the couple vector  M  O9 must 
be the sum of  M  O and the vector s 3  F . 
   As noted above, the force-couple system obtained by transferring 
a force  F  from a point  A  to a point  O  consists of  F  and a couple vector 
 M  O   perpendicular to  F . Conversely, any force-couple system consisting 
of a force  F  and a couple vector  M  O   which are  mutually perpendicular  
can be replaced by a single equivalent force. This is done by moving 
the force  F  in the plane perpendicular to  M  O   until its moment about 
 O  is equal to the moment of the couple to be eliminated.  

3.16   Resolution of a Given Force into a 
Force at O and a Couple

Photo 3.2 The force exerted by each hand on 
the wrench could be replaced with an equivalent 
force-couple system acting on the nut.
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 SOLUTION 

 Our computations will be simplified if we attach two equal and opposite 
20-lb forces at  A . This enables us to replace the original 20-lb-force couple 
by two new 20-lb-force couples, one of which lies in the  zx  plane and the 
other in a plane parallel to the  xy  plane. The three couples shown in the 
adjoining sketch can be represented by three couple vectors  M   x  ,  M   y  , and 
 M   z   directed along the coordinate axes. The corresponding moments are

   Mx 5 2(30 lb)(18 in.) 5 2540 lb ? in.  
 My 5 1(20 lb)(12 in.) 5 1240 lb ? in.  
  Mz 5 1(20 lb)(9 in.) 5 1180 lb ? in.   

These three moments represent the components of the single couple  M  
equivalent to the two given couples. We write

  M 5 2(540 lb ? in.)i 1 (240 lb ? in.)j 1 (180 lb ? in.)k ◀    

Alternative Solution.   The components of the equivalent single couple  M  
can also be obtained by computing the sum of the moments of the four 
given forces about an arbitrary point. Selecting point  D , we write

  M 5 MD 5 (18 in.)j 3 (230 lb)k 1 [(9 in.)j 2 (12 in.)k] 3 (220 lb)i   

and, after computing the various cross products,

  M 5 2(540 lb ? in.)i 1 (240 lb ? in.)j 1 (180 lb ? in.)k    ◀z
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   SAMPLE PROBLEM 3.6 

 Determine the components of the single couple equivalent to the two 
 couples shown.      
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My = + (240 lb•in.) j

Mx = – (540 lb•in.) i

Mz = + (180 lb•in.) k
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        SAMPLE PROBLEM 3.7 

 Replace the couple and force shown by an equivalent single force applied 
to the lever. Determine the distance from the shaft to the point of applica-
tion of this equivalent force.      

=
C

– (400 N) j

– (400 N) j

– (84 N•m) k

O O

60°

=
B

150 mm

O

F = – (400 N) j

– (400 N) j

– (24 N•m) k
– (24 N•m) k – (60 N•m) k

O

260 mm

B

400 N

200 N

200 N

150 mm

60 mm
O

60°

300 mm

=
C

– (400 N) j
– (400 N) j

– (24 N•m) k
B

O O

B

60°

=
– (400 N) j – (400 N) j

– (24 N•m) k

– (24 N•m) k

B

150 mm

O

B

O

 SOLUTION 

 First the given force and couple are replaced by an equivalent force-couple 
system at  O . We move the force  F  5 2(400 N) j  to  O  and at the same time 
add a couple of moment  M   O   equal to the moment about  O  of the force in 
its original position. 

  MO 5 OB
¡

3 F 5 [(0.150 m)i 1 (0.260 m)j] 3 (2400 N)j  
   5 2(60 N ? m)k

  This couple is added to the couple of moment 2(24 N · m) k  formed by the 
two 200-N forces, and a couple of moment 2(84 N · m) k  is obtained. This 
last couple can be eliminated by applying  F  at a point  C  chosen in such a 
way that

   2(84 N ? m)k 5 OC
¡

3 F   
 5 [(OC) cos 60°i 1 (OC) sin 60°j] 3 (2400 N)j  
 5 2(OC)cos 60°(400 N)k    

   We conclude that

  (OC) cos 608 5 0.210 m 5 210 mm  OC 5 420 mm     ◀

 Alternative Solution.   Since the effect of a couple does not depend on its 
location, the couple of moment 2(24 N ? m) k  can be moved to  B ; we thus 
obtain a force-couple system at  B . The couple can now be eliminated by 
applying  F  at a point  C  chosen in such a way that

   2(24 N ? m)k 5 BC
¡

3 F   
 5 2(BC) cos 60°(400 N)k   

   We conclude that

  (BC) cos 608 5 0.060 m 5 60 mm  BC 5 120 mm  
OC 5 OB 1 BC 5 300 mm 1 120 mm  OC 5 420 mm    ◀         
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118

 In this lesson we discussed the properties of  couples . To solve the problems 
which follow, you will need to remember that the net effect of a couple is to 

produce a moment  M . Since this moment is independent of the point about which 
it is computed,  M  is a  free vector  and thus remains unchanged as it is moved from 
point to point. Also, two couples are  equivalent  (that is, they have the same effect 
on a given rigid body) if they produce the same moment. 

   When determining the moment of a couple, all previous techniques for computing 
moments apply. Also, since the moment of a couple is a free vector, it should be 
computed relative to the most convenient point. 

   Because the only effect of a couple is to produce a moment, it is possible to rep-
resent a couple with a vector, the  couple vector , which is equal to the moment of 
the couple. The couple vector is a free vector and will be represented by a special 
symbol, , to distinguish it from force vectors. 

   In solving the problems in this lesson, you will be called upon to perform the fol-
lowing operations:  

  1.     Adding two or more couples . This results in a new couple, the moment of 
which is obtained by adding vectorially the moments of the given couples [Sample 
Prob. 3.6].  

  2.     Replacing a force with an equivalent force-couple system at a specified 
point . As explained in Sec. 3.16, the force of the force-couple system is equal to 
the original force, while the required couple vector is equal to the moment of the 
original force about the given point. In addition, it is important to observe that 
the force and the couple vector are perpendicular to each other. Conversely, it 
follows that a force-couple system can be reduced to a single force only if the 
force and couple vector are mutually perpendicular (see the next paragraph).  

  3.     Replacing a force-couple system (with   F   perpendicular to   M )  with a single 
equivalent force . Note that the requirement that  F  and  M  be mutually perpen-
dicular will be satisfied in all two-dimensional problems. The single equivalent 
force is equal to  F  and is applied in such a way that its moment about the original 
point of application is equal to  M  [Sample Prob. 3.7].    

 SOLVING PROBLEMS
ON YOUR OWN  
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PROBLEMS

119

 3.70 A plate in the shape of a parallelogram is acted upon by two cou-
ples. Determine (a) the moment of the couple formed by the two 
21-lb forces, (b) the perpendicular distance between the 12-lb 
forces if the resultant of the two couples is zero, (c) the value of 
a if the resultant couple is 72 lb ? in. clockwise and d is 42 in.

PPPPPPPPPPPPPRRRRRRRRRRRRROOOOOOOOOOOOBBBBBBBBBBBBBLLLLLLLLLLLLLEEEEEEEEEEEEEMMMMMMMMMMMMMSSSSSSSSSSSSS PROBLEMS  

A

B

C

450 mm
240 mm

 Fig. P3.73   

A

D

B

C

16 in.

d

21 lb

12 lb
12 lb

21 lb

a

 Fig. P3.70

 3.71 Four 1-in.-diameter pegs are attached to a board as shown. Two 
strings are passed around the pegs and pulled with the forces 
 indicated. (a) Determine the resultant couple acting on the board. 
(b) If only one string is used, around which pegs should it pass and 
in what directions should it be pulled to create the same couple 
with the minimum tension in the string? (c) What is the value of 
that minimum tension?

A B

C D
35 lb

35 lb

25 lb

25 lb

6 in.

8 in.

 Fig. P3.71    and P3.72   

 3.72 Four pegs of the same diameter are attached to a board as 
shown. Two strings are passed around the pegs and pulled with 
the forces indicated. Determine the diameter of the pegs know-
ing that the resultant couple applied to the board is 485 lb ? in. 
counterclockwise.

 3.73 A piece of plywood in which several holes are being drilled suc-
cessively has been secured to a workbench by means of two nails. 
Knowing that the drill exerts a 12-N ? m couple on the piece of 
plywood, determine the magnitude of the resulting forces applied 
to the nails if they are located (a) at A and B, (b) at B and C, 
(c) at A and C.
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120 Rigid Bodies: Equivalent Systems of Forces  3.74 Two parallel 40-N forces are applied to a lever as shown. Deter-
mine the moment of the couple formed by the two forces (a) by 
resolving each force into horizontal and vertical components and 
adding the moments of the two resulting couples, (b) by using the 
perpendicular distance between the two forces, (c) by summing the 
moments of the two forces about point A.

 3.75 The two shafts of a speed-reducer unit are subjected to couples of 
magnitude M1 5 15 lb ? ft and M2 5 3 lb ? ft, respectively. Replace 
the two couples with a single equivalent couple, specifying its mag-
nitude and the direction of its axis.

144 mm

160 mm

192 mm

120 mm

y

xz

120 mm

50 N

50 N
12.5 N

12.5 N

A

B

E

C

F

D

 Fig. P3.76

 3.76 Replace the two couples shown with a single equivalent couple, 
specifying its magnitude and the direction of its axis.

 3.77 Solve Prob. 3.76, assuming that two 10-N vertical forces have been 
added, one acting upward at C and the other downward at B.

 3.78 If P 5 0, replace the two remaining couples with a single equiva-
lent couple, specifying its magnitude and the direction of its axis.

x

y

z

B

C
D

A

E

–P
P

16 lb

16 lb

40 lb

40 lb

15 in.

15 in.

10 in.

10 in.

10 in.

 Fig. P3.78    and P3.79 

M2M1

y

z

x

 Fig. P3.75

A

B

C

40 N

40 N

20°

55°

270 mm

390 mm

 Fig. P3.74   

 3.79 If P 5 20 lb, replace the three couples with a single equivalent 
couple, specifying its magnitude and the direction of its axis.
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121Problems 3.80 In a manufacturing operation, three holes are drilled simultane-
ously in a workpiece. If the holes are perpendicular to the surfaces 
of the workpiece, replace the couples applied to the drills with a 
single equivalent couple, specifying its magnitude and the direction 
of its axis.

 3.81 A 260-lb force is applied at A to the rolled-steel section shown. 
Replace that force with an equivalent force-couple system at the 
center C of the section.

A

B

C

260 lb

2 in.

2.5 in.

4 in.

4 in.

Fig. P3.81

P
5 in.

2 in.A

B

C

3 in.

 Fig. P3.82

 3.82 A 30-lb vertical force P is applied at A to the bracket shown, which 
is held by screws at B and C. (a) Replace P with an equivalent 
force-couple system at B. (b) Find the two horizontal forces at B 
and C that are equivalent to the couple obtained in part a.

 3.83 The force P has a magnitude of 250 N and is applied at the end 
C of a 500-mm rod AC attached to a bracket at A and B. Assuming 
a 5 308 and b 5 608, replace P with (a) an equivalent force-couple 
system at B, (b) an equivalent system formed by two parallel forces 
applied at A and B.

 3.84 Solve Prob. 3.83, assuming a 5 b 5 258.

 3.85 The 80-N horizontal force P acts on a bell crank as shown. (a) Replace 
P with an equivalent force-couple system at B. (b) Find the two 
vertical forces at C and D that are equivalent to the couple found 
in part a.

B

A
P

C D

50 mm

100 mm 40 mm

 Fig. P3.85

A B C

D
60°

6.7 m 4 m

 Fig. P3.86

A

B

C

200 mm

300 mm
P

α

β

 Fig. P3.83

 3.86 A dirigible is tethered by a cable attached to its cabin at B. If the 
tension in the cable is 1040 N, replace the force exerted by the 
cable at B with an equivalent system formed by two parallel forces 
applied at A and C.

x

y

z

20°

25°
1.75 N • m

1.5 N • m

1.5 N • m

Fig. P3.80
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122 Rigid Bodies: Equivalent Systems of Forces  3.87 Three control rods attached to a lever ABC exert on it the forces 
shown. (a) Replace the three forces with an equivalent force- 
couple system at B. (b) Determine the single force that is equiva-
lent to the force-couple system obtained in part a, and specify its 
point of application on the lever.

A B

DC

a

�a

–Q

Q

P

 Fig. P3.89 an   d P3.90

A

D

B

C

E

900 N

250 N

250 N

120 mm

90 mm

90 mm

x

 Fig. P3.91

 Fig. P3.88

a

A

B C

D

EF

300 N

300 N

P

0.2 m  3.88 A hexagonal plate is acted upon by the force P and the couple 
shown. Determine the magnitude and the direction of the smallest 
force P for which this system can be replaced with a single force 
at E.

 3.89 A force and couple act as shown on a square plate of side a 5 
25 in. Knowing that P 5 60 lb, Q 5 40 lb, and a 5 508, replace 
the given force and couple with a single force applied at a point 
located (a) on line AB, (b) on line AC. In each case determine the 
distance from A to the point of application of the force.

90 N

90 N

30°
20°20°

216 N

A

C

B
600 mm

450 mm

55°

 Fig. P3.87   

 3.90 The force and couple shown are to be replaced by an equivalent 
single force. Knowing that P 5 2Q, determine the required value 
of a if the line of action of the single equivalent force is to pass 
through (a) point A, (b) point C.

 3.91 The shearing forces exerted on the cross section of a steel channel 
can be represented by a 900-N vertical force and two 250-N hori-
zontal forces as shown. Replace this force and couple with a single 
force F applied at point C, and determine the distance x from C 
to line BD. (Point C is defined as the shear center of the 
section.)
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123Problems 3.92 A force and a couple are applied as shown to the end of a cantilever 
beam. (a) Replace this system with a single force F applied at point 
C, and determine the distance d from C to a line drawn through 
points D and E. (b) Solve part a if the directions of the two 360-N 
forces are reversed.

 3.93 An antenna is guyed by three cables as shown. Knowing that the 
tension in cable AB is 288 lb, replace the force exerted at A by 
cable AB with an equivalent force-couple system at the center O 
of the base of the antenna.

 3.94 An antenna is guyed by three cables as shown. Knowing that the 
tension in cable AD is 270 lb, replace the force exerted at A by 
cable AD with an equivalent force-couple system at the center O 
of the base of the antenna.

 3.95 A 110-N force acting in a vertical plane parallel to the yz plane is 
applied to the 220-mm-long horizontal handle AB of a socket 
wrench. Replace the force with an equivalent force-couple system 
at the origin O of the coordinate system.

 3.96 An eccentric, compressive 1220-N force P is applied to the end of 
a cantilever beam. Replace P with an equivalent force-couple sys-
tem at G.

y

60 mm

100 mm

x
P

G
A

z

 Fig. P3.96   

450 mm

150 mm

360 N

360 N

B

d
D

600 N

E

C

A

y

xz

 Fig. P3.92

16 ft

x

y

z

O

A

B

C

D
128 ft

96 ft

128 ft

64 ft

 Fig. P3.93    and  P3.94   
150 mm

110 N

A

B

x

y

z

O

35°

15°

 Fig. P3.95   
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124 Rigid Bodies: Equivalent Systems of Forces  3.97 To keep a door closed, a wooden stick is wedged between the floor 
and the doorknob. The stick exerts at B a 175-N force directed 
along line AB. Replace that force with an equivalent force-couple 
system at C.

 3.98 A 46-lb force F and a 2120-lb ? in. couple M are applied to corner 
A of the block shown. Replace the given force-couple system with 
an equivalent force-couple system at corner H.

 3.99 A 77-N force F1 and a 31-N ? m couple M1 are applied to corner E 
of the bent plate shown. If F1 and M1 are to be replaced with an 
equivalent force-couple system (F2, M2) at corner B and if (M2)z 5 0, 
determine (a) the distance d, (b) F2 and M2.

x

z

y

B
A

C

E
D

G

H

J

F1

70 mm

30 mm

30 mm

d

60 mm

83.3 mm

250 mm

M1

 Fig. P3.99   

M

F

3 in.

x

y

z
A

B

C

D

E

F

H

J

14 in.

18 in.

25 in.

45 in.

  Fig. P3.98   

z

990 mm

594 mm

100 mm

O

A

B

C

y

750 mm

67 mm

x

1850 mm

 Fig. P3.97   

bee02286_ch03_074-157.indd Page 124  6/17/11  3:29 PM user-f494bee02286_ch03_074-157.indd Page 124  6/17/11  3:29 PM user-f494 /203/MHBR246/per28884_disk1of1/0078028884/per28884_pagefiles/203/MHBR246/per28884_disk1of1/0078028884/per28884_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


3.17    REDUCTION OF A SYSTEM OF FORCES TO ONE 
FORCE AND ONE COUPLE  

Consider a system of forces  F  1 ,  F  2 ,  F  3 , . . . , acting on a rigid body at 
the points  A  1 ,  A  2 ,  A  3 , . . . ,  defined by the position vectors   r  1 , r  2 ,  r  3 , 
 etc . ( Fig. 3.41  a ). As seen in the preceding section,  F  1  can be moved 
from  A  1  to a given point  O  if a couple of moment  M  1  equal to the 
moment  r  1  3  F  1  of  F  1  about  O  is added to the original system of 
forces. Repeating this procedure with  F  2 ,  F  3 , . . . , we obtain the 
system shown in Fig. 3.41 b , which consists of the original forces, now 
acting at  O , and the added couple vectors. Since the forces are now 
concurrent, they can be added vectorially and replaced by their 
resultant  R . Similarly, the couple vectors  M  1 ,  M  2 ,  M  3 , . . . , can be 
added   vectorially and replaced by a single couple vector  M   R    O  . Any 
system of forces, however complex, can thus be reduced to an  equiv-
alent force-couple system acting at a given point O  (Fig. 3.41 c ). We 

 3.100 A 2.6-kip force is applied at point D of the cast-iron post shown. 
Replace that force with an equivalent force-couple system at the 
center A of the base section.

(c)

R

MO
R

O

(b)

F1

F2

M1

M2

M3

=O

F3

(a)

F1

F2

F3r2
r3

A2

A3

=
O

r1

A1

 Fig. 3.41   

3.17   Reduction of a System of Forces to 
One Force and One Couple  125

6 in. 5 in.

12 in.

x

z

y

B

A

D

E

2.6 kips

 Fig. P3.100   
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126 Rigid Bodies: Equivalent Systems of Forces should note that while each of the couple vectors  M  1 ,  M  2 ,  M  3 , . . . , 
in Fig. 3.41 b  is perpendicular to its corresponding force, the resul-
tant force  R  and the resultant couple vector  M   R    O   in Fig. 3.41 c  will 
not, in general, be perpendicular to each other. 
    The equivalent force-couple system is defined by the equations

 R 5 oF  MR
O 5 oMO 5 o(r 3 F) (3.52)   

  which express that the force  R  is obtained by adding all the forces 
of the system, while the moment of the resultant couple vector  M   R    O  , 
called the  moment resultant  of the system, is obtained by adding the 
moments about  O  of all the forces of the system. 
   Once a given system of forces has been reduced to a force and 
a couple at a point  O , it can easily be reduced to a force and a couple 
at another point  O 9. While the resultant force  R  will remain 
unchanged, the new moment resultant  M   R    O9   will be equal to the 
sum of  M   R    O   and the moment about  O 9 of the force  R  attached at  O  
( Fig. 3.42 ). We have

   M   R    O9 5 M   R    O 1 s 3 R (3.53)   

 In practice, the reduction of a given system of forces to a single 
force  R  at  O  and a couple vector  M   R    O   will be carried out in terms of 
components. Resolving each position vector  r  and each force  F  of 
the system into rectangular components, we write

 r 5 xi 1 yj 1 zk (3.54)
 F 5 Fxi 1 Fyj 1 Fzk (3.55)

 Substituting for  r  and  F  in (3.52) and factoring out the unit vectors 
 i, j, k , we obtain  R  and  M   R    O   in the form

 R 5 Rxi 1 Ryj 1 Rzk    MR
O 5 Mx

Ri 1 My
Rj 1 Mz

Rk (3.56)   

  The components  R x , R y , R z   represent, respectively, the sums of the  x, 
y , and  z  components of the given forces and measure the tendency 
of the system to impart to the rigid body a motion of translation in 
the  x, y , or  z  direction. Similarly, the components  M R  x , M R  y , M R  z   rep-
resent, respectively, the sum of the moments of the given forces about 
the  x, y , and  z  axes and measure the tendency of the system to impart 
to the rigid body a motion of rotation about the  x, y , or  z  axis. 
    If the magnitude and direction of the force  R  are desired, they 
can be obtained from the components  R x , R y , R z   by means of the 
relations (2.18) and (2.19) of Sec. 2.12; similar computations will 
yield the magnitude and direction of the couple vector  M   R    O.      

3.18   EQUIVALENT SYSTEMS OF FORCES  
 We saw in the preceding section that any system of forces acting on 
a rigid body can be reduced to a force-couple system at a given point 
 O . This equivalent force-couple system characterizes completely the 

Fig. 3.42   

O

O'

s

O

O'
s

R

R

MO
R

MO'
R

=

bee02286_ch03_074-157.indd Page 126  6/17/11  3:29 PM user-f494bee02286_ch03_074-157.indd Page 126  6/17/11  3:29 PM user-f494 /203/MHBR246/per28884_disk1of1/0078028884/per28884_pagefiles/203/MHBR246/per28884_disk1of1/0078028884/per28884_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


127effect of the given force system on the rigid body.  Two systems of 
forces are equivalent, therefore, if they can be reduced to the same 
force-couple system at a given point O . Recalling that the force-
couple system at  O  is defined by the relations (3.52), we state that 
 two systems of forces ,  F  1 ,  F  2 ,  F  3 , . . . , and  F 9 1 , F 9 2 , F 9 3 , . . . ,  which 
act on the same rigid body are equivalent if, and only if, the sums 
of the forces and the sums of the moments about a given point O of 
the forces of the two systems are, respectively, equal . Expressed 
mathematically, the necessary and sufficient conditions for the two 
systems of forces to be equivalent are

 oF 5 oF9  and  oMO 5 oM9O (3.57)   

  Note that to prove that two systems of forces are equivalent, the 
second of the relations (3.57) must be established with respect to 
 only one point O . It will hold, however, with respect to  any point  if 
the two systems are equivalent. 
    Resolving the forces and moments in (3.57) into their rectan-
gular components, we can express the necessary and sufficient condi-
tions for the equivalence of two systems of forces acting on a rigid 
body as follows:

   oFx 5 oF9x   oFy 5 oF9y   oFz 5 oF9z
 oMx 5 oM9x  oMy 5 oM9y  oMz 5 oM9z 

(3.58)
   

  These equations have a simple physical significance. They express 
that two systems of forces are equivalent if they tend to impart to 
the rigid body (1) the same translation in the  x, y , and  z  directions, 
respectively, and (2) the same rotation about the  x, y , and  z  axes, 
respectively.    

3.19   EQUIPOLLENT SYSTEMS OF VECTORS  
In general, when two systems of vectors satisfy Eqs. (3.57) or (3.58), 
i.e., when their resultants and their moment resultants about an arbi-
trary point  O  are respectively equal, the two systems are said to be 
 equipollent . The result established in the preceding section can thus 
be restated as follows:  If two systems of forces acting on a rigid body 
are equipollent, they are also equivalent . 
    It is important to note that this statement does not apply to 
 any  system of vectors. Consider, for example, a system of forces act-
ing on a set of independent particles which do  not  form a rigid body. 
A different system of forces acting on the same particles may happen 
to be equipollent to the first one; i.e., it may have the same resultant 
and the same moment resultant. Yet, since different forces will now 
act on the various particles, their effects on these particles will be 
 different; the two systems of forces, while equipollent, are  not 
equivalent .    

3.19   Equipollent Systems of Vectors  

Photo 3.3 The forces exerted by the children 
upon the wagon can be replaced with an 
equivalent force-couple system when analyzing 
the motion of the wagon.

bee02286_ch03_074-157.indd Page 127  6/17/11  3:29 PM user-f494bee02286_ch03_074-157.indd Page 127  6/17/11  3:29 PM user-f494 /203/MHBR246/per28884_disk1of1/0078028884/per28884_pagefiles/203/MHBR246/per28884_disk1of1/0078028884/per28884_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


128 Rigid Bodies: Equivalent Systems of Forces 3.20   FURTHER REDUCTION OF A SYSTEM OF FORCES  
 We saw in Sec. 3.17 that any given system of forces acting on a rigid 
body can be reduced to an equivalent force-couple system at  O  con-
sisting of a force  R  equal to the sum of the forces of the system and 
a couple vector M   R    O   of moment equal to the moment resultant of the 
system. 
    When  R  5 0, the force-couple system reduces to the couple 
vector  M   R    O  . The given system of forces can then be reduced to a 
single couple, called the  resultant couple  of the system. 
    Let us now investigate the conditions under which a given sys-
tem of forces can be reduced to a single force. It follows from Sec. 
3.16 that the force-couple system at  O  can be replaced by a single 
force  R  acting along a new line of action if  R  and  M   R    O   are mutually 
perpendicular. The systems of forces which can be reduced to a 
single force, or  resultant , are therefore the systems for which the 
force  R  and the couple vector  M   R    O   are mutually perpendicular. While 
this condition  is generally not satisfied  by systems of forces in space, 
it will be satisfied  by systems consisting of (1) concurrent forces, 
(2) coplanar forces, or (3) parallel forces. These three cases will be 
discussed separately.  

   1.    Concurrent forces  are applied at the same point and can there-
fore be added directly to obtain their resultant  R . Thus, they 
always reduce to a single force. Concurrent forces were dis-
cussed in detail in Chap. 2.  

   2.    Coplanar forces  act in the same plane, which may be assumed to 
be the plane of the figure ( Fig. 3.43  a ). The sum  R  of the forces 
of the system will also lie in the plane of the figure, while the 
moment of each force about  O , and thus the moment resultant 
 M   R    O  , will be perpendicular to that plane. The force-couple system 
at  O  consists, therefore, of a force  R  and a couple vector M   R    O   
which are mutually perpendicular (Fig. 3.43 b ).†  They can be 
reduced to a single force  R  by moving  R  in the plane of the figure 
until its moment about  O  becomes equal to  M  R O. The distance 
from  O  to the line of action of  R  is  d 5 M  R OyR (Fig. 3.43 c ).

†Since the couple vector  M   R    O   is perpendicular to the plane of the figure, it has been 
represented by the symbol   l. A counterclockwise couple   l represents a vector pointing 
out of the paper, and a clockwise couple   i represents a vector pointing into the paper.   

F1

F2

F3

x

y

O

(a)

=
x

y

O

(b)

MO
R

R

=
x

y

O

(c)

R

A

d = MO/RR

 Fig. 3.43   
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129     As noted in Sec. 3.17, the reduction of a system of forces 
is considerably simplified if the forces are resolved into rectan-
gular components. The force-couple system at  O  is then char-
acterized by the components ( Fig. 3.44  a )

 Rx 5 oFx  Ry 5 oFy  Mz
R 5 MO

R 5 oMO (3.59)   

    To reduce the system to a single force  R , we express that the 
moment of  R  about  O  must be equal to  M   R    O  . Denoting by  x  and  
y  the coordinates of the point of application of the resultant 
and recalling formula (3.22) of Sec. 3.8, we write

xRy 2 yRx 5 MO
R   

    which represents the equation of the line of action of  R . We 
can also determine directly the  x  and  y  intercepts of the line 
of action of the resultant by noting that  M   R    O   must be equal to 
the moment about  O  of the  y  component of  R  when  R  is 
attached at  B  (Fig. 3.44 b ) and to the moment of its  x  compo-
nent when  R  is attached at  C  (Fig. 3.44 c ). 

 3.    Parallel forces  have parallel lines of action and may or may not 
have the same sense. Assuming here that the forces are parallel to 
the  y  axis ( Fig. 3.45  a), we note that their sum  R  will also be paral-
lel to the  y  axis. On the other hand, since the moment of a given 
force must be perpendicular to that force, the moment about 
 O  of each force of the system, and thus the moment resultant 
 M   R    O, will lie in the  zx plane. The force-couple system at  O  consists, 

x

y

O

(a)

MO
R

Rx

Ry
R

=
x

y

O

(b)

Rx

Ry

R

=
B

x = MO /Ry
R

x

y

O

(c)

Rx

Ry R

y = – MO /Rx
R

C

Fig. 3.44   
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=

y

x

z

O

(b)

MO
R

Mz
R k

Mx
R i

R

=

y

x

z

O

(c)

r
A

x

z

R

 Fig. 3.45   

3.20   Further Reduction of a System of Forces  
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130 Rigid Bodies: Equivalent Systems of Forces  therefore, of a force  R  and a couple   vector  M   R    O which are mutually 
perpendicular (Fig. 3.45 b ). They can be reduced to a single force 
 R  (Fig. 3.45 c ) or, if  R  5 0, to a single couple of moment  M   R    O.

     In practice, the force-couple system at  O  will be charac-
terized by the components

 Ry 5 oFy  MR
x 5 oMx  MR

z 5 oMz (3.60)   

    The reduction of the system to a single force can be carried 
out by moving  R  to a new point of application  A ( x , 0,  z ) chosen 
so that the moment of  R  about  O  is equal to  M   R    O  . We write

 r 3 R 5 MR
O

 (xi 1 zk) 3 Ryj 5 Mx
Ri 1 Mz

Rk

    By computing the vector products and equating the coefficients 
of the corresponding unit vectors in both members of the equa-
tion, we obtain two scalar equations which define the coordi-
nates of  A :

  2zRy 5 MR
x  xRy 5 MR

z

    These equations express that the moments of  R  about the  x  
and  z  axes must, respectively, be equal to  M R  x   and  M R  z  .     

*3.21    REDUCTION OF A SYSTEM 
OF FORCES TO A WRENCH  

In the general case of a system of forces in space, the equivalent force-
couple system at  O  consists of a force  R  and a couple vector  M   R    O   which 
are not perpendicular, and neither of which is zero ( Fig. 3.46  a ). Thus, 
the system of forces  cannot  be reduced to a single force or to a single 
couple. The couple vector, however, can be replaced by two other 
couple vectors obtained by resolving  M   R    O   into a component  M  1  along 
 R  and a component  M  2  in a plane perpendicular to  R  (Fig. 3.46b ). 
The couple vector  M  2  and the force  R  can then be replaced by a 
single force  R  acting along a new line of action. The original system 
of forces thus reduces to  R  and to the couple vector  M  1  (Fig. 3.46 c ), 
i.e., to  R  and a couple acting in the plane perpendicular to  R . This 
particular force-couple system is called a  wrench  because the result-
ing combination of push and twist is the same as that which would 
be caused by an actual wrench. The line of action of  R  is known as 
the  axis of the wrench , and the ratio  p 5 M  1/ R  is called the  pitch  

 Fig. 3.46   

(a)

O

MO
R

=

R

M2

(b)

O =

M1

R

(c)

O

M1

R

A

Photo 3.4 The parallel wind forces acting on 
the highway signs can be reduced to a single 
equivalent force. Determining this force can 
simplify the calculation of the forces acting on 
the supports of the frame to which the signs are 
attached.
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131of the   wrench. A wrench, therefore, consists of two collinear vectors, 
namely, a force  R  and a couple vector

   M1 5 pR (3.61)   

  Recalling the expression (3.35) obtained in Sec. 3.9 for the projection 
of a vector on the line of action of another vector, we note that the 
projection of  M   R    O   on the line of action of  R  is

  M1 5
R ? MR

O

R
   

 Thus, the pitch of the wrench can be expressed as † 

 p 5
M1

R
5

R ? MR
O

R2  
(3.62)

  To define the axis of the wrench, we can write a relation involv-
ing the position vector  r  of an arbitrary point  P  located on that axis. 
Attaching the resultant force  R  and couple vector  M  1  at  P  ( Fig. 3.47 ) 
and expressing that the moment about  O  of this force-couple system 
is equal to the moment resultant  M   R    O    of the original force system, 
we write

   M1 1 r 3 R 5 MR
O (3.63)  

 or, recalling Eq. (3.61),

   pR 1 r 3 R 5 MR
O (3.64)   

†The expressions obtained for the projection of the couple vector on the line of action 
of  R  and for the pitch of the wrench are independent of the choice of point  O . Using 
the relation (3.53) of Sec. 3.17, we note that if a different point  O 9 had been used, the 
numerator in (3.62) would have been

R ? MR
O9 5 R ? (MR

O 1 s 3 R) 5 R ? MR
O 1 R ? (s 3 R)

Since the mixed triple product  R · (s 3 R ) is identically equal to zero, we have

R ? MR
O9 5 R ? MR

O

Thus, the scalar product  R  ?  MR
O is independent of the choice of point  O .  

O

MO
R

R

M1

O= R

Axis of wrench

P

r

Fig. 3.47    

3.21 Reduction of a System of Forces
to a Wrench  

Photo 3.5 The pushing-turning action 
associated with the tightening of a screw 
illustrates the collinear lines of action of the force 
and couple vector that constitute a wrench.
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SAMPLE PROBLEM 3.8 

 A 4.80-m-long beam is subjected to the forces shown. Reduce the given 
system of forces to ( a ) an equivalent force-couple system at  A, (b)  an equiva-
lent force-couple system at  B, (c)  a single force or resultant. 
   Note . Since the reactions at the supports are not included in the 
given system of forces, the given system will not maintain the beam in 
equilibrium. 

150 N 600 N 100 N 250 N

A B

1.6 m 1.2 m 2 m

A B

150 j – 600 j 100 j – 250 j

1.6 i
2.8 i

4.8 i

A B

– (600 N) j

– (1880 N•m) k

A B

– (600 N) j
– (1880 N•m) k

(2880 N•m) k4.8 m

A

– (600 N) j

(1000 N•m) k
B

A
B

– (600 N) j

x

132

     SOLUTION  

 a.  Force-Couple System at  A . The force-couple system at  A  equivalent to 
the given system of forces consists of a force  R  and a couple  MR

A    defined 
as follows:

 R 5 oF
 5 (150 N)j 2 (600 N)j 1 (100 N)j 2 (250 N)j 5 2(600 N)j
 MR

A 5 o(r 3 F)
 5 (1.6i) 3 (2600j) 1 (2.8i) 3 (100j) 1 (4.8i) 3 (2250j)
 5 2(1880 N ? m)k

   The equivalent force-couple system at  A  is thus

R 5 600 Nw  MR
A 5 1880 N ? m i ◀     

  b.   Force-Couple System at  B .   We propose to find a force-couple system 
at  B  equivalent to the force-couple system at  A  determined in part  a . The 
force  R  is unchanged, but a new couple  MR

B    must be determined, the 
moment of which is equal to the moment about  B  of the force-couple sys-
tem determined in part  a . Thus, we have

   MR
B 5 MR

A 1 BA
¡

3 R   
  5 2(1880 N ? m)k 1 (24.8 m)i 3 (2600 N)j   
  5 2(1880 N ? m)k 1 (2880 N ? m)k 5 1(1000 N ? m)k    

 The equivalent force-couple system at  B  is thus

  R 5 600 Nw  MR
B 5 1000 N ? m l ◀   

  c.   Single Force or Resultant.   The resultant of the given system of forces 
is equal to  R , and its point of application must be such that the moment of 
 R  about  A  is equal to  MR

A   . We write

 r 3 R 5 MR
A

xi 3 (2600 N)j 5 2(1880 N ? m)k
 2x(600 N)k 5 2(1880 N ? m)k

   and conclude that  x  5 3.13 m. Thus, the single force equivalent to the given 
system is defined as

R 5 600 Nw  x 5 3.13 m ◀      
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 SAMPLE PROBLEM 3.9 

 Four tugboats are used to bring an ocean liner to its pier. Each tugboat 
exerts a 5000-lb force in the direction shown. Determine ( a ) the equivalent 
force-couple system at the foremast  O, (b)  the point on the hull where a 
single, more powerful tugboat should push to produce the same effect as 
the original four tugboats.      

3
2 3

4

1

4

60°

50 ft 90 ft

110 ft

200 ft
O

70 ft

45°

100

ft

100

ft

100

ft

 SOLUTION  

  a.   Force-Couple System at  O . Each of the given forces is resolved into 
components in the diagram shown (kip units are used). The force-couple 
system at  O  equivalent to the given system of forces consists of a force  R  
and a couple  M   R    O    defined as follows:

 R 5 oF
 5 (2.50i 2 4.33j) 1 (3.00i 2 4.00j) 1 (25.00j) 1 (3.54i 1 3.54j)
 5 9.04i 2 9.79j

 MR
O 5 o(r 3 F)

 5 (290i 1 50j) 3 (2.50i 2 4.33j)
  1 (100i 1 70j) 3 (3.00i 2 4.00j)
  1 (400i 1 70j) 3 (25.00j)
  1 (300i 2 70j) 3 (3.54i 1 3.54j)
 5 (390 2 125 2 400 2 210 2 2000 1 1062 1 248)k
 5 21035k

The equivalent force-couple system at  O  is thus

R 5 (9.04 kips)i 2 (9.79 kips)j  MR
O 5 2(1035 kip ? ft)k

or R 5 13.33 kips c47.3°  MR
O 5 1035 kip ? ft i ◀

   Remark.   Since all the forces are contained in the plane of the figure, 
we could have expected the sum of their moments to be perpendicular to 
that plane. Note that the moment of each force component could have been 
obtained directly from the diagram by first forming the product of its mag-
nitude and perpendicular distance to  O  and then assigning to this product 
a positive or a negative sign depending upon the sense of the moment.    

 b.   Single Tugboat.   The force exerted by a single tugboat must be equal 
to  R , and its point of application  A  must be such that the moment of  R  
about  O  is equal to  MR

O. Observing that the position vector of  A  is

r 5 xi 1 70j   

we write

 r 3 R 5 MR
O

 (xi 1 70j) 3 (9.04i 2 9.79j) 5 21035k
2x(9.79)k 2 633k 5 21035k x 5 41.1 ft ◀

– 4.33 j – 4 j – 5 j
F1

F2 F3

F4

3 i

3.54 j

3.54 i

2.5i
50 ft

110 ft

200 ft
O

70 ft90 ft 100

ft

100

ft

100

ft

MO =  –1035 kR

9.04 i

–9.79 j

47.3°

R

O

70 ft

x

9.04 i

– 9.79 jR

A

O
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SAMPLE PROBLEM 3.10 

 Three cables are attached to a bracket as shown. Replace the forces 
exerted by the cables with an equivalent force-couple system at  A .   

x

y

z

O

(17.68 N•m) j

(439 N) j – (507 N) k

(1607 N) i
(118.9 N•m) k

(30 N•m) i

 SOLUTION 

 We first determine the relative position vectors drawn from point  A  to the 
points of application of the various forces and resolve the forces into rect-
angular components. Observing that  F   B   5 (700 N)L  BE   where

  LBE 5
BE
¡

BE
5

75i 2 150j 1 50k

175
   

we have, using meters and newtons,

   rB/A 5 AB
¡

5 0.075i 1 0.050k     FB 5 300i 2 600j 1 200k  
  rC/A 5 AC

¡
5 0.075i 2 0.050k     FC 5 707i   2 707k  

  rD/A 5 AD
¡

5 0.100i 2 0.100j      FD 5 600i 1 1039j    

 The force-couple system at  A  equivalent to the given forces consists 
of a force  R  5 o F  and a couple  M   R   A 5 o( r 3 F ). The force  R  is readily 
obtained by adding respectively the  x, y , and  z  components of the forces:

R 5 oF 5 (1607 N)i 1 (439 N)j 2 (507 N)k ◀

The computation of  M   R   A  will be facilitated if we express the moments of the 
forces in the form of determinants (Sec. 3.8):

 rByA 3 FB 5 † i  j k
0.075  0 0.050
300  2600 200

†  5 30i   245k

 rCyA 3 FC 5 † i  j k
0.075  0 20.050
707  0 2707

†  5  17.68j

 rDyA 3 FD 5 † i j    k
0.100 20.100    0
600 1039    0

   †  5    163.9k

 Adding the expressions obtained, we have

  MA
R 5 o(r 3 F) 5 (30 N ? m)i 1 (17.68 N ? m)j 1 (118.9 N ? m)k   ◀

 The rectangular components of the force  R  and the couple  M   R   A are shown 
in the adjoining sketch.    

50 mm

50 mm

100 mm

100 mm

75 mm 1000 N

1200 N
700 N

x

y

z

O

A
B

C

D

45º

45º

30º

60º

E(150 mm, –50 mm, 100 mm)
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A

B

C

4 ft
5 ft

5 ft

6 ft

40 kips

20 kips

12 kips

x

z

O
8 kips

y  SAMPLE PROBLEM 3.11 

 A square foundation mat supports the four columns shown. Determine the 
magnitude and point of application of the resultant of the four loads.      

x

y

z

O

– (80 kips) j

xi

zk

x

z

O– (280 kip•ft)k

– (80 kips) j

(240 kip•ft) i

y

 SOLUTION 

 We first reduce the given system of forces to a force-couple system at the 
origin  O  of the coordinate system. This force-couple system consists of a 
force  R  and a couple vector  M   R    O   defined as follows:

  R 5 oF  MR
O 5 o(r 3 F)   

 The position vectors of the points of application of the various forces are 
determined, and the computations are arranged in tabular form.        

r, ft     F, kips   r 3 F,  kip · ft    

 0 240 j   0
 10 i  212 j   2 120k   
 10 i 1 5k   28j  40i 2 80 k   
  4i 1 10 k   220 j   200 i  2 80 k   

   R 5 280 j   MR O 5 240 i  2 280 k    

 Since the force  R  and the couple vector  M   R O are mutually perpendicu-
lar, the force-couple system obtained can be reduced further to a single force 
 R . The new point of application of  R  will be selected in the plane of the mat 
and in such a way that the moment of  R  about  O  will be equal to  M   R O. Denot-
ing by  r  the position vector of the desired point of application, and by  x  and 
 z  its coordinates, we write

 r 3 R 5 MR
O

 (xi 1 zk) 3 (280j) 5 240i 2 280k
 280xk 1 80zi 5 240i 2 280k

 from which it follows that

 280x 5 2280   80z 5 240
 x 5 3.50 ft    z 5 3.00 ft   

 We conclude that the resultant of the given system of forces is

R 5 80 kipsw  at x 5 3.50 ft, z 5 3.00 ft    ◀    

135
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 SAMPLE PROBLEM 3.12 

 Two forces of the same magnitude  P  act on a cube of side  a  as shown. 
Replace the two forces by an equivalent wrench, and determine ( a ) the 
magnitude and direction of the resultant force  R , ( b ) the pitch of the 
wrench, ( c ) the point where the axis of the wrench intersects the  yz  plane.     

y

x
z

MO
R

R

O
Pi

Pj

– Pai

– Pak

y

x
z

R

O

=
r

M1 = pR

yj

zk

 SOLUTION  

 Equivalent Force-Couple System at  O .   We first determine the equivalent 
force-couple system at the origin  O . We observe that the position vectors 
of the points of application  E  and  D  of the two given forces are  r   E  5
a  i 1  a  j and  r   D  5 a  j 1  a  k. The resultant  R  of the two forces and their 
moment resultant  M   R    O   about  O  are

 R 5 F1 1 F2 5 Pi 1 Pj 5 P(i 1 j) (1)
 MR

O 5 rE 3 F1 1 rD 3 F2 5 (ai 1 aj) 3 Pi 1 (aj 1 ak) 3 Pj
 5 2Pak 2 Pai 5 2Pa(i 1 k) (2)

  a.   Resultant Force R.   It follows from Eq. (1) and the adjoining sketch 
that the resultant force  R  has the magnitude  R 5 P12, lies in the  xy  plane, 
and forms angles of 45° with the  x  and  y  axes. Thus

  R 5 P12   ux 5 uy 5 45°   uz 5 90°      ◀

  b.   Pitch of Wrench.   Recalling formula (3.62) of Sec. 3.21 and Eqs. (1) 
and (2) above, we write

  p 5
R ? MR

O

R2 5
P(i 1 j) ? (2Pa)(i 1 k)

(P22)2
5

2P2a(1 1 0 1 0)

2P2  p 5 2
a
2

        ◀

  c.  Axis of Wrench.   It follows from the above and from Eq. (3.61) that the 
wrench consists of the force  R  found in (1) and the couple vector

   M1 5 pR 5 2
a
2

P(i 1 j) 5 2
Pa
2

 (i 1 j) (3)   

 To find the point where the axis of the wrench intersects the  yz  plane, we 
express that the moment of the wrench about  O  is equal to the moment 
resultant  M   R    O   of the original system:

  M1 1 r 3 R 5 MR
O

 or, noting that  r  5  y  j 1  z  k and substituting for  R,  M   R    O  , and  M  1 from Eqs. 
(1), (2), and (3),

   2
Pa
2

(i 1 j) 1 (yj 1 zk) 3 P(i 1 j) 5 2Pa(i 1 k)   

   2
Pa
2

 i 2
Pa
2

j 2 Pyk 1 Pzj 2 Pzi 5 2Pai 2 Pak   

 Equating the coefficients of  k , and then the coefficients of  j , we find

  y 5 a  z 5 a/2 ◀     

y

x
z

A

B

C

D
E

O

F1 = Pi
F2 = Pj

a

a

a
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 SOLVING PROBLEMS
ON YOUR OWN  

 This lesson was devoted to the reduction and simplification of force systems. 
In solving the problems which follow, you will be asked to perform the opera-

tions discussed below.  

1.    Reducing a force system to a force and a couple at a given point A . The 
force is the  resultant   R  of the system and is obtained by adding the various forces; 
the moment of the couple is the  moment resultant  of the system and is obtained 
by adding the moments about  A  of the various forces. We have

  R 5 oF  MR
A 5 o(r 3 F)

where the position vector  r  is drawn from  A to any point  on the line of action of  F .  

   2.    Moving a force-couple system from point A to point B.  If you wish to 
reduce a given force system to a force-couple system at point  B  after you have 
reduced it to a force-couple system at point  A , you need not recompute the 
moments of the forces about  B . The resultant  R  remains unchanged, and the new 
moment resultant  M   R    B   can be obtained by adding to  M   R    A   the moment about  B  of 
the force  R  applied at  A  [Sample Prob. 3.8]. Denoting by s the vector drawn from 
 B  to  A , you can write

  MR
B 5 MR

A 1 s 3 R

 3.    Checking whether two force systems are equivalent . First reduce each 
force system to a force-couple system  at the same, but arbitrary, point A  (as 
explained in paragraph 1). The two systems are equivalent (that is, they have the 
same effect on the given rigid body) if the two force-couple systems you have 
obtained are identical, that is, if

  oF 5 oF9  and  oMA 5 oM9A

You should recognize that if the first of these equations is not satisfied, that is, if 
the two systems do not have the same resultant  R , the two systems cannot be 
equivalent and there is then no need to check whether or not the second equation 
is satisfied.  

   4.    Reducing a given force system to a single force . First reduce the given 
system to a force-couple system consisting of the resultant  R  and the couple vector 
 M   R    A   at some convenient point  A  (as explained in paragraph 1). You will recall from 
the previous lesson that further reduction to a single force is possible  only if the 

(continued)
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force   R   and the couple vector   M   R    A    are mutually perpendicular . This will certainly 
be the case for systems of forces which are either  concurrent, coplanar , or  parallel . 
The required single force can then be obtained by moving  R  until its moment 
about  A  is equal to  M  R    A  , as you did in several problems of the preceding lesson. 
More formally, you can write that the position vector  r  drawn from  A  to any point 
on the line of action of the single force  R  must satisfy the equation

  r 3 R 5 MR
A

This procedure was used in Sample Probs. 3.8, 3.9, and 3.11.  

   5.   Reducing a given force system to a wrench . If the given system is comprised 
of forces which are not concurrent, coplanar, or parallel, the equivalent force-
couple system at a point  A  will consist of a force  R  and a couple vector  M  R    A        which, 
in general,  are not mutually perpendicular . (To check whether  R  and  M  R   A  are 
mutually perpendicular, form their scalar product. If this product is zero, they are 
mutually perpendicular; otherwise, they are not.) If  R  and  M  R    A     are not mutually 
perpendicular, the force-couple system (and thus the given system of forces)  can-
not be reduced to a single force . However, the system can be reduced to a  wrench —
the combination of a force  R  and a couple vector  M  1  directed along a common 
line of action called the  axis of the wrench  (Fig. 3.47). The ratio  p 5 M  1 / R  is called 
the  pitch  of the wrench. 

 To reduce a given force system to a wrench, you should follow these steps:

    a.   Reduce the given system to an equivalent force-couple system ( R ,  M   R    O  ), 
typically located at the origin  O .  
   b.   Determine the pitch  p  from Eq. (3.62)

   p 5
M1

R
5

R ? MR
O

R2    (3.62)

  and the couple vector from  M  1 5  p  R .  
   c.   Express that the moment about  O  of the wrench is equal to the moment 
resultant  M   R    O   of the force-couple system at  O :

  M1 1 r 3 R 5 MR
O (3.63)

  This equation allows you to determine the point where the line of action of the 
wrench intersects a specified plane, since the position vector  r  is directed from  O  
to that point.      

 These steps are illustrated in Sample Prob. 3.12. Although the determination of a 
wrench and the point where its axis intersects a plane may appear difficult, the 
process is simply the application of several of the ideas and techniques developed 
in this chapter. Thus, once you have mastered the wrench, you can feel confident 
that you understand much of Chap. 3.  
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PROBLEMS

139

PPPPPPPPPPPPPRRRRRRRRRRRRROOOOOOOOOOOOBBBBBBBBBBBBBLLLLLLLLLLLLLEEEEEEEEEEEEEMMMMMMMMMMMMMSSSSSSSSSSSSS PROBLEMS  

3.101 A 3-m-long beam is subjected to a variety of loadings. (a) Replace 
each loading with an equivalent force-couple system at end A of 
the beam. (b) Which of the loadings are equivalent?

3.102 A 3-m-long beam is loaded as shown. Determine the loading of 
Prob. 3.101 that is equivalent to this loading.

3.103 Determine the single equivalent force and the distance from point 
A to its line of action for the beam and loading of (a) Prob. 3.101a, 
(b) Prob. 3.101b, (c) Prob. 3.102.

 3.104 Five separate force-couple systems act at the corners of a piece of 
sheet metal, which has been bent into the shape shown. Determine 
which of these systems is equivalent to a force F � (10 lb)i and a 
couple of moment M � (15 lb � ft)j � (15 lb � ft)k located at the 
origin.

A B

200 N

400 N•m

3 m
300 N

300 N

400 N•m

200 N
(a)

300 N

400 N•m

200 N

(c)

500 N

400 N•m

(d)(b)

800 N
400 N•m

1000 N•m 1000 N•m
300 N

200 N

400 N•m

300 N

(e)

300 N

400 N•m
800 N

(g)

250 N

400 N•m

(h)( f )

1000 N•m

250 N

  Fig. P3.101     

A B

300 N

500 N•m 200 N•m

3 m
200 N

  Fig. P3.102     

5 lb•ft

5 lb•ft
15 lb•ft

5 lb•ft

15 lb•ft

15 lb•ft

15 lb•ft

15 lb•ft

80 lb•ft
25 lb•ft

10 lb

10 lb

10 lb

10 lb

10 lb

y

z

O

H

A

C

J

I

B
D

G

x

F

E

2 ft

2 ft
2 ft

1 ft

2.5 ft

  Fig. P3.104     
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140 Rigid Bodies: Equivalent Systems of Forces  3.105 Three horizontal forces are applied as shown to a vertical cast-iron 
arm. Determine the resultant of the forces and the distance from the 
ground to its line of action when (a) P � 200 N, (b) P � 2400 N, 
(c) P � 1000 N.

 3.106 Three stage lights are mounted on a pipe as shown. The lights 
at A and B each weigh 4.1 lb, while the one at C weighs 3.5 lb. 
(a) If d � 25 in., determine the distance from D to the line of 
action of the resultant of the weights of the three lights. (b) Deter-
mine the value of d so that the resultant of the weights passes 
through the midpoint of the pipe.

  Fig. P3.107     

A

B

C

6 ft

6 ft

  Fig. P3.106     

D

B

C

E

d

34 in.

10 in.

84 in.

A

 3.107 The weights of two children sitting at ends A and B of a seesaw 
are 84 lb and 64 lb, respectively. Where should a third child sit 
so that the resultant of the weights of the three children will pass 
through C if she weighs (a) 60 lb, (b) 52 lb?

 3.108 A couple of magnitude M � 54 lb � in. and the three forces shown 
are applied to an angle bracket. (a) Find the resultant of this sys-
tem of forces. (b) Locate the points where the line of action of the 
resultant intersects line AB and line BC.

 3.109 A couple M and the three forces shown are applied to an angle 
bracket. Find the moment of the couple if the line of action of 
the resultant of the force system is to pass through (a) point A, 
(b) point B, (c) point C.

600 N

400 N

A

B

C

D

P

150 mm

150 mm

150 mm

  Fig. P3.105     

A B

C

10 lb 30 lb

60°
12 in.

45 lb

M 8 in.

 Fig. P3.108      and P3.109
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141Problems 3.110 A 32-lb motor is mounted on the floor. Find the resultant of the 
weight and the forces exerted on the belt, and determine where 
the line of action of the resultant intersects the floor.

 3.111 A machine component is subjected to the forces and couples shown. 
The component is to be held in place by a single rivet that can resist a 
force but not a couple. For P � 0, determine the location of the rivet 
hole if it is to be located (a) on line FG, (b) on line GH.

A B

D E
C

500 N

600 N

760 N

340 N

500 mm
200 mm

375 mm

  Fig. P3.116     

C

A

B D F

E

G

240 lb 160 lb 300 lb

40°

180 lb

70°

x

y
4 ft

8 ft 8 ft

8 ft 8 ft 8 ft

6 ft

 Fig. P3.113     

 3.112 Solve Prob. 3.111, assuming that P � 60 N.

 3.113 A truss supports the loading shown. Determine the equivalent 
force acting on the truss and the point of intersection of its line 
of action with a line drawn through points A and G.

 3.114 Four ropes are attached to a crate and exert the forces shown. If the 
forces are to be replaced with a single equivalent force applied at a 
point on line AB, determine (a) the equivalent force and the distance 
from A to the point of application of the force when a 5 30�, (b) the 
value of a so that the single equivalent force is applied at point B.

C

A B

D
F

E

G H

P

200 N
240 mm

120 N

70°
15°

50 mm

50 mm

50 mm

80 N
42 N•m

40 N•m 180 mm

640 mm

520 mm

  Fig. P3.111

 3.115 Solve Prob. 3.114, assuming that the 90-lb force is removed.

 3.116 Four forces act on a 700 � 375-mm plate as shown. (a) Find the 
resultant of these forces. (b) Locate the two points where the line 
of action of the resultant intersects the edge of the plate.

 3.117 Solve Prob. 3.116, assuming that the 760-N force is directed to the 
right.

  Fig. P3.110     

140 lb

30°

60 lb

O

W

2 in.

2 in.

A B

D C

46 in.

66 in.

10 in.

25°

65°

36 in.

100 lb

160 lb

400 lb

90 lb

a

 Fig. P3.114 
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142 Rigid Bodies: Equivalent Systems of Forces  3.118 As follower AB rolls along the surface of member C, it exerts a con-
stant force F perpendicular to the surface. (a) Replace F with an 
equivalent force-couple system at the point D obtained by drawing 
the perpendicular from the point of contact to the x axis. (b) For 
a � 1 m and b � 2 m, determine the value of x for which the 
moment of the equivalent force-couple system at D is maximum.

 3.119 As plastic bushings are inserted into a 60-mm-diameter cylindri-
cal sheet metal enclosure, the insertion tools exert the forces shown 
on the enclosure. Each of the forces is parallel to one of the coor-
dinate axes. Replace these forces with an equivalent force-couple 
system at C.

 3.120 Two 150-mm-diameter pulleys are mounted on line shaft AD. The 
belts at B and C lie in vertical planes parallel to the yz plane. Replace 
the belt forces shown with an equivalent force-couple system at A.

y

b

a

C

B

A

F

D x

y = b (1 –  )x2

a2

  Fig. P3.118     

z

200 mm

40 mm

160 mm

100 mm

20 mm

x

50 N

250 N

120 N

300 N

y

B

E

D

A

  Fig. P3.121

x

y

z

A
B

C

D

20 mm

30 mm

17 N 12 N

21 N
16 N

80 mm

60 mm

  Fig. P3.119    

A

B

C

D

x

y

z

20º

10º

10º 155 N

240 N

145 N

215 N

180 mm

225 mm

225 mm

  Fig. P3.120     

 3.121 Four forces are applied to the machine component ABDE as shown. 
Replace these forces with an equivalent force-couple system at A.
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143Problems 3.122 While using a pencil sharpener, a student applies the forces and 
couple shown. (a) Determine the forces exerted at B and C know-
ing that these forces and the couple are equivalent to a force-
couple system at A consisting of the force R � (2.6 lb)i � Ryj � 
(0.7 lb)k and the couple MR

A � Mxi � (1.0 lb � ft)j � (0.72 lb � ft)k. 
(b) Find the corresponding values of Ry and Mx.

B

B

1 lb•ft

3.5 in.

1.75 in.

2 in.

x

y

z

A

C
Cxi

–Czk

–Cyj

Fig. P3.122     

 3.123 A blade held in a brace is used to tighten a screw at A. (a) Deter-
mine the forces exerted at B and C, knowing that these forces are 
equivalent to a force-couple system at A consisting of R � �(30 N)i 
� Ryj � Rzk and MR

A � �(12 N � m)i. (b) Find the corresponding 
values of Ry and Rz. (c) What is the orientation of the slot in the 
head of the screw for which the blade is least likely to slip when 
the brace is in the position shown?

x

B

Czk

Cxi

Cyj

–B k

200 mm

200 mm

150 mm

y

z

A

C

 Fig. P3.123   
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144 Rigid Bodies: Equivalent Systems of Forces

 3.125 Assuming u � 60� in Prob. 3.124, replace the two 40-lb forces with 
an equivalent force-couple system at D and determine whether 
the plumber’s action tends to tighten or loosen the joint between 
(a) pipe CD and elbow D, (b) elbow D and pipe DE. Assume all 
threads to be right-handed.

 3.126 As an adjustable brace BC is used to bring a wall into plumb, the 
force-couple system shown is exerted on the wall. Replace this 
force-couple system with an equivalent force-couple system at A 
if R � 21.2 lb and M � 13.25 lb � ft.

 3.127 Three children are standing on a 5 � 5-m raft. If the weights of 
the children at points A, B, and C are 375 N, 260 N, and 400 N, 
respectively, determine the magnitude and the point of application 
of the resultant of the three weights.

 3.128 Three children are standing on a 5 � 5-m raft. The weights of 
the children at points A, B, and C are 375 N, 260 N, and 400 N, 
respectively. If a fourth child of weight 425 N climbs onto the raft, 
determine where she should stand if the other children remain in 
the positions shown and the line of action of the resultant of the 
four weights is to pass through the center of the raft.  Fig. P3.127 and P3.128          

A
B

C
x

y

z

E

F

G

O
0.5 m

0.25 m 0.25 m

1.5 m

1 m

2 m

A

B

R

M

C
x

y

z

64 in.

96 in.

42 in.

48 in.

  Fig. P3.126     

 3.124 In order to unscrew the tapped faucet A, a plumber uses two pipe 
wrenches as shown. By exerting a 40-lb force on each wrench, at 
a distance of 10 in. from the axis of the pipe and in a direction 
perpendicular to the pipe and to the wrench, he prevents the pipe 
from rotating, and thus avoids loosening or further tightening the 
joint between the pipe and the tapped elbow C. Determine (a) the 
angle u that the wrench at A should form with the vertical if elbow 
C is not to rotate about the vertical, (b) the force-couple system at 
C equivalent to the two 40-lb forces when this condition is satisfied.

40 lb

40 lb

y

x
z

25 in.

18 in.

7.5 in.

10 in.

�

10 in.

A

B

C

D

E

F

7.5 in.

  Fig. P3.124     
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145Problems

 3.130 Four signs are mounted on a frame spanning a highway, and the 
magnitudes of the horizontal wind forces acting on the signs are 
as shown. Determine a and b so that the point of application of 
the resultant of the four forces is at G.

 *3.131 A group of students loads a 2 � 3.3-m flatbed trailer with two 
0.66 � 0.66 � 0.66-m boxes and one 0.66 � 0.66 � 1.2-m box. 
Each of the boxes at the rear of the trailer is positioned so that it 
is aligned with both the back and a side of the trailer. Determine 
the smallest load the students should place in a second 0.66 � 
0.66 � 1.2-m box and where on the trailer they should secure it, 
without any part of the box overhanging the sides of the trailer, if 
each box is uniformly loaded and the line of action of the resultant 
of the weights of the four boxes is to pass through the point of 
intersection of the centerlines of the trailer and the axle. (Hint: 
Keep in mind that the box may be placed either on its side or on 
its end.)

 *3.132 Solve Prob. 3.131 if the students want to place as much weight as 
possible in the fourth box and at least one side of the box must 
coincide with a side of the trailer.

 *3.133 A piece of sheet metal is bent into the shape shown and is acted 
upon by three forces. If the forces have the same magnitude P, 
replace them with an equivalent wrench and determine (a) the 
magnitude and the direction of the resultant force R, (b) the pitch 
of the wrench, (c) the axis of the wrench.

  Fig. P3.129      and P3.130  

D

A

B

C x

y

z

E

F

G

H

a

2.5 ft

90 lb

160 lb

50 lb

105 lb

9 ft

5.5 ft

b

5 ft

8 ft

3 ft

224 N

392 N

176 N

1.3 m

A

B

C

1.5 m

1.8 m

  Fig. P3.131     

  Fig. P3.133     

A

B

C

D

E

F
G

H
O

x

y

z

F1

F2

F3

a

a

a

3
2 a

a

 3.129 Four signs are mounted on a frame spanning a highway, and the 
magnitudes of the horizontal wind forces acting on the signs 
are as shown. Determine the magnitude and the point of appli-
cation of the resultant of the four wind forces when a � 1 ft 
and b � 12 ft.
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146 Rigid Bodies: Equivalent Systems of Forces  *3.134 Three forces of the same magnitude P act on a cube of side a as 
shown. Replace the three forces with an equivalent wrench and 
determine (a) the magnitude and direction of the resultant force 
R, (b) the pitch of the wrench, (c) the axis of the wrench.

 *3.135 and *3.136 The forces and couples shown are applied to two 
screws as a piece of sheet metal is fastened to a block of wood. 
Reduce the forces and the couples to an equivalent wrench and 
determine (a) the resultant force R, (b) the pitch of the wrench, 
(c) the point where the axis of the wrench intersects the xz plane.

 *3.137 and *3.138 Two bolts at A and B are tightened by applying the 
forces and couples shown. Replace the two wrenches with a single 
equivalent wrench and determine (a) the resultant R, (b) the pitch 
of the single equivalent wrench, (c) the point where the axis of the 
wrench intersects the xz plane.

11 lb
6 lb•in.

6 lb•in.

10 lb

15 in.

x

z

y

A

B

O

20 in.

Fig. P3.135     

1 N•m

4 N•m

15 N

20 N

100 mm

x

z

y

A

O

  Fig. P3.136    

0.1 m

0.3 m

0.6 m

x

z

y

A

B

0.4 m

30 N•m

84 N

32 N•m

80 N

  Fig. P3.137    

10 in.
10 in.

10 in.

30 in.

16 in.

x

z

y

A

B

238 lb•in.

17 lb

26.4 lb

220 lb•in.

Fig. P3.138     

  Fig. P3.134     

y

x

z

A

B

C

D

O

F1
F2

F3

a

a

a
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147Problems *3.139 A flagpole is guyed by three cables. If the tensions in the cables 
have the same magnitude P, replace the forces exerted on the pole 
with an equivalent wrench and determine (a) the resultant force 
R, (b) the pitch of the wrench, (c) the point where the axis of the 
wrench intersects the xz plane.

 *3.140 Two ropes attached at A and B are used to move the trunk of a 
fallen tree. Replace the forces exerted by the ropes with an equiva-
lent wrench and determine (a) the resultant force R, (b) the pitch 
of the wrench, (c) the point where the axis of the wrench intersects 
the yz plane.

 *3.141 and *3.142 Determine whether the force-and-couple system 
shown can be reduced to a single equivalent force R. If it can, 
determine R and the point where the line of action of R intersects 
the yz plane. If it cannot be so reduced, replace the given system 
with an equivalent wrench and determine its resultant, its pitch, 
and the point where its axis intersects the yz plane.

160 mm

120 mm

120 mm

60 mm

60 mm

40 mm

40 mm

50 N

70 NB
C H

D

I

y

A

E

z F
G

x

10 N•m

14 N•m

  Fig. P3.142    

x

y

z

A
B

C

D

E

FG

H

I

160 lb•in.

34 lb

30 lb

K

12 in.

6 in.

6 in.

6 in.

3 in.
8 in.

18 in.18 in.

Fig. P3.141

 Fig. P3.143     

x

y

z

B

A

O
M

R

b

a

A

B
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  Fig. P3.140   

 *3.143 Replace the wrench shown with an equivalent system consisting 
of two forces perpendicular to the y axis and applied respectively 
at A and B.

 *3.144 Show that, in general, a wrench can be replaced with two forces 
chosen in such a way that one force passes through a given point 
while the other force lies in a given plane.

 *3.145 Show that a wrench can be replaced with two perpendicular 
forces, one of which is applied at a given point.

 *3.146 Show that a wrench can be replaced with two forces, one of which 
has a prescribed line of action.
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148

In this chapter we studied the effect of forces exerted on a rigid 
body. We first learned to distinguish between  external  and  internal
forces [Sec. 3.2] and saw that, according to the  principle of transmis-
sibility , the effect of an external force on a rigid body remains 
unchanged if that force is moved along its line of action [Sec. 3.3]. 
In other words, two forces  F  and  F 9 acting on a rigid body at two 
different points have the same effect on that body if they have the 
same magnitude, same direction, and same one of action ( Fig. 3.48 ). 
Two such forces are said to be  equivalent .     

Before proceeding with the discussion of  equivalent systems of forces ,
we introduced the concept of the  vector product of two vectors
[Sec. 3.4]. The vector product

V 5 P 3 Q

 of the vectors  P  and  Q  was defined as a vector perpendicular to the 
plane containing  P  and  Q  ( Fig. 3.49 ), of magnitude

 V 5 PQ sin u (3.1)

 and directed in such a way that a person located at the tip of  V  will 
observe as counterclockwise the rotation through u which brings the 
vector  P  in line with the vector  Q . The three vectors  P, Q , and  V —
taken in that order—are said to form a  right-handed triad . It follows 
that the vector products  Q 3 P  and  P 3 Q  are represented by equal 
and opposite vectors. We have

 Q 3 P 5 2(P 3 Q)   (3.4)   

It also follows from the definition of the vector product of two vec-
tors that the vector products of the unit vectors  i, j , and  k  are

i 3 i 5 0  i 3 j 5 k  j 3 i 5 2k

 and so on. The sign of the vector product of two unit vectors can be 
obtained by arranging in a circle and in counterclockwise order the 
three letters representing the unit vectors ( Fig. 3.50 ): The vector 
product of two unit vectors will be positive if they follow each other 
in counterclockwise order and negative if they follow each other in 
clockwise order. 

The  rectangular components of the vector product   V  of two vectors 
 P  and  Q  were expressed [Sec. 3.5] as

Vx 5 PyQz 2 PzQy
  Vy 5 PzQx 2 PxQz (3.9)

Vz 5 PxQy 2 PyQx

  Principle of transmissibility

Vector product of two vectors    

  Rectangular components 
of vector product    

 REVIEW AND SUMMARY 

F

F'

=

 Fig. 3.48

Q

P

V = P × Q

q

(a)

V

(b)

 Fig. 3.49

i

j

k

 Fig. 3.50
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149 Using a determinant, we also wrote

   V 5 †
i j k

Px Py Pz

Qx Qy Qz

†  (3.10)   

 The moment of a force   F   about a point O  was defined [Sec. 3.6] as 
the vector product

 MO 5 r 3 F (3.11)   

where  r  is the  position vector  drawn from  O  to the point of applica-
tion  A  of the force  F  ( Fig. 3.51 ). Denoting by u the angle between 
the lines of action of  r  and  F , we found that the magnitude of the 
moment of  F  about  O  can be expressed as

   MO 5 rF sin u 5 Fd (3.12)   

 where  d  represents the perpendicular distance from  O  to the line of 
action of  F . 

 The  rectangular components of the moment   M   O    of a force   F  were 
expressed [Sec. 3.8] as

Mx 5 yFz 2 zFy
  My 5 zFx 2 xFz (3.18)

Mz 5 xFy 2 yFx

 where  x, y, z  are the components of the position vector  r  ( Fig. 3.52 ). 
Using a determinant form, we also wrote

   MO 5 † i j k
x y z
Fx Fy Fz

†  (3.19)   

In the more general case of the moment about an arbitrary point  B  
of a force  F  applied at  A , we had

   MB 5 † i j k
xA/B yA/B zA/B

Fx Fy Fz

†  (3.21)   

 where  x A/B  ,  y A/B  , and  z A/B   denote the components of the vector  r   A/B:

xA/B 5 xA 2 xB  yA/B 5 yA 2 yB  zA/B 5 zA 2 zB

 In the case of  problems involving only two dimensions , the force  F  
can be assumed to lie in the  xy  plane. Its moment  M   B   about a point 
 B  in the same plane is perpendicular to that plane ( Fig. 3.53 ) and is 
completely defined by the scalar

 MB 5 (xA 2 xB)Fy 2 (yA 2 yB)Fx (3.23)   

Various methods for the computation of the moment of a force about 
a point were illustrated in Sample Probs. 3.1 through 3.4. 

 The scalar product  of two vectors  P  and  Q  [Sec. 3.9] was denoted 
by  P ? Q  and was defined as the scalar quantity

   P ? Q 5 PQ cos u (3.24)   

 Moment of a force about a point     

Rectangular components of moment    

  Scalar product of two vectors    

 Fig. 3.51  
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O

 Fig. 3.52
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z
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Fy j
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F

A
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MB = MB k

 Fig. 3.53    

Review and Summary
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150 Rigid Bodies: Equivalent Systems of Forces where u is the angle between  P  and  Q  ( Fig. 3.54 ). By expressing the 
scalar product of  P  and  Q  in terms of the rectangular components 
of the two vectors, we determined that

   P ? Q 5 PxQx 1 PyQy 1 PzQz (3.30)   

 The  projection of a vector   P   on an axis OL  ( Fig. 3.55 ) can be obtained 
by forming the scalar product of  P  and the unit vector  l  along  OL . 
We have

 POL 5 P ? l (3.36)   

 or, using rectangular components,

 POL 5 Px cos ux 1 Py cos uy 1 Pz cos uz (3.37)   

where u  x  , u  y  , and u  z   denote the angles that the axis  OL  forms with 
the coordinate axes. 

 The  mixed triple product  of the three vectors  S, P , and  Q  was defined 
as the scalar expression

 S ? (P 3 Q) (3.38)   

 obtained by forming the scalar product of  S  with the vector product 
of  P  and  Q  [Sec. 3.10]. It was shown that

 S ? (P 3 Q) 5 †
Sx Sy Sz

Px Py Pz

Qx Qy Qz

†  (3.41)   

 where the elements of the determinant are the rectangular compo-
nents of the three vectors. 

 The  moment of a force   F   about an axis OL  [Sec. 3.11] was defined 
as the projection  OC  on  OL  of the moment  M   O   of the force  F  
( Fig. 3.56 ), i.e., as the mixed triple product of the unit vector l, the 
position vector  r , and the force  F :

 MOL 5 l ? MO 5 l ? (r 3 F) (3.42)   

 Using the determinant form for the mixed triple product, we have

 MOL 5 † lx ly lz

x y z
Fx Fy Fz

†  (3.43)   

 where l  x  , ly  , lz   5 direction cosines of axis  OL
   x, y, z  5 components of  r  
 Fx,  Fy ,  Fz  5 components of  F  

An example of the determination of the moment of a force about a 
skew axis was given in Sample Prob. 3.5. 

 Fig. 3.54
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 Fig. 3.55
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O
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F

�

 Fig. 3.56

  Moment of a force about an axis    

  Mixed triple product of three vectors    

  Projection of a vector on an axis    
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151  Two forces   F   and  2 F   having the same magnitude, parallel lines of 
action, and opposite sense are said to form a couple  [Sec. 3.12]. It 
was shown that the moment of a couple is independent of the point 
about which it is computed; it is a vector  M  perpendicular to the 
plane of the couple and equal in magnitude to the product of the 
common magnitude  F  of the forces and the perpendicular distance  d  
between their lines of action ( Fig. 3.57 ). 

 Two couples having the same moment  M  are  equivalent , i.e., they 
have the same effect on a given rigid body [Sec. 3.13]. The sum of 
two couples is itself a couple [Sec. 3.14], and the moment  M  of
the resultant couple can be obtained by adding vectorially the 
moments  M  1  and  M  2  of the original couples [Sample Prob. 3.6]. It 
follows that a couple can be represented by a vector, called a  couple 
vector , equal in magnitude and direction to the moment  M  of 
the couple [Sec. 3.15]. A couple vector is a  free vector  which can be 
attached to the origin  O  if so desired and resolved into components 
( Fig. 3.58 ). 

Couples
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 Fig. 3.57   
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z

O

M

=

(d)

x
O
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MxMz

y

z

 Fig. 3.58   

 Any force  F  acting at a point  A  of a rigid body can be replaced by 
a  force-couple system  at an arbitrary point  O , consisting of the force 
 F  applied at  O  and a couple of moment  M   O   equal to the moment 
about  O  of the force  F  in its original position [Sec. 3.16]; it should 
be noted that the force  F  and the couple vector  M   O   are always per-
pendicular to each other ( Fig. 3.59 ).  

Force-couple system  

O

MO

r

A A

F
F

O=
 Fig. 3.59   

 It follows [Sec. 3.17] that  any system of forces can be reduced to a 
force-couple system at a given point O  by first replacing each of 
the forces of the system by an equivalent force-couple system at  O  

 Reduction of a system of forces 
to a force-couple system  

Review and Summary
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152 Rigid Bodies: Equivalent Systems of Forces ( Fig. 3.60 ) and then adding all the forces and all the couples deter-
mined in this manner to obtain a resultant force  R  and a resultant 
couple vector  MR

O     [Sample Probs. 3.8 through 3.11]. Note that, in 
general, the resultant  R  and the couple vector  MR

O     will not be per-
pendicular to each other. 

(a)

F1

F2

F3r2
r3

A2

A3

=
O

r1

A1

(b)

F1

F2

M1

M2

M3

=O

F3

(c)

R

MO
R

O

 Fig. 3.60   

 We concluded from the above [Sec. 3.18] that, as far as rigid 
 bodies are concerned,  two systems of forces ,  F  1 ,  F  2 ,  F  3 , . . . and   
 F 9  1 ,  F 9 2 ,  F 9 3 , . . . ,  are equivalent if, and only if ,

 oF 5 oF9  and  oMO 5 oM9O (3.57)   

 If the resultant force  R  and the resultant couple vector MR
O         are per-

pendicular to each other, the force-couple system at  O  can be further 
reduced to a single resultant force [Sec. 3.20]. This will be the case 
for systems consisting either of ( a ) concurrent forces (cf. Chap. 2), 
( b ) coplanar forces [Sample Probs. 3.8 and 3.9], or ( c ) parallel forces 
[Sample Prob. 3.11]. If the resultant  R  and the couple vector  MR

O         
are  not  perpendicular to each other, the system  cannot  be reduced 
to a single force. It can, however, be reduced to a special type 
of force-couple system called a  wrench , consisting of the resultant 
 R  and a couple vector  M  1  directed along  R  [Sec. 3.21 and Sample 
Prob. 3.12].   

 Equivalent systems of forces  

 Further reduction of a 
system of forces   

bee02286_ch03_074-157.indd Page 152  6/17/11  3:29 PM user-f494bee02286_ch03_074-157.indd Page 152  6/17/11  3:29 PM user-f494 /203/MHBR246/per28884_disk1of1/0078028884/per28884_pagefiles/203/MHBR246/per28884_disk1of1/0078028884/per28884_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


153

REVIEW PROBLEMS

 3.147 A 300-N force is applied at A as shown. Determine (a) the moment 
of the 300-N force about D, (b) the smallest force applied at B
that creates the same moment about D.

 3.148 The tailgate of a car is supported by the hydraulic lift BC. If the 
lift exerts a 125-lb force directed along its centerline on the ball 
and socket at B, determine the moment of the force about A.

3.149 The ramp ABCD is supported by cables at corners C and D. The 
tension in each of the cables is 810 N. Determine the moment 
about A of the force exerted by (a) the cable at D, (b) the cable 
at C.

 Fig. P3.147

300 N
A B

D

C

25°

100 mm 200 mm

200 mm

125 mm

 Fig. P3.148  

A

B
C

15.3 in.

12.0 in.

12.0 in.

2.33 in.

 Fig. P3.149  
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D
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0.6 m

0.6 m
2.7 m

1 m

2.3 m

3 m

 3.150 Section AB of a pipeline lies in the yz plane and forms an angle 
of 37� with the z axis. Branch lines CD and EF join AB as shown. 
Determine the angle formed by pipes AB and CD.
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z

A

B

E

C

D

40°

55°

32°
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F

 Fig. P3.150
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154 Rigid Bodies: Equivalent Systems of Forces  3.151 To lift a heavy crate, a man uses a block and tackle attached to the 
bottom of an I-beam at hook B. Knowing that the moments about 
the y and the z axes of the force exerted at B by portion AB of the 
rope are, respectively, 120 N � m and –460 N � m, determine the 
distance a.

 3.152 To loosen a frozen valve, a force F of magnitude 70 lb is applied to 
the handle of the valve. Knowing that u 5 25�, Mx � �61 lb � ft, 
and Mz � �43 lb � ft, determine f and d.

 3.153 The tension in the cable attached to the end C of an adjustable 
boom ABC is 560 lb. Replace the force exerted by the cable at C 
with an equivalent force-couple system (a) at A, (b) at B.

 3.154 While tapping a hole, a machinist applies the horizontal forces 
shown to the handle of the tap wrench. Show that these forces are 
equivalent to a single force, and specify, if possible, the point of 
application of the single force on the handle.
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C

D
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 Fig. P3.151
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 Fig. P3.154
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155Review Problems 3.155 Replace the 150-N force with an equivalent force-couple system 
at A.

 3.156 A beam supports three loads of given magnitude and a fourth load 
whose magnitude is a function of position. If b � 1.5 m and the 
loads are to be replaced with a single equivalent force, determine 
(a) the value of a so that the distance from support A to the line 
of action of the equivalent force is maximum, (b) the magnitude 
of the equivalent force and its point of application on the beam.

 3.157 A mechanic uses a crowfoot wrench to loosen a bolt at C. The 
mechanic holds the socket wrench handle at points A and B and 
applies forces at these points. Knowing that these forces are equiv-
alent to a force-couple system at C consisting of the force C � 
�(8 lb)i � (4 lb)k and the couple MC � (360 lb ? in.)i, determine 
the forces applied at A and at B when Az � 2 lb.

A

B
C

D

EF

O

15 kips

20 kips

10 kips
30 kips

y

x

z

12 ft

 Fig. P3.158   
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  Fig. P3.156

ba

A B

1300 N 400 N 600 N

a
2

a
b

400     N

9 m

2 in.

8 in.

10 in.

Ax

Ay

Az

Bx

By

Bz

A
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  Fig. P3.157

 3.158 A concrete foundation mat in the shape of a regular hexagon of 
side 12 ft supports four column loads as shown. Determine the 
magnitudes of the additional loads that must be applied at B and 
F if the resultant of all six loads is to pass through the center of 
the mat.
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COMPUTER PROBLEMS

 3.  C1   A beam  AB  is subjected to several vertical forces as shown. Write a 
computer program that can be used to determine the magnitude of the 
resultant of the forces and the distance  x C   to point  C , the point where the 
line of action of the resultant intersects  AB . Use this program to solve 
( a ) Sample Prob. 3.8 c , ( b ) Prob. 3.106 a . 

   3.C2   Write a computer program that can be used to determine the magnitude 
and the point of application of the resultant of the vertical forces  P  1 ,  P  2, . . . , 
P   n   that act at points  A  1 ,  A  2, . . . , A   n   that are located in the  xz  plane. Use this 
program to solve ( a ) Sample Prob. 3.11, ( b ) Prob. 3.127, ( c ) Prob. 3.129. 

A
C

B

xC

xn
x2

x1 F1 F2 Fn

  Fig. P3.C1    

x

y

A1

A2

Anxn

zn

Pn

P2

P1

z

  Fig. P3.C2    

a

  Fig. P3.C3    
250 mm

125 mm

1.0 m

A

A'

F
  Fig. P3.C4  

 3.C3   A friend asks for your help in designing flower planter boxes. The boxes 
are to have 4, 5, 6, or 8 sides, which are to tilt  outward at 10°, 20°, or 30°. 
Write a computer program that can be used to determine the bevel angle a for 
each of the 12 planter designs. ( Hint:  The bevel angle is equal to  one-half of 
the angle formed by the inward normals of two adjacent sides.) 

 3.C4   The manufacturer of a spool for hoses wants to determine the 
moment of the force  F  about the axis  AA 9. The magnitude of the force, in 
newtons, is defined by the relation  F  5 300(1 2  x / L ), where  x  is the length 
of hose wound on the 0.6-m-diameter drum and  L  is the total length of the 
hose. Write a computer program that can be used to calculate the required 
moment for a hose 30 m long and 50 mm in diameter. Beginning with  x  5 0, 
compute the moment after every revolution of the drum until the hose is 
wound on the drum. 
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157Computer Problems 3.C5   A body is acted upon by a system of  n  forces. Write a computer pro-
gram that can be used to calculate the equivalent force-couple system at the 
origin of the coordinate axes and to determine, if the equivalent force and 
the equivalent couple are orthogonal, the magnitude and the point of appli-
cation in the  xz  plane of the resultant of the original force system. Use this 
program to solve ( a ) Prob. 3.113, ( b ) Prob. 3.120, ( c ) Prob. 3.127. 

 3.C6   Two cylindrical ducts,  AB  and  CD , enter a room through two parallel 
walls. The centerlines of the ducts are parallel to each other but are not per-
pendicular to the walls. The ducts are to be connected by two flexible elbows 
and a straight center portion. Write a computer program that can be used to 
determine the lengths of  AB  and  CD  that minimize the distance between the 
axis of the straight portion and a thermometer mounted on the wall at  E . 
Assume that the elbows are of negligible length and that  AB  and  CD  have 
centerlines defined by l  AB  5 (7 i  2 4j  1 4k )/9 and l  CD  5 (27 i  1 4j  2 4k )/9 
and can vary in length from 9 in. to 36 in. 

x
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This telecommunications tower, 

constructed in the heart of the 

Barcelona Olympic complex to 

broadcast the 1992 games, was 

designed to remain in equilibrium 

under the vertical force of gravity and 

the lateral forces exerted by wind.
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Chapter 4 Equilibrium 
of Rigid Bodies

 4.1 Introduction
 4.2 Free-Body Diagram
 4.3 Reactions at Supports and 

Connections for a Two-
Dimensional Structure

 4.4 Equilibrium of a Rigid Body in 
Two Dimensions

 4.5 Statically Indeterminate Reactions. 
Partial Constraints

 4.6 Equilibrium of a Two-Force Body
 4.7 Equilibrium of a Three-Force 

Body
 4.8 Equilibrium of a Rigid Body in 

Three Dimensions
 4.9 Reactions at Supports and 

Connections for a Three-
Dimensional Structure

4.1 INTRODUCTION
We saw in the preceding chapter that the external forces acting on 
a rigid body can be reduced to a force-couple system at some arbi-
trary point O. When the force and the couple are both equal to zero, 
the external forces form a system equivalent to zero, and the rigid 
body is said to be in equilibrium.
 The necessary and sufficient conditions for the equilibrium of 
a rigid body, therefore, can be obtained by setting R and MR

O equal 
to zero in the relations (3.52) of Sec. 3.17:

 oF 5 0  oMO 5 o(r 3 F) 5 0 (4.1)

 Resolving each force and each moment into its rectangular 
components, we can express the necessary and sufficient conditions 
for the equilibrium of a rigid body with the following six scalar 
equations:

 oFx 5 0 oFy 5 0  oFz 5 0 (4.2)
 oMx 5 0  oMy 5 0  oMz 5 0 (4.3)

The equations obtained can be used to determine unknown forces 
applied to the rigid body or unknown reactions exerted on it by its 
supports. We note that Eqs. (4.2) express the fact that the compo-
nents of the external forces in the x, y, and z directions are balanced; 
Eqs. (4.3) express the fact that the moments of the external forces 
about the x, y, and z axes are balanced. Therefore, for a rigid body 
in equilibrium, the system of the external forces will impart no trans-
lational or rotational motion to the body considered.
 In order to write the equations of equilibrium for a rigid body, 
it is essential to first identify all of the forces acting on that body 
and then to draw the corresponding free-body diagram. In this 
chapter we first consider the equilibrium of two-dimensional struc-
tures subjected to forces contained in their planes and learn how to 
draw their free-body diagrams. In addition to the forces applied to 
a structure, the reactions exerted on the structure by its supports 
will be considered. A specific reaction will be associated with each 
type of support. You will learn how to determine whether the struc-
ture is properly supported, so that you can know in advance whether 
the equations of equilibrium can be solved for the unknown forces 
and reactions.
 Later in the chapter, the equilibrium of three-dimensional 
structures will be considered, and the same kind of analysis will be 
given to these structures and their supports.

bee02286_ch04_158-217.indd Page 160  6/21/11  3:16 PM user-f494bee02286_ch04_158-217.indd Page 160  6/21/11  3:16 PM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


1614.2 FREE-BODY DIAGRAM
In solving a problem concerning the equilibrium of a rigid body, it 
is essential to consider all of the forces acting on the body; it is 
equally important to exclude any force which is not directly applied 
to the body. Omitting a force or adding an extraneous one would 
destroy the conditions of equilibrium. Therefore, the first step in 
the solution of the problem should be to draw a free-body diagram 
of the rigid body under consideration. Free-body diagrams have 
already been used on many occasions in Chap. 2. However, in view 
of their importance to the solution of equilibrium problems, we 
summarize here the various steps which must be followed in draw-
ing a free-body diagram.

 1. A clear decision should be made regarding the choice of the 
free body to be used. This body is then detached from the 
ground and is separated from all other bodies. The contour of 
the body thus isolated is sketched.

 2. All external forces should be indicated on the free-body dia-
gram. These forces represent the actions exerted on the free 
body by the ground and by the bodies which have been 
detached; they should be applied at the various points where 
the free body was supported by the ground or was connected 
to the other bodies. The weight of the free body should also 
be included among the external forces, since it represents the 
attraction exerted by the earth on the various particles forming 
the free body. As will be seen in Chap. 5, the weight should 
be applied at the center of gravity of the body. When the free 
body is made of several parts, the forces the various parts exert 
on each other should not be included among the external 
forces. These forces are internal forces as far as the free body 
is concerned.

 3. The magnitudes and directions of the known external forces 
should be clearly marked on the free-body diagram. When indi-
cating the directions of these forces, it must be remembered 
that the forces shown on the free-body diagram must be those 
which are exerted on, and not by, the free body. Known exter-
nal forces generally include the weight of the free body and 
forces applied for a given purpose.

 4. Unknown external forces usually consist of the reactions, 
through which the ground and other bodies oppose a possible 
motion of the free body. The reactions constrain the free body 
to remain in the same position, and, for that reason, are some-
times called constraining forces. Reactions are exerted at the 
points where the free body is supported by or connected to 
other bodies and should be clearly indicated. Reactions are dis-
cussed in detail in Secs. 4.3 and 4.8.

 5. The free-body diagram should also include dimensions, since 
these may be needed in the computation of moments of forces. 
Any other detail, however, should be omitted.

4.2 Free-Body Diagram

Photo 4.1 A free-body diagram of the tractor 
shown would include all of the external forces 
acting on the tractor: the weight of the tractor, 
the weight of the load in the bucket, and the 
forces exerted by the ground on the tires.

Photo 4.2 In Chap. 6, we will discuss how to 
determine the internal forces in structures made of 
several connected pieces, such as the forces in the 
members that support the bucket of the tractor of 
Photo 4.1.
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162 Equilibrium of Rigid Bodies
EQUILIBRIUM IN TWO DIMENSIONS

4.3  REACTIONS AT SUPPORTS AND CONNECTIONS 
FOR A TWO-DIMENSIONAL STRUCTURE

In the first part of this chapter, the equilibrium of a two-dimensional 
structure is considered; i.e., it is assumed that the structure being 
analyzed and the forces applied to it are contained in the same plane. 
Clearly, the reactions needed to maintain the structure in the same 
position will also be contained in this plane.
 The reactions exerted on a two-dimensional structure can be 
divided into three groups corresponding to three types of supports, 
or connections:

 1. Reactions Equivalent to a Force with Known Line of Action. 
Supports and connections causing reactions of this type include 
rollers, rockers, frictionless surfaces, short links and cables, col-
lars on frictionless rods, and frictionless pins in slots. Each of 
these supports and connections can prevent motion in one 
direction only. They are shown in Fig. 4.1, together with the 
reactions they produce. Each of these reactions involves one 
unknown, namely, the magnitude of the reaction; this magni-
tude should be denoted by an appropriate letter. The line of 
action of the reaction is known and should be indicated clearly 
in the free-body diagram. The sense of the reaction must be 
as shown in Fig. 4.1 for the cases of a frictionless surface 
(toward the free body) or a cable (away from the free body). 
The reaction can be directed either way in the case of double-
track rollers, links, collars on rods, and pins in slots. Single-
track rollers and rockers are generally assumed to be reversible, 
and thus the corresponding reactions can also be directed 
either way.

 2. Reactions Equivalent to a Force of Unknown Direction and 
Magnitude. Supports and connections causing reactions of this 
type include frictionless pins in fitted holes, hinges, and rough 
surfaces. They can prevent translation of the free body in all 
directions, but they cannot prevent the body from rotating 
about the connection. Reactions of this group involve two 
unknowns and are usually represented by their x and y com-
ponents. In the case of a rough surface, the component normal 
to the surface must be directed away from the surface.

 3. Reactions Equivalent to a Force and a Couple. These reactions 
are caused by fixed supports, which oppose any motion of the 
free body and thus constrain it completely. Fixed supports actu-
ally produce forces over the entire surface of contact; these 
forces, however, form a system which can be reduced to a force 
and a couple. Reactions of this group involve three unknowns, 
consisting usually of the two components of the force and the 
moment of the couple.

Photo 4.3 As the link of the awning window 
opening mechanism is extended, the force it 
exerts on the slider results in a normal force being 
applied to the rod, which causes the window to 
open.

Photo 4.4 The abutment-mounted rocker 
bearing shown is used to support the roadway 
of a bridge.

Photo 4.5 Shown is the rocker expansion 
bearing of a plate girder bridge. The convex 
surface of the rocker allows the support of the 
girder to move horizontally.
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 When the sense of an unknown force or couple is not readily 
apparent, no attempt should be made to determine it. Instead, the 
sense of the force or couple should be arbitrarily assumed; the sign 
of the answer obtained will indicate whether the assumption is cor-
rect or not.

4.3 Reactions at Supports and Connections for 
a Two-Dimensional Structure

Fig. 4.1 Reactions at supports and connections.

Support or Connection Reaction Number of
Unknowns

Rollers Rocker Frictionless
surface

Force with known
line of action

Force with known
line of action

Force with known
line of action

1

1

1

Short cable Short link

Collar on
frictionless rod Frictionless pin in slot

90º

Frictionless pin
or hinge

Rough surface Force of unknown
direction

or

or

2

Fixed support Force and couple

3

a

a
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164 Equilibrium of Rigid Bodies 4.4  EQUILIBRIUM OF A RIGID BODY 
IN TWO DIMENSIONS

The conditions stated in Sec. 4.1 for the equilibrium of a rigid body 
become considerably simpler for the case of a two-dimensional struc-
ture. Choosing the x and y axes to be in the plane of the structure, 
we have

Fz 5 0  Mx 5 My 5 0  Mz 5 MO

for each of the forces applied to the structure. Thus, the six equa-
tions of equilibrium derived in Sec. 4.1 reduce to

 oFx 5 0  oFy 5 0  oMO 5 0 (4.4)

and to three trivial identities, 0 5 0. Since oMO 5 0 must be satis-
fied regardless of the choice of the origin O, we can write the equa-
tions of equilibrium for a two-dimensional structure in the more 
general form

 oFx 5 0  oFy 5 0  oMA 5 0 (4.5)

where A is any point in the plane of the structure. The three equa-
tions obtained can be solved for no more than three unknowns.
 We saw in the preceding section that unknown forces include 
reactions and that the number of unknowns corresponding to a given 
reaction depends upon the type of support or connection causing 
that reaction. Referring to Sec. 4.3, we observe that the equilibrium 
equations (4.5) can be used to determine the reactions associated 
with two rollers and one cable, one fixed support, or one roller and 
one pin in a fitted hole, etc.
 Consider Fig. 4.2a, in which the truss shown is subjected to 
the given forces P, Q, and S. The truss is held in place by a pin at 
A and a roller at B. The pin prevents point A from moving by exert-
ing on the truss a force which can be resolved into the components 
Ax and Ay; the roller keeps the truss from rotating about A by exert-
ing the vertical force B. The free-body diagram of the truss is shown 
in Fig. 4.2b; it includes the reactions Ax, Ay, and B as well as the 
applied forces P, Q, S and the weight W of the truss. Expressing 
that the sum of the moments about A of all of the forces shown 
in Fig. 4.2b is zero, we write the equation oMA 5 0, which can be 
used to determine the magnitude B since it does not contain Ax or Ay. 
Next, expressing that the sum of the x components and the sum 
of the y components of the forces are zero, we write the equations 
oFx 5 0 and oFy 5 0, from which we can obtain the components 
Ax and Ay, respectively.
 An additional equation could be obtained by expressing that 
the sum of the moments of the external forces about a point other than 
A is zero. We could write, for instance, oMB 5 0. Such a statement, 
however, does not contain any new information, since it has already 
been established that the system of the forces shown in Fig. 4.2b is 
equivalent to zero. The additional equation is not independent and 
cannot be used to determine a fourth unknown. It will be useful, 

Fig. 4.2 
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165however, for checking the solution obtained from the original three 
equations of equilibrium.
 While the three equations of equilibrium cannot be augmented 
by additional equations, any of them can be replaced by another 
equation. Therefore, an alternative system of equations of equilib-
rium is

 oFx 5 0  oMA 5 0  oMB 5 0 (4.6)

where the second point about which the moments are summed (in 
this case, point B) cannot lie on the line parallel to the y axis that 
passes through point A (Fig. 4.2b). These equations are sufficient 
conditions for the equilibrium of the truss. The first two equations 
indicate that the external forces must reduce to a single vertical force 
at A. Since the third equation requires that the moment of this 
force be zero about a point B which is not on its line of action, the 
force must be zero, and the rigid body is in equilibrium.
 A third possible set of equations of equilibrium is

 oMA 5 0  oMB 5 0  oMC 5 0 (4.7)

where the points A, B, and C do not lie in a straight line (Fig. 4.2b). 
The first equation requires that the external forces reduce to a single 
force at A; the second equation requires that this force pass through 
B; and the third equation requires that it pass through C. Since the 
points A, B, C do not lie in a straight line, the force must be zero, 
and the rigid body is in equilibrium.
 The equation oMA 5 0, which expresses that the sum of the 
moments of the forces about pin A is zero, possesses a more defi-
nite physical meaning than either of the other two equations (4.7). 
These two equations express a similar idea of balance, but with 
respect to points about which the rigid body is not actually hinged. 
They are, however, as useful as the first equation, and our choice 
of equilibrium equations should not be unduly influenced by the 
physical meaning of these equations. Indeed, it will be desirable in 
practice to choose equations of equilibrium containing only one 
unknown, since this eliminates the necessity of solving simulta neous 
equations. Equations containing only one unknown can be obtained 
by summing moments about the point of intersection of the lines 
of action of two unknown forces or, if these forces are parallel, by 
summing components in a direction perpendicular to their com-
mon direction. For example, in Fig. 4.3, in which the truss shown 
is held by rollers at A and B and a short link at D, the reactions at 
A and B can be eliminated by summing x components. The reac-
tions at A and D will be eliminated by summing moments about 
C, and the reactions at B and D by summing moments about D. 
The equations obtained are

oFx 5 0  oMC 5 0  oMD 5 0

Each of these equations contains only one unknown. Fig. 4.3 
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4.4 Equilibrium of a Rigid Body in 
Two Dimensions

bee02286_ch04_158-217.indd Page 165  6/21/11  3:16 PM user-f494bee02286_ch04_158-217.indd Page 165  6/21/11  3:16 PM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


166 Equilibrium of Rigid Bodies 4.5  STATICALLY INDETERMINATE REACTIONS. 
PARTIAL CONSTRAINTS

In the two examples considered in the preceding section (Figs. 4.2 
and 4.3), the types of supports used were such that the rigid body 
could not possibly move under the given loads or under any other 
loading conditions. In such cases, the rigid body is said to be com-
pletely constrained. We also recall that the reactions corresponding 
to these supports involved three unknowns and could be determined 
by solving the three equations of equilibrium. When such a situation 
exists, the reactions are said to be statically determinate.
 Consider Fig. 4.4a, in which the truss shown is held by pins at 
A and B. These supports provide more constraints than are necessary 
to keep the truss from moving under the given loads or under any 
other loading conditions. We also note from the free-body diagram 
of Fig. 4.4b that the corresponding reactions involve four unknowns. 
Since, as was pointed out in Sec. 4.4, only three independent equi-
librium equations are available, there are more unknowns than equa-
tions; thus, all of the unknowns cannot be determined. While the 
equations oMA 5 0 and oMB 5 0 yield the vertical components By 
and Ay, respectively, the equation oFx 5 0 gives only the sum Ax 1 Bx 
of the horizontal components of the reactions at A and B. The com-
ponents Ax and Bx are said to be statically indeterminate. They could 
be determined by considering the deformations produced in the 
truss by the given loading, but this method is beyond the scope of 
statics and belongs to the study of mechanics of materials.
 The supports used to hold the truss shown in Fig. 4.5a consist of 
rollers at A and B. Clearly, the constraints provided by these supports are 
not sufficient to keep the truss from moving. While any vertical motion 
is prevented, the truss is free to move horizontally. The truss is said to 
be partially constrained.† Turning our attention to Fig. 4.5b, we note that 
the reactions at A and B involve only two unknowns. Since three equa-
tions of equilibrium must still be satisfied, there are fewer unknowns than 
equations, and, in general, one of the equilibrium equations will not be 
satisfied. While the equations oMA 5 0 and oMB 5 0 can be satisfied by 
a proper choice of reactions at A and B, the equation oFx 5 0 will not be 
satisfied unless the sum of the horizontal components of the applied forces 
happens to be zero. We thus observe that the equlibrium of the truss 
of Fig. 4.5 cannot be maintained under general loading conditions.
 It appears from the above that if a rigid body is to be com-
pletely constrained and if the reactions at its supports are to be 
statically determinate, there must be as many unknowns as there are 
equations of equilibrium. When this condition is not satisfied, we can 
be certain that either the rigid body is not completely constrained 
or that the reactions at its supports are not statically determinate; it 
is also possible that the rigid body is not completely constrained and 
that the reactions are statically indeterminate.
 We should note, however, that, while necessary, the above con-
dition is not sufficient. In other words, the fact that the number of 

Fig. 4.4 Statically indeterminate 
reactions.
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B †Partially constrained bodies are often referred to as unstable. However, to avoid confusion 
between this type of instability, due to insufficient constraints, and the type of instability 
considered in Chap. 10, which relates to the behavior of a rigid body when its equilibrium 
is disturbed, we shall restrict the use of the words stable and unstable to the latter case.
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167unknowns is equal to the number of equations is no guarantee that 
the body is completely constrained or that the reactions at its supports 
are statically determinate. Consider Fig. 4.6a, in which the truss 
shown is held by rollers at A, B, and E. While there are three unknown 
reactions, A, B, and E (Fig. 4.6b), the equation oFx 5 0 will not be 
satisfied unless the sum of the horizontal components of the applied 
forces happens to be zero. Although there are a sufficient number of 
constraints, these constraints are not properly arranged, and the truss 
is free to move horizontally. We say that the truss is improperly con-
strained. Since only two equilibrium equations are left for determin-
ing three unknowns, the reactions will be statically indeterminate. 
Thus, improper constraints also produce static indeterminacy.
 Another example of improper constraints—and of static inde-
terminacy—is provided by the truss shown in Fig. 4.7. This truss is 
held by a pin at A and by rollers at B and C, which altogether involve 
four unknowns. Since only three independent equilibrium equations 
are available, the reactions at the supports are statically indetermi-
nate. On the other hand, we note that the equation oMA 5 0 cannot 
be satisfied under general loading conditions, since the lines of action 
of the reactions B and C pass through A. We conclude that the truss 
can rotate about A and that it is improperly constrained.†
 The examples of Figs. 4.6 and 4.7 lead us to conclude that a rigid 
body is improperly constrained whenever the supports, even though 
they may provide a sufficient number of reactions, are arranged in such 
a way that the reactions must be either concurrent or parallel.‡
 In summary, to be sure that a two-dimensional rigid body is com-
pletely constrained and that the reactions at its supports are statically 
determinate, we should verify that the reactions involve three—and only 
three—unknowns and that the supports are arranged in such a way that 
they do not require the reactions to be either concurrent or parallel.
 Supports involving statically indeterminate reactions should be 
used with care in the design of structures and only with a full knowl-
edge of the problems they may cause. On the other hand, the analysis 
of structures possessing statically indeterminate reactions often can 
be partially carried out by the methods of statics. In the case of the 
truss of Fig. 4.4, for example, the vertical components of the reactions 
at A and B were obtained from the equilibrium equations.
 For obvious reasons, supports producing partial or improper 
constraints should be avoided in the design of stationary structures. 
However, a partially or improperly constrained structure will not nec-
essarily collapse; under particular loading conditions, equilibrium can 
be maintained. For example, the trusses of Figs. 4.5 and 4.6 will be 
in equilibrium if the applied forces P, Q, and S are vertical. Besides, 
structures which are designed to move should be only partially con-
strained. A railroad car, for instance, would be of little use if it were 
completely constrained by having its brakes applied permanently.
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Fig. 4.7 Improper constraints.
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4.5 Statically Indeterminate Reactions. 
Partial Constraints

†Rotation of the truss about A requires some “play” in the supports at B and C. In 
practice such play will always exist. In addition, we note that if the play is kept small, the 
displacements of the rollers B and C and, thus, the distances from A to the lines of action of 
the reactions B and C will also be small. The equation oMA 5 0 then requires that B and 
C be very large, a situation which can result in the failure of the supports at B and C.

‡Because this situation arises from an inadequate arrangement or geometry of the 
supports, it is often referred to as geometric instability.
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SOLUTION

Free-Body Diagram. A free-body diagram of the crane is drawn. By mul-
tiplying the masses of the crane and of the crate by g 5 9.81 m/s2, we obtain 
the corresponding weights, that is, 9810 N or 9.81 kN, and 23 500 N or 
23.5 kN. The reaction at pin A is a force of unknown direction; it is repre-
sented by its components Ax and Ay. The reaction at the rocker B is per-
pendicular to the rocker surface; thus, it is horizontal. We assume that Ax, 
Ay, and B act in the directions shown.

Determination of B. We express that the sum of the moments of all external 
forces about point A is zero. The equation obtained will contain neither Ax 
nor Ay, since the moments of Ax and Ay about A are zero. Multiplying the 
magnitude of each force by its perpendicular distance from A, we write

1loMA 5 0:  1B(1.5 m) 2 (9.81 kN)(2 m) 2 (23.5 kN)(6 m) 5 0
 B 5 1107.1 kN B 5 107.1 kN n ◀

Since the result is positive, the reaction is directed as assumed.

Determination of Ax. The magnitude of Ax is determined by expressing 
that the sum of the horizontal components of all external forces is zero.

n1 oFx 5 0:  Ax 1 B 5 0
 Ax 1 107.1 kN 5 0
 Ax 5 2107.1 kN  Ax 5 107.1 kN m ◀

Since the result is negative, the sense of Ax is opposite to that assumed 
originally.

Determination of Ay. The sum of the vertical components must also equal 
zero.

1hoFy 5 0:   Ay 2 9.81 kN 2 23.5 kN 5 0
 Ay 5 133.3 kN Ay 5 33.3 kN h ◀

 Adding vectorially the components Ax and Ay, we find that the reac-
tion at A is 112.2 kN b17.3°.

Check. The values obtained for the reactions can be checked by recalling 
that the sum of the moments of all of the external forces about any point 
must be zero. For example, considering point B, we write

1loMB 5 2(9.81 kN)(2 m) 2 (23.5 kN)(6 m) 1 (107.1 kN)(1.5 m) 5 0

SAMPLE PROBLEM 4.1

A fixed crane has a mass of 1000 kg and is used to lift a 2400-kg crate. It 
is held in place by a pin at A and a rocker at B. The center of gravity of 
the crane is located at G. Determine the components of the reactions at A 
and B.

2400 kg
A

B

G

4 m2 m

1.5 m

A

BB

23.5 kN

Ay

Ax

9.81 kN

1.5 m

4 m2 m

33.3 kN

107.1 kN

107.1 kN

A

B

23.5 kN

9.81 kN

4 m2 m

1.5 m
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SOLUTION

Free-Body Diagram. A free-body diagram of the beam is drawn. The reac-
tion at A is vertical and is denoted by A. The reaction at B is represented 
by components Bx and By. Each component is assumed to act in the direc-
tion shown.

Equilibrium Equations. We write the following three equilibrium equa-
tions and solve for the reactions indicated:

n1 oFx 5 0: Bx 5 0 Bx 5 0 ◀

1loMA 5 0:
2(15 kips)(3 ft) 1 By(9 ft) 2 (6 kips)(11 ft) 2 (6 kips)(13 ft) 5 0

 By 5 121.0 kips By 5 21.0 kips h ◀

1loMB 5 0:
2A(9 ft) 1 (15 kips)(6 ft) 2 (6 kips)(2 ft) 2 (6 kips)(4 ft) 5 0

 A 5 16.00 kips A 5 6.00 kips h ◀

Check. The results are checked by adding the vertical components of all 
of the external forces:

1hoFy 5 16.00 kips 2 15 kips 1 21.0 kips 2 6 kips 2 6 kips 5 0

Remark. In this problem the reactions at both A and B are vertical; how-
ever, these reactions are vertical for different reasons. At A, the beam is 
supported by a roller; hence the reaction cannot have any horizontal com-
ponent. At B, the horizontal component of the reaction is zero because it 
must satisfy the equilibrium equation oFx 5 0 and because none of the 
other forces acting on the beam has a horizontal component.
 We could have noticed at first glance that the reaction at B was verti-
cal and dispensed with the horizontal component Bx. This, however, is a bad 
practice. In following it, we would run the risk of forgetting the component 
Bx when the loading conditions require such a component (i.e., when a 
horizontal load is included). Also, the component Bx was found to be zero 
by using and solving an equilibrium equation, oFx 5 0. By setting Bx equal 
to zero immediately, we might not realize that we actually make use of this 
equation and thus might lose track of the number of equations available for 
solving the problem.

SAMPLE PROBLEM 4.2

Three loads are applied to a beam as shown. The beam is supported by a 
roller at A and by a pin at B. Neglecting the weight of the beam, determine 
the reactions at A and B when P 5 15 kips.

3 ft 2 ft 2 ft

6 kips 6 kipsP

6 ft

A B

3 ft 2 ft 2 ft

6 kips15 kips 6 kips

6 ft

By

BxA
A

B
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SOLUTION

Free-Body Diagram. A free-body diagram of the car is drawn. The reac-
tion at each wheel is perpendicular to the track, and the tension force T is 
parallel to the track. For convenience, we choose the x axis parallel to the 
track and the y axis perpendicular to the track. The 5500-lb weight is then 
resolved into x and y components.

 Wx 5 1(5500 lb) cos 25° 5 14980 lb
Wy 5 2(5500 lb) sin 25° 5 22320 lb

Equilibrium Equations. We take moments about A to eliminate T and R1 
from the computation.

1loMA 5 0:  2(2320 lb)(25 in.) 2 (4980 lb)(6 in.) 1 R2(50 in.) 5 0
 R2 5 11758 lb R2 5 1758 lb p ◀

Now, taking moments about B to eliminate T and R2 from the computation, 
we write

1loMB 5 0:  (2320 lb)(25 in.) 2 (4980 lb)(6 in.) 2 R1(50 in.) 5 0
 R1 5 1562 lb R1 5 1562 lb p ◀

The value of T is found by writing

q1oFx 5 0:  14980 lb 2 T 5 0
 T 5 14980 lb T 5 4980 lb r ◀

The computed values of the reactions are shown in the adjacent sketch.

Check. The computations are verified by writing

p1oFy 5 1562 lb 1 1758 lb 2 2320 lb 5 0

The solution could also have been checked by computing moments about 
any point other than A or B.

SAMPLE PROBLEM 4.3

A loading car is at rest on a track forming an angle of 25° with the vertical. 
The gross weight of the car and its load is 5500 lb, and it is applied at a 
point 30 in. from the track, halfway between the two axles. The car is held 
by a cable attached 24 in. from the track. Determine the tension in the 
cable and the reaction at each pair of wheels.

24 in.

25º
G

25 in.

25 in.
30 in.

y

x

R1

R2

2320 lb 6 in.

A

T

B

G

25 in.

25 in.

4980 lb

562 lb

1758 lb

y

x

4980 lb

25 in.

25 in.

2320 lb
6 in.

A

B

G

4980 lb
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SAMPLE PROBLEM 4.4

The frame shown supports part of the roof of a small building. Knowing that 
the tension in the cable is 150 kN, determine the reaction at the fixed end E.

20 kN 20 kN 20 kN 20 kN

A B

C

D

E F1.8 m 1.8 m 1.8 m 1.8 m

2.25 m

3.75 m

4.5 m

SAMPLE PROBLEM 4.5

A 400-lb weight is attached at A to the lever shown. The constant of the 
spring BC is k 5 250 lb/in., and the spring is unstretched when u 5 0. 
Determine the position of equilibrium.

A
s

O
W

F = ks

Ry

R x

Undeformed
position

q

r

l sin q

SOLUTION

Free-Body Diagram. We draw a free-body diagram of the lever and 
 cylinder. Denoting by s the deflection of the spring from its undeformed 
position, and noting that s 5 ru, we have F 5 ks 5 kru.

Equilibrium Equation. Summing the moments of W and F about O, we write

1loMO 5 0:  Wl sin u 2 r(kru) 5 0  sin u 5 
kr2

Wl
 u

Substituting the given data, we obtain

sin u 5
(250 lb/in.)(3 in.)2

(400 lb)(8 in.)
 u   sin u 5 0.703 u

Solving by trial and error, we find  u 5 0  u 5 80.3˚ ◀

A
B C

O

k = 250 lb/in.

r = 3 in.

l = 8 in.

W = 400 lb

q

6 m

150 kNEy

Ex

ME

20 kN 20 kN 20 kN 20 kN

A B
C

D

E F

4.5 m

1.8 m 1.8 m 1.8 m 1.8 m

SOLUTION

Free-Body Diagram. A free-body diagram of the frame and of the cable BDF 
is drawn. The reaction at the fixed end E is represented by the force compo-
nents Ex and Ey and the couple ME. The other forces acting on the free body 
are the four 20-kN loads and the 150-kN force exerted at end F of the cable.

Equilibrium Equations. Noting that DF 5 2(4.5 m)2 1 (6 m)2 5 7.5 m, 
we write

n1 oFx 5 0: Ex 1
4.5
7.5

(150 kN) 5 0

 Ex 5 290.0 kN Ex 5 90.0 kN z ◀

1hoFy 5 0:  Ey 2 4(20 kN) 2
6

7.5
(150 kN) 5 0

 Ey 5 1200 kN Ey 5 200 kNx ◀

1loME 5 0:  (20 kN)(7.2 m) 1 (20 kN)(5.4 m) 1 (20 kN)(3.6 m)

1 (20 kN)(1.8 m) 2 
6

7.5
(150 kN)(4.5 m) 1 ME 5 0

 ME 5 1180.0 kN ? m ME 5 180.0 kN ? m l ◀
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You saw that the external forces acting on a rigid body in equilibrium form a 
system equivalent to zero. To solve an equilibrium problem your first task is 

to draw a neat, reasonably large free-body diagram on which you will show all 
external forces. Both known and unknown forces must be included.

For a two-dimensional rigid body, the reactions at the supports can involve one, 
two, or three unknowns depending on the type of support (Fig. 4.1). For the suc-
cessful solution of a problem, a correct free-body diagram is essential. Never pro-
ceed with the solution of a problem until you are sure that your free-body diagram 
includes all loads, all reactions, and the weight of the body (if appropriate).

1. You can write three equilibrium equations and solve them for three unknowns.
The three equations might be

oFx 5 0  oFy 5 0  oMO 5 0

However, there are usually several sets of equations that you can write, such as

oFx 5 0  oMA 5 0  oMB 5 0

where point B is chosen in such a way that the line AB is not parallel to the y
axis, or

oMA 5 0  oMB 5 0  oMC 5 0

where the points A, B, and C do not lie in a straight line.

2. To simplify your solution, it may be helpful to use one of the following solu-
tion techniques if applicable.
 a. By summing moments about the point of intersection of the lines of 
action of two unknown forces, you will obtain an equation in a single unknown.
 b. By summing components in a direction perpendicular to two unknown 
parallel forces, you will obtain an equation in a single unknown.

3. After drawing your free-body diagram, you may find that one of the follow-
ing special situations exists.
 a. The reactions involve fewer than three unknowns; the body is said to be 
partially constrained and motion of the body is possible.
 b. The reactions involve more than three unknowns; the reactions are said 
to be statically indeterminate. While you may be able to calculate one or two 
reactions, you cannot determine all of the reactions.
 c. The reactions pass through a single point or are parallel; the body is 
said to be improperly constrained and motion can occur under a general loading 
condition.

SOLVING PROBLEMS
ON YOUR OWN
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PROBLEMS

173

FREE BODY PRACTICE PROBLEMS

4.F1 For the frame and loading shown, draw the free-body diagram 
needed to determine the reactions at A and E when a 5 308.

4.F2 Neglecting friction, draw the free-body diagram needed to deter-
mine the tension in cable ABD and the reaction at C when u 5 608.

4.F3 Bar AC supports two 400-N loads as shown. Rollers at A and C rest 
against frictionless surfaces and a cable BD is attached at B. Draw 
the free-body diagram needed to determine the tension in cable 
BD and the reactions at A and C.

10 in.
3 in.

20 lb

20 lb

a

A B

DE

C

8 in.

5 in.

3 in.

Fig. P4.F1

A

B

D

C

90°

P

q

a a

2a

Fig. P4.F2

400 N

400 N

100 mm

150 mm

100 mm
300 mm

500 mm

A

B

C

D

250 mm

Fig. P4.F3 600 N

100 mm100 mm100 mm

80 mm

80 mm
A B C D

E

F

Fig. P4.F4
4.F4 Draw the free-body diagram needed to determine the tension in 

each cable and the reaction at D.

bee02286_ch04_158-217.indd Page 173  8/25/11  5:24 PM user-f494bee02286_ch04_158-217.indd Page 173  8/25/11  5:24 PM user-f494 /202/MHBR257/gre2885x_disk1of1/007802885x/gre2885x_pagefiles/202/MHBR257/gre2885x_disk1of1/007802885x/gre2885x_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


174 Equilibrium of Rigid Bodies END-OF-SECTION PROBLEMS

 4.1 Two crates, each of mass 350 kg, are placed as shown in the bed 
of a 1400-kg pickup truck. Determine the reactions at each of the 
two (a) rear wheels A, (b) front wheels B.

 4.2 Solve Prob. 4.1, assuming that crate D is removed and that the 
position of crate C is unchanged.

 4.3 A T-shaped bracket supports the four loads shown. Determine the 
reactions at A and B (a) if a 5 10 in., (b) if a 5 7 in.

Fig. P4.3

6 in. 6 in. 8 in.

10 lb30 lb50 lb40 lb

A

B

a

A

P

B

G1

G2
80 mm

350 mm

300 mm

500 mm

a

Fig. P4.5

 4.4 For the bracket and loading of Prob. 4.3, determine the smallest 
distance a if the bracket is not to move.

 4.5 A hand truck is used to move two kegs, each of mass 40 kg. 
Neglecting the mass of the hand truck, determine (a) the vertical 
force P that should be applied to the handle to maintain equilib-
rium when a 5 358, (b) the corresponding reaction at each of the 
two wheels.

 4.6 Solve Prob. 4.5 when a 5 408.

 4.7 A 3200-lb forklift truck is used to lift a 1700-lb crate. Determine the 
reaction at each of the two (a) front wheels A, (b) rear wheels B.

BA

12 in.

G'

G

16 in. 24 in.

Fig. P4.7

A

C

B

15 lb 20 lb 35 lb 15 lb20 lb

6 in. 8 in. 8 in. 6 in.

Fig. P4.8

C D

G

1.7 m 2.8 m

A B

1.8 m 1.2 m 0.75 m

Fig. P4.1

 4.8 For the beam and loading shown, determine (a) the reaction at A, 
(b) the tension in cable BC.
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175Problems 4.9 For the beam and loading shown, determine the range of the dis-
tance a for which the reaction at B does not exceed 100 lb down-
ward or 200 lb upward.

 4.10 The maximum allowable value of each of the reactions is 180 N. 
Neglecting the weight of the beam, determine the range of the 
distance d for which the beam is safe.

a

A
D C

B

6 in.
300 lb 300 lb

50 lb

8 in. 4 in. 12 in.

Fig. P4.9

240 N 240 N

0.24 m
0.4 m 0.4 m

A

B

C
D

a = 0.18 m

Fig. P4.15

 4.11 Three loads are applied as shown to a light beam supported by 
cables attached at B and D. Neglecting the weight of the beam, 
determine the range of values of Q for which neither cable becomes 
slack when P 5 0.

 4.12 Three loads are applied as shown to a light beam supported by 
cables attached at B and D. Knowing that the maximum allowable 
tension in each cable is 4 kN and neglecting the weight of the 
beam, determine the range of values of Q for which the loading is 
safe when P 5 0.

 4.13 For the beam of Prob. 4.12, determine the range of values of Q 
for which the loading is safe when P 5 1 kN.

 4.14 For the beam of Sample Prob. 4.2, determine the range of values 
of P for which the beam will be safe, knowing that the maximum 
allowable value of each of the reactions is 30 kips and that the 
reaction at A must be directed upward.

 4.15 The bracket BCD is hinged at C and attached to a control cable 
at B. For the loading shown, determine (a) the tension in the cable, 
(b) the reaction at C.

50 N 100 N 150 N

450 mm

d

A

B

450 mm

Fig. P4.10

0.5 m 0.75 m 0.75 m
1.5 m

3 kN
P Q

A

B D

C
E

Fig. P4.11 and P4.12

P

A

B

C

D

7.5 in.

3 in.

4 in.

90°

Fig. P4.17 and P4.18

 4.16 Solve Prob. 4.15, assuming that a 5 0.32 m.

 4.17 The lever BCD is hinged at C and attached to a control rod at B. If 
P 5 100 lb, determine (a) the tension in rod AB, (b) the reaction at C.

 4.18 The lever BCD is hinged at C and attached to a control rod at B. 
Determine the maximum force P that can be safely applied at D 
if the maximum allowable value of the reaction at C is 250 lb.
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176 Equilibrium of Rigid Bodies

 4.24 A lever AB is hinged at C and attached to a control cable at A. 
If the lever is subjected to a 75-lb vertical force at B, determine 
(a) the tension in the cable, (b) the reaction at C.

 4.19 Two links AB and DE are connected by a bell crank as shown. 
Knowing that the tension in link AB is 720 N, determine (a) the 
tension in link DE, (b) the reaction at C.

 4.20 Two links AB and DE are connected by a bell crank as shown. 
Determine the maximum force that can be safely exerted by link 
AB on the bell crank if the maximum allowable value for the reac-
tion at C is 1600 N.

 4.21 Determine the reactions at A and C when (a) a 5 0, (b) a 5 308.

 4.22 Determine the reactions at A and B when (a) a 5 0, (b) a 5 908, 
(c) a 5 308.

 4.23 Determine the reactions at A and B when (a) h 5 0, (b) h 5 200 mm.
10 in. 10 in.

12 in.

a

A

B

75 lb 

Fig. P4.22

A

B

E

D

C

90°60 mm
90 mm

80 mm 120 mm

Fig. P4.19 and P4.20

800 mm

200 mm300 N

200 mm300 N

a

A
B

C

Fig. P4.21

60°

300 mm

250 mm 250 mm

150 N

G
B

A
h

Fig. P4.23

A

B

D

12 in.

20°
75 lb

C10 in.

15 in.

Fig. P4.24
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177Problems 4.25 and 4.26 For each of the plates and loadings shown, determine 
the reactions at A and B.

 4.27 A rod AB hinged at A and attached at B to cable BD supports the 
loads shown. Knowing that d 5 200 mm, determine (a) the tension 
in cable BD, (b) the reaction at A.

40 lb 40 lb

50 lb 50 lb

A
B

(a)

30°

10 in.

A
B

(b)

20 in.

10 in.

4 in. 4 in.

20 in.

Fig. P4.25

40 lb 40 lb

50 lb 50 lb

A
B

(a)

30º

20 in.

10 in.

A
B

(b)

20 in.

10 in.

4 in. 4 in.

Fig. P4.26

90 N

100 mm

100 mm100 mm100 mm

A

B

d

D

90 N

Fig. P4.27 and P4.28

C

E

A

D

P

a

7 in.5 in.

12 in.

B

Fig. P4.29

 4.28 A rod AB, hinged at A and attached at B to cable BD, supports 
the loads shown. Knowing that d 5 150 mm, determine (a) the 
tension in cable BD, (b) the reaction at A.

 4.29 A force P of magnitude 90 lb is applied to member ACE, which 
is supported by a frictionless pin at D and by the cable ABE. Since 
the cable passes over a small pulley at B, the tension may be 
assumed to be the same in portions AB and BE of the cable. For 
the case when a 5 3 in., determine (a) the tension in the cable, 
(b) the reaction at D.

 4.30 Solve Prob. 4.29 for a 5 6 in.
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178 Equilibrium of Rigid Bodies  4.31 Neglecting friction, determine the tension in cable ABD and the 
reaction at support C.

 4.32 Neglecting friction and the radius of the pulley, determine (a) the 
tension in cable ADB, (b) the reaction at C.

 4.33 Rod ABC is bent in the shape of an arc of circle of radius R. Know-
ing the u 5 308, determine the reaction (a) at B, (b) at C.

 4.34 Rod ABC is bent in the shape of an arc of circle of radius R. Know-
ing the u 5 608, determine the reaction (a) at B, (b) at C.

 4.35 A movable bracket is held at rest by a cable attached at C and by 
frictionless rollers at A and B. For the loading shown, determine 
(a) the tension in the cable, (b) the reactions at A and B.

 4.36 A light bar AB supports a 15-kg block at its midpoint C. Rollers at 
A and B rest against frictionless surfaces, and a horizontal cable 
AD is attached at A. Determine (a) the tension in cable AD, 
(b) the reactions at A and B.

A E

C

120 N

100 mm 100 mm

B D

250 mm

Fig. P4.31

A B C

150 mm

200 mm
80 mm 80 mm

120 N

D

Fig. P4.32

A

BC

R

P

q

Fig. P4.33 and P4.34

A

B

C

600 N
475 mm

75 mm
50 mm

90 mm

Fig. P4.35

250 mm 250 mm
B

C

D
A

350 mm

15 kg

Fig. P4.36

bee02286_ch04_158-217.indd Page 178  6/21/11  3:21 PM user-f494bee02286_ch04_158-217.indd Page 178  6/21/11  3:21 PM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


179Problems 4.37 A light bar AD is suspended from a cable BE and supports a 50-lb 
block at C. The ends A and D of the bar are in contact with fric-
tionless vertical walls. Determine the tension in cable BE and the 
reactions at A and D.

 4.38 A light rod AD is supported by frictionless pegs at B and C and 
rests against a frictionless wall at A. A vertical 120-lb force is 
applied at D. Determine the reactions at A, B, and C.

 4.39 Bar AD is attached at A and C to collars that can move freely on 
the rods shown. If the cord BE is vertical (a 5 0), determine the 
tension in the cord and the reactions at A and C.

A B

E

C
D

30°

80 Na

0.2 m 0.2 m

30°

0.2 m

Fig. P4.39

 4.40 Solve Prob. 4.39 if the cord BE is parallel to the rods (a 5 308).

 4.41 The T-shaped bracket shown is supported by a small wheel at E 
and pegs at C and D. Neglecting the effect of friction, determine 
the reactions at C, D, and E when u 5 308.

 4.42 The T-shaped bracket shown is supported by a small wheel at E 
and pegs at C and D. Neglecting the effect of friction, determine 
(a) the smallest value of u for which the equilibrium of the bracket 
is maintained, (b) the corresponding reactions at C, D, and E.

 4.43 Beam AD carries the two 40-lb loads shown. The beam is held by a 
fixed support at D and by the cable BE that is attached to the coun-
terweight W. Determine the reaction at D when (a) W 5 100 lb, 
(b) W 5 90 lb.

 4.44 For the beam and loading shown, determine the range of values 
of W for which the magnitude of the couple at D does not exceed 
40 lb ? ft.

A
50 lb

B

C

D

E

5 in.

8 in.

7 in.
3 in.

Fig. P4.37

120 lb

30°
A

B
C

D

8 in.

8 in.

8 in.

Fig. P4.38

A B

C

D

E
3 in.

3 in.

2 in.

20 lb 40 lb

q

4 in. 4 in.

Fig. P4.41 and P4.42

A B C D

40 lb 40 lb

E5 ft

4 ft4 ft

W

Fig. P4.43 and P4.44
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180 Equilibrium of Rigid Bodies  4.45 An 8-kg mass can be supported in the three different ways shown. 
Knowing that the pulleys have a 100-mm radius, determine the 
reaction at A in each case.

 4.46 A tension of 20 N is maintained in a tape as it passes through the 
support system shown. Knowing that the radius of each pulley is 
10 mm, determine the reaction at C.

 4.47 Solve Prob. 4.46, assuming that 15-mm-radius pulleys are used.

 4.48 The rig shown consists of a 1200-lb horizontal member ABC and 
a vertical member DBE welded together at B. The rig is being 
used to raise a 3600-lb crate at a distance x 5 12 ft from the verti-
cal member DBE. If the tension in the cable is 4 kips, determine 
the reaction at E, assuming that the cable is (a) anchored at F as 
shown in the figure, (b) attached to the vertical member at a point 
located 1 ft above E.

C

20 N

20 N

75 mm

45 mm

A B

75 mm

Fig. P4.46

 4.49 For the rig and crate of Prob. 4.48, and assuming that the cable is 
anchored at F as shown, determine (a) the required tension in 
cable ADCF if the maximum value of the couple at E as x varies 
from 1.5 to 17.5 ft is to be as small as possible, (b) the correspond-
ing maximum value of the couple.

B

A A A

B B

8 kg 8 kg 8 kg

(a) (b) (c)

1.6 m 1.6 m 1.6 m

Fig. P4.45

A

CB

FE

x

D

5 ft

10 ft

17.5 ft

6.5 ft

3.75 ft

W = 1200 lb

3600 lb

Fig. P4.48
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181Problems 4.50 A 6-m telephone pole weighing 1600 N is used to support the ends 
of two wires. The wires form the angles shown with the horizontal 
and the tensions in the wires are, respectively, T1 5 600 N and 
T2 5 375 N. Determine the reaction at the fixed end A.

 4.51 and 4.52 A vertical load P is applied at end B of rod BC. 
(a) Neglecting the weight of the rod, express the angle u corre-
sponding to the equilibrium position in terms of P, l, and the coun-
terweight W. (b) Determine the value of u corresponding to 
equilibrium if P 5 2W.

A

B

C

W

q

l

Fig. P4.53

 4.53 A slender rod AB, of weight W, is attached to blocks A and B, 
which move freely in the guides shown. The blocks are connected 
by an elastic cord that passes over a pulley at C. (a) Express the 
tension in the cord in terms of W and u. (b) Determine the value 
of u for which the tension in the cord is equal to 3W.

A

B

C

l

l

P

P

q

M

Fig. P4.54

 4.54 Rod AB is acted upon by a couple M and two forces, each of 
magnitude P. (a) Derive an equation in u, P, M, and l that must 
be satisfied when the rod is in equilibrium. (b) Determine the 
value of u corresponding to equilibrium when M 5 150 N ? m, 
P 5 200 N, and l 5 600 mm.

 4.55 Solve Sample Prob. 4.5, assuming that the spring is unstretched 
when u 5 908.

P

B

C

l

l

q

W

A

Fig. P4.52

B

A C
q

W

P

l

l

Fig. P4.51

A

B

6 m

20°
T1

T2

10°

Fig. P4.50
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182 Equilibrium of Rigid Bodies  4.56 A slender rod AB, of weight W, is attached to blocks A and B that 
move freely in the guides shown. The constant of the spring is k, 
and the spring is unstretched when u 5 0. (a) Neglecting the 
weight of the blocks, derive an equation in W, k, l, and u that must 
be satisfied when the rod is in equilibrium. (b) Determine the 
value of u when W 5 75 lb, l 5 30 in., and k 5 3 lb/in.

 4.57 A vertical load P is applied at end B of rod BC. The constant of 
the spring is k, and the spring is unstretched when u 5 608. 
(a) Neglecting the weight of the rod, express the angle u corre-
sponding to the equilibrium position in terms of P, k, and l. (b) Deter-
mine the value of u corresponding to equilibrium if P 5 1

4 kl.

 4.58 A collar B of weight W can move freely along the vertical rod 
shown. The constant of the spring is k, and the spring is unstretched 
when u 5 0. (a) Derive an equation in u, W, k, and l that must 
be satisfied when the collar is in equilibrium. (b) Knowing that 
W 5 300 N, l 5 500 mm, and k 5 800 N/m, determine the value 
of u corresponding to equilibrium.

 4.59 Eight identical 500 3 750-mm rectangular plates, each of mass 
m 5 40 kg, are held in a vertical plane as shown. All connections 
consist of frictionless pins, rollers, or short links. In each case, 
determine whether (a) the plate is completely, partially, or 
improperly constrained, (b) the reactions are statically determi-
nate or indeterminate, (c) the equilibrium of the plate is main-
tained in the position shown. Also, wherever possible, compute 
the reactions.

B

C

l

A

q

l

P

Fig. P4.57

Fig. P4.59

A B

CD

1 2 3 4

5 6 7 8

A

B

q

l

Fig. P4.58

A

BW

q

l

Fig. P4.56
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183 4.60 The bracket ABC can be supported in the eight different ways 
shown. All connections consist of smooth pins, rollers, or short 
links. For each case, answer the questions listed in Prob. 4.59, and, 
wherever possible, compute the reactions, assuming that the mag-
nitude of the force P is 100 lb.

4.6 EQUILIBRIUM OF A TWO-FORCE BODY
A particular case of equilibrium which is of considerable interest is 
that of a rigid body subjected to two forces. Such a body is commonly 
called a two-force body. It will be shown that if a two-force body is 
in equilibrium, the two forces must have the same magnitude, the 
same line of action, and opposite sense.
 Consider a corner plate subjected to two forces F1 and F2 act-
ing at A and B, respectively (Fig. 4.8a). If the plate is to be in equi-
librium, the sum of the moments of F1 and F2 about any axis must 
be zero. First, we sum moments about A. Since the moment of F1 
is obviously zero, the moment of F2 must also be zero and the line 
of action of F2 must pass through A (Fig. 4.8b). Summing moments 
about B, we prove similarly that the line of action of F1 must pass 
through B (Fig. 4.8c). Therefore, both forces have the same line of 
action (line AB). From either of the equations oFx 5 0 and oFy 5 0 
it is seen that they must also have the same magnitude but opposite 
sense.

B

A
C

13 ft

2 ft 2 ft

2 3
4

5 6 7 8

PPP

P P P P

P

Fig. P4.60

(c)

A

B

F1

F2

(b)

A

B

F2

(a)

A

B

F1

F2

F1

Fig. 4.8

1834.6 Equilibrium of a Two-Force Body
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184 Equilibrium of Rigid Bodies

 If several forces act at two points A and B, the forces acting at 
A can be replaced by their resultant F1 and those acting at B can be 
replaced by their resultant F2. Thus a two-force body can be more 
generally defined as a rigid body subjected to forces acting at only 
two points. The resultants F1 and F2 then must have the same line 
of action, the same magnitude, and opposite sense (Fig. 4.8).
 In the study of structures, frames, and machines, you will see 
how the recognition of two-force bodies simplifies the solution of 
certain problems.

4.7 EQUILIBRIUM OF A THREE-FORCE BODY
Another case of equilibrium that is of great interest is that of a three-
force body, i.e., a rigid body subjected to three forces or, more gen-
erally, a rigid body subjected to forces acting at only three points. 
Consider a rigid body subjected to a system of forces which can be 
reduced to three forces F1, F2, and F3 acting at A, B, and C, respec-
tively (Fig. 4.9a). It will be shown that if the body is in equilibrium, 
the lines of action of the three forces must be either concurrent or 
parallel.
 Since the rigid body is in equilibrium, the sum of the moments 
of F1, F2, and F3 about any axis must be zero. Assuming that the 
lines of action of F1 and F2 intersect and denoting their point of 
intersection by D, we sum moments about D (Fig. 4.9b). Since the 
moments of F1 and F2 about D are zero, the moment of F3 about 
D must also be zero, and the line of action of F3 must pass through 
D (Fig. 4.9c). Therefore, the three lines of action are concurrent. 
The only exception occurs when none of the lines intersect; the lines 
of action are then parallel.
 Although problems concerning three-force bodies can be solved 
by the general methods of Secs. 4.3 to 4.5, the property just estab-
lished can be used to solve them either graphically or mathematically 
from simple trigonometric or geometric relations.

(c)

A

B

F1

F2

(b)

A

B

F2

(a)

A

B

F1

F2

F1

Fig. 4.8 (repeated)

F2

F3

F1

B C

D
A

(a) (b) (c)

F2

F3

F1

B C

D
A

F2

F3

F1

B C

A

Fig. 4.9
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185

SOLUTION

Free-Body Diagram. The joist is a three-force body, since it is acted upon 
by three forces: its weight W, the force T exerted by the rope, and the 
reaction R of the ground at A. We note that

W 5 mg 5 (10 kg)(9.81 m/s2) 5 98.1 N

Three-Force Body. Since the joist is a three-force body, the forces acting 
on it must be concurrent. The reaction R, therefore, will pass through the 
point of intersection C of the lines of action of the weight W and the ten-
sion force T. This fact will be used to determine the angle a that R forms 
with the horizontal.
 Drawing the vertical BF through B and the horizontal CD through C, 
we note that

 AF 5 BF 5 (AB) cos 458 5 (4 m) cos 458 5 2.828 m
CD 5 EF 5 AE 5 1

2(AF) 5 1.414 m
BD 5 (CD) cot (458 1 258) 5 (1.414 m) tan 208 5 0.515 m
 CE 5 DF 5 BF 2 BD 5 2.828 m 2 0.515 m 5 2.313 m

We write

tan a 5
CE
AE

5
2.313 m
1.414 m

5 1.636

a 5 58.68 ◀

We now know the direction of all the forces acting on the joist.

Force Triangle. A force triangle is drawn as shown, and its interior angles 
are computed from the known directions of the forces. Using the law of 
sines, we write

T
sin 31.4°

5
R

sin 110°
5

98.1 N
sin 38.6°

T 5 81.9 N ◀

R 5 147.8 N a58.68 ◀

SAMPLE PROBLEM 4.6

A man raises a 10-kg joist, of length 4 m, by pulling on a rope. Find the 
tension T in the rope and the reaction at A.

45°

25°
4 m

B

A

A

B

C

G

T

R

W = 98.1 Na

45°

45°
4 m

A

B
C

G

D

E F

25°

a

T

R98.1 N

110°

38.6°
20°

31.4°

a = 58.6°
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The preceding sections covered two particular cases of equilibrium of a rigid 
body.

1. A two-force body is a body subjected to forces at only two points. The 
resultants of the forces acting at each of these points must have the same magni-
tude, the same line of action, and opposite sense. This property will allow you to 
simplify the solutions of some problems by replacing the two unknown compo-
nents of a reaction by a single force of unknown magnitude but of known 
direction.

2. A three-force body is subjected to forces at only three points. The resul-
tants of the forces acting at each of these points must be concurrent or parallel.
To solve a problem involving a three-force body with concurrent forces, draw your 
free-body diagram showing that these three forces pass through the same point. 
The use of simple geometry may then allow you to complete the solution by using 
a force triangle [Sample Prob. 4.6].

Although the principle noted above for the solution of problems involving three-
force bodies is easily understood, it can be difficult to sketch the needed geo-
metric constructions. If you encounter difficulty, first draw a reasonably large 
free-body diagram and then seek a relation between known or easily calculated 
lengths and a dimension that involves an unknown. This was done in Sample 
Prob. 4.6, where the easily calculated dimensions AE and CE were used to 
determine the angle a.

SOLVING PROBLEMS
ON YOUR OWN
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PROBLEMS

4.61 Determine the reactions at A and B when a 5 150 mm.

 4.62 Determine the value of a for which the magnitude of the reaction 
at B is equal to 800 N.

 4.63 Using the method of Sec. 4.7, solve Prob. 4.22b.

 4.64 A 500-lb cylindrical tank, 8 ft in diameter, is to be raised over a 
2-ft obstruction. A cable is wrapped around the tank and pulled 
horizontally as shown. Knowing that the corner of the obstruction 
at A is rough, find the required tension in the cable and the reac-
tion at A.

A

B

240 mm

80 mm

320 N

a

Fig. P4.61 and P4.62

4.65 For the frame and loading shown, determine the reactions at A
and C.

 4.66 For the frame and loading shown, determine the reactions at C
and D.

Fig. P4.67 and P4.68

A B

C

D

75 mm80 N

90 mm

b

250 mm
4.67 Determine the reactions at B and D when b 5 60 mm.

 4.68 Determine the reactions at B and D when b 5 120 mm.

A

B

G

2 ft

8 ft

T

Fig. P4.64

A

B

C

D

30 lb

4 in. 6 in.

3 in.

Fig. P4.65

150 lb

3 ft 3 ft

1.5 ft

1.5 ft
D

BA

C

Fig. P4.66
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188 Equilibrium of Rigid Bodies  4.69 A T-shaped bracket supports a 300-N load as shown. Determine 
the reactions at A and C when a 5 458.

40 lbA

B

C

D

12 in. 12 in.

18 in.

10 in.

Fig. P4.72

30°

P

Fig. P4.71

 4.70 A T-shaped bracket supports a 300-N load as shown. Determine 
the reactions at A and C when a 5 608.

 4.71 A 40-lb roller, of diameter 8 in., which is to be used on a tile floor, 
is resting directly on the subflooring as shown. Knowing that the 
thickness of each tile is 0.3 in., determine the force P required to 
move the roller onto the tiles if the roller is (a) pushed to the left, 
(b) pulled to the right.

A

C

300 N

B

300 mm

250 mm
150 mm

α

Fig. P4.69 and P4.70

 4.72 One end of rod AB rests in the corner A and the other end is 
attached to cord BD. If the rod supports a 40-lb load at its mid-
point C, find the reaction at A and the tension in the cord.

 4.73 A 50-kg crate is attached to the trolley-beam system shown. Know-
ing that a 5 1.5 m, determine (a) the tension in cable CD, (b) the 
reaction at B.

A

B

C

D

55° 1.4 m

0.4 m

a

W

Fig. P4.73

 4.74 Solve Prob. 4.73, assuming that a 5 3 m.
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189Problems 4.75 Determine the reactions at A and B when b 5 508.

 4.76 Determine the reactions at A and B when b 5 808.

 4.77 Knowing that u 5 308, determine the reaction (a) at B, (b) at C.

 4.78 Knowing that u 5 608, determine the reaction (a) at B, (b) at C.

 4.79 Using the method of Sec. 4.7, solve Prob. 4.23.

 4.80 Using the method of Sec. 4.7, solve Prob. 4.24.

 4.81 and 4.82 Member ABC is supported by a pin and bracket at 
B and by an inextensible cord attached at A and C and passing 
over a frictionless pulley at D. The tension may be assumed to be 
the same in portions AD and CD of the cord. For the loading 
shown and neglecting the size of the pulley, determine the tension 
in the cord and the reaction at B.

A

BC

R

P

q

Fig. P4.77 and P4.78

 4.83 A thin ring of mass 2 kg and radius r 5 140 mm is held against a 
frictionless wall by a 125-mm string AB. Determine (a) the dis-
tance d, (b) the tension in the string, (c) the reaction at C.

A

B

C

100 N

250 mm

150 mm

25°

b

Fig. P4.75 and P4.76

A B

D

C

72 lb a = 12 in.

7 in.

24 in.

Fig. P4.81

A

B

CD

75 N

250 mm

a = 120 mm

160 mm

Fig. P4.82

140 mm

125 mm

d

A

B

C

Fig. P4.83
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190 Equilibrium of Rigid Bodies  4.84 A uniform rod AB of length 2R rests inside a hemispherical bowl 
of radius R as shown. Neglecting friction, determine the angle u 
corresponding to equilibrium.

 4.85 A slender rod BC of length L and weight W is held by two cables as 
shown. Knowing that cable AB is horizontal and that the rod forms 
an angle of 408 with the horizontal, determine (a) the angle u that 
cable CD forms with the horizontal, (b) the tension in each cable.

A

B

q

2R

Fig. P4.84

 4.86 A slender rod of length L and weight W is attached to a collar at 
A and is fitted with a small wheel at B. Knowing that the wheel 
rolls freely along a cylindrical surface of radius R, and neglecting 
friction, derive an equation in u, L, and R that must be satisfied 
when the rod is in equilibrium.

 4.87 Knowing that for the rod of Prob. 4.86, L 5 15 in., R 5 20 in., 
and W 5 10 lb, determine (a) the angle u corresponding to equi-
librium, (b) the reactions at A and B.

 4.88 Rod AB is bent into the shape of an arc of circle and is lodged 
between two pegs D and E. It supports a load P at end B. Neglect-
ing friction and the weight of the rod, determine the distance c 
corresponding to equilibrium when a 5 20 mm and R 5 100 mm.

R

L
A

B

C

q

Fig. P4.86

 4.89 A slender rod of length L is attached to collars that can slide freely 
along the guides shown. Knowing that the rod is in equilibrium, 
derive an expression for the angle u in terms of the angle b.

 4.90 An 8-kg slender rod of length L is attached to collars that can slide 
freely along the guides shown. Knowing that the rod is in equilib-
rium and that b 5 308, determine (a) the angle u that the rod 
forms with the vertical, (b) the reactions at A and B.

40°

C

B

D

L

q

A

Fig. P4.85

P

A
R

C

D

E

a

a

c

B

Fig. P4.88

A

B

q

b

L

Fig. P4.89 and P4.90
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191EQUILIBRIUM IN THREE DIMENSIONS

4.8  EQUILIBRIUM OF A RIGID BODY 
IN THREE DIMENSIONS

We saw in Sec. 4.1 that six scalar equations are required to express 
the conditions for the equilibrium of a rigid body in the general 
three-dimensional case:

 oFx 5 0 oFy 5 0  oFz 5 0 (4.2)
 oMx 5 0  oMy 5 0  oMz 5 0 (4.3)

These equations can be solved for no more than six unknowns, which 
generally will represent reactions at supports or connections.
 In most problems the scalar equations (4.2) and (4.3) will be 
more conveniently obtained if we first express in vector form the con-
ditions for the equilibrium of the rigid body considered. We write

 oF 5 0  oMO 5 o(r 3 F) 5 0 (4.1)

and express the forces F and position vectors r in terms of scalar 
components and unit vectors. Next, we compute all vector products, 
either by direct calculation or by means of determinants (see Sec. 3.8). 
We observe that as many as three unknown reaction components 
may be eliminated from these computations through a judicious 
choice of the point O. By equating to zero the coefficients of the 
unit vectors in each of the two relations (4.1), we obtain the desired 
scalar equations.†

4.9  REACTIONS AT SUPPORTS AND CONNECTIONS 
FOR A THREE-DIMENSIONAL STRUCTURE

The reactions on a three-dimensional structure range from the single 
force of known direction exerted by a frictionless surface to the 
force-couple system exerted by a fixed support. Consequently, in 
problems involving the equilibrium of a three-dimensional structure, 
there can be between one and six unknowns associated with the 
reaction at each support or connection. Various types of supports and 

†In some problems, it will be found convenient to eliminate the reactions at two points 
A and B from the solution by writing the equilibrium equation oMAB 5 0, which 
involves the determination of the moments of the forces about the axis AB joining 
points A and B (see Sample Prob. 4.10).

4.9 Reactions at Supports and Connections for 
a Three-Dimensional Structure
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192 Equilibrium of Rigid Bodies connections are shown in Fig. 4.10 with their corresponding reac-
tions. A simple way of determining the type of reaction correspond-
ing to a given support or connection and the number of unknowns 
involved is to find which of the six fundamental motions (translation in 
the x, y, and z directions, rotation about the x, y, and z axes) are 
allowed and which motions are prevented.
 Ball supports, frictionless surfaces, and cables, for example, pre-
vent translation in one direction only and thus exert a single force whose 
line of action is known; each of these supports involves one unknown, 
namely, the magnitude of the reaction. Rollers on rough surfaces and 
wheels on rails prevent translation in two directions; the corresponding 
reactions consist of two unknown force components. Rough surfaces in 
direct contact and ball-and-socket supports prevent translation in three 
directions; these supports involve three unknown force components.
 Some supports and connections can prevent rotation as well 
as translation; the corresponding reactions include couples as well as 
forces. For example, the reaction at a fixed support, which prevents 
any motion (rotation as well as translation), consists of three unknown 
forces and three unknown couples. A universal joint, which is designed 
to allow rotation about two axes, will exert a reaction consisting of 
three unknown force components and one unknown couple.
 Other supports and connections are primarily intended to pre-
vent translation; their design, however, is such that they also prevent 
some rotations. The corresponding reactions consist essentially of 
force components but may also include couples. One group of sup-
ports of this type includes hinges and bearings designed to support 
radial loads only (for example, journal bearings, roller bearings). The 
corresponding reactions consist of two force components but may 
also include two couples. Another group includes pin-and-bracket 
supports, hinges, and bearings designed to support an axial thrust as 
well as a radial load (for example, ball bearings). The corresponding 
reactions consist of three force components but may include two 
couples. However, these supports will not exert any appreciable cou-
ples under normal conditions of use. Therefore, only force compo-
nents should be included in their analysis unless it is found that 
couples are necessary to maintain the equilibrium of the rigid body, 
or unless the support is known to have been specifically designed to 
exert a couple (see Probs. 4.119 through 4.122).
 If the reactions involve more than six unknowns, there are 
more unknowns than equations, and some of the reactions are stati-
cally indeterminate. If the reactions involve fewer than six unknowns, 
there are more equations than unknowns, and some of the equations 
of equilibrium cannot be satisfied under general loading conditions; 
the rigid body is only partially constrained. Under the particular 
loading conditions corresponding to a given problem, however, the 
extra equations often reduce to trivial identities, such as 0 5 0, and 
can be disregarded; although only partially constrained, the rigid 
body remains in equilibrium (see Sample Probs. 4.7 and 4.8). Even 
with six or more unknowns, it is possible that some equations of 
equilibrium will not be satisfied. This can occur when the reactions 
associated with the given supports either are parallel or intersect the 
same line; the rigid body is then improperly constrained.

Photo 4.6 Universal joints, easily seen on the 
drive shafts of rear-wheel-drive cars and trucks, 
allow rotational motion to be transferred between 
two noncollinear shafts.

Photo 4.7 The pillow block bearing shown 
supports the shaft of a fan used in an industrial 
facility.
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Fig. 4.10 Reactions at supports and connections.

Ball Frictionless surface

Force with known
line of action

(one unknown)

Force with known
line of action

(one unknown)
Cable

F
F

Roller on
rough surface

Rough surface

Universal
joint

Hinge and bearing supporting radial load only

Wheel on rail
Two force components

Three force components

Three force components
and one couple

Three force components
and three couples

Three force components
(and two couples)

Two force components
(and two couples)

Fy

Fx

Fx

Mx

Fz

Fy

Fz
Fx

Fy

Fz

Fy

Fz

Fy

Fz

My

(Mz)

(My)

(Mz)

(My)

Mz

Ball and socket

Fixed support

Hinge and bearing supporting
axial thrust and radial loadPin and bracket

Fx

Mx

Fy

Fz
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SAMPLE PROBLEM 4.7

A 20-kg ladder used to reach high shelves in a storeroom is supported by 
two flanged wheels A and B mounted on a rail and by an unflanged wheel 
C resting against a rail fixed to the wall. An 80-kg man stands on the ladder 
and leans to the right. The line of action of the combined weight W of the 
man and ladder intersects the floor at point D. Determine the reactions at 
A, B, and C.

A 0.6 m
0.6 m

0.9 m 0.3 m

x

y

z

Ck

–(981 N)j

Ayj

Azk

Bzk Byj

3 m

194

A

B

C

D
0.6 m

0.6 m

0.9 m 0.3 m

W

3 m

SOLUTION

Free-Body Diagram. A free-body diagram of the ladder is drawn. The 
forces involved are the combined weight of the man and ladder,

W 5 2mg j 5 2(80 kg 1 20 kg)(9.81 m/s2)j 5 2(981 N)j

and five unknown reaction components, two at each flanged wheel and one 
at the unflanged wheel. The ladder is thus only partially constrained; it is 
free to roll along the rails. It is, however, in equilibrium under the given 
load since the equation oFx 5 0 is satisfied.

Equilibrium Equations. We express that the forces acting on the ladder 
form a system equivalent to zero:

 oF 5 0:  Ay j 1 Azk 1 Byj 1 Bzk 2 (981 N)j 1 Ck 5 0
 (Ay 1 By 2 981 N)j 1 (Az 1 Bz 1 C)k 5 0 (1)
oMA 5 o(r 3 F) 5 0:   1.2i 3 (By j 1 Bzk) 1 (0.9i 2 0.6k) 3 (2981j)

1 (0.6i 1 3j 2 1.2k) 3 Ck 5 0

Computing the vector products, we have†

 1.2Byk 2 1.2Bz j 2 882.9k 2 588.6i 2 0.6Cj 1 3Ci 5 0
 (3C 2 588.6)i 2 (1.2Bz 1 0.6C)j 1 (1.2By 2 882.9)k 5 0 (2)

 Setting the coefficients of i, j, k equal to zero in Eq. (2), we obtain 
the following three scalar equations, which express that the sum of the 
moments about each coordinate axis must be zero:

 3C 2 588.6 5 0 C 5 1196.2 N
 1.2Bz 1 0.6C 5 0 Bz 5 298.1 N
 1.2By 2 882.9 5 0 By 5 1736 N

The reactions at B and C are therefore

B 5 1(736 N)j 2 (98.1 N)k  C 5 1(196.2 N)k ◀

Setting the coefficients of j and k equal to zero in Eq. (1), we obtain two scalar 
equations expressing that the sums of the components in the y and z directions 
are zero. Substituting for By, Bz, and C the values obtained above, we write

 Ay 1 By 2 981 5 0 Ay 1 736 2 981 5 0 Ay 5 1245 N
 Az 1 Bz 1 C 5 0 Az 2 98.1 1 196.2 5 0 Az 5 298.1 N

We conclude that the reaction at A is A 5 1(245 N)j 2 (98.1 N)k ◀

†The moments in this sample problem and in Sample Probs. 4.8 and 4.9 can also be 
expressed in the form of determinants (see Sample Prob. 3.10).
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SAMPLE PROBLEM 4.8

A 5 3 8-ft sign of uniform density weighs 270 lb and is supported by a 
ball-and-socket joint at A and by two cables. Determine the tension in each 
cable and the reaction at A.

195

W = – (270 lb) j

A x i

Azk

A y j

TEC TBD
A

B

C

D

E

x

y

z 6 ft

2 ft

2 ft
4 ft

4 ft
4 ft

8 ft

3 ft

SOLUTION

Free-Body Diagram. A free-body diagram of the sign is drawn. The forces 
acting on the free body are the weight W 5 2(270 lb)j and the reactions 
at A, B, and E. The reaction at A is a force of unknown direction and is 
represented by three unknown components. Since the directions of the 
forces exerted by the cables are known, these forces involve only one 
unknown each, namely, the magnitudes TBD and TEC. Since there are only 
five unknowns, the sign is partially constrained. It can rotate freely about 
the x axis; it is, however, in equilibrium under the given loading, since the 
equation oMx 5 0 is satisfied.
 The components of the forces TBD and TEC can be expressed in terms 
of the unknown magnitudes TBD and TEC by writing

 BD
¡

5 2(8 ft)i 1 (4 ft)j 2 (8 ft)k    BD 5 12 ft
 EC
¡

5 2(6 ft)i 1 (3 ft)j 1 (2 ft)k    EC 5 7 ft

 TBD 5 TBDaBD
¡

BD
b 5 TBD(22

3i 1 1
3j 2 2

3k)

 TEC 5 TEC aEC
¡

EC
b 5 TEC(26

7i 1 3
7j 2 2

7k)

Equilibrium Equations. We express that the forces acting on the sign form 
a system equivalent to zero:

oF 5 0:  Axi 1 Ayj 1 Azk 1 TBD 1 TEC 2 (270 lb)j 5 0
(Ax 2 2

3 TBD 2 6
7 TEC)i 1 (Ay 1 1

3 TBD 1 3
7 TEC 2 270 lb)j

1 (Az 2 2
3 TBD 1 2

7 TEC)k 5 0 (1)

oMA 5 o(r 3 F) 5 0:
(8 ft)i 3 TBD(22

3 i 1 1
3 j 2 2

3 k) 1 (6 ft)i 3 TEC(26
7 i 1 3

7 j 1 2
7 k)

1 (4 ft)i 3 (2270 lb)j 5 0
(2.667TBD 1 2.571TEC 2 1080 lb)k 1 (5.333TBD 2 1.714TEC)j 5 0 (2)

 Setting the coefficients of j and k equal to zero in Eq. (2), we obtain 
two scalar equations which can be solved for TBD and TEC:

TBD 5 101.3 lb  TEC 5 315 lb ◀

Setting the coefficients of i, j, and k equal to zero in Eq. (1), we obtain 
three more equations, which yield the components of A. We have

A 5 1(338 lb)i 1 (101.2 lb)j 2 (22.5 lb)k ◀

A

B

C

D

E

x

y

z 6 ft

2 ft

2 ft

5 ft

4 ft

8 ft

3 ft
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SAMPLE PROBLEM 4.9

A uniform pipe cover of radius r 5 240 mm and mass 30 kg is held in a 
horizontal position by the cable CD. Assuming that the bearing at B does 
not exert any axial thrust, determine the tension in the cable and the reac-
tions at A and B.

196

r = 240 mm

A

B

C

D

W = – (294 N) j

Bx i
By j

A x i
Ayj

Azk

160 mm

80 mm

Tr = 240 mm

r = 240 mm

x

y

z

240 mm

r = 240 mm

A

B

C

D

160 mm

240 mm
240 mm

240 mm

SOLUTION

Free-Body Diagram. A free-body diagram is drawn with the coordinate 
axes shown. The forces acting on the free body are the weight of the cover,

W 5 2mg j 5 2(30 kg)(9.81 m/s2)j 5 2(294 N)j

and reactions involving six unknowns, namely, the magnitude of the force T 
exerted by the cable, three force components at hinge A, and two at hinge B. 
The components of T are expressed in terms of the unknown magnitude T 
by resolving the vector DC

¡
 into rectangular components and writing

DC
¡

 5 2(480 mm)i 1 (240 mm)j 2 (160 mm)k  DC 5 560 mm

T 5 T 
DC
¡

DC
5 26

7 Ti 1 3
7 Tj 2 2

7 T k

Equilibrium Equations. We express that the forces acting on the pipe cover 
form a system equivalent to zero:

oF 5 0:    Axi 1 Ay j 1 Azk 1 Bxi 1 Byj 1 T 2 (294 N)j 5 0
 (Ax 1 Bx 2 6

7T)i 1 (Ay 1 By 1 3
7T 2 294 N)j 1 (Az 2 2

7T)k 5 0 (1)

oMB 5 o(r 3 F) 5 0:
2rk 3 (Axi 1 Ayj 1 Azk)
 1 (2r i 1 rk) 3 (2 67Ti 1  37Tj 2  27Tk)
  1 (ri 1 rk) 3 (2294 N)j 5 0
 (22Ay 2 3

7T 1 294 N)r i 1 (2Ax 2 2
7T)rj 1 (6

7T 2 294 N)rk 5 0 (2)

 Setting the coefficients of the unit vectors equal to zero in Eq. (2), 
we write three scalar equations, which yield

Ax 5 149.0 N  Ay 5 173.5 N  T 5 343 N ◀

Setting the coefficients of the unit vectors equal to zero in Eq. (1), we obtain 
three more scalar equations. After substituting the values of T, Ax, and Ay 
into these equations, we obtain

Az 5 198.0 N  Bx 5 1245 N  By 5 173.5 N

The reactions at A and B are therefore

A 5 1(49.0 N)i 1 (73.5 N)j 1 (98.0 N)k ◀

B 5 1(245 N)i 1 (73.5 N)j       ◀
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SAMPLE PROBLEM 4.10

A 450-lb load hangs from the corner C of a rigid piece of 
pipe ABCD which has been bent as shown. The pipe is 
supported by the ball-and-socket joints A and D, which are 
fastened, respectively, to the floor and to a vertical wall, 
and by a cable attached at the midpoint E of the portion 
BC of the pipe and at a point G on the wall. Determine 
(a) where G should be located if the tension in the cable 
is to be minimum, (b) the corresponding minimum value 
of the tension.

12 ft

12 ft

450 lb

A

B
C DE

G

6 ft6 ft

6 ft

A

B C DE

x

y

z

T

�

Dxi

Dy j
Dzk

A x i

Ay j

Azk

W = –450 j

6 ft

6 ft

12 ft

12 ft

12 ft

A

B
C

D

G(x, y, 0)

E(6, 12, 6)

x

y

z

W

Tmin

SOLUTION

Free-Body Diagram. The free-body diagram of the pipe includes the load 
W 5 (2450 lb)j, the reactions at A and D, and the force T exerted by the 
cable. To eliminate the reactions at A and D from the computations, we 
express that the sum of the moments of the forces about AD is zero. Denot-
ing by l the unit vector along AD, we write

 oMAD 5 0:    L ? (AE
¡

3 T) 1 L ? (AC
¡

3 W) 5 0 (1)

 The second term in Eq. (1) can be computed as follows:

 AC
¡

3 W 5 (12i 1 12j) 3 (2450j) 5 25400k

 L 5
AD
¡

AD
5

12i 1 12j 2 6k

18
5 2

3 i 1 2
3 j 2 1

3 k

 L ? (AC
¡

3 W) 5 (2
3 i 1 2

3 j 2 1
3 k) ? (25400k) 5 11800

Substituting the value obtained into Eq. (1), we write

 L ? (AE
¡

3 T) 5 21800 lb ? ft (2)

Minimum Value of Tension. Recalling the commutative property for 
mixed triple products, we rewrite Eq. (2) in the form

 T ? (L 3 AE
¡

) 5 21800 lb ? ft (3)

which shows that the projection of T on the vector L 3 AE
¡

 is a constant. 
It follows that T is minimum when parallel to the vector

L 3 AE
¡

5 (2
3 i 1 2

3 j 2 1
3 k) 3 (6i 1 12j) 5 4i 2 2j 1 4k

Since the corresponding unit vector is 2
3 i 2 1

3 j 1 2
3 k, we write

 Tmin 5 T(2
3 i 2 1

3 j 1 2
3 k) (4)

Substituting for T and L 3 AE
¡

 in Eq. (3) and computing the dot products, 
we obtain 6T 5 21800 and, thus, T 5 2300. Carrying this value into (4), 
we obtain

Tmin 5 2200i 1 100j 2 200k  Tmin 5 300 lb ◀

Location of G. Since the vector EG
¡

 and the force Tmin have the same 
direction, their components must be proportional. Denoting the coordinates 
of G by x, y, 0, we write

x 2 6
2200

5
y 2 12

1100
5

0 2 6
2200

    x 5 0    y 5 15 ft ◀
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The equilibrium of a three-dimensional body was considered in the sections you 
just completed. It is again most important that you draw a complete free-body 

diagram as the first step of your solution.

1. As you draw the free-body diagram, pay particular attention to the reac-
tions at the supports. The number of unknowns at a support can range from one 
to six (Fig. 4.10). To decide whether an unknown reaction or reaction component 
exists at a support, ask yourself whether the support prevents motion of the body 
in a certain direction or about a certain axis.
 a. If motion is prevented in a certain direction, include in your free-body 
diagram an unknown reaction or reaction component that acts in the same 
direction.
 b. If a support prevents rotation about a certain axis, include in your free-
body diagram a couple of unknown magnitude that acts about the same axis.

2. The external forces acting on a three-dimensional body form a system 
equivalent to zero. Writing oF 5 0 and oMA 5 0 about an appropriate point A, 
and setting the coefficients of i, j, k in both equations equal to zero will provide 
you with six scalar equations. In general, these equations will contain six unknowns 
and may be solved for these unknowns.

3. After completing your free-body diagram, you may want to seek equations 
involving as few unknowns as possible. The following strategies may help you.
 a. By summing moments about a ball-and-socket support or a hinge, you will 
obtain equations from which three unknown reaction components have been elimi-
nated [Sample Probs. 4.8 and 4.9].
 b. If you can draw an axis through the points of application of all but one of the 
unknown reactions, summing moments about that axis will yield an equation in a 
single unknown [Sample Prob. 4.10].

4. After drawing your free-body diagram, you may find that one of the 
 following situations exists.
 a. The reactions involve fewer than six unknowns; the body is said to be 
partially constrained and motion of the body is possible. However, you may be 
able to determine the reactions for a given loading condition [Sample Prob. 4.7].
 b. The reactions involve more than six unknowns; the reactions are said to 
be statically indeterminate. Although you may be able to calculate one or two 
reactions, you cannot determine all of the reactions [Sample Prob. 4.10].
 c. The reactions are parallel or intersect the same line; the body is said to 
be improperly constrained, and motion can occur under a general loading 
condition.

SOLVING PROBLEMS
ON YOUR OWN
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PROBLEMS

199

FREE BODY PRACTICE PROBLEMS

4.F5 A 4 3 8-ft sheet of plywood weighing 34 lb has been temporarily 
placed among three pipe supports. The lower edge of the sheet 
rests on small collars at A and B and its upper edge leans against 
pipe C. Neglecting friction on all surfaces, draw the free-body 
diagram needed to determine the reactions at A, B, and C.

4 ft

y

z

B

A

x

1 ft

3.75 ft
3 ft

5 ft

3 ft

4 ft

C

 Fig. P4.F5  

4.F7 The 6-m pole ABC is acted upon by a 455-N force as shown. The 
pole is held by a ball-and-socket joint at A and by two cables BD 
and BE. Draw the free-body diagram needed to determine the 
tension in each cable and the reaction at A.

30 lb

T

24 lb

18 lb

y
8 in.

6 in.

A

B
C

D

x

z

6 in.

 Fig. P4.F6  
A

B

C

F

x

y

z

D

E

455 N

1.5 m

1.5 m2 m

3 m

3 m

3 m

3 m

3 m

Fig. P4.F7

4.F6 Two transmission belts pass over sheaves welded to an axle 
 supported by bearings at B and D. The sheave at A has a radius 
of 2.5 in. and the sheave at C has a radius of 2 in. Knowing that 
the system rotates at a constant rate, draw the free-body diagram 
needed to determine the tension T and the reactions at B and D. 
Assume that the bearing at D does not exert any axial thrust and 
neglect the weights of the sheaves and axle.
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200 Equilibrium of Rigid Bodies END-OF-SECTION PROBLEMS

 4.91 A 200-mm lever and a 240-mm-diameter pulley are welded to the 
axle BE that is supported by bearings at C and D. If a 720-N verti-
cal load is applied at A when the lever is horizontal, determine 
(a) the tension in the cord, (b) the reactions at C and D. Assume 
that the bearing at D does not exert any axial thrust.

T

720 N

y

80 mm 120 mm

120 mm

200 mm

A
E

B

C

D

x

z

40 mm

 Fig. P4.91

 4.92 Solve Prob. 4.91, assuming that the axle has been rotated 
 clockwise in its bearings by 308 and that the 720-N load remains 
vertical.

 4.93 A 4 3 8-ft sheet of plywood weighing 40 lb has been temporarily 
propped against column CD. It rests at A and B on small wooden 
blocks and against protruding nails. Neglecting friction at all sur-
faces of contact, determine the reactions at A, B, and C.

y

D

B

A

C

O

z

x
5 ft

2 ft

1 ft

2 ft

4 ft

60°

 Fig. P4.93

TB

x

D

C

B

A

z

y

4.5 in.

4.5 in.

6 in. TC

 Fig. P4.94

 4.94 Two tape spools are attached to an axle supported by bearings at 
A and D. The radius of spool B is 1.5 in. and the radius of spool 
C is 2 in. Knowing that TB 5 20 lb and that the system rotates at 
a constant rate, determine the reactions at A and D. Assume that 
the bearing at A does not exert any axial thrust and neglect the 
weights of the spools and axle.
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201Problems 4.95 Two transmission belts pass over a double-sheaved pulley that is 
attached to an axle supported by bearings at A and D. The radius 
of the inner sheave is 125 mm and the radius of the outer sheave 
is 250 mm. Knowing that when the system is at rest, the tension 
is 90 N in both portions of belt B and 150 N in both portions of 
belt C, determine the reactions at A and D. Assume that the bear-
ing at D does not exert any axial thrust.

 4.96 Solve Prob. 4.95, assuming that the pulley rotates at a constant rate 
and that TB 5 104 N, T9B 5 84 N, and TC 5 175 N.

 4.97 Two steel pipes AB and BC, each having a mass per unit length of 
8 kg/m, are welded together at B and supported by three vertical 
wires. Knowing that a 5 0.4 m, determine the tension in each wire.

 4.98 For the pipe assembly of Prob. 4.97, determine (a) the largest 
permissible value of a if the assembly is not to tip, (b) the corre-
sponding tension in each wire.

 4.99 The 45-lb square plate shown is supported by three vertical wires. 
Determine the tension in each wire.

z

A

T9B

T9C

x

y

B

150 mm

200 mm

100 mm

TC

TB

C

D

 Fig. P4.95 B

A

C

D

y

x

z

a

1.2 m
0.6 m

 Fig. P4.97

A

C

B

z

x

y

20 in.

20 in.

15 in.
5 in.

 Fig. P4.99
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202 Equilibrium of Rigid Bodies  4.100 The table shown weighs 30 lb and has a diameter of 4 ft. It is 
supported by three legs equally spaced around the edge. A vertical 
load P of magnitude 100 lb is applied to the top of the table at D. 
Determine the maximum value of a if the table is not to tip over. 
Show, on a sketch, the area of the table over which P can act 
without tipping the table.

 4.101 An opening in a floor is covered by a 1 3 1.2-m sheet of plywood 
of mass 18 kg. The sheet is hinged at A and B and is maintained 
in a position slightly above the floor by a small block C. Determine 
the vertical component of the reaction (a) at A, (b) at B, (c) at C.

 4.102 Solve Prob. 4.101, assuming that the small block C is moved and 
placed under edge DE at a point 0.15 m from corner E.

 4.103 The rectangular plate shown weighs 80 lb and is supported by 
three vertical wires. Determine the tension in each wire.

A
B

C

D

aP

 Fig. P4.100

A

B

C

x

y

z

D

E

3.6 kN

1.2 m

1.2 m

1.2 m

0.6 m

0.8 m

0.8 m

 Fig. P4.105

y

z
x

A

B

E C

0.15 m

0.2 m

0.2 m
0.6 m

1.2 m

D

 Fig. P4.101

x
C

A

60 in.

60 in.
60 in. 30 in.

15 in.

15 in.

B

z

y

 Fig. P4.103   and P4.104

 4.104 The rectangular plate shown weighs 80 lb and is supported by 
three vertical wires. Determine the weight and location of the 
lightest block that should be placed on the plate if the tensions in 
the three wires are to be equal.

 4.105 A 2.4-m boom is held by a ball-and-socket joint at C and by two 
cables AD and AE. Determine the tension in each cable and the 
reaction at C.
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203Problems 4.106 Solve Prob. 4.105, assuming that the 3.6-kN load is applied at 
point A.

 4.107 A 10-ft boom is acted upon by the 840-lb force shown. Determine 
the tension in each cable and the reaction at the ball-and-socket 
joint at A.

 4.108 A 12-m pole supports a horizontal cable CD and is held by a ball 
and socket at A and two cables BE and BF. Knowing that the ten-
sion in cable CD is 14 kN and assuming that CD is parallel to the 
x axis (f 5 0), determine the tension in cables BE and BF and the 
reaction at A.

 4.109 Solve Prob. 4.108, assuming that cable CD forms an angle f 5 258 
with the vertical xy plane.

 4.110 A 48-in. boom is held by a ball-and-socket joint at C and by two 
cables BF and DAE; cable DAE passes around a frictionless pulley 
at A. For the loading shown, determine the tension in each cable 
and the reaction at C.

840 lb

x

y

z

E

A
B

C

D

4 ft
6 ft

7 ft

6 ft

6 ft

 Fig. P4.107C

B

F

E

A

D

xz 6 m

6 m

8 m

12 m

7.5 m

y

f

 Fig. P4.108

A

B
C

F

x

y

z

D

E

20 in.

16 in.

320 lb

30 in.

20 in.

48 in.

 Fig. P4.110

 4.111 Solve Prob. 4.110, assuming that the 320-lb load is applied at A.
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204 Equilibrium of Rigid Bodies  4.112 A 600-lb crate hangs from a cable that passes over a pulley B and 
is attached to a support at H. The 200-lb boom AB is supported 
by a ball-and-socket joint at A and by two cables DE and DF. The 
center of gravity of the boom is located at G. Determine (a) the 
tension in cables DE and DF, (b) the reaction at A.

 4.113 A 100-kg uniform rectangular plate is supported in the position shown 
by hinges A and B and by cable DCE that passes over a frictionless 
hook at C. Assuming that the tension is the same in both parts of the 
cable, determine (a) the tension in the cable, (b) the reactions at A 
and B. Assume that the hinge at B does not exert any axial thrust.

 4.114 Solve Prob. 4.113, assuming that cable DCE is replaced by a cable 
attached to point E and hook C.

 4.115 The rectangular plate shown weighs 75 lb and is held in the posi-
tion shown by hinges at A and B and by cable EF. Assuming that 
the hinge at B does not exert any axial thrust, determine (a) the 
tension in the cable, (b) the reactions at A and B.

x

y

E

G

A

B

C D22.5 ft

16.5 ft

5 ft

6.6 ft5 ft

13 ft

6 ft

2.8 ft
3.2 ft

F

H

z

6.6 ft

 Fig. P4.112

690 mm

960 mm

x

y

z

E

D

A

B

C

675 mm
90 mm

450 mm

270 mm

90 mm

 Fig. P4.113

x

y

z

D

H

F

E

A

B

C

25 in.

20 in.

4 in.

12 in.

8 in.

4 in.

30 in.

 Fig. P4.115

 4.116 Solve Prob. 4.115, assuming that cable EF is replaced by a cable 
attached at points E and H.
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205Problems 4.117 A 20-kg cover for a roof opening is hinged at corners A and B. The 
roof forms an angle of 308 with the horizontal, and the cover is main-
tained in a horizontal position by the brace CE. Determine (a) the 
magnitude of the force exerted by the brace, (b) the reactions at the 
hinges. Assume that the hinge at A does not exert any axial thrust.

 4.118 The bent rod ABEF is supported by bearings at C and D and by 
wire AH. Knowing that portion AB of the rod is 250 mm long, 
determine (a) the tension in wire AH, (b) the reactions at C and 
D. Assume that the bearing at D does not exert any axial thrust.

 4.119 Solve Prob. 4.115, assuming that the hinge at B is removed and 
that the hinge at A can exert couples about axes parallel to the y 
and z axes.

 4.120 Solve Prob. 4.118, assuming that the bearing at D is removed and 
that the bearing at C can exert couples about axes parallel to the 
y and z axes.

 4.121 The assembly shown is welded to collar A that fits on the vertical 
pin shown. The pin can exert couples about the x and z axes but 
does not prevent motion about or along the y axis. For the loading 
shown, determine the tension in each cable and the reaction at A.

250 mm50 mm 300 mm

400 N

C

D

E

F x
z

50 mm

250 mm

A B

H

y

30°

 Fig. P4.118

E

C

D

z

A

y

x

B

0.9 m

0.9 m0.6 m

30°

 Fig. P4.117

480 N

A

C

D

E

F

x

y

z

60 mm

45 mm

90 mm

120 mm

80 mm

 Fig. P4.121
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206 Equilibrium of Rigid Bodies

T

A

B

C

F

D

E

S

G

x

y

z

6 lb
2 in.

1.6 in.

4.2 in.

2.4 in.

T

 Fig. P4.122

 4.122 The assembly shown is used to control the tension T in a tape that 
passes around a frictionless spool at E. Collar C is welded to rods 
ABC and CDE. It can rotate about shaft FG but its motion along 
the shaft is prevented by a washer S. For the loading shown, deter-
mine (a) the tension T in the tape, (b) the reaction at C.

 4.123 The rigid L-shaped member ABF is supported by a ball-and-socket 
joint at A and by three cables. For the loading shown, determine 
the tension in each cable and the reaction at A.

x

y

z

A

B

C D

E F

G

J

H

24 lb

24 lb

9 in.

16 in.

16 in.

8 in.

12 in.

16 in.

8 in.

8 in.

8 in.

O

Fig. P4.123

x

z

y

A

B

C

D

EF

1.8 kN

240 mm

320 mm
210 mm

210 mm

420 mm

420 mm

 Fig. P4.125

 4.124 Solve Prob. 4.123, assuming that the load at C has been removed.

 4.125 The rigid L-shaped member ABC is supported by a ball-and-socket 
joint at A and by three cables. If a 1.8-kN load is applied at F, 
determine the tension in each cable.

 4.126 Solve Prob. 4.125, assuming that the 1.8-kN load is applied at C.
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207Problems 4.127 The assembly shown consists of an 80-mm rod AF that is welded to 
a cross consisting of four 200-mm arms. The assembly is supported 
by a ball-and-socket joint at F and by three short links, each of which 
forms an angle of 458 with the vertical. For the loading shown, deter-
mine (a) the tension in each link, (b) the reaction at F.

 4.128 The uniform 10-kg rod AB is supported by a ball-and-socket joint 
at A and by the cord CG that is attached to the midpoint G of the 
rod. Knowing that the rod leans against a frictionless vertical wall 
at B, determine (a) the tension in the cord, (b) the reactions at A 
and B.

x

y

z

E

F

A

B

P

CD

45º

45º

45º

200 mm 200 mm

200 mm
200 mm

80 mm

 Fig. P4.127

x

y

z

GO  

A

B

C
150 mm

150 mm

400 mm

600 mm

 Fig. P4.128

 4.129 Three rods are welded together to form a “corner” that is supported 
by three eyebolts. Neglecting friction, determine the reactions at A, 
B, and C when P 5 240 lb, a 5 12 in., b 5 8 in., and c 5 10 in.

 4.130 Solve Prob. 4.129, assuming that the force P is removed and is 
replaced by a couple M 5 1(600 lb ? in.)j acting at B.

x

y

z

b

cA

B

C

P

a

 Fig. P4.129
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208 Equilibrium of Rigid Bodies  4.131 In order to clean the clogged drainpipe AE, a plumber has discon-
nected both ends of the pipe and inserted a power snake through 
the opening at A. The cutting head of the snake is connected by 
a heavy cable to an electric motor that rotates at a constant speed 
as the plumber forces the cable into the pipe. The forces exerted 
by the plumber and the motor on the end of the cable can be 
represented by the wrench F 5 2(48 N)k, M 5 2(90 N ? m)k. 
Determine the additional reactions at B, C, and D caused by the 
cleaning operation. Assume that the reaction at each support con-
sists of two force components perpendicular to the pipe.

0.5 m x

y

z

A

B

D
E

O

3 m
1 m

2 m

1 m

C

 Fig. P4.131

x

y

z

A

B

C

D

E

240 mm

400 mm

400 mm

200 mm
200 mm

480 mm

240 mm

 Fig. P4.133

 4.132 Solve Prob. 4.131, assuming that the plumber exerts a force F 5 
2(48 N)k and that the motor is turned off (M 5 0).

 4.133 The 50-kg plate ABCD is supported by hinges along edge AB and 
by wire CE. Knowing that the plate is uniform, determine the ten-
sion in the wire.

 4.134 Solve Prob. 4.133, assuming that wire CE is replaced by a wire 
connecting E and D.
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209Problems 4.135 Two rectangular plates are welded together to form the assembly 
shown. The assembly is supported by ball-and-socket joints at B 
and D and by a ball on a horizontal surface at C. For the loading 
shown, determine the reaction at C.

B

A

y

z

D

C
x

6 in.

12 in.
8 in.

9 in.

80 lb

 Fig. P4.135
z 2 ft

2 ft

2 ft

2 ft

2 ft

x

x

y

y

A

B

C

O

H

D

E

F
12 lb12 lb

 Fig. P4.136

 4.136 Two 2 3 4-ft plywood panels, each of weight 12 lb, are nailed 
together as shown. The panels are supported by ball-and-socket 
joints at A and F and by the wire BH. Determine (a) the location 
of H in the xy plane if the tension in the wire is to be minimum, 
(b) the corresponding minimum tension.

 4.137 Solve Prob. 4.136, subject to the restriction that H must lie on the 
y axis.

 4.138 The frame ACD is supported by ball-and-socket joints at A and D 
and by a cable that passes through a ring at B and is attached to 
hooks at G and H. Knowing that the frame supports at point C a 
load of magnitude P 5 268 N, determine the tension in the cable.

 4.139 Solve Prob. 4.138, assuming that cable GBH is replaced by a cable 
GB attached at G and B.

 4.140 The bent rod ABDE is supported by ball-and-socket joints at A and 
E and by the cable DF. If a 60-lb load is applied at C as shown, 
determine the tension in the cable.

x

y

z

A
B

C

D

G

O

P

H

0.35 m

0.875 m

0.75 m

0.75 m

0.925 m

0.5 m
0.5 m

 Fig. P4.138
x

y

z

A

B

C

D

E

F

8 in.

7 in.

9 in.

60 lb11 in.

16 in.

10 in.

14 in.

 Fig. P4.140

 4.141 Solve Prob. 4.140, assuming that cable DF is replaced by a cable 
connecting B and F.
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210

REVIEW AND SUMMARY

This chapter was devoted to the study of the equilibrium of rigid 
bodies, i.e., to the situation when the external forces acting on a rigid 
body form a system equivalent to zero [Sec. 4.1]. We then have

 oF 5 0  oMO 5 o(r 3 F) 5 0 (4.1)

Resolving each force and each moment into its rectangular compo-
nents, we can express the necessary and sufficient conditions for the 
equilibrium of a rigid body with the following six scalar equations:

 oFx 5 0 oFy 5 0   oFz 5 0 (4.2)
 oMx 5 0  oMy 5 0  oMz 5 0 (4.3)

These equations can be used to determine unknown forces applied 
to the rigid body or unknown reactions exerted by its supports.

When solving a problem involving the equilibrium of a rigid body, it 
is essential to consider all of the forces acting on the body. Therefore, 
the first step in the solution of the problem should be to draw a 
free-body diagram showing the body under consideration and all of 
the unknown as well as known forces acting on it [Sec. 4.2].

In the first part of the chapter, we considered the equilibrium of a 
two-dimensional structure; i.e., we assumed that the structure con-
sidered and the forces applied to it were contained in the same 
plane. We saw that each of the reactions exerted on the structure by 
its supports could involve one, two, or three unknowns, depending 
upon the type of support [Sec. 4.3].
 In the case of a two-dimensional structure, Eqs. (4.1), or Eqs. 
(4.2) and (4.3), reduce to three equilibrium equations, namely

 oFx 5 0  oFy 5 0  oMA 5 0 (4.5)

where A is an arbitrary point in the plane of the structure [Sec. 4.4]. 
These equations can be used to solve for three unknowns. While the 
three equilibrium equations (4.5) cannot be augmented with addi-
tional equations, any of them can be replaced by another equation. 
Therefore, we can write alternative sets of equilibrium equations, 
such as

 oFx 5 0  oMA 5 0  oMB 5 0 (4.6)

where point B is chosen in such a way that the line AB is not parallel 
to the y axis, or

 oMA 5 0  oMB 5 0  oMC 5 0 (4.7)

where the points A, B, and C do not lie in a straight line.

Equilibrium equations

Free-body diagram

Equilibrium of a two-dimensional 
structure
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211 Since any set of equilibrium equations can be solved for only three 
unknowns, the reactions at the supports of a rigid two-dimensional 
structure cannot be completely determined if they involve more 
than three unknowns; they are said to be statically indeterminate 
[Sec. 4.5]. On the other hand, if the reactions involve fewer than 
three unknowns, equilibrium will not be maintained under general 
loading conditions; the structure is said to be partially constrained. 
The fact that the reactions involve exactly three unknowns is no 
guarantee that the equilibrium equations can be solved for all three 
unknowns. If the supports are arranged in such a way that the reactions 
are either concurrent or parallel, the reactions are statically indeter-
minate, and the structure is said to be improperly constrained.

 Two particular cases of equilibrium of a rigid body were given 
special attention. In Sec. 4.6, a two-force body was defined as a rigid 
body subjected to forces at only two points, and it was shown that 
the resultants F1 and F2 of these forces must have the same mag-
nitude, the same line of action, and opposite sense (Fig. 4.11), a 
property which will simplify the solution of certain problems in later 
chapters. In Sec. 4.7, a three-force body was defined as a rigid body 
subjected to forces at only three points, and it was shown that the 
resultants F1, F2, and F3 of these forces must be either concurrent 
(Fig. 4.12) or parallel. This property provides us with an alternative 
approach to the solution of problems involving a three-force body 
[Sample Prob. 4.6].

Statical indeterminacy

Partial constraints

Improper constraints

Two-force body

Three-force body

Review and Summary

 In the second part of the chapter, we considered the equilib-
rium of a three-dimensional body and saw that each of the reactions 
exerted on the body by its supports could involve between one and 
six unknowns, depending upon the type of support [Sec. 4.8].
 In the general case of the equilibrium of a three-dimensional 
body, all of the six scalar equilibrium equations (4.2) and (4.3) listed 
at the beginning of this review should be used and solved for six 
unknowns [Sec. 4.9]. In most problems, however, these equations 
will be more conveniently obtained if we first write

 oF 5 0  oMO 5 o(r 3 F) 5 0 (4.1)

and express the forces F and position vectors r in terms of scalar com-
ponents and unit vectors. The vector products can then be  computed 
either directly or by means of determinants, and the desired scalar 
equations obtained by equating to zero the coefficients of the unit vec-
tors [Sample Probs. 4.7 through 4.9].

Equilibrium of a three-dimensional 
body

A

B

F1

F2

 Fig. 4.11

F2

F3

F1

B C

D
A

 Fig. 4.12
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212 Equilibrium of Rigid Bodies  We noted that as many as three unknown reaction components 
may be eliminated from the computation of oMO in the second of 
the relations (4.1) through a judicious choice of point O. Also, the 
reactions at two points A and B can be eliminated from the solution 
of some problems by writing the equation oMAB 5 0, which involves 
the computation of the moments of the forces about an axis AB join-
ing points A and B [Sample Prob. 4.10].
 If the reactions involve more than six unknowns, some of the 
reactions are statically indeterminate; if they involve fewer than six 
unknowns, the rigid body is only partially constrained. Even with six 
or more unknowns, the rigid body will be improperly constrained if 
the reactions associated with the given supports either are parallel 
or intersect the same line.
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REVIEW PROBLEMS

 4.142 A gardener uses a 60-N wheelbarrow to transport a 250-N bag of 
fertilizer. What force must she exert on each handle?

0.15 m 0.15 m

60 N

250 N

A

0.7 m

Fig. P4.142

 4.143 The required tension in cable AB is 200 lb. Determine (a) the 
vertical force P that must be applied to the pedal, (b) the cor-
responding reaction at C.

 4.144 A lever AB is hinged at C and attached to a control cable at A. If 
the lever is subjected to a 500-N horizontal force at B, determine 
(a) the tension in the cable, (b) the reaction at C.

P

D

A B

C

15 in.

7 in.

60°

Fig. P4.143

B

D

30°

500 N

C

200 mm

250 mm

250 mm

A

Fig. P4.144

 4.145 A force P of magnitude 280 lb is applied to member ABCD, which 
is supported by a pin at A and by the cable CED. Neglecting fric-
tion and considering the case when a 5 3 in., determine (a) the 
tension in the cable, (b) the reaction at A.

A

B C

D
E

P

a 12 in.

5 in.

12 in.

12 in.

Fig. P4.145
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214 Equilibrium of Rigid Bodies  4.146 Two slots have been cut in plate DEF, and the plate has been 
placed so that the slots fit two fixed, frictionless pins A and B. 
Knowing that P 5 15 lb, determine (a) the force each pin exerts 
on the plate, (b) the reaction at F.

P A

B

D E

F

4 in. 4 in. 7 in. 2 in.

30º

30 lb

3 in.

Fig. P4.146

750 N

500 mm

150 mm
250 mm

600 mm

450 N
A

B

C D

400 mm

Fig. P4.147

 4.147 Knowing that the tension in wire BD is 1300 N, determine the 
reaction at the fixed support C of the frame shown.

 4.148 The spanner shown is used to rotate a shaft. A pin fits in a hole at 
A, while a flat, frictionless surface rests against the shaft at B. If 
a 60-lb force P is exerted on the spanner at D, find the reactions 
at A and B.

15 in.
3 in.

PA

B

C D
50º

Fig. P4.148

 4.149 Rod AB is supported by a pin and bracket at A and rests against 
a frictionless peg at C. Determine the reactions at A and C when 
a 170-N vertical force is applied at B.

 4.150 The 24-lb square plate shown is supported by three vertical wires. 
Determine (a) the tension in each wire when a 5 10 in., (b) the 
value of a for which the tension in each wire is 8 lb.

y

x

B C

A

a

30 in.

a

30 in.

z

Fig. P4.150

A

B

C

170 N

150 mm

150 mm

160 mm

Fig. P4.149

bee02286_ch04_158-217.indd Page 214  6/21/11  3:27 PM user-f494bee02286_ch04_158-217.indd Page 214  6/21/11  3:27 PM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


215Review Problems 4.151 Frame ABCD is supported by a ball-and-socket joint at A and by 
three cables. For a 5 150 mm, determine the tension in each cable 
and the reaction at A.

 4.152 The pipe ACDE is supported by ball-and-socket joints at A and E 
and by the wire DF. Determine the tension in the wire when a 
640-N load is applied at B as shown.

 4.153 A force P is applied to a bent rod ABC, which may be supported in 
four different ways as shown. In each case, if possible, determine 
the reactions at the supports.

A

B

C
H

DE

F

G

x

y

z

140 mm

350 N
300 mm

140 mm

200 mm

a480 mm

Fig. P4.151 640 N

x

y

z

A B

C

D
E

F

240 mm

160 mm

480 mm

200 mm

490 mm

Fig. P4.152

A
A

B B

C C

P

A

B

C

P

P

A

B

C

P

45°

45°

(a) (b)

(c) (d)

a = 30°

30°

aa

a

aa

a

aa

a

aa

a

Fig. P4.153
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COMPUTER PROBLEMS

 4.C1 The position of the L-shaped rod shown is controlled by a cable 
attached at B. Knowing that the rod supports a load of magnitude P 5 50 lb, 
write a computer program that can be used to calculate the tension T in the 
cable for  values of u from 0 to 120° using 10° increments. Using appropriate 
smaller increments, calculate the maximum tension T and the corresponding 
value of u.

Fig. P4.C1

E

A

B
D

C

T

P

q

8 in.

16 in.

12 in.

15 in.

4 in.

A

B

D P
400 mm

x

1000 mm

Fig. P4.C2

W

A

a

q

B

C

R

Fig. P4.C3

R

B

R

A

W

a

y

z

x

q

Fig. P4.C4

 4.C2 The position of the 10-kg rod AB is controlled by the block shown, 
which is slowly moved to the left by the force P. Neglecting the effect of 
friction, write a computer program that can be used to calculate the magni-
tude P of the force for values of x decreasing from 750 mm to 0 using 
50-mm increments. Using appropriate smaller increments, determine the 
maximum value of P and the corresponding value of x.

 4.C3 and 4.C4 The constant of spring AB is k, and the spring is unstretched 
when u 5 0. Knowing that R 5 10 in., a 5 20 in., and k 5 5 lb/in., write 
a computer program that can be used to calculate the weight W correspond-
ing to equilibrium for values of u from 0 to 90° using 10° increments. Using 
appropriate smaller increments, determine the value of u corresponding to 
equilibrium when W 5 5 lb.
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217Computer Problems 4.C5 A 200 3 250-mm panel of mass 20 kg is supported by hinges along 
edge AB. Cable CDE is attached to the panel at C, passes over a small 
pulley at D, and supports a cylinder of mass m. Neglecting the effect of 
friction, write a computer program that can be used to calculate the mass of 
the cylinder corresponding to equilibrium for values of u from 0 to 90° using 
10° increments. Using appropriate smaller increments, determine the value 
of u corresponding to equilibrium when m 5 10 kg.

0.2 m

0.2 m

0.1 m

0.125 m

0.125 m

A

B

C

D

E
z

x

y

�
m

Fig. P4.C5

y

x

z

B

E

D

C

A
f

2000 kg

3 m

3 m

2 m
1.5

 m

1.5
 m

3 m

Fig. P4.C6

 4.C6 The derrick shown supports a 2000-kg crate. It is held by a ball-and-
socket joint at A and by two cables attached at D and E. Knowing that the 
derrick stands in a vertical plane forming an angle f with the xy plane, 
write a computer program that can be used to calculate the tension in each 
cable for values of f from 0 to 60° using 5° increments. Using appropriate 
smaller increments, determine the value of f for which the tension in cable 
BE is maximum.
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The Revelstoke Dam, located on the 

Columbia River in British Columbia, is 

subjected to three different kinds of 

distributed forces: the weights of its 

constituent elements, the pressure forces 

exerted by the water of its submerged 

face, and the pressure forces exerted 

by the ground on its base.
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Distributed Forces: Centroids 
and Centers of Gravity

C H A P T E R
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5.1 INTRODUCTION
We have assumed so far that the attraction exerted by the earth on a 
rigid body could be represented by a single force W. This force, called 
the force of gravity or the weight of the body, was to be applied at the 
center of gravity of the body (Sec. 3.2). Actually, the earth exerts a force 
on each of the particles forming the body. The action of the earth on a 
rigid body should thus be represented by a large number of small forces 
distributed over the entire body. You will learn in this chapter, however, 
that all of these small forces can be replaced by a single equivalent force 
W. You will also learn how to determine the center of gravity, i.e., the 
point of application of the resultant W, for bodies of various shapes.
 In the first part of the chapter, two-dimensional bodies, such 
as flat plates and wires contained in a given plane, are considered. 
Two concepts closely associated with the determination of the center 
of gravity of a plate or a wire are introduced: the concept of the 
centroid of an area or a line and the concept of the first moment of 
an area or a line with respect to a given axis.
 You will also learn that the computation of the area of a surface 
of revolution or of the volume of a body of revolution is directly related 
to the determination of the centroid of the line or area used to gener-
ate that surface or body of revolution (theorems of Pappus-Guldinus). 
And, as is shown in Secs. 5.8 and 5.9, the determination of the centroid 
of an area simplifies the analysis of beams subjected to distributed 
loads and the computation of the forces exerted on submerged rect-
angular surfaces, such as hydraulic gates and portions of dams.
 In the last part of the chapter, you will learn how to determine 
the center of gravity of a three-dimensional body as well as the cen-
troid of a volume and the first moments of that volume with respect 
to the coordinate planes.

AREAS AND LINES

5.2  CENTER OF GRAVITY OF A 
TWO-DIMENSIONAL BODY

Let us first consider a flat horizontal plate (Fig. 5.1). We can divide 
the plate into n small elements. The coordinates of the first element 

 Chapter 5 Distributed Forces: 
Centroids and Centers of Gravity

 5.1 Introduction
 5.2 Center of Gravity of a Two-

Dimensional Body
 5.3 Centroids of Areas and Lines
 5.4 First Moments of Areas and Lines
 5.5 Composite Plates and Wires
 5.6 Determination of Centroids 

by Integration
 5.7 Theorems of Pappus-Guldinus
 5.8 Distributed Loads on Beams
 5.9 Forces on Submerged Surfaces
 5.10 Center of Gravity of a Three-

Dimensional Body. Centroid of 
a Volume

 5.11 Composite Bodies
 5.12 Determination of Centroids of 

Volumes by Integration

x

y

z

G
O O

⎯x

⎯y

W

=

ΔW

ΣMy :  ⎯x W = Σx ΔW

ΣMx :  ⎯y W = Σy ΔW

x

y

z

y
x

Fig. 5.1 Center of gravity of a plate.

Photo 5.1 The precise balancing of the 
components of a mobile requires an understanding 
of centers of gravity and centroids, the main topics 
of this chapter.
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Fig. 5.2 Center of gravity of a wire.

x

y

z

O ⎯y

=
W ΔW

⎯x
G

x

y

y

z

O

x

ΣMy :  ⎯x W = Σx ΔW

ΣMx :  ⎯y W = Σy ΔW

5.2 Center of Gravity of a 
Two-Dimensional Body

are denoted by x1 and y1, those of the second element by x2 and y2, 
etc. The forces exerted by the earth on the elements of the plate will 
be denoted, respectively, by DW1, DW2, . . . , DWn. These forces or 
weights are directed toward the center of the earth; however, for all 
practical purposes they can be assumed to be parallel. Their resultant 
is therefore a single force in the same direction. The magnitude W 
of this force is obtained by adding the magnitudes of the elemental 
weights.

oFz:  W 5 DW1 1 DW2 1 ? ? ? 1 DWn

To obtain the coordinates x and y of the point G where the resultant W 
should be applied, we write that the moments of W about the y and 
x axes are equal to the sum of the corresponding moments of the 
elemental weights,

oMy:  x W 5 x1 DW1 1 x2 DW2 1 ? ? ? 1 xn DWn

oMx:  y W 5 y1 DW1 1 y2 DW2 1 ? ? ? 1 yn DWn (5.1)

If we now increase the number of elements into which the plate is 
divided and simultaneously decrease the size of each element, we 
obtain in the limit the following expressions:

 W 5#  dW   x W 5#  x dW   y W 5#  y dW (5.2)

These equations define the weight W and the coordinates x and y 
of the center of gravity G of a flat plate. The same equations can be 
derived for a wire lying in the xy plane (Fig. 5.2). We note that the 
center of gravity G of a wire is usually not located on the wire.
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5.3 CENTROIDS OF AREAS AND LINES
In the case of a flat homogeneous plate of uniform thickness, the 
magnitude DW of the weight of an element of the plate can be 
expressed as

DW 5 g t DA

 where g 5 specific weight (weight per unit volume) of the material
 t 5 thickness of the plate
 DA 5 area of the element

Similarly, we can express the magnitude W of the weight of the entire 
plate as

W 5 g tA

where A is the total area of the plate.
 If U.S. customary units are used, the specific weight g should 
be expressed in lb/ft3, the thickness t in feet, and the areas DA and A 
in square feet. We observe that DW and W will then be expressed 
in pounds. If SI units are used, g should be expressed in N/m3, t in 
meters, and the areas DA and A in square meters; the weights DW 
and W will then be expressed in newtons.†
 Substituting for DW and W in the moment equations (5.1) and 
dividing throughout by gt, we obtain

oMy:  xA 5 x1 DA1 1 x2 DA2 1 ? ? ? 1 xn DAn
oMx:  yA 5 y1 DA1 1 y2 DA2 1 ? ? ? 1 yn DAn

If we increase the number of elements into which the area A is 
divided and simultaneously decrease the size of each element, we 
obtain in the limit

 xA 5#  x dA   yA 5#  y dA (5.3)

These equations define the coordinates x and y of the center of 
 gravity of a homogeneous plate. The point whose coordinates are x 
and y is also known as the centroid C of the area A of the plate 
(Fig. 5.3). If the plate is not homogeneous, these equations cannot 
be used to determine the center of gravity of the plate; they still 
define, however, the centroid of the area.
 In the case of a homogeneous wire of uniform cross section, the 
magnitude DW of the weight of an element of wire can be expressed as

DW 5 ga DL

 where g 5 specific weight of the material
 a 5 cross-sectional area of the wire
 DL 5 length of the element

†It should be noted that in the SI system of units a given material is generally charac-
terized by its density r (mass per unit volume) rather than by its specific weight g. The 
specific weight of the material can then be obtained from the relation

g 5 rg

where g 5 9.81 m/s2. Since r is expressed in kg/m3, we observe that g will be expressed in 
(kg/m3)(m/s2), that is, in N/m3.

222  Distributed Forces: Centroids and Centers 
of Gravity
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The center of gravity of the wire then coincides with the centroid C of 
the line L defining the shape of the wire (Fig. 5.4). The coordinates x 
and y of the centroid of the line L are obtained from the equations

 xL 5#  x dL   yL 5#  y dL (5.4)

5.4 FIRST MOMENTS OF AREAS AND LINES
The integral e x dA in Eqs. (5.3) of the preceding section is known 
as the first moment of the area A with respect to the y axis and is 
denoted by Qy. Similarly, the integral e y dA defines the first moment 
of A with respect to the x axis and is denoted by Qx. We write

 Qy 5#  x dA   Qx 5#  y dA (5.5)

Comparing Eqs. (5.3) with Eqs. (5.5), we note that the first moments 
of the area A can be expressed as the products of the area and the 
coordinates of its centroid:

 Qy 5 xA   Qx 5 yA (5.6)

 It follows from Eqs. (5.6) that the coordinates of the centroid 
of an area can be obtained by dividing the first moments of that area 
by the area itself. The first moments of the area are also useful in 
mechanics of materials for determining the shearing stresses in 
beams under transverse loadings. Finally, we observe from Eqs. (5.6) 
that if the centroid of an area is located on a coordinate axis, the 
first moment of the area with respect to that axis is zero. Conversely, 
if the first moment of an area with respect to a coordinate axis is 
zero, then the centroid of the area is located on that axis.
 Relations similar to Eqs. (5.5) and (5.6) can be used to define 
the first moments of a line with respect to the coordinate axes and 

Fig. 5.4 Centroid of a line.

x
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⎯x Δ L
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ΣMy :  ⎯x L = Σ x Δ L

ΣMx :  ⎯y L = Σ y Δ L

C

O x

x

y

y

O x

y

A

=

Δ A

ΣMy :  ⎯x A = Σ x ΔA

ΣMx :  ⎯y A = Σ y ΔA

C

⎯y

⎯x

Fig. 5.3 Centroid of an area.

5.4 First Moments of Areas and Lines
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224  Distributed Forces: Centroids and Centers 
of Gravity

to express these moments as the products of the length L of the line 
and the coordinates x and y of its centroid.
 An area A is said to be symmetric with respect to an axis BB9 
if for every point P of the area there exists a point P9 of the same 
area such that the line PP9 is perpendicular to BB9 and is divided into 
two equal parts by that axis (Fig. 5.5a). A line L is said to be sym-
metric with respect to an axis BB9 if it satisfies similar conditions. 
When an area A or a line L possesses an axis of symmetry BB9, its 
first moment with respect to BB9 is zero, and its centroid is located 
on that axis. For example, in the case of the area A of Fig. 5.5b, which 
is symmetric with respect to the y axis, we observe that for every 
element of area dA of abscissa x there exists an element dA9 of equal 
area and with abscissa 2x. It follows that the integral in the first of 
Eqs. (5.5) is zero and, thus, that Qy 5 0. It also follows from the first 
of the relations (5.3) that x 5 0. Thus, if an area A or a line L pos-
sesses an axis of symmetry, its centroid C is located on that axis.
 We further note that if an area or line possesses two axes of sym-
metry, its centroid C must be located at the intersection of the two axes 
(Fig. 5.6). This property enables us to determine immediately the cen-
troid of areas such as circles, ellipses, squares, rectangles, equilateral tri-
angles, or other symmetric figures as well as the centroid of lines in the 
shape of the circumference of a circle, the perimeter of a square, etc.

x

x

y

O

C

A

– x

dAdA'

P

P'

B'

(a)

(b)

B

Fig. 5.5

 An area A is said to be symmetric with respect to a center O if 
for every element of area dA of coordinates x and y there exists an 
element dA9 of equal area with coordinates 2x and 2y (Fig. 5.7). It 
then follows that the integrals in Eqs. (5.5) are both zero and that 
Qx 5 Qy 5 0. It also follows from Eqs. (5.3) that x 5 y 5 0, that is, 
that the centroid of the area coincides with its center of symmetry O. 
Similarly, if a line possesses a center of symmetry O, the centroid of 
the line will coincide with the center O.
 It should be noted that a figure possessing a center of symme-
try does not necessarily possess an axis of symmetry (Fig. 5.7), while 
a figure possessing two axes of symmetry does not necessarily possess 
a center of symmetry (Fig. 5.6a). However, if a figure possesses two 
axes of symmetry at a right angle to each other, the point of intersec-
tion of these axes is a center of symmetry (Fig. 5.6b).
 Determining the centroids of unsymmetrical areas and lines 
and of areas and lines possessing only one axis of symmetry will be 
discussed in Secs. 5.6 and 5.7. Centroids of common shapes of areas 
and lines are shown in Fig. 5.8A and B.

x

y

O

A dA

dA'

x

y

– y

– x

Fig. 5.7

C
C

B

B'

B
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D
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Fig. 5.6
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O

O

O

O
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Fig. 5.8A Centroids of common shapes of areas.

5.4 First Moments of Areas and Lines
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226  Distributed Forces: Centroids and Centers 
of Gravity

5.5 COMPOSITE PLATES AND WIRES
In many instances, a flat plate can be divided into rectangles, triangles, 
or the other common shapes shown in Fig. 5.8A. The abscissa X of its 
center of gravity G can be determined from the abscissas x1, x2, . . . , xn 
of the centers of gravity of the various parts by expressing that the 
moment of the weight of the whole plate about the y axis is equal 
to the sum of the moments of the weights of the various parts about 
the same axis (Fig. 5.9). The ordinate Y of the center of gravity of 
the plate is found in a similar way by equating moments about the 
x axis. We write

 ©My:  X(W1 1 W2 1 . . . 1 Wn) 5 x1W1 1 x2W2 1 . . . 1 xnWn

 ©Mx:  Y(W1 1 W2 1 . . . 1 Wn) 5 y1W1 1 y2W2 1 . . . 1 ynWn

⎯x

⎯y

r sin a
a

2r
� �

�

2r

2r

2
� r

� r

Shape

Quarter-circular
arc

Semicircular arc

Arc of circle

Length

0

2ar0

O
O

O

C

C

r

rC

⎯x

⎯y⎯x

a

a

Fig. 5.8B Centroids of common shapes of lines.

=

x

y

z

x

y

z

O
G

⎯X

⎯Y

W1 W2

W3

G1
G2

G3

ΣW

ΣMy :  ⎯X Σ W = Σ⎯x W

ΣMx :  ⎯Y Σ W = Σ⎯y W

O

Fig. 5.9 Center of gravity of a composite plate.
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227or, for short,

 X©W 5©x W   Y©W 5©y W (5.7)

These equations can be solved for the coordinates X and Y of the 
center of gravity of the plate.

=

x

y

O

C⎯X

⎯Y

A1

A3

A2

C1 C2

C3
ΣA

Qy  = ⎯X Σ A = Σ⎯x A

Qx  = ⎯Y Σ A = Σ⎯y A

x

y

O

Fig. 5.10 Centroid of a composite area.

 If the plate is homogeneous and of uniform thickness, the center 
of gravity coincides with the centroid C of its area. The abscissa X of 
the centroid of the area can be determined by noting that the first 
moment Qy of the composite area with respect to the y axis can be 
expressed both as the product of X and the total area and as the sum 
of the first moments of the elementary areas with respect to the y axis 
(Fig. 5.10). The ordinate Y of the centroid is found in a similar way 
by considering the first moment Qx of the composite area. We have

 Qy 5 X(A1 1 A2 1 . . . 1 An) 5 x1A1 1 x2 A2 1 . . . 1 xnAn

 Qx 5 Y(A1 1 A2 1 . . . 1 An) 5 y1A1 1 y2A2 1 . . . 1 ynAn

or, for short,

 Qy 5 X©A 5©xA   Qx 5 Y©A 5©yA (5.8)

These equations yield the first moments of the composite area, or 
they can be used to obtain the coordinates X and Y of its centroid.
 Care should be taken to assign the appropriate sign to the 
moment of each area. First moments of areas, like moments of 
forces, can be positive or negative. For example, an area whose cen-
troid is located to the left of the y axis will have a negative first 
moment with respect to that axis. Also, the area of a hole should be 
assigned a negative sign (Fig. 5.11).
 Similarly, it is possible in many cases to determine the center 
of gravity of a composite wire or the centroid of a composite line 
by dividing the wire or line into simpler elements (see Sample 
Prob. 5.2).

x

y

z

x

y

⎯x1

⎯x2

⎯xA⎯x

W1
W2

W3

A1

A1 Semicircle

A2 Full rectangle

A3 Circular hole

A2 A3

+

–

A

⎯x3

⎯x1

⎯x3

⎯x2

+

+

–

+ +

–

–

Fig. 5.11

5.5 Composite Plates and Wires
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SAMPLE PROBLEM 5.1

For the plane area shown, determine (a) the first moments with respect to 
the x and y axes, (b) the location of the centroid.

y

x

80 mm

60 mm

60 mm
40 mm

120 mm

SOLUTION

Components of Area. The area is obtained by adding a rectangle, a tri-
angle, and a semicircle and by then subtracting a circle. Using the coordi-
nate axes shown, the area and the coordinates of the centroid of each of the 
component areas are determined and entered in the table below. The area 
of the circle is indicated as negative, since it is to be subtracted from the 
other areas. We note that the coordinate y of the centroid of the triangle is 
negative for the axes shown. The first moments of the component areas with 
respect to the coordinate axes are computed and entered in the table.

y y

x

80 mm

60 mm

r1 = 60 mm

r2 = 40 mm

120 mm

x x x x

y y y

= + + _
40 mm

40 mm

–20 mm

= 25.46 mm
4r1 
3 r1 = 60 mm

r2 = 40 mm

60 mm60 mm

60 mm

80 mm 105.46 mm 80 mm

�

a. First Moments of the Area. Using Eqs. (5.8), we write

 Qx 5 ©yA 5 506.2 3 103 mm3  Qx 5 506 3 103 mm3 ◀

 Qy 5 ©xA 5 757.7 3 103 mm3  Qy 5 758 3 103 mm3 ◀

b. Location of Centroid. Substituting the values given in the table into 
the equations defining the centroid of a composite area, we obtain

X©A 5 ©xA:  X(13.828 3 103 mm2) 5 757.7 3 103 mm3

X 5 54.8 mm ◀

Y©A 5 ©yA:  Y(13.828 3 103 mm2) 5 506.2 3 103 mm3

Y 5 36.6 mm ◀

y

x

C

X = 54.8 mm

Y = 36.6 mm

Component A, mm2 x, mm y, mm x A, mm3 y A, mm3

Rectangle (120)(80) 5 9.6 3 103 60 40 1576 3 103 1384 3 103

Triangle 1
2(120)(60) 5 3.6 3 103 40 220 1144 3 103 272 3 103

Semicircle 1
2p(60)2 5 5.655 3 103 60 105.46 1339.3 3 103 1596.4 3 103

Circle 2p(40)2 5 25.027 3 103 60 80 2301.6 3 103 2402.2 3 103

 oA 5 13.828 3 103   oxA 5 1757.7 3 103 oyA 5 1506.2 3 103
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SAMPLE PROBLEM 5.2

The figure shown is made from a piece of thin, homogeneous wire. Deter-
mine the location of its center of gravity.

26 in.
10 in.

24 in.

C

BA

SOLUTION

Since the figure is formed of homogeneous wire, its center of gravity coin-
cides with the centroid of the corresponding line. Therefore, that centroid 
will be determined. Choosing the coordinate axes shown, with origin at A, 
we determine the coordinates of the centroid of each line segment and 
compute the first moments with respect to the coordinate axes.

Segment L, in. x, in. y, in. x L, in2 y L, in2

AB 24 12 0 288   0
BC 26 12 5 312 130
CA 10  0 5   0  50

 oL 5 60   ©x L 5 600 ©y L 5 180

Substituting the values obtained from the table into the equations defining 
the centroid of a composite line, we obtain

X©L 5 ©x L:  X(60 in.) 5 600 in2 X 5 10 in. ◀

Y©L 5 ©y L:  Y(60 in.) 5 180 in2 Y 5  3 in. ◀

10 in.

12 in.

5 in.

24 in.

C

y

xBA

26 in.
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SAMPLE PROBLEM 5.3

A uniform semicircular rod of weight W and radius r is attached to a pin 
at A and rests against a frictionless surface at B. Determine the reactions 
at A and B.

A

B

O

r

SOLUTION

Free-Body Diagram. A free-body diagram of the rod is drawn. The forces 
acting on the rod are its weight W, which is applied at the center of gravity 
G (whose position is obtained from Fig. 5.8B); a reaction at A, represented 
by its components Ax and Ay; and a horizontal reaction at B.

Equilibrium Equations

1l oMA 5 0: B(2r) 2 W a2r
p
b 5 0

 
B 5 1

W
p  

B 5
W
p

y  ◀

y
1 ©Fx 5 0: Ax 1 B 5 0

 
Ax 5 2B 5 2

W
p
    Ax 5

W
p

z

1x  ©Fy 5 0: Ay 2 W 5 0 Ay 5 W x

Adding the two components of the reaction at A:

 
A 5 cW2 1 aW

p
b2 d 1/2

 
A 5 W a1 1

1
p2b

1/2

 ◀

tan a 5
W

W/p
5 p

 
 a 5 tan21p ◀

The answers can also be expressed as follows:

A 5 1.049W b72.3°  B 5 0.318Wy ◀

G

B

Ax

A

Ay

WB

2r

2r
�

Ay = W

a

Ax =
W
�

A
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SOLVING PROBLEMS 
ON YOUR OWN

In this lesson we developed the general equations for locating the centers of 
gravity of two-dimensional bodies and wires [Eqs. (5.2)] and the centroids of 

plane areas [Eqs. (5.3)] and lines [Eqs. (5.4)]. In the following problems, you will 
have to locate the centroids of composite areas and lines or determine the first 
moments of the area for composite plates [Eqs. (5.8)].

1. Locating the centroids of composite areas and lines. Sample Problems 5.1 
and 5.2 illustrate the procedure you should follow when solving problems of this 
type. There are, however, several points that should be emphasized.

a. The first step in your solution should be to decide how to construct the 
given area or line from the common shapes of Fig. 5.8. You should recognize that 
for plane areas it is often possible to construct a particular shape in more than one 
way. Also, showing the different components (as is done in Sample Prob. 5.1) will 
help you to correctly establish their centroids and areas or lengths. Do not forget 
that you can subtract areas as well as add them to obtain a desired shape.

b. We strongly recommend that for each problem you construct a table con-
taining the areas or lengths and the respective coordinates of the centroids. It is 
essential for you to remember that areas which are “removed” (for example, holes) 
are treated as negative. Also, the sign of negative coordinates must be included. 
Therefore, you should always carefully note the location of the origin of the coor-
dinate axes.

c. When possible, use symmetry [Sec. 5.4] to help you determine the location 
of a centroid.

d. In the formulas for the circular sector and for the arc of a circle in Fig. 5.8, 
the angle a must always be expressed in radians.

2. Calculating the first moments of an area. The procedures for locating the 
centroid of an area and for determining the first moments of an area are similar; 
however, for the latter it is not necessary to compute the total area. Also, as noted 
in Sec. 5.4, you should recognize that the first moment of an area relative to a 
centroidal axis is zero.

3. Solving problems involving the center of gravity. The bodies considered in 
the following problems are homogeneous; thus, their centers of gravity and cen-
troids coincide. In addition, when a body that is suspended from a single pin is in 
equilibrium, the pin and the body’s center of gravity must lie on the same vertical 
line.

It may appear that many of the problems in this lesson have little to do with the 
study of mechanics. However, being able to locate the centroid of composite 
shapes will be essential in several topics that you will soon encounter.
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 5.1 through 5.9 Locate the centroid of the plane area shown.

PROBLEMS

1 in.

1 in.

2 in.

5 in.

4 in.

x

y

Fig. P5.1

x

y

30 mm 48 mm

72 mm

Fig. P5.2

x

y

54 mm 72 mm

30 mm

54 mm

48 mm

Fig. P5.3

y

6 in.

6 in.

6 in.

6 in.

3 in.

x

Fig. P5.4

a = 5 in.

a = 5 in.

r = 10 in.

y

x

B 

Fig. P5.5

x

y

r = 4 in.

8 in.

12 in.

8 in.6 in.

Fig. P5.6

x

y

60 mm

60 mm

Fig. P5.8

x

y

120 mm

r = 75 mm

Fig. P5.9

2 in.
3 in.

3 in.
x

y

3 in.

Fig. P5.7
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233Problems 5.10 through 5.15 Locate the centroid of the plane area shown.

 5.16 Determine the x coordinate of the centroid of the trapezoid shown 
in terms of h1, h2, and a.

x

y

α α
r1 r2

Fig. P5.18 and P5.19

 5.17 For the plane area of Prob. 5.5, determine the ratio a/r so that the 
centroid of the area is located at point B.

 5.18 Determine the y coordinate of the centroid of the shaded area in 
terms of r1, r2, and a.

200 mm

Parabola

x

240 mm

y

240 mm

Fig. P5.12
x

y

r2 = 12 in. r1 = 8 in.

Fig. P5.10

3 m

4.5 m4.5 m

r = 1.8 m

Vertex
Parabola

x

y

Fig. P5.11

Parabola

Vertex50 mm

15 mm

80 mm

y

x

Fig. P5.13

x

y

a = 8 in.

x = ky2

b = 4 in.

Fig. P5.14

x

y

Semiellipse

70 mm

26 mm

47 mm 47 mm

Fig. P5.15

x

h2

a

h1

y

Fig. P5.16

 5.19 Show that as r1 approaches r2, the location of the centroid 
approaches that for an arc of circle of radius (r1 1 r2)/2.
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234 Distributed Forces: Centroids and Centers
of Gravity

300 mm

12 mm 12 mm

12 mm

12 mm

60 mm

60 mm

A

C C
x x

B

(a) (b)

450 mm

Fig. P5.22

 5.22 A composite beam is constructed by bolting four plates to four 
60 3 60 3 12-mm angles as shown. The bolts are equally spaced 
along the beam, and the beam supports a vertical load. As proved 
in mechanics of materials, the shearing forces exerted on the 
bolts at A and B are proportional to the first moments with 
respect to the centroidal x axis of the red shaded areas shown, 
respectively, in parts a and b of the figure. Knowing that the force 
exerted on the bolt at A is 280 N, determine the force exerted 
on the bolt at B.

  5.20 and 5.21 The horizontal x axis is drawn through the centroid 
C of the area shown, and it divides the area into two compo-
nent areas A1 and A2. Determine the first moment of each com-
ponent area with respect to the x axis, and explain the results 
obtained.

0.60 in.

0.84 in.

0.24 in. 0.24 in.

0.72 in.

x

y

0.72 in.

A2

A1

C

Fig. P5.20

65

20

40

20

Dimensions in mm

x

y

15

40

A2

A1

C

Fig. P5.21
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235Problems 5.23 The first moment of the shaded area with respect to the x axis is 
denoted by Qx. (a) Express Qx in terms of b, c, and the distance y 
from the base of the shaded area to the x axis. (b) For what value 
of y is Qx maximum, and what is that maximum value?

80 mm

B

L

C

A

D

60 mm

Fig. P5.28 and P5.29

x

y

b

c
y

c

C

Fig. P5.23

A

B

C

r

q

r

Fig. P5.30

 5.24 through 5.27 A thin, homogeneous wire is bent to form the 
perimeter of the figure indicated. Locate the center of gravity of 
the wire figure thus formed.

   5.24 Fig. P5.2.
   5.25 Fig. P5.3.
   5.26 Fig. P5.4.
   5.27 Fig. P5.5.

 5.28 The homogeneous wire ABCD is bent as shown and is attached to 
a hinge at C. Determine the length L for which portion BCD of 
the wire is horizontal.

 5.29 The homogeneous wire ABCD is bent as shown and is attached to 
a hinge at C. Determine the length L for which portion AB of the 
wire is horizontal.

 5.30 The homogeneous wire ABC is bent into a semicircular arc and a 
straight section as shown and is attached to a hinge at A. Deter-
mine the value of u for which the wire is in equilibrium for the 
indicated position.
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236 Distributed Forces: Centroids and Centers
of Gravity

 5.31 A uniform circular rod of weight 8 lb and radius 10 in. is attached 
to a pin at C and to the cable AB. Determine (a) the tension in 
the cable, (b) the reaction at C.

 5.32 Determine the distance h for which the centroid of the shaded 
area is as far above line BB9 as possible when (a) k 5 0.10, 
(b) k 5 0.80.

236 Distributed Forces: Centroids and Centers
of Gravity

B B'

b

kb

a

h

Fig. P5.32 and P5.33

5.6  DETERMINATION OF CENTROIDS 
BY INTEGRATION

The centroid of an area bounded by analytical curves (i.e., curves 
defined by algebraic equations) is usually determined by evaluating 
the integrals in Eqs. (5.3) of Sec. 5.3:

 x A 5#  x dA   yA 5#  y dA (5.3)

If the element of area dA is a small rectangle of sides dx and dy, 
the evaluation of each of these integrals requires a double integra-
tion with respect to x and y. A double integration is also necessary 
if polar coordinates are used for which dA is a small element of 
sides dr and r du.
 In most cases, however, it is possible to determine the coordi-
nates of the centroid of an area by performing a single integration. 
This is achieved by choosing dA to be a thin rectangle or strip or a 
thin sector or pie-shaped element (Fig. 5.12); the centroid of the 
thin rectangle is located at its center, and the centroid of the thin 
sector is located at a distance 23 r from its vertex (as it is for a triangle). 
The coordinates of the centroid of the area under consideration are 
then obtained by expressing that the first moment of the entire area 
with respect to each of the coordinate axes is equal to the sum (or 
integral) of the corresponding moments of the elements of area. 

B

r

C

A

Fig. P5.31

 5.33 Knowing that the distance h has been selected to maximize the 
distance y from line BB9 to the centroid of the shaded area, show 
that y 5 2h/3.
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237Denoting by xel and yel the coordinates of the centroid of the element 
dA, we write

  Qy 5 xA 5#  xel dA 

(5.9)
 Qx 5 yA 5#  yel dA

If the area A is not already known, it can also be computed from 
these elements.
 The coordinates xel and yel of the centroid of the element of 
area dA should be expressed in terms of the coordinates of a point 
located on the curve bounding the area under consideration. Also, 
the area of the element dA should be expressed in terms of the 
coordinates of that point and the appropriate differentials. This has 
been done in Fig. 5.12 for three common types of elements; the 
pie-shaped element of part c should be used when the equation of 
the curve bounding the area is given in polar coordinates. The 
appropriate expressions should be substituted into formulas (5.9), 
and the equation of the bounding curve should be used to express 
one of the coordinates in terms of the other. The integration is 
thus reduced to a single integration. Once the area has been deter-
mined and the integrals in Eqs. (5.9) have been evaluated, these 
equations can be solved for the coordinates x and y of the centroid 
of the area.
 When a line is defined by an algebraic equation, its centroid can 
be determined by evaluating the integrals in Eqs. (5.4) of Sec. 5.3:

 xL 5#  x dL   yL 5#  y dL (5.4)

5.6 Determination of Centroids by Integration

Fig. 5.12 Centroids and areas of differential elements.

⎯xel = x

⎯yel = y/2

dA = ydx

(c)

⎯yel = y

dA = (a – x) dy

(b)

⎯xel =
a + x

2

(a)

⎯xel =
2r
3

⎯yel =
2r
3

dA = 1
2

cosθ

sinθ

r2 dθ

⎯xel

⎯yel

⎯xel ⎯xel

⎯yel

⎯yel

x

a

y

x

y

x

x x

y yy

O O Odx

dy

P(x, y)

P(x, y)

r

θ

2r
3

P(  , r)θ

bee02286_ch05_218-281.indd Page 237  6/24/11  4:31 PM user-f494bee02286_ch05_218-281.indd Page 237  6/24/11  4:31 PM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


238  Distributed Forces: Centroids and Centers 
of Gravity

The differential length dL should be replaced by one of the following 
expressions, depending upon which coordinate, x, y, or u, is chosen 
as the independent variable in the equation used to define the line 
(these expressions can be derived using the Pythagorean theorem):

dL 5
B

1 1 ady

dx
b2

dx   dL 5
B

1 1 adx
dy
b2

dy

dL 5
B

r2 1 adr
du
b2

du

After the equation of the line has been used to express one of the 
coordinates in terms of the other, the integration can be performed, 
and Eqs. (5.4) can be solved for the coordinates x and y of the cen-
troid of the line.

5.7 THEOREMS OF PAPPUS-GULDINUS
These theorems, which were first formulated by the Greek geometer 
Pappus during the third century a.d. and later restated by the Swiss 
mathematician Guldinus, or Guldin, (1577–1643) deal with surfaces 
and bodies of revolution.
 A surface of revolution is a surface which can be generated by 
rotating a plane curve about a fixed axis. For example (Fig. 5.13), the 

Sphere Cone Torus

Fig. 5.14

surface of a sphere can be obtained by rotating a semicircular arc ABC 
about the diameter AC, the surface of a cone can be pro duced by 
rotating a straight line AB about an axis AC, and the surface of a torus 
or ring can be generated by rotating the circumference of a circle 
about a nonintersecting axis. A body of revolution is a body which can 
be generated by rotating a plane area about a fixed axis. As shown in 
Fig. 5.14, a sphere, a cone, and a torus can each be generated by 
rotating the appropriate shape about the indicated axis.

THEOREM I. The area of a surface of revolution is equal to the 
length of the generating curve times the distance traveled by the 
centroid of the curve while the surface is being generated.

Proof. Consider an element dL of the line L (Fig. 5.15), which 
is revolved about the x axis. The area dA generated by the element 

Photo 5.2 The storage tanks shown are all 
bodies of revolution. Thus, their surface areas 
and volumes can be determined using the 
theorems of Pappus-Guldinus.

A

B

CA C

B

Sphere Cone
A C

Torus

Fig. 5.13
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dL is equal to 2py dL. Thus, the entire area generated by L is 
A 5 e 2py dL. Recalling that we found in Sec. 5.3 that the integral 
e y dL is equal to yL, we therefore have

 A 5 2pyL (5.10)

where 2py is the distance traveled by the centroid of L (Fig. 5.15). 
It should be noted that the generating curve must not cross the axis 
about which it is rotated; if it did, the two sections on either side of 
the axis would generate areas having opposite signs, and the theorem 
would not apply.

THEOREM II. The volume of a body of revolution is equal to the 
generating area times the distance traveled by the centroid of the 
area while the body is being generated.

Proof. Consider an element dA of the area A which is revolved 
about the x axis (Fig. 5.16). The volume dV generated by the element 
dA is equal to 2py dA. Thus, the entire volume generated by A is 
V 5 e 2py dA, and since the integral e y dA is equal to yA 
(Sec. 5.3), we have
 V 5 2pyA (5.11)

x x

dL

dA

C

L

⎯yy

2 ⎯y�

Fig. 5.15

y

x

dV

dA

y

x

A
C

2  y�

Fig. 5.16

5.7 Theorems of Pappus-Guldinus

where 2py is the distance traveled by the centroid of A. Again, it 
should be noted that the theorem does not apply if the axis of rota-
tion intersects the generating area. 
 The theorems of Pappus-Guldinus offer a simple way to compute 
the areas of surfaces of revolution and the volumes of bodies of revolu-
tion. Conversely, they can also be used to determine the centroid of a 
plane curve when the area of the surface generated by the curve is 
known or to determine the centroid of a plane area when the volume 
of the body generated by the area is known (see Sample Prob. 5.8).
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SAMPLE PROBLEM 5.4

Determine by direct integration the location of the centroid of a parabolic 
spandrel.

SOLUTION

Determination of the Constant k. The value of k is determined by sub-
stituting x 5 a and y 5 b into the given equation. We have b 5 ka2 or 
k 5 b/a2. The equation of the curve is thus

y 5
b

a2 x2    or    x 5
a

b1/2  y1/2

Vertical Differential Element. We choose the differential element shown 
and find the total area of the figure.

A 5#  dA 5#  y dx 5#
a

0

 
b

a2 x2 dx 5 c b

a2 
x3

3
d a

0
5

ab
3

The first moment of the differential element with respect to the y axis is 
xel dA; hence, the first moment of the entire area with respect to this axis is

Qy 5#  xel dA 5#  xy dx 5#
a

0

 x a b

a2 x2b dx 5 c b

a2

x4

4
d a

0
5

a2b
4

Since Qy 5 xA, we have

xA 5#xel dA     x  

ab
3

5
a2b
4
      x 5 3

4a ◀

Likewise, the first moment of the differential element with respect to the 
x axis is yel dA, and the first moment of the entire area is

Qx 5#  yel dA 5#  
y

2
  y dx 5#

a

0

 
1
2

 a b

a2  x2b2

dx 5 c b2

2a4 

x5

5
d a

0
5

ab2

10

Since Qx 5 yA, we have

yA 5#  yel dA     y  

ab
3

5
ab2

10
      y 5 3

10 b ◀

Horizontal Differential Element. The same results can be obtained by 
considering a horizontal element. The first moments of the area are

 Qy 5#  xel dA 5#  
a 1 x

2
 (a 2 x) dy 5#

b

0

 
a2 2 x2

2
 dy

 5
1
2

 #
b

0
 aa2 2

a2

b
  yb dy 5

a2b
4

 Qx 5#  yel dA 5#  y(a 2 x) dy 5#  y aa 2
a

b1/2 y1/2b 

dy

 5#
b

0
 aay 2

a

b1/2  y3/2b 

dy 5
ab2

10

To determine x and y, the expressions obtained are again substituted into 
the equations defining the centroid of the area.

240

a

x

y

y

dA = y dx

⎯yel =
y
2

⎯xel = x

x

b

⎯yel = y

⎯xel =
a + x

2

dA = (a – x) dy

a

y

x

a
x

y = k x2

y

b
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SAMPLE PROBLEM 5.5

Determine the location of the centroid of the arc of circle shown.

SOLUTION

Since the arc is symmetrical with respect to the x axis, y 5 0. A differential 
element is chosen as shown, and the length of the arc is determined by 
integration.

L 5#  dL 5#
a

2a

 r du 5 r #
a

2a

 du 5 2ra

The first moment of the arc with respect to the y axis is

 Qy 5#
 
x dL 5#

a

2a

 (r cos u)(r du) 5 r2 #
a

2a

 cos u du

 5 r2 3sin u 4a2a 5 2r2 sin a

Since Qy 5 xL, we write

x(2ra) 5 2r2 sin a      x 5
r sin a

a
 ◀

x

y

θ
O

r

 = θ α

dθ
dL = r dθ

x = r cosθ

 = –θ α

SAMPLE PROBLEM 5.6

Determine the area of the surface of revolution shown, which is obtained 
by rotating a quarter-circular arc about a vertical axis.

SOLUTION

According to Theorem I of Pappus-Guldinus, the area generated is equal 
to the product of the length of the arc and the distance traveled by its 
centroid. Referring to Fig. 5.8B, we have

 x 5 2r 2
2r
p

5 2r a1 2
1
p
b

 A 5 2pxL 5 2p c 2r a1 2
1
p
b d  apr

2
b

A 5 2pr2(p 2 1) ◀

y

x

x

2r

C

2r
�

241

O

α

α

r

r

2r
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SAMPLE PROBLEM 5.7

The outside diameter of a pulley is 0.8 m, and the cross section of its rim is as 
shown. Knowing that the pulley is made of steel and that the density of steel 
is r 5 7.85 3 103 kg/m3, determine the mass and the weight of the rim.

  Distance Traveled
 Area, mm2 y, mm by C, mm Volume, mm3

 I 15000 375 2p (375) 5 2356  (5000)(2356) 5 11.78 3 106

II 21800 365 2p (365) 5 2293 (21800)(2293) 5 24.13 3 106

     Volume of rim 5 7.65 3 106

Since 1 mm 5 1023 m, we have 1 mm3 5 (1023 m)3 5 1029 m3, and we ob -
tain V 5 7.65 3 106 mm3 5 (7.65 3 106)(1029 m3) 5 7.65 3 1023 m3.

m 5 rV 5 (7.85 3 103 kg/m3)(7.65 3 1023 m3)  m 5 60.0 kg ◀

W 5 mg 5 (60.0 kg)(9.81 m/s2) 5 589 kg ? m/s2  W 5 589 N ◀

_

100 mm 60 mm

50 mm 30 mm

CII

CI II
I

375 mm 365 mm

SOLUTION

The volume of the rim can be found by applying Theorem II of Pappus-
Guldinus, which states that the volume equals the product of the given 
cross-sectional area and the distance traveled by its centroid in one complete 
revolution. However, the volume can be more easily determined if we 
observe that the cross section can be formed from rectangle I, whose area 
is positive, and rectangle II, whose area is negative.

SAMPLE PROBLEM 5.8

Using the theorems of Pappus-Guldinus, determine (a) the centroid of a 
semicircular area, (b) the centroid of a semicircular arc. We recall that the 
volume and the surface area of a sphere are 4

3pr3 and 4pr2, respectively.

242

20 mm

20 mm 20 mm
60 mm

30 mm
400 mm

100 mm

x

x

r

r2
A = 2

L =

⎯y

⎯yr

�

r�

SOLUTION

The volume of a sphere is equal to the product of the area of a semicircle 
and the distance traveled by the centroid of the semicircle in one revolution 
about the x axis.

V 5 2pyA    4
3pr3 5 2py(1

2pr2)    y 5
4r
3p

 ◀

Likewise, the area of a sphere is equal to the product of the length of the gen-
erating semicircle and the distance traveled by its centroid in one revolution.

A 5 2pyL    4pr2 5 2py(pr)    y 5
2r
p

 
◀
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243

SOLVING PROBLEMS
ON YOUR OWN

In the problems for this lesson, you will use the equations

 xA 5#  x dA    yA 5#  y dA (5.3)

xL 5#  x dL    yL 5#  y dL (5.4)

to locate the centroids of plane areas and lines, respectively. You will also apply 
the theorems of Pappus-Guldinus (Sec. 5.7) to determine the areas of surfaces of 
revolution and the volumes of bodies of revolution.

1. Determining by direct integration the centroids of areas and lines. When 
solving problems of this type, you should follow the method of solution shown in 
Sample Probs. 5.4 and 5.5: compute A or L, determine the first moments of the 
area or the line, and solve Eqs. (5.3) or (5.4) for the coordinates of the centroid. 
In addition, you should pay particular attention to the following points.

a. Begin your solution by carefully defining or determining each term in the 
applicable integral formulas. We strongly encourage you to show on your sketch of 
the given area or line your choice for dA or dL and the distances to its centroid.

b. As explained in Sec. 5.6, the x and the y in the above equations represent the 
coordinates of the centroid of the differential elements dA and dL. It is important 
to recognize that the coordinates of the centroid of dA are not equal to the coordi-
nates of a point located on the curve bounding the area under consideration. You 
should carefully study Fig. 5.12 until you fully understand this important point.

c. To possibly simplify or minimize your computations, always examine the shape 
of the given area or line before defining the differential element that you will use. 
For example, sometimes it may be preferable to use horizontal rectangular elements 
instead of vertical ones. Also, it will usually be advantageous to use polar coordinates 
when a line or an area has circular symmetry.

d. Although most of the integrations in this lesson are straightforward, at times 
it may be necessary to use more advanced techniques, such as trigonometric sub-
stitution or integration by parts. Of course, using a table of integrals is the fastest 
method to evaluate difficult integrals.

2. Applying the theorems of Pappus-Guldinus. As shown in Sample Probs. 5.6 
through 5.8, these simple, yet very useful theorems allow you to apply your knowl-
edge of centroids to the computation of areas and volumes. Although the theorems 
refer to the distance traveled by the centroid and to the length of the generating 
curve or to the generating area, the resulting equations [Eqs. (5.10) and (5.11)] 
contain the products of these quantities, which are simply the first moments of a 
line (y L) and an area (y A), respectively. Thus, for those problems for which the 
generating line or area consists of more than one common shape, you need only 
determine y L or y A; you do not have to calculate the length of the generating 
curve or the generating area.
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PROBLEMS

 5.34 through 5.36 Determine by direct integration the centroid of 
the area shown. Express your answer in terms of a and h.

 5.37 through 5.39 Determine by direct integration the centroid of 
the area shown.

 5.40 and 5.41 Determine by direct integration the centroid of the 
area shown. Express your answer in terms of a and b.

x

y

y = h(1 – kx3)

h

a

Fig. P5.35 Fig. P5.36

x

y

y = mx

y = kx2

h

a

Fig. P5.34

x

y

h

a

x = ky2

x 

y = kx2

y 

a

a

Fig. P5.37

x

y

b

a

x2

a2

y2

b2
+ = 1

Fig. P5.38

x

y

r1

r2

Fig. P5.39

x

y

b

a

y1 = k1x2

y2 = k2 x4

Fig. P5.40

x

y

b

a

2b

y = 2b – cx2

y = kx2

Fig. P5.41
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245Problems 5.42 Determine by direct integration the centroid of the area shown.

 5.43 and 5.44 Determine by direct integration the centroid of the 
area shown. Express your answer in terms of a and b.

 5.45 and 5.46 A homogeneous wire is bent into the shape shown. 
Determine by direct integration the x coordinate of its centroid.

 *5.47 A homogeneous wire is bent into the shape shown. Determine by 
direct integration the x coordinate of its centroid. Express your 
answer in terms of a.

 *5.48 and *5.49 Determine by direct integration the centroid of the 
area shown.

Fig. P5.42

x

y

h

L

y = h 1 +     – 2 x2

L2
x
L( (

x

y

y = kx2

a a

b

b

Fig. P5.43

x

y

b
2

b
2

a
2

a
2

x = ky2

Fig. P5.44

y

x

r 45°

45°

Fig. P5.45 Fig. P5.46

x

y

a

a

π
20 ≤    ≤  θx = a cos3

y = a sin3
θ
θ

x

y

a

a

y = kx
3
2

Fig. P5.47

y

x
L

a

y 5 a sin
p x
L

L
2

Fig. P5.48

x

y

q

r = a eq

Fig. P5.49

 5.50 Determine the centroid of the area shown when a 5 2 in.

 5.51 Determine the value of a for which the ratio xyy is 9.

 5.52 Determine the volume and the surface area of the solid obtained 
by rotating the area of Prob. 5.1 about (a) the x axis, (b) the y axis.

y

x

a

y = (1 –    )

1 in.

1
x

Fig. P5.50 and P5.51
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246 Distributed Forces: Centroids and Centers
of Gravity

 5.53 Determine the volume and the surface area of the solid obtained 
by rotating the area of Prob. 5.2 about (a) the line y 5 72 mm, 
(b) the x axis.

 5.54 Determine the volume and the surface area of the solid obtained 
by rotating the area of Prob. 5.8 about (a) the line x 5 260 mm, 
(b) the line y 5 120 mm.

 5.55 Determine the volume of the solid generated by rotating the para-
bolic area shown about (a) the x axis, (b) the axis AA9.

 5.56 Determine the volume and the surface area of the chain link 
shown, which is made from a 6-mm-diameter bar, if R 5 10 mm 
and L 5 30 mm.

x

y

h

a a a A

A'

Fig. P5.55

L

R

R

Fig. P5.56

 5.57 Verify that the expressions for the volumes of the first four shapes 
in Fig. 5.21 on page 260 are correct.

 5.58 Determine the volume and weight of the solid brass knob shown, 
knowing that the specific weight of brass is 0.306 lb/in3.

 5.59 Determine the total surface area of the solid brass knob shown.

 5.60 The aluminum shade for the small high-intensity lamp shown has 
a uniform thickness of 1 mm. Knowing that the density of alumi-
num is 2800 kg/m3, determine the mass of the shade.

1.25 in.
r = 0.75 in.

r = 0.75 in.

Fig. P5.58 and P5.59

32 mm

26 mm32 mm56 mm

28 mm

66 mm

8 mm
Fig. P5.60
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247Problems 5.61 The escutcheon (a decorative plate placed on a pipe where the 
pipe  exits from a wall) shown is cast from brass. Knowing that 
the  density of brass is 8470 kg/m3, determine the mass of the 
escutcheon.

 5.62 A 3
4-in.-diameter hole is drilled in a piece of 1-in.-thick steel; the 

hole is then countersunk as shown. Determine the volume of steel 
removed during the countersinking process.

 5.63 Knowing that two equal caps have been removed from a 10-in.-
diameter wooden sphere, determine the total surface area of the 
remaining portion.

 5.64 Determine the capacity, in liters, of the punch bowl shown if 
R 5 250 mm.

75 mm

25 mm

75 mm

26°

26°

Fig. P5.61

90°

3
4

 in.

1
4
 in.1

1 in.

Fig. P5.62

 *5.65 The shade for a wall-mounted light is formed from a thin sheet 
of translucent plastic. Determine the surface area of the outside 
of the shade, knowing that it has the parabolic cross section 
shown.

Fig. P5.63

4 in.

4 in.

10 in.

R

R

Fig. P5.64

100 mm

y

x

y = k x2

250 mm

Fig. P5.65
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248  Distributed Forces: Centroids and Centers 
of Gravity *5.8 DISTRIBUTED LOADS ON BEAMS

The concept of the centroid of an area can be used to solve other 
problems besides those dealing with the weights of flat plates. Con-
sider, for example, a beam supporting a distributed load; this load may 
consist of the weight of materials supported directly or indirectly by 
the beam, or it may be caused by wind or hydrostatic pressure. The 
distributed load can be represented by plotting the load w supported 
per unit length (Fig. 5.17); this load is expressed in N/m or in lb/ft. 
The magnitude of the force exerted on an element of beam of length 
dx is dW 5 w dx, and the total load supported by the beam is

W 5#
L

0
 w dx

We observe that the product w dx is equal in magnitude to the ele-
ment of area dA shown in Fig. 5.17a. The load W is thus equal in 
magnitude to the total area A under the load curve:

W 5#  dA 5 A

 We now determine where a single concentrated load W, of the 
same magnitude W as the total distributed load, should be applied 
on the beam if it is to produce the same reactions at the supports 
(Fig. 5.17b). However, this concentrated load W, which represents the 
resultant of the given distributed loading, is equivalent to the loading 
only when considering the free-body diagram of the entire beam. The 
point of application P of the equivalent concentrated load W is obtained 
by expressing that the moment of W about point O is equal to the 
sum of the moments of the elemental loads dW about O:

(OP)W 5#  x dW

or, since dW 5 w dx 5 dA and W 5 A,

 (OP)A 5#
L

0
 x dA (5.12)

Since the integral represents the first moment with respect to the w 
axis of the area under the load curve, it can be replaced by the 
product xA. We therefore have OP 5 x, where x is the distance from 
the w axis to the centroid C of the area A (this is not the centroid 
of the beam).
 A distributed load on a beam can thus be replaced by a con-
centrated load; the magnitude of this single load is equal to the area 
under the load curve, and its line of action passes through the cen-
troid of that area. It should be noted, however, that the concentrated 
load is equivalent to the given loading only as far as external forces 
are concerned. It can be used to determine reactions but should not 
be used to compute internal forces and deflections.

(a)

(b)

w

O

w

dx
x

L

B

dW = dA

x

d W

w

O B x

L

P

W = A
W

C⎯x=

Fig. 5.17

Photo 5.3 The roofs of the buildings shown 
must be able to support not only the total weight 
of the snow but also the nonsymmetric distributed 
loads resulting from drifting of the snow.
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249*5.9 FORCES ON SUBMERGED SURFACES
The approach used in the preceding section can be used to deter-
mine the resultant of the hydrostatic pressure forces exerted on a 
rectangular surface submerged in a liquid. Consider the rectangular 
plate shown in Fig. 5.18, which is of length L and width b, where b 
is measured perpendicular to the plane of the figure. As noted in 
Sec. 5.8, the load exerted on an element of the plate of length dx is 
w dx, where w is the load per unit length. However, this load can 
also be expressed as p dA 5 pb dx, where p is the gage pressure in 
the liquid† and b is the width of the plate; thus, w 5 bp. Since the 
gage pressure in a liquid is p 5 gh, where g is the specific weight 
of the liquid and h is the vertical distance from the free surface, it 
follows that

 w 5 bp 5 bgh (5.13)

which shows that the load per unit length w is proportional to h and, 
thus, varies linearly with x.
 Recalling the results of Sec. 5.8, we observe that the resultant R 
of the hydrostatic forces exerted on one side of the plate is equal in 
magnitude to the trapezoidal area under the load curve and that its 
line of action passes through the centroid C of that area. The point P 
of the plate where R is applied is known as the center of pressure.‡
 Next, we consider the forces exerted by a liquid on a curved 
surface of constant width (Fig. 5.19a). Since the determination of the 
resultant R of these forces by direct integration would not be easy, we 
consider the free body obtained by detaching the volume of liquid ABD 
bounded by the curved surface AB and by the two plane surfaces AD 
and DB shown in Fig. 5.19b. The forces acting on the free body ABD 
are the weight W of the detached volume of liquid, the resultant R1 of 
the forces exerted on AD, the resultant R2 of the forces exerted on BD, 
and the resultant 2R of the forces exerted by the curved surface on 
the liquid. The resultant 2R is equal and opposite to, and has the same 
line of action as, the resultant R of the forces exerted by the liquid on 
the curved surface. The forces W, R1, and R2 can be determined by 
standard methods; after their values have been found, the force 2R is 
obtained by solving the equations of equilibrium for the free body of 
Fig. 5.19b. The resultant R of the hydrostatic forces exerted on the 
curved surface is then obtained by reversing the sense of 2R.
 The methods outlined in this section can be used to determine 
the resultant of the hydrostatic forces exerted on the surfaces of dams 
and rectangular gates and vanes. The resultants of forces on sub-
merged surfaces of variable width will be determined in Chap. 9.

†The pressure p, which represents a load per unit area, is expressed in N/m2 or in 
lb/ft2. The derived SI unit N/m2 is called a pascal (Pa).

‡Noting that the area under the load curve is equal to wEL, where wE is the load per 
unit length at the center E of the plate, and recalling Eq. (5.13), we can write

 R 5 wEL 5 (bpE)L 5 pE(bL) 5 pEA

where A denotes the area of the plate. Thus, the magnitude of R can be obtained by 
multiplying the area of the plate by the pressure at its center E. The resultant R, 
 however, should be applied at P, not at E.

C

R
w

L

E
P

A

B

x

dx

Fig. 5.18

(a)

(b)

A

B

A
D

B

R

R1

R2

–R
W

Fig. 5.19

5.9 Forces on Submerged Surfaces
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SAMPLE PROBLEM 5.9

A beam supports a distributed load as shown. (a) Determine the equivalent 
concentrated load. (b) Determine the reactions at the supports.

A B

wA = 1500 N/m

wB = 4500 N/m

L = 6 m

SOLUTION

a. Equivalent Concentrated Load. The magnitude of the resultant of the 
load is equal to the area under the load curve, and the line of action of the 
resultant passes through the centroid of the same area. We divide the area 
under the load curve into two triangles and construct the table below. To 
simplify the computations and tabulation, the given loads per unit length 
have been converted into kN/m.

Component A, kN x, m xA, kN ? m

Triangle I 4.5 2 9
Triangle II 13.5 4 54

 oA 5 18.0  oxA 5 63

Thus, X©A 5 ©xA:  X(18 kN) 5 63 kN ? m  X 5 3.5 m

The equivalent concentrated load is

W 5 18 kNw ◀

and its line of action is located at a distance

X 5 3.5 m to the right of A ◀

b. Reactions. The reaction at A is vertical and is denoted by A; the reaction 
at B is represented by its components Bx and By. The given load can be 
considered to be the sum of two triangular loads as shown. The resultant of 
each triangular load is equal to the area of the triangle and acts at its centroid. 
We write the following equilibrium equations for the free body shown:

y
1 ©Fx 5 0: Bx 5 0 ◀

1l oMA 5 0:  2(4.5 kN)(2 m) 2 (13.5 kN)(4 m) 1 By(6 m) 5 0

By 5 10.5 kNx ◀ 

1l oMB 5 0:  1(4.5 kN)(4 m) 1 (13.5 kN)(2 m) 2 A(6 m) 5 0

A 5 7.5 kNx ◀ 

Alternative Solution. The given distributed load can be replaced by its 
resultant, which was found in part a. The reactions can be determined by 
writing the equilibrium equations oFx 5 0, oMA 5 0, and oMB 5 0. We 
again obtain

Bx 5 0  By 5 10.5 kNx  A 5 7.5 kNx ◀

I

II
4.5 kN/m

1.5 kN/m

6 m
⎯x = 2 m

⎯x = 4 m

x

A B

18 kN
⎯X = 3.5 m

A

Bx

By

4.5 kN
13.5 kN

2 m

4 m

6 m
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SAMPLE PROBLEM 5.10

The cross section of a concrete dam is as shown. Consider a 1-ft-thick sec-
tion of the dam, and determine (a) the resultant of the reaction forces 
exerted by the ground on the base AB of the dam, (b) the resultant of the 
pressure forces exerted by the water on the face BC of the dam. The specific 
weights of concrete and water are 150 lb/ft3 and 62.4 lb/ft3, respectively.

5 ft

Vertex

Parabola

18 ft

A B

C

22 ft

9 ft 10 ft

x

y
2.5 ft

4 ft

E F

C D

A

B

3 ft

H

M

V

P

W1 W3

W4
W2

w = bp
    = (1 ft)(18 ft)(62.4 lb/ft3)

9 ft

22 ft

14 ft

6 ft

18 ft

6 ft

6 ft

x

y
4 ft

C D

B

G P

W4 =
7488 lbW4

–R

–R

P = 10,109 lb

a

a = 36.5°
R = 12,580 lb

6 ft

SOLUTION

a. Ground Reaction. We choose as a free body the 1-ft-thick section 
AEFCDB of the dam and water. The reaction forces exerted by the ground 
on the base AB are represented by an equivalent force-couple system at A. 
Other forces acting on the free body are the weight of the dam, represented 
by the weights of its components W1, W2, and W3; the weight of the water 
W4; and the resultant P of the pressure forces exerted on section BD by 
the water to the right of section BD. We have

 W1 5 1
2(9 ft)(22 ft)(1 ft)(150 lb/ft3) 5 14,850 lb

 W2 5 (5 ft)(22 ft)(1 ft)(150 lb/ft3) 5 16,500 lb
 W3 5 1

3(10 ft)(18 ft)(1 ft)(150 lb/ft3) 5 9000 lb
 W4 5 2

3(10 ft)(18 ft)(1 ft)(62.4 lb/ft3) 5 7488 lb
 P 5 1

2(18 ft)(1 ft)(18 ft)(62.4 lb/ft3) 5 10,109 lb

Equilibrium Equations

y
1 ©Fx 5 0:  H 2 10,109 lb 5 0 H 5 10,110 lb y ◀

1xoFy 5 0:  V 2 14,850 lb 2 16,500 lb 2 9000 lb 2 7488 lb 5 0

V  5 47,840 lbx ◀ 

1l oMA 5 0:  2(14,850 lb)(6 ft) 2 (16,500 lb)(11.5 ft)
 2 (9000 lb)(17 ft) 2 (7488 lb)(20 ft) 1 (10,109 lb)(6 ft) 1 M 5 0

M 5 520,960 lb ? ft l ◀

We can replace the force-couple system obtained by a single force acting at 
a distance d to the right of A, where

d 5
520,960 lb ? ft

47,840 lb
5 10.89 ft

b. Resultant R of Water Forces. The parabolic section of water BCD is 
chosen as a free body. The forces involved are the resultant 2R of the forces 
exerted by the dam on the water, the weight W4, and the force P. Since 
these forces must be concurrent, 2R passes through the point of intersec-
tion G of W4 and P. A force triangle is drawn from which the magnitude 
and direction of 2R are determined. The resultant R of the forces exerted 
by the water on the face BC is equal and opposite:

R 5 12,580 lb d36.5° ◀
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SOLVING PROBLEMS 
ON YOUR OWN

The problems in this lesson involve two common and very important types of 
loading: distributed loads on beams and forces on submerged surfaces of con-

stant width. As we discussed in Secs. 5.8 and 5.9 and illustrated in Sample Probs. 5.9 
and 5.10, determining the single equivalent force for each of these loadings 
requires a knowledge of centroids.

1. Analyzing beams subjected to distributed loads. In Sec. 5.8, we showed 
that a distributed load on a beam can be replaced by a single equivalent force. 
The magnitude of this force is equal to the area under the distributed load curve 
and its line of action passes through the centroid of that area. Thus, you should 
begin your solution by replacing the various distributed loads on a given beam by 
their respective single equivalent forces. The reactions at the supports of the beam 
can then be determined by using the methods of Chap. 4.

When possible, complex distributed loads should be divided into the common-
shape areas shown in Fig. 5.8A [Sample Prob. 5.9]. Each of these areas can then 
be replaced by a single equivalent force. If required, the system of equivalent 
forces can be reduced further to a single equivalent force. As you study Sample 
Prob. 5.9, note how we have used the analogy between force and area and the 
techniques for locating the centroid of a composite area to analyze a beam sub-
jected to a distributed load.

2. Solving problems involving forces on submerged bodies. The following 
points and techniques should be remembered when solving problems of this type.
 a. The pressure p at a depth h below the free surface of a liquid is equal to 
gh or rgh, where g and r are the specific weight and the density of the liquid, 
respectively. The load per unit length w acting on a submerged surface of constant 
width b is then

w 5 bp 5 bgh 5 brgh

 b. The line of action of the resultant force R acting on a submerged plane 
surface is perpendicular to the surface.
 c. For a vertical or inclined plane rectangular surface of width b, the loading 
on the surface can be represented by a linearly distributed load which is trapezoi-
dal in shape (Fig. 5.18). Further, the magnitude of R is given by

R 5 ghEA

where hE is the vertical distance to the center of the surface and A is the area of 
the surface.
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 d. The load curve will be triangular (rather than trapezoidal) when the top 
edge of a plane rectangular surface coincides with the free surface of the liquid, 
since the pressure of the liquid at the free surface is zero. For this case, the line 
of action of R is easily determined, for it passes through the centroid of a trian-
gular distributed load.
 e. For the general case, rather than analyzing a trapezoid, we suggest that you 
use the method indicated in part b of Sample Prob. 5.9. First divide the trapezoidal 
distributed load into two triangles, and then compute the magnitude of the resul-
tant of each triangular load. (The magnitude is equal to the area of the triangle 
times the width of the plate.) Note that the line of action of each resultant force 
passes through the centroid of the corresponding triangle and that the sum of 
these forces is equivalent to R. Thus, rather than using R, you can use the two 
equivalent resultant forces, whose points of application are easily calculated. Of 
course, the equation given for R in paragraph c should be used when only the 
magnitude of R is needed.
 f. When the submerged surface of constant width is curved, the resultant force 
acting on the surface is obtained by considering the equilibrium of the volume 
of liquid bounded by the curved surface and by horizontal and vertical planes 
(Fig. 5.19). Observe that the force R1 of Fig. 5.19 is equal to the weight of the 
liquid lying above the plane AD. The method of solution for problems involving 
curved surfaces is shown in part b of Sample Prob. 5.10.

In subsequent mechanics courses (in particular, mechanics of materials and 
fluid mechanics), you will have ample opportunity to use the ideas introduced 
in this lesson.
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PROBLEMS

 5.66 and 5.67 For the beam and loading shown, determine (a) the 
magnitude and location of the resultant of the distributed load, 
(b) the reactions at the beam supports.

 5.68 through 5.73 Determine the reactions at the beam supports 
for the given loading.

Fig. P5.66

900 N/m

2000 N/m

A B

6 m

Parabola

Vertex

120 lb/ft
150 lb/ft

A B

9 ft

Fig. P5.67

Fig. P5.68

400 N/m

900 N/m

A B

0.6 m0.4 m
1.5 m

Fig. P5.69

9 ft

A
B

200 lb/ft

6 ft6 ft

Fig. P5.70

A B

4 ft 3 ft

150 lb/ft

200 lb/ft

Fig. P5.71

A B

4 m6 m

6 kN/m

2 kN/m

Fig. P5.72

A B

6 m

900 N/m

300 N/m

Parabola

Vertex

Fig. P5.73

100 lb/ft

200 lb/ft

A B

6 ft12 ft

Parabolas
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255Problems 5.74 Determine the reactions at the beam supports for the given load-
ing when w0 5 400 lb/ft.

300 lb/ft

w0

A
B

C

5 ft 7 ft

Fig. P5.74 and P5.75

A B

4 m

600 N/m

a

1800 N/m

Fig. P5.76 and P5.77

A

wA

wBC

wDE

B C D E
F

6 m

3.1 m
0.6 m

1.0 m0.8 m

1200 N/m

Fig. P5.78 and P5.79

A B

C

2.4 m
4.8 m

7.2 m

Parabola

Vertex

Fig. P5.81

4 m
3 m

1.5 m 2 m

Parabola

Vertex

A B

C

Fig. P5.80

 5.75 Determine (a) the distributed load w0 at the end A of the beam 
ABC for which the reaction at C is zero, (b) the corresponding 
reaction at B.

 5.76 Determine (a) the distance a so that the vertical reactions at supports 
A and B are equal, (b) the corresponding reactions at the supports.

 5.77 Determine (a) the distance a so that the reaction at support B is 
minimum, (b) the corresponding reactions at the supports.

 5.78 A beam is subjected to a linearly distributed downward load and 
rests on two wide supports BC and DE, which exert uniformly 
distributed upward loads as shown. Determine the values of wBC 
and wDE corresponding to equilibrium when wA 5 600 N/m.

 5.79 A beam is subjected to a linearly distributed downward load and 
rests on two wide supports BC and DE, which exert uniformly 
distributed upward loads as shown. Determine (a) the value of wA 
so that wBC 5 wDE, (b) the corresponding values of wBC and wDE. 

In the following problems, use g 5 62.4 lb/ft3 for the specific weight of fresh 
water and gc 5 150 lb/ft3 for the specific weight of concrete if U.S. customary 
units are used. With SI units, use r 5 103 kg/m3 for the density of fresh water 
and rc 5 2.40 3 103 kg/m3 for the density of concrete. (See the footnote on 
page 222 for how to determine the specific weight of a material given its 
density.)

 5.80 and 5.81 The cross section of a concrete dam is as shown. For 
a 1-m-wide dam section determine (a) the resultant of the reaction 
forces exerted by the ground on the base AB of the dam, (b) the 
point of application of the resultant of part a, (c) the resultant of 
the pressure forces exerted by the water on the face BC of the dam.

bee02286_ch05_218-281.indd Page 255  28/09/11  8:34 AM user-f501bee02286_ch05_218-281.indd Page 255  28/09/11  8:34 AM user-f501 /204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles/204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


256 Distributed Forces: Centroids and Centers
of Gravity

 5.82 An automatic valve consists of a 9 3 9-in. square plate that is 
pivoted about a horizontal axis through A located at a distance 
h 5 3.6 in. above the lower edge. Determine the depth of water 
d for which the valve will open.

 5.83 An automatic valve consists of a 9 3 9-in. square plate that is 
pivoted about a horizontal axis through A. If the valve is to open 
when the depth of water is d 5 18 in., determine the distance h 
from the bottom of the valve to the pivot A.

 5.84 The 3 3 4-m side AB of a tank is hinged at its bottom A and is 
held in place by a thin rod BC. The maximum tensile force the 
rod can withstand without breaking is 200 kN, and the design 
specifications require the force in the rod not to exceed 20 percent 
of this value. If the tank is slowly filled with water, determine the 
maximum allowable depth of water d in the tank.

 5.85 The 3 3 4-m side of an open tank is hinged at its bottom A and 
is held in place by a thin rod BC. The tank is to be filled with 
glycerine, whose density is 1263 kg/m3. Determine the force T in 
the rod and the reactions at the hinge after the tank is filled to a 
depth of 2.9 m.

 5.86 The friction force between a 6 3 6-ft square sluice gate AB and 
its guides is equal to 10 percent of the resultant of the pressure 
forces exerted by the water on the face of the gate. Determine the 
initial force needed to lift the gate if it weighs 1000 lb.

 5.87 A tank is divided into two sections by a 1 3 1-m square gate that 
is hinged at A. A couple of magnitude 490 N ? m is required for 
the gate to rotate. If one side of the tank is filled with water at the 
rate of 0.1 m3/min and the other side is filled simultaneously with 
methyl alcohol (density rma 5 789 kg/m3) at the rate of 0.2 m3/min, 
determine at what time and in which direction the gate will rotate.

h

d

A

B

9 in.

Fig. P5.82 and P5.83

A

BCT

3 m
d

Fig. P5.84 and P5.85

A

B

T

15 ft

6 ft

Fig. P5.86

A

Water

0.4 m 0.2 m

Methyl
Alcohol

0.6 m

Fig. P5.87
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257Problems 5.88 A prismatically shaped gate placed at the end of a freshwater chan-
nel is supported by a pin and bracket at A and rests on a frictionless 
support at B. The pin is located at a distance h 5 0.10 m below 
the center of gravity C of the gate. Determine the depth of water 
d for which the gate will open.

 5.89 A prismatically shaped gate placed at the end of a freshwater chan-
nel is supported by a pin and bracket at A and rests on a frictionless 
support at B. The pin is located at a distance h below the center 
of gravity C of the gate. Determine the distance h if the gate is to 
open when d 5 0.75 m.

 5.90 The square gate AB is held in the position shown by hinges along 
its top edge A and by a shear pin at B. For a depth of water d 5 
3.5 ft, determine the force exerted on the gate by the shear pin.

 5.91 A long trough is supported by a continuous hinge along its lower 
edge and by a series of horizontal cables attached to its upper edge. 
Determine the tension in each of the cables, at a time when the 
trough is completely full of water.

B

C
h

0.75 m

0.40 m

d

A

Fig. P5.88 and P5.89

Fig. P5.90

30°

A

B1.8 ft

d

Fig. P5.91

A

r = 24 in.

20 in.

20 in.

20 in.

A

B

C D T

0.27 m

0.45 m

0.48 m

0.64 m

Fig. P5.92 and P5.93

 5.92 A 0.5 3 0.8-m gate AB is located at the bottom of a tank filled 
with water. The gate is hinged along its top edge A and rests on a 
frictionless stop at B. Determine the reactions at A and B when 
cable BCD is slack.

 5.93 A 0.5 3 0.8-m gate AB is located at the bottom of a tank filled 
with water. The gate is hinged along its top edge A and rests on a 
frictionless stop at B. Determine the minimum tension required 
in cable BCD to open the gate.

 5.94 A 4 3 2-ft gate is hinged at A and is held in position by rod CD. 
End D rests against a spring whose constant is 828 lb/ft. The spring 
is undeformed when the gate is vertical. Assuming that the force 
exerted by rod CD on the gate remains horizontal, determine the 
minimum depth of water d for which the bottom B of the gate will 
move to the end of the cylindrical portion of the floor.

 5.95 Solve Prob. 5.94 if the gate weighs 1000 lb.

A

B

C
D

2 ft

3 ft
d

4 ft

Fig. P5.94
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258  Distributed Forces: Centroids and Centers 
of Gravity VOLUMES

5.10  CENTER OF GRAVITY OF A THREE-DIMENSIONAL 
BODY. CENTROID OF A VOLUME

The center of gravity G of a three-dimensional body is obtained by 
dividing the body into small elements and by then expressing that 
the weight W of the body acting at G is equivalent to the system of 
distributed forces DW representing the weights of the small ele-
ments. Choosing the y axis to be vertical with positive sense upward 
(Fig. 5.20) and denoting by r the position vector of G, we write that 

G

y

O

=
ΔW

y

xx

z z

O

rr

W = –W j

ΔW = –ΔW j

Fig. 5.20

W is equal to the sum of the elemental weights DW and that its 
moment about O is equal to the sum of the moments about O of 
the elemental weights:

oF: 2Wj 5 o(2DWj) 
(5.14)

oMO: r 3 (2Wj) 5 o[r 3 (2DWj)] 

Rewriting the last equation in the form

 rW 3 (2j) 5 (or DW) 3 (2j) (5.15)

we observe that the weight W of the body is equivalent to the system 
of the elemental weights DW if the following conditions are satisfied:

W 5 o DW  rW 5 or DW 

Increasing the number of elements and simultaneously decreasing 
the size of each element, we obtain in the limit

 W 5 #  dW   r W 5#  r dW (5.16)

We note that the relations obtained are independent of the orienta-
tion of the body. For example, if the body and the coordinate axes 
were rotated so that the z axis pointed upward, the unit vector 2j 
would be replaced by 2k in Eqs. (5.14) and (5.15), but the relations 
(5.16) would remain unchanged. Resolving the vectors r and r into 
rectangular components, we note that the second of the relations 
(5.16) is equivalent to the three scalar equations

 x W 5#  x dW   y W 5#  y dW   z W 5#  z dW (5.17)

Photo 5.4 To predict the flight characteristics 
of the modified Boeing 747 when used to 
transport a space shuttle, the center of gravity of 
each craft had to be determined.
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259 If the body is made of a homogeneous material of specific 
weight g, the magnitude dW of the weight of an infinitesimal ele-
ment can be expressed in terms of the volume dV of the element, 
and the magnitude W of the total weight can be expressed in terms 
of the total volume V. We write

dW 5 g dV  W 5 gV

Substituting for dW and W in the second of the relations (5.16), we 
write

 r V 5#  r dV (5.18)

or, in scalar form,

 x V 5#  x dV   y V 5#  y dV   z V 5#  z dV (5.19)

The point whose coordinates are x, y, z is also known as the centroid 
C of the volume V of the body. If the body is not homogeneous, 
Eqs. (5.19) cannot be used to determine the center of gravity of the 
body; however, Eqs. (5.19) still define the centroid of the volume.
 The integral e x dV is known as the first moment of the volume 
with respect to the yz plane. Similarly, the integrals e y dV and e z dV 
define the first moments of the volume with respect to the zx plane 
and the xy plane, respectively. It is seen from Eqs. (5.19) that if the 
centroid of a volume is located in a coordinate plane, the first 
moment of the volume with respect to that plane is zero.
 A volume is said to be symmetrical with respect to a given plane 
if for every point P of the volume there exists a point P9 of the same 
volume, such that the line PP9 is perpendicular to the given plane 
and is bisected by that plane. The plane is said to be a plane of sym-
metry for the given volume. When a volume V possesses a plane of 
symmetry, the first moment of V with respect to that plane is zero, 
and the centroid of the volume is located in the plane of symmetry. 
When a volume possesses two planes of symmetry, the centroid of 
the volume is located on the line of intersection of the two planes. 
Finally, when a volume possesses three planes of symmetry which 
intersect at a well-defined point (i.e., not along a common line), the 
point of intersection of the three planes coincides with the centroid 
of the volume. This property enables us to determine immediately 
the locations of the centroids of spheres, ellipsoids, cubes, rectangu-
lar parallelepipeds, etc.
 The centroids of unsymmetrical volumes or of volumes possess-
ing only one or two planes of symmetry should be determined by 
integration (Sec. 5.12). The centroids of several common volumes 
are shown in Fig. 5.21. It should be observed that in general the 
centroid of a volume of revolution does not coincide with the cen-
troid of its cross section. Thus, the centroid of a hemisphere is dif-
ferent from that of a semicircular area, and the centroid of a cone 
is different from that of a triangle.

5.10 Center of Gravity of a Three-Dimensional 
Body. Centroid of a Volume
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Shape

Semiellipsoid
of revolution

Paraboloid 
of revolution

Cone

Pyramid

Hemisphere
C

Volume

3a
8

3h
8

h
3

h
4

h
4

1
3

abh

⎯x

a

a

a

a

a

b

C

C

C

C

h

h

h

h

⎯x

⎯x

⎯x

⎯x

⎯x

2
3

a3�

2
3

a2h�

1
2

a2h�

1
3

a2h�

Fig. 5.21 Centroids of common shapes and volumes.
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2615.11 COMPOSITE BODIES
If a body can be divided into several of the common shapes shown 
in Fig. 5.21, its center of gravity G can be determined by expressing 
that the moment about O of its total weight is equal to the sum of 
the moments about O of the weights of the various component parts. 
Proceeding as in Sec. 5.10, we obtain the following equations defin-
ing the coordinates X, Y, Z of the center of gravity G.

 X©W 5 ©x W   Y©W 5 ©y W   Z©W 5 ©z W (5.20)

 If the body is made of a homogeneous material, its center of 
gravity coincides with the centroid of its volume, and we obtain:

 X©V 5 ©x V   Y©V 5©y V   Z©V 5 ©z V (5.21)

5.12  DETERMINATION OF CENTROIDS OF VOLUMES 
BY INTEGRATION

The centroid of a volume bounded by analytical surfaces can be 
determined by evaluating the integrals given in Sec. 5.10:

 x V 5#  x dV   y V 5#  y dV   z V 5#  z dV (5.22)

If the element of volume dV is chosen to be equal to a small cube 
of sides dx, dy, and dz, the evaluation of each of these integrals 
requires a triple integration. However, it is possible to determine the 
coordinates of the centroid of most volumes by double integration if 
dV is chosen to be equal to the volume of a thin filament (Fig. 5.22). 
The coordinates of the centroid of the volume are then obtained by 
rewriting Eqs. (5.22) as

 x V 5#  xel dV   y V 5#  yel dV   z V 5#  zel dV (5.23)

and by then substituting the expressions given in Fig. 5.22 for the 
volume dV and the coordinates xel, yel, zel. By using the equation of 
the surface to express z in terms of x and y, the integration is reduced 
to a double integration in x and y.
 If the volume under consideration possesses two planes of sym-
metry, its centroid must be located on the line of intersection of the 
two planes. Choosing the x axis to lie along this line, we have

y 5 z 5 0
and the only coordinate to determine is x. This can be done with a single 
integration by dividing the given volume into thin slabs parallel to the 
yz plane and expressing dV in terms of x and dx in the equation

 x V 5#  xel dV (5.24)

For a body of revolution, the slabs are circular and their volume is 
given in Fig. 5.23.

P(x,y,z)

z

y

x

z

zel

xel

yel

xel = x,  yel = y,  zel =
dV = z dx dy 

z
2

dx
dy

Fig. 5.22 Determination of the centroid 
of a volume by double integration.

dx

r

xel

z

y

x

xel = x
dV =  r2 dx �

Fig. 5.23 Determination of the 
centroid of a body of revolution.

5.12 Determination of Centroids of 
Volumes by Integration
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SAMPLE PROBLEM 5.11

Determine the location of the center of gravity of the homogeneous body 
of revolution shown, which was obtained by joining a hemisphere and a 
cylinder and carving out a cone.

100 mm

x

z

60 mm

60 mm

y

O

SOLUTION

Because of symmetry, the center of gravity lies on the x axis. As shown in 
the figure below, the body can be obtained by adding a hemisphere to a 
cylinder and then subtracting a cone. The volume and the abscissa of the 
centroid of each of these components are obtained from Fig. 5.21 and are 
entered in the table below. The total volume of the body and the first 
moment of its volume with respect to the yz plane are then determined.

50 mm

xxx

yyy

O O O

60 mm

3
8

(60 mm) = 22.5 mm 3
4

(100 mm) = 75 mm

+ –

Component Volume, mm3 x, mm x V, mm4

Hemisphere  
1
2

 
4p

3
 (60)3 5 0.4524 3 106 222.5 210.18 3 106

Cylinder p(60)2(100) 5   1.1310 3 106 150 156.55 3 106

Cone  2
p

3
 (60)2(100) 5 20.3770 3 106 175 228.28 3 106

 oV 5     1.206 3 106  oxV 5 118.09 3 106

Thus,

XoV 5 oxV:  X(1.206 3 106 mm3) 5 18.09 3 106 mm4

X 5 15 mm ◀
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0.5 in.

0.5 in.

1 in.

1 in.

1 in.
x

z

y

4.5 in.
2.5 in.

2 in.

2 in.

SOLUTION

The machine element can be obtained by adding a rectangular parallelepi-
ped (I) to a quarter cylinder (II) and then subtracting two 1-in.-diameter 
cylinders (III and IV). The volume and the coordinates of the centroid of 
each component are determined and are entered in the table below. Using 
the data in the table, we then determine the total volume and the moments 
of the volume with respect to each of the coordinate planes.

4.5 in.
2 in.

I

II

III IV

2 in.

1 in. diam.+
_ _

0.5 in.

0.5 in.

CII CII

CICIII CIV

CI, CIII, CIV 

1 in. 1 in.

2 in. 1.5 in.

2.25 in.
0.25 in.

0.25 in.

4r
3= =4 (2)

0.8488 in.

x z

y y

8 in.

�3�

3�

  V, in3 x, in. y, in. z, in. x V, in4 y V, in4 z V, in4

 I   (4.5)(2)(0.5) 5 4.5 0.25 21 2.25   1.125 24.5  10.125
 II    1

4p(2)2(0.5) 5 1.571 1.3488 20.8488 0.25   2.119 21.333   0.393
 III 2p(0.5)2(0.5) 5 20.3927 0.25 21 3.5 20.098   0.393 21.374
 IV 2p(0.5)2(0.5) 5 20.3927 0.25 21 1.5 20.098   0.393 20.589

 oV 5 5.286    oxV 5 3.048 oyV 5 25.047 ozV 5 8.555

Thus,

XoV 5 oxV:  X(5.286 in3) 5 3.048 in4 X 5  0.577 in. ◀

YoV 5 oyV:  Y(5.286 in3) 5 25.047 in4 Y 5  20.955 in. ◀

ZoV 5 ozV:  Z(5.286 in3) 5 8.555 in4 Z 5  1.618 in. ◀

SAMPLE PROBLEM 5.12

Locate the center of gravity of the steel machine element shown. The 
diame ter of each hole is 1 in.
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SAMPLE PROBLEM 5.13

Determine the location of the centroid of the half right circular cone shown.

SOLUTION

Since the xy plane is a plane of symmetry, the centroid lies in this plane 
and z 5 0. A slab of thickness dx is chosen as a differential element. The 
volume of this element is

dV 5 1
2 pr2 dx

The coordinates xel and yel of the centroid of the element are obtained from 
Fig. 5.8 (semicircular area).

xel 5 x     yel 5
4r
3p

We observe that r is proportional to x and write

r
x

5
a
h

    r 5
a
h

 x

The volume of the body is

V 5#  dV 5#
h

0

 12 pr2 dx 5#
h

0

 12 p  aa
h

 xb2

dx 5
pa2h

6

The moment of the differential element with respect to the yz plane is
xel dV; the total moment of the body with respect to this plane is

#xel dV 5#
h

0
 x(1

2 pr2) dx 5#
h

0
 x(1

2 p) aa
h

 xb2

dx 5
pa2h2

8

Thus,

xV 5#  xel dV     x 

pa2h
6

5
pa2h2

8
  x 5 3

4h ◀

Likewise, the moment of the differential element with respect to the zx 
plane is yel dV; the total moment is

#  yel dV 5#
h

0

 
4r
3p

 (1
2 pr2)dx 5

2
3 #

h

0

aa
h

 xb3

dx 5
a3h
6

Thus,

yV 5#  yel dV     y 

pa2h
6

5
a3h
6

  y 5
a
p

 ◀

y

z
x

h

a

y

z
x

h

⎯yel

a
r

⎯xel = x

bee02286_ch05_218-281.indd Page 264  6/24/11  4:33 PM user-f494bee02286_ch05_218-281.indd Page 264  6/24/11  4:33 PM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


265

SOLVING PROBLEMS
ON YOUR OWN

In the problems for this lesson, you will be asked to locate the centers of gravity 
of three-dimensional bodies or the centroids of their volumes. All of the tech-

niques we previously discussed for two-dimensional bodies—using symmetry, 
dividing the body into common shapes, choosing the most efficient differential 
element, etc.—may also be applied to the general three-dimensional case.

1. Locating the centers of gravity of composite bodies. In general, Eqs. (5.20) must 
be used:

XwoW 5 oxwW  YwoW 5 oywW  ZwoW 5 ozwW (5.20)

However, for the case of a homogeneous body, the center of gravity of the body 
coincides with the centroid of its volume. Therefore, for this special case, the 
center of gravity of the body can also be located using Eqs. (5.21):

 XwoV 5 oxw V  YwoV 5 oywV  ZwoV 5 ozwV (5.21)

You should realize that these equations are simply an extension of the equations 
used for the two-dimensional problems considered earlier in the chapter. As the 
solutions of Sample Probs. 5.11 and 5.12 illustrate, the methods of solution for 
two- and three-dimensional problems are identical. Thus, we once again strongly 
encourage you to construct appropriate diagrams and tables when analyzing com-
posite bodies. Also, as you study Sample Prob. 5.12, observe how the x and y 
coordinates of the centroid of the quarter cylinder were obtained using the equa-
tions for the centroid of a quarter circle.

We note that two special cases of interest occur when the given body consists of 
either uniform wires or uniform plates made of the same material.
 a. For a body made of several wire elements of the same uniform cross sec-
tion, the cross-sectional area A of the wire elements will factor out of Eqs. (5.21) 
when V is replaced with the product AL, where L is the length of a given element. 
Equations (5.21) thus reduce in this case to

XwoL 5 oxwL  YwoL 5 oywL  ZwoL 5 ozwL

 b. For a body made of several plates of the same uniform thickness, the thickness t 
of the plates will factor out of Eqs. (5.21) when V is replaced with the product tA, 
where A is the area of a given plate. Equations (5.21) thus reduce in this case to

XwoA 5 oxwA  YwoA 5 oywA  ZwoA 5 ozwA

2. Locating the centroids of volumes by direct integration. As explained in Sec. 5.12, 
evaluating the integrals of Eqs. (5.22) can be simplified by choosing either a thin fila-
ment (Fig. 5.22) or a thin slab (Fig. 5.23) for the element of volume d V. Thus, you 
should begin your solution by identifying, if possible, the d V which produces the 
single or double integrals that are the easiest to compute. For bodies of revolution, 
this may be a thin slab (as in Sample Prob. 5.13) or a thin cylindrical shell. However, 
it is important to remember that the relationship that you establish among the vari-
ables (like the relationship between r and x in Sample Prob. 5.13) will directly affect 
the complexity of the integrals you will have to compute. Finally, we again remind 
you that xel, yel, and zel in Eqs. (5.23) are the coordinates of the centroid of dV.
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