
PROBLEMS

266

 5.96 A hemisphere and a cone are attached as shown. Determine the 
location of the centroid of the composite body when (a) h 5 1.5a, 
(b) h 5 2a.

 5.98 Determine the y coordinate of the centroid of the body shown.

 5.97 Consider the composite body shown. Determine (a) the value of x
when h 5 L/2, (b) the ratio h/L for which x 5 L.

a

h

Fig. P5.96

Fig. P5.97

y

a

z

x

b
2

L h

b

y

x

z

h

ab

a
2

Fig. P5.98 and P5.99

 5.99 Determine the z coordinate of the centroid of the body shown. 
(Hint: Use the result of Sample Prob. 5.13.)
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267Problems

 5.104 For the machine element shown, locate the x coordinate of the 
center of gravity.

 5.100 and 5.101 For the machine element shown, locate the y coor-
dinate of the center of gravity.

 5.102 For the machine element shown, locate the x coordinate of the 
center of gravity.

 5.103 For the machine element shown, locate the z coordinate of the 
center of gravity.

2 in.

2 in.
2 in.

3 in.

1 in.

0.75 in.
x

y

z

r = 1.25 in.
r = 1.25 in.

2 in.

2 in.

Fig. P5.100 and P5.103

x

y

z

40 mm

18 mm

16 mm

100 mm 20 mm

20 mm

25 mm
25 mm

28 mm

10 mm

60 mm
24 mm

r = 13 mm r = 12 mm

Fig. P5.101 and P5.102

Dimensions in mm

y

x

19

40

24
10

19
10

90

20

z

O
r = 12

Fig. P5.104 and P5.105

 5.105 For the machine element shown, locate the z coordinate of the 
center of gravity.
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268 Distributed Forces: Centroids and Centers
of Gravity

 5.108 A window awning is fabricated from sheet metal of uniform thick-
ness. Locate the center of gravity of the awning.

x

y

z

4 in.

34 in.

r = 25 in.

Fig. P5.108

x

z

r = 6 mm r = 6 mm

r = 6 mm

y

60 mm

74 mm

30 mm

r = 5 mm

69 mm

75 mm

Fig. P5.109

 5.106 and 5.107 Locate the center of gravity of the sheet-metal form 
shown.

x

z

60 mm

80 mm

y

Fig. P5.106

x

y

z
0.16 m

0.2 m

0.12 m

0.1 m

0.05 m

r = 0.18 m

Fig. P5.107

 5.109 A thin sheet of plastic of uniform thickness is bent to form a desk 
organizer. Locate the center of gravity of the organizer.
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269Problems 5.110 A wastebasket, designed to fit in the corner of a room, is 16 in. high 
and has a base in the shape of a quarter circle of radius 10 in. 
Locate the center of gravity of the wastebasket, knowing that it is 
made of sheet metal of uniform thickness.

 5.111 A mounting bracket for electronic components is formed from 
sheet metal of uniform thickness. Locate the center of gravity of 
the bracket.

x

y

z

16 in.

10 in.
10 in.

Fig. P5.110

x

y

z

r = 0.625 in.

3 in.

1.25 in.

0.75 in.

0.75 in.

1 in. 2.5 in.

6 in.

Fig. P5.111

x

y

z

12 in.

12 in.

4 in.

8 in.

Fig. P5.112

 5.112 An 8-in.-diameter cylindrical duct and a 4 3 8-in. rectangular duct 
are to be joined as indicated. Knowing that the ducts were fabri-
cated from the same sheet metal, which is of uniform thickness, 
locate the center of gravity of the assembly.

 5.113 An elbow for the duct of a ventilating system is made of sheet metal 
of uniform thickness. Locate the center of gravity of the elbow.

x
z

y

76 mm

100 mm

r = 200 mm
r = 400 mm

Fig. P5.113
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270 Distributed Forces: Centroids and Centers
of Gravity

 5.114 and 5.115 Locate the center of gravity of the figure shown, 
knowing that it is made of thin brass rods of uniform diameter.

 5.117 The frame of a greenhouse is constructed from uniform aluminum 
channels. Locate the center of gravity of the portion of the frame 
shown.

 5.116 A thin steel wire of uniform cross section is bent into the shape 
shown. Locate its center of gravity.

x

y

z

A

B

D

O

1.5 m

0.6 m
1 m

Fig. P5.115

x

y

z

A

B

E
D

O

30 in.

r = 16 in.

Fig. P5.114

1.0 m

x

y

z

A

BC

O

2.4 m2.4 m

Fig. P5.116

Fig. P5.117

5 ft

3 ft
2 ft x

y

r

z
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271Problems

 5.120 A bronze bushing is mounted inside a steel sleeve. Knowing that 
the specific weight of bronze is 0.318 lb/in3 and of steel is 
0.284  lb/in3, determine the location of the center of gravity of 
the assembly.

 5.121 A scratch awl has a plastic handle and a steel blade and shank. 
Knowing that the density of plastic is 1030 kg/m3 and of steel is 
7860 kg/m3, locate the center of gravity of the awl.

 5.118 Three brass plates are brazed to a steel pipe to form the flagpole 
base shown. Knowing that the pipe has a wall thickness of 8 mm 
and that each plate is 6 mm thick, determine the location of 
the center of gravity of the base. (Densities: brass 5 8470 kg/m3; 
steel 5 7860 kg/m3.)

 5.119 A brass collar, of length 2.5 in., is mounted on an aluminum rod 
of length 4 in. Locate the center of gravity of the composite body. 
(Specific weights: brass 5 0.306 lb/in3, aluminum 5 0.101 lb/in3.) 192 mm

64 mm
96 mm

120°

120°

Fig. P5.118

4 in.

1.6 in.

2.5 in.

3 in.

Fig. P5.119

0.40 in.

1.00 in.

1.80 in.

1.125 in.
0.5 in.

0.75 in.

Fig. P5.120

10 mm

3.5 mm

r

90 mm

25 mm

80 mm

50 mm

Fig. P5.121

 5.122 through 5.124 Determine by direct integration the values of 
x for the two volumes obtained by passing a vertical cutting plane 
through the given shape of Fig. 5.21. The cutting plane is parallel 
to the base of the given shape and divides the shape into two 
volumes of equal height.
 5.122 A hemisphere.
 5.123 A semiellipsoid of revolution.
 5.124 A paraboloid of revolution.
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272 Distributed Forces: Centroids and Centers
of Gravity

 5.125 and 5.126 Locate the centroid of the volume obtained by rotat-
ing the shaded area about the x axis.

 *5.128 Locate the centroid of the volume generated by revolving the por-
tion of the sine curve shown about the x axis.

 5.127 Locate the centroid of the volume obtained by rotating the shaded 
area about the line x 5 h.

y

x

a

h

y = kx1/3

Fig. P5.125

y

x
1 m

3 m

y = (1 –     )1
x

Fig. P5.126

y

x

x2

h2
y2

a2+ = 1

h

a

Fig. P5.127

y

x

b

a a

y5b sin �x
2a

Fig. P5.128 and P5.129

 *5.129 Locate the centroid of the volume generated by revolving the 
portion of the sine curve shown about the y axis. (Hint: Use a 
thin cylindrical shell of radius r and thickness dr as the element 
of volume.)

 *5.130 Show that for a regular pyramid of height h and n sides (n 5 3, 
4, …) the centroid of the volume of the pyramid is located at a 
distance h/4 above the base.

 5.131 Determine by direct integration the location of the centroid of 
one-half of a thin, uniform hemispherical shell of radius R.

x

y

z
R

R

Fig. P5.131
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273Problems 5.132 The sides and the base of a punch bowl are of uniform thickness 
t. If t V R and R 5 250 mm, determine the location of the center 
of gravity of (a) the bowl, (b) the punch.

 5.133 Locate the centroid of the section shown, which was cut from a 
thin circular pipe by two oblique planes.

 *5.134 Locate the centroid of the section shown, which was cut from an 
elliptical cylinder by an oblique plane.

 5.135 After grading a lot, a builder places four stakes to designate the 
corners of the slab for a house. To provide a firm, level base for 
the slab, the builder places a minimum of 3 in. of gravel beneath 
the slab. Determine the volume of gravel needed and the x coor-
dinate of the centroid of the volume of the gravel. (Hint: The bot-
tom surface of the gravel is an oblique plane, which can be 
represented by the equation y 5 a 1 bx 1 cz.)

R

R

Fig. P5.132

y

xz

h

h
3

a
a

Fig. P5.133

xz

h

y

a

a
b

b

Fig. P5.134

y

x

z     

5 in.

3 in.

8 in.

6 in.

30 ft
50 ft

Fig. P5.135

 5.136 Determine by direct integration the location of the centroid of the 
volume between the xz plane and the portion shown of the surface 
y 5 16h(ax 2 x2)(bz 2 z2)/a2b2.

y

x
z ba

Fig. P5.136
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274

REVIEW AND SUMMARY

This chapter was devoted chiefly to the determination of the center 
of gravity of a rigid body, i.e., to the determination of the point G
where a single force W, called the weight of the body, can be applied 
to represent the effect of the earth’s attraction on the body.

In the first part of the chapter, we considered two-dimensional 
 bodies, such as flat plates and wires contained in the xy plane. By 
adding force components in the vertical z direction and moments 
about the horizontal y and x axes [Sec. 5.2], we derived the 
relations

W 5#  dW   xW 5#  x dW   yW 5#  y dW (5.2)

which define the weight of the body and the coordinates x and y of 
its center of gravity.

In the case of a homogeneous flat plate of uniform thickness [Sec. 5.3], 
the center of gravity G of the plate coincides with the centroid C of 
the area A of the plate, the coordinates of which are defined by the 
relations

xA 5#  x dA   yA 5#  y dA (5.3)

Similarly, the determination of the center of gravity of a homoge-
neous wire of uniform cross section contained in a plane reduces to 
the determination of the centroid C of the line L representing the 
wire; we have

xL 5#x dL    yL 5#y dL (5.4)

The integrals in Eqs. (5.3) are referred to as the first moments of 
the area A with respect to the y and x axes and are denoted by Qy 
and Qx, respectively [Sec. 5.4]. We have

 Qy 5 xA   Qx 5 yA (5.6)

The first moments of a line can be defined in a similar way.

The determination of the centroid C of an area or line is simplified 
when the area or line possesses certain properties of symmetry. If 
the area or line is symmetric with respect to an axis, its centroid C

Center of gravity of a 
two-dimensional body

Centroid of an area or line

First moments

Properties of symmetry
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275Review and Summarylies on that axis; if it is symmetric with respect to two axes, C is 
located at the intersection of the two axes; if it is symmetric with 
respect to a center O, C coincides with O.

The areas and the centroids of various common shapes are tabulated in 
Fig. 5.8. When a flat plate can be divided into several of these 
shapes, the coordinates X and Y of its center of gravity G can be 
determined from the coordinates x1, x2, . . . and y1, y2, . . . of the 
centers of gravity G1, G2, . . . of the various parts [Sec. 5.5]. Equating 
moments about the y and x axes, respectively (Fig. 5.24), we have

 XwoW 5 oxwW  YwoW 5 oywW (5.7)

Center of gravity of a 
composite body

x

y

z

x

y

z

OO
G

⎯X

⎯Y

ΣW =

G1
G2

G3

W1 W2

W3

Fig. 5.24

If the plate is homogeneous and of uniform thickness, its center of 
gravity coincides with the centroid C of the area of the plate, and 
Eqs. (5.7) reduce to

 Qy 5 XwoA 5 oxwA  Qx 5 YwoA 5 oywA (5.8)

These equations yield the first moments of the composite area, or 
they can be solved for the coordinates X and Y of its centroid [Sam-
ple Prob. 5.1]. The determination of the center of gravity of a com-
posite wire is carried out in a similar fashion [Sample Prob. 5.2].

When an area is bounded by analytical curves, the coordinates of its 
centroid can be determined by integration [Sec. 5.6]. This can be 
done by evaluating either the double integrals in Eqs. (5.3) or a 
single integral which uses one of the thin rectangular or pie-shaped 
elements of area shown in Fig. 5.12. Denoting by xel and yel the 
coordinates of the centroid of the element dA, we have

 Qy 5 xA 5#  xel dA   Qx 5 yA 5#  yel dA (5.9)

It is advantageous to use the same element of area to compute both 
of the first moments Qy and Qx; the same element can also be used 
to determine the area A [Sample Prob. 5.4].

Determination of centroid 
by integration
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276  Distributed Forces: Centroids and Centers 
of Gravity

The theorems of Pappus-Guldinus relate the determination of the 
area of a surface of revolution or the volume of a body of revolution 
to the determination of the centroid of the generating curve or area 
[Sec. 5.7]. The area A of the surface generated by rotating a curve 
of length L about a fixed axis (Fig. 5.25a) is

 A 5 2pyL (5.10)

where y represents the distance from the centroid C of the curve to 
the fixed axis. Similarly, the volume V of the body generated by 
rotating an area A about a fixed axis (Fig. 5.25b) is

 V 5 2pyyyA (5.11)

where y represents the distance from the centroid C of the area to 
the fixed axis.

The concept of centroid of an area can also be used to solve problems 
other than those dealing with the weight of flat plates. For example, 
to determine the reactions at the supports of a beam [Sec. 5.8], we 
can replace a distributed load w by a concentrated load W equal in 
magnitude to the area A under the load curve and passing through 
the centroid C of that area (Fig. 5.26). The same approach can be 
used to determine the resultant of the hydrostatic forces exerted on a 
rectangular plate submerged in a liquid [Sec. 5.9].

Theorems of Pappus-Guldinus

Distributed loads

w w

O O

w

dx
x

L

B B

dW = dA

x x

L

P

x

W = A
Wd W

C=

Fig. 5.26

The last part of the chapter was devoted to the determination of the 
center of gravity G of a three-dimensional body. The coordinates x, 
y, z of G were defined by the relations

 xW 5#  x dW   yW 5#  y dW   z W 5#  z dW (5.17)

In the case of a homogeneous body, the center of gravity G coincides 
with the centroid C of the volume V of the body; the coordinates of 
C are defined by the relations

 xV 5#  x dV   yV 5#  y dV   zV 5#  z dV (5.19)

If the volume possesses a plane of symmetry, its centroid C will lie 
in that plane; if it possesses two planes of symmetry, C will be located 
on the line of intersection of the two planes; if it possesses three 
planes of symmetry which intersect at only one point, C will coincide 
with that point [Sec. 5.10].

Center of gravity of a three-
dimensional body

Centroid of a volume

(a) (b)

x

C

L

⎯y
y

x

A
C

2   y�2   y�

Fig. 5.25
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277Review and SummaryThe volumes and centroids of various common three-dimensional 
shapes are tabulated in Fig. 5.21. When a body can be divided into 
several of these shapes, the coordinates X, Y, Z of its center of gravity 
G can be determined from the corresponding coordinates of the 
centers of gravity of its various parts [Sec. 5.11]. We have

 XwoW 5 oxw W  YwoW 5 oyw W  Zw oW 5 ozw W (5.20)

If the body is made of a homogeneous material, its center of gravity 
coincides with the centroid C of its volume, and we write [Sample 
Probs. 5.11 and 5.12]

 XwoV 5 oxw V  YwoV 5 oyw V  Zw oV 5 ozw V (5.21)

When a volume is bounded by analytical surfaces, the coordinates of 
its centroid can be determined by integration [Sec. 5.12]. To avoid 
the computation of the triple integrals in Eqs. (5.19), we can use ele-
ments of volume in the shape of thin filaments, as shown in Fig. 5.27. 

Center of gravity of a composite 
body

Determination of centroid 
by integration

P(x,y,z)

z

y

x

z

zel

xel

yel

xel = x,  yel = y,  zel =
dV = z dx dy 

z
2

dx
dy

Fig. 5.27

Denoting by xel, yel, and zel the coordinates of the centroid of the 
element dV, we rewrite Eqs. (5.19) as

 xV 5#  xel dV   yV 5#  yel dV   zV 5#  zel dV (5.23)

which involve only double integrals. If the volume possesses two 
planes of symmetry, its centroid C is located on their line of intersec-
tion. Choosing the x axis to lie along that line and dividing the vol-
ume into thin slabs parallel to the yz plane, we can determine C 
from the relation

 xV 5#  xel dV (5.24)

with a single integration [Sample Prob. 5.13]. For a body of revolution, 
these slabs are circular and their volume is given in Fig. 5.28.

dx

r

xel

z

y

x

xel = x
dV =   r2 dx �

Fig. 5.28
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278

REVIEW PROBLEMS

  5.137 and 5.138 Locate the centroid of the plane area shown.

5.139 The frame for a sign is fabricated from thin, flat steel bar stock of 
mass per unit length 4.73 kg/m. The frame is supported by a pin 
at C and by a cable AB. Determine (a) the tension in the cable, 
(b) the reaction at C.

A

C

B

R
0.75 m

0.8 m

0.2 m

1.35 m

0.6 m

Fig. P5.139

 5.140 Determine by direct integration the centroid of the area shown. 
Express your answer in terms of a and h.

 5.141 Determine by direct integration the centroid of the area shown.

x

y

y = kx3

h

a

Fig. P5.140

y

x
L L

a

y = a 1 – x
L

x2

L2
+  ) (

Fig. P5.141

r = 38 in.

x

y

16 in.

20 in.

Fig. P5.137

x

y

Vertex

Parabola

75 mm

60 mm

60 mm

Fig. P5.138

bee02286_ch05_218-281.indd Page 278  6/24/11  4:33 PM user-f494bee02286_ch05_218-281.indd Page 278  6/24/11  4:33 PM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


279Review Problems 5.142 Three different drive belt profiles are to be studied. If at any given 
time each belt makes contact with one-half of the circumference 
of its pulley, determine the contact area between the belt and the 
pulley for each design.

 5.143 Determine the reactions at the beam supports for the given loading.

 5.144 The beam AB supports two concentrated loads and rests on soil 
that exerts a linearly distributed upward load as shown. Determine 
the values of wA and wB corresponding to equilibrium.

 5.145 The base of a dam for a lake is designed to resist up to 120 percent 
of the horizontal force of the water. After construction, it is found that 
silt (that is equivalent to a liquid of density rs 5 1.76 3 103 kg/m3) is 
settling on the lake bottom at the rate of 12 mm/year. Considering a 
1-m-wide section of dam, determine the number of years until the 
dam becomes unsafe.

 5.146 Determine the location of the centroid of the composite body 
shown when (a) h 5 2b, (b) h 5 2.5b.

 5.147 Locate the center of gravity of the sheet-metal form shown.

 5.148 Locate the centroid of the volume obtained by rotating the shaded 
area about the x axis.

600 lb/ft

480 lb/ft

A D
B C

2 ft
6 ft3 ft

Fig. P5.143

A B
wA

wB

24 kN 30 kN
0.3 m

1.8 m

a = 0.6 m

Fig. P5.144

Water

Silt

6.6 m

Fig. P5.145 a

CB
A

h

b

Fig. P5.146

x

y

z
1.5 m

r = 1.8 m
1.2 m

0.8 m

Fig. P5.147

y

x

a

h

y = k(x – h)2

Fig. P5.148

0.625 in.

(a) (b) (c)

0.08 in.
r = 0.25 in.

40°

40°

0.375 in.
0.125 in.
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COMPUTER PROBLEMS

 5.C1 A beam is to carry a series of uniform and uniformly varying distrib-
uted loads as shown in part a of the figure. Divide the area under each 
portion of the load curve into two triangles (see Sample Prob. 5.9), and then 
write a computer program that can be used to calculate the reactions at A
and B. Use this program to calculate the reactions at the supports for the 
beams shown in parts b and c of the figure.

A B A B A B

L01

w0 w1 w2

(a) (b) (c)

wn+ 1

L12
3 ft

2 ft

300 lb/ft
240 lb/ft 150 lb/ft

420 lb/ft
400 lb/ft

3 ft 3 .5 ft
L

5 ft 4 ft4 .5 ft

Fig. P5.C1

α  

x

y

z

R h

Fig. P5.C2

60°

A

B

C

d

2.1 m

Fig. P5.C3

 5.C2 The three-dimensional structure shown is fabricated from five thin steel 
rods of equal diameter. Write a computer program that can be used to  calculate 
the coordinates of the center of gravity of the structure. Use this program 
to locate the center of gravity when (a) h 5 12 m, R 5 5 m, a 5 90°; 
(b) h 5 570 mm, R 5 760 mm, a 5 30°; (c) h 5 21 m, R 5 20 m, a 5 135°.

 5.C3 An open tank is to be slowly filled with water. (The density of water 
is 103 kg/m3.) Write a computer program that can be used to determine the 
resultant of the pressure forces exerted by the water on a 1-m-wide section 
of side ABC of the tank. Determine the resultant of the pressure forces for 
values of d from 0 to 3 m using 0.25-m increments.

bee02286_ch05_218-281.indd Page 280  28/09/11  7:14 AM user-f501bee02286_ch05_218-281.indd Page 280  28/09/11  7:14 AM user-f501 /204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles/204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


281Computer Problems 5.C4 Approximate the curve shown using 10 straight-line segments, and 
then write a computer program that can be used to determine the location 
of the centroid of the curve. Use this program to determine the location of 
the centroid when (a) a 5 1 in., L 5 11 in., h 5 2 in.; (b) a 5 2 in., L 5
17 in., h 5 4 in.; (c) a 5 5 in., L 5 12 in., h 5 1 in.

 5.C5 Approximate the general spandrel shown using a series of n rectan-
gles, each of width Da and of the form bcc9b9, and then write a computer 
program that can be used to calculate the coordinates of the centroid of the 
area. Use this program to locate the centroid when (a) m 5 2, a 5 80 mm, 
h 5 80 mm; (b) m 5 2, a 5 80 mm, h 5 500 mm; (c) m 5 5, a 5 80 mm, 
h 5 80 mm; (d) m 5 5, a 5 80 mm, h 5 500 mm. In each case, compare 
the answers obtained to the exact values of x and y computed from the 
formulas given in Fig. 5.8A and determine the percentage error.

x

y

h

a

L

L – a
10

a
xy = h(1 –    )

Fig. P5.C4

y = kxm

x

y

b b�

Δa

c c�
d d�

Δa
2

a

h

Fig. P5.C5

 5.C6 Solve Prob. 5.C5, using rectangles of the form bdd9b9.

 *5.C7 A farmer asks a group of engineering students to determine the 
volume of water in a small pond. Using cord, the students first establish a 
2 3 2-ft grid across the pond and then record the depth of the water, in 
feet, at each intersection point of the grid (see the accompanying table). 
Write a computer program that can be used to determine (a) the volume of 
water in the pond, (b) the location of the center of gravity of the water. 
Approximate the depth of each 2 3 2-ft element of water using the average 
of the water depths at the four corners of the element.

Cord
 1 2 3 4 5 6 7 8 9 10

1 . . . . . . . . . . . . 0 0 0 . . . . . . . . .
2 . . . . . . 0 0 0 1 0 0 0 . . .

 3 . . . 0 0 1 3 3 3 1 0 0
4 0 0 1 3 6 6 6 3 1 0

 5 0 1 3 6 8 8 6 3 1 0
 6 0 1 3 6 8 7 7 3 0 0
 7 0 3 4 6 6 6 4 1 0 . . .
 8 0 3 3 3 3 3 1 0 0 . . .
 9 0 0 0 1 1 0 0 0 . . . . . .
10 . . . . . . 0 0 0 0 . . . . . . . . . . . .

C
or

d
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Trusses, such as this Pratt-style 

cantilever arch bridge in New York 

State, provide both a practical and an 

economical solution to many 

engineering problems.
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284

6.1 INTRODUCTION
The problems considered in the preceding chapters concerned the 
equilibrium of a single rigid body, and all forces involved were exter-
nal to the rigid body. We now consider problems dealing with the 
equilibrium of structures made of several connected parts. These 
problems call for the determination not only of the external forces 
acting on the structure but also of the forces which hold together 
the various parts of the structure. From the point of view of the 
structure as a whole, these forces are internal forces.
 Consider, for example, the crane shown in Fig. 6.1a, which 
carries a load W. The crane consists of three beams AD, CF, and 
BE connected by frictionless pins; it is supported by a pin at A and 
by a cable DG. The free-body diagram of the crane has been drawn 
in Fig. 6.1b. The external forces, which are shown in the diagram, 
include the weight W, the two components Ax and Ay of the reaction 
at A, and the force T exerted by the cable at D. The internal forces 
holding the various parts of the crane together do not appear in the 
diagram. If, however, the crane is dismembered and if a free-body 
diagram is drawn for each of its component parts, the forces holding 
the three beams together will also be represented, since these forces 
are external forces from the point of view of each component part 
(Fig. 6.1c).

Chapter 6 Analysis of Structures
 6.1 Introduction
 6.2 Definition of a Truss
 6.3 Simple Trusses
 6.4 Analysis of Trusses by the 

Method of Joints
 6.5 Joints Under Special Loading 

Conditions
 6.6 Space Trusses
 6.7 Analysis of Trusses by the 

Method of Sections
 6.8 Trusses Made of Several Simple 

Trusses
 6.9 Structures Containing Multiforce 

Members
 6.10 Analysis of a Frame
 6.11 Frames Which Cease to Be Rigid 

When Detached from Their 
Supports

 6.12 Machines

 It will be noted that the force exerted at B by member BE on 
member AD has been represented as equal and opposite to the force 
exerted at the same point by member AD on member BE; the 
force exerted at E by BE on CF is shown equal and opposite to the 
force exerted by CF on BE; and the components of the force exerted 
at C by CF on AD are shown equal and opposite to the components 
of the force exerted by AD on CF. This is in conformity with  Newton’s 
third law, which states that the forces of action and reaction between 
bodies in contact have the same magnitude, same line of action, and 
opposite sense. As pointed out in Chap. 1, this law, which is based 
on experimental evidence, is one of the six fundamental principles 
of elementary mechanics, and its application is essential to the solu-
tion of problems involving connected bodies.

Fig. 6.1

TT
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D

E
F

W

B

C

D

E

E

F
E
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G
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B
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C
C

D

(b) (c)
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A
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A
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285 In this chapter, three broad categories of engineering structures 
will be considered:

 1. Trusses, which are designed to support loads and are usually 
stationary, fully constrained structures. Trusses consist exclu-
sively of straight members connected at joints located at the 
ends of each member. Members of a truss, therefore, are two-
force members, i.e., members acted upon by two equal and 
opposite forces directed along the member.

 2. Frames, which are also designed to support loads and are also 
usually stationary, fully constrained structures. However, like 
the crane of Fig. 6.1, frames always contain at least one mul-
tiforce member, i.e., a member acted upon by three or more 
forces which, in general, are not directed along the 
member.

 3. Machines, which are designed to transmit and modify forces 
and are structures containing moving parts. Machines, like 
frames, always contain at least one multiforce member.

TRUSSES

6.2 DEFINITION OF A TRUSS
The truss is one of the major types of engineering structures. It 
provides both a practical and an economical solution to many engi-
neering situations, especially in the design of bridges and buildings. 
A typical truss is shown in Fig. 6.2a. A truss consists of straight 
members connected at joints. Truss members are connected at their 
extremities only; thus no member is continuous through a joint. In 
Fig. 6.2a, for example, there is no member AB; there are instead two 
distinct members AD and DB. Most actual structures are made of 
several trusses joined together to form a space framework. Each truss 
is designed to carry those loads which act in its plane and thus may 
be treated as a two-dimensional structure.
 In general, the members of a truss are slender and can sup-
port little lateral load; all loads, therefore, must be applied to the 
various joints, and not to the members themselves. When a con-
centrated load is to be applied between two joints, or when a dis-
tributed load is to be supported by the truss, as in the case of a 
bridge truss, a floor system must be provided which, through the 
use of stringers and floor beams, transmits the load to the joints 
(Fig. 6.3).
 The weights of the members of the truss are also assumed to 
be applied to the joints, half of the weight of each member being 
applied to each of the two joints the member connects. Although 
the members are actually joined together by means of welded, 
bolted, or riveted connections, it is customary to assume that the 
members are pinned together; therefore, the forces acting at each 
end of a member reduce to a single force and no couple. Thus, the 
only forces assumed to be applied to a truss member are a single 

A B

C

D

(a)

(b)

P

A B

C

D

P

Fig. 6.2

6.2 Defi nition of a Truss

Photo 6.1 Shown is a pin-jointed connection 
on the approach span to the San Francisco–
Oakland Bay Bridge.
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286  Analysis of Structures

Fig. 6.5

Pratt

Pratt

Howe

Howe

Fink
Typical Roof Trusses

Typical Bridge Trusses
Baltimore

Warren

K truss

Stadium

Cantilever portion
of a truss Bascule

Other Types of Trusses

Floor beams

Stringers

Fig. 6.3

force at each end of the member. Each member can then be treated 
as a two-force member, and the entire truss can be considered as a 
group of pins and two-force members (Fig. 6.2b). An individual 
member can be acted upon as shown in either of the two sketches 
of Fig. 6.4. In Fig. 6.4a, the forces tend to pull the member apart, 
and the member is in tension; in Fig. 6.4b, the forces tend to com-
press the member, and the member is in compression. A number 
of typical trusses are shown in Fig. 6.5.

(a) (b)

Fig. 6.4
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2876.3 SIMPLE TRUSSES
Consider the truss of Fig. 6.6a, which is made of four members con-
nected by pins at A, B, C, and D. If a load is applied at B, the truss 
will greatly deform, completely losing its original shape. In contrast, 
the truss of Fig. 6.6b, which is made of three members connected 
by pins at A, B, and C, will deform only slightly under a load applied 
at B. The only possible deformation for this truss is one involving 
small changes in the length of its members. The truss of Fig. 6.6b 
is said to be a rigid truss, the term rigid being used here to indicate 
that the truss will not collapse.

†The three joints must not be in a straight line.

Fig. 6.6
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B

C A
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C'

D

D
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B C

DE F

G

(a) (b) (c) (d )

 As shown in Fig. 6.6c, a larger rigid truss can be obtained by 
adding two members BD and CD to the basic triangular truss of 
Fig. 6.6b. This procedure can be repeated as many times as desired, 
and the resulting truss will be rigid if each time two new members 
are added, they are attached to two existing joints and connected at 
a new joint.† A truss which can be constructed in this manner is 
called a simple truss.
 It should be noted that a simple truss is not necessarily made 
only of triangles. The truss of Fig. 6.6d, for example, is a simple truss 
which was constructed from triangle ABC by adding successively the 
joints D, E, F, and G. On the other hand, rigid trusses are not always 
simple trusses, even when they appear to be made of triangles. The 
Fink and Baltimore trusses shown in Fig. 6.5, for instance, are not 
simple trusses, since they cannot be constructed from a single trian-
gle in the manner described above. All the other trusses shown in 
Fig. 6.5 are simple trusses, as may be easily checked. (For the K 
truss, start with one of the central triangles.)
 Returning to Fig. 6.6, we note that the basic triangular truss of 
Fig. 6.6b has three members and three joints. The truss of Fig. 6.6c 
has two more members and one more joint, i.e., five members and 
four joints altogether. Observing that every time two new members 
are added, the number of joints is increased by one, we find that in 
a simple truss the total number of members is m 5 2n 2 3, where 
n is the total number of joints.

6.3 Simple Trusses

Photo 6.2 Two K trusses were used as the 
main components of the movable bridge shown 
which moved above a large stockpile of ore. 
The bucket below the trusses picked up ore and 
redeposited it until the ore was thoroughly mixed.
The ore was then sent to the mill for processing 
into steel.

bee02286_ch06_282-351.indd Page 287  7/18/11  3:22 PM user-f494bee02286_ch06_282-351.indd Page 287  7/18/11  3:22 PM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


288  Analysis of Structures 6.4  ANALYSIS OF TRUSSES BY THE METHOD
OF JOINTS

We saw in Sec. 6.2 that a truss can be considered as a group of pins 
and two-force members. The truss of Fig. 6.2, whose free-body  diagram 
is shown in Fig. 6.7a, can thus be dismembered, and a free-body dia-
gram can be drawn for each pin and each member (Fig. 6.7b). Each 
member is acted upon by two forces, one at each end; these forces have 
the same magnitude, same line of action, and opposite sense (Sec. 4.6). 
Furthermore, Newton’s third law indicates that the forces of action and 
reaction between a member and a pin are equal and opposite. There-
fore, the forces exerted by a member on the two pins it connects must 
be directed along that member and be equal and opposite. The common 
magnitude of the forces exerted by a member on the two pins it con-
nects is commonly referred to as the force in the member considered, 
even though this quantity is actually a scalar. Since the lines of action of 
all the internal forces in a truss are known, the analysis of a truss reduces 
to computing the forces in its various members and to determining 
whether each of its members is in tension or in compression.
 Since the entire truss is in equilibrium, each pin must be in 
equilibrium. The fact that a pin is in equilibrium can be expressed by 
drawing its free-body diagram and writing two equilibrium equations 
(Sec. 2.9). If the truss contains n pins, there will, therefore, be 2n 
equations available, which can be solved for 2n unknowns. In the case 
of a simple truss, we have m 5 2n 2 3, that is, 2n 5 m 1 3, and the 
number of unknowns which can be determined from the free-body 
diagrams of the pins is thus m 1 3. This means that the forces in all 
the members, the two components of the reaction RA, and the reaction 
RB can be found by considering the free-body diagrams of the pins.
 The fact that the entire truss is a rigid body in equilibrium can 
be used to write three more equations involving the forces shown in 
the free-body diagram of Fig. 6.7a. Since they do not contain any 
new information, these equations are not independent of the equa-
tions associated with the free-body diagrams of the pins. Neverthe-
less, they can be used to determine the components of the reactions 
at the supports. The arrangement of pins and members in a simple 
truss is such that it will then always be possible to find a joint involv-
ing only two unknown forces. These forces can be determined by 
the methods of Sec. 2.11 and their values transferred to the adjacent 
joints and treated as known quantities at these joints. This procedure 
can be repeated until all unknown forces have been determined.
 As an example, the truss of Fig. 6.7 will be analyzed by con-
sidering the equilibrium of each pin successively, starting with a joint 
at which only two forces are unknown. In the truss considered, all 
pins are subjected to at least three unknown forces. Therefore, the 
reactions at the supports must first be determined by considering 
the entire truss as a free body and using the equations of equilibrium 
of a rigid body. We find in this way that RA is vertical and determine 
the magnitudes of RA and RB.
 The number of unknown forces at joint A is thus reduced to 
two, and these forces can be determined by considering the equilib-
rium of pin A. The reaction RA and the forces FAC and FAD exerted 

Fig. 6.7

DA B

C

C

B

P

P

(a)

(b)

RB

RB

D

RA

A

RA

Photo 6.3 Because roof trusses, such as those 
shown, require support only at their ends, it is 
possible to construct buildings with large, 
unobstructed floor areas.
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289on pin A by members AC and AD, respectively, must form a force 
triangle. First we draw RA (Fig. 6.8); noting that FAC and FAD are 
directed along AC and AD, respectively, we complete the triangle 
and determine the magnitude and sense of FAC and FAD. The mag-
nitudes FAC and FAD represent the forces in members AC and AD. 
Since FAC is directed down and to the left, that is, toward joint A, 
member AC pushes on pin A and is in compression. Since FAD is 
directed away from joint A, member AD pulls on pin A and is in 
tension.

Fig. 6.8

Free-body diagram

Joint A

Joint D

Joint C

Joint B B

Force  polygon

FAC

FAC

FAD

FDA

FCA
FCB

FCD

FCD

FCA

FCB

RB

RBFBD

FBDFBC

FBC

FDA

FDC

FDCFDB

FDB

P

P

FAD
RA

RAA

D

C

 We can now proceed to joint D, where only two forces, FDC and 
FDB, are still unknown. The other forces are the load P, which is 
given, and the force FDA exerted on the pin by member AD. As indi-
cated above, this force is equal and opposite to the force FAD exerted 
by the same member on pin A. We can draw the force polygon cor-
responding to joint D, as shown in Fig. 6.8, and determine the forces 

6.4 Analysis of Trusses by the Method of Joints
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290  Analysis of Structures FDC and FDB from that polygon. However, when more than three 
forces are involved, it is usually more convenient to solve the equa-
tions of equilibrium oFx 5 0 and oFy 5 0 for the two unknown 
forces. Since both of these forces are found to be directed away from 
joint D, members DC and DB pull on the pin and are in tension.
 Next, joint C is considered; its free-body diagram is shown in 
Fig. 6.8. It is noted that both FCD and FCA are known from the 
analysis of the preceding joints and that only FCB is unknown. Since 
the equilibrium of each pin provides sufficient information to deter-
mine two unknowns, a check of our analysis is obtained at this joint. 
The force triangle is drawn, and the magnitude and sense of FCB are 
determined. Since FCB is directed toward joint C, member CB 
pushes on pin C and is in compression. The check is obtained by 
verifying that the force FCB and member CB are parallel.
 At joint B, all of the forces are known. Since the corresponding 
pin is in equilibrium, the force triangle must close and an additional 
check of the analysis is obtained.
 It should be noted that the force polygons shown in Fig. 6.8 
are not unique. Each of them could be replaced by an alternative 
configuration. For example, the force triangle corresponding to joint 
A could be drawn as shown in Fig. 6.9. The triangle actually shown 
in Fig. 6.8 was obtained by drawing the three forces RA, FAC, and 
FAD in tip-to-tail fashion in the order in which their lines of action 
are encountered when moving clockwise around joint A. The other 
force polygons in Fig. 6.8, having been drawn in the same way, can 
be made to fit into a single diagram, as shown in Fig. 6.10. Such a 
diagram, known as Maxwell’s diagram, greatly facilitates the  graphical 
analysis of truss problems.

*6.5  JOINTS UNDER SPECIAL LOADING
CONDITIONS

Consider Fig. 6.11a, in which the joint shown connects four mem-
bers lying in two intersecting straight lines. The free-body diagram 
of Fig. 6.11b shows that pin A is subjected to two pairs of directly 
opposite forces. The corresponding force polygon, therefore, must 
be a parallelogram (Fig. 6.11c), and the forces in opposite members 
must be equal.

Fig. 6.9
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291 Consider next Fig. 6.12a, in which the joint shown connects 
three members and supports a load P. Two of the members lie in 
the same line, and the load P acts along the third member. The free-
body diagram of pin A and the corresponding force polygon will be 
as shown in Fig. 6.11b and c, with FAE replaced by the load P. Thus, 
the forces in the two opposite members must be equal, and the force 
in the other member must equal P. A particular case of special inter-
est is shown in Fig. 6.12b. Since, in this case, no external load is 
applied to the joint, we have P 5 0, and the force in member AC is 
zero. Member AC is said to be a zero-force member.
 Consider now a joint connecting two members only. From 
Sec. 2.9, we know that a particle which is acted upon by two forces will 
be in equilibrium if the two forces have the same magnitude, same line 
of action, and opposite sense. In the case of the joint of Fig. 6.13a, 
which connects two members AB and AD lying in the same line, the 
forces in the two members must be equal for pin A to be in equilibrium. 
In the case of the joint of Fig. 6.13b, pin A cannot be in equilibrium 
unless the forces in both members are zero. Members connected as 
shown in Fig. 6.13b, therefore, must be zero-force members.
 Spotting the joints which are under the special loading condi-
tions listed above will expedite the analysis of a truss. Consider, for 
example, a Howe truss loaded as shown in Fig. 6.14. All of the mem-
bers represented by green lines will be recognized as zero-force 
members. Joint C connects three members, two of which lie in the 
same line, and is not subjected to any external load; member BC is 
thus a zero-force member. Applying the same reasoning to joint K, 
we find that member JK is also a zero-force member. But joint J is 
now in the same situation as joints C and K, and member IJ must be 
a zero-force member. The examination of joints C, J, and K also shows 
that the forces in members AC and CE are equal, that the forces in 
members HJ and JL are equal, and that the forces in members IK 
and KL are equal. Turning our attention to joint I, where the 20-kN 
load and member HI are collinear, we note that the force in member 
HI is 20 kN (tension) and that the forces in members GI and IK are 
equal. Hence, the forces in members GI, IK, and KL are equal.

6.5 Joints Under Special Loading Conditions

Fig. 6.12

(a)

A

D

C

B

(b)

A

P

D

C

B

(a)

A

D

B

(b)

A

D

B

Fig. 6.13

Fig. 6.14

A
B

C

D

E

F

G

H

25 kN

25 kN

50 kN

20 kN

I

J

K
L

 Note that the conditions described above do not apply to joints B 
and D in Fig. 6.14, and it would be wrong to assume that the force in 
member DE is 25 kN or that the forces in members AB and BD are 
equal. The forces in these members and in all remaining members 
should be found by carrying out the analysis of joints A, B, D, E, F, G, 
H, and L in the usual manner. Thus, until you have become thoroughly 
familiar with the conditions under which the rules established in this 

Photo 6.4 Three-dimensional or space trusses 
are used for broadcast and power transmission 
line towers, roof framing, and spacecraft 
applications, such as components of the 
International Space Station.
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292  Analysis of Structures section can be applied, you should draw the free-body diagrams of all 
pins and write the corresponding equilibrium equations (or draw the 
corresponding force polygons) whether or not the joints being consid-
ered are under one of the special loading conditions described above.
 A final remark concerning zero-force members: These mem-
bers are not useless. For example, although the zero-force members 
of Fig. 6.14 do not carry any loads under the loading conditions 
shown, the same members would probably carry loads if the loading 
conditions were changed. Besides, even in the case considered, these 
members are needed to support the weight of the truss and to main-
tain the truss in the desired shape.

*6.6 SPACE TRUSSES
When several straight members are joined together at their extremi-
ties to form a three-dimensional configuration, the structure obtained 
is called a space truss.
 We recall from Sec. 6.3 that the most elementary two-
dimensional rigid truss consisted of three members joined at their 
extremities to form the sides of a triangle; by adding two members at a 
time to this basic configuration, and connecting them at a new joint, it 
was possible to obtain a larger rigid structure which was defined as a 
simple truss. Similarly, the most elementary rigid space truss consists of 
six members joined at their extremities to form the edges of a  tetrahedron 
ABCD (Fig. 6.15a). By adding three members at a time to this basic 
configuration, such as AE, BE, and CE, attaching them to three existing 
joints, and connecting them at a new joint,† we can obtain a larger rigid 
structure which is defined as a simple space truss (Fig. 6.15b). Observ-
ing that the basic tetrahedron has six members and four joints and that 
every time three members are added, the number of joints is increased 
by one, we conclude that in a simple space truss the total number of 
members is m 5 3n 2 6, where n is the total number of joints.
 If a space truss is to be completely constrained and if the reac-
tions at its supports are to be statically determinate, the supports 
should consist of a combination of balls, rollers, and balls and sockets 
which provides six unknown reactions (see Sec. 4.9). These unknown 
reactions may be readily determined by solving the six equations 
expressing that the three-dimensional truss is in equilibrium.
 Although the members of a space truss are actually joined to-
gether by means of bolted or welded connections, it is assumed that 
each joint consists of a ball-and-socket connection. Thus, no couple 
will be applied to the members of the truss, and each member can be 
treated as a two-force member. The conditions of equilibrium for each 
joint will be expressed by the three equations oFx 5 0, oFy 5 0, and 
oFz 5 0. In the case of a simple space truss containing n joints, writ-
ing the conditions of equilibrium for each joint will thus yield 3n 
equations. Since m 5 3n 2 6, these equations suffice to determine 
all unknown forces (forces in m members and six reactions at the 
supports). However, to avoid the necessity of solving simultaneous 
equations, care should be taken to select joints in such an order that 
no selected joint will involve more than three unknown forces.

Fig. 6.15

A

B

C

D

A

B

C

D

E

(a)

(b)

†The four joints must not lie in a plane.
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293

SAMPLE PROBLEM 6.1

Using the method of joints, determine the force in each member of the 
truss shown.

SOLUTION

Free-Body: Entire Truss. A free-body diagram of the entire truss is drawn; 
external forces acting on this free body consist of the applied loads and the 
reactions at C and E. We write the following equilibrium equations.

 1loMC 5 0: (2000 lb)(24 ft) 1 (1000 lb)(12 ft) 2 E(6 ft) 5 0
 E 5 110,000 lb E 5 10,000 lbx

y
1 oFx 5 0: Cx 5 0

 1xoFy 5 0: 22000 lb 2 1000 lb 1 10,000 lb 1 Cy 5 0
 Cy 5 27000 lb Cy 5 7000 lbw

Free-Body: Joint A. This joint is subjected to only two unknown forces, 
namely, the forces exerted by members AB and AD. A force triangle is used 
to determine FAB and FAD. We note that member AB pulls on the joint and 
thus is in tension and that member AD pushes on the joint and thus is in 
compression. The magnitudes of the two forces are obtained from the 
proportion

2000 lb

4
5

FAB

3
5

FAD

5
FAB 5 1500 lb T ◀

FAD 5 2500 lb C ◀

Free-Body: Joint D. Since the force exerted by member AD has been 
determined, only two unknown forces are now involved at this joint. Again, 
a force triangle is used to determine the unknown forces in members DB 
and DE.

 FDB 5 FDA FDB 5 2500 lb T ◀

 FDE 5 2(3
5)FDA FDE 5 3000 lb C ◀

FDA = 2500 lb
FDB

FDB
FDE

FDE FDA

3 3
4 45 5

FAD
FAD

FAB

FAB

A

2000 lb

2000 lb

3

3

4
45 5

12 ft

12 ft

12 ft

6 ft6 ft

8 ft

A B C

D E
E

2000 lb 1000 lb Cy

C x

12 ft

12 ft

12 ft

6 ft6 ft

8 ft

A B C

D E

2000 lb 1000 lb
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294

Free-Body: Joint B. Since more than three forces act at this joint, we 
determine the two unknown forces FBC and FBE by solving the equilibrium 
equations oFx 5 0 and oFy 5 0. We arbitrarily assume that both unknown 
forces act away from the joint, i.e., that the members are in tension. The 
positive value obtained for FBC indicates that our assumption was correct; 
member BC is in tension. The negative value of FBE indicates that our 
assumption was wrong; member BE is in compression.

1xoFy 5 0: 21000 2 4
5(2500) 2 4

5FBE 5 0
 FBE 5 23750 lb FBE 5 3750 lb C ◀

y
1 oFx 5 0:  FBC 2 1500 2 3

5(2500) 2 3
5(3750) 5 0

 FBC 5 15250 lb FBC 5 5250 lb T ◀

Free-Body: Joint E. The unknown force FEC is assumed to act away from 
the joint. Summing x components, we write

y
1 oFx 5 0:  3

5FEC 1 3000 1 3
5(3750) 5 0

 FEC 5 28750 lb FEC 5 8750 lb C ◀

 Summing y components, we obtain a check of our computations:

 1xoFy 5 10,000 2 4
5(3750) 2 4

5(8750)
 5 10,000 2 3000 2 7000 5 0 (checks)

Free-Body: Joint C. Using the computed values of FCB and FCE, we can 
determine the reactions Cx and Cy by considering the equilibrium of 
this joint. Since these reactions have already been determined from the 
equilibrium of the entire truss, we will obtain two checks of our com-
putations. We can also simply use the computed values of all forces acting 
on the joint (forces in members and reactions) and check that the joint is 
in equilibrium:

 y
1 oFx 5 25250 1 3

5(8750) 5 25250 1 5250 5 0 (checks)
 1xoFy 5 27000 1 4

5(8750) 5 27000 1 7000 5 0 (checks)

FCB = 5250 lb

FCE = 8750 lb

Cy = 7000 lb

Cx = 0
C

3
4

FEB = 3750 lb FEC

FED = 3000 lb

E = 10,000 lb

E
33

44

FBA = 1500 lb

FBD = 2500 lb FBE

B
FBC

1000 lb

33
44
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295

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned to use the method of joints to determine the forces in 
the members of a simple truss, that is, a truss that can be constructed from a 

basic triangular truss by adding to it two new members at a time and connecting 
them at a new joint.

Your solution will consist of the following steps:

1. Draw a free-body diagram of the entire truss, and use this diagram to 
determine the reactions at the supports.

2. Locate a joint connecting only two members, and draw the free-body 
diagram of its pin. Use this free-body diagram to determine the unknown force 
in each of the two members. If only three forces are involved (the two unknown 
forces and a known one), you will probably find it more convenient to draw and 
solve the corresponding force triangle. If more than three forces are involved, you 
should write and solve the equilibrium equations for the pin, oFx 5 0 and oFy 5 0, 
assuming that the members are in tension. A positive answer means that the mem-
ber is in tension, a negative answer that the member is in compression. Once the 
forces have been found, enter their values on a sketch of the truss, with T for 
tension and C for compression.

3. Next, locate a joint where the forces in only two of the connected mem-
bers are still unknown. Draw the free-body diagram of the pin and use it as 
indicated above to determine the two unknown forces.

4. Repeat this procedure until the forces in all the members of the truss have 
been found. Since you previously used the three equilibrium equations associated 
with the free-body diagram of the entire truss to determine the reactions at the 
supports, you will end up with three extra equations. These equations can be used 
to check your computations.

5. Note that the choice of the first joint is not unique. Once you have deter-
mined the reactions at the supports of the truss, you can choose either of two 
joints as a starting point for your analysis. In Sample Prob. 6.1, we started at joint 
A and proceeded through joints D, B, E, and C, but we could also have started at 
joint C and proceeded through joints E, B, D, and A. On the other hand, having 
selected a first joint, you may in some cases reach a point in your analysis beyond 
which you cannot proceed. You must then start again from another joint to com-
plete your solution.

 Keep in mind that the analysis of a simple truss can always be carried out 
by the method of joints. Also remember that it is helpful to outline your solution 
before starting any computations.
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PROBLEMS

296

 6.1 through 6.8 Using the method of joints, determine the force 
in each member of the truss shown. State whether each member 
is in tension or compression.

A

B

C

84 kN

3 m

1.25 m

4 m

Fig. P6.3

300 lb

15 in.
48 in.

20 in.

A

C

B

Fig. P6.2

B

C

A

48 kN

4 m

3.2 m

3 m

Fig. P6.1

A

C D
EB

4 ft 4 ft8 ft 8 ft

600 lb

300 lb 300 lb
6 ft

Fig. P6.4

A B C

D
E F

4 kips

2.4 kips

1 kip1 kip

6.4 ft

12 ft 12 ft

Fig. P6.5

A

B

C D

5 kN

5 kN

4 m

4 m

2 m

Fig. P6.7

1.2 m

0.9 m

1.2 m

A

C D
E

B

6 kN

3 kN

Fig. P6.8

A B

C

D E

12 ft

693 lb

5 ft 5 ft11 ft

Fig. P6.6
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297Problems 6.9 Determine the force in each member of the Gambrel roof truss 
shown. State whether each member is in tension or compression.

C

D

E

F

G H
A

B

6 ft

8 ft 8 ft 8 ft 8 ft

300 lb
300 lb

600 lb
600 lb

600 lb

2 ft 4 in.

Fig. P6.9

5.7 kN

10.5 kN

5.7 kN

10.5 kN

9.6 kN

A

B

C

D

E

F

G

H
2.4 m

3.8 m 3.2 m 3.2 m 3.8 m

Fig. P6.11

A

B

C

D

E

F

G
H

600 lb

600 lb

300 lb

600 lb

300 lb

8 ft8 ft8 ft8 ft

6 ft

6 ft

Fig. P6.10

C

D

E

F

G

1.5 kN
1.5 kN

2.25 m 2.25 m

3 kN

3 kN

3 kN

1 m

1 mA

B

3 m 3 m 3 m

Fig. P6.12

 6.10 Determine the force in each member of the Howe roof truss 
shown. State whether each member is in tension or compression.

 6.11 Determine the force in each member of the Pratt roof truss shown. 
State whether each member is in tension or compression.

 6.12 Determine the force in each member of the Fink roof truss shown. 
State whether each member is in tension or compression.

 6.13 Determine the force in each member of the double-pitch roof truss 
shown. State whether each member is in tension or compression.

C

D

E

F

G

HA

B

4 m4 m4 m
3 m 3 m

1 kN

2 kN

2 kN

1.75 kN

1.5 kN

0.75 kN
6 m

6 m6 m6 m

Fig. P6.13

 6.14 The truss shown is one of several supporting an advertising panel. 
Determine the force in each member of the truss for a wind load 
equivalent to the two forces shown. State whether each member 
is in tension or compression. Fig. P6.14

A

B

C

D

E

F

800 N

800 N

2 m 2 m

3.75 m

3.75 m
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298 Analysis of Structures  6.15 Determine the force in each of the members located to the left of 
line FGH for the studio roof truss shown. State whether each 
member is in tension or compression.

C

D

E

F

G
A

B

12 ft

9 ft9 ft

6 kips 6 kips

18 ft 18 ft 18 ft

18 ft18 ft

Fig. P6.19

 6.22 Solve Prob. 6.21 assuming that the load applied at G has been 
removed.

C

D

E

F

G

H

I
J

K LA

B
1 kN

1 kN

2 kN

2 kN

2 m 2 m 2 m 2 m 2 m 2 m

1 m
1 m
1 m
1 m
1 m

Fig. P6.17 and P6.18

C

D

E

F

G

H

I

J

K
LA

B

200 lb 200 lb
400 lb

400 lb
400 lb

400 lb
400 lb

6 ft 6 ft 6 ft

6 ft6 ft6 ft

9 ft

9 ft9 ft

3 ft

Fig. P6.15 and P6.16

 6.16 Determine the force in member FG and in each of the members 
located to the right of FG for the studio roof truss shown. State 
whether each member is in tension or compression.

 6.17 Determine the force in each of the members located to the left of 
FG for the scissors roof truss shown. State whether each member 
is in tension or compression.

 6.18 Determine the force in member FG and in each of the members 
located to the right of FG for the scissors roof truss shown. State 
whether each member is in tension or compression.

 6.19 Determine the force in each member of the Warren bridge truss 
shown. State whether each member is in tension or compression.

 6.20 Solve Prob. 6.19 assuming that the load applied at E has been 
removed.

 6.21 Determine the force in each member of the Pratt bridge truss 
shown. State whether each member is in tension or compression.

Fig. P6.21

C

D

E

F

G
HA

B

4 kips 4 kips 4 kips

12 ft

9 ft 9 ft 9 ft 9 ft
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299Problems 6.23 The portion of truss shown represents the upper part of a power 
transmission line tower. For the given loading, determine the force 
in each of the members located above HJ. State whether each 
member is in tension or compression.

1.6 m 1.6 m 1.6 m 1.6 m 1.6 m 1.6 m

1.2 kN

1.2 kN

2.4 kN
2.4 kN

1.8 m1.8 m1.8 m1.8 m

0.9 m

A

B

C

D

E

F
G

H

I

J
K
2.4 m

2.4 m

Fig. P6.26

 6.24 For the tower and loading of Prob. 6.23 and knowing that FCH 5 
FEJ 5 1.2 kN C and FEH 5 0, determine the force in member HJ 
and in each of the members located between HJ and NO. State 
whether each member is in tension or compression.

 6.25 Solve Prob. 6.23 assuming that the cables hanging from the right 
side of the tower have fallen to the ground.

 6.26 Determine the force in each of the members connecting joints A 
through F of the vaulted roof truss shown. State whether each 
member is in tension or compression.

 6.27 Determine the force in each member of the truss shown. State 
whether each member is in tension or compression.

C

D

E

F

G

H

I

J

K

L

M

N O

P

Q R

A

B

1.60 m

1.2 kN

1.2 kN1.2 kN

1.2 kN

1.2 kN1.2 kN

0.60 m

0.60 m

0.60 m

0.60 m

0.60 m

0.60 m

S T

2.21 m 2.21 m

1.20 m

1.20 m2.97 m

Fig. P6.23

A

B C

D E

F G

15 kips

5 ft 5 ft

4 ft

40 kips

10 ft

10 ft

6 ft

10 ft

Fig. P6.27
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300 Analysis of Structures  6.28 Determine the force in each member of the truss shown. State 
whether each member is in tension or compression.

 6.29 Determine whether the trusses of Probs. 6.31a, 6.32a, and 6.33a 
are simple trusses.

 6.30 Determine whether the trusses of Probs. 6.31b, 6.32b, and 6.33b 
are simple trusses.

 6.31 For the given loading, determine the zero-force members in each 
of the two trusses shown.

A

B

C

D

E

F

G

H

I

J

K

L

M

P
Q

N

O

(a)

A

B

C

D

E

F

G

H

I

J

K

L

M

P
Q

N

O

(b)

Fig. P6.32

A B C

D E F G

H
I J K

L

P

(a)

A B C D E

F G H I

J
K L M

P Q

N O
P

(b)

a
2

a
2

aaaa

Fig. P6.31

 6.32 For the given loading, determine the zero-force members in each 
of the two trusses shown.

 6.33 For the given loading, determine the zero-force members in each 
of the two trusses shown.

 6.34 Determine the zero-force members in the truss of (a) Prob. 6.26, 
(b) Prob. 6.28.

P

A

F
G H I

J

D E

B C

(a)
P

C

F

A

D E

HG

B

(b)

P P

Q

Fig. P6.33

12 ft12 ft12 ft

15 ft

15 kips

12 ft

A B C

E

D

G

F

H 

Fig. P6.28
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301Problems *6.35 The truss shown consists of six members and is supported by a 
short link at A, two short links at B, and a ball and socket at D. 
Determine the force in each of the members for the given 
loading.

A

B

C

DO

x

y

z

7 ft 7 ft

10 ft

24 ft

400 lb

Fig. P6.35

 *6.39 The truss shown consists of nine members and is supported by a 
ball and socket at B, a short link at C, and two short links at D. 
(a) Check that this truss is a simple truss, that it is completely 
constrained, and that the reactions at its supports are statically 
determinate. (b) Determine the force in each member for P 5 
(21200 N)j and Q 5 0.

 *6.40 Solve Prob. 6.39 for P 5 0 and Q 5 (2900 N)k.

z

2.1 m

2.1 m

A

B

C

D

P

Q

O
x

y

0.8 m

4.8 m

2 m

Fig. P6.36 and P6.37

6 ft
6 ft

6 ft
1600 lb

7.5 ft x

y

z

A

B

C

D

E
8 ft

6 ft

Fig. P6.38

y

A

B

C

D
E

O

P

Q

z
1.2 m

0.6 m

0.6 m

x
0.75 m

2.25 m

3 m

Fig. P6.39

 *6.36 The truss shown consists of six members and is supported by a ball 
and socket at B, a short link at C, and two short links at D. Deter-
mine the force in each of the members for P 5 (22184 N)j and 
Q 5 0.

 *6.37 The truss shown consists of six members and is supported by a 
ball and socket at B, a short link at C, and two short links at D. 
Determine the force in each of the members for P 5 0 and Q 5 
(2968 N)i.

 *6.38 The truss shown consists of nine members and is supported by a 
ball and socket at A, two short links at B, and a short link at C. 
Determine the force in each of the members for the given 
loading.
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 *6.41 The truss shown consists of 18 members and is supported by a ball 
and socket at A, two short links at B, and one short link at G. 
(a) Check that this truss is a simple truss, that it is completely 
constrained, and that the reactions at its supports are statically 
determinate. (b) For the given loading, determine the force in each 
of the six members joined at E.

 *6.42 The truss shown consists of 18 members and is supported by a ball 
and socket at A, two short links at B, and one short link at G. 
(a) Check that this truss is a simple truss, that it is completely 
constrained, and that the reactions at its supports are statically 
determinate. (b) For the given loading, determine the force in each 
of the six members joined at G.

6.7  ANALYSIS OF TRUSSES BY THE METHOD 
OF SECTIONS

The method of joints is most effective when the forces in all the 
members of a truss are to be determined. If, however, the force in 
only one member or the forces in a very few members are desired, 
another method, the method of sections, is more efficient.
 Assume, for example, that we want to determine the force in 
member BD of the truss shown in Fig. 6.16a. To do this, we must 
determine the force with which member BD acts on either joint B 
or joint D. If we were to use the method of joints, we would choose 
either joint B or joint D as a free body. However, we can also choose 
as a free body a larger portion of the truss, composed of several joints 
and members, provided that the desired force is one of the external 
forces acting on that portion. If, in addition, the portion of the truss 
is chosen so that there is a total of only three unknown forces acting 
upon it, the desired force can be obtained by solving the equations 
of equilibrium for this portion of the truss. In practice, the portion 
of the truss to be utilized is obtained by passing a section through 
three members of the truss, one of which is the desired member, 
i.e., by drawing a line which divides the truss into two completely 
separate parts but does not intersect more than three members. 
Either of the two portions of the truss obtained after the intersected 
members have been removed can then be used as a free body.†
 In Fig. 6.16a, the section nn has been passed through members 
BD, BE, and CE, and the portion ABC of the truss is chosen as the 
free body (Fig. 6.16b). The forces acting on the free body are the 
loads P1 and P2 at points A and B and the three unknown forces FBD, 
FBE, and FCE. Since it is not known whether the members removed 
were in tension or compression, the three forces have been arbitrarily 
drawn away from the free body as if the members were in tension.

†In the analysis of certain trusses, sections are passed which intersect more than three 
members; the forces in one, or possibly two, of the intersected members may be 
obtained if equilibrium equations can be found, each of which involves only one 
unknown (see Probs. 6.61 through 6.64).

Fig. 6.16

A B

C

A B

C

D

E

E

G

(a)

(b)

n

n
P1 P2

P1 P2

P3

FCE

FBD

FBE

A

E

H

G

C

FD

B

x

y

z

10.08 ft

9.60 ft

11.00 ft

(275 lb) i

(240 lb) k

Fig. P6.41 and P6.42
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6.8 Trusses Made of Several Simple Trusses 303 The fact that the rigid body ABC is in equilibrium can be 
expressed by writing three equations which can be solved for the 
three unknown forces. If only the force FBD is desired, we need write 
only one equation, provided that the equation does not contain the 
other unknowns. Thus the equation oME 5 0 yields the value of 
the magnitude FBD of the force FBD (Fig. 6.16b). A positive sign in 
the answer will indicate that our original assumption regarding the 
sense of FBD was correct and that member BD is in tension; a nega-
tive sign will indicate that our assumption was incorrect and that BD 
is in compression.
 On the other hand, if only the force FCE is desired, an equation 
which does not involve FBD or FBE should be written; the appropriate 
equation is oMB 5 0. Again a positive sign for the magnitude FCE of 
the desired force indicates a correct assumption, that is, tension; and a 
negative sign indicates an incorrect assumption, that is, compression.
 If only the force FBE is desired, the appropriate equation is 
oFy 5 0. Whether the member is in tension or compression is again 
determined from the sign of the answer.
 When the force in only one member is determined, no inde-
pendent check of the computation is available. However, when all 
the unknown forces acting on the free body are determined, the 
computations can be checked by writing an additional equation. For 
instance, if FBD, FBE, and FCE are determined as indicated above, 
the computation can be checked by verifying that oFx 5 0.

*6.8 TRUSSES MADE OF SEVERAL SIMPLE TRUSSES
Consider two simple trusses ABC and DEF. If they are connected by 
three bars BD, BE, and CE as shown in Fig. 6.17a, they will form 
together a rigid truss ABDF. The trusses ABC and DEF can also be 
combined into a single rigid truss by joining joints B and D into a single 
joint B and by connecting joints C and E by a bar CE (Fig. 6.17b). 
The truss thus obtained is known as a Fink truss. It should be noted 
that the trusses of Fig. 6.17a and b are not simple trusses; they cannot 
be constructed from a triangular truss by adding successive pairs of 
members as prescribed in Sec. 6.3. They are rigid trusses, however, 
as we can check by comparing the systems of connections used to hold 
the simple trusses ABC and DEF together (three bars in Fig. 6.17a, 
one pin and one bar in Fig. 6.17b) with the systems of supports dis-
cussed in Secs. 4.4 and 4.5. Trusses made of several simple trusses 
rigidly connected are known as compound trusses.

A

B

C

D

E
F

(a)

A

B

C E
F

(b)

Fig. 6.17
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304  Analysis of Structures  In a compound truss the number of members m and the num-
ber of joints n are still related by the formula m 5 2n 2 3. This can 
be verified by observing that, if a compound truss is supported by a 
frictionless pin and a roller (involving three unknown reactions), the 
total number of unknowns is m 1 3, and this number must be equal 
to the number 2n of equations obtained by expressing that the n pins 
are in equilibrium; it follows that m 5 2n 2 3. Compound trusses 
supported by a pin and a roller, or by an equivalent system of sup-
ports, are statically determinate, rigid, and completely constrained. 
This means that all of the unknown reactions and the forces in all 
the members can be determined by the methods of statics, and that 
the truss will neither collapse nor move. The forces in the members, 
however, cannot all be determined by the method of joints, except 
by solving a large number of simultaneous equations. In the case of 
the compound truss of Fig. 6.17a, for example, it is more efficient 
to pass a section through members BD, BE, and CE to determine 
the forces in these members.
 Suppose, now, that the simple trusses ABC and DEF are con-
nected by four bars BD, BE, CD, or CE (Fig. 6.18). The number of 
members m is now larger than 2n 2 3; the truss obtained is overrigid, 
and one of the four members BD, BE, CD, or CE is said to be redun-
dant. If the truss is supported by a pin at A and a roller at F, the 
total number of unknowns is m 1 3. Since m . 2n 2 3, the number 
m 1 3 of unknowns is now larger than the number 2n of available 
independent equations; the truss is statically indeterminate.
 Finally, let us assume that the two simple trusses ABC and 
DEF are joined by a pin as shown in Fig. 6.19a. The number of mem-
bers m is smaller than 2n 2 3. If the truss is supported by a pin at 
A and a roller at F, the total number of unknowns is m 1 3. Since 
m , 2n 2 3, the number m 1 3 of unknowns is now smaller than 
the number 2n of equilibrium equations which should be satisfied; 
the truss is nonrigid and will collapse under its own weight. How-
ever, if two pins are used to support it, the truss becomes rigid 
and will not collapse (Fig. 6.19b). We note that the total number 
of unknowns is now m 1 4 and is equal to the number 2n of equa-
tions. More generally, if the reactions at the supports involve r 
unknowns, the condition for a compound truss to be statically deter-
minate, rigid, and completely constrained is m 1 r 5 2n. However, 
while necessary this condition is not sufficient for the equilibrium of 
a structure which ceases to be rigid when detached from its supports 
(see Sec. 6.11).

A

B

C

D

E
F

Fig. 6.18

A

B

C E
F

(a) (b)

A

B

C E
F

Fig. 6.19

A

B

C

D

E
F

(a)

Fig. 6.17 (repeated )
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305

SOLUTION

Free-Body: Entire Truss. A free-body diagram of the entire truss is 
drawn; external forces acting on this free body consist of the applied 
loads and the reactions at B and J. We write the following equilibrium 
equations.

 1loMB 5 0:
 2(28 kips)(8 ft) 2 (28 kips)(24 ft) 2 (16 kips)(10 ft) 1 J(32 ft) 5 0

J 5 133 kips  J 5 33 kipsx

y
1 oFx 5 0:  Bx 1 16 kips 5 0

Bx 5 216 kips  Bx 5 16 kipsz

 1loMJ 5 0:
 (28 kips)(24 ft) 1 (28 kips)(8 ft) 2 (16 kips)(10 ft) 2 By(32 ft) 5 0

By 5 123 kips  By 5 23 kipsx

Force in Member EF. Section nn is passed through the truss so that it 
intersects member EF and only two additional members. After the inter-
sected members have been removed, the left-hand portion of the truss is 
chosen as a free body. Three unknowns are involved; to eliminate the two 
horizontal forces, we write

 1xoFy 5 0:  123 kips 2 28 kips 2 FEF 5 0
 FEF 5 25 kips

The sense of FEF was chosen assuming member EF to be in tension; the 
negative sign obtained indicates that the member is in compression.

FEF 5 5 kips C ◀

Force in Member GI. Section mm is passed through the truss so that it 
intersects member GI and only two additional members. After the inter-
sected members have been removed, we choose the right-hand portion of 
the truss as a free body. Three unknown forces are again involved; to elimi-
nate the two forces passing through point H, we write

 1loMH 5 0:  (33 kips)(8 ft) 2 (16 kips)(10 ft) 1 FGI(10 ft) 5 0
FGI 5 210.4 kips  FGI 5 10.4 kips C ◀

A

B

C

D

E

F

G

H

I

J

K

28 kips 28 kips

16 kips

10 ft

8 ft 8 ft 8 ft 8 ft 8 ft

A

B

C

D

E

F

G

H

I

J

K

28 kips 28 kips

16 kips

10 ft

8 ft 8 ft 8 ft 8 ft 8 ft

J
By

Bx

A

B

C

D

E

F

G

H

I

J

K

28 kips 28 kips

16 kips

16 kips

n

n

m

m
23 kips 33 kips

FEG

FEF

FDF
D

28 kips

16 kips

23 kips

A

B

C E

FGI

FHI

FHJ

10 ft

8 ft

H

I

J

K

16 kips

33 kips

SAMPLE PROBLEM 6.2

Determine the force in members EF and GI of the truss shown.
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306

SOLUTION

Free Body: Entire Truss. From the free-body diagram of the entire truss, 
we find the reactions at A and L:

A 5 12.50 kNx  L 5 7.50 kNx

We note that

tan a 5
FG

GL
5

8 m

15 m
5 0.5333  a 5 28.07°

Force in Member GI. Section nn is passed through the truss as shown. 
Using the portion HLI of the truss as a free body, the value of FGI is obtained 
by writing

 1loMH 5 0:  (7.50 kN)(10 m) 2 (1 kN)(5 m) 2 FGI(5.33 m) 5 0
FGI 5 113.13 kN  FGI 5 13.13 kN T ◀

Force in Member FH. The value of FFH is obtained from the equation 
oMG 5 0. We move FFH along its line of action until it acts at point F, 
where it is resolved into its x and y components. The moment of FFH with 
respect to point G is now equal to (FFH cos a)(8 m).

 1loMG 5 0:
 (7.50 kN)(15 m) 2 (1 kN)(10 m) 2 (1 kN)(5 m) 1 (FFH cos a)(8 m) 5 0

FFH 5 213.81 kN  FFH 5 13.81 kN C ◀

Force in Member GH. We first note that

 tan b 5
GI

HI
5

5 m
2
3(8 m)

5 0.9375  b 5 43.15°

The value of FGH is then determined by resolving the force FGH into x and 
y components at point G and solving the equation oML 5 0.

 1loML 5 0:  (1 kN)(10 m) 1 (1 kN)(5 m) 1 (FGH cos b)(15 m) 5 0
FGH 5 21.371 kN  FGH 5 1.371 kN C ◀

SAMPLE PROBLEM 6.3

Determine the force in members FH, GH, and GI of the roof truss 
shown.h = 8 m

A
B

C

D

F

G

H

I

J

K
L

E

1 kN

1 kN
1 kN

1 kN
1 kN

5 kN5 kN5 kN
6 panels @ 5 m = 30 m

A

B

C

D
F

G

H

I

J

K
L

E

1 kN
1 kN

1 kN
1 kN

1 kN

5 kN5 kN5 kN
n

n

12.50 kN
7.50 kN

a = 28.07°

H

I

J

K
L

FGI

FFH

FGH

1 kN

1 kN

7.50 kN

(8 m) = 5.33 m2
3

5 m 5 m

F

G

H

I

J

K
L

FGI

FGH

FFH sin a
FFH cos a

1 kN

1 kN

7.50 kN

a = 28.07°

5 m5 m

8 m

5 m

G

H

I

J

K
L

FGI

FFH

FGH sin b

b = 43.15°

FGH cos b

1 kN

1 kN

7.50 kN
5 m5 m 5 m
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307

The method of joints that you studied earlier is usually the best method to use 
when the forces in all the members of a simple truss are to be found. However, 

the method of sections, which was covered in this lesson, is more effective when 
the force in only one member or the forces in a very few members of a simple 
truss are desired. The method of sections must also be used when the truss is not 
a simple truss.

A. To determine the force in a given truss member by the method of sections, 
you should follow these steps:

1. Draw a free-body diagram of the entire truss, and use this diagram to 
determine the reactions at the supports.

2. Pass a section through three members of the truss, one of which is the 
desired member. After you have removed these members, you will obtain two 
separate portions of truss.

3. Select one of the two portions of truss you have obtained, and draw its 
free-body diagram. This diagram should include the external forces applied to 
the selected portion as well as the forces exerted on it by the intersected members 
before these members were removed.

4. You can now write three equilibrium equations which can be solved for the 
forces in the three intersected members.

5. An alternative approach is to write a single equation, which can be solved 
for the force in the desired member. To do so, first observe whether the forces 
exerted by the other two members on the free body are parallel or whether their 
lines of action intersect.
 a. If these forces are parallel, they can be eliminated by writing an equilib-
rium equation involving components in a direction perpendicular to these two 
forces.
 b. If their lines of action intersect at a point H, they can be eliminated by 
writing an equilibrium equation involving moments about H.

6. Keep in mind that the section you use must intersect three members only. 
This is because the equilibrium equations in step 4 can be solved for three 
unknowns only. However, you can pass a section through more than three mem-
bers to find the force in one of those members if you can write an equilibrium 
equation containing only that force as an unknown. Such special situations are 
found in Probs. 6.61 through 6.64.

SOLVING PROBLEMS
ON YOUR OWN

(continued)
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B. About completely constrained and determinate trusses:

1. First note that any simple truss which is simply supported is a completely 
constrained and determinate truss.

2. To determine whether any other truss is or is not completely constrained 
and determinate, you first count the number m of its members, the number n 
of its joints, and the number r of the reaction components at its supports. You 
then compare the sum m 1 r representing the number of unknowns and the 
product 2n representing the number of available independent equilibrium 
equations.
 a. If m 1 r , 2n, there are fewer unknowns than equations. Thus, some of 
the equations cannot be satisfied; the truss is only partially constrained.
 b. If m 1 r . 2n, there are more unknowns than equations. Thus, some of 
the unknowns cannot be determined; the truss is indeterminate.
 c. If m 1 r 5 2n, there are as many unknowns as there are equations. This, 
however, does not mean that all the unknowns can be determined and that all the 
equations can be satisfied. To find out whether the truss is completely or improp-
erly constrained, you should try to determine the reactions at its supports and the 
forces in its members. If all can be found, the truss is completely constrained and 
determinate.
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PROBLEMS

309

 6.43 Determine the force in members CD and DF of the truss shown.

A

B

C

D

E

F

G

H

I

J

K

6.25 ft 12.5 ft

12.5 ft 12.5 ft 12.5 ft 12.5 ft 12.5 ft

12.5 ft 12.5 ft 12.5 ft

6000 lb

15 ft

6000 lb

Fig. P6.45 and P6.46

1.8 m

4 panels @ 2.4 m = 9.6 m

12 kN 12 kN

A
C E G

J

I

D F H
B

Fig. P6.43 and P6.44

16 kN 16 kNA C

J

L
N

E

G

3 m

3 m

3 m

3 m

6 panels @ 4 m � 24 m

B

D

F

H

M

I

K

Fig. P6.47 and P6.48

 6.44 Determine the force in members FG and FH of the truss shown.

 6.45 A Warren bridge truss is loaded as shown. Determine the force in 
members CE, DE, and DF.

 6.46 A Warren bridge truss is loaded as shown. Determine the force in 
members EG, FG, and FH.

 6.47 Determine the force in members DF, EF, and EG of the truss 
shown.

 6.48 Determine the force in members GI, GJ, and HI of the truss 
shown.

 6.49 Determine the force in members AD, CD, and CE of the truss 
shown.

A

B C

D

E
F

G

H
I K

36 kN

20 kN 20 kN

4.5 m 4.5 m 4.5 m

2.4 m

J

Fig. P6.49 and P6.50

 6.50 Determine the force in members DG, FG, and FH of the truss 
shown.
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310 Analysis of Structures  6.51 A stadium roof truss is loaded as shown. Determine the force in 
members AB, AG, and FG.

 6.52 A stadium roof truss is loaded as shown. Determine the force in 
members AE, EF, and FJ.

 6.53 Determine the force in members CD and DF of the truss 
shown.

 6.54 Determine the force in members CE and EF of the truss 
shown.

 6.55 The truss shown was designed to support the roof of a food market. 
For the given loading, determine the force in members FG, EG, 
and EH.

A
B

C
D

E F G H

I J

K L

0.9 kips

0.9 kips

1.8 kips
1.8 kips

8 ft 8 ft

31.5 ft

9 ft

12 ft 14 ft 14 ft

Fig. P6.51 and P6.52

 6.56 The truss shown was designed to support the roof of a food market. 
For the given loading, determine the force in members KM, LM, 
and LN.

5 m

10 kN 10 kN 10 kN 10 kN

3 m 3 m 3 m 3 m

A C E G
I

H
F

D
B

Fig. P6.53 and P6.54

1 kN 1 kN
1.2 kN

A

B

C

D

E

F G

H

I
J

K

L

M

N

O

P

1.75 m

0.6 kN 0.6 kN

1.24 kN 1.24 kN
1.04 kN 1.04 kN

2.87 m

3.68 m

3.6 m3.6 m 3.6 m3.6 m
3.84 m3.84 m

2.4 m2.4 m

4.80 m

Fig. P6.55 and P6.56
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311Problems 6.57 A Polynesian, or duopitch, roof truss is loaded as shown. Deter-
mine the force in members DF, EF, and EG.

 6.58 A Polynesian, or duopitch, roof truss is loaded as shown. Deter-
mine the force in members HI, GI, and GJ.

 6.59 Determine the force in members DE and DF of the truss shown 
when P � 20 kips.

B

D

a

G I

b

L O

N
P

M

K

H

F

a b

JE

A

15 ft 15 ft 15 ft 15 ft 15 ft 15 ft

C

12 kips 12 kips 12 kips

8 ft

8 ft

Fig. P6.61 and P6.62

 6.62 Determine the force in members HJ and IL of the truss shown. 
(Hint: Use section bb.)

 6.63 Determine the force in members DG and FI of the truss shown. 
(Hint: Use section aa.)

 6.64 Determine the force in members GJ and IK of the truss shown. 
(Hint: Use section bb.)

A
B

C

D

E

F

G

H

I

J

K

L

M
N

6 ft 6 ft

200 lb
400 lb

400 lb
400 lb

350 lb

300 lb
300 lb 300 lb

150 lb 4 ft

4.5 ft

9.6 ft 9.6 ft8.4 ft 8.4 ft

6 ft6 ft6 ft6 ft6 ft6 ft6 ft6 ft

Fig. P6.57 and P6.58

A
B

C

D

E

F

G

H

I

J7.5 ft

6 panels @ 6 ft = 36 ft

K

L

PP P P P

Fig. P6.59 and P6.60

5 kN

5 kN

5 kN

2 m 2 m

3 m

3 m

3 m

A

D

G

J

F

I

K

B

E

H

C

a a

b b

Fig. P6.63 and P6.64

 6.60 Determine the force in members EG and EF of the truss shown 
when P � 20 kips.

 6.61 Determine the force in members EH and GI of the truss shown. 
(Hint: Use section aa.)
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312 Analysis of Structures  6.65 and 6.66 The diagonal members in the center panels of the 
truss shown are very slender and can act only in tension; such 
members are known as counters. Determine the forces in the 
counters that are acting under the given loading.

 6.67 and 6.68 The diagonal members in the center panels of the 
power transmission line tower shown are very slender and can act 
only in tension; such members are known as counters. For the 
given loading, determine (a) which of the two counters listed below 
is acting, (b) the force in that counter.

 6.67 Counters CJ and HE.
 6.68 Counters IO and KN.

C

D

E

F

G

H

I

J

K

L

M

N O

P

Q R

A

B
1.60 m

1.2 kN

1.2 kN1.2 kN

1.2 kN

1.2 kN1.2 kN

0.60 m

0.60 m

0.60 m

0.60 m

0.60 m

20°

20°

20°

20°

20° 20°

0.60 m

S T

2.21 m

2.21 m

2.21 m

1.20 m

1.20 m2.97 m

Fig. P6.67 and P6.68

A
B C D E

F G H

4.8 kips4.8 kips4.8 kips 2.4 kips2.4 kips

11 ft 11 ft11 ft11 ft

9.6 ft

Fig. P6.65

A
B C D E

F G H

4.8 kips4.8 kips4.8 kips 2.4 kips2.4 kips

11 ft 11 ft11 ft11 ft

9.6 ft

Fig. P6.66

P

P

(a)

P

P

(b) (c)

P

P

P

P

Fig. P6.69

 6.69 Classify each of the structures shown as completely, partially, or 
improperly constrained; if completely constrained, further classify 
as determinate or indeterminate. (All members can act both in 
tension and in compression.)
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313Problems 6.70 through 6.74 Classify each of the structures shown as com-
pletely, partially, or improperly constrained; if completely con-
strained, further classify as determinate or indeterminate. (All 
members can act both in tension and in compression.)

P

(a) (b) (c)

PP

P

(a) (b) (c)

PP

PPP

(a) (b) (c)

PPP PPP

PPP

(a) (b) (c)

PPP PPP

PP

(a) (b) (c)

PP PP

Fig. P6.74

Fig. P6.70

Fig. P6.71

Fig. P6.72

Fig. P6.73
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314  Analysis of Structures
 FRAMES AND MACHINES

6.9 STRUCTURES CONTAINING MULTIFORCE MEMBERS
Under trusses, we have considered structures consisting entirely of 
pins and straight two-force members. The forces acting on the two-
force members were known to be directed along the members them-
selves. We now consider structures in which at least one of the 
members is a multiforce member, i.e., a member acted upon by three 
or more forces. These forces will generally not be directed along the 
members on which they act; their direction is unknown, and they 
should be represented therefore by two unknown components.
 Frames and machines are structures containing multiforce 
members. Frames are designed to support loads and are usually sta-
tionary, fully constrained structures. Machines are designed to trans-
mit and modify forces; they may or may not be stationary and will 
always contain moving parts.

6.10 ANALYSIS OF A FRAME
As a first example of analysis of a frame, the crane described in Sec. 6.1, 
which carries a given load W (Fig. 6.20a), will again be considered. 
The free-body diagram of the entire frame is shown in Fig. 6.20b. This 
diagram can be used to determine the external forces acting on the 
frame. Summing moments about A, we first determine the force T 
exerted by the cable; summing x and y components, we then deter-
mine the components Ax and Ay of the reaction at the pin A.
 In order to determine the internal forces holding the various 
parts of a frame together, we must dismember the frame and draw 
a free-body diagram for each of its component parts (Fig. 6.20c). 
First, the two-force members should be considered. In this frame, 
member BE is the only two-force member. The forces acting at each 
end of this member must have the same magnitude, same line of 
action, and opposite sense (Sec. 4.6). They are therefore directed 
along BE and will be denoted, respectively, by FBE and 2FBE. Their 
sense will be arbitrarily assumed as shown in Fig. 6.20c; later the 
sign obtained for the common magnitude FBE of the two forces will 
confirm or deny this assumption.

Fig. 6.20

A

B

C

D

E
F

W

G

(a)

F

W

T

B

C

D

E

(b)

Ay

Ax

A

(c)

A B

B

C

C

D E

E

F

W

FBE

FBE

–FBE– FBE

T

Ay

A x

Cy

C x

–Cy

–C x
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3156.11 Frames Which Cease to Be Rigid When 
Detached from Their Supports

 Next, we consider the multiforce members, i.e., the members 
which are acted upon by three or more forces. According to  Newton’s 
third law, the force exerted at B by member BE on member AD 
must be equal and opposite to the force FBE exerted by AD on BE. 
Similarly, the force exerted at E by member BE on member CF 
must be equal and opposite to the force 2FBE exerted by CF on BE. 
Thus the forces that the two-force member BE exerts on AD and 
CF are, respectively, equal to 2FBE and FBE; they have the same 
magnitude FBE and opposite sense, and should be directed as shown 
in Fig. 6.20c.
 At C two multiforce members are connected. Since neither 
the direction nor the magnitude of the forces acting at C is known, 
these forces will be represented by their x and y components. The 
components Cx and Cy of the force acting on member AD will be 
arbitrarily directed to the right and upward. Since, according to 
Newton’s third law, the forces exerted by member CF on AD and by 
member AD on CF are equal and opposite, the components of the 
force acting on member CF must be directed to the left and down-
ward; they will be denoted, respectively, by 2Cx and 2Cy. Whether 
the force Cx is actually directed to the right and the force 2Cx is 
actually directed to the left will be determined later from the sign 
of their common magnitude Cx, a plus sign indicating that the 
assumption made was correct, and a minus sign that it was wrong. 
The free-body diagrams of the multiforce members are completed 
by showing the external forces acting at A, D, and F.†
 The internal forces can now be determined by considering the 
free-body diagram of either of the two multiforce members. Choos-
ing the free-body diagram of CF, for example, we write the equations 
oMC 5 0, oME 5 0, and oFx 5 0, which yield the values of the 
magnitudes FBE, Cy, and Cx, respectively. These values can be checked 
by verifying that member AD is also in equilibrium.
 It should be noted that the pins in Fig. 6.20 were assumed to 
form an integral part of one of the two members they connected and 
so it was not necessary to show their free-body diagram. This assump-
tion can always be used to simplify the analysis of frames and 
machines. When a pin connects three or more members, however, 
or when a pin connects a support and two or more members, or 
when a load is applied to a pin, a clear decision must be made in 
choosing the member to which the pin will be assumed to belong. 
(If multiforce members are involved, the pin should be attached to 
one of these members.) The various forces exerted on the pin should 
then be clearly identified. This is illustrated in Sample Prob. 6.6.

†It is not strictly necessary to use a minus sign to distinguish the force exerted by one 
member on another from the equal and opposite force exerted by the second member 
on the first, since the two forces belong to different free-body diagrams and thus cannot 
easily be confused. In the Sample Problems, the same symbol is used to represent equal 
and opposite forces which are applied to different free bodies. It should be noted that, 
under these conditions, the sign obtained for a given force component will not directly 
relate the sense of that component to the sense of the corresponding coordinate axis. 
Rather, a positive sign will indicate that the sense assumed for that component in the 
free-body diagram is correct, and a negative sign will indicate that it is wrong.
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316  Analysis of Structures 6.11  FRAMES WHICH CEASE TO BE RIGID WHEN 
DETACHED FROM THEIR SUPPORTS

The crane analyzed in Sec. 6.10 was so constructed that it could keep 
the same shape without the help of its supports; it was therefore 
considered as a rigid body. Many frames, however, will collapse if 
detached from their supports; such frames cannot be considered as 
rigid bodies. Consider, for example, the frame shown in Fig. 6.21a, 
which consists of two members AC and CB carrying loads P and Q 
at their midpoints; the members are supported by pins at A and B 
and are connected by a pin at C. If detached from its supports, this 
frame will not maintain its shape; it should therefore be considered 
as made of two distinct rigid parts AC and CB.
 The equations oFx 5 0, oFy 5 0, oM 5 0 (about any given 
point) express the conditions for the equilibrium of a rigid body 
(Chap. 4); we should use them, therefore, in connection with the 
free-body diagrams of rigid bodies, namely, the free-body diagrams 
of members AC and CB (Fig. 6.21b). Since these members are multi-
force members, and since pins are used at the supports and at the 
connection, the reactions at A and B and the forces at C will each be 
represented by two components. In accordance with Newton’s third 
law, the components of the force exerted by CB on AC and the com-
ponents of the force exerted by AC on CB will be represented by 
vectors of the same magnitude and opposite sense; thus, if the first 
pair of components consists of Cx and Cy, the second pair will be 
represented by 2Cx and 2Cy. We note that four unknown force 
components act on free body AC, while only three independent equa-
tions can be used to express that the body is in equilibrium; similarly, 
four unknowns, but only three equations, are associated with CB. 
However, only six different unknowns are involved in the analysis of 
the two members, and altogether six equations are available to express 
that the members are in equilibrium. Writing oMA 5 0 for free body 
AC and oMB 5 0 for CB, we obtain two simultaneous equations 
which may be solved for the common magnitude Cx of the compo-
nents Cx and 2Cx, and for the common magnitude Cy of the com-
ponents Cy and 2Cy. We then write oFx 5 0 and oFy 5 0 for each 
of the two free bodies, obtaining, successively, the magnitudes Ax, Ay, 
Bx, and By.

A B

C

(a)

QP

A B

C C

(b)

Ay

A x

By

Bx

Cy

C x

–Cy

–C x

QP

A B

C

(c)
Ay

A x

By

Bx

QP

Fig. 6.21
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3176.11 Frames Which Cease to Be Rigid When 
Detached from Their Supports

 It can now be observed that since the equations of equilibrium 
oFx 5 0, oFy 5 0, and oM 5 0 (about any given point) are satisfied 
by the forces acting on free body AC, and since they are also satisfied 
by the forces acting on free body CB, they must be satisfied when the 
forces acting on the two free bodies are considered simultaneously. 
Since the internal forces at C cancel each other, we find that the equa-
tions of equilibrium must be satisfied by the external forces shown on 
the free-body diagram of the frame ACB itself (Fig. 6.21c), although 
the frame is not a rigid body. These equations can be used to deter-
mine some of the components of the reactions at A and B. We will 
also find, however, that the reactions cannot be completely determined 
from the free-body diagram of the whole frame. It is thus necessary to 
dismember the frame and to consider the free-body diagrams of 
its component parts (Fig. 6.21b), even when we are interested in 
determining external reactions only. This is because the equilibrium 
equations obtained for free body ACB are necessary conditions for 
the equilibrium of a nonrigid structure, but are not sufficient 
conditions.
 The method of solution outlined in the second paragraph of 
this section involved simultaneous equations. A more efficient method 
is now presented, which utilizes the free body ACB as well as the 
free bodies AC and CB. Writing oMA 5 0 and oMB 5 0 for free 
body ACB, we obtain By and Ay. Writing oMC 5 0, oFx 5 0, and 
oFy 5 0 for free body AC, we obtain, successively, Ax, Cx, and Cy. 
Finally, writing oFx 5 0 for ACB, we obtain Bx.
 We noted above that the analysis of the frame of Fig. 6.21 
involves six unknown force components and six independent equi-
librium equations. (The equilibrium equations for the whole frame 
were obtained from the original six equations and, therefore, are 
not independent.) Moreover, we checked that all unknowns could 
be actually determined and that all equations could be satisfied. 
The frame considered is statically determinate and rigid.† In gen-
eral, to determine whether a structure is statically determinate and 
rigid, we should draw a free-body diagram for each of its compo-
nent parts and count the reactions and internal forces involved. We 
should also determine the number of independent equilibrium 
equations (excluding equations expressing the equilibrium of the 
whole structure or of groups of component parts already analyzed). 
If there are more unknowns than equations, the structure is stati-
cally indeterminate. If there are fewer unknowns than equations, 
the structure is nonrigid. If there are as many unknowns as equa-
tions, and if all unknowns can be determined and all equations 
satisfied under general loading conditions, the structure is statically 
determinate and rigid. If, however, due to an improper arrange-
ment of members and supports, all unknowns cannot be deter-
mined and all equations cannot be satisfied, the structure is 
statically indeterminate and nonrigid.

†The word “rigid” is used here to indicate that the frame will maintain its shape as long 
as it remains attached to its supports.
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318

SAMPLE PROBLEM 6.4

In the frame shown, members ACE and BCD are connected by a pin at C 
and by the link DE. For the loading shown, determine the force in link DE 
and the components of the force exerted at C on member BCD.

SOLUTION

Free Body: Entire Frame. Since the external reactions involve only three 
unknowns, we compute the reactions by considering the free-body diagram 
of the entire frame.

 1xoFy 5 0: Ay 2 480 N 5 0  Ay 5 1480 N Ay 5 480 Nx

 1loMA 5 0:  2(480 N)(100 mm) 1 B(160 mm) 5 0
  B 5 1300 N B 5 300 Ny

y
1 oFx 5 0: B 1 Ax 5 0
 300 N 1 Ax 5 0 Ax 5 2300 N Ax 5 300 Nz

Members. We now dismember the frame. Since only two members are 
connected at C, the components of the unknown forces acting on ACE and 
BCD are, respectively, equal and opposite and are assumed directed as 
shown. We assume that link DE is in tension and exerts equal and opposite 
forces at D and E, directed as shown.

Free Body: Member BCD. Using the free body BCD, we write

 1ioMC 5 0:
(FDE sin a)(250 mm) 1 (300 N)(80 mm) 1 (480 N)(100 mm) 5 0

 FDE 5 2561 N FDE 5 561 N C ◀

y
1 oFx 5 0: Cx 2 FDE cos a 1 300 N 5 0
 Cx 2 (2561 N) cos 28.07° 1 300 N 5 0 Cx 5 2795 N
 1xoFy 5 0: Cy 2 FDE sin a 2 480 N 5 0
 Cy 2 (2561 N) sin 28.07° 2 480 N 5 0 Cy 5 1216 N

From the signs obtained for Cx and Cy we conclude that the force compo-
nents Cx and Cy exerted on member BCD are directed, respectively, to the 
left and up. We have

Cx 5 795 Nz, Cy 5 216 Nx ◀

Free Body: Member ACE (Check). The computations are checked by 
considering the free body ACE. For example,

 1loMA 5 (FDE cos a)(300 mm) 1 (FDE sin a)(100 mm) 2 Cx(220 mm)
 5 (2561 cos a)(300) 1 (2561 sin a)(100) 2 (2795)(220) 5 0

A

B

C D

E

160 mm

80 mm

480 N

100 mm
150 mm

Ay

B

A x

a

a = tan–1 = 28.07°80
150

C

A

E

D

E

80 mm

480 N

100 mm

aCy

Cx
FDE

FDE

FDE

300 N

220 mm

B

C

D

60 mm

60 mm
480 N

100 mm
150 mm

a

Cy

Cx

FDE

300 N

A

B

C D

E

60 mm

60 mm

80 mm

480 N

100 mm
150 mm

160 mm
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319

SAMPLE PROBLEM 6.5

Determine the components of the forces acting on each member of the 
frame shown.

2400 N

A

C
D

E F

3.6 m

4.8 m

Ey F
Ex

B

SOLUTION

Free Body: Entire Frame. Since the external reactions involve only three 
unknowns, we compute the reactions by considering the free-body diagram 
of the entire frame.

 1loME 5 0:  2(2400 N)(3.6 m) 1 F(4.8 m) 5 0
 F 5 11800 N F 5 1800 Nx ◀

 1xoFy 5 0: 22400 N 1 1800 N 1 Ey 5 0
 Ey 5 1600 N Ey 5 600 Nx ◀

y
1 oFx 5 0:   Ex 5 0 ◀

Members. The frame is now dismembered; since only two members are 
connected at each joint, equal and opposite components are shown on each 
member at each joint.

Free Body: Member BCD

 1loMB 5 0: 2(2400 N)(3.6 m) 1 Cy(2.4 m) 5 0 Cy 5 13600 N ◀

 1loMC 5 0: 2(2400 N)(1.2 m) 1 By(2.4 m) 5 0 By 5 11200 N ◀

y
1 oFx 5 0: 2Bx 1 Cx 5 0

We note that neither Bx nor Cx can be obtained by considering only member 
BCD. The positive values obtained for By and Cy indicate that the force 
components By and Cy are directed as assumed.

Free Body: Member ABE

 1loMA 5 0: Bx(2.7 m) 5 0 Bx 5 0 ◀

y
1 oFx 5 0: 1Bx 2 Ax 5 0 Ax 5 0 ◀

 1xoFy 5 0: 2Ay 1 By 1 600 N 5 0
 2Ay 1 1200 N 1 600 N 5 0 Ay 5 11800 N ◀

Free Body: Member BCD. Returning now to member BCD, we write

y
1 oFx 5 0: 2Bx 1 Cx 5 0  0 1 Cx 5 0 Cx 5 0 ◀

Free Body: Member ACF (Check). All unknown components have now 
been found; to check the results, we verify that member ACF is in 
equilibrium.

 1loMC 5 (1800 N)(2.4 m) 2 Ay(2.4 m) 2 Ax(2.7 m)
 5 (1800 N)(2.4 m) 2 (1800 N)(2.4 m) 2 0 5 0  (checks)600 N 1800 N

2.7 m

2.7 m

By Cy

Bx

By

Ay

Ay

Ax

Ax

Bx

Cx

Cy

Cx

A
A

B

B

C

E F

2400 N

C
D

2.4 m

2.4 m

1.2 m

2400 N

A

B

C
D

E F

2.7 m

3.6 m

4.8 m

2.7 m
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320

SAMPLE PROBLEM 6.6

A 600-lb horizontal force is applied to pin A of the frame shown. Determine 
the forces acting on the two vertical members of the frame.

600 lb A

B

C

D

E F

Ey

Ex

Fy

Fx

6 ft

10 ft

SOLUTION

Free Body: Entire Frame. The entire frame is chosen as a free body; 
although the reactions involve four unknowns, Ey and Fy may be deter-
mined by writing

 1loME 5 0:  2(600 lb)(10 ft) 1 Fy(6 ft) 5 0
 Fy 5 11000 lb Fy 5 1000 lbx ◀

 1xoFy 5 0:  Ey 1 Fy 5 0
 Ey 5 21000 lb Ey 5 1000 lbw ◀

Members. The equations of equilibrium of the entire frame are not suf-
ficient to determine Ex and Fx. The free-body diagrams of the various mem-
bers must now be considered in order to proceed with the solution. In 
dismembering the frame we will assume that pin A is attached to the mul-
tiforce member ACE and, thus, that the 600-lb force is applied to that 
member. We also note that AB and CD are two-force members.

Free Body: Member ACE

 1xoFy 5 0:  2 5
13FAB 1 5

13FCD 2 1000 lb 5 0
 1loME 5 0:  2(600 lb)(10 ft) 2 (12

13FAB)(10 ft) 2 (12
13FCD)(2.5 ft) 5 0

Solving these equations simultaneously, we find

FAB 5 21040 lb  FCD 5 11560 lb ◀

The signs obtained indicate that the sense assumed for FCD was correct and 
the sense for FAB incorrect. Summing now x components,

y
1 oFx 5 0:  600 lb 1 12

13(21040 lb) 1 12
13(11560 lb) 1 Ex 5 0

 Ex 5 21080 lb Ex 5 1080 lbz ◀

Free Body: Entire Frame. Since Ex has been determined, we can return 
to the free-body diagram of the entire frame and write

y
1 oFx 5 0:  600 lb 2 1080 lb 1 Fx 5 0
 Fx 5 1480 lb Fx 5 480 lby ◀

Free Body: Member BDF (Check). We can check our computations by 
verifying that the equation oMB 5 0 is satisfied by the forces acting on 
member BDF.

 1loMB 5 2(12
13FCD)(2.5 ft) 1 (Fx)(7.5 ft)

 5 212
13(1560 lb)(2.5 ft) 1 (480 lb)(7.5 ft)

 5 23600 lb ? ft 1 3600 lb ? ft 5 0  (checks)

A

B

C

D

FAB

FAB

FCD

FCD

600 lb A

B

C

D

E F

FAB

FAB

FCD

FCD

Ey = 1000 lb Fy = 1000 lb
Ex Fx

12

12

13

13

5

5

2.5 ft

5 ft

7.5 ft

2.5 ft

600 lb A

B

C

D

E F

2.5 ft

2.5 ft

2.5 ft

2.5 ft

6 ft
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321

In this lesson you learned to analyze frames containing one or more multiforce 
members. In the problems that follow you will be asked to determine the exter-

nal reactions exerted on the frame and the internal forces that hold together the 
members of the frame.

In solving problems involving frames containing one or more multiforce members, 
follow these steps:

1. Draw a free-body diagram of the entire frame. Use this free-body diagram 
to calculate, to the extent possible, the reactions at the supports. (In Sample 
Prob. 6.6 only two of the four reaction components could be found from the free 
body of the entire frame.)

2. Dismember the frame, and draw a free-body diagram of each member.

3. Considering first the two-force members, apply equal and opposite forces to 
each two-force member at the points where it is connected to another member. 
If the two-force member is a straight member, these forces will be directed along 
the axis of the member. If you cannot tell at this point whether the member is in 
tension or compression, just assume that the member is in tension and direct both 
of the forces away from the member. Since these forces have the same unknown 
magnitude, give them both the same name and, to avoid any confusion later, do 
not use a plus sign or a minus sign.

4. Next, consider the multiforce members. For each of these members, show 
all the forces acting on the member, including applied loads, reactions, and inter-
nal forces at connections. The magnitude and direction of any reaction or reaction 
component found earlier from the free-body diagram of the entire frame should 
be clearly indicated.
 a. Where a multiforce member is connected to a two-force member, apply 
to the multiforce member a force equal and opposite to the force drawn on the 
free-body diagram of the two-force member, giving it the same name.
 b. Where a multiforce member is connected to another multiforce member, 
use horizontal and vertical components to represent the internal forces at that 
point, since neither the direction nor the magnitude of these forces is known. The 
direction you choose for each of the two force components exerted on the first 
multiforce member is arbitary, but you must apply equal and opposite force com-
ponents of the same name to the other multiforce member. Again, do not use a 
plus sign or a minus sign.

(continued)

SOLVING PROBLEMS
ON YOUR OWN
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5. The internal forces may now be determined, as well as any reactions that 
you have not already found.
 a. The free-body diagram of each of the multiforce members can provide 
you with three equilibrium equations.
 b. To simplify your solution, you should seek a way to write an equation 
involving a single unknown. If you can locate a point where all but one of 
the unknown force components intersect, you will obtain an equation in a single 
unknown by summing moments about that point. If all unknown forces except one 
are  parallel, you will obtain an equation in a single unknown by summing force 
components in a direction perpendicular to the parallel forces.
 c. Since you arbitrarily chose the direction of each of the unknown forces, 
you cannot determine until the solution is completed whether your guess was cor-
rect. To do that, consider the sign of the value found for each of the unknowns: 
a positive sign means that the direction you selected was correct; a negative sign 
means that the direction is opposite to the direction you assumed.

6. To be more effective and efficient as you proceed through your solution, 
observe the following rules:
 a. If an equation involving only one unknown can be found, write that 
equation and solve it for that unknown. Immediately replace that unknown wher-
ever it appears on other free-body diagrams by the value you have found. Repeat 
this process by seeking equilibrium equations involving only one unknown until 
you have found all of the internal forces and unknown reactions.
 b. If an equation involving only one unknown cannot be found, you may 
have to solve a pair of simultaneous equations. Before doing so, check that you 
have shown the values of all of the reactions that were obtained from the free-body 
diagram of the entire frame.
 c. The total number of equations of equilibrium for the entire frame and for 
the individual members will be larger than the number of unknown forces and 
reactions. After you have found all the reactions and all the internal forces, you 
can use the remaining equations to check the accuracy of your computations.
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PROBLEMS

323

FREE BODY PRACTICE PROBLEMS

6.F1 For the frame and loading shown, draw the free-body diagram(s) 
needed to determine the forces acting on member ABC at B
and C.

A

B
C

D
200 N

120 mm

90 mm

120 mm 120 mm

Fig. P6.F1

6.F2 For the frame and loading shown, draw the free-body diagram(s) 
needed to determine all forces acting on member GBEH.

6.F3 For the frame and loading shown, draw the free-body diagram(s) 
needed to determine the reactions at B and F.

D E

B
C

F

H

G

A

900 N

200

150

300

150

Dimensions in mm

200

Fig. P6.F2

A

D

B

C

E F

5 in.

7 in.

48 lb

8 in. 8 in.

Fig. P6.F3

A B

C
D

E

6 in.6 in.
50 lb

4 in.

2 in.

6 in.

12 in.

Fig. P6.F4

6.F4 Knowing that the surfaces at A and D are frictionless, draw the 
free-body diagram(s) needed to determine the forces exerted at B
and C on member BCE.
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324 Analysis of Structures END-OF-SECTION PROBLEMS

 6.75 and 6.76 Determine the force in member BD and the compo-
nent of the reaction at C.

D

C

E

B

JA

480 N

80 mm
40 mm

40 mm
40 mm80 mm 80 mm

Fig. P6.77

6 ft

4 ft 4 ft 4 ft 4 ft

A

B

J
D

E

C

300 lb 450 lb

Fig. P6.78

 6.77 Determine the components of all forces acting on member ABCD 
of the assembly shown.

A

B

C DJ

E

F

200 mm

300 mm
100 mm100 mm

150 mm

50 mm

q150 N

Fig. P6.81 and P6.82

A

B

CDE

4 ft

20 kips

5 ft 5 ft

Fig. P6.79

 6.78 Determine the components of all forces acting on member ABD 
of the frame shown.

 6.79 For the frame and loading shown, determine the components of 
all forces acting on member ABC.

 6.80 Solve Prob. 6.79 assuming that the 20-kip load is replaced by a 
clockwise couple of magnitude 100 kip ? ft applied to member 
EDC at point D.

 6.81 Determine the components of all forces acting on member ABCD 
when u 5 0.

160 lb

24 in.

14 in. 8 in.

10 in.

8 in.

A B C

D

J

Fig. P6.75

A

B

C
D

510 mm

240 mm
135 mm

120 mm

400 N

450 mm

Fig. P6.76

 6.82 Determine the components of all forces acting on member ABCD 
when u 5 90�.
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325Problems 6.83 and 6.84 Determine the components of the reactions at A 
and  E if a 750-N force directed vertically downward is applied 
(a) at B, (b) at D.

 6.85 and 6.86 Determine the components of the reactions at A 
and E if the frame is loaded by a clockwise couple of magnitude 
36 N ? m applied (a) at B, (b) at D.

 6.87 Determine all the forces exerted on member AI if the frame is 
loaded by a clockwise couple of magnitude 1200 lb � in. applied 
(a) at point D, (b) at point E.

A B

C

D

F

E

100 lb
4 in.

5 in.

5 in.

10 in.

Fig. P6.89

C

D E

F

H I

G

B

A

20 in.

10 in.

20 in.

10 in.

10 in.

20 in.

10 in.

48 in.

Fig. P6.87 and P6.88

 6.88 Determine all the forces exerted on member AI if the frame is 
loaded by a 40-lb force directed horizontally to the right and 
applied (a) at point D, (b) at point E.

 6.89 Determine the components of the reactions at A and B, (a) if the 
100-lb load is applied as shown, (b) if the 100-lb load is moved 
along its line of action and is applied at point F.

 6.90 (a) Show that when a frame supports a pulley at A, an equivalent 
loading of the frame and of each of its component parts can be 
obtained by removing the pulley and applying at A two forces 
equal and parallel to the forces that the cable exerted on the pul-
ley. (b) Show that if one end of the cable is attached to the frame 
at a point B, a force of magnitude equal to the tension in the cable 
should also be applied at B.

 6.91 A 3-ft-diameter pipe is supported every 16 ft by a small frame like 
that shown. Knowing that the combined weight of the pipe and its 
contents is 500 lb/ft and assuming frictionless surfaces, determine 
the components (a) of the reaction at E, (b) of the force exerted at 
C on member CDE.

 6.92 Solve Prob. 6.91 for a frame where h � 6 ft.

T T
T T

T
T

T

TA A AB AB

= =

(a) (b)
Fig. P6.90

8 ft

6 ft

h 5 9 ft

r 5 1.5 ft

A

B

C

D

E

Fig. P6.91

A B

CD

E

80 mm
170 mm

75 mm

125 mm

Fig. P6.83 and P6.85

A B

C

D

E

240 mm240 mm

240 mm

160 mm

Fig. P6.84 and P6.86
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326 Analysis of Structures  6.93 Knowing that the pulley has a radius of 0.5 m, determine the 
components of the reactions at A and E.

 6.94 Knowing that the pulley has a radius of 50 mm, determine the 
components of the reactions at B and E.

 6.95 A trailer weighing 2400 lb is attached to a 2900-lb pickup truck 
by a ball-and-socket truck hitch at D. Determine (a) the reac-
tions at each of the six wheels when the truck and trailer are at 
rest, (b) the additional load on each of the truck wheels due to 
the trailer.

A
B

C
D

E

300 N

180 mm 120 mm

150 mm

Fig. P6.94

1 m

1 m
3 m 3 m

2 m

700 N

C

B D

A E

Fig. P6.93

A B C

D

2400 lb

2900 lb

2 ft
9 ft 3 ft 5 ft 4 ft

Fig. P6.95

 6.96 In order to obtain a better weight distribution over the four wheels 
of the pickup truck of Prob. 6.95, a compensating hitch of the 
type shown is used to attach the trailer to the truck. The hitch 
consists of two bar springs (only one is shown in the figure) that 
fit into bearings inside a support rigidly attached to the truck. The 
springs are also connected by chains to the trailer frame, and 
specially designed hooks make it possible to place both chains in 
tension. (a) Determine the tension T required in each of the two 
chains if the additional load due to the trailer is to be evenly 
distributed over the four wheels of the truck. (b) What are the 
resulting reactions at each of the six wheels of the trailer-truck 
combination?

DE

F

Bar spring

Chain under
tension T

1.7 ft

Fig. P6.96

bee02286_ch06_282-351.indd Page 326  28/09/11  8:00 AM user-f501bee02286_ch06_282-351.indd Page 326  28/09/11  8:00 AM user-f501 /204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles/204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


327Problems 6.97 The cab and motor units of the front-end loader shown are con-
nected by a vertical pin located 2 m behind the cab wheels. The 
distance from C to D is 1 m. The center of gravity of the 300-kN 
motor unit is located at Gm, while the centers of gravity of the 
100-kN cab and 75-kN load are located, respectively, at Gc and 
Gl. Knowing that the machine is at rest with its brakes released, 
determine (a) the reactions at each of the four wheels, (b) the 
forces exerted on the motor unit at C and D.

A

C

D

B

Gc
Gm

3.2 m

0.8 m

1.2 m

2.8 m2 m

75 kN

100 kN
300 kN

Gl

Fig. P6.97

 6.98 Solve Prob. 6.97 assuming that the 75-kN load has been removed.

 6.99 and 6.100 For the frame and loading shown, determine the 
components of all forces acting on member ABE.

 6.101 For the frame and loading shown, determine the components of 
all forces acting on member ABD.

D E

B

C

F

A

2 in. 4 in.
6 in.

25 lb

30°

30°

8 in.

4 in.

Fig. P6.103

6 in.
9 in. 9 in. 9 in.

12 in.

12 in.

360 lb 240 lb

A

B D

E

C

Fig. P6.101

A

B C D

E F

0.3 m

12 kN

0.9 m 0.9 m

1.2 m

0.6 m

Fig. P6.99

2.7 m

2.7 m

3.6 m

2400 N

1.5 m

4.8 m

A

B C D

J

E F

Fig. P6.100

 6.102 Solve Prob. 6.101 assuming that the 360-lb load has been removed.

 6.103 For the frame and loading shown, determine the components of 
the forces acting on member CDE at C and D.
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328 Analysis of Structures

40 lb

A

B
C

D

E F

6 in.

4 in.

5 in. 4 in. 4 in.

Fig. P6.104

 6.110 The axis of the three-hinge arch ABC is a parabola with vertex 
at B. Knowing that P � 140 kN and Q � 112 kN, determine (a) the 
components of the reaction at A, (b) the components of the force 
exerted at B on segment AB.

 6.104 For the frame and loading shown, determine the components of 
the forces acting on member CFE at C and F.

 6.105 For the frame and loading shown, determine the components of 
all forces acting on member ABD.

 6.106 Solve Prob. 6.105 assuming that the 3-kN load has been removed.

 6.107 Determine the reaction at F and the force in members AE 
and BD.

 6.108 For the frame and loading shown, determine the reactions at 
A,  B, D, and E. Assume that the surface at each support is 
frictionless.

 6.109 The axis of the three-hinge arch ABC is a parabola with vertex 
at B. Knowing that P � 112 kN and Q � 140 kN, determine (a) the 
components of the reaction at A, (b) the components of the force 
exerted at B on segment AB.

Dimensions in mm

2 kN3 kN

200

200

400

300

200 200

400

A B

D
EC

F

Fig. P6.105

C

B E

D
A

F

450 lb

12 in.

12 in.

9 in.

Fig. P6.107

8 in. 8 in.

6 in.

6 in.

30°

1000 lb

A B

C

D E

Fig. P6.108

A

B
C

P Q

1.8 m

1.4 m

3 m 3 m

8 m 6 m

Fig. P6.109 and P6.110
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329Problems 6.111, 6.112, and 6.113 Members ABC and CDE are pin-connected 
at C and supported by four links. For the loading shown, deter-
mine the force in each link.

 6.114 Members ABC and CDE are pin-connected at C and supported 
by the four links AF, BG, DG, and EH. For the loading shown, 
determine the force in each link.

 6.115 Solve Prob. 6.112 assuming that the force P is replaced by a clock-
wise couple of moment M0 applied to member CDE at D.

 6.116 Solve Prob. 6.114 assuming that the force P is replaced by a clock-
wise couple of moment M0 applied at the same point.

 6.117 Four beams, each of length 3a, are held together by single nails at 
A, B, C, and D. Each beam is attached to a support located at a 
distance a from an end of the beam as shown. Assuming that only 
vertical forces are exerted at the connections, determine the verti-
cal reactions at E, F, G, and H.

I

A B C D E

F
G H

P

a

aaaa

Fig. P6.113

A B C D E

F
G

H

P

a

aaaa

Fig. P6.111

A B C D E

F
G

H

P

aaaa

a

Fig. P6.112

P

2a

2a

a

a

a

a

A
B

G

C

D

EH

F

Fig. P6.114B

CD

E

F
G

H

a

a

2a

2a

A

P

Fig. P6.117

 6.118 Four beams, each of length 2a, are nailed together at their mid-
points to form the support system shown. Assuming that only verti-
cal forces are exerted at the connections, determine the vertical 
reactions at A, D, E, and H.

A

B C D

E F G

H

P

Fig. P6.118
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 6.119 through 6.121 Each of the frames shown consists of two 
L-shaped members connected by two rigid links. For each frame, 
determine the reactions at the supports and indicate whether the 
frame is rigid.

(a)

B

P

2a 2aa

A

a

1
4
a

(c)

B

P

2a 2aa

A

a

1
4
a

(b)

P

2a 2aa

A

B
a

1
4
a

Fig. P6.121

BA

P

(a)

2a 2aa

a

(c)

BA

P

2a 2aa

a

A C

B

P

(b)

2a 2aa

a

Fig. P6.120

(a)

A

B

P

2a 2aa

a A

C

B

P

2a 2aa

a

(c)

A

B

P

2a 2aa

a

(b)

Fig. P6.119

6.12 MACHINES
Machines are structures designed to transmit and modify forces. 
Whether they are simple tools or include complicated mechanisms, 
their main purpose is to transform input forces into output forces. 
Consider, for example, a pair of cutting pliers used to cut a wire 
(Fig. 6.22a). If we apply two equal and opposite forces P and 2P 
on their handles, they will exert two equal and opposite forces Q and 
2Q on the wire (Fig. 6.22b).

330 Analysis of Structures
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3316.12 Machines

 To determine the magnitude Q of the output forces when the 
magnitude P of the input forces is known (or, conversely, to deter-
mine P when Q is known), we draw a free-body diagram of the pliers 
alone, showing the input forces P and 2P and the reactions 2Q and 
Q that the wire exerts on the pliers (Fig. 6.23). However, since a 
pair of pliers forms a nonrigid structure, we must use one of the 
component parts as a free body in order to determine the unknown 
forces. Considering Fig. 6.24a, for example, and taking moments 
about A, we obtain the relation Pa 5 Qb, which defines the magni-
tude Q in terms of P or P in terms of Q. The same free-body diagram 
can be used to determine the components of the internal force at A; 
we find Ax 5 0 and Ay 5 P 1 Q.
 In the case of more complicated machines, it generally will be 
necessary to use several free-body diagrams and, possibly, to solve 
simultaneous equations involving various internal forces. The free 
 bodies should be chosen to include the input forces and the reactions 
to the output forces, and the total number of unknown force compo-
nents involved should not exceed the number of available independent 
equations. It is advisable, before attempting to solve a problem, to 
determine whether the structure considered is determinate. There is 
no point, however, in discussing the rigidity of a machine, since a 
machine includes moving parts and thus must be nonrigid.

A

(a) (b)

P

–P

Q

–Qba

Fig. 6.22

Fig. 6.24

–A x

A

A

(a)

(b)

Ay

–Ay

A x

P
Q

–P
–Q

a b

Q

–Q

A

P

–P

Fig. 6.23

Photo 6.5 The lamp shown can be placed 
in many positions. By considering various free 
bodies, the force in the springs and the internal 
forces at the joints can be determined.
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332

SAMPLE PROBLEM 6.7

A hydraulic-lift table is used to raise a 1000-kg crate. It con-
sists of a platform and two identical linkages on which hydrau-
lic  cylinders exert equal forces. (Only one linkage and one 
cylinder are shown.) Members EDB and CG are each of length 
2a, and member AD is pinned to the midpoint of EDB. If the 
crate is placed on the table, so that half of its weight is sup-
ported by the system shown, determine the force exerted by 
each cylinder in raising the crate for u 5 60°, a 5 0.70 m, and 
L 5 3.20 m. Show that the result obtained is independent of 
the distance d.

SOLUTION

The machine considered consists of the platform and of the link-
age. Its free-body diagram includes an input force FDH exerted 
by the cylinder, the weight 1

2W, equal and opposite to the output 
force, and reactions at E and G that we assume to be directed 
as shown. Since more than three unknowns are involved, this 
diagram will not be used. The mechanism is dismembered and 
a free-body diagram is drawn for each of its component parts. 
We note that AD, BC, and CG are two-force members. We 
already assumed member CG to be in  compression; we now 
assume that AD and BC are in tension and direct as shown the 
forces exerted on them. Equal and opposite vectors will be used 
to represent the forces exerted by the two-force members on the 
platform, on member BDE, and on roller C.

A B C

D

E G
H

2a

W1
2

q

L
2

L
2

d

FDH

FCGEy

Ex
E G

A B C

D

W1
2

FAD

A B

B

C

C

W1
2

q

d

A

D

FAD

FAD

FAD

FDH

FBC

Ey

Ex

a

a

f

B

B

D

E

q

B CFBC FBC

FCG

FCG

G

C

FCG

FBC
C

C

q
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333

Free Body: Platform ABC.

y
1 oFx 5 0: FAD cos u 5 0 FAD 5 0
 1xoFy 5 0: B 1 C 2 

1
2W 5 0 B 1 C 5 1

2W (1)

Free Body: Roller C. We draw a force triangle and obtain FBC 5 C cot u.

FAD

A B

B

C

C

W1
2

q

d

FAD

FDH

FBC

Ey

Ex

a

a

f

B

B

D

E

q

Free Body: Member BDE. Recalling that FAD 5 0,

 1loME 5 0: FDH cos (f 2 90°)a 2 B(2a cos u) 2 FBC(2a sin u) 5 0
 FDHa sin f 2 B(2a cos u) 2 (C cot u)(2a sin u) 5 0
 FDH sin f 2 2(B 1 C) cos u 5 0

Recalling Eq. (1), we have

 FDH 5 W 

 cos u

 sin f
 (2)

and we observe that the result obtained is independent of d. ◀

 Applying first the law of sines to triangle EDH, we write

 
 sin f

EH
5

 sin u

DH
   sin f 5

EH

DH
 sin u (3)

Using now the law of cosines, we have

 (DH)2 5 a2 1 L2 2 2aL cos u
 5 (0.70)2 1 (3.20)2 2 2(0.70)(3.20) cos 60°
 (DH)2 5 8.49  DH 5 2.91 m

We also note that

W 5 mg 5 (1000 kg)(9.81 m/s2) 5 9810 N 5 9.81 kN

Substituting for sin f from (3) into (2) and using the numerical data, we 
write

FDH 5 W 

DH

EH
 cot u 5 (9.81 kN) 

2.91 m

3.20 m
 cot 60°

FDH 5 5.15 kN ◀

a
f

D

H
E

q

L

FCG

FBC

C

q
FCG

FBC
C

C

q
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334

This lesson was devoted to the analysis of machines. Since machines are designed 
to transmit or modify forces, they always contain moving parts. However, the 

machines considered here will always be at rest, and you will be working with the 
set of forces required to maintain the equilibrium of the machine.

Known forces that act on a machine are called input forces. A machine transforms 
the input forces into output forces, such as the cutting forces applied by the pliers 
of Fig. 6.22. You will determine the output forces by finding the forces equal and 
opposite to the output forces that should be applied to the machine to maintain 
its equilibrium.

In the preceding lesson you analyzed frames; you will now use almost the same 
procedure to analyze machines:

1. Draw a free-body diagram of the whole machine, and use it to determine 
as many as possible of the unknown forces exerted on the machine.

2. Dismember the machine, and draw a free-body diagram of each member.

3. Considering first the two-force members, apply equal and opposite forces to 
each two-force member at the points where it is connected to another member. 
If you cannot tell at this point whether the member is in tension or in compression 
just assume that the member is in tension and direct both of the forces away from 
the member. Since these forces have the same unknown magnitude, give them both 
the same name.

4. Next consider the multiforce members. For each of these members, show all 
the forces acting on the member, including applied loads and forces, reactions, 
and internal forces at connections.
 a. Where a multiforce member is connected to a two-force member, apply 
to the multiforce member a force equal and opposite to the force drawn on the 
free-body diagram of the two-force member, giving it the same name.
 b. Where a multiforce member is connected to another multiforce member, 
use horizontal and vertical components to represent the internal forces at that 
point. The directions you choose for each of the two force components exerted on 
the first multiforce member are arbitrary, but you must apply equal and opposite 
force components of the same name to the other multiforce member.

5. Equilibrium equations can be written after you have completed the various 
free-body diagrams.
 a. To simplify your solution, you should, whenever possible, write and solve 
equilibrium equations involving single unknowns.
 b. Since you arbitrarily chose the direction of each of the unknown forces, you 
must determine at the end of the solution whether your guess was correct. To that 
effect, consider the sign of the value found for each of the unknowns. A positive sign 
indicates that your guess was correct, and a negative sign indicates that it was not.

6. Finally, you should check your solution by substituting the results obtained 
into an equilibrium equation that you have not previously used.

SOLVING PROBLEMS
ON YOUR OWN
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PROBLEMS

335

FREE BODY PRACTICE PROBLEMS

 6.F5 The position of member ABC is controlled by the hydraulic cyl-
inder CD. Knowing that u 5 308, draw the free-body diagram(s) 
needed to determine the force exerted by the hydraulic cylinder 
on pin C, and the reaction at B.

C

B

A

D
q10 kN

1.5 m

0.5 m 0.8 m

90°

Fig. P6.F5

 6.F6 Arm ABC is connected by pins to a collar at B and to crank 
CD at C. Neglecting the effect of friction, draw the free-body 
diagram(s) needed to determine the couple M to hold the system 
in equilibrium when u 5 308.

 6.F7 Since the brace shown must remain in position even when the 
magnitude of P is very small, a single safety spring is attached 
at D  and E. The spring DE has a constant of 50 lb/in. and an 
unstretched length of 7 in. Knowing that l 5 10 in. and that the 
magnitude of P is 800 lb, draw the free-body diagram(s) needed 
to determine the force Q required to release the brace.

A

B

C

D

θ

M

160 mm 90 mm
240 N

180 mm

320 mm

300 mm

125 mm

Fig. P6.F6

l

A

D

B

E

C

Q

P

15 in.

20 in.

2 in. 1 in.

Fig. P6.F7

 6.F8 A log weighing 800 lb is lifted by a pair of tongs as shown. Draw 
the free-body diagram(s) needed to determine the forces exerted 
at E and F on tong DEF.

A B

C D

E

F G

3 in.3 in.

1.5 in.

800 lb

1.5 in.

12 in.

2.5 in.

3.5 in.

12 in.

Fig. P6.F8
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336 Analysis of Structures END-OF-SECTION PROBLEMS

 6.122 The shear shown is used to cut and trim electronic-circuit-board 
laminates. For the position shown, determine (a) the vertical com-
ponent of the force exerted on the shearing blade at D, (b) the 
reaction at C.

 6.123 The press shown is used to emboss a small seal at E. Knowing that 
P � 250 N, determine (a) the vertical component of the force 
exerted on the seal, (b) the reaction at A.

A

B

C

D
E

20°

60°

15° P

400 mm

200 mm

Fig. P6.123 and P6.124

A

B

C
D

q

84 lb

7 in.

24 in.

24 in.

9 in.

40 in.

Fig. P6.126

400 N

300 mm

60 mm
45 mm

30°

30°

A

C

E

B

25 mm 30 mm

D

Fig. P6.122

 6.124 The press shown is used to emboss a small seal at E. Knowing that 
the vertical component of the force exerted on the seal must be 
900 N, determine (a) the required vertical force P, (b) the corre-
sponding reaction at A.

 6.125 Water pressure in the supply system exerts a downward force of 
135 N on the vertical plug at A. Determine the tension in the fus-
ible link DE and the force exerted on member BCE at B.

 6.126 An 84-lb force is applied to the toggle vise at C. Knowing that 
u 5 90�, determine (a) the vertical force exerted on the block at 
D, (b) the force exerted on member ABC at B.

 6.127 Solve Prob. 6.126 when u 5 0.

24 mm

A
D

B

E
C

24 mm
6 mm

16 mm

Fig. P6.125
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337Problems 6.128 For the system and loading shown, determine (a) the force P 
required for equilibrium, (b) the corresponding force in member 
BD, (c) the corresponding reaction at C.

 6.129 The Whitworth mechanism shown is used to produce a quick-
return motion of point D. The block at B is pinned to the crank 
AB and is free to slide in a slot cut in member CD. Determine the 
couple M that must be applied to the crank AB to hold the mecha-
nism in equilibrium when (a) a 5 0, (b) a 5 30�.

A

B

C

D

θ

M

25 lb

10 in.

6 in.

8 in.

Fig. P6.133 and P6.134

700 mm

100 mm

400 mm

1200 ND

B
A

C

M

a

Fig. P6.129

M
A

B

P

(a) (b)

C

50 mm

75 mm
175 mm

A

B

M

P

C

75 mm 100 mm

50 mm

Fig. P6.131 and P6.132

 6.130 Solve Prob. 6.129 when (a) a 5 60�, (b) a 5 90�.

 6.131 A couple M of magnitude 1.5 kN � m is applied to the crank of the 
engine system shown. For each of the two positions shown, deter-
mine the force P required to hold the system in equilibrium.

 6.132 A force P of magnitude 16 kN is applied to the piston of the engine 
system shown. For each of the two positions shown, determine the 
couple M required to hold the system in equilibrium.

 6.133 The pin at B is attached to member ABC and can slide freely along 
the slot cut in the fixed plate. Neglecting the effect of friction, 
determine the couple M required to hold the system in equilib-
rium when u 5 30�.

 6.134 The pin at B is attached to member ABC and can slide freely along 
the slot cut in the fixed plate. Neglecting the effect of friction, 
determine the couple M required to hold the system in equilib-
rium when u 5 60�.

200 mm

100 N

50 N

A

B
C

D

E

30° P

75 mm

Fig. P6.128
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338 Analysis of Structures  6.135 and 6.136 Rod CD is attached to the collar D and passes 
through a collar welded to end B of lever AB. Neglecting the effect 
of friction, determine the couple M required to hold the system 
in equilibrium when u 5 30�.

A

B

C

MA

MC

8 in.

6 in.

14 in.

Fig. P6.137

A

B

C

MA

MC

8 in.

6 in.

14 in.

Fig. P6.138

 6.137 and 6.138 Two rods are connected by a frictionless collar B. 
Knowing that the magnitude of the couple MA is 500 lb � in., 
determine (a) the couple MC required for equilibrium, (b) the cor-
responding components of the reaction at C.

q
A

B
C

D
M

300 N
200 mm

Fig. P6.136

A

B

C

D

M

q
150 N

100 mm80 mm

Fig. P6.135

 6.139 Two hydraulic cylinders control the position of the robotic arm 
ABC. Knowing that in the position shown the cylinders are paral-
lel, determine the force exerted by each cylinder when P � 160 N 
and Q � 80 N.

 6.140 Two hydraulic cylinders control the position of the robotic arm 
ABC. In the position shown, the cylinders are parallel and both 
are in tension. Knowing that FAE � 600 N and FDG � 50 N, 
determine the forces P and Q applied at C to arm ABC.

A
B

C

D

E F G

150 mm

150 mm
200 mm

P

Q

600 mm300 mm

400 mm

Fig. P6.139 and P6.140 
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339Problems 6.141 The tongs shown are used to apply a total upward force of 45 kN on 
a pipe cap. Determine the forces exerted at D and F on tong ADF.

D

A

CB

9.6 in. 9.6 in.

FE

6 in.

8 in.

12 in.

0.8 in.
0.8 in.

Fig. P6.144

55 mm55 mm

45 kN

22 mmG

A B

Fig. P6.142

A B

C D

E F

25 mm

60 mm

75 mm

85 mm

90 mm

Fig. P6.141

 6.142 If the toggle shown is added to the tongs of Prob. 6.141 and a 
single vertical force is applied at G, determine the forces exerted 
at D and F on tong ADF.

 6.143 A small barrel weighing 60 lb is lifted by a pair of tongs as shown. 
Knowing that a � 5 in., determine the forces exerted at B and D 
on tong ABD.

 6.144 A 39-ft length of railroad rail of weight 44 lb/ft is lifted by the tongs 
shown. Determine the forces exerted at D and F on tong BDF.

A

B

C D

P

a

a

6 in.9 in.

18 in.

Fig. P6.143

A
B

C D

300 N

300 N

12 mm 120 mm
36 mm

30 mm

30 mm

6 mm

42 mm96 mm

Fig. P6.145
 6.145 Determine the magnitude of the gripping forces produced when 

two 300-N forces are applied as shown.
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340 Analysis of Structures  6.146 The compound-lever pruning shears shown can be adjusted by 
placing pin A at various ratchet positions on blade ACE. Know-
ing that 300-lb vertical forces are required to complete the 
pruning of a small branch, determine the magnitude P of the 
forces that must be applied to the handles when the shears are 
adjusted as shown.

BA

C

1.2 in. 60 lb

60 lb

30°

9.5 in.

Fig. P6.147

12 mm

24 mm

24 mm

24 mm

300 N

300 N

460 mm
96 mm

A
B

C
D

E

Fig. P6.148

 6.147 The pliers shown are used to grip a 0.3-in.-diameter rod. Knowing 
that two 60-lb forces are applied to the handles, determine (a) the 
magnitude of the forces exerted on the rod, (b) the force exerted 
by the pin at A on portion AB of the pliers.

 6.148 In using the bolt cutter shown, a worker applies two 300-N forces 
to the handles. Determine the magnitude of the forces exerted by 
the cutter on the bolt.

 6.149 The specialized plumbing wrench shown is used in confined areas 
(e.g., under a basin or sink). It consists essentially of a jaw BC pinned 
at B to a long rod. Knowing that the forces exerted on the nut are 
equivalent to a clockwise (when viewed from above) couple of mag-
nitude 135 lb ? in., determine (a) the magnitude of the force exerted 
by pin B on jaw BC, (b) the couple M0 that is applied to the wrench.

 6.150 and 6.151 Determine the force P that must be applied to the 
toggle CDE to maintain bracket ABC in the position shown.

A

B

C

D

E

3.5 in.
1.6 in.

0.5 in.
0.55 in.
0.25 in.

0.65 in. 0.75 in.

P

–P

Fig. P6.146

A

B

C

M0

5
8

in.

3
8

in.
1
8

in.1

Fig. P6.149

150 mm 150 mm

150 mm

30 mm
910 N

P

A

B

C

D

E

150 mm

150 mm

Fig. P6.150

30 mm

910 N

P

A

B C

D

E

150 mm

150 mm

150 mm

150 mm 150 mm

Fig. P6.151
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341Problems 6.152 A 45-lb shelf is held horizontally by a self-locking brace that con-
sists of two parts EDC and CDB hinged at C and bearing against 
each other at D. Determine the force P required to release the 
brace.

AB

C

D

5 m

2.4 m

0.9 m

0.5 m

θ

Fig. P6.153

 6.153 The telescoping arm ABC is used to provide an elevated platform 
for construction workers. The workers and the platform together 
have a mass of 200 kg and have a combined center of gravity 
located directly above C. For the position when u 5 20�, determine 
(a) the force exerted at B by the single hydraulic cylinder BD, 
(b)  the force exerted on the supporting carriage at A.

 6.154 The telescoping arm ABC of Prob. 6.153 can be lowered until end 
C is close to the ground, so that workers can easily board the 
platform. For the position when u 5 �20�, determine (a) the force 
exerted at B by the single hydraulic cylinder BD, (b) the force 
exerted on the supporting carriage at A.

 6.155 The bucket of the front-end loader shown carries a 3200-lb load. 
The motion of the bucket is controlled by two identical mecha-
nisms, only one of which is shown. Knowing that the mechanism 
shown supports one-half of the 3200-lb load, determine the force 
exerted (a) by cylinder CD, (b) by cylinder FH.

2.5 in.
10 in.

7.5 in

1 in.

5 in.

7.5 in.

A
B

C

D

E

P

Fig. P6.152

A B

CD

E

F

3200 lb

Dimensions in inches

G

H

8

15

15

16

12
6

24

15 20 16 24 6

Fig. P6.155
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342 Analysis of Structures  6.156 The motion of the bucket of the front-end loader shown is con-
trolled by two arms and a linkage that are pin-connected at D. The 
arms are located symmetrically with respect to the central, verti-
cal, and longitudinal plane of the loader; one arm AFJ and its 
control cylinder EF are shown. The single linkage GHDB and its 
control cylinder BC are located in the plane of symmetry. For the 
position and loading shown, determine the force exerted (a) by 
cylinder BC, (b) by cylinder EF.

A
B C

D
E

F

G

H

12 in.

12 in.
12 in.

20 in.

20 in.

24 in.

22 in.

28 in.
75 in.

4500 lb

10 in.

18 in.

J

Fig. P6.156

 6.157 The motion of the backhoe bucket shown is controlled by the 
hydraulic cylinders AD, CG, and EF. As a result of an attempt to 
dislodge a portion of a slab, a 2-kip force P is exerted on the bucket 
teeth at J. Knowing that u 5 45�, determine the force exerted by 
each cylinder.

A

B
C

G
H

J

D E

P

F

I

12 in.

10 in.

16 in.

60 in.

20 in.
48 in.

10 in.
15 in.

35 in.

36 in.

40 in.

8 in.

16 in.16 in.

18 in.

10 in.

θ

Fig. P6.157

 6.158 Solve Prob. 6.157 assuming that the 2-kip force P acts horizontally 
to the right (u 5 0).

 6.159 In the planetary gear system shown, the radius of the central gear 
A is a � 18 mm, the radius of each planetary gear is b, and the 
radius of the outer gear E is (a � 2b). A clockwise couple of mag-
nitude MA � 10 N ? m is applied to the central gear A and a 
counterclockwise couple of magnitude MS � 50 N ? m is applied 
to the spider BCD. If the system is to be in equilibrium, determine 
(a) the required radius b of the planetary gears, (b) the magnitude 
ME of the couple that must be applied to the outer gear E.

A

B

C

D

E

Fig. P6.159
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343Problems 6.160 The gears D and G are rigidly attached to shafts that are held by 
frictionless bearings. If rD � 90 mm and rG � 30 mm, determine 
(a) the couple M0 that must be applied for equilibrium, (b) the 
reactions at A and B.

 *6.161 Two shafts AC and CF, which lie in the vertical xy plane, are con-
nected by a universal joint at C. The bearings at B and D do 
not exert any axial force. A couple of magnitude 500 lb ? in. (clock-
wise when viewed from the positive x axis) is applied to shaft CF 
at F. At a time when the arm of the crosspiece attached to shaft 
CF is horizontal, determine (a) the magnitude of the couple that 
must be applied to shaft AC at A to maintain equilibrium, (b) the 
reactions at B, D, and E. (Hint: The sum of the couples exerted on 
the crosspiece must be zero.)

x

y

z

H

E

A

B
D

G

rG

rD

M0

30 N.m

C

F

180 mm

120 mm

200 mm

120 mm
Fig. P6.160

A

B

C

D

E
x

y

z

4 in.

6 in.

5 in.

30°

500 lb-in.

F

Fig. P6.161

 *6.162 Solve Prob. 6.161 assuming that the arm of the crosspiece attached 
to shaft CF is vertical.

 *6.163 The large mechanical tongs shown are used to grab and lift a thick 
7500-kg steel slab HJ. Knowing that slipping does not occur 
between the tong grips and the slab at H and J, determine the 
components of all forces acting on member EFH. (Hint: Consider 
the symmetry of the tongs to establish relationships between the 
components of the force acting at E on EFH and the components 
of the force acting at D on DGJ.)

A

B CD E

F G

H J

W

0.3 m

0.5 m

0.5 m

1.8 m

0.9 m

1.8 m

1.3 m

1 m

Fig. P6.163
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344

REVIEW AND SUMMARY

In this chapter you learned to determine the internal forces holding 
together the various parts of a structure.

The first half of the chapter was devoted to the analysis of trusses,
i.e., to the analysis of structures consisting of straight members con-
nected at their extremities only. The members being slender and 
unable to support lateral loads, all the loads must be applied at the 
joints; a truss may thus be assumed to consist of pins and two-force 
members [Sec. 6.2].

A truss is said to be rigid if it is designed in such a way that it will 
not greatly deform or collapse under a small load. A triangular truss 
consisting of three members connected at three joints is clearly a 
rigid truss (Fig. 6.25a) and so will be the truss obtained by adding 
two new members to the first one and connecting them at a new 
joint (Fig. 6.25b). Trusses obtained by repeating this procedure are 
called simple trusses. We may check that in a simple truss the total 
number of members is m 5 2n 2 3, where n is the total number of 
joints [Sec. 6.3].

Analysis of trusses

Simple trusses

The forces in the various members of a simple truss can be deter-
mined by the method of joints [Sec. 6.4]. First, the reactions at the 
supports can be obtained by considering the entire truss as a free 
body. The free-body diagram of each pin is then drawn, showing the 
forces exerted on the pin by the members or supports it connects. 
Since the members are straight two-force members, the force exerted 
by a member on the pin is directed along that member, and only the 
magnitude of the force is unknown. It is always possible in the case 
of a simple truss to draw the free-body diagrams of the pins in such 
an order that only two unknown forces are included in each dia-
gram. These forces can be obtained from the corresponding two 
equilibrium equations or—if only three forces are involved—from 
the  corresponding force triangle. If the force exerted by a member 
on a pin is directed toward that pin, the member is in compression;

Fig. 6.25

(a) (b)

A

B

C A

B

C

D

Method of joints
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345if it is directed away from the pin, the member is in tension [Sam-
ple Prob. 6.1]. The analysis of a truss is sometimes expedited by 
first recognizing joints under special loading conditions [Sec. 6.5]. 
The method of joints can also be extended to the analysis of three-
dimensional or space trusses [Sec. 6.6].

The method of sections is usually preferred to the method of joints 
when the force in only one member—or very few members—of a 
truss is desired [Sec. 6.7]. To determine the force in member BD of 
the truss of Fig. 6.26a, for example, we pass a section through mem-
bers BD, BE, and CE, remove these members, and use the portion 
ABC of the truss as a free body (Fig. 6.26b). Writing oME 5 0, we 
determine the magnitude of the force FBD, which represents the 
force in member BD. A positive sign indicates that the member is 
in tension; a negative sign indicates that it is in compression [Sample 
Probs. 6.2 and 6.3].

Method of sections

Review and Summary

Fig. 6.26

A B

C

A B

C

D

E

E

G

(a)

(b)

n

n
P1 P2

P1 P2

P3

FCE

FBD

FBE

The method of sections is particularly useful in the analysis of com-
pound trusses, i.e., trusses which cannot be constructed from the 
basic triangular truss of Fig. 6.25a but which can be obtained by 
rigidly connecting several simple trusses [Sec. 6.8]. If the component 
trusses have been properly connected (e.g., one pin and one link, or 
three nonconcurrent and nonparallel links) and if the resulting struc-
ture is properly supported (e.g., one pin and one roller), the 
 compound truss is statically determinate, rigid, and completely con-
strained. The following necessary—but not sufficient—condition is 
then satisfied: m 1 r 5 2n, where m is the number of members, r is 
the number of unknowns representing the reactions at the supports, 
and n is the number of joints.

Compound trusses
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346  Analysis of Structures The second part of the chapter was devoted to the analysis of frames 
and machines. Frames and machines are structures which contain 
multiforce members, i.e., members acted upon by three or more 
forces. Frames are designed to support loads and are usually station-
ary, fully constrained structures. Machines are designed to transmit 
or modify forces and always contain moving parts [Sec. 6.9].

To analyze a frame, we first consider the entire frame as a free body 
and write three equilibrium equations [Sec. 6.10]. If the frame 
remains rigid when detached from its supports, the reactions involve 
only three unknowns and may be determined from these equations 
[Sample Probs. 6.4 and 6.5]. On the other hand, if the frame ceases 
to be rigid when detached from its supports, the reactions involve 
more than three unknowns and cannot be completely determined 
from the equilibrium equations of the frame [Sec. 6.11; Sample 
Prob. 6.6].

We then dismember the frame and identify the various members as 
either two-force members or multiforce members; pins are assumed 
to form an integral part of one of the members they connect. We 
draw the free-body diagram of each of the multiforce members, 
noting that when two multiforce members are connected to the 
same two-force member, they are acted upon by that member with 
equal and opposite forces of unknown magnitude but known direc-
tion. When two multiforce members are connected by a pin, they 
exert on each other equal and opposite forces of unknown direction, 
which should be represented by two unknown components. The 
equilibrium equations obtained from the free-body diagrams of the 
multiforce members can then be solved for the various internal 
forces [Sample Probs. 6.4 and 6.5]. The equilibrium equations can 
also be used to complete the determination of the reactions at the 
supports [Sample Prob. 6.6]. Actually, if the frame is statically deter-
minate and rigid, the free-body diagrams of the multiforce members 
could provide as many equations as there are unknown forces 
(including the reactions) [Sec. 6.11]. However, as suggested above, 
it is advisable to first consider the free-body diagram of the entire 
frame to minimize the number of equations that must be solved 
simultaneously.

To analyze a machine, we dismember it and, following the same 
procedure as for a frame, draw the free-body diagram of each of the 
multiforce members. The corresponding equilibrium equations yield 
the output forces exerted by the machine in terms of the input forces 
applied to it, as well as the internal forces at the various connections 
[Sec. 6.12; Sample Prob. 6.7].

Frames and machines

Analysis of a frame

Multiforce members

Analysis of a machine
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347

REVIEW PROBLEMS

6.164 Using the method of joints, determine the force in each member 
of the truss shown. State whether each member is in tension or 
compression.

6.165 Using the method of joints, determine the force in each member 
of the roof truss shown. State whether each member is in tension 
or compression.

 6.166 A Howe scissors roof truss is loaded as shown. Determine the force 
in members DF, DG, and EG.

A B

C D

E F

900 N

900 N

2.25 m

2.25 m

3 m

Fig. P6.164

C

D

E

F

A

B
1.2 kN

2.4 kN

9 m 9 m

1.2 kN

2.4 kN

6 m 6 m 6 m

7.5 m

Fig. P6.165

A

B

C

D

E

F

G

H

I

J

K
L

0.8 kip 0.8 kip

1.6 kips
1.6 kips 1.6 kips

1.6 kips 1.6 kips

6 ft

4.5 ft

8 ft8 ft8 ft8 ft8 ft8 ft

Fig. P6.166 and P6.167

6.167 A Howe scissors roof truss is loaded as shown. Determine the force 
in members GI, HI, and HJ.

6.168 Rod CD is fitted with a collar at D that can be moved along rod 
AB, which is bent in the shape of an arc of circle. For the position 
when u 5 30�, determine (a) the force in rod CD, (b) the reaction 
at B.

A
BC

D

20 lb

15 in. 15 in.

θ

Fig. P6.168
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348 Analysis of Structures  6.169 For the frame and loading shown, determine the components of 
all forces acting on member ABC.

 6.170 Knowing that each pulley has a radius of 250 mm, determine the 
components of the reactions at D and E.

C

D

E

F

B

A

3.6 m

18 kN 2 m

2 m

2 m

Fig. P6.169

 6.171 For the frame and loading shown, determine the components of 
the forces acting on member DABC at B and D.

 6.172 For the frame and loading shown, determine (a) the reaction at C, 
(b) the force in member AD.

 6.173 The control rod CE passes through a horizontal hole in the body 
of the toggle system shown. Knowing that link BD is 250 mm long, 
determine the force Q required to hold the system in equilibrium 
when b 5 20�.

2 m

1.5 m

2 m

4.8 kN

C

B D

A E

Fig. P6.170

CBA

D

G H

E F

12 kN

6 kN

0.5 m

0.5 m

0.6 m 0.2 m 0.4 m

Fig. P6.171

A

B

C

D

E

F

100 lb
20 in.

15 in.

15 in.

15 in.

Fig. P6.172

A
B

C

D

E

100 N

35 mmβ Q

200 mm

150 mm

Fig. P6.173
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349Review Problems 6.174 Determine the magnitude of the gripping forces exerted along line 
aa on the nut when two 50-lb forces are applied to the handles as 
shown. Assume that pins A and D slide freely in slots cut in the 
jaws.

A B

a

a

C
D E

50 lb

50 lb

4.5 in.

0.75 in.

0.5 in.

Fig. P6.174

 6.175 Knowing that the frame shown has a sag at B of a � 1 in., deter-
mine the force P required to maintain equilibrium in the position 
shown.

A

B

C

D

E

50 lb

P

a

6 in.

10 in. 10 in.

Fig. P6.175
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350

COMPUTER PROBLEMS

 6.C1 A Pratt steel truss is to be designed to support three 10-kip loads as 
shown. The length of the truss is to be 40 ft. The height of the truss and 
thus the angle u, as well as the cross-sectional areas of the various members, 
are to be selected to obtain the most economical design. Specifically, the 
cross-sectional area of each member is to be chosen so that the stress (force 
divided by area) in that member is equal to 20 kips/in2, the allowable stress 
for the steel used; the total weight of the steel, and thus its cost, must be 
as small as possible. (a) Knowing that the specific weight of the steel used 
is 0.284 lb/in3, write a computer program that can be used to calculate the 
weight of the truss and the cross-sectional area of each load-bearing member 
located to the left of DE for values of u from 20° to 80° using 5° increments. 
(b) Using appropriate smaller increments, determine the optimum value of 
u and the corresponding values of the weight of the truss and of the cross-
sectional areas of the various members. Ignore the weight of any zero-force 
member in your computations.

 6.C2 The floor of a bridge will rest on stringers that will be simply sup-
ported by transverse floor beams, as in Fig. 6.3. The ends of the beams will 
be connected to the upper joints of two trusses, one of which is shown in 
Fig. P6.C2. As part of the design of the bridge, it is desired to simulate the 
effect on this truss of driving a 12-kN truck over the bridge. Knowing that 
the distance between the truck’s axles is b 5 2.25 m and assuming that the 
weight of the truck is equally distributed over its four wheels, write a 
 computer program that can be used to calculate the forces created by the 
truck in members BH and GH for values of x from 0 to 17.25 m using 
0.75-m increments. From the results obtained, determine (a) the maximum 
tensile force in BH, (b) the maximum compressive force in BH, (c) the 
maximum tensile force in GH. Indicate in each case the corresponding value 
of x. (Note: The increments have been selected so that the desired values 
are among those that will be tabulated.)

B D F

F C E G
H

10 ft 10 ft 10 ft 10 ft

10 kips 10 kips 10 kips

θ

Fig. P6.C1

A B C D E

F G H I
J

3 kN3 kN

3.75 m 3.75 m 3.75 m 3.75 m

x – b
x

b

5 m

D

Fig. P6.C2
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351Computer Problems 6.C3 In the mechanism shown the position of boom AC is controlled by 
arm BD. For the loading shown, write a computer program and use it to 
determine the couple M required to hold the system in equilibrium for 
values of u from 230° to 90° using 10° increments. Also, for the same values 
of u, determine the reaction at A. As a part of the design process of the 
mechanism, use appropriate smaller increments and determine (a) the value 
of u for which M is maximum and the corresponding value of M, (b) the 
value of u for which the reaction at A is maximum and the corresponding 
magnitude of this reaction.

 6.C4 The design of a robotic system calls for the two-rod mechanism 
shown. Rods AC and BD are connected by a slider block D as shown. 
Neglecting the effect of friction, write a computer program and use it to 
determine the couple MA required to hold the rods in equilibrium for values 
of u from 0 to 120° using 10° increments. For the same values of u, deter-
mine the magnitude of the force F exerted by rod AC on the slider block.

 6.C5 The compound-lever pruning shears shown can be adjusted by placing 
pin A at various ratchet positions on blade ACE. Knowing that the length 
AB is 0.85 in., write a computer program and use it to determine the mag-
nitude of the vertical forces applied to the small branch for values of d from 
0.4 in. to 0.6 in. using 0.025-in. increments. As a part of the design of the 
shears, use appropriate smaller increments and determine the smallest allow-
able value of d if the force in link AB is not to exceed 500 lb.

8 ft

5 ft

800 lbM

θ

A

B

C

D

3 ft

Fig. P6.C3

θ

250 mm

A B

C

D

MA

150 mm

2.5 N⋅m

Fig. P6.C4

 6.C6 Rod CD is attached to collar D and passes through a collar welded 
to end B of lever AB. As an initial step in the design of lever AB, write a 
computer program and use it to calculate the magnitude M of the couple 
required to hold the system in equilibrium for values of u from 15° to 90° 
using 5° increments. Using appropriate smaller increments, determine the 
value of u for which M is minimum and the corresponding value of M.

A

B

C

D

E

3.5 in.
1.6 in.

1.05 in. d

0.25 in.

0.75 in.

30 lb

30 lb

Fig. P6.C5

A

B

C

D

M

θ
150  N

100 mm80 mm

Fig. P6.C6

bee02286_ch06_282-351.indd Page 351  28/09/11  8:01 AM user-f501bee02286_ch06_282-351.indd Page 351  28/09/11  8:01 AM user-f501 /204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles/204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


The George Washington Bridge 

connects Manhattan, New York, and 

Fort Lee, New Jersey. This suspension 

bridge carries traffic on two levels over 

roadways that are supported by a 

system of beams. Trusses are used both 

to connect these roadways to complete 

the overall bridge span as well as to 

form the towers. The bridge span itself 

is supported by the cable system.
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Forces in Beams and Cables
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7C H A P T E R
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354

*7.1 INTRODUCTION
In preceding chapters, two basic problems involving structures were 
considered: (1) determining the external forces acting on a structure 
(Chap. 4) and (2) determining the forces which hold together the 
various members forming a structure (Chap. 6). The problem of 
determining the internal forces which hold together the various parts 
of a given member will now be considered.
 We will first analyze the internal forces in the members of a 
frame, such as the crane considered in Secs. 6.1 and 6.10, noting 
that whereas the internal forces in a straight two-force member can 
produce only tension or compression in that member, the internal 
forces in any other type of member usually produce shear and bend-
ing as well.
 Most of this chapter will be devoted to the analysis of the 
 internal forces in two important types of engineering structures, 
namely,

 1. Beams, which are usually long, straight prismatic members 
designed to support loads applied at various points along the 
member.

 2. Cables, which are flexible members capable of withstanding 
only tension, designed to support either concentrated or dis-
tributed loads. Cables are used in many engineering applica-
tions, such as suspension bridges and transmission lines.

*7.2 INTERNAL FORCES IN MEMBERS
Let us first consider a straight two-force member AB (Fig. 7.1a). 
From Sec. 4.6, we know that the forces F and 2F acting at A and B, 
respectively, must be directed along AB in opposite sense and have 
the same magnitude F. Now, let us cut the member at C. To maintain 
the equilibrium of the free bodies AC and CB thus obtained, we 
must apply to AC a force 2F equal and opposite to F, and to CB a 
force F equal and opposite to 2F (Fig. 7.1b). These new forces are 
directed along AB in opposite sense and have the same magnitude 
F. Since the two parts AC and CB were in equilibrium before the 
member was cut, internal forces equivalent to these new forces must 
have existed in the member itself. We conclude that in the case of 
a straight two-force member, the internal forces that the two portions 
of the member exert on each other are equivalent to axial forces. 
The common magnitude F of these forces does not depend upon the 
location of the section C and is referred to as the force in member 
AB. In the case considered, the member is in tension and will elon-
gate under the action of the internal forces. In the case represented 
in Fig. 7.2, the member is in compression and will decrease in length 
under the action of the internal forces.
 Next, let us consider a multiforce member. Take, for instance, 
member AD of the crane analyzed in Sec. 6.10. This crane is shown 
again in Fig. 7.3a, and the free-body diagram of member AD is 
drawn in Fig. 7.3b. We now cut member AD at J and draw a free-
body diagram for each of the portions JD and AJ of the member 

 Chapter 7 Forces in Beams
and Cables

 7.1 Introduction
 7.2 Internal Forces in Members
 7.3 Various Types of Loading 

and Support
 7.4 Shear and Bending Moment 

in a Beam
 7.5 Shear and Bending-Moment 

Diagrams
 7.6 Relations Among Load, Shear, 

and Bending Moment
 7.7 Cables with Concentrated Loads
 7.8 Cables with Distributed Loads
 7.9 Parabolic Cable
 7.10 Catenary

Fig. 7.2 
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355

(Fig. 7.3c and d). Considering the free body JD, we find that its 
equilibrium will be maintained if we apply at J a force F to balance 
the vertical component of T, a force V to balance the horizontal 
component of T, and a couple M to balance the moment of T about 
J. Again we conclude that internal forces must have existed at J 
before member AD was cut. The internal forces acting on the por-
tion JD of member AD are equivalent to the force-couple system 
shown in Fig. 7.3c. According to Newton’s third law, the internal 
forces acting on AJ must be equivalent to an equal and opposite 
force-couple system, as shown in Fig. 7.3d. It is clear that the action 
of the internal forces in member AD is not limited to producing 
tension or compression as in the case of straight two-force members; 
the internal forces also produce shear and bending. The force F is 
an axial force; the force V is called a shearing force; and the moment 
M of the couple is known as the bending moment at J. We note that 
when determining internal forces in a member, we should clearly 
indicate on which portion of the member the forces are supposed to 
act. The deformation which will occur in member AD is sketched in 
Fig. 7.3e. The actual analysis of such a deformation is part of the 
study of mechanics of materials.
 It should be noted that in a two-force member which is not 
straight, the internal forces are also equivalent to a force-couple sys-
tem. This is shown in Fig. 7.4, where the two-force member ABC 
has been cut at D.

T

FBE

Cx

Ay

Ax

Cy

T

A

B

C

D

E
F

W

G

(a)

A

B
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D

J

(b)

FBE

Ay
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–F
–M

–V

A

B

C
J

(d)

Ay

Ax

A

(e)

FBE

Cy
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B

C
V

M
F

T

D D

J

(c)

Fig. 7.3 

7.2 Internal Forces in Members

(a)

D

B

CAP

– P

(b)

D

AP

M

V

F

(c)

D

B

C

– P–F

–M

–V

Fig. 7.4

Photo 7.1 The design of the shaft of a circular 
saw must account for the internal forces resulting 
from the forces applied to the teeth of the blade. 
At a given point in the shaft, these internal 
forces are equivalent to a force-couple system 
consisting of axial and shearing forces and a 
couple representing the bending and torsional 
moments.
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SOLUTION

Reactions and Forces at Connections. The reactions and the forces acting 
on each member of the frame are determined; this has been previously done 
in Sample Prob. 6.5, and the results are repeated here.

a. Internal Forces at J. Member ACF is cut at point J, and the two parts 
shown are obtained. The internal forces at J are represented by an equiva-
lent force-couple system and can be determined by considering the equi-
librium of either part. Considering the free body AJ, we write

 1l oMJ 5 0: 2(1800 N)(1.2 m) 1 M 5 0
 M 5 12160 N ? m  M 5 2160 N ? m l ◀

 1q  oFx 5 0: F 2 (1800 N) cos 41.78 5 0
 F 5 11344 N F 5 1344 N q ◀

 1p  oFy 5 0: 2V 1 (1800 N) sin 41.78 5 0
 V 5 11197 N V 5 1197 N o ◀

The internal forces at J are therefore equivalent to a couple M, an axial 
force F, and a shearing force V. The internal force-couple system acting on 
part JCF is equal and opposite.

b. Internal Forces at K. We cut member BCD at K and obtain the two 
parts shown. Considering the free body BK, we write

 1l oMK 5 0: (1200 N)(1.5 m) 1 M 5 0
 M 5 21800 N ? m M 5 1800 N ? m i ◀

y
1 oFx 5 0: F 5 0 F 5 0 ◀

 1xoFy 5 0: 21200 N 2 V 5 0
 V 5 21200 N V 5 1200 Nx ◀

2400 N

A A

B

B C

C

DK

J

FE

1200 N

1200 N

3600 N

3600 N

1800 N

1800 N

1800 N

600 N

2400 N1200 N
3600 N

V
M

F
–M

–V

–FB C DKK

y

x

1.5 m

SAMPLE PROBLEM 7.1

In the frame shown, determine the internal forces (a) in member ACF at 
point J, (b) in member BCD at point K. This frame has been previously 
considered in Sample Prob. 6.5.

1.2 m

1.5 m

2400 N
a

A

B C
D

K

J

FE

3.6 m

2.7 m

2.7 m

4.8 m

A

C

J

J

F

3600 N

1800 N

1800 N
a = 41.7° y

x

V M

F
1.2 m

–F

–M
–V
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357

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned to determine the internal forces in the member of a 
frame. The internal forces at a given point in a straight two-force member

reduce to an axial force, but in all other cases, they are equivalent to a force-couple 
system consisting of an axial force F, a shearing force V, and a couple M repre-
senting the bending moment at that point.

To determine the internal forces at a given point J of the member of a frame, you 
should take the following steps.

1. Draw a free-body diagram of the entire frame, and use it to determine as 
many of the reactions at the supports as you can.

2. Dismember the frame, and draw a free-body diagram of each of its 
members. Write as many equilibrium equations as are necessary to find all the 
forces acting on the member on which point J is located.

3. Cut the member at point J, and draw a free-body diagram of each of the 
two portions of the member that you have obtained, applying to each portion at 
point J the force components and couple representing the internal forces exerted 
by the other portion. Note that these force components and couples are equal in 
magnitude and opposite in sense.

4. Select one of the two free-body diagrams you have drawn and use it to 
write three equilibrium equations for the corresponding portion of member.
 a. Summing moments about J and equating them to zero will yield the bend-
ing moment at point J.
 b. Summing components in directions parallel and perpendicular to the 
member at J and equating them to zero will yield, respectively, the axial and shear-
ing force.

5. When recording your answers, be sure to specify the portion of the 
 member you have used, since the forces and couples acting on the two portions 
have opposite senses.

Since the solutions of the problems in this lesson require the determination of the 
forces exerted on each other by the various members of a frame, be sure to review 
the methods used in Chap. 6 to solve this type of problem. When frames involve 
pulleys and cables, for instance, remember that the forces exerted by a pulley on 
the member of the frame to which it is attached have the same magnitude and 
direction as the forces exerted by the cable on the pulley [Prob. 6.90].
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358

PROBLEMS

7.1 and 7.2 Determine the internal forces (axial force, shearing 
force, and bending moment) at point J of the structure indicated.

7.1 Frame and loading of Prob. 6.75
 7.2 Frame and loading of Prob. 6.78

7.3 Determine the internal forces at point J when a 5 908.

300 mm 300 mm

480 mm

240 mm

J

A
B

D a
C

780 N

Fig. P7.3 and P7.4

7.4 Determine the internal forces at point J when a 5 0.

 7.5 and 7.6 Knowing that the turnbuckle has been tightened until 
the tension in wire AD is 850 N, determine the internal forces at 
the point indicated:

 7.5 Point J
7.6 Point K

7.7 Two members, each consisting of a straight and a quarter-circular 
portion of rod, are connected as shown and support a 75-lb load 
at A. Determine the internal forces at point J.

7.8 Two members, each consisting of a straight and a quarter-circular 
portion of rod, are connected as shown and support a 75-lb load 
at A. Determine the internal forces at point K.

120 mm

A

E

F

D

J

K

C

B

100 mm

100 mm

100 mm

280 mm

Fig. P7.5 and P7.6

A

B

E

F
J

C

D

75 lb

K

6 in. 3 in. 3 in. 6 in. 3 in.

3 in.

3 in.

Fig. P7.7 and P7.8
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359Problems 7.9 A semicircular rod is loaded as shown. Determine the internal 
forces at point J.

 7.10 A semicircular rod is loaded as shown. Determine the internal 
forces at point K.

 7.11 A semicircular rod is loaded as shown. Determine the internal 
forces at point J knowing that u 5 308.

A B

J

C

D

280 N

q

160 mm

120 mm

160 mm 160 mm

Fig. P7.11 and P7.12

 7.12 A semicircular rod is loaded as shown. Determine the magnitude 
and location of the maximum bending moment in the rod.

 7.13 The axis of the curved member AB is a parabola with vertex at A. 
If a vertical load P of magnitude 450 lb is applied at A, determine 
the internal forces at J when h 5 12 in., L 5 40 in., and a 5 24 in.

 7.14 Knowing that the axis of the curved member AB is a parabola with 
vertex at A, determine the magnitude and location of the maxi-
mum bending moment.

 7.15 Knowing that the radius of each pulley is 200 mm and neglecting 
friction, determine the internal forces at point J of the frame 
shown.

 7.16 Knowing that the radius of each pulley is 200 mm and neglecting 
friction, determine the internal forces at point K of the frame 
shown.

P

a

A

B

J

L

h

Fig. P7.13 and P7.14

0.6 m
0.2 m

0.2 m
0.8 m0.8 m

A

B
C

D

K

J

EF

360 N

1 m

1.8 m

Fig. P7.15 and P7.16

A

B

J

K

120 N

60°

30°

180 mm

180 mm

Fig. P7.9 and P7.10
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360 Forces in Beams and Cables  7.17 A 5-in.-diameter pipe is supported every 9 ft by a small frame 
consisting of two members as shown. Knowing that the combined 
weight of the pipe and its contents is 10 lb/ft and neglecting the 
effect of friction, determine the magnitude and location of the 
maximum bending moment in member AC.

A B

C

K

D

J

500 N

0.6 m

a

0.6 m

0.9 m

0.9 m

Fig. P7.19 and P7.20

 7.18 For the frame of Prob. 7.17, determine the magnitude and location 
of the maximum bending moment in member BC.

 7.19 Knowing that the radius of each pulley is 150 mm, that a 5 208, 
and neglecting friction, determine the internal forces at (a) point J, 
(b) point K.

 7.20 Knowing that the radius of each pulley is 150 mm, that a 5 308, 
and neglecting friction, determine the internal forces at (a) point J, 
(b) point K.

 7.21 and 7.22 A force P is applied to a bent rod that is supported 
by a roller and a pin and bracket. For each of the three cases 
shown, determine the internal forces at point J.

A B

C
D

E

r = 2.5 in.

9 in.

6.75 in.12 in.

Fig. P7.17

3
4

3
4

B

C D

J

A

P

(a) (b) (c)

a

a

a a
B

C D

J

A

P

3
4

a

a

a a
B

C D

J

A

P

a

a

a a

Fig. P7.21

B

C D

J

P

(a) (b) (c)

a

a

a a

B

C

D

J

P

3

4

3
4

a

a

a a

B

C
D

J

A A A

P

a

a

a a

Fig. P7.22
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7.3 Various Types of Loading and Support 7.23 and 7.24 A quarter-circular rod of weight W and uniform cross 
section is supported as shown. Determine the bending moment at 
point J when u 5 308.

 7.25 For the rod of Prob. 7.23, determine the magnitude and location 
of the maximum bending moment.

 7.26 For the rod of Prob. 7.24, determine the magnitude and location 
of the maximum bending moment.

 7.27 and 7.28 A half section of pipe rests on a frictionless horizontal 
surface as shown. If the half section of pipe has a mass of 9 kg 
and a diameter of 300 mm, determine the bending moment at 
point J when u 5 908.

BEAMS

*7.3 VARIOUS TYPES OF LOADING AND SUPPORT
A structural member designed to support loads applied at various 
points along the member is known as a beam. In most cases, the 
loads are perpendicular to the axis of the beam and will cause 
only shear and bending in the beam. When the loads are not at a 
right angle to the beam, they will also produce axial forces in the 
beam.
 Beams are usually long, straight prismatic bars. Designing a 
beam for the most effective support of the applied loads is a two-part 

B

J

A
q

r

Fig. P7.23

B

J

A

q

r

Fig. P7.24

r

q

B
J

CA O

Fig. P7.27

r

q
A

B

O C

J

Fig. P7.28
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362 Forces in Beams and Cables process: (1) determining the shearing forces and bending moments 
produced by the loads and (2) selecting the cross section best suited 
to resist the shearing forces and bending moments determined in 
the first part. Here we are concerned with the first part of the prob-
lem of beam design. The second part belongs to the study of mechan-
ics of materials.
 A beam can be subjected to concentrated loads P1, P2, . . ., 
expressed in newtons, pounds, or their multiples kilonewtons and 
kips (Fig. 7.5a), to a distributed load w, expressed in N/m, kN/m, 
lb/ft, or kips/ft (Fig. 7.5b), or to a combination of both. When the 
load w per unit length has a constant value over part of the beam 
(as between A and B in Fig. 7.5b), the load is said to be uniformly 
distributed over that part of the beam. The determination of the 
reactions at the supports is considerably simplified if distributed 
loads are replaced by equivalent concentrated loads, as explained in 
Sec. 5.8. This substitution, however, should not be performed, or at 
least should be performed with care, when internal forces are being 
computed (see Sample Prob. 7.3).
 Beams are classified according to the way in which they are 
supported. Several types of beams frequently used are shown in 
Fig. 7.6. The distance L between supports is called the span. It 
should be noted that the reactions will be determinate if the supports 
involve only three unknowns. If more unknowns are involved, the 
reactions will be statically indeterminate and the methods of statics 
will not be sufficient to determine the reactions; the properties of 
the beam with regard to its resistance to bending must then be 
taken into consideration. Beams supported by two rollers are not 
shown here; they are only partially constrained and will move under 
certain loadings.
 Sometimes two or more beams are connected by hinges to 
form a single continuous structure. Two examples of beams hinged 
at a point H are shown in Fig. 7.7. It will be noted that the 
 reactions at the supports involve four unknowns and cannot be 

Fig. 7.6

(a) Simply supported beam

(d ) Continuous beam

(b) Overhanging beam

(e) Beam fixed at one end
     and simply supported

at the other end

( f ) Fixed beam

(c) Cantilever beam

Statically
Determinate
Beams

Statically
Indeterminate
Beams

L L L

LLL1 L2

(a) Concentrated loads

(b) Distributed load

A
B C

A
B

C

D

P1 P2

w

Fig. 7.5
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363

determined from the free-body diagram of the two-beam system. 
They can be determined, however, by considering the free-body 
diagram of each beam separately; six unknowns are involved 
(including two force components at the hinge), and six equations 
are available.

*7.4 SHEAR AND BENDING MOMENT IN A BEAM
Consider a beam AB subjected to various concentrated and dis-
tributed loads (Fig. 7.8a). We propose to determine the shearing 
force and bending moment at any point of the beam. In the 
 example considered here, the beam is simply supported, but the 
method used could be applied to any type of statically determi-
nate beam.
 First we determine the reactions at A and B by choosing the 
entire beam as a free body (Fig. 7.8b); writing oMA 5 0 and oMB 5 0, 
we obtain, respectively, RB and RA.

Fig. 7.7

A

A
B

B
C

H

H

(a)

(b)

7.4 Shear and Bending Moment in a Beam

Fig. 7.8

A B
C

A B
C

A B
C

C

w1 w2

(a)

(b)

(c)

P1 P2 P3

w1 w2P1

w1P1

P2 P3

w2P2 P3

M M'

V V'

RA RB

RA RB

Photo 7.2 The internal forces in the beams of 
the overpass shown vary as the truck crosses the 
overpass.
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364 Forces in Beams and Cables  To determine the internal forces at C, we cut the beam at C 
and draw the free-body diagrams of the portions AC and CB of the 
beam (Fig. 7.8c). Using the free-body diagram of AC, we can deter-
mine the shearing force V at C by equating to zero the sum of the 
vertical components of all forces acting on AC. Similarly, the bending 
moment M at C can be found by equating to zero the sum of the 
moments about C of all forces and couples acting on AC. Alterna-
tively, we could use the free-body diagram of CB† and determine 
the shearing force V9 and the bending moment M9 by equating to 
zero the sum of the vertical components and the sum of the moments 
about C of all forces and couples acting on CB. While this choice of 
free bodies may facilitate the computation of the numerical values 
of the shearing force and bending moment, it makes it necessary to 
indicate on which portion of the beam the internal forces considered 
are acting. If the shearing force and bending moment are to be 
computed at every point of the beam and efficiently recorded, we 
must find a way to avoid having to specify every time which portion 
of the beam is used as a free body. We shall adopt, therefore, the 
following conventions:
 In determining the shearing force in a beam, it will always be 
assumed that the internal forces V and V9 are directed as shown in 
Fig. 7.8c. A positive value obtained for their common magnitude V 
will indicate that this assumption was correct and that the shearing 
forces are actually directed as shown. A negative value obtained for 
V will indicate that the assumption was wrong and that the shearing 
forces are directed in the opposite way. Thus, only the magnitude V, 
together with a plus or minus sign, needs to be recorded to define 
completely the shearing forces at a given point of the beam. The 
scalar V is commonly referred to as the shear at the given point of 
the beam.
 Similarly, it will always be assumed that the internal couples M 
and M9 are directed as shown in Fig. 7.8c. A positive value obtained 
for their magnitude M, commonly referred to as the bending moment, 
will indicate that this assumption was correct, and a negative value 
will indicate that it was wrong. Summarizing the sign conventions we 
have presented, we state:
 The shear V and the bending moment M at a given point of 
a beam are said to be positive when the internal forces and cou-
ples acting on each portion of the beam are directed as shown in 
Fig. 7.9a.
 These conventions can be more easily remembered if we note 
that:

 1. The shear at C is positive when the external forces (loads and 
reactions) acting on the beam tend to shear off the beam at C 
as indicated in Fig. 7.9b.

 2. The bending moment at C is positive when the external forces 
acting on the beam tend to bend the beam at C as indicated in 
Fig. 7.9c.

C

(b) Effect of external forces
(positive shear) 

(a) Internal forces at section
(positive shear and positive bending moment) 

(c) Effect of external forces
(positive bending moment)

C

M

V M'

V'

Fig. 7.9

†The force and couple representing the internal forces acting on CB will now be denoted 
by V9 and M9, rather than by 2V and 2M as done earlier, in order to avoid confusion 
when applying the sign convention which we are about to introduce.
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365 It may also help to note that the situation described in Fig. 7.9, 
in which the values of the shear and of the bending moment are 
positive, is precisely the situation which occurs in the left half of a 
simply supported beam carrying a single concentrated load at its 
midpoint. This particular example is fully discussed in the following 
section.

*7.5 SHEAR AND BENDING-MOMENT DIAGRAMS
Now that shear and bending moment have been clearly defined in 
sense as well as in magnitude, we can easily record their values at 
any point of a beam by plotting these values against the distance x 
measured from one end of the beam. The graphs obtained in this 
way are called, respectively, the shear diagram and the bending-
moment diagram. As an example, consider a simply supported 
beam AB of span L subjected to a single concentrated load P 
applied at its midpoint D (Fig. 7.10a). We first determine the reac-
tions at the supports from the free-body diagram of the entire beam 
(Fig. 7.10b); we find that the magnitude of each reaction is equal 
to P/2.
 Next we cut the beam at a point C between A and D and 
draw the free-body diagrams of AC and CB (Fig. 7.10c). Assuming 
that shear and bending moment are positive, we direct the internal 
forces V and V9 and the internal couples M and M9 as indicated 
in Fig. 7.9a. Considering the free body AC and writing that the 
sum of the vertical components and the sum of the moments about 
C of the forces acting on the free body are zero, we find V 5 1P/2 
and M 5 1Px/2. Both shear and bending moment are therefore 
positive; this can be checked by observing that the reaction at A 
tends to shear off and to bend the beam at C as indicated in 
Fig. 7.9b and c. We can plot V and M between A and D (Fig. 7.10e 
and f ); the shear has a constant value V 5 P/2, while the bending 
moment increases linearly from M 5 0 at x 5 0 to M 5 PL/4 at 
x 5 L/2.
 Cutting, now, the beam at a point E between D and B and 
considering the free body EB (Fig. 7.10d), we write that the sum of 
the vertical components and the sum of the moments about E of the 
forces acting on the free body are zero. We obtain V 5 2P/2 and 
M 5 P(L 2 x)/2. The shear is therefore negative and the bending 
moment positive; this can be checked by observing that the reaction 
at B bends the beam at E as indicated in Fig. 7.9c but tends to shear 
it off in a manner opposite to that shown in Fig. 7.9b. We can com-
plete, now, the shear and bending-moment diagrams of Fig. 7.10e 
and f; the shear has a constant value V 5 2P/2 between D and B, 
while the bending moment decreases linearly from M 5 PL/4 at x 5 
L/2 to M 5 0 at x 5 L.
 It should be noted that when a beam is subjected to concen-
trated loads only, the shear is of constant value between loads and 
the bending moment varies linearly between loads, but when a beam 
is subjected to distributed loads, the shear and bending moment vary 
quite differently (see Sample Prob. 7.3).

7.5 Shear and Bending-Moment Diagrams
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366

SAMPLE PROBLEM 7.2

Draw the shear and bending-moment diagrams for the beam and loading 
shown.

SOLUTION

Free-Body: Entire Beam. From the free-body diagram of the entire beam, 
we find the reactions at B and D:

RB 5 46 kNx  RD 5 14 kNx

Shear and Bending Moment. We first determine the internal forces just 
to the right of the 20-kN load at A. Considering the stub of beam to the 
left of section 1 as a free body and assuming V and M to be positive (accord-
ing to the standard convention), we write

 1xoFy 5 0: 220 kN 2 V1 5 0 V1 5 220 kN
 1l oM1 5 0: (20 kN)(0 m) 1 M1 5 0 M1 5 0

 We next consider as a free body the portion of the beam to the left 
of section 2 and write

 1xoFy 5 0: 220 kN 2 V2 5 0 V2 5 220 kN
 1l oM2 5 0: (20 kN)(2.5 m) 1 M2 5 0 M2 5 250 kN ? m

 The shear and bending moment at sections 3, 4, 5, and 6 are deter-
mined in a similar way from the free-body diagrams shown. We obtain

 V3 5 126 kN M3 5 250 kN ? m
 V4 5 126 kN M4 5 128 kN ? m
 V5 5 214 kN M5 5 128 kN ? m
 V6 5 214 kN M6 5 0

For several of the latter sections, the results are more easily obtained by 
considering as a free body the portion of the beam to the right of the 
 section. For example, considering the portion of the beam to the right of 
section 4, we write

 1xoFy 5 0: V4 2 40 kN 1 14 kN 5 0 V4 5 126 kN
 1l oM4 5 0: 2M4 1 (14 kN)(2 m) 5 0 M4 5 128 kN ? m

Shear and Bending-Moment Diagrams. We can now plot the six points 
shown on the shear and bending-moment diagrams. As indicated in Sec. 7.5, 
the shear is of constant value between concentrated loads, and the bending 
moment varies linearly; we therefore obtain the shear and bending-moment 
diagrams shown.
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SAMPLE PROBLEM 7.3

Draw the shear and bending-moment diagrams for the beam AB. The dis-
tributed load of 40 lb/in. extends over 12 in. of the beam, from A to C, and 
the 400-lb load is applied at E.

SOLUTION

Free-Body: Entire Beam. The reactions are determined by considering the 
entire beam as a free body.

 1l oMA 5 0: By(32 in.) 2 (480 lb)(6 in.) 2 (400 lb)(22 in.) 5 0
 By 5 1365 lb By 5 365 lbx

 1l oMB 5 0: (480 lb)(26 in.) 1 (400 lb)(10 in.) 2 A(32 in.) 5 0
 A 5 1515 lb A 5 515 lbx

y
1 oFx 5 0: Bx 5 0 Bx 5 0

The 400-lb load is now replaced by an equivalent force-couple system acting 
on the beam at point D.

Shear and Bending Moment. From A to C. We determine the internal 
forces at a distance x from point A by considering the portion of the beam to 
the left of section 1. That part of the distributed load acting on the free body 
is replaced by its resultant, and we write

 1xoFy 5 0: 515 2 40x 2 V 5 0 V 5 515 2 40x
 1l oM1 5 0: 2515x 1 40x(1

2 x) 1 M 5 0 M 5 515x 2 20x2

Since the free-body diagram shown can be used for all values of x smaller 
than 12 in., the expressions obtained for V and M are valid throughout the 
region 0 , x , 12 in.

From C to D. Considering the portion of the beam to the left of section 2 
and again replacing the distributed load by its resultant, we obtain

 1xoFy 5 0:  515 2 480 2 V 5 0 V 5 35 lb
 1l oM2 5 0: 2515x 1 480(x 2 6) 1 M 5 0 M 5 (2880 1 35x) lb ? in.

These expressions are valid in the region 12 in. , x , 18 in.

From D to B. Using the portion of the beam to the left of section 3, we 
obtain for the region 18 in. , x , 32 in.

 1xoFy 5 0: 515 2 480 2 400 2 V 5 0  V 5 2365 lb
 1l oM3 5 0: 2515x 1 480(x 2 6) 2 1600 1 400(x 2 18) 1 M 5 0

M 5 (11,680 2 365x) lb ? in.

Shear and Bending-Moment Diagrams. The shear and bending-moment 
diagrams for the entire beam can now be plotted. We note that the couple 
of moment 1600 lb ? in. applied at point D introduces a discontinuity into 
the bending-moment diagram.
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368

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned to determine the shear V and the bending moment 
M at any point in a beam. You also learned to draw the shear diagram and the 

bending-moment diagram for the beam by plotting, respectively, V and M against 
the distance x measured along the beam.

A. Determining the shear and bending moment in a beam. To determine the 
shear V and the bending moment M at a given point C of a beam, you should 
take the following steps.

1. Draw a free-body diagram of the entire beam, and use it to determine the 
reactions at the beam supports.

2. Cut the beam at point C, and, using the original loading, select one of the 
two portions of the beam you have obtained.

3. Draw the free-body diagram of the portion of the beam you have selected, 
showing:
 a. The loads and the reaction exerted on that portion of the beam, replacing 
each distributed load by an equivalent concentrated load as explained earlier in 
Sec. 5.8.
 b. The shearing force and the bending couple representing the internal 
forces at C. To facilitate recording the shear V and the bending moment M after 
they have been determined, follow the convention indicated in Figs. 7.8 and 7.9. 
Thus, if you are using the portion of the beam located to the left of C, apply at C 
a shearing force V directed downward and a bending couple M directed counter-
clockwise. If you are using the portion of the beam located to the right of C, apply 
at C a shearing force V9 directed upward and a bending couple M9 directed clock-
wise [Sample Prob. 7.2].

4. Write the equilibrium equations for the portion of the beam you have 
selected. Solve the equation oFy 5 0 for V and the equation oMC 5 0 for M.

5. Record the values of V and M with the sign obtained for each of them. A 
positive sign for V means that the shearing forces exerted at C on each of the two 
portions of the beam are directed as shown in Figs. 7.8 and 7.9; a negative sign 
means that they have the opposite sense. Similarly, a positive sign for M means 
that the bending couples at C are directed as shown in these figures, and a nega-
tive sign means that they have the opposite sense. In addition, a positive sign for 
M means that the concavity of the beam at C is directed upward, and a negative 
sign means that it is directed downward.
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B. Drawing the shear and bending-moment diagrams for a beam. These 
diagrams are obtained by plotting, respectively, V and M against the distance x 
measured along the beam. However, in most cases the values of V and M need to 
be computed only at a few points.

1. For a beam supporting only concentrated loads, we note [Sample Prob. 7.2] 
that
 a. The shear diagram consists of segments of horizontal lines. Thus, to 
draw the shear diagram of the beam you will need to compute V only just to the 
left or just to the right of the points where the loads or the reactions are applied.
 b. The bending-moment diagram consists of segments of oblique straight 
lines. Thus, to draw the bending-moment diagram of the beam you will need to 
compute M only at the points where the loads or the reactions are applied.

2. For a beam supporting uniformly distributed loads, we note [Sample 
Prob. 7.3] that under each of the distributed loads:
 a. The shear diagram consists of a segment of an oblique straight 
line. Thus, you will need to compute V only where the distributed load begins 
and where it ends.
 b. The bending-moment diagram consists of an arc of parabola. In most 
cases you will need to compute M only where the distributed load begins and 
where it ends.

3. For a beam with a more complicated loading, it is necessary to consider 
the free-body diagram of a portion of the beam of arbitrary length x and determine 
V and M as functions of x. This procedure may have to be repeated several times, 
since V and M are often represented by different functions in various parts of the 
beam [Sample Prob. 7.3].

4. When a couple is applied to a beam, the shear has the same value on both 
sides of the point of application of the couple, but the bending-moment diagram 
will show a discontinuity at that point, rising or falling by an amount equal to the 
magnitude of the couple. Note that a couple can either be applied directly to the 
beam, or result from the application of a load on a curved member rigidly attached 
to the beam [Sample Prob. 7.3].
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PROBLEMS

 7.29 through 7.32 For the beam and loading shown, (a) draw the 
shear and bending-moment diagrams, (b) determine the maximum 
absolute values of the shear and bending moment.

7.33 and 7.34 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the maximum abso-
lute values of the shear and bending moment.

7.35 and 7.36 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the maximum abso-
lute values of the shear and bending moment.
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Fig. P7.34
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Fig. P7.33
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Fig. P7.37

7.37 and 7.38 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the maximum abso-
lute values of the shear and bending moment.
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371Problems 7.39 through 7.42 For the beam and loading shown, (a) draw the 
shear and bending-moment diagrams, (b) determine the maximum 
absolute values of the shear and bending moment.
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2 ft 2 ft

C D
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A B

Fig. P7.41
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A B
C

6 ft 4 ft

Fig. P7.42

 7.43 Assuming the upward reaction of the ground on beam AB to be 
uniformly distributed and knowing that P 5 wa, (a) draw the shear 
and bending-moment diagrams, (b) determine the maximum abso-
lute values of the shear and bending moment.

3 kN

A B
C D

3 kN

1.5 m
aa

Fig. P7.45

A B
C ED

w wP

a a a a

Fig. P7.43

 7.44 Solve Prob. 7.43 knowing that P 5 3wa.

 7.45 Assuming the upward reaction of the ground on beam AB to be 
uniformly distributed and knowing that a 5 0.3 m, (a) draw the 
shear and bending-moment diagrams, (b) determine the maximum 
absolute values of the shear and bending moment.

 7.46 Solve Prob. 7.45 knowing that a 5 0.5 m.

 7.47 and 7.48 Assuming the upward reaction of the ground on beam 
AB to be uniformly distributed, (a) draw the shear and bending-
moment diagrams, (b) determine the maximum absolute values of 
the shear and bending moment.

 7.49 and 7.50 Draw the shear and bending-moment diagrams for 
the beam AB, and determine the maximum absolute values of the 
shear and bending moment.
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372 Forces in Beams and Cables  7.51 and 7.52 Draw the shear and bending-moment diagrams for 
the beam AB, and determine the maximum absolute values of the 
shear and bending moment.
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 7.53 Two small channel sections DF and EH have been welded to the 
uniform beam AB of weight W 5 3 kN to form the rigid structural 
member shown. This member is being lifted by two cables attached 
at D and E. Knowing that u 5 308 and neglecting the weight of 
the channel sections, (a) draw the shear and bending-moment dia-
grams for beam AB, (b) determine the maximum absolute values 
of the shear and bending moment in the beam.

 7.54 Solve Prob. 7.53 when u 5 608.

 7.55 For the structural member of Prob. 7.53, determine (a) the angle u for 
which the maximum absolute value of the bending moment in beam 
AB is as small as possible, (b) the corresponding value of |M|max. (Hint: 
Draw the bending-moment diagram and then equate the absolute 
values of the largest positive and negative bending moments obtained.)

 7.56 For the beam of Prob. 7.43, determine (a) the ratio k 5 P/wa for 
which the maximum absolute value of the bending moment in the 
beam is as small as possible, (b) the corresponding value of |M|max. 
(See hint for Prob. 7.55.)

 7.57 For the beam of Prob. 7.45, determine (a) the distance a for which 
the maximum absolute value of the bending moment in the beam 
is as small as possible, (b) the corresponding value of |M|max. (See 
hint for Prob. 7.55.)

 7.58 For the beam and loading shown, determine (a) the distance a for 
which the maximum absolute value of the bending moment in the 
beam is as small as possible, (b) the corresponding value of |M|max. 
(See hint for Prob. 7.55.)

 7.59 A uniform beam is to be picked up by crane cables attached at A 
and B. Determine the distance a from the ends of the beam to the 
points where the cables should be attached if the maximum absolute 
value of the bending moment in the beam is to be as small as pos-
sible. (Hint: Draw the bending-moment diagram in terms of a, L, and 
the weight per unit length w, and then equate the absolute values of 
the largest positive and negative bending moments obtained.)

 7.60 Knowing that P 5 Q 5 150 lb, determine (a) the distance a for 
which the maximum absolute value of the bending moment in 
beam AB is as small as possible, (b) the corresponding value of 
|M|max. (See hint for Prob. 7.55.)
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 7.61 Solve Prob. 7.60 assuming that P 5 300 lb and Q 5 150 lb.

 *7.62 In order to reduce the bending moment in the cantilever beam 
AB, a cable and counterweight are permanently attached at end B. 
Determine the magnitude of the counterweight for which the 
maximum absolute value of the bending moment in the beam is 
as small as possible and the corresponding value of |M|max. Con-
sider (a) the case when the distributed load is permanently applied 
to the beam, (b) the more general case when the distributed load 
may either be applied or removed.

7.6 Relations Among Load, Shear, 
and Bending Moment 373
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Fig. 7.11

*7.6  RELATIONS AMONG LOAD, SHEAR, 
AND BENDING MOMENT

When a beam carries more than two or three concentrated loads, or 
when it carries distributed loads, the method outlined in Sec. 7.5 for 
plotting shear and bending moment is likely to be quite cumber-
some. The construction of the shear diagram and, especially, of the 
bending-moment diagram will be greatly facilitated if certain rela-
tions existing among load, shear, and bending moment are taken into 
consideration.
 Let us consider a simply supported beam AB carrying a distrib-
uted load w per unit length (Fig. 7.11a), and let C and C9 be two 
points of the beam at a distance Dx from each other. The shear and 
bending moment at C will be denoted by V and M, respectively, and 
will be assumed positive; the shear and bending moment at C9 will 
be denoted by V 1 DV and M 1 DM.
 Let us now detach the portion of beam CC9 and draw its free-
body diagram (Fig. 7.11b). The forces exerted on the free body 
include a load of magnitude w Dx and internal forces and couples at 
C and C9. Since shear and bending moment have been assumed 
positive, the forces and couples will be directed as shown in the 
figure.

Relations Between Load and Shear. We write that the 
sum of the vertical components of the forces acting on the free body 
CC9 is zero:

V 2 (V 1 DV) 2 w Dx 5 0
DV 5 2w Dx

Dividing both members of the equation by Dx and then letting Dx 
approach zero, we obtain

 
dV
dx

5 2w 
(7.1)

Formula (7.1) indicates that for a beam loaded as shown in Fig. 7.11a, 
the slope d V/dx of the shear curve is negative; the numerical value of 
the slope at any point is equal to the load per unit length at that point.

w

A B
L

W

Fig. P7.62
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374 Forces in Beams and Cables  Integrating (7.1) between points C and D, we obtain

 VD 2 VC 5 2#
xD

xC

 w dx (7.2)

VD 2 VC 5 2(area under load curve between C and D) (7.29)

Note that this result could also have been obtained by considering 
the equilibrium of the portion of beam CD, since the area under the 
load curve represents the total load applied between C and D.
 It should be observed that formula (7.1) is not valid at a point 
where a concentrated load is applied; the shear curve is discontinuous 
at such a point, as seen in Sec. 7.5. Similarly, formulas (7.2) and (7.29) 
cease to be valid when concentrated loads are applied between C and 
D, since they do not take into account the sudden change in shear 
caused by a concentrated load. Formulas (7.2) and (7.29), therefore, 
should be applied only between successive concentrated loads.

Relations Between Shear and Bending Moment. Re-
turning to the free-body diagram of Fig. 7.11b, and writing now that 
the sum of the moments about C9 is zero, we obtain

(M 1 ¢M) 2 M 2 V ¢x 1 w¢x 

¢x
2

5 0

¢M 5 V ¢x 2 1
2 w(¢x)2

Dividing both members of the equation by Dx and then letting Dx 
approach zero, we obtain

 
dM
dx

5 V (7.3)

Formula (7.3) indicates that the slope dM/dx of the bending-moment 
curve is equal to the value of the shear. This is true at any point 
where the shear has a well-defined value, i.e., at any point where no 
concentrated load is applied. Formula (7.3) also shows that the shear 
is zero at points where the bending moment is maximum. This prop-
erty facilitates the determination of the points where the beam is 
likely to fail under bending.
 Integrating (7.3) between points C and D, we obtain

 MD 2 MC 5#
xD

xC

 V dx (7.4)

MD 2 MC 5 area under shear curve between C and D (7.49)

Note that the area under the shear curve should be considered 
 positive where the shear is positive and negative where the shear is 
negative. Formulas (7.4) and (7.49) are valid even when concentrated 
loads are applied between C and D, as long as the shear curve has 
been correctly drawn. The formulas cease to be valid, however, if a 
couple is applied at a point between C and D, since they do not take 
into account the sudden change in bending moment caused by a 
couple (see Sample Prob. 7.7).
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Fig. 7.11 (repeated )
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375EXAMPLE Let us consider a simply supported beam AB of span L car-
rying a uniformly distributed load w (Fig. 7.12a). From the free-body dia-
gram of the entire beam we determine the magnitude of the reactions at 
the supports: RA 5 RB 5 wL/2 (Fig. 7.12b). Next, we draw the shear dia-
gram. Close to the end A of the beam, the shear is equal to RA, that is, to 
wL/2, as we can check by considering a very small portion of the beam as 
a free body. Using formula (7.2), we can then determine the shear V at any 
distance x from A. We write

V 2 VA 5 2#
x

0
 w dx 5 2wx

V 5 VA 2 wx 5
wL
2

2 wx 5 w aL
2

2 xb
The shear curve is thus an oblique straight line which crosses the x axis at 
x 5 L/2 (Fig. 7.12c). Considering, now, the bending moment, we first 
observe that MA 5 0. The value M of the bending moment at any distance 
x from A can then be obtained from formula (7.4); we have

M 2 MA 5 #
x

0
 V dx

M 5 #
x

0
 w aL

2
2 xb  dx 5

w
2

 (Lx 2 x2)

The bending-moment curve is a parabola. The maximum value of the bend-
ing moment occurs when x 5 L/2, since V (and thus dM/dx) is zero for that 
value of x. Substituting x 5 L/2 in the last equation, we obtain Mmax 5 
wL2/8. ◾

 In most engineering applications, the value of the bending 
moment needs to be known only at a few specific points. Once the 
shear diagram has been drawn, and after M has been determined at 
one of the ends of the beam, the value of the bending moment can 
then be obtained at any given point by computing the area under 
the shear curve and using formula (7.49). For instance, since MA 5 0 
for the beam of Fig. 7.12, the maximum value of the bending moment 
for that beam can be obtained simply by measuring the area of the 
shaded triangle in the shear diagram:

Mmax 5
1
2

  
L
2

  
wL
2

5
wL2

8

 In this example, the load curve is a horizontal straight line, the 
shear curve is an oblique straight line, and the bending-moment curve 
is a parabola. If the load curve had been an oblique straight line (first 
degree), the shear curve would have been a parabola (second degree), 
and the bending-moment curve would have been a cubic (third degree). 
The shear and bending-moment curves will always be, respectively, one 
and two degrees higher than the load curve. Thus, once a few values 
of the shear and bending moment have been computed, we should be 
able to sketch the shear and bending-moment diagrams without actu-
ally determining the functions V(x) and M(x). The sketches obtained 
will be more accurate if we make use of the fact that at any point where 
the curves are continuous, the slope of the shear curve is equal to 2w 
and the slope of the bending-moment curve is equal to V.

Fig. 7.12 

(b)

(c)

(d)

A

A

B

B

L

(a)

wL
2

RA = wL
2

RB =

wL
2

wL2

8

L
2

L
2

wL
2

–

V

L

L

M

x

x

w

w

7.6 Relations Among Load, Shear, 
and Bending Moment
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SAMPLE PROBLEM 7.4

Draw the shear and bending-moment diagrams for the beam and loading 
shown.

SOLUTION

Free-Body: Entire Beam. Considering the entire beam as a free body, we 
determine the reactions:

 1ol MA 5 0:
 D(24 ft) 2 (20 kips)(6 ft) 2 (12 kips)(14 ft) 2 (12 kips)(28 ft) 5 0
 D 5 126 kips D 5 26 kipsx
 1xoFy 5 0: Ay 2 20 kips 2 12 kips 1 26 kips 2 12 kips 5 0
 Ay 5 118 kips A y 5 18 kipsx
y
1 oFx 5 0: Ax 5 0 A x 5 0

We also note that at both A and E the bending moment is zero; thus two 
points (indicated by small circles) are obtained on the bending-moment 
diagram.

Shear Diagram. Since dV/dx 5 2w, we find that between concentrated 
loads and reactions the slope of the shear diagram is zero (i.e., the shear is 
constant). The shear at any point is determined by dividing the beam into two 
parts and considering either part as a free body. For example, using the por-
tion of beam to the left of section 1, we obtain the shear between B and C:

 1xoFy 5 0: 118 kips 2 20 kips 2 V 5 0 V 5 22 kips

We also find that the shear is 112 kips just to the right of D and zero at 
end E. Since the slope dV/dx 5 2w is constant between D and E, the shear 
diagram between these two points is a straight line.

Bending-Moment Diagram. We recall that the area under the shear curve 
between two points is equal to the change in bending moment between the 
same two points. For convenience, the area of each portion of the shear 
diagram is computed and is indicated on the diagram. Since the bending 
moment MA at the left end is known to be zero, we write

MB 2 MA 5 1108 MB 5 1108 kip ? ft
MC 2 MB 5 2 16 MC 5 1  92 kip ? ft
MD 2 MC 5 2140 MD 5 2 48 kip ? ft
ME 2 MD 5 1 48 ME 5 0

Since ME is known to be zero, a check of the computations is obtained.
 Between the concentrated loads and reactions the shear is constant; 
thus the slope dM/dx is constant, and the bending-moment diagram is drawn 
by connecting the known points with straight lines. Between D and E, where 
the shear diagram is an oblique straight line, the bending-moment diagram 
is a parabola.
 From the V and M diagrams we note that Vmax 5 18 kips and 
Mmax 5 108 kip ? ft.

A
B C D

E

20 kips 12 kips 1.5 kips/ft

6 ft
8 ft 8 ft10 ft

Ax

Ay

12 kips

1.5 kips/ft

4 ft

M

V

V(kips)
+18

M(kip⋅ft)

(+108)

(– 16)
+12

(+48)

–14

�2

+108
+92

�48

D

6 ft
8 ft 8 ft10 ft

A

B C D
E

20 kips 12 kips

B 1 C D
E

20 kips

18 kips

18 kips

20 kips
26 kips

12 kips

A

x

x
(�140)
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SOLUTION

Free-Body: Entire Beam. Considering the entire beam as a free body, we 
obtain the reactions

RA 5 80 kNx  RC 5 40 kNx

Shear Diagram. The shear just to the right of A is VA 5 180 kN. Since 
the change in shear between two points is equal to minus the area under 
the load curve between the same two points, we obtain VB by writing

 VB 2 VA 5 2(20 kN/m)(6 m) 5 2120 kN
 VB 5 2120 1 VA 5 2120 1 80 5 240 kN

Since the slope dV/dx 5 2w is constant between A and B, the shear dia-
gram between these two points is represented by a straight line. Between 
B and C, the area under the load curve is zero; therefore,

VC 2 VB 5 0    VC 5 VB 5 240 kN

and the shear is constant between B and C.

Bending-Moment Diagram. We note that the bending moment at each 
end of the beam is zero. In order to determine the maximum bending 
moment, we locate the section D of the beam where V 5 0. We write

 VD 2 VA 5 2wx
 0 2 80 kN 5 2(20 kN/m)x

and, solving for x: x 5 4 m ◀

 The maximum bending moment occurs at point D, where we have 
dM/dx 5 V 5 0. The areas of the various portions of the shear diagram are 
computed and are given (in parentheses) on the diagram. Since the area of 
the shear diagram between two points is equal to the change in bending 
moment between the same two points, we write

 MD 2 MA 5 1160 kN ? m MD 5 1160 kN ? m
 MB 2 MD 5 2 40 kN ? m M B 5 1120 kN ? m
 MC 2 MB 5 2120 kN ? m M C 5 0

The bending-moment diagram consists of an arc of parabola followed by a 
segment of straight line; the slope of the parabola at A is equal to the value 
of V at that point.
 The maximum bending moment is

Mmax 5 MD 5 1160 kN ? m ◀

SAMPLE PROBLEM 7.5

Draw the shear and bending-moment diagrams for the beam and loading 
shown and determine the location and magnitude of the maximum bending 
moment.

A
B

C

20 kN/m

6 m 3 m

(�40)

A

A

A

B

BD

C

C

20 kN/m

6 m

a

w

V

M

x x

x

80 kN

80 kN

40 kN

�40 kN

(+160)

b

x = 4 m

(�120)

160 kN⋅m
120 kN⋅m
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SAMPLE PROBLEM 7.6

Sketch the shear and bending-moment diagrams for the cantilever beam 
shown.

SAMPLE PROBLEM 7.7

The simple beam AC is loaded by a couple of magnitude T applied at point B. 
Draw the shear and bending-moment diagrams for the beam.

SOLUTION

Free-Body: Entire Beam. The entire beam is taken as a free body, and we 
obtain

RA 5
T
L

x   RC 5
T
L

 w

Shear and Bending-Moment Diagrams. The shear at any section is con-
stant and equal to T/L. Since a couple is applied at B, the bending-moment 
diagram is discontinuous at B; the bending moment decreases suddenly by 
an amount equal to T.

x

V

M

a

T
L

A C
B

T

L

x

a
LT

–T(1 –    )a
L

A
B C

x

M

V

w0

1
2�    w0a

1
2�    w0a

1
2

[�   w0a(L � a)]1
3

[�    w0a2]

1
6�    w0a(3L � a)

1
3�    w0a2

a
L

x

SOLUTION

Shear Diagram. At the free end of the beam, we find VA 5 0. Between 
A and B, the area under the load curve is 1

2 w0 a; we find VB by writing

VB 2 VA 5 21
2 

 
w0 

a   VB 5 21
2 

 
w0 

a

Between B and C, the beam is not loaded; thus VC 5 VB. At A, we have 
w 5 w0, and, according to Eq. (7.1), the slope of the shear curve is dV/dx 5 
2w0, while at B the slope is dV/dx 5 0. Between A and B, the loading 
decreases linearly, and the shear diagram is parabolic. Between B and C, 
w 5 0, and the shear diagram is a horizontal line.

Bending-Moment Diagram. We note that MA 5 0 at the free end of the 
beam. We compute the area under the shear curve and write

 MB 2 MA 5 21
3 

 
w0  

a2    MB 5 21
3 

 
w0  

a2

 MC 2 MB 5 21
2 

 
w0  

a(L 2 a)   
 MC 5 21

6 
 
w0a(3L 2 a)  

The sketch of the bending-moment diagram is completed by recalling that 
dM/dx 5 V. We find that between A and B the diagram is represented by 
a cubic curve with zero slope at A, and between B and C the diagram is 
represented by a straight line.
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SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned how to use the relations existing among load, shear, 
and bending moment to simplify the drawing of the shear and bending-moment 

diagrams. These relations are

 
dV
dx

5 2w (7.1)

 
dM
dx

5 V  (7.3)

VD 2 VC 5 2(area under load curve between C and D) (7.29)
MD 2 MC 5 (area under shear curve between C and D) (7.49)

Taking into account these relations, you can use the following procedure to draw 
the shear and bending-moment diagrams for a beam.

1. Draw a free-body diagram of the entire beam, and use it to determine the 
reactions at the beam supports.

2. Draw the shear diagram. This can be done as in the preceding lesson by 
cutting the beam at various points and considering the free-body diagram of one 
of the two portions of the beam that you have obtained [Sample Prob. 7.3]. You 
can, however, consider one of the following alternative procedures.

a. The shear V at any point of the beam is the sum of the reactions and 
loads to the left of that point; an upward force is counted as positive, and a 
downward force is counted as negative.

b. For a beam carrying a distributed load, you can start from a point where 
you know V and use Eq. (7.29) repeatedly to find V at all the other points of 
interest.

3. Draw the bending-moment diagram, using the following procedure.
a. Compute the area under each portion of the shear curve, assigning a 

positive sign to areas located above the x axis and a negative sign to areas located 
below the x axis.

b. Apply Eq. (7.49) repeatedly [Sample Probs. 7.4 and 7.5], starting from the 
left end of the beam, where M 5 0 (except if a couple is applied at that end, or 
if the beam is a cantilever beam with a fixed left end).

c. Where a couple is applied to the beam, be careful to show a disconti-
nuity in the bending-moment diagram by increasing the value of M at that point 
by an amount equal to the magnitude of the couple if the couple is clockwise,
or decreasing the value of M by that amount if the couple is counterclockwise
[Sample Prob. 7.7].

(continued)
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4. Determine the location and magnitude of |M|max. The maximum absolute 
value of the bending moment occurs at one of the points where dM/dx 5 0, that 
is, according to Eq. (7.3), at a point where V is equal to zero or changes sign. You 
should, therefore:
 a. Determine from the shear diagram the value of |M| where V changes 
sign; this will occur under the concentrated loads [Sample Prob. 7.4].
 b. Determine the points where V 5 0 and the corresponding values of 
|M|; this will occur under a distributed load. To find the distance x between point 
C, where the distributed load starts, and point D, where the shear is zero, use 
Eq. (7.29); for VC use the known value of the shear at point C, for VD use zero, 
and express the area under the load curve as a function of x [Sample Prob. 7.5].

5. You can improve the quality of your drawings by keeping in mind that at 
any given point, according to Eqs. (7.1) and (7.3), the slope of the V curve is equal 
to 2w and the slope of the M curve is equal to V.

6. Finally, for beams supporting a distributed load expressed as a function 
w (x ), remember that the shear V can be obtained by integrating the function 
2w(x), and the bending moment M can be obtained by integrating V(x) [Eqs. (7.3) 
and (7.4)].
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PROBLEMS

 7.63 Using the method of Sec. 7.6, solve Prob. 7.29.

 7.64 Using the method of Sec. 7.6, solve Prob. 7.30.

 7.65 Using the method of Sec. 7.6, solve Prob. 7.31.

 7.66 Using the method of Sec. 7.6, solve Prob. 7.32.

 7.67 Using the method of Sec. 7.6, solve Prob. 7.33.

 7.68 Using the method of Sec. 7.6, solve Prob. 7.34.

 7.69 and 7.70 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the maximum abso-
lute values of the shear and bending moment.

 7.71 Using the method of Sec. 7.6, solve Prob. 7.39.

 7.72 Using the method of Sec. 7.6, solve Prob. 7.40.

 7.73 Using the method of Sec. 7.6, solve Prob. 7.41.

 7.74 Using the method of Sec. 7.6, solve Prob. 7.42.

 7.75 and 7.76 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the maximum abso-
lute values of the shear and bending moment.

6 kN 3 kN

1 m 1.5 m 2 m

1.2 kN⋅m3 kN⋅m
A B C D

Fig. P7.69

2 m 2 m 2 m 2 m

12 kN⋅m
5 kN 5 kN 5 kN

A B C D
E

Fig. P7.70

A E

3 ft 3 ft5 ft 4 ft

16 kips

B C D

45 kips 8 kips

Fig. P7.75

A E
B C D

9 in.
12 in. 12 in. 12 in.

20 lb/in. 125 lb 125 lb

Fig. P7.76

A
B

C

15 kN/m

1.5 m
6 m

45 kN⋅m

Fig. P7.77 

2.5 kN/m

A C
B

2.5 m 1 m

Fig. P7.78

 7.77 through 7.79 For the beam and loading shown, (a) draw the 
shear and bending-moment diagrams, (b) determine the magnitude 
and location of the maximum absolute value of the bending moment.

4 m

25 kN/m
20 kN⋅m

A B

Fig. P7.79

 7.80 Solve Prob. 7.79 assuming that the 20-kN ? m couple applied at B
is counterclockwise.
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382 Forces in Beams and Cables  7.81 For the beam shown, draw the shear and bending-moment dia-
grams, and determine the magnitude and location of the maximum 
absolute value of the bending moment, knowing that (a) M 5 0, 
(b) M 5 24 kip ? ft.

A B
C

D

300 lb/ft

300 lb

2 ft2 ft
4 ft

Fig. P7.83

w0
1
3

B

L

x

w0

w

A

Fig. P7.87

A
B

x

w
w = w0 cos p x

2L

L

Fig. P7.85

A
B x

w

L

w0

Fig. P7.86

 7.88 For the beam and loading shown, (a) write the equations of the 
shear and bending-moment curves, (b) determine the maximum 
bending moment.

0.3 m 0.3 m 0.3 m0.3 m

A B
C D E

20 kN/m
P Q

Fig. P7.89

A B
C

4 kips/ft

4 ft4 ft

M

Fig. P7.81

2 ft
6 ft

P

A B
C

2 kips/ft

Fig. P7.82

A
B

w

L

x

w0 w = w0  1 – sin    L( )   xπ

Fig. P7.88

 7.89 The beam AB is subjected to the uniformly distributed load shown 
and to two unknown forces P and Q. Knowing that it has been 
experimentally determined that the bending moment is 1800 N ? m 
at D and 11300 N ? m at E, (a) determine P and Q, (b) draw the 
shear and bending-moment diagrams for the beam.

 7.90 Solve Prob. 7.89 assuming that the bending moment was found to 
be 1650 N ? m at D and 11450 N ? m at E.

 7.82 For the beam shown, draw the shear and bending-moment dia-
grams, and determine the magnitude and location of the maximum 
absolute value of the bending moment, knowing that (a) P 5 6 kips, 
(b) P 5 3 kips.

 7.83 (a) Draw the shear and bending-moment diagrams for beam AB, 
(b) determine the magnitude and location of the maximum abso-
lute value of the bending moment.

 7.84 Solve Prob. 7.83 assuming that the 300-lb force applied at D is 
directed upward.

 7.85 through 7.87 For the beam and loading shown, (a) write the 
equations of the shear and bending-moment curves, (b) determine 
the magnitude and location of the maximum bending moment.
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 *7.91 The beam AB is subjected to the uniformly distributed load shown 
and to two unknown forces P and Q. Knowing that it has been experi-
mentally determined that the bending moment is 16.10 kip ? ft at D 
and 15.50 kip · ft at E, (a) determine P and Q, (b) draw the shear 
and bending-moment diagrams for the beam.

 *7.92 Solve Prob. 7.91 assuming that the bending moment was found to 
be 15.96 kip ? ft at D and 16.84 kip ? ft at E.

 CABLES

*7.7 CABLES WITH CONCENTRATED LOADS
Cables are used in many engineering applications, such as suspension 
bridges, transmission lines, aerial tramways, guy wires for high towers, etc. 
Cables may be divided into two categories, according to their loading: 
(1) cables supporting concentrated loads, (2) cables supporting distrib-
uted loads. In this section, cables of the first category are examined.
 Consider a cable attached to two fixed points A and B and sup-
porting n vertical concentrated loads P1, P2, . . . , Pn (Fig. 7.13a). We 
assume that the cable is flexible, i.e., that its resistance to bending is 
small and can be neglected. We further assume that the weight of the 
cable is negligible compared with the loads supported by the cable. 
Any portion of cable between successive loads can therefore be con-
sidered as a two-force member, and the internal forces at any point 
in the cable reduce to a force of tension directed along the cable.
 We assume that each of the loads lies in a given vertical line, i.e., 
that the horizontal distance from support A to each of the loads is 
known; we also assume that the horizontal and vertical distances 
between the supports are known. We propose to determine the shape of 
the cable, i.e., the vertical distance from support A to each of the points 
C1, C2, . . . , Cn, and also the tension T in each portion of the cable.

2 ft 2 ft
4 ft

2 ft2 ft

A B
C D E F

P Q
250 lb/ft

Fig. P7.91

3837.7 Cables with Concentrated Loads

†Clearly, the cable is not a rigid body; the equilibrium equations represent, therefore, 
necessary but not sufficient conditions (see Sec. 6.11).

(b)(a)

A

D

Ay

A x

By

BxBC1

C2 C3P1

P2 P3

y3y2

y1

L

d

x1

x2

x3

A

B
C1

C2 C3

P1

P2 P3

L

d

x1

x2

x3

Fig. 7.13

 We first draw the free-body diagram of the entire cable (Fig. 7.13b). 
Since the slope of the portions of cable attached at A and B is not known, 
the reactions at A and B must be represented by two components each. 
Thus, four unknowns are involved, and the three equations of equilib-
rium are not sufficient to determine the reactions at A and B.† We must 

Photo 7.3 Since the weight of the cable of 
the chairlift shown is negligible compared to the 
weights of the chairs and skiers, the methods of 
this section can be used to determine the force 
at any point in the cable.
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384 Forces in Beams and Cables

therefore obtain an additional equation by considering the equilibrium 
of a portion of the cable. This is possible if we know the coordinates 
x and y of a point D of the cable. Drawing the free-body diagram of 
the portion of cable AD (Fig. 7.14a) and writing oMD 5 0, we obtain 
an additional relation between the scalar components Ax and Ay and 
can determine the reactions at A and B. The problem would remain 
indeterminate, however, if we did not know the coordinates of D, 
unless some other relation between Ax and Ay (or between Bx and By) 
were given. The cable might hang in any of various possible ways, as 
indicated by the dashed lines in Fig. 7.13b.
 Once Ax and Ay have been determined, the vertical distance 
from A to any point of the cable can easily be found. Considering 
point C2, for example, we draw the free-body diagram of the portion 
of cable AC2 (Fig. 7.14b). Writing oMC2

5 0, we obtain an equation 
which can be solved for y2. Writing oFx 5 0 and oFy 5 0, we obtain 
the components of the force T representing the tension in the por-
tion of cable to the right of C2. We observe that T cos u 5 2Ax; the 
horizontal component of the tension force is the same at any point 
of the cable. It follows that the tension T is maximum when cos u is 
minimum, i.e., in the portion of cable which has the largest angle of 
inclination u. Clearly, this portion of cable must be adjacent to one 
of the two supports of the cable.

*7.8 CABLES WITH DISTRIBUTED LOADS
Consider a cable attached to two fixed points A and B and carrying 
a distributed load (Fig. 7.15a). We saw in the preceding section that 
for a cable supporting concentrated loads, the internal force at any 
point is a force of tension directed along the cable. In the case of a 
cable carrying a distributed load, the cable hangs in the shape of a 
curve, and the internal force at a point D is a force of tension T 
directed along the tangent to the curve. In this section, you will learn 
to determine the tension at any point of a cable supporting a given 
distributed load. In the following sections, the shape of the cable will 
be determined for two particular types of distributed loads.
 Considering the most general case of distributed load, we draw 
the free-body diagram of the portion of cable extending from the 
lowest point C to a given point D of the cable (Fig. 7.15b). The 

(b)(a)
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385

forces acting on the free body are the tension force T0 at C, which 
is horizontal, the tension force T at D, directed along the tangent to 
the cable at D, and the resultant W of the distributed load supported 
by the portion of cable CD. Drawing the corresponding force trian-
gle (Fig. 7.15c), we obtain the following relations:

 T cos u 5 T0     
 
  T sin u 5 W (7.5)

 T 5 2T2
0 1 W2       tan u 5

W
T0

 (7.6)

From the relations (7.5), it appears that the horizontal component 
of the tension force T is the same at any point and that the vertical 
component of T is equal to the magnitude W of the load measured 
from the lowest point. Relations (7.6) show that the tension T is 
minimum at the lowest point and maximum at one of the two points 
of support.

*7.9 PARABOLIC CABLE
Let us assume, now, that the cable AB carries a load uniformly dis-
tributed along the horizontal (Fig. 7.16a). Cables of suspension 
bridges may be assumed loaded in this way, since the weight of the 
cables is small compared with the weight of the roadway. We denote 
by w the load per unit length (measured horizontally) and express it 
in N/m or in lb/ft. Choosing coordinate axes with origin at the lowest 
point C of the cable, we find that the magnitude W of the total load 
carried by the portion of cable extending from C to the point D of 
coordinates x and y is W 5 wx. The relations (7.6) defining the 
magnitude and direction of the tension force at D become

 T 5 2T 

2
0 1 w2x2      tan u 5

wx
T0

 (7.7)

Moreover, the distance from D to the line of action of the resultant 
W is equal to half the horizontal distance from C to D (Fig. 7.16b). 
Summing moments about D, we write

 1l oMD 5 0:
 

wx 

x
2

2 T0 
y 5 0

 

A

B

C

(b) (c)(a)

D
T

T

W

T0
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Fig. 7.15
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Fig. 7.16

7.9 Parabolic Cable
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386 Forces in Beams and Cables and, solving for y,

 y 5
wx2

2T0
 (7.8)

This is the equation of a parabola with a vertical axis and its vertex 
at the origin of coordinates. The curve formed by cables loaded uni-
formly along the horizontal is thus a parabola.†
 When the supports A and B of the cable have the same eleva-
tion, the distance L between the supports is called the span of the 
cable and the vertical distance h from the supports to the lowest 
point is called the sag of the cable (Fig. 7.17a). If the span and sag 
of a cable are known, and if the load w per unit horizontal length is 
given, the minimum tension T0 may be found by substituting x 5 
L/2 and y 5 h in Eq. (7.8). Equations (7.7) will then yield the ten-
sion and the slope at any point of the cable and Eq. (7.8) will define 
the shape of the cable.
 When the supports have different elevations, the position of the 
lowest point of the cable is not known and the coordinates xA, yA and 
xB, yB of the supports must be determined. To this effect, we express 
that the coordinates of A and B satisfy Eq. (7.8) and that xB 2 xA 5 L 
and yB 2 yA 5 d, where L and d denote, respectively, the horizontal 
and vertical distances between the two supports (Fig. 7.17b and c).
 The length of the cable from its lowest point C to its support 
B can be obtained from the formula

 sB 5 #
xB

0

 
B

1 1 ady

dx
b2

 dx (7.9)

Differentiating (7.8), we obtain the derivative dy/dx 5 wx/T0; sub-
stituting into (7.9) and using the binomial theorem to expand the 
radical in an infinite series, we have

sB 5#
xB

0

 
B

1 1
w2x2

T2
0

 dx 5#
xB

0
 a1 1

w2x2

2T2
0

2
w4x4

8T4
0

1 pb dx

sB 5 xB 
a1 1

w2x2
B

6T2
0

2
w4x4

B

40T4
0

1 pb
and, since wx2

B/2T0 5 yB,

 sB 5 xB c1 1
2
3

 ayB

xB
b2

2
2
5

 ayB

xB
b4

1 p d  (7.10)

The series converges for values of the ratio yB/xB less than 0.5; in 
most cases, this ratio is much smaller, and only the first two terms 
of the series need be computed.

†Cables hanging under their own weight are not loaded uniformly along the horizontal, 
and they do not form a parabola. The error introduced by assuming a parabolic shape for 
cables hanging under their weight, however, is small when the cable is sufficiently taut. A 
complete discussion of cables hanging under their own weight is given in the next section.

Fig. 7.17
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387

SOLUTION

Reactions at Supports. The reaction components Ax and Ay are deter-
mined as follows:

Free Body: Entire Cable 

 1l  oME 5 0:
Ax(20 ft) 2 Ay(60 ft) 1 (6 kips)(40 ft) 1 (12 kips)(30 ft) 1 (4 kips)(15 ft) 5 0
 20Ax 2 60Ay 1 660 5 0

Free Body: ABC

 1l  oMC 5 0:  2Ax(5 ft) 2 Ay(30 ft) 1 (6 kips)(10 ft) 5 0
 25Ax 2 30Ay 1 60 5 0

Solving the two equations simultaneously, we obtain

 Ax 5 218 kips  Ax 5 18 kips z
 Ay 5 15 kips   Ay 5 5 kipsx

a. Elevation of Points B and D.
Free Body: AB Considering the portion of cable AB as a free body, 
we write

 1l  oMB 5 0:  (18 kips)yB 2 (5 kips)(20 ft) 5 0
yB 5 5.56 ft below A ◀

Free Body: ABCD Using the portion of cable ABCD as a free body, 
we write

 1l  oMD 5 0:
2(18 kips)yD 2 (5 kips)(45 ft) 1 (6 kips)(25 ft) 1 (12 kips)(15 ft) 5 0

yD 5 5.83 ft above A ◀

b. Maximum Slope and Maximum Tension. We observe that the maxi-
mum slope occurs in portion DE. Since the horizontal component of the 
tension is constant and equal to 18 kips, we write

 tan u 5
14 .17
15 ft

 u 5 43.48 ◀

 Tmax 5
18 kips

cos u
 Tmax 5 24.8 kips ◀

SAMPLE PROBLEM 7.8

The cable AE supports three vertical loads from the points indicated. If 
point C is 5 ft below the left support, determine (a) the elevation of points 
B and D, (b) the maximum slope and the maximum tension in the cable.

D

BA C

E

6 kips 12 kips

4 kips
20 ft

5 ft

20 ft 15 ft 15 ft10 ft

yB

yD
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Ay
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Ey
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BA C

E
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18 kips
5 kips
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4 kips
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5.83 ft
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Ex =18 kips
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A
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388

SOLUTION

a. Load P. We denote by C the lowest point of the cable and draw the 
free-body diagram of the portion CB of cable. Assuming the load to be 
uniformly distributed along the horizontal, we write

w 5 (0.75 kg/m)(9.81 m/s2) 5 7.36 N/m

The total load for the portion CB of cable is

W 5 wxB 5 (7.36 N/m)(20 m) 5 147.2 N

and is applied halfway between C and B. Summing moments about B, we 
write

 1l  oMB 5 0: (147.2 N)(10 m) 2 T0(0.5 m) 5 0 T0 5 2944 N

From the force triangle we obtain

 TB 5 2T2
0 1 W2

 5 2(2944 N)2 1 (147.2 N)2 5 2948 N

Since the tension on each side of the pulley is the same, we find

P 5 TB 5 2948 N ◀

b. Slope of Cable at B.  We also obtain from the force triangle

tan u 5
W
T0

5
147.2 N
2944 N

5 0.05

u 5 2.98 ◀

c. Length of Cable. Applying Eq. (7.10) between C and B, we write

 sB 5 xB c 1 1
2
3

 ayB

xB
b2

1 p d
 5 (20 m) c 1 1

2
3

 a0.5 m
20 m

b2

1 p d 5 20.00833 m

The total length of the cable between A and B is twice this value,

Length 5 2sB 5 40.0167 m ◀

SAMPLE PROBLEM 7.9

A light cable is attached to a support at A, passes over a small pulley at B, 
and supports a load P. Knowing that the sag of the cable is 0.5 m and that 
the mass per unit length of the cable is 0.75 kg/m, determine (a) the mag-
nitude of the load P, (b) the slope of the cable at B, (c) the total length of 
the cable from A to B. Since the ratio of the sag to the span is small, assume 
the cable to be parabolic. Also, neglect the weight of the portion of cable 
from B to D.

C
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389

SOLVING PROBLEMS
ON YOUR OWN

In the problems of this section you will apply the equations of equilibrium to 
cables that lie in a vertical plane. We assume that a cable cannot resist bending, 

so that the force of tension in the cable is always directed along the cable.

A. In the first part of this lesson we considered cables subjected to concen-
trated loads. Since the weight of the cable is neglected, the cable is straight 
between loads.

Your solution will consist of the following steps:

1. Draw a free-body diagram of the entire cable showing the loads and the 
horizontal and vertical components of the reaction at each support. Use this free-
body diagram to write the corresponding equilibrium equations.

2. You will be confronted with four unknown components and only three 
equations of equilibrium (see Fig. 7.13). You must therefore find an additional 
piece of information, such as the position of a point on the cable or the slope of 
the cable at a given point.

3. After you have identified the point of the cable where the additional 
information exists, cut the cable at that point, and draw a free-body diagram of 
one of the two portions of the cable you have obtained.
 a. If you know the position of the point where you have cut the cable, writing 
oM 5 0 about that point for the new free body will yield the additional equation 
required to solve for the four unknown components of the reactions [Sample 
Prob. 7.8].
 b. If you know the slope of the portion of the cable you have cut, writing 
oFx 5 0 and oFy 5 0 for the new free body will yield two equilibrium equations 
which, together with the original three, can be solved for the four reaction com-
ponents and for the tension in the cable where it has been cut.

4. To find the elevation of a given point of the cable and the slope and ten-
sion at that point once the reactions at the supports have been found, you should 
cut the cable at that point and draw a free-body diagram of one of the two por-
tions of the cable you have obtained. Writing oM 5 0 about the given point yields 
its elevation. Writing oFx 5 0 and oFy 5 0 yields the components of the tension 
force, from which its magnitude and direction can easily be found.

(continued)
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5. For a cable supporting vertical loads only, you will observe that the hori-
zontal component of the tension force is the same at any point. It follows that, for 
such a cable, the maximum tension occurs in the steepest portion of the cable.

B. In the second portion of this lesson we considered cables carrying a load 
uniformly distributed along the horizontal. The shape of the cable is then 
parabolic.

Your solution will use one or more of the following concepts:

1. Placing the origin of coordinates at the lowest point of the cable and 
directing the x and y axes to the right and upward, respectively, we find that the 
equation of the parabola is

 y 5
wx2

2T0
 (7.8)

The minimum cable tension occurs at the origin, where the cable is horizontal, 
and the maximum tension is at the support where the slope is maximum.

2. If the supports of the cable have the same elevation, the sag h of the cable 
is the vertical distance from the lowest point of the cable to the horizontal line 
joining the supports. To solve a problem involving such a parabolic cable, you 
should write Eq. (7.8) for one of the supports; this equation can be solved for one 
unknown.

3. If the supports of the cable have different elevations, you will have to write 
Eq. (7.8) for each of the supports (see Fig. 7.17).

4. To find the length of the cable from the lowest point to one of the supports, 
you can use Eq. (7.10). In most cases, you will need to compute only the first two 
terms of the series.
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PROBLEMS

 7.93 Three loads are suspended as shown from the cable ABCDE. 
Knowing that dC 5 3 m, determine (a) the components of the 
reaction at E, (b) the maximum tension in the cable.

A

B C

D

E

300 lb

300 lb

200 lb

8 ft 8 ft 8 ft 8 ft

6 ft d C

Fig. P7.95 and P7.96

A

B

C

D

E

d B

2 m 2 m

5 kN

5 kN

10 kN

d C d D 4 m

3 m 3 m

Fig. P7.97 and P7.98

7.94 Knowing that the maximum tension in cable ABCDE is 13 kN, 
determine the distance dC.

 7.95 If dC 5 8 ft, determine (a) the reaction at A, (b) the reaction at E.

7.96 If dC 5 4.5 ft, determine (a) the reaction at A, (b) the reaction 
at E.

 7.97 Knowing that dC 5 3 m, determine (a) the distances dB and dD, 
(b) the reaction at E.

 7.98 Determine (a) distance dC for which portion DE of the cable is 
horizontal, (b) the corresponding reactions at A and E.

 7.99 An oil pipeline is supported at 6-ft intervals by vertical hangers 
attached to the cable shown. Due to the combined weight of the 
pipe and its contents, the tension in each hanger is 400 lb. Know-
ing that dC 5 12 ft, determine (a) the maximum tension in the 
cable, (b) the distance dD.

7.100 Solve Prob. 7.99 assuming that dC 5 9 ft.

A

B
C

F

5 ft
d B

D

d Dd C

E

d E

5 @ 6 ft = 30 ft

Fig. P7.99 and P7.100

2 kN 4 kN
3 kN

A

4 m

B

E

D
C

dC
dDdB

4 m 4 m 4 m

Fig. P7.93 and P7.94
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392 Forces in Beams and Cables  7.101 Knowing that mB 5 70 kg and mC 5 25 kg, determine the mag-
nitude of the force P required to maintain equilibrium.

 7.102 Knowing that mB 5 18 kg and mC 5 10 kg, determine the mag-
nitude of the force P required to maintain equilibrium.

 7.103 Cable ABC supports two loads as shown. Knowing that b 5 21 ft, 
determine (a) the required magnitude of the horizontal force P, 
(b) the corresponding distance a.

P

A

B

C

D

4 m4 m 6 m

3 m
5 m

mB

mC

Fig. P7.101 and P7.102

180 lb

140 lb P

12 ft

9 ft

a
b

A

B

C

Fig. P7.103 and P7.104

P

A

B

C

D

E2 m

2 m

120 kN

Q

4 m 4 m 4 m 4 m

a

Fig. P7.105 and P7.106

 7.104 Cable ABC supports two loads as shown. Determine the distances 
a and b when a horizontal force P of magnitude 200 lb is applied 
at C.

 7.105 If a 5 3 m, determine the magnitudes of P and Q required to 
maintain the cable in the shape shown.

 7.106 If a 5 4 m, determine the magnitudes of P and Q required to 
maintain the cable in the shape shown.

 7.107 A transmission cable having a mass per unit length of 0.8 kg/m is 
strung between two insulators at the same elevation that are 75 m 
apart. Knowing that the sag of the cable is 2 m, determine (a) the 
maximum tension in the cable, (b) the length of the cable.
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393Problems 7.108 The total mass of cable ACB is 20 kg. Assuming that the mass of 
the cable is distributed uniformly along the horizontal, determine 
(a) the sag h, (b) the slope of the cable at A.

 7.109 The center span of the Verrazano-Narrows Bridge consists of two 
uniform roadways suspended from four cables. The uniform 
load  supported by each cable is w 5 10.8 kips/ft along the hori-
zontal. Knowing that the span L is 4260 ft and that the sag h is 
390 ft, determine (a) the maximum tension in each cable, (b) the 
length of each cable.

 7.110 The center span of the Verrazano-Narrows Bridge consists of two 
uniform roadways suspended from four cables. The design of the 
bridge allows for the effect of extreme temperature changes that 
cause the sag of the center span to vary from hw 5 386 ft in winter 
to hs 5 394 ft in summer. Knowing that the span is L 5 4260 ft, 
determine the change in length of the cables due to extreme tem-
perature changes.

 7.111 Each cable of the Golden Gate Bridge supports a load w 5 
11.1 kips/ft along the horizontal. Knowing that the span L is 4150 
ft and that the sag h is 464 ft, determine (a) the maximum tension 
in each cable, (b) the length of each cable.

 7.112 Two cables of the same gauge are attached to a transmission tower 
at B. Since the tower is slender, the horizontal component of the 
resultant of the forces exerted by the cables at B is to be zero. 
Knowing that the mass per unit length of the cables is 0.4 kg/m, 
determine (a) the required sag h, (b) the maximum tension in each 
cable.

A B C

h 3 m

90 m 60 m

Fig. P7.112

A B

C

h

E

D

150 kg

8 m

4.5 m

6 m

Fig. P7.108

h

450 kg

A B

C

2.5 m

2.5 m

3 m

5 m

Fig. P7.115

 7.113 A 50.5-m length of wire having a mass per unit length of 0.75 kg/m 
is used to span a horizontal distance of 50 m. Determine (a) the 
approximate sag of the wire, (b) the maximum tension in the wire. 
[Hint: Use only the first two terms of Eq. (7.10).]

 7.114 A cable of length L 1 D is suspended between two points that are 
at the same elevation and a distance L apart. (a) Assuming that D 
is small compared to L and that the cable is parabolic, determine 
the approximate sag in terms of L and D. (b) If L 5 100 ft and 
D 5 4 ft, determine the approximate sag. [Hint: Use only the first 
two terms of Eq. (7.10).]

 7.115 The total mass of cable AC is 25 kg. Assuming that the mass of 
the cable is distributed uniformly along the horizontal, determine 
the sag h and the slope of the cable at A and C.
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394 Forces in Beams and Cables  7.116 Cable ACB supports a load uniformly distributed along the hori-
zontal as shown. The lowest point C is located 9 m to the right of 
A. Determine (a) the vertical distance a, (b) the length of the cable, 
(c) the components of the reaction at A.

40 ft

A

BC
5 ft
4 ft
4 ft

Fig. P7.118

B

C

A'

A

B' 
C'

P1

P1

P2

P2

P3

P3

Pn

Pn

a
h

L

Fig. P7.119

 *7.119 A cable AB of span L and a simple beam A9B9 of the same span 
are subjected to identical vertical loadings as shown. Show that the 
magnitude of the bending moment at a point C9 in the beam is 
equal to the product T0h, where T0 is the magnitude of the hori-
zontal component of the tension force in the cable and h is the 
vertical distance between point C and the chord joining the points 
of support A and B.

 7.120 through 7.123 Making use of the property established in Prob. 
7.119, solve the problem indicated by first solving the correspond-
ing beam problem.

 7.120 Prob. 7.94.
 7.121 Prob. 7.97a.
 7.122 Prob. 7.99b.
 7.123 Prob. 7.100b.

A

B
1100 ft

496 ft

10.2 kips/ft

C

h = 30 ft

Fig. P7.117

A

C B

2.25 m

60 kg/m

6 m9 m

a

Fig. P7.116

 7.117 Each cable of the side spans of the Golden Gate Bridge supports 
a load w 5 10.2 kips/ft along the horizontal. Knowing that for the 
side spans the maximum vertical distance h from each cable to the 
chord AB is 30 ft and occurs at midspan, determine (a) the maxi-
mum tension in each cable, (b) the slope at B.

 7.118 A steam pipe weighing 45 lb/ft that passes between two buildings 
40 ft apart is supported by a system of cables as shown. Assuming 
that the weight of the cable system is equivalent to a uniformly 
distributed loading of 5 lb/ft, determine (a) the location of the 
lowest point C of the cable, (b) the maximum tension in the cable.
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 *7.124 Show that the curve assumed by a cable that carries a distributed 
load w(x) is defined by the differential equation d2y/dx2 5 w(x)/T0, 
where T0 is the tension at the lowest point.

 *7.125 Using the property indicated in Prob. 7.124, determine the curve 
assumed by a cable of span L and sag h carrying a distributed load 
w 5 w0 cos (px/L), where x is measured from mid-span. Also 
determine the maximum and minimum values of the tension in 
the cable.

 *7.126 If the weight per unit length of the cable AB is w0/cos2 u, prove 
that the curve formed by the cable is a circular arc. (Hint: Use the 
property indicated in Prob. 7.124.)

A B

C D x

y

aa
q

Fig. P7.126

395

*7.10 CATENARY
Let us now consider a cable AB carrying a load uniformly distrib-
uted along the cable itself (Fig. 7.18a). Cables hanging under their 
own weight are loaded in this way. We denote by w the load per 
unit length (measured along the cable) and express it in N/m or in 
lb/ft. The magnitude W of the total load carried by a portion of 
cable of length s extending from the lowest point C to a point D is 
W 5 ws. Substituting this value for W in formula (7.6), we obtain 
the tension at D:

T 5 2T2
0 1 w2s2

In order to simplify the subsequent computations, we introduce the 
constant c 5 T0/w. We thus write

 T0 5 wc   W 5 ws   T 5 w2c2 1 s2 (7.11)

 The free-body diagram of the portion of cable CD is shown in 
Fig. 7.18b. This diagram, however, cannot be used to obtain directly 
the equation of the curve assumed by the cable, since we do not 
know the horizontal distance from D to the line of action of the 
resultant W of the load. To obtain this equation, we first write that 
the horizontal projection of a small element of cable of length ds is 

A

By

C

O c

x

D(x,y)

(a)

ds

dx

q

q

T

T

D

C
W = ws

W = ws

(b) (c)

T0
T0

s
s

dy

Fig. 7.18

7.10 Catenary

Photo 7.4 The forces on the supports and the 
internal forces in the cables of the power line 
shown are discussed in this section.
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396 Forces in Beams and Cables dx 5 ds cos u. Observing from Fig. 7.18c that cos u 5 T0/T and 
using (7.11), we write

dx 5 ds cos u 5
T0

T
 ds 5

wc ds

w2c2 1 s2
5

ds

21 1 s2/c2

Selecting the origin O of the coordinates at a distance c directly 
below C (Fig. 7.18a) and integrating from C(0, c) to D(x, y), we 
obtain†

x 5#
s

0

 
ds

21 1 s2/c2
5 c c sinh21 

s
c
d s

0
5 c sinh21 

s
c

This equation, which relates the length s of the portion of cable CD 
and the horizontal distance x, can be written in the form

 s 5 c sinh 
x
c
 (7.15)

 The relation between the coordinates x and y can now be 
obtained by writing dy 5 dx tan u. Observing from Fig. 7.18c that 
tan u 5 W/T0 and using (7.11) and (7.15), we write

dy 5 dx tan u 5
W
T0

  dx 5
s
c

  dx 5 sinh 
x
c

  dx

Integrating from C(0, c) to D(x, y) and using (7.12) and (7.13), we 
obtain

y 2 c 5#
x

0

 sinh 
x
c

  dx 5 c c cosh 
x
c
d x

0
5 c acosh 

x
c

2 1b
y 2 c 5 c cosh 

x
c

2 c

†This integral can be found in all standard integral tables. The function

 z 5 sinh21 u

(read “arc hyperbolic sine u”) is the inverse of the function u 5 sinh z (read “hyperbolic 
sine z”). This function and the function v 5 cosh z (read “hyperbolic cosine z”) are 
defined as follows:

 u 5 sinh z 5 1
2(ez 2 e2z)  v 5 cosh z 5 1

2(ez 1 e2z)

Numerical values of the functions sinh z and cosh z are found in tables of hyperbolic 
functions. They may also be computed on most calculators either directly or from the 
above definitions. The student is referred to any calculus text for a complete description 
of the properties of these functions. In this section, we use only the following properties, 
which are easily derived from the above definitions:

 
d sinh z

dz
5 cosh z   d cosh z

dz
5 sinh z (7.12)

 sinh 0 5 0  cosh 0 5 1 (7.13)

 cosh2 z 2 sinh2 z 5 1 (7.14)

A

By

C

O c

x

D(x,y)

(a)

q
T W = ws

(c)

T0

s

ds

dx

q

T

D

C
W = ws

(b)

T0

s

dy

Fig. 7.18 (continued )
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397which reduces to

 y 5 c cosh 
x
c
 (7.16)

This is the equation of a catenary with vertical axis. The ordinate c 
of the lowest point C is called the parameter of the catenary. Squar-
ing both sides of Eqs. (7.15) and (7.16), subtracting, and taking (7.14) 
into account, we obtain the following relation between y and s:

 y2 2 s2 5 c2 (7.17)

Solving (7.17) for s2 and carrying into the last of the relations (7.11), 
we write these relations as follows:

 T0 5 wc  W 5 ws  T 5 wy (7.18)

The last relation indicates that the tension at any point D of the cable 
is proportional to the vertical distance from D to the horizontal line 
representing the x axis.
 When the supports A and B of the cable have the same eleva-
tion, the distance L between the supports is called the span of the 
cable and the vertical distance h from the supports to the lowest 
point C is called the sag of the cable. These definitions are the 
same as those given in the case of parabolic cables, but it should 
be noted that because of our choice of coordinate axes, the sag h 
is now

 h 5 yA 2 c (7.19)

It should also be observed that certain catenary problems involve 
transcendental equations which must be solved by successive approx-
imations (see Sample Prob. 7.10). When the cable is fairly taut, how-
ever, the load can be assumed uniformly distributed along the 
horizontal and the catenary can be replaced by a parabola. This 
greatly simplifies the solution of the problem, and the error intro-
duced is small.
 When the supports A and B have different elevations, the posi-
tion of the lowest point of the cable is not known. The problem can 
then be solved in a manner similar to that indicated for parabolic 
cables, by expressing that the cable must pass through the supports 
and that xB 2 xA 5 L and yB 2 yA 5 d, where L and d denote, 
respectively, the horizontal and vertical distances between the two 
supports.

7.10 Catenary
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398

SOLUTION

Equation of Cable. The origin of coordinates is placed at a distance c 
below the lowest point of the cable. The equation of the cable is given by 
Eq. (7.16),

y 5 c cosh 
x
c

The coordinates of point B are

xB 5 250 ft  yB 5 100 1 c

Substituting these coordinates into the equation of the cable, we obtain

 100 1 c 5 c cosh 
250

c

 
100

c
1 1 5 cosh 

250
c

The value of c is determined by assuming successive trial values, as shown 
in the following table:

SAMPLE PROBLEM 7.10

A uniform cable weighing 3 lb/ft is suspended between two points A and B 
as shown. Determine (a) the maximum and minimum values of the tension 
in the cable, (b) the length of the cable.

A B

100 ft

500 ft

xB

yB

y

xO

c

A

C

B

c 
250

c
 

100
c

 
100

c
1 1 cosh 

250
c

300 0.833 0.333 1.333 1.367
350 0.714 0.286 1.286 1.266
330 0.758 0.303 1.303 1.301
328 0.762 0.305 1.305 1.305

Taking c 5 328, we have

yB 5 100 1 c 5 428 ft

a. Maximum and Minimum Values of the Tension. Using Eqs. (7.18), 
we obtain

 Tmin 5 T0 5 wc 5 (3 lb/ft)(328 ft) Tmin 5 984 lb ◀

 Tmax 5 TB 5 wyB 5 (3 lb/ft)(428 ft)  Tmax 5 1284 lb ◀

b. Length of Cable. One-half the length of the cable is found by solving 
Eq. (7.17):

y2
B 2 s2

CB 5 c2  s2
CB 5 y2

B 2 c2 5 (428)2 2 (328)2  sCB 5 275 ft

The total length of the cable is therefore

 sAB 5 2sCB 5 2(275 ft) sAB 5 550 ft ◀
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399

SOLVING PROBLEMS
ON YOUR OWN

In the last section of this chapter you learned to solve problems involving a cable 
carrying a load uniformly distributed along the cable. The shape assumed by 

the cable is a catenary and is defined by the equation:

y 5 c cosh 
x
c
 (7.16)

1. You should keep in mind that the origin of coordinates for a catenary is 
located at a distance c directly below the lowest point of the catenary. The 
length of the cable from the origin to any point is expressed as

s 5 c sinh 
x
c
 (7.15)

2. You should first identify all of the known and unknown quantities. Then 
consider each of the equations listed in the text (Eqs. 7.15 through 7.19), and solve 
an equation that contains only one unknown. Substitute the value found into 
another equation, and solve that equation for another unknown.

3. If the sag h is given, use Eq. (7.19) to replace y by h 1 c in Eq. (7.16) if x
is known [Sample Prob. 7.10], or in Eq. (7.17) if s is known, and solve the equa-
tion obtained for the constant c.

4. Many of the problems that you will encounter will involve the solution by 
trial and error of an equation involving a hyperbolic sine or cosine. You can make 
your work easier by keeping track of your calculations in a table, as in Sample 
Prob. 7.10, or by applying a numerical methods approach using a computer or 
calculator.
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400

PROBLEMS

 7.127 A 20-m chain of mass 12 kg is suspended between two points at 
the same elevation. Knowing that the sag is 8 m, determine (a) the 
distance between the supports, (b) the maximum tension in the 
chain.

7.128 A 600-ft-long aerial tramway cable having a weight per unit length 
of 3.0 lb/ft is suspended between two points at the same elevation. 
Knowing that the sag is 150 ft, find (a) the horizontal distance 
between the supports, (b) the maximum tension in the cable.

 7.129 A 40-m cable is strung as shown between two buildings. The maxi-
mum tension is found to be 350 N, and the lowest point of the 
cable is observed to be 6 m above the ground. Determine (a) the 
horizontal distance between the buildings, (b) the total mass of the 
cable.

A
B

C

P

h

L

Fig. P7.131, P7.132, and P7.133

A B

C14 m

L

6 m

Fig. P7.129

7.130 A 200-ft steel surveying tape weighs 4 lb. If the tape is stretched 
between two points at the same elevation and pulled until the 
tension at each end is 16 lb, determine the horizontal distance 
between the ends of the tape. Neglect the elongation of the tape 
due to the tension.

7.131 A 20-m length of wire having a mass per unit length of 0.2 kg/m 
is attached to a fixed support at A and to a collar at B. Neglecting 
the effect of friction, determine (a) the force P for which h 5 8 m, 
(b) the corresponding span L.

 7.132 A 20-m length of wire having a mass per unit length of 0.2 kg/m 
is attached to a fixed support at A and to a collar at B. Knowing 
that the magnitude of the horizontal force applied to the collar is 
P 5 20 N, determine (a) the sag h, (b) the span L.

7.133 A 20-m length of wire having a mass per unit length of 0.2 kg/m 
is attached to a fixed support at A and to a collar at B. Neglecting 
the effect of friction, determine (a) the sag h for which L 5 15 m, 
(b) the corresponding force P.

 7.134 Determine the sag of a 30-ft chain that is attached to two points 
at the same elevation that are 20 ft apart.
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401Problems 7.135 A 10-ft rope is attached to two supports A and B as shown. Deter-
mine (a) the span of the rope for which the span is equal to the 
sag, (b) the corresponding angle uB.

 7.136 A 90-m wire is suspended between two points at the same elevation 
that are 60 m apart. Knowing that the maximum tension is 300 N, 
determine (a) the sag of the wire, (b) the total mass of the wire.

 7.137 A cable weighing 2 lb/ft is suspended between two points at the same 
elevation that are 160 ft apart. Determine the smallest allowable sag 
of the cable if the maximum tension is not to exceed 400 lb.

 7.138 A uniform cord 50 in. long passes over a pulley at B and is attached 
to a pin support at A. Knowing that L 5 20 in. and neglecting the 
effect of friction, determine the smaller of the two values of h for 
which the cord is in equilibrium.

A B

C

M

h

10 m

Fig. P7.139 and P7.140

A B

h

L

Fig. P7.138

A B

C

qB

h

L

Fig. P7.135

A

B P

qA

a

b

Fig. P7.143 and P7.144

 7.144 A uniform cable weighing 3 lb/ft is held in the position shown by 
a horizontal force P applied at B. Knowing that P 5 150 lb and 
uA 5 608, determine (a) the location of point B, (b) the length of 
the cable.

A

B

Ca

12 m

1.8 m

Fig. P7.141 and P7.142

 7.139 A motor M is used to slowly reel in the cable shown. Knowing that 
the mass per unit length of the cable is 0.4 kg/m, determine the 
maximum tension in the cable when h 5 5 m.

 7.140 A motor M is used to slowly reel in the cable shown. Knowing that 
the mass per unit length of the cable is 0.4 kg/m, determine the 
maximum tension in the cable when h 5 3 m.

 7.141 The cable ACB has a mass per unit length of 0.45 kg/m. Knowing 
that the lowest point of the cable is located at a distance a 5 0.6 m 
below the support A, determine (a) the location of the lowest 
point C, (b) the maximum tension in the cable.

 7.142 The cable ACB has a mass per unit length of 0.45 kg/m. Knowing 
that the lowest point of the cable is located at a distance a 5 2 m 
below the support A, determine (a) the location of the lowest 
point C, (b) the maximum tension in the cable.

 7.143 A uniform cable weighing 3 lb/ft is held in the position shown by a 
horizontal force P applied at B. Knowing that P 5 180 lb and uA 5 
608, determine (a) the location of point B, (b) the length of the cable.
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402 Forces in Beams and Cables  7.145 To the left of point B the long cable ABDE rests on the rough 
horizontal surface shown. Knowing that the mass per unit length 
of the cable is 2 kg/m, determine the force F when a 5 3.6 m.

A

B

a
q = 30°

Fig. P7.147

qA qBA B

h

L

Fig. P7.151, P7.152, and P7.153

 *7.148 Solve Prob. 7.147 assuming that the angle u formed by the rod and 
the horizontal is 458.

 7.149 Denoting by u the angle formed by a uniform cable and the hori-
zontal, show that at any point (a) s 5 c tan u, (b) y 5 c sec u.

 *7.150 (a) Determine the maximum allowable horizontal span for a uniform 
cable of weight per unit length w if the tension in the cable is not 
to exceed a given value Tm. (b) Using the result of part a, determine 
the maximum span of a steel wire for which w 5 0.25 lb/ft and 
Tm 5 8000 lb.

 *7.151 A cable has a mass per unit length of 3 kg/m and is supported as 
shown. Knowing that the span L is 6 m, determine the two values 
of the sag h for which the maximum tension is 350 N.

 *7.152 Determine the sag-to-span ratio for which the maximum tension 
in the cable is equal to the total weight of the entire cable AB.

 *7.153 A cable of weight per unit length w is suspended between two 
points at the same elevation that are a distance L apart. Determine 
(a) the sag-to-span ratio for which the maximum tension is as small 
as possible, (b) the corresponding values of uB and Tm.

D

A B

E F

h = 4 m

a

Fig. P7.145 and P7.146

 7.146 To the left of point B the long cable ABDE rests on the rough 
horizontal surface shown. Knowing that the mass per unit length 
of the cable is 2 kg/m, determine the force F when a 5 6 m.

 *7.147 The 10-ft cable AB is attached to two collars as shown. The collar 
at A can slide freely along the rod; a stop attached to the rod 
prevents the collar at B from moving on the rod. Neglecting the 
effect of friction and the weight of the collars, determine the dis-
tance a.
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403

REVIEW AND SUMMARY

In this chapter you learned to determine the internal forces which 
hold together the various parts of a given member in a structure.

Considering first a straight two-force member AB [Sec. 7.2], we 
recall that such a member is subjected at A and B to equal and 
opposite forces F and 2F directed along AB (Fig. 7.19a). Cutting 
member AB at C and drawing the free-body diagram of portion AC, 
we conclude that the internal forces which existed at C in member 
AB are equivalent to an axial force 2F equal and opposite to F 
(Fig. 7.19b). We note that in the case of a two-force member which 
is not straight, the internal forces reduce to a force-couple system 
and not to a single force.

Forces in straight two-force members

Fig. 7.20

FBE

Cx

Ay

Ax

Cy

T

A

B

C

D

J

(a)

V

M
F

T

D

J

(b)

Fig. 7.19

(a) (b)

C

A

B

F

– F

– F

C

A

F

Considering next a multiforce member AD (Fig. 7.20a), cutting it at 
J, and drawing the free-body diagram of portion JD, we conclude that 
the internal forces at J are equivalent to a force-couple system con-
sisting of the axial force F, the shearing force V, and a couple M 
(Fig. 7.20b). The magnitude of the shearing force measures the shear 
at point J, and the moment of the couple is referred to as the bending 
moment at J. Since an equal and opposite force-couple system would 
have been obtained by considering the free-body diagram of portion 
AJ, it is necessary to specify which portion of member AD was used 
when recording the answers [Sample Prob. 7.1].

Most of the chapter was devoted to the analysis of the internal forces 
in two important types of engineering structures: beams and cables. 
Beams are usually long, straight prismatic members designed to sup-
port loads applied at various points along the member. In general 
the loads are perpendicular to the axis of the beam and produce only 
shear and bending in the beam. The loads may be either  concentrated

Forces in beams

Forces in multiforce members
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404 Forces in Beams and Cables at specific points, or distributed along the entire length or a portion 
of the beam. The beam itself may be supported in various ways; since 
only statically determinate beams are considered in this text, we lim-
ited our analysis to that of simply supported beams, overhanging 
beams, and cantilever beams [Sec. 7.3].

To obtain the shear V and bending moment M at a given point C of 
a beam, we first determine the reactions at the supports by consider-
ing the entire beam as a free body. We then cut the beam at C and 
use the free-body diagram of one of the two portions obtained in 
this fashion to determine V and M. In order to avoid any confusion 
regarding the sense of the shearing force V and couple M (which 
act in opposite directions on the two portions of the beam), the sign 
convention illustrated in Fig. 7.21 was adopted [Sec. 7.4]. Once the 
values of the shear and bending moment have been determined at 
a few selected points of the beam, it is usually possible to draw a 
shear diagram and a bending-moment diagram representing, respec-
tively, the shear and bending moment at any point of the beam 
[Sec. 7.5]. When a beam is subjected to concentrated loads only, the 
shear is of constant value between loads and the bending moment 
varies linearly between loads [Sample Prob. 7.2]. On the other hand, 
when a beam is subjected to distributed loads, the shear and bending 
moment vary quite differently [Sample Prob. 7.3].

The construction of the shear and bending-moment diagrams is 
facilitated if the following relations are taken into account. Denoting 
by w the distributed load per unit length (assumed positive if directed 
downward), we have [Sec. 7.5]:

  
dV
dx

5 2w (7.1)

  
dM
dx

5 V  (7.3)

or, in integrated form,

 VD 2 VC 5 2(area under load curve between C and D) (7.29)
 MD 2 MC 5 area under shear curve between C and D (7.49)

Equation (7.29) makes it possible to draw the shear diagram of a 
beam from the curve representing the distributed load on that beam 
and the value of V at one end of the beam. Similarly, Eq. (7.49) 
makes it possible to draw the bending-moment diagram from the 
shear diagram and the value of M at one end of the beam. However, 
concentrated loads introduce discontinuities in the shear diagram 
and concentrated couples in the bending-moment diagram, none of 
which are accounted for in these equations [Sample Probs. 7.4 and 
7.7]. Finally, we note from Eq. (7.3) that the points of the beam 
where the bending moment is maximum or minimum are also the 
points where the shear is zero [Sample Prob. 7.5].

The second half of the chapter was devoted to the analysis of flexible 
cables. We first considered a cable of negligible weight supporting 
concentrated loads [Sec. 7.7]. Using the entire cable AB as a free 

Shear and bending moment 
in a beam

Relations among load, shear,
and bending moment

Cables with concentrated loads

Fig. 7.21

M

V
M'

V'

Internal forces at section
(positive shear and positive bending moment)
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405body (Fig. 7.22), we noted that the three available equilibrium equa-
tions were not sufficient to determine the four unknowns represent-
ing the reactions at the supports A and B. However, if the coordinates 
of a point D of the cable are known, an additional equation can be 
obtained by considering the free-body diagram of the portion AD or 
DB of the cable. Once the reactions at the supports have been deter-
mined, the elevation of any point of the cable and the tension in any 
portion of the cable can be found from the appropriate free-body 
diagram [Sample Prob. 7.8]. It was noted that the horizontal com-
ponent of the force T representing the tension is the same at any 
point of the cable.

We next considered cables carrying distributed loads [Sec. 7.8]. 
Using as a free body a portion of cable CD extending from the lowest 
point C to an arbitrary point D of the cable (Fig. 7.23), we observed 
that the horizontal component of the tension force T at D is constant 
and equal to the tension T0 at C, while its vertical component is equal 
to the weight W of the portion of cable CD. The magnitude and 
direction of T were obtained from the force triangle:

 T 5 2T2
0 1 W2        tan u 5

W
T0

 (7.6)

In the case of a load uniformly distributed along the horizontal—as 
in a suspension bridge (Fig. 7.24)—the load supported by portion 
CD is W 5 wx, where w is the constant load per unit horizontal 
length [Sec. 7.9]. We also found that the curve formed by the cable 
is a parabola of equation

 y 5
wx2

2T0
 (7.8)

and that the length of the cable can be found by using the expansion 
in series given in Eq. (7.10) [Sample Prob. 7.9].

In the case of a load uniformly distributed along the cable itself—
e.g., a cable hanging under its own weight (Fig. 7.25)—the load 
supported by portion CD is W 5 ws, where s is the length measured 
along the cable and w is the constant load per unit length [Sec. 7.10]. 
Choosing the origin O of the coordinate axes at a distance c 5 T0/w 
below C, we derived the relations

 s 5 c sinh 
x
c
 (7.15)

 y 5 c cosh 
x
c
 (7.16)

 y2 2 s2 5 c2 (7.17)
 T0 5 wc   W 5 ws   T 5 wy (7.18)

which can be used to solve problems involving cables hanging under 
their own weight [Sample Prob. 7.10]. Equation (7.16), which defines 
the shape of the cable, is the equation of a catenary.

Cables with distributed loads

Parabolic cable

Catenary

Fig. 7.22

A x

Ay

A

Bx

By

C1

C2

C3

D

P1

P2 P3

B

L

d

x1

x2

x3

Fig. 7.23
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Fig. 7.24
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Review and Summary
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406

REVIEW PROBLEMS

 7.154 Determine the internal forces at point J of the structure shown.

 7.155 Determine the internal forces at point K of the structure shown.

 7.156 An archer aiming at a target is pulling with a 45-lb force on the 
bowstring. Assuming that the shape of the bow can be approxi-
mated by a parabola, determine the internal forces at point J.

 7.157 Knowing that the radius of each pulley is 200 mm and neglecting 
friction, determine the internal forces at point J of the frame 
shown.

 7.158 For the beam shown, determine (a) the magnitude P of the two 
upward forces for which the maximum absolute value of the bend-
ing moment in the beam is as small as possible, (b) the correspond-
ing value of |M|max.

A

B

C D

J

K
60 mm
60 mm

135 mm
400 N

225 mm

225 mm

240 mm

Fig. P7.154 and P7.155

B

A

J

C

D

24 in.
8 in.

16 in.

16 in.

32 in.

Fig. P7.156

0.2 m
0.8 m 0.8 m 0.8 m

A

B
C

D

K

J

E

360 N

1 m

1.8 m

Fig. P7.157

2 ft 2 ft2 ft2 ft2 ft

A B
C D E F

PP
60 kips 60 kips

Fig. P7.158
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407Review Problems 7.159 and 7.160 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the maximum abso-
lute values of the shear and bending moment.

 7.161 For the beam and loading shown, (a) draw the shear and bending-
moment diagrams, (b) determine the magnitude and location of 
the maximum absolute value of the bending moment.

 7.162 The beam AB, which lies on the ground, supports the parabolic load 
shown. Assuming the upward reaction of the ground to be uniformly 
distributed, (a) write the equations of the shear and bending-moment 
curves, (b) determine the maximum bending moment.

 7.163 Two loads are suspended as shown from the cable ABCD. Knowing 
that dB 5 1.8 m, determine (a) the distance dC, (b) the components 
of the reaction at D, (c) the maximum tension in the cable.

 7.164 A wire having a mass per unit length of 0.65 kg/m is suspended 
from two supports at the same elevation that are 120 m apart. If 
the sag is 30 m, determine (a) the total length of the wire, (b) the 
maximum tension in the wire.

 7.165 A counterweight D is attached to a cable that passes over a small 
pulley at A and is attached to a support at B. Knowing that L 5 45 ft 
and h 5 15 ft, determine (a) the length of the cable from A to B, 
(b) the weight per unit length of the cable. Neglect the weight of the 
cable from A to D.

3.2 m
0.8 m

2 kN/m

4 kN

A
B

C

Fig. P7.159

A B
C D E

2 kips 4 kips3 kips

6 ft6 ft6 ft6 ft

6 kip⋅ft 12 kip⋅ft

Fig. P7.160

6 ft4 ft
6000 lb

A
B

C

1500 lb/ft

Fig. P7.161

A B

w

L

x

w0
w =   L x – x2

4w0

L2 (       )

Fig. P7.162

B
C

DA

6 kN
10 kN

3 m 3 m 4 m

dB dC

Fig. P7.163

A B

C

D h

80 lb

L

Fig. P7.165

bee02286_ch07_352-409.indd Page 407  7/21/11  5:22 PM user-f494bee02286_ch07_352-409.indd Page 407  7/21/11  5:22 PM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


408

COMPUTER PROBLEMS

 7.C1 An overhanging beam is to be designed to support several concen-
trated loads. One of the first steps in the design of the beam is to determine 
the values of the bending moment that can be expected at the supports 
A and B and under each of the concentrated loads. Write a computer pro-
gram that can be used to calculate those values for the arbitrary beam and 
loading shown. Use this program for the beam and loading of (a) Prob. 7.36, 
(b) Prob. 7.37, (c) Prob. 7.38.

 7.C2 Several concentrated loads and a uniformly distributed load are to be 
applied to a simply supported beam AB. As a first step in the design of the 
beam, write a computer program that can be used to calculate the shear and 
bending moment in the beam for the arbitrary loading shown using given 
increments Dx. Use this program for the beam of (a) Prob. 7.39, with Dx 5 
0.25 m; (b) Prob. 7.41, with Dx 5 0.5 ft; (c) Prob. 7.42, with Dx 5 0.5 ft.

A B

P1 P2 PnPi

b
a

w

ci

L

Fig. P7.C2

PnPiP2P1

A B

b

ci

a L

Fig. P7.C1

A
BC

a

D

5 m 5 m
20 kN/m

Fig. P7.C3

 7.C3 A beam AB hinged at B and supported by a roller at D is to 
be designed to carry a load uniformly distributed from its end A to its 
midpoint C with maximum efficiency. As part of the design process, write 
a computer program that can be used to determine the distance a from end 
A to the point D where the roller should be placed to minimize the absolute 
value of the bending moment M in the beam. (Note: A short preliminary 
analysis will show that the roller should be placed under the load and 
that the largest negative value of M will occur at D, while its largest posi-
tive value will occur somewhere between D and C. Also see the hint for 
Prob. 7.55.)
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409Computer Problems 7.C4 The floor of a bridge will consist of narrow planks resting on two 
simply supported beams, one of which is shown in the figure. As part of the 
design of the bridge, it is desired to simulate the effect that driving a 3000-lb 
truck over the bridge will have on this beam. The distance between the 
truck’s axles is 6 ft, and it is assumed that the weight of the truck is equally 
distributed over its four wheels. (a) Write a computer program that can be 
used to calculate the magnitude and location of the maximum bending 
moment in the beam for values of x from 23 ft to 10 ft using 0.5-ft 
 increments. (b) Using smaller increments if necessary, determine the largest 
value of the bending moment that occurs in the beam as the truck is driven 
over the bridge and determine the corresponding value of x.

P1 P2
Pk

Pk + 1

Ak + 1

A0

A1
A2

Ak

Pn – 1

A n – 1

A n

h0
hk

d2

dk

dn

d1

Fig. P7.C7

A B

3 ft 3 ft

750 lb750 lb
x

20 ft

Fig. P7.C4

A B

L

h

Fig. P7.C8

 *7.C5 Write a computer program that can be used to plot the shear and 
bending-moment diagrams for the beam of Prob. 7.C1. Using this program 
and a plotting increment Dx # L/100, plot the V and M diagrams for the 
beam and loading of (a) Prob. 7.36, (b) Prob. 7.37, (c) Prob. 7.38.

 *7.C6 Write a computer program that can be used to plot the shear and 
bending-moment diagrams for the beam of Prob. 7.C2. Using this program 
and a plotting increment Dx # L/100, plot the V and M diagrams for the 
beam and loading of (a) Prob. 7.39, (b) Prob. 7.41, (c) Prob. 7.42.

 7.C7 Write a computer program that can be used in the design of cable sup-
ports to calculate the horizontal and vertical components of the reaction at the 
support An from values of the loads P1, P2, . . ., Pn21, the horizontal distances 
d1, d2, . . ., dn, and the two vertical distances h0 and hk. Use this program to 
solve Probs. 7.95b, 7.96b, and 7.97b.

 7.C8 A typical transmission-line installation consists of a cable of length 
sAB and weight w per unit length suspended as shown between two points 
at the same elevation. Write a computer program and use it to develop a 
table that can be used in the design of future installations. The table should 
pre sent the dimensionless quantities h/L, sAB/L, T0/wL, and Tmax/wL for 
values of c/L from 0.2 to 0.5 using 0.025 increments and from 0.5 to 4 using 
0.5 increments.

 7.C9 Write a computer program and use it to solve Prob. 7.132 for values 
of P from 0 to 50 N using 5-N increments.
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The tractive force that a railroad 

 locomotive can develop depends upon 

the frictional resistance between the 

drive wheels and the rails. When the 

 potential exists for wheel slip to occur, 

such as when a train travels upgrade 

over wet rails, sand is deposited on top 

of the railhead to increase this friction.
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412

8.1 INTRODUCTION
In the preceding chapters, it was assumed that surfaces in contact 
were either frictionless or rough. If they were frictionless, the force 
each surface exerted on the other was normal to the surfaces and 
the two surfaces could move freely with respect to each other. If they 
were rough, it was assumed that tangential forces could develop to 
prevent the motion of one surface with respect to the other.
 This view was a simplified one. Actually, no perfectly friction-
less surface exists. When two surfaces are in contact, tangential 
forces, called friction forces, will always develop if one attempts to 
move one surface with respect to the other. On the other hand, these 
friction forces are limited in magnitude and will not prevent motion 
if sufficiently large forces are applied. The distinction between fric-
tionless and rough surfaces is thus a matter of degree. This will be 
seen more clearly in the present chapter, which is devoted to the 
study of friction and of its applications to common engineering 
situations.
 There are two types of friction: dry friction, sometimes called 
Coulomb friction, and fluid friction. Fluid friction develops between 
layers of fluid moving at different velocities. Fluid friction is of 
great importance in problems involving the flow of fluids through 
pipes and orifices or dealing with bodies immersed in moving 
 fluids. It is also basic in the analysis of the motion of lubricated 
mechanisms. Such problems are considered in texts on fluid 
mechanics. The present study is limited to dry friction, i.e., to prob-
lems involving rigid bodies which are in contact along nonlubri-
cated surfaces.
 In the first part of this chapter, the equilibrium of various rigid 
bodies and structures, assuming dry friction at the surfaces of con-
tact, is analyzed. Later a number of specific engineering applications 
where dry friction plays an important role are considered: wedges, 
square-threaded screws, journal bearings, thrust bearings, rolling 
resistance, and belt friction.

8.2  THE LAWS OF DRY FRICTION. 
COEFFICIENTS OF FRICTION

The laws of dry friction are exemplified by the following experiment. 
A block of weight W is placed on a horizontal plane surface 
(Fig. 8.1a). The forces acting on the block are its weight W and the 
reaction of the surface. Since the weight has no horizontal component, 
the reaction of the surface also has no horizontal component; the 
reaction is therefore normal to the surface and is represented by N 
in Fig. 8.1a. Suppose, now, that a horizontal force P is applied to the 
block (Fig. 8.1b). If P is small, the block will not move; some other 
horizontal force must therefore exist, which balances P. This other 
force is the static-friction force F, which is actually the resultant of 
a great number of forces acting over the entire surface of contact 
between the block and the plane. The nature of these forces is not 
known exactly, but it is generally assumed that these forces are due 

 Chapter 8 Friction
 8.1 Introduction
 8.2 The Laws of Dry Friction. 

Coefficients of Friction
 8.3 Angles of Friction
 8.4 Problems Involving Dry Friction
 8.5 Wedges
 8.6 Square-Threaded Screws
 8.7 Journal Bearings. Axle Friction
 8.8 Thrust Bearings. Disk Friction
 8.9 Wheel Friction. Rolling Resistance
 8.10 Belt Friction
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413to the irregularities of the surfaces in contact and, to a certain extent, 
to molecular attraction.
 If the force P is increased, the friction force F also increases, 
continuing to oppose P, until its magnitude reaches a certain maxi-
mum value Fm (Fig. 8.1c). If P is further increased, the friction force 

W

N

P

(a)

F

P

Fm

Fk

Equilibrium Motion

A B

W

N

(b) (c)

A B

F

Fig. 8.1

cannot balance it any more and the block starts sliding.† As soon as 
the block has been set in motion, the magnitude of F drops from Fm 
to a lower value Fk. This is because there is less interpenetration 
between the irregularities of the surfaces in contact when these sur-
faces move with respect to each other. From then on, the block 
keeps sliding with increasing velocity while the friction force, denoted 
by Fk and called the kinetic-friction force, remains approximately 
constant.
 Experimental evidence shows that the maximum value Fm of 
the static-friction force is proportional to the normal component N 
of the reaction of the surface. We have

 Fm 5 msN (8.1)

where ms is a constant called the coefficient of static friction. Simi-
larly, the magnitude Fk of the kinetic-friction force may be put in 
the form

 Fk 5 mkN (8.2)

where mk is a constant called the coefficient of kinetic friction. The 
coefficients of friction ms and mk do not depend upon the area of 

†It should be noted that, as the magnitude F of the friction force increases from 0 to 
Fm, the point of application A of the resultant N of the normal forces of contact moves 
to the right, so that the couples formed, respectively, by P and F and by W and N 
remain balanced. If N reaches B before F reaches its maximum value Fm, the block 
will tip about B before it can start sliding (see Probs. 8.15 through 8.18).

8.2 The Laws of Dry Friction. 
Coeffi cients of Friction
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414 Friction the surfaces in contact. Both coefficients, however, depend strongly on 
the nature of the surfaces in contact. Since they also depend upon the 
exact condition of the surfaces, their value is seldom known with an 
accuracy greater than 5 percent. Approximate values of coefficients of 
static friction for various dry surfaces are given in Table 8.1. The cor-
responding values of the coefficient of kinetic friction would be about 
25 percent smaller. Since coefficients of friction are dimensionless 
quantities, the values given in Table 8.1 can be used with both SI units 
and U.S. customary units.

TABLE 8.1 Approximate
Values of Coefficient of 
Static Friction for Dry 
Surfaces

Metal on metal 0.15–0.60
Metal on wood 0.20–0.60
Metal on stone 0.30–0.70
Metal on leather 0.30–0.60
Wood on wood 0.25–0.50
Wood on leather 0.25–0.50
Stone on stone 0.40–0.70
Earth on earth 0.20–1.00
Rubber on concrete 0.60–0.90

 From the description given above, it appears that four different 
situations can occur when a rigid body is in contact with a horizontal 
surface:

 1. The forces applied to the body do not tend to move it along 
the surface of contact; there is no friction force (Fig. 8.2a).

 2. The applied forces tend to move the body along the surface 
of contact but are not large enough to set it in motion. The 
friction force F which has developed can be found by solv-
ing the equations of equilibrium for the body. Since there is 
no evidence that F has reached its maximum value, the equa-
tion Fm 5 msN cannot be used to determine the friction force 
(Fig. 8.2b).

 3. The applied forces are such that the body is just about to slide. 
We say that motion is impending. The friction force F has 
reached its maximum value Fm and, together with the normal 
force N, balances the applied forces. Both the equations of 
equilibrium and the equation Fm 5 msN can be used. We also 
note that the friction force has a sense opposite to the sense of 
impending motion (Fig. 8.2c).

 4. The body is sliding under the action of the applied forces, 
and the equations of equilibrium do not apply any more. 
 However, F is now equal to Fk and the equation Fk 5 mkN may 
be used. The sense of Fk is opposite to the sense of motion 
(Fig. 8.2d).

W

P

N

F = 0

Py

Px

F = Px

N = Py + W
F <    sN

N = P + W

(a) No friction (Px = 0)

WP

N

F

(b) No motion (Px < Fm)

Py

Px

Fm = Px

N = Py + W
Fm =    sN

WP

N

Fm

(c) Motion impending              (Px = Fm)

Py

Px

Fk < Px

N = Py + W
Fk =    kN

WP

N

Fk

(d) Motion             (Px > Fm)

µ

µ

µ

Fig. 8.2
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4158.3 ANGLES OF FRICTION
It is sometimes convenient to replace the normal force N and the 
friction force F by their resultant R. Let us consider again a block 
of weight W resting on a horizontal plane surface. If no horizontal 
force is applied to the block, the resultant R reduces to the normal 
force N (Fig. 8.3a). However, if the applied force P has a horizontal 
component Px which tends to move the block, the force R will have 
a horizontal component F and, thus, will form an angle f with the 
normal to the surface (Fig. 8.3b). If Px is increased until motion 
becomes impending, the angle between R and the vertical grows and 
reaches a maximum value (Fig. 8.3c). This value is called the angle 
of static friction and is denoted by fs. From the geometry of Fig. 8.3c, 
we note that

tan fs 5
Fm

N
5

msN
N

 tan fs 5 ms (8.3)

 If motion actually takes place, the magnitude of the friction 
force drops to Fk; similarly, the angle f between R and N drops to 
a lower value fk, called the angle of kinetic friction (Fig. 8.3d). From 
the geometry of Fig. 8.3d, we write

tan fk 5
Fk

N
5

mkN
N

 tan fk 5 mk (8.4)

 Another example will show how the angle of friction can be 
used to advantage in the analysis of certain types of problems. Con-
sider a block resting on a board and subjected to no other force than 
its weight W and the reaction R of the board. The board can be 
given any desired inclination. If the board is horizontal, the force R 
exerted by the board on the block is perpendicular to the board and 
balances the weight W (Fig. 8.4a). If the board is given a small angle 
of inclination u, the force R will deviate from the perpendicular to 
the board by the angle u and will keep balancing W (Fig. 8.4b); it 
will then have a normal component N of magnitude N 5 W cos u 
and a tangential component F of magnitude F 5 W sin u.
 If we keep increasing the angle of inclination, motion will soon 
become impending. At that time, the angle between R and the nor-
mal will have reached its maximum value fs (Fig. 8.4c). The value 
of the angle of inclination corresponding to impending motion is 
called the angle of repose. Clearly, the angle of repose is equal to 
the angle of static friction fs. If the angle of inclination u is further 
increased, motion starts and the angle between R and the normal 
drops to the lower value fk (Fig. 8.4d). The reaction R is not vertical 
any more, and the forces acting on the block are unbalanced.

8.3 Angles of Friction

R = N

P

P

(a) No friction

(b) No motion

(c) Motion impending

(d ) Motion

f < fs

P

R
N

Fk < Px

R
N

Fm = Px

RN

F = Px

Px

Py

Px

Py

Py

Px

P W

W

W

W

f = fs

f = fk

Fig. 8.3
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416 Friction

8.4 PROBLEMS INVOLVING DRY FRICTION
Problems involving dry friction are found in many engineering appli-
cations. Some deal with simple situations such as the block sliding 
on a plane described in the preceding sections. Others involve more 
complicated situations as in Sample Prob. 8.3; many deal with the 
stability of rigid bodies in accelerated motion and will be studied in 
dynamics. Also, a number of common machines and mechanisms can 
be analyzed by applying the laws of dry friction. These include 
wedges, screws, journal and thrust bearings, and belt transmissions. 
They will be studied in the following sections.
 The methods which should be used to solve problems involving 
dry friction are the same that were used in the preceding chapters. 
If a problem involves only a motion of translation, with no possible 
rotation, the body under consideration can usually be treated as a 
particle, and the methods of Chap. 2 used. If the problem involves 
a possible rotation, the body must be considered as a rigid body, and 
the methods of Chap. 4 should be used. If the structure considered 
is made of several parts, the principle of action and reaction must 
be used as was done in Chap. 6.
 If the body considered is acted upon by more than three forces 
(including the reactions at the surfaces of contact), the reaction at 
each surface will be represented by its components N and F and the 
problem will be solved from the equations of equilibrium. If only 
three forces act on the body under consideration, it may be more 
convenient to represent each reaction by the single force R and to 
solve the problem by drawing a force triangle.
 Most problems involving friction fall into one of the following 
three groups: In the first group of problems, all applied forces are 
given and the coefficients of friction are known; we are to determine 
whether the body considered will remain at rest or slide. The friction 
force F required to maintain equilibrium is unknown (its magnitude 
is not equal to msN) and should be determined, together with the 
normal force N, by drawing a free-body diagram and solving the 
equations of equilibrium (Fig. 8.5a). The value found for the magni-
tude F of the friction force is then compared with the maximum 
value Fm 5 msN. If F is smaller than or equal to Fm, the body remains 
at rest. If the value found for F is larger than Fm, equilibrium cannot 

W

R

W
W

(a) No friction (b) No motion

q = 0
q < fs R

R R

W

q

q

(c) Motion impending (d ) Motion

q = fs = angle of repose

W sin q

W cos q

F = W sin q

N = W cos q
N = W cos q

q

Fm = W sin q Fk < W sin qq > fs

N = W cos q

q

q = fs

fk

Fig. 8.4

Photo 8.1 The coefficient of static friction 
between a package and the inclined conveyer 
belt must be sufficiently large to enable the 
package to be transported without slipping.
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417be maintained and motion takes place; the actual magnitude of the 
friction force is then Fk 5 mkN.
 In problems of the second group, all applied forces are given 
and the motion is known to be impending; we are to determine the 
value of the coefficient of static friction. Here again, we determine 
the friction force and the normal force by drawing a free-body dia-
gram and solving the equations of equilibrium (Fig. 8.5b). Since we 
know that the value found for F is the maximum value Fm, the coef-
ficient of friction may be found by writing and solving the equation 
Fm 5 msN.
 In problems of the third group, the coefficient of static friction 
is given, and it is known that the motion is impending in a given 
direction; we are to determine the magnitude or the direction of one 
of the applied forces. The friction force should be shown in the free-
body diagram with a sense opposite to that of the impending motion 
and with a magnitude Fm 5 msN (Fig. 8.5c). The equations of equi-
librium can then be written, and the desired force determined.
 As noted above, when only three forces are involved it may be 
more convenient to represent the reaction of the surface by a single 
force R and to solve the problem by drawing a force triangle. Such 
a solution is used in Sample Prob. 8.2.
 When two bodies A and B are in contact (Fig. 8.6a), the 
forces of friction exerted, respectively, by A on B and by B on A 
are equal and opposite (Newton’s third law). In drawing the free-
body diagram of one of the bodies, it is important to include the 
appropriate friction force with its correct sense. The following rule 
should then be observed: The sense of the friction force acting on 
A is opposite to that of the motion (or impending motion) of A as 
observed from B (Fig. 8.6b).† The sense of the friction force acting 
on B is determined in a similar way (Fig. 8.6c). Note that the 
motion of A as observed from B is a relative motion. For example, 
if body A is fixed and body B moves, body A will have a relative 
motion with respect to B. Also, if both B and A are moving down 
but B is moving faster than A, body A will be observed, from B, 
to be moving up.

8.4 Problems Involving Dry Friction

F
m  = ms N

W
P

N

Frequired

(a)

W
P

N
(b)

F
m  = ms N

WP

N
(c)

Sense of
impending motion

Fig. 8.5

†It is therefore the same as that of the motion of B as observed from A.
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Fig. 8.6
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418

SAMPLE PROBLEM 8.1

A 100-lb force acts as shown on a 300-lb block placed on an inclined plane. 
The coefficients of friction between the block and the plane are ms 5 0.25 
and mk 5 0.20. Determine whether the block is in equilibrium, and find the 
value of the friction force.

100 lb

300 lb

3

4

5

100 lb

300 lb

3

4
5

F

N

x
y

Motio
n

F = 48 lb

N = 240 lb

100 lb

300 lb

SOLUTION

Force Required for Equilibrium. We first determine the value of the fric-
tion force required to maintain equilibrium. Assuming that F is directed 
down and to the left, we draw the free-body diagram of the block and write

1p  oFx 5 0:  100 lb 2 3
5(300 lb) 2 F 5 0

 F 5 280 lb  F 5 80 lb p

1r oFy 5 0:   N 2 45(300 lb) 5 0
 N 5 1240 lb  N 5 240 lbr

The force F required to maintain equilibrium is an 80-lb force directed up 
and to the right; the tendency of the block is thus to move down the plane.

Maximum Friction Force. The magnitude of the maximum friction force 
which may be developed is

Fm 5 msN    Fm 5 0.25(240 lb) 5 60 lb

Since the value of the force required to maintain equilibrium (80 lb) is 
larger than the maximum value which may be obtained (60 lb), equilibrium 
will not be maintained and the block will slide down the plane.

Actual Value of Friction Force. The magnitude of the actual friction force 
is obtained as follows:

 Factual 5 Fk 5 mkN
 5 0.20(240 lb) 5 48 lb

The sense of this force is opposite to the sense of motion; the force is thus 
directed up and to the right:

Factual 5 48 lbp ◀

It should be noted that the forces acting on the block are not balanced; the 
resultant is

3
5(300 lb) 2 100 lb 2 48 lb 5 32 lbo
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SAMPLE PROBLEM 8.2

A support block is acted upon by two forces as shown. Knowing that the 
coefficients of friction between the block and the incline are ms 5 0.35 and 
mk 5 0.25, determine the force P required (a) to start the block moving up 
the incline, (b) to keep it moving up, (c) to prevent it from sliding down.

800 N

25°
P

fs

tan fs = ms

25° + 19.29° = 44.29°
fs = 19.29°

= 0.35

800 N

800 N

25°

P

R

P

R

tan fk = mk

 fk
25° + 14.04° = 39.04°

fk = 14.04°
= 0.25

P

R

800 N

800 N

25°

P

R

25° – 19.29° = 5.71°
fs = 19.29°

P

R
fs

800 N

800 N

25°

P

R

SOLUTION

Free-Body Diagram. For each part of the problem we draw a free-body 
diagram of the block and a force triangle including the 800-N vertical force, 
the horizontal force P, and the force R exerted on the block by the incline. 
The direction of R must be determined in each separate case. We note that 
since P is perpendicular to the 800-N force, the force triangle is a right tri-
angle, which can easily be solved for P. In most other problems, however, 
the force triangle will be an oblique triangle and should be solved by apply-
ing the law of sines.

a. Force P to Start Block Moving Up

 P 5 (800 N) tan 44.29° P 5 780 Nz ◀

b. Force P to Keep Block Moving Up

 P 5 (800 N) tan 39.04° P 5 649 Nz ◀

c. Force P to Prevent Block from Sliding Down

 P 5 (800 N) tan 5.71° P 5 80.0 Nz ◀
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SAMPLE PROBLEM 8.3

The movable bracket shown may be placed at any height on the 3-in.-
 diameter pipe. If the coefficient of static friction between the pipe and 
bracket is 0.25, determine the minimum distance x at which the load W can 
be supported. Neglect the weight of the bracket.

SOLUTION

Free-Body Diagram. We draw the free-body diagram of the bracket. 
When W is placed at the minimum distance x from the axis of the pipe, the 
bracket is just about to slip, and the forces of friction at A and B have 
reached their maximum values:

FA 5 msNA 5 0.25 NA

FB 5 msNB 5 0.25 NB

Equilibrium Equations

n1 oFx 5 0: NB 2 NA 5 0
 NB 5 NA

 1hoFy 5 0: FA 1 FB 2 W 5 0
 0.25NA 1 0.25NB 5 W

And, since NB has been found equal to NA,

 0.50NA 5 W
 NA 5 2W

 1l oMB 5 0: NA(6 in.) 2 FA(3 in.) 2 W(x 2 1.5 in.) 5 0
 6NA 2 3(0.25NA) 2 Wx 1 1.5W 5 0
 6(2W) 2 0.75(2W) 2 Wx 1 1.5W 5 0

Dividing through by W and solving for x,

x 5 12 in. ◀

W

6 in.

3 in.

x

NA

NB

FA

FB

W

A

B
3 in.

x – 1.5 in.

x

6 in.
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SOLVING PROBLEMS
ON YOUR OWN

In this lesson you studied and applied the laws of dry friction. Previously you 
had encountered only (a) frictionless surfaces that could move freely with 

respect to each other, (b) rough surfaces that allowed no motion relative to each 
other.

A. In solving problems involving dry friction, you should keep the following 
in mind.

1. The reaction R exerted by a surface on a free body can be resolved into 
a component N and a tangential component F. The tangential component is known 
as the friction force. When a body is in contact with a fixed surface the direction 
of the friction force F is opposite to that of the actual or impending motion of the 
body.
 a. No motion will occur as long as F does not exceed the maximum value
Fm 5 msN, where ms is the coefficient of static friction.
 b. Motion will occur if a value of F larger than Fm is required to maintain 
equilibrium. As motion takes place, the actual value of F drops to Fk 5 mkN, where 
mk is the coefficient of kinetic friction [Sample Prob. 8.1].

2. When only three forces are involved an alternative approach to the analysis 
of friction may be preferred [Sample Prob. 8.2]. The reaction R is defined by its 
magnitude R and the angle f it forms with the normal to the surface. No motion 
will occur as long as f does not exceed the maximum value fs, where tan fs 5 ms. 
Motion will occur if a value of f larger than fs is required to maintain equilibrium, 
and the actual value of f will drop to fk, where tan fk 5 mk.

3. When two bodies are in contact the sense of the actual or impending rela-
tive motion at the point of contact must be determined. On each of the two bodies 
a friction force F should be shown in a direction opposite to that of the actual or 
impending motion of the body as seen from the other body.

(continued)
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B. Methods of solution. The first step in your solution is to draw a free-body 
diagram of the body under consideration, resolving the force exerted on each 
surface where friction exists into a normal component N and a friction force F. If 
several bodies are involved, draw a free-body diagram of each of them, labeling 
and directing the forces at each surface of contact as you learned to do when 
analyzing frames in Chap. 6.

The problem you have to solve may fall in one of the following three categories:

1. All the applied forces and the coefficients of friction are known, and you 
must determine whether equilibrium is maintained. Note that in this situation 
the friction force is unknown and cannot be assumed to be equal to msN.
 a. Write the equations of equilibrium to determine N and F.
 b. Calculate the maximum allowable friction force, Fm 5 MsN. If F # Fm, 
equilibrium is maintained. If F . Fm, motion occurs, and the magnitude of the 
friction force is Fk 5 mkN [Sample Prob. 8.1].

2. All the applied forces are known, and you must find the smallest allow-
able value of Ms for which equilibrium is maintained. You will assume that 
motion is impending and determine the corresponding value of ms.
 a. Write the equations of equilibrium to determine N and F.
 b. Since motion is impending, F 5 Fm. Substitute the values found for N 
and F into the equation Fm 5 msN and solve for ms.

3. The motion of the body is impending and s is known; you must find some 
unknown quantity, such as a distance, an angle, the magnitude of a force, or the 
direction of a force.
 a. Assume a possible motion of the body and, on the free-body diagram, 
draw the friction force in a direction opposite to that of the assumed motion.
 b. Since motion is impending, F 5 Fm 5 sN. Substituting for ms its known 
value, you can express F in terms of N on the free-body diagram, thus eliminating 
one unknown.
 c. Write and solve the equilibrium equations for the unknown you seek 
[Sample Prob. 8.3].
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PROBLEMS

423

FREE BODY PRACTICE PROBLEMS

8.F1 Draw the free-body diagram needed to determine the smallest 
force P for which equilibrium of the 7.5-kg block is maintained.

8.F2 Two blocks A and B are connected by a cable as shown. Knowing 
that the coefficient of static friction at all surfaces of contact is 
0.30 and neglecting the friction of the pulleys, draw the free-body 
diagrams needed to determine the smallest force P required to 
move the blocks.

mk = 0.35
ms = 0.45

P

7.5 kg

40°

Fig. P8.F1
P A B

60 lb 40 lb

Fig. P8.F2

8.F3 The cylinder shown is of weight W and radius r, and the coef-
ficient of static friction ms is the same at A and B. Draw the free-
body diagram needed to determine the largest couple M that can 
be applied to the cylinder if it is not to rotate.

A

B

M

Fig. P8.F3

 8.F4 A uniform crate of mass 30 kg must be moved up along the 158 in-
cline without tipping. Knowing that the force P is horizontal, draw 
the free-body diagram needed to determine the largest allowable 
coefficient of static friction between the crate and the incline, and 
the corresponding force P.

Fig. P8.F4

A

B

C

D 15°

P

L

L
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424 Friction END-OF-SECTION PROBLEMS

 8.1 Determine whether the block shown is in equilibrium and find the 
magnitude and direction of the friction force when u 5 258 and 
P 5 750 N.

P

ms = 0.35
mk = 0.25

1.2 kN

q

Fig. P8.1 and P8.2

45 lb

30°

40°

P

ms = 0.40
mk = 0.30

Fig. P8.3, P8.4, and P8.5

 8.8 The coefficients of friction between the block and the rail are 
ms 5 0.30 and mk 5 0.25. Knowing that u 5 658, determine the 
smallest value of P required (a) to start the block moving up the 
rail, (b) to keep it from moving down.

 8.2 Determine whether the block shown is in equilibrium and find the 
magnitude and direction of the friction force when u 5 308 and 
P 5 150 N.

 8.3 Determine whether the block shown is in equilibrium and find the 
magnitude and direction of the friction force when P 5 100 lb.

 8.4 Determine whether the block shown is in equilibrium and find the 
magnitude and direction of the friction force when P 5 60 lb.

 8.5 Determine the smallest value of P required to (a) start the block 
up the incline, (b) keep it moving up, (c) prevent it from moving 
down.

 8.6 Knowing that the coefficient of friction between the 25-kg block 
and the incline is ms 5 0.25, determine (a) the smallest value of P 
required to start the block moving up the incline, (b) the corre-
sponding value of b.

 8.7 The 80-lb block is attached to link AB and rests on a moving belt. 
Knowing that ms 5 0.25 and mk 5 0.20, determine the magnitude 
of the horizontal force P that should be applied to the belt to 
maintain its motion (a) to the right, (b) to the left.

P

30°

b

25 kg

Fig. P8.6

30°
80 lb

A

B

Fig. P8.7

P

500 N

35°

q

Fig. P8.8
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425Problems 8.9 Considering only values of u less than 908, determine the smallest 
value of u required to start the block moving to the right when 
(a) W 5 75 lb, (b) W 5 100 lb.

 8.10 Determine the range of values of P for which equilibrium of the 
block shown is maintained.

 8.11 The 20-lb block A and the 30-lb block B are supported by an 
incline that is held in the position shown. Knowing that the coef-
ficient of static friction is 0.15 between the two blocks and zero 
between block B and the incline, determine the value of u for 
which motion is impending.

 8.12 The 20-lb block A and the 30-lb block B are supported by an 
incline that is held in the position shown. Knowing that the coef-
ficient of static friction is 0.15 between all surfaces of contact, 
determine the value of u for which motion is impending.

 8.13 and 8.14 The coefficients of friction are ms 5 0.40 and mk 5 
0.30 between all surfaces of contact. Determine the smallest force 
P required to start the 30-kg block moving if cable AB (a) is 
attached as shown, (b) is removed.

 8.15 A 40-kg packing crate must be moved to the left along the floor 
without tipping. Knowing that the coefficient of static friction between 
the crate and the floor is 0.35, determine (a) the largest allowable 
value of a, (b) the corresponding magnitude of the force P. 

P

A

B

20 kg

30 kg

Fig. P8.13

P

A B20 kg

30 kg

Fig. P8.14

W

q

mk = 0.20
ms = 0.25

30 lb

Fig. P8.9 P

30°

mk = 0.20
ms = 0.25

500 N

Fig. P8.10

B

q

A

Fig. P8.11 and P8.12

0.8 m

B
A

DC

α

P

Fig. P8.15 and P8.16

 8.16 A 40-kg packing crate is pulled by a rope as shown. The coefficient 
of static friction between the crate and the floor is 0.35. If a 5 
408, determine (a) the magnitude of the force P required to move 
the crate, (b) whether the crate will slide or tip. 
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426 Friction  8.17 A 120-lb cabinet is mounted on casters that can be locked to pre-
vent their rotation. The coefficient of static friction between the 
floor and each caster is 0.30. If h 5 32 in., determine the magni-
tude of the force P required to move the cabinet to the right 
(a) if all casters are locked, (b) if the casters at B are locked and 
the casters at A are free to rotate, (c) if the casters at A are locked 
and the casters at B are free to rotate. 

 8.18 A 120-lb cabinet is mounted on casters that can be locked to pre-
vent their rotation. The coefficient of static friction between the 
floor and each caster is 0.30. Assuming that the casters at both A 
and B are locked, determine (a) the force P required to move the 
cabinet to the right, (b) the largest allowable value of h if the cabi-
net is not to tip over.

 8.19 Wire is being drawn at a constant rate from a spool by applying a 
vertical force P to the wire as shown. The spool and the wire 
wrapped on the spool have a combined weight of 20 lb. Knowing 
that the coefficients of friction at both A and B are ms 5 0.40 and 
mk 5 0.30, determine the required magnitude of the force P.

 8.20 Solve Prob. 8.19 assuming that the coefficients of friction at B are 
zero.

 8.21 The hydraulic cylinder shown exerts a force of 3 kN directed to 
the right on point B and to the left on point E. Determine the 
magnitude of the couple M required to rotate the drum clockwise 
at a constant speed.

D

E

150 mm

300 mm

A

B

150 mm

300 mm

250 mm

ms = 0.40
mk = 0.30

M
C

150 mm 150 mm

Fig. P8.21 and P8.22

A

B

P

3 in.

3 in.

Fig. P8.19

 8.22 A couple M of magnitude 100 N ? m is applied to the drum as 
shown. Determine the smallest force that must be exerted by the 
hydraulic cylinder on joints B and E if the drum is not to rotate.

 8.23 A slender rod of length L is lodged between peg C and the vertical 
wall, and supports a load P at end A. Knowing that the coefficient 
of static friction between the peg and the rod is 0.15 and neglecting 
friction at the roller, determine the range of values of the ratio L/a 
for which equilibrium is maintained.

 8.24 Solve Prob. 8.23 assuming that the coefficient of static friction 
between the peg and the rod is 0.60.

C

A B

P

h

24 in.

Fig. P8.17 and P8.18

A

B

C

L

a

30°

P

Fig. P8.23
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427Problems 8.25 A 6.5-m ladder AB leans against a wall as shown. Assuming that 
the coefficient of static friction ms is zero at B, determine the small-
est value of ms at A for which equilibrium is maintained.

 8.26 A 6.5-m ladder AB leans against a wall as shown. Assuming that the 
coefficient of static friction ms is the same at A and B, determine 
the smallest value of ms for which equilibrium is maintained.

 8.27 The press shown is used to emboss a small seal at E. Knowing that 
the coefficient of static friction between the vertical guide and the 
embossing die D is 0.30, determine the force exerted by the die 
on the seal.

 8.28 The machine base shown has a mass of 75 kg and is fitted with 
skids at A and B. The coefficient of static friction between the skids 
and the floor is 0.30. If a force P of magnitude 500 N is applied 
at corner C, determine the range of values of u for which the base 
will not move.

 8.29 The 50-lb plate ABCD is attached at A and D to collars that can 
slide on the vertical rod. Knowing that the coefficient of static fric-
tion is 0.40 between both collars and the rod, determine whether 
the plate is in equilibrium in the position shown when the magni-
tude of the vertical force applied at E is (a) P 5 0, (b) P 5 20 lb.

A

B

C

D

E

20°

60°

15°

250 N

400 mm

200 mm

Fig. P8.27

A

B

C

D

EG

P

50 lb

5 ft

2 ft

3 ft

Fig. P8.29

A

B

6 m

2.5 m

Fig. P8.25 and P8.26

A B

C

G

q

0.4 m

P

0.8 m

0.5 m

0.6 m

Fig. P8.28

 8.30 In Prob. 8.29, determine the range of values of the magnitude P 
of the vertical force applied at E for which the plate will move 
downward.
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428 Friction  8.31 A rod DE and a small cylinder are placed between two guides as 
shown. The rod is not to slip downward, however large the force 
P may be; i.e., the arrangement is said to be self-locking. Neglect-
ing the weight of the cylinder, determine the minimum allowable 
coefficients of static friction at A, B, and C.

B

q

A

D

E

C

P

Fig. P8.31

 8.32 A 500-N concrete block is to be lifted by the pair of tongs shown. 
Determine the smallest allowable value of the coefficient of static 
friction between the block and the tongs at F and G.

 8.33 The 100-mm-radius cam shown is used to control the motion of 
the plate CD. Knowing that the coefficient of static friction between 
the cam and the plate is 0.45 and neglecting friction at the roller 
supports, determine (a) the force P required to maintain 
the motion of the plate, knowing that the plate is 20 mm thick, 
(b) the largest thickness of the plate for which the mechanism is 
self-locking (i.e., for which the plate cannot be moved however 
large the force P may be).

 8.34 A safety device used by workers climbing ladders fixed to high 
structures consists of a rail attached to the ladder and a sleeve that 
can slide on the flange of the rail. A chain connects the worker’s 
belt to the end of an eccentric cam that can be rotated about an 
axle attached to the sleeve at C. Determine the smallest allowable 
common value of the coefficient of static friction between the 
flange of the rail, the pins at A and B, and the eccentric cam if the 
sleeve is not to slide down when the chain is pulled vertically 
downward.

A B

C D

E

F G

90 mm90 mm
45 mm

500 N

45 mm

75 mm

105 mm

360 mm

500 N

315 mm

Fig. P8.32

A

B
C D

100 mm

60 N

qP
100 mm

Fig. P8.33

P

0.8 in.

B

D

C
A

E

4 in.

3 in.

4 in.

6 in.

Fig. P8.34

bee02286_ch08_410-467.indd Page 428  08/10/11  2:50 PM user-f494bee02286_ch08_410-467.indd Page 428  08/10/11  2:50 PM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


429Problems 8.35 To be of practical use, the safety sleeve described in Prob. 8.34 
must be free to slide along the rail when pulled upward. Deter-
mine the largest allowable value of the coefficient of static friction 
between the flange of the rail and the pins at A and B if the sleeve 
is to be free to slide when pulled as shown in the figure, assuming 
(a) u 5 608, (b) u 5 508, (c) u 5 408.

 8.36 Two 10-lb blocks A and B are connected by a slender rod of neg-
ligible weight. The coefficient of static friction is 0.30 between all 
surfaces of contact, and the rod forms an angle u 5 308 with the 
vertical. (a) Show that the system is in equilibrium when P 5 0. 
(b) Determine the largest value of P for which equilibrium is 
maintained.

Fig. P8.39 and P8.40

M

P

CA

B

100 mm

100 mm

q

 8.39 Knowing that the coefficient of static friction between the collar 
and the rod is 0.35, determine the range of values of P for which 
equilibrium is maintained when u 5 508 and M 5 20 N ? m.

 8.40 Knowing that the coefficient of static friction between the collar 
and the rod is 0.40, determine the range of values of M for which 
equilibrium is maintained when u 5 608 and P 5 200 N.

A

B
W = 10 lb

W = 10 lb

P q

Fig. P8.36

4 ft
A C

D

B
P

6 ft 6 ft

8 ft

Fig. P8.38

 8.37 Bar AB is attached to collars that can slide on the inclined rods 
shown. A force P is applied at point D located at a distance a from 
end A. Knowing that the coefficient of static friction ms between 
each collar and the rod upon which it slides is 0.30 and neglecting 
the weights of the bar and of the collars, determine the smallest 
value of the ratio a/L for which equilibrium is maintained.

 8.38 Two identical uniform boards, each of weight 40 lb, are temporarily 
leaned against each other as shown. Knowing that the coefficient 
of static friction between all surfaces is 0.40, determine (a) the 
largest magnitude of the force P for which equilibrium will be 
maintained, (b) the surface at which motion will impend. 

P

B

D

A

E

4 in.

3 in.

4 in.

C θ

Fig. P8.35

45° 45°

A
D

B

P
a

L

Fig. P8.37
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 8.41 A 10-ft beam, weighing 1200 lb, is to be moved to the left onto 
the platform. A horizontal force P is applied to the dolly, which is 
mounted on frictionless wheels. The coefficients of friction between 
all surfaces are ms 5 0.30 and mk 5 0.25, and initially x 5 2 ft. 
Knowing that the top surface of the dolly is slightly higher than 
the platform, determine the force P required to start moving the 
beam. (Hint: The beam is supported at A and D.)

 8.42 (a) Show that the beam of Prob. 8.41 cannot be moved if the top 
surface of the dolly is slightly lower than the platform. (b) Show that 
the beam can be moved if two 175-lb workers stand on the beam 
at B and determine how far to the left the beam can be moved.

 8.43 Two 8-kg blocks A and B resting on shelves are connected by a rod of 
negligible mass. Knowing that the magnitude of a horizontal force P 
applied at C is slowly increased from zero, determine the value of P 
for which motion occurs, and what that motion is, when the coefficient 
of static friction between all surfaces is (a) ms 5 0.40, (b) ms 5 0.50.

 8.44 A slender steel rod of length 225 mm is placed inside a pipe as 
shown. Knowing that the coefficient of static friction between the 
rod and the pipe is 0.20, determine the largest value of u for which 
the rod will not fall into the pipe.

100 mm

200 mm

25°

8 kg

8 kg

C

A

B

P

Fig. P8.43

 8.45 In Prob. 8.44, determine the smallest value of u for which the rod 
will not fall out of the pipe.

 8.46 Two slender rods of negligible weight are pin-connected at C and 
attached to blocks A and B, each of weight W. Knowing that u 5 
808 and that the coefficient of static friction between the blocks 
and the horizontal surface is 0.30, determine the largest value of 
P for which equilibrium is maintained.

 8.47 Two slender rods of negligible weight are pin-connected at C and 
attached to blocks A and B, each of weight W. Knowing that P 5 
1.260W and that the coefficient of static friction between the blocks 
and the horizontal surface is 0.30, determine the range of values of 
u, between 0 and 180°, for which equilibrium is maintained.

A

B q

75 mm

Fig. P8.44

A

C

B

WW
30°

P

60°

q

Fig. P8.46 and P8.47

8.5 WEDGES
Wedges are simple machines used to raise large stone blocks and 
other heavy loads. These loads can be raised by applying to the 
wedge a force usually considerably smaller than the weight of the 

x
2 ft

C D
P

10 ft

A B

Fig. P8.41

430 Friction
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4318.6 Square-Threaded Screwsload. In addition, because of the friction between the surfaces in 
contact, a properly shaped wedge will remain in place after being 
forced under the load. Wedges can thus be used advantageously to 
make small adjustments in the position of heavy pieces of 
machinery.
 Consider the block A shown in Fig. 8.7a. This block rests 
against a vertical wall B and is to be raised slightly by forcing a wedge 
C between block A and a second wedge D. We want to find the 
minimum value of the force P which must be applied to the wedge 
C to move the block. It will be assumed that the weight W of the 
block is known, either given in pounds or determined in newtons 
from the mass of the block expressed in kilograms.
 The free-body diagrams of block A and of wedge C have been 
drawn in Fig. 8.7b and c. The forces acting on the block include its 
weight and the normal and friction forces at the surfaces of contact 
with wall B and wedge C. The magnitudes of the friction forces F1 
and F2 are equal, respectively, to msN1 and msN2 since the motion of 
the block must be started. It is important to show the friction forces 
with their correct sense. Since the block will move upward, the force 
F1 exerted by the wall on the block must be directed downward. On 
the other hand, since the wedge C moves to the right, the relative 
motion of A with respect to C is to the left and the force F2 exerted 
by C on A must be directed to the right.
 Considering now the free body C in Fig. 8.7c, we note that the 
forces acting on C include the applied force P and the normal and 
friction forces at the surfaces of contact with A and D. The weight 
of the wedge is small compared with the other forces involved and 
can be neglected. The forces exerted by A on C are equal and oppo-
site to the forces N2 and F2 exerted by C on A and are denoted, 
respectively, by 2N2 and 2F2; the friction force 2F2 must therefore 
be directed to the left. We check that the force F3 exerted by D is 
also directed to the left.
 The total number of unknowns involved in the two free-body 
diagrams can be reduced to four if the friction forces are expressed 
in terms of the normal forces. Expressing that block A and wedge C 
are in equilibrium will provide four equations which can be solved 
to obtain the magnitude of P. It should be noted that in the example 
considered here, it will be more convenient to replace each pair of 
normal and friction forces by their resultant. Each free body is then 
subjected to only three forces, and the problem can be solved by 
drawing the corresponding force triangles (see Sample Prob. 8.4).

8.6 SQUARE-THREADED SCREWS
Square-threaded screws are frequently used in jacks, presses, and 
other mechanisms. Their analysis is similar to the analysis of a block 
sliding along an inclined plane.
 Consider the jack shown in Fig. 8.8. The screw carries a load 
W and is supported by the base of the jack. Contact between screw 
and base takes place along a portion of their threads. By applying a 
force P on the handle, the screw can be made to turn and to raise 
the load W.

W

P

N2

(b)

(a)

(c)

A

A

B

C

P C

D

N1

N3

–N2

–F2

F1 = msN1

F2 = msN2

F3 = msN3

6°
6°

Fig. 8.7

Cap

Screw

Base

P

W

r

a

Fig. 8.8
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432 Friction  The thread of the base has been unwrapped and shown as a 
straight line in Fig. 8.9a. The correct slope was obtained by plotting 
horizontally the product 2pr, where r is the mean radius of the thread, 
and vertically the lead L of the screw, i.e., the distance through which 
the screw advances in one turn. The angle u this line forms with the 
horizontal is the lead angle. Since the force of friction between two 
surfaces in contact does not depend upon the area of contact, a much 
smaller than actual area of contact between the two threads can be 
assumed, and the screw can be represented by the block shown in 
Fig. 8.9a. It should be noted, however, that in this analysis of the jack, 
the friction between cap and screw is neglected.
 The free-body diagram of the block should include the load W, 
the reaction R of the base thread, and a horizontal force Q having 
the same effect as the force P exerted on the handle. The force Q 
should have the same moment as P about the axis of the screw and 
its magnitude should thus be Q 5 Pa/r. The force Q, and thus the 
force P required to raise the load W, can be obtained from the free-
body diagram shown in Fig. 8.9a. The friction angle is taken equal 
to fs since the load will presumably be raised through a succession 
of short strokes. In mechanisms providing for the continuous rotation 
of a screw, it may be desirable to distinguish between the force 
required to start motion (using fs) and that required to maintain 
motion (using fk).

 If the friction angle fs is larger than the lead angle u, the screw 
is said to be self-locking; it will remain in place under the load. 
To lower the load, we must then apply the force shown in Fig. 8.9b. 
If fs is smaller than u, the screw will unwind under the load; it 
is then necessary to apply the force shown in Fig. 8.9c to maintain 
equilibrium.
 The lead of a screw should not be confused with its pitch. The 
lead was defined as the distance through which the screw advances 
in one turn; the pitch is the distance measured between two consecu-
tive threads. While lead and pitch are equal in the case of single-
threaded screws, they are different in the case of multiple-threaded 
screws, i.e., screws having several independent threads. It is easily 
verified that for double-threaded screws, the lead is twice as large 
as the pitch; for triple-threaded screws, it is three times as large as 
the pitch; etc.

(c) Impending motion downward with fs < q(b) Impending motion downward with fs > q(a) Impending motion upward

fs

Q

W

R

q

q

fs

Q

W

R

q

q

fs

Q

W

R

q

q

L

�2   r

Fig. 8.9 Block-and-incline analysis of a screw.

Photo 8.2 Wedges are used as shown to split 
tree trunks because the normal forces exerted by 
the wedges on the wood are much larger than 
the forces required to insert the wedges.
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SAMPLE PROBLEM 8.4

The position of the machine block B is adjusted by moving the wedge A. 
Knowing that the coefficient of static friction is 0.35 between all surfaces of 
contact, determine the force P required (a) to raise block B, (b) to lower 
block B.

400 lb

P

B

A8°

fs = 19.3°
fs = 19.3°

R2

R2R1

R1

400 lb

400 lb

8°

8° + 19.3° = 27.3°

27.3°

90° + 19.3°
= 109.3°

180° – 27.3° – 109.3°
= 43.4°

B

19.3°

19.3°

R3

R3

P

P
R1 = 549 lb

549 lb

27.3°

27.3°

90° – 19.3° = 70.7°

27.3° + 19.3°
= 46.6°

A

fs = 19.3°

fs = 19.3°

11.3°R2

R2

R1

R1

400 lb

400 lb

8°

90° – 19.3° = 70.7°

19.3° – 8°
= 11.3°

180° – 70.7° – 11.3°
= 98.0°B

19.3°
19.3°

11.3°

11.3°
P

P

R3 R3

R1 = 381 lb

381 lb

90° – 19.3° = 70.7°

19.3° + 11.3°
= 30.6°

A

SOLUTION

For each part, the free-body diagrams of block B and wedge A are drawn, 
together with the corresponding force triangles, and the law of sines is 
used to find the desired forces. We note that since ms 5 0.35, the angle of 
friction is

fs 5 tan21 0.35 5 19.3°

a. Force P to Raise Block

Free Body: Block B

 
R1

sin 109.3°
5

400 lb
sin 43.4°

 R1 5 549 lb

Free Body: Wedge A

  
P

sin 46.6°
5

549 lb
sin 70.7°

 P 5 423 lb   P 5 423 lb z ◀

b. Force P to Lower Block

Free Body: Block B

 
R1

sin 70.7°
5

400 lb
sin 98.0°

 R1 5 381 lb

Free Body: Wedge A

  
P

sin 30.6°
5

381 lb
sin 70.7°

 P 5 206 lb   P 5 206 lb y ◀

433
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434

SOLUTION

a. Force Exerted by Clamp. The mean radius of the screw is r 5 5 mm. 
Since the screw is double-threaded, the lead L is equal to twice the pitch: 
L 5 2(2 mm) 5 4 mm. The lead angle u and the friction angle fs are 
obtained by writing

tan u 5
L

2pr
5

4 mm
10p mm

5 0.1273   u 5 7.3°

 tan fs 5 ms 5 0.30 fs 5 16.7°

The force Q which should be applied to the block representing the screw 
is obtained by expressing that its moment Qr about the axis of the screw is 
equal to the applied couple.

 Q(5 mm) 5 40 N ? m

 Q 5
40 N ? m

5 mm
5

40 N ? m
5 3 1023 m

5 8000 N 5 8 kN

The free-body diagram and the corresponding force triangle can now be 
drawn for the block; the magnitude of the force W exerted on the pieces 
of wood is obtained by solving the triangle.

W 5
Q

tan(u 1 fs)
5

8 kN
tan 24.0°

W 5 17.97 kN ◀

b. Couple Required to Loosen Clamp. The force Q required to loosen 
the clamp and the corresponding couple are obtained from the free-body 
diagram and force triangle shown.

 Q 5 W tan (fs 2 u) 5 (17.97 kN) tan 9.4°
 5 2.975 kN
 Couple 5 Qr 5 (2.975 kN)(5 mm)
 5 (2.975 3 103 N)(5 3 1023 m) 5 14.87 N ? m

Couple 5 14.87 N ? m ◀ 

W = 17.97 kN
Q

fs = 16.7°

q = 7.3°

q = 7.3°

R

L = 4 mm

2   r = 10    mm��

fs – q = 9.4°

Q

R W = 17.97 kN

SAMPLE PROBLEM 8.5

A clamp is used to hold two pieces of wood together as shown. The clamp 
has a double square thread of mean diameter equal to 10 mm with a pitch 
of 2 mm. The coefficient of friction between threads is ms 5 0.30. If a 
maximum couple of 40 N ? m is applied in tightening the clamp, determine 
(a) the force exerted on the pieces of wood, (b) the couple required to 
loosen the clamp.

q + fs = 24.0°

Q = 8 kN

R
W

fs = 16.7°

Q = 8 kN

q = 7.3°

q = 7.3°

R

W

L = 4 mm

2   r = 10    mm��
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435435

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned to apply the laws of friction to the solution of problems 
involving wedges and square-threaded screws.

1. Wedges. Keep the following in mind when solving a problem involving a 
wedge:
 a. First draw a free-body diagram of the wedge and of all the other 
bodies involved. Carefully note the sense of the relative motion of all surfaces of 
contact and show each friction force acting in a direction opposite to the direction 
of that relative motion.
 b. Show the maximum static friction force Fm at each surface if the wedge 
is to be inserted or removed, since motion will be impending in each of these cases.
 c. The reaction R and the angle of friction, rather than the normal force and 
the friction force, can be used in many applications. You can then draw one or 
more force triangles and determine the unknown quantities either graphically or 
by trigonometry [Sample Prob. 8.4].

2. Square-Threaded Screws. The analysis of a square-threaded screw is equiva-
lent to the analysis of a block sliding on an incline. To draw the appropriate incline, 
you should unwrap the thread of the screw and represent it by a straight line 
[Sample Prob. 8.5]. When solving a problem involving a square-threaded screw, 
keep the following in mind:
 a. Do not confuse the pitch of a screw with the lead of a screw. The pitch 
of a screw is the distance between two consecutive threads, while the lead of a 
screw is the distance the screw advances in one full turn. The lead and the pitch 
are equal only in single-threaded screws. In a double-threaded screw, the lead is 
twice the pitch.
 b. The couple required to tighten a screw is different from the couple 
required to loosen it. Also, screws used in jacks and clamps are usually self-
locking; that is, the screw will remain stationary as long as no couple is applied to 
it, and a couple must be applied to the screw to loosen it [Sample Prob. 8.5].
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PROBLEMS

436

8.48 The machine part ABC is supported by a frictionless hinge at B
and a 108 wedge at C. Knowing that the coefficient of static friction 
at both surfaces of the wedge is 0.20, determine (a) the force P 
required to move the wedge, (b) the components of the corre-
sponding reaction at B.

 8.49 Solve Prob. 8.48 assuming that the force P is directed to the right.

 8.50 and 8.51 The elevation of the end of the steel beam sup-
ported by a concrete floor is adjusted by means of the steel 
wedges E and F. The base plate CD has been welded to the 
lower flange of the beam, and the end reaction of the beam is 
known to be 100 kN. The coefficient of static friction is 0.30 
between two steel surfaces and 0.60 between steel and concrete. 
If the horizontal motion of the beam is prevented by the force 
Q, determine (a) the force P required to raise the beam, (b) the 
corresponding force Q.

 8.52 and 8.53 Two 108 wedges of negligible weight are used to 
move and position the 400-lb block. Knowing that the coefficient 
of static friction is 0.25 at all surfaces of contact, determine the 
smallest force P that should be applied as shown to one of the 
wedges.

1800 N

P

400 mm

350 mm

600 mm

A

B
C

Fig. P8.48

100 kN

Q

A

B
C
E F 10°P

D

Fig. P8.51

100 kN

10°

Q

P

A

B
C

D

E F

Fig. P8.50

400 lb

P

10°

Fig. P8.53

400 lb

P
10°

Fig. P8.52

8.54 Block A supports a pipe column and rests as shown on wedge B. 
Knowing that the coefficient of static friction at all surfaces of 
contact is 0.25 and that u 5 458, determine the smallest force P
required to raise block A.

8.55 Block A supports a pipe column and rests as shown on wedge B. 
Knowing that the coefficient of static friction at all surfaces of 
contact is 0.25 and that u 5 458, determine the smallest force P 
for which equilibrium is maintained.

 8.56 Block A supports a pipe column and rests as shown on wedge B. 
The coefficient of static friction at all surfaces of contact is 0.25. 
If P 5 0, determine (a) the angle u for which sliding is impending, 
(b) the corresponding force exerted on the block by the vertical wall.

3 kN

A

B

Pq

Fig. P8.54, P8.55, and P8.56
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437Problems 8.57 A wedge A of negligible weight is to be driven between two 100-lb 
plates B and C. The coefficient of static friction between all sur-
faces of contact is 0.35. Determine the magnitude of the force P 
required to start moving the wedge (a) if the plates are equally 
free to move, (b) if plate C is securely bolted to the surface. P

10°

Fig. P8.58

G
P

50 in.
20 in.

BA

1400 lb

Fig. P8.62

 8.61 In Prob. 8.60, determine the angle that the face of the bolt should 
form with the line BC if the force P required to close the door is 
to be the same for both the position shown and the position when 
B is almost at the strike plate.

 8.62 A 58 wedge is to be forced under a 1400-lb machine base at A. 
Knowing that the coefficient of static friction at all surfaces is 0.20, 
(a) determine the force P required to move the wedge, (b) indicate 
whether the machine base will move.

 8.63 Solve Prob. 8.62 assuming that the wedge is to be forced under 
the machine base at B instead of A.

AB C100 lb 100 lb
75°75°

P

A

Fig. P8.57

 8.58 A 108 wedge is used to split a section of a log. The coefficient of 
static friction between the wedge and the log is 0.35. Knowing that 
a force P of magnitude 600 lb was required to insert the wedge, 
determine the magnitude of the forces exerted on the wood by the 
wedge after insertion.

 8.59 A 108 wedge is to be forced under end B of the 5-kg rod AB. 
Knowing that the coefficient of static friction is 0.40 between the 
wedge and the rod and 0.20 between the wedge and the floor, 
determine the smallest force P required to raise end B of the rod.

 8.60 The spring of the door latch has a constant of 1.8 lb/in. and in the 
position shown exerts a 0.6-lb force on the bolt. The coefficient of 
static friction between the bolt and the strike plate is 0.40; all other 
surfaces are well lubricated and may be assumed frictionless. 
Determine the magnitude of the force P required to start closing 
the door.

P

A

B

0.3 m

Fig. P8.59

A

B C

3
8

in.

1
2

in.

P

45°

Fig. P8.60
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438 Friction  8.64 A 158 wedge is forced under a 50-kg pipe as shown. The coefficient 
of static friction at all surfaces is 0.20. (a) Show that slipping will 
occur between the pipe and the vertical wall. (b) Determine the 
force P required to move the wedge.

 8.65 A 158 wedge is forced under a 50-kg pipe as shown. Knowing that 
the coefficient of static friction at both surfaces of the wedge is 
0.20, determine the largest coefficient of static friction between 
the pipe and the vertical wall for which slipping will occur at A.

 *8.66 A 200-N block rests as shown on a wedge of negligible weight. The 
coefficient of static friction ms is the same at both surfaces of the 
wedge, and friction between the block and the vertical wall may 
be neglected. For P 5 100 N, determine the value of ms for which 
motion is impending. (Hint: Solve the equation obtained by trial 
and error.)

16 in. 9.6 kip⋅in.

A

B

C

Fig. P8.69

Fig. P8.71

P

A

B

G

15°

Fig. P8.64 and P8.65

P

200 N

15°

A

B

Fig. P8.66

 *8.67 Solve Prob. 8.66 assuming that the rollers are removed and that ms 
is the coefficient of friction at all surfaces of contact.

 8.68 Derive the following formulas relating the load W and the force P 
exerted on the handle of the jack discussed in Sec. 8.6. (a) P 5 
(Wr/a) tan (u 1 fs), to raise the load; (b) P 5 (Wr/a) tan (fs 2 u), to 
lower the load if the screw is self-locking; (c) P 5 (Wr/a) tan (u 2 fs), 
to hold the load if the screw is not self-locking.

 8.69 The square-threaded worm gear shown has a mean radius of 2 in. 
and a lead of 0.5 in. The large gear is subjected to a constant 
clockwise couple of 9.6 kip ? in. Knowing that the coefficient of 
static friction between the two gears is 0.12, determine the couple 
that must be applied to shaft AB in order to rotate the large gear 
counterclockwise. Neglect friction in the bearings at A, B, and C.

 8.70 In Prob. 8.69, determine the couple that must be applied to shaft 
AB in order to rotate the large gear clockwise.

 8.71 High-strength bolts are used in the construction of many steel 
structures. For a 24-mm-nominal-diameter bolt, the required mini-
mum bolt tension is 210 kN. Assuming the coefficient of friction 
to be 0.40, determine the required couple that should be applied 
to the bolt and nut. The mean diameter of the thread is 22.6 mm, 
and the lead is 3 mm. Neglect friction between the nut and washer, 
and assume the bolt to be square-threaded.
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 8.72 The position of the automobile jack shown is controlled by a screw 
ABC that is single-threaded at each end (right-handed thread at 
A, left-handed thread at C). Each thread has a pitch of 0.1 in. and 
a mean diameter of 0.375 in. If the coefficient of static friction is 
0.15, determine the magnitude of the couple M that must be 
applied to raise the automobile.

A

B

Fig. P8.74

 8.73 For the jack of Prob. 8.72, determine the magnitude of the couple 
M that must be applied to lower the automobile.

 8.74 In the gear-pulling assembly shown, the square-threaded screw AB 
has a mean radius of 15 mm and a lead of 4 mm. Knowing that 
the coefficient of static friction is 0.10, determine the couple that 
must be applied to the screw in order to produce a force of 3 kN 
on the gear. Neglect friction at end A of the screw.

 8.75 The ends of two fixed rods A and B are each made in the form of 
a single-threaded screw of mean radius 6 mm and pitch 2 mm. Rod 
A has a right-handed thread and rod B has a left-handed thread. 
The coefficient of static friction between the rods and the threaded 
sleeve is 0.12. Determine the magnitude of the couple that must 
be applied to the sleeve in order to draw the rods closer together.

439

 8.76 Assuming that in Prob. 8.75 a right-handed thread is used on both 
rods A and B, determine the magnitude of the couple that must 
be applied to the sleeve in order to rotate it.

8.7 Journal Bearings. Axle Friction

A
B

C

D

E

M25°

25°

800 lb

Fig. P8.72

2 kN 2 kNA B

Fig. P8.75

*8.7 JOURNAL BEARINGS. AXLE FRICTION
Journal bearings are used to provide lateral support to rotating shafts 
and axles. Thrust bearings, which will be studied in the next section, 
are used to provide axial support to shafts and axles. If the journal 
bearing is fully lubricated, the frictional resistance depends upon 
the speed of rotation, the clearance between axle and bearing, and the 
viscosity of the lubricant. As indicated in Sec. 8.1, such problems are 
studied in fluid mechanics. The methods of this chapter, however, can 
be applied to the study of axle friction when the bearing is not lubri-
cated or only partially lubricated. It can then be assumed that the axle 
and the bearing are in direct contact along a single straight line.
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Fig. 8.10
 Consider two wheels, each of weight W, rigidly mounted on an 
axle supported symmetrically by two journal bearings (Fig. 8.10a). If 
the wheels rotate, we find that to keep them rotating at constant speed, 
it is necessary to apply to each of them a couple M. The free-body 
diagram in Fig. 8.10c represents one of the wheels and the correspond-
ing half axle in projection on a plane perpendicular to the axle. The 
forces acting on the free body include the weight W of the wheel, the 
couple M required to maintain its motion, and a force R representing 
the reaction of the bearing. This force is vertical, equal, and opposite 
to W but does not pass through the center O of the axle; R is located 
to the right of O at a distance such that its moment about O balances 
the moment M of the couple. Therefore, contact between the axle and 
bearing does not take place at the lowest point A when the axle rotates. 
It takes place at point B (Fig. 8.10b) or, rather, along a straight line 
intersecting the plane of the figure at B. Physically, this is explained by 
the fact that when the wheels are set in motion, the axle “climbs” in 
the bearings until slippage occurs. After sliding back slightly, the axle 
settles more or less in the position shown. This position is such that the 
angle between the reaction R and the normal to the surface of the 
bearing is equal to the angle of kinetic friction fk. The distance from 
O to the line of action of R is thus r sin fk, where r is the radius of 
the axle. Writing that oMO 5 0 for the forces acting on the free body 
considered, we obtain the magnitude of the couple M required to over-
come the frictional resistance of one of the bearings:

 M 5 Rr sin fk (8.5)

440 Friction
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441Observing that, for small values of the angle of friction, sin fk can be 
replaced by tan fk, that is, by mk, we write the approximate formula

 M < Rrmk (8.6)

In the solution of certain problems, it may be more convenient to let 
the line of action of R pass through O, as it does when the axle does 
not rotate. A couple 2M of the same magnitude as the couple M but 
of opposite sense must then be added to the reaction R (Fig. 8.10d). 
This couple represents the frictional resistance of the bearing.
 In case a graphical solution is preferred, the line of action of R 
can be readily drawn (Fig. 8.10e) if we note that it must be tangent 
to a circle centered at O and of radius

 rf 5 r sin fk < rmk (8.7)

This circle is called the circle of friction of the axle and bearing and 
is independent of the loading conditions of the axle.

*8.8 THRUST BEARINGS. DISK FRICTION
Two types of thrust bearings are used to provide axial support to 
rotating shafts and axles: (1) end bearings and (2) collar bearings 
(Fig. 8.11). In the case of collar bearings, friction forces develop 
between the two ring-shaped areas which are in contact. In the case 
of end bearings, friction takes place over full circular areas, or over 
ring-shaped areas when the end of the shaft is hollow. Friction 
between circular areas, called disk friction, also occurs in other 
mechanisms, such as disk clutches.

Fig. 8.11 Thrust bearings.

MM

PP

(a) End bearing (b) Collar bearing

 To obtain a formula which is valid in the most general case of 
disk friction, let us consider a rotating hollow shaft. A couple M keeps 
the shaft rotating at constant speed while a force P maintains it in 
contact with a fixed bearing (Fig. 8.12). Contact between the shaft and 

8.8 Thrust Bearings. Disk Friction

M

M

P R1

R2
ΔN

ΔF

ΔA

r
q

Fig. 8.12
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442 Friction the bearing takes place over a ring-shaped area of inner radius R1 and 
outer radius R2. Assuming that the pressure between the two surfaces 
in contact is uniform, we find that the magnitude of the normal force 
DN exerted on an element of area DA is DN 5 P DA/A, where A 5 
p(R2

2 2 R2
1), and that the magnitude of the friction force DF acting 

on DA is DF 5 mk DN. Denoting by r the distance from the axis of 
the shaft to the element of area DA, we express the magnitude DM 
of the moment of DF about the axis of the shaft as follows:

¢M 5 r ¢F 5
rmkP ¢A

p(R2
2 2 R2

1)

The equilibrium of the shaft requires that the moment M of the 
couple applied to the shaft be equal in magnitude to the sum of the 
moments of the friction forces DF. Replacing DA by the infinitesimal 
element dA 5 r du dr used with polar coordinates, and integrating 
over the area of contact, we thus obtain the following expression for 
the magnitude of the couple M required to overcome the frictional 
resistance of the bearing:

 M 5
mkP

p(R2
2 2 R2

1) #
2p

0
#

R2

R1

 r
2 dr du

 5
mkP

p(R2
2 2 R2

1) #
2p

0

 13(R3
2 2 R3

1)du

  M 5 2
3 mkP 

R3
2 2 R3

1

R2
2 2 R2

1
 (8.8)

 When contact takes place over a full circle of radius R, formula 
(8.8) reduces to

 M 5 2
3mkPR (8.9)

The value of M is then the same as would be obtained if contact 
between shaft and bearing took place at a single point located at a 
distance 2R/3 from the axis of the shaft.
 The largest couple which can be transmitted by a disk clutch 
without causing slippage is given by a formula similar to (8.9), where 
mk has been replaced by the coefficient of static friction ms.

*8.9 WHEEL FRICTION. ROLLING RESISTANCE
The wheel is one of the most important inventions of our civilization. 
Its use makes it possible to move heavy loads with relatively little 
effort. Because the point of the wheel in contact with the ground at 
any given instant has no relative motion with respect to the ground, 
the wheel eliminates the large friction forces which would arise if 
the load were in direct contact with the ground. However, some 
resistance to the wheel’s motion exists. This resistance has two dis-
tinct causes. It is due (1) to a combined effect of axle friction and 
friction at the rim and (2) to the fact that the wheel and the ground 
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443deform, with the result that contact between wheel and ground takes 
place over a certain area, rather than at a single point.
 To understand better the first cause of resistance to the motion 
of a wheel, let us consider a railroad car supported by eight wheels 
mounted on axles and bearings. The car is assumed to be moving to 
the right at constant speed along a straight horizontal track. The free-
body diagram of one of the wheels is shown in Fig. 8.13a. The forces 
acting on the free body include the load W supported by the wheel 
and the normal reaction N of the track. Since W is drawn through 
the center O of the axle, the frictional resistance of the bearing should 
be represented by a counterclockwise couple M (see Sec. 8.7). To 
keep the free body in equilibrium, we must add two equal and oppo-
site forces P and F, forming a clockwise couple of moment 2M. The 
force F is the friction force exerted by the track on the wheel, and P 
represents the force which should be applied to the wheel to keep it 
rolling at constant speed. Note that the forces P and F would not 
exist if there were no friction between wheel and track. The couple M 
representing the axle friction would then be zero; the wheel would 
slide on the track without turning in its bearing.
 The couple M and the forces P and F also reduce to zero when 
there is no axle friction. For example, a wheel which is not held in 
bearings and rolls freely and at constant speed on horizontal ground 
(Fig. 8.13b) will be subjected to only two forces: its own weight W 
and the normal reaction N of the ground. Regardless of the value of 
the coefficient of friction between wheel and ground no friction 
force will act on the wheel. A wheel rolling freely on horizontal 
ground should thus keep rolling indefinitely.
 Experience, however, indicates that the wheel will slow down 
and eventually come to rest. This is due to the second type of resis-
tance mentioned at the beginning of this section, known as the roll-
ing resistance. Under the load W, both the wheel and the ground 
deform slightly, causing the contact between wheel and ground to 
take place over a certain area. Experimental evidence shows that the 
resultant of the forces exerted by the ground on the wheel over this 
area is a force R applied at a point B, which is not located directly 
under the center O of the wheel, but slightly in front of it (Fig. 8.13c). 
To balance the moment of W about B and to keep the wheel rolling 
at constant speed, it is necessary to apply a horizontal force P at the 
center of the wheel. Writing oMB 5 0, we obtain

 Pr 5 Wb (8.10)

where r 5 radius of wheel
 b 5 horizontal distance between O and B

The distance b is commonly called the coefficient of rolling resis-
tance. It should be noted that b is not a dimensionless coefficient 
since it represents a length; b is usually expressed in inches or in 
millimeters. The value of b depends upon several parameters in a 
manner which has not yet been clearly established. Values of the 
coefficient of rolling resistance vary from about 0.01 in. or 0.25 mm 
for a steel wheel on a steel rail to 5.0 in. or 125 mm for the same 
wheel on soft ground.

8.9 Wheel Friction. Rolling Resistance

Fig. 8.13

W

N

O

A

(b) Free wheel

P

W

O

B

b R

(c) Rolling resistance

r

M

P

W

F

N

O

A

(a) Effect of axle friction
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SOLUTION

a. Vertical Force P Required to Start Raising the Load. When the forces 
in both parts of the rope are equal, contact between the pulley and shaft 
takes place at A. When P is increased, the pulley rolls around the shaft 
slightly and contact takes place at B. The free-body diagram of the pulley 
when motion is impending is drawn. The perpendicular distance from the 
center O of the pulley to the line of action of R is

rf 5 r sin fs < rms  rf  < (1 in.)0.20 5 0.20 in.

Summing moments about B, we write

1l oMB 5 0:  (2.20 in.)(500 lb) 2 (1.80 in.)P 5 0
 P 5 611 lb P 5 611 lbw ◀

b. Vertical Force P to Hold the Load. As the force P is decreased, the 
pulley rolls around the shaft and contact takes place at C. Considering the 
pulley as a free body and summing moments about C, we write

1l oMC 5 0:  (1.80 in.)(500 lb) 2 (2.20 in.)P 5 0
 P 5 409 lb P 5 409 lbw ◀

c. Horizontal Force P to Start Raising the Load. Since the three forces 
W, P, and R are not parallel, they must be concurrent. The direction of R 
is thus determined from the fact that its line of action must pass through 
the point of intersection D of W and P, and must be tangent to the circle 
of friction. Recalling that the radius of the circle of friction is rf 5 0.20 in., 
we write

sin u 5
OE
OD

5
0.20 in.
12 in.212

5 0.0707   u 5 4.1°

From the force triangle, we obtain

P 5 W cot (45° 2 u) 5 (500 lb) cot 40.9°
 5 577 lb P 5 577 lb y ◀

SAMPLE PROBLEM 8.6

A pulley of diameter 4 in. can rotate about a fixed shaft of diameter 2 in. 
The coefficient of static friction between the pulley and shaft is 0.20. Deter-
mine (a) the smallest vertical force P required to start raising a 500-lb load, 
(b) the smallest vertical force P required to hold the load, (c) the smallest 
horizontal force P required to start raising the same load.

W = 500 lb

C A

R
P

1.80 in. 2.20 in.

O

fs

45° – q
W = 500 lb

P

R

W = 500 lb

D

O

E

R

P

q

rf

W = 500 lb

A B

O

R
P

fs

2.20 in. 1.80 in.
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445

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned about several additional engineering applications of 
the laws of friction.

1. Journal bearings and axle friction. In journal bearings, the reaction does not 
pass through the center of the shaft or axle which is being supported. The distance 
from the center of the shaft or axle to the line of action of the reaction (Fig. 8.10) 
is defined by the equation.

rf  5 r sin fk < rmk

if motion is actually taking place, and by the equation

rf  5 r sin fs < rms

if the motion is impending.

Once you have determined the line of action of the reaction, you can draw a free-
body diagram and use the corresponding equations of equilibrium to complete 
your solution [Sample Prob. 8.6]. In some problems, it is useful to observe that 
the line of action of the reaction must be tangent to a circle of radius rf ¯ rmk, 
or rf ¯ rms, known as the circle of friction [Sample Prob. 8.6, part c].

2. Thrust bearings and disk friction. In a thrust bearing the magnitude of the 
couple required to overcome frictional resistance is equal to the sum of the moments 
of the kinetic friction forces exerted on the elements of the end of the shaft 
[Eqs. (8.8) and (8.9)].

An example of disk friction is the disk clutch. It is analyzed in the same way as a 
thrust bearing, except that to determine the largest couple that can be transmitted, 
you must compute the sum of the moments of the maximum static friction forces
exerted on the disk.

3. Wheel friction and rolling resistance. You saw that the rolling resistance of 
a wheel is caused by deformations of both the wheel and the ground. The line of 
action of the reaction R of the ground on the wheel intersects the ground at a 
horizontal distance b from the center of the wheel. The distance b is known as 
the coefficient of rolling resistance and is expressed in inches or millimeters.

4. In problems involving both rolling resistance and axle friction, your free-
body diagram should show that the line of action of the reaction R of the ground 
on the wheel is tangent to the friction circle of the axle and intersects the ground 
at a horizontal distance from the center of the wheel equal to the coefficient of 
rolling resistance.
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PROBLEMS

446

8.77 A lever of negligible weight is loosely fitted onto a 30-mm-radius fixed 
shaft as shown. Knowing that a force P of magnitude 275 N will just 
start the lever rotating clockwise, determine (a) the coefficient of static 
friction between the shaft and the lever, (b) the smallest force P for 
which the lever does not start rotating counterclockwise.

20 kg
P

90 mm
45 mm

Fig. P8.79 and P8.81

T

64 in.

16 in.

B

A

Fig. P8.78

20 kg

P

90 mm
45 mm

Fig. P8.80 and P8.82

8.78 A hot-metal ladle and its contents weigh 130 kips. Knowing that the 
coefficient of static friction between the hooks and the pinion is 0.30, 
determine the tension in cable AB required to start tipping the ladle.

 8.79 and 8.80 The double pulley shown is attached to a 10-mm-
radius shaft that fits loosely in a fixed bearing. Knowing that the 
coefficient of static friction between the shaft and the poorly lubri-
cated bearing is 0.40, determine the magnitude of the force P
required to start raising the load.

100 mm 160 mm

P

30 mm

40 kg

A
B

C

Fig. P8.77

8.81 and 8.82 The double pulley shown is attached to a 10-mm-
radius shaft that fits loosely in a fixed bearing. Knowing that the 
coefficient of static friction between the shaft and the poorly lubri-
cated bearing is 0.40, determine the magnitude of the smallest 
force P required to maintain equilibrium.
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447Problems 8.83 The block and tackle shown are used to raise a 150-lb load. Each 
of the 3-in.-diameter pulleys rotates on a 0.5-in.-diameter axle. 
Knowing that the coefficient of static friction is 0.20, determine 
the tension in each portion of the rope as the load is slowly raised.

 8.84 The block and tackle shown are used to lower a 150-lb load. Each 
of the 3-in.-diameter pulleys rotates on a 0.5-in.-diameter axle. 
Knowing that the coefficient of static friction is 0.20, determine the 
tension in each portion of the rope as the load is slowly lowered.

 8.85 A scooter is to be designed to roll down a 2 percent slope at a 
constant speed. Assuming that the coefficient of kinetic friction 
between the 25-mm-diameter axles and the bearings is 0.10, deter-
mine the required diameter of the wheels. Neglect the rolling 
resistance between the wheels and the ground.

 8.86 The link arrangement shown is frequently used in highway bridge 
construction to allow for expansion due to changes in temperature. 
At each of the 60-mm-diameter pins A and B the coefficient of 
static friction is 0.20. Knowing that the vertical component of the 
force exerted by BC on the link is 200 kN, determine (a) the hori-
zontal force that should be exerted on beam BC to just move the 
link, (b) the angle that the resulting force exerted by beam BC on 
the link will form with the vertical.

 8.87 and 8.88 A lever AB of negligible weight is loosely fitted onto 
a 2.5-in.-diameter fixed shaft. Knowing that the coefficient of static 
friction between the fixed shaft and the lever is 0.15, determine 
the force P required to start the lever rotating counterclockwise.

A

B
C

D E

F

150 lb

TEF

Fig. P8.83 and P8.84

2.5 in.

2 in.

5 in.

50 lb

BB

AAP

Fig. P8.88 and P8.90

2.5 in.

5 in.

B

A

50 lb

P

2 in.

Fig. P8.87 and P8.89

500 mm
A

B
C

Fig. P8.86

 8.89 and 8.90 A lever AB of negligible weight is loosely fitted onto 
a 2.5-in.-diameter fixed shaft. Knowing that the coefficient of static 
friction between the fixed shaft and the lever is 0.15, determine 
the force P required to start the lever rotating clockwise.

 8.91 A loaded railroad car has a mass of 30 Mg and is supported by 
eight 800-mm-diameter wheels with 125-mm-diameter axles. 
Knowing that the coefficients of friction are ms 5 0.020 and mk 5 
0.015, determine the horizontal force required (a) to start the car 
moving, (b) to keep the car moving at a constant speed. Neglect 
rolling resistance between the wheels and the rails.
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448 Friction  8.92 Knowing that a couple of magnitude 30 N ? m is required to start 
the vertical shaft rotating, determine the coefficient of static fric-
tion between the annular surfaces of contact.

 8.93 A 50-lb electric floor polisher is operated on a surface for which 
the coefficient of kinetic friction is 0.25. Assuming that the normal 
force per unit area between the disk and the floor is uniformly 
distributed, determine the magnitude Q of the horizontal forces 
required to prevent motion of the machine.

20 in.

18 in.
Q

–Q

Fig. P8.93

M

4 kN

50 mm

120 mm

Fig. P8.92

 *8.94 The frictional resistance of a thrust bearing decreases as the shaft 
and bearing surfaces wear out. It is generally assumed that the wear 
is directly proportional to the distance traveled by any given point 
of the shaft and thus to the distance r from the point to the axis of 
the shaft. Assuming, then, that the normal force per unit area is 
inversely proportional to r, show that the magnitude M of the 
 couple required to overcome the frictional resistance of a worn-out 
end bearing (with contact over the full circular area) is equal to 
75 percent of the value given by Eq. (8.9) for a new bearing.

 *8.95 Assuming that bearings wear out as indicated in Prob. 8.94, show 
that the magnitude M of the couple required to overcome the 
frictional resistance of a worn-out collar bearing is

   M 5 1
2 mk P(R1 1 R2)

  where P 5 magnitude of the total axial force
     R1, R2 5 inner and outer radii of the collar

 *8.96 Assuming that the pressure between the surfaces of contact is uni-
form, show that the magnitude M of the couple required to over-
come frictional resistance for the conical bearing shown is

M 5
2
3

 
mkP
sin u

 
R2

3 2 R1
3

R2
2 2 R1

2

 8.97 Solve Prob. 8.93 assuming that the normal force per unit area 
between the disk and the floor varies linearly from a maximum at 
the center to zero at the circumference of the disk.

 8.98 Determine the horizontal force required to move a 2500-lb auto-
mobile with 23-in.-diameter tires along a horizontal road at a con-
stant speed. Neglect all forms of friction except rolling resistance, 
and assume the coefficient of rolling resistance to be 0.05 in.

 8.99 Knowing that a 6-in.-diameter disk rolls at a constant velocity down 
a 2 percent incline, determine the coefficient of rolling resistance 
between the disk and the incline.

P

θ θ

R1

R2

M

Fig. P8.96

bee02286_ch08_410-467.indd Page 448  08/10/11  2:50 PM user-f494bee02286_ch08_410-467.indd Page 448  08/10/11  2:50 PM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


 8.100 A 900-kg machine base is rolled along a concrete floor using a 
series of steel pipes with outside diameters of 100 mm. Knowing 
that the coefficient of rolling resistance is 0.5 mm between the 
pipes and the base and 1.25 mm between the pipes and the con-
crete floor, determine the magnitude of the force P required to 
slowly move the base along the floor.

 8.101 Solve Prob. 8.85 including the effect of a coefficient of rolling 
resistance of 1.75 mm.

 8.102 Solve Prob. 8.91 including the effect of a coefficient of rolling 
resistance of 0.5 mm.

449

8.10 BELT FRICTION
Consider a flat belt passing over a fixed cylindrical drum (Fig. 8.14a). 
We propose to determine the relation existing between the values T1 
and T2 of the tension in the two parts of the belt when the belt is 
just about to slide toward the right.
 Let us detach from the belt a small element PP¿ subtending 
an angle Du. Denoting by T the tension at P and by T 1 DT the 
tension at P¿, we draw the free-body diagram of the element of the 
belt (Fig. 8.14b). Besides the two forces of tension, the forces acting 
on the free body are the normal component DN of the reaction of 
the drum and the friction force DF. Since motion is assumed to be 
impending, we have DF 5 ms DN. It should be noted that if Du is 
made to approach zero, the magnitudes DN and DF, and the differ-
ence DT between the tension at P and the tension at P¿, will also 
approach zero; the value T of the tension at P, however, will remain 
unchanged. This observation helps in understanding our choice of 
notations.
 Choosing the coordinate axes shown in Fig. 8.14b, we write the 
equations of equilibrium for the element PP¿:

oFx 5 0:   (T 1 ¢T) cos 
¢u

2
2 T cos 

¢u

2
2 ms¢N 5 0 (8.11)

oFy 5 0:   ¢N 2 (T 1 ¢T) sin 
¢u

2
2 T sin 

¢u

2
5 0 (8.12)

Solving Eq. (8.12) for DN and substituting into (8.11), we obtain after 
reductions

¢T cos 
¢u

2
2 ms(2T 1 ¢T) sin 

¢u

2
5 0

Both terms are now divided by Du. For the first term, this is done 
simply by dividing DT by Du. The division of the second term is 

P

O

P'

θ
βP1 P2

T1

T

T2

(a)

P

O

P'

(b)

x

y

ΔN ΔF =    sΔ N

T'= T + ΔT

2 2

θΔ

θΔ θΔ

θΔ

μ

Fig. 8.14

8.10 Belt Friction

P

Fig. P8.100
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450 Friction carried out by dividing the terms in the parentheses by 2 and the 
sine by Du/2. We write

¢T
¢u

 cos 
¢u

2
2 ms 

aT 1
¢T
2
b sin(¢u/2)

¢u/2
5 0

If we now let Du approach 0, the cosine approaches 1 and DT/2 
approaches zero, as noted above. The quotient of sin (Du/2) over Du/2 
approaches 1, according to a lemma derived in all calculus textbooks. 
Since the limit of DT/Du is by definition equal to the derivative 
dT/du, we write

dT
du

2 msT 5 0     dT
T

5 msdu

Both members of the last equation (Fig. 8.14a) will now be inte-
grated from P1 to P2. At P1, we have u 5 0 and T 5 T1; at P2, we 
have u 5 b and T 5 T2. Integrating between these limits, we write

 #
T2

T1

 
dT
T

5 #
b

0
 ms du

 ln T2 2 ln T1 5 msb

or, noting that the left-hand member is equal to the natural logarithm 
of the quotient of T2 and T1,

 ln 
T2

T1
5 msb (8.13)

This relation can also be written in the form

 
T2

T1
5 emsb (8.14)

The formulas we have derived apply equally well to problems involv-
ing flat belts passing over fixed cylindrical drums and to problems 
involving ropes wrapped around a post or capstan. They can also be 
used to solve problems involving band brakes. In such problems, it 
is the drum which is about to rotate, while the band remains fixed. 
The formulas can also be applied to problems involving belt drives. 
In these problems, both the pulley and the belt rotate; our concern 
is then to find whether the belt will slip, i.e., whether it will move 
with respect to the pulley.

P

O

P'

θ
βP1 P2

T1 T2

(a)

θΔ

Fig. 8.14a (repeated )

Photo 8.3 By wrapping the rope around the 
bollard, the force exerted by the worker to control 
the rope is much smaller than the tension in the taut 
portion of the rope.
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451 Formulas (8.13) and (8.14) should be used only if the belt, 
rope, or brake is about to slip. Formula (8.14) will be used if T1 or 
T2 is desired; formula (8.13) will be preferred if either ms or the 
angle of contact b is desired. We should note that T2 is always 
larger than T1; T2 therefore represents the tension in that part of 
the belt or rope which pulls, while T1 is the tension in the part 
which resists. We should also observe that the angle of contact b 
must be expressed in radians. The angle b may be larger than 2p; 
for example, if a rope is wrapped n times around a post, b is equal 
to 2pn.
 If the belt, rope, or brake is actually slipping, formulas similar 
to (8.13) and (8.14), but involving the coefficient of kinetic friction 
mk, should be used. If the belt, rope, or brake is not slipping and is 
not about to slip, none of these formulas can be used.
 The belts used in belt drives are often V-shaped. In the V belt 
shown in Fig. 8.15a contact between belt and pulley takes place 

(a) (b) (c)

x

y
y

z α
2

α
2

ΔN ΔN

2
T sin

2
 (T + ΔT) sin

2 2

T + ΔTT

2ΔF

α
2

2ΔN sin

α
Δ

α
θ

Δθ

ΔθΔθ

Δθ

Fig. 8.15

8.10 Belt Friction

along the sides of the groove. The relation existing between the val-
ues T1 and T2 of the tension in the two parts of the belt when the 
belt is just about to slip can again be obtained by drawing the free-
body diagram of an element of belt (Fig. 8.15b and c). Equations 
similar to (8.11) and (8.12) are derived, but the magnitude of the 
total friction force acting on the element is now 2 DF, and the sum 
of the y components of the normal forces is 2 DN sin (a/2). Proceed-
ing as above, we obtain

 ln 
T2

T1
5

msb

sin (a/2)
 (8.15)

or,

 
T2

T1
5 emsb/sin (a/2) (8.16)

bee02286_ch08_410-467.indd Page 451  08/10/11  2:50 PM user-f494bee02286_ch08_410-467.indd Page 451  08/10/11  2:50 PM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


SOLUTION

a. Coefficient of Friction. Since slipping of the hawser is impending, we 
use Eq. (8.13):

ln 
T2

T1
5 msb

Since the hawser is wrapped two full turns around the bollard, we have

b 5 2(2p rad) 5 12.57 rad
T1 5 150 N T2 5 7500 N

Therefore,

msb 5 ln 
T2

T1

ms(12.57 rad) 5 ln 
7500 N
150 N

5 ln 50 5 3.91

 ms 5 0.311 ms 5 0.311 ◀

b. Hawser Wrapped Three Turns Around Bollard. Using the value of ms 
obtained in part a, we now have

b 5 3(2p rad) 5 18.85 rad
 T1 5 150 N   ms 5 0.311

Substituting these values into Eq. (8.14), we obtain

T2

T1
5 ems b

T2

150 N
5 e(0.311)(18.85) 5 e5.862 5 351.5

T2 5 52 725 N
T2 5 52.7 kN ◀

SAMPLE PROBLEM 8.7

A hawser thrown from a ship to a pier is wrapped two full turns around a 
bollard. The tension in the hawser is 7500 N; by exerting a force of 150 N 
on its free end, a dockworker can just keep the hawser from slipping. 
(a) Determine the coefficient of friction between the hawser and the bol-
lard. (b) Determine the tension in the hawser that could be resisted by 
the 150-N force if the hawser were wrapped three full turns around 
the bollard.

150 N
7500 N

T1 = 150 N
T2

452
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SOLUTION

Since the resistance to slippage depends upon the angle of contact b 
between pulley and belt, as well as upon the coefficient of static friction ms, 
and since ms is the same for both pulleys, slippage will occur first on pulley 
B, for which b is smaller.

Pulley B. Using Eq. (8.14) with T2 5 600 lb, ms 5 0.25, and b 5 120° 5 
2p/3 rad, we write

T2

T1
5 ems b     600 lb

T1
5 e0.25(2p/3) 5 1.688

T1 5
600 lb
1.688

5 355.4 lb

Pulley A. We draw the free-body diagram of pulley A. The couple MA is 
applied to the pulley by the machine tool to which it is attached and is equal 
and opposite to the torque exerted by the belt. We write

1l  oMA 5 0:  MA 2 (600 lb)(8 in.) 1 (355.4 lb)(8 in.) 5 0
 MA 5 1957 lb ? in. MA 5 163.1 lb ? ft ◀

Note. We may check that the belt does not slip on pulley A by computing 
the value of ms required to prevent slipping at A and verifying that it is 
smaller than the actual value of ms. From Eq. (8.13) we have

msb 5 ln 
T2

T1
5 ln 

600 lb
355.4 lb

5 0.524

and, since b 5 240° 5 4p/3 rad,

4p

3
 ms 5 0.524   ms 5 0.125 , 0.25

SAMPLE PROBLEM 8.8

A flat belt connects pulley A, which drives a machine tool, to pulley B, which 
is attached to the shaft of an electric motor. The coefficients of friction are 
ms 5 0.25 and mk 5 0.20 between both pulleys and the belt. Knowing that 
the maximum allowable tension in the belt is 600 lb, determine the largest 
torque which can be exerted by the belt on pulley A.

60°

30°

b = 240°

b = 120°

A

B

T2 = 600 lb

T1 b = 120°
B

60°

A

B

r = 1 in.
8 in.

T1 = 355.4 lb

A x
A y

MA

T2 = 600 lb
A

8 in.

453
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454

In the preceding section you learned about belt friction. The problems you will 
solve include belts passing over fixed drums, band brakes in which the drum 

rotates while the band remains fixed, and belt drives.

1. Problems involving belt friction fall into one of the following two categories:
 a. Problems in which slipping is impending. One of the following formulas, 
involving the coefficient of static friction ms, may then be used,

 ln 

T2

T1
5 msb (8.13)

or

 
T2

T1
5 ems b (8.14)

 b. Problems in which slipping is occurring. The formulas to be used can be 
obtained from Eqs. (8.13) and (8.14) by replacing ms with the coefficient of kinetic 
friction mk.

2. As you start solving a belt-friction problem, be sure to remember the 
following:
 a. The angle B must be expressed in radians. In a belt-and-drum problem, 
this is the angle subtending the arc of the drum on which the belt is wrapped.
 b. The larger tension is always denoted by T2 and the smaller tension is 
denoted by T1.
 c. The larger tension occurs at the end of the belt which is in the direction 
of the motion, or impending motion, of the belt relative to the drum.

3. In each of the problems you will be asked to solve, three of the four 
quantities T1, T2, b, and ms (or mk) will either be given or readily found, and you 
will then solve the appropriate equation for the fourth quantity. Here are two kinds 
of problems that you will encounter:
 a. Find Ms between belt and drum, knowing that slipping is impending. 
From the given data, determine T1, T2, and b; substitute these values into Eq. (8.13) 
and solve for ms [Sample Prob. 8.7, part a]. Follow the same procedure to find 
the smallest value of ms for which slipping will not occur.
 b. Find the magnitude of a force or couple applied to the belt or drum, 
knowing that slipping is impending. The given data should include ms and b. 
If it also  includes T1 or T2, use Eq. (8.14) to find the other tension. If neither T1 
nor T2 is known but some other data is given, use the free-body diagram of the 
belt-drum system to write an equilibrium equation that you will solve simultane-
ously with Eq. (8.14) for T1 and T2. You will then be able to find the magnitude 
of the specified force or couple from the free-body diagram of the system. Follow 
the same procedure to determine the largest value of a force or couple which can 
be applied to the belt or drum if no slipping is to occur [Sample Prob. 8.8].

SOLVING PROBLEMS
ON YOUR OWN
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PROBLEMS

455

8.103 A 300-lb block is supported by a rope that is wrapped 11
2 times 

around a horizontal rod. Knowing that the coefficient of static fric-
tion between the rope and the rod is 0.15, determine the range of 
values of P for which equilibrium is maintained.

 8.104 A hawser is wrapped two full turns around a bollard. By exerting 
an 80-lb force on the free end of the hawser, a dockworker can 
resist a force of 5000 lb on the other end of the hawser. Determine 
(a) the coefficient of static friction between the hawser and the 
bollard, (b) the number of times the hawser should be wrapped 
around the bollard if a 20,000-lb force is to be resisted by the same 
80-lb force.

8.105 A rope ABCD is looped over two pipes as shown. Knowing that 
the coefficient of static friction is 0.25, determine (a) the smallest 
value of the mass m for which equilibrium is possible, (b) the cor-
responding tension in portion BC of the rope.

8.106 A rope ABCD is looped over two pipes as shown. Knowing that 
the coefficient of static friction is 0.25, determine (a) the largest 
value of the mass m for which equilibrium is possible, (b) the cor-
responding tension in portion BC of the rope.

 8.107 Knowing that the coefficient of static friction is 0.25 between the 
rope and the horizontal pipe and 0.20 between the rope and the 
vertical pipe, determine the range of values of P for which equi-
librium is maintained.

30°

C

DA

B

50 kg m

Fig. P8.105 and P8.106

P

300 lb

Fig. P8.103

P400 N

Fig. P8.107 and P8.108

8.108 Knowing that the coefficient of static friction is 0.30 between the 
rope and the horizontal pipe and that the smallest value of P for 
which equilibrium is maintained is 80 N, determine (a) the largest 
value of P for which equilibrium is maintained, (b) the coefficient 
of static friction between the rope and the vertical pipe.

 8.109 A band brake is used to control the speed of a flywheel as shown. 
The coefficients of friction are ms 5 0.30 and mk 5 0.25. Determine 
the magnitude of the couple being applied to the flywheel, know-
ing that P 5 45 N and that the flywheel is rotating counterclock-
wise at a constant speed.

360 mm

360 mm

120 mmP

A B C

D

Fig. P8.109
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456 Friction  8.110 The setup shown is used to measure the output of a small turbine. 
When the flywheel is at rest, the reading of each spring scale is 
14 lb. If a 105-lb ? in. couple must be applied to the flywheel to 
keep it rotating clockwise at a constant speed, determine (a) the 
reading of each scale at that time, (b) the coefficient of kinetic 
friction. Assume that the length of the belt does not change.

 8.111 The setup shown is used to measure the output of a small turbine. 
The coefficient of kinetic friction is 0.20 and the reading of each 
spring scale is 16 lb when the flywheel is at rest. Determine 
(a) the reading of each scale when the flywheel is rotating clock-
wise at a constant speed, (b) the couple that must be applied to 
the flywheel. Assume that the length of the belt does not change.

 8.112 A flat belt is used to transmit a couple from drum B to drum A. 
Knowing that the coefficient of static friction is 0.40 and that the 
allowable belt tension is 450 N, determine the largest couple that 
can be exerted on drum A.

A B
P

240 mm

Fig. P8.113

 8.113 A flat belt is used to transmit a couple from pulley A to pulley B. 
The radius of each pulley is 60 mm, and a force of magnitude 
P 5 900 N is applied as shown to the axle of pulley A. Knowing 
that the coefficient of static friction is 0.35, determine (a) the larg-
est couple that can be transmitted, (b) the corresponding maximum 
value of the tension in the belt.

 8.114 Solve Prob. 8.113 assuming that the belt is looped around the pul-
leys in a figure eight.

BA

18.75 in.

Fig. P8.110 and P8.111

B

A

15° 15°

rA = 120 mm

rB = 50 mm

Fig. P8.112
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457Problems 8.115 The speed of the brake drum shown is controlled by a belt attached 
to the control bar AD. A force P of magnitude 25 lb is applied to 
the control bar at A. Determine the magnitude of the couple being 
applied to the drum, knowing that the coefficient of kinetic friction 
between the belt and the drum is 0.25, that a 5 4 in., and that 
the drum is rotating at a constant speed (a) counterclockwise, 
(b) clockwise.

 8.116 The speed of the brake drum shown is controlled by a belt attached 
to the control bar AD. Knowing that a 5 4 in., determine 
the maximum value of the coefficient of static friction for 
which the brake is not self-locking when the drum rotates 
counterclockwise.

 8.117 The speed of the brake drum shown is controlled by a belt attached 
to the control bar AD. Knowing that the coefficient of static friction 
is 0.30 and that the brake drum is rotating counterclockwise, deter-
mine the minimum value of a for which the brake is not 
self-locking.

 8.118 Bucket A and block C are connected by a cable that passes over 
drum B. Knowing that drum B rotates slowly counterclockwise and 
that the coefficients of friction at all surfaces are ms 5 0.35 and 
mk 5 0.25, determine the smallest combined mass m of the bucket 
and its contents for which block C will (a) remain at rest, (b) start 
moving up the incline, (c) continue moving up the incline at a 
constant speed.

 8.119 Solve Prob. 8.118 assuming that drum B is frozen and cannot rotate.

 8.120 and 8.122 A cable is placed around three parallel pipes. Know-
ing that the coefficients of friction are ms 5 0.25 and mk 5 0.20, 
determine (a) the smallest weight W for which equilibrium is main-
tained, (b) the largest weight W that can be raised if pipe B is 
slowly rotated counterclockwise while pipes A and C remain fixed.

A
B

C

D

a

P

24 in.

r � 8 in.
E

Fig. P8.115, P8.116, 
and P8.117

A

B
C

m

100 kg

30°

Fig. P8.118

50 lb

W

A

C

B

Fig. P8.120 and P8.121

A

C

B

W50 lb

Fig. P8.122 and P8.123

 8.121 and 8.123 A cable is placed around three parallel pipes. Two 
of the pipes are fixed and do not rotate; the third pipe is slowly 
rotated. Knowing that the coefficients of friction are ms 5 0.25 and 
mk 5 0.20, determine the largest weight W that can be raised 
(a) if only pipe A is rotated counterclockwise, (b) if only pipe C is 
rotated clockwise.
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458 Friction  8.124 A recording tape passes over the 20-mm-radius drive drum B and 
under the idler drum C. Knowing that the coefficients of friction 
between the tape and the drums are ms 5 0.40 and mk 5 0.30 and 
that drum C is free to rotate, determine the smallest allowable 
value of P if slipping of the tape on drum B is not to occur.

A

B

C

D

P

TA

0.3 N⋅m

Fig. P8.124

 8.125 Solve Prob. 8.124 assuming that the idler drum C is frozen and 
cannot rotate.

 8.126 The strap wrench shown is used to grip the pipe firmly without 
marring the external surface of the pipe. Knowing that the coef-
ficient of static friction is the same for all surfaces of contact, deter-
mine the smallest value of ms for which the wrench will be 
self-locking when a 5 200 mm, r 5 30 mm, and u 5 658.

A C E

B D

5 in. 5 in. 3 in.

10 lb

M0

Fig. P8.128

θ

r a

D

P

C

B

A

Fig. P8.126

 8.127 Solve Prob. 8.126 assuming that u 5 758.

 8.128 The 10-lb bar AE is suspended by a cable that passes over a 5-in.-
radius drum. Vertical motion of end E of the bar is prevented by 
the two stops shown. Knowing that ms 5 0.30 between the cable 
and the drum, determine (a) the largest counterclockwise couple 
M0 that can be applied to the drum if slipping is not to occur, 
(b) the corresponding force exerted on end E of the bar.
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459Problems 8.129 Solve Prob. 8.128 assuming that a clockwise couple M0 is applied 
to the drum.

 8.130 Prove that Eqs. (8.13) and (8.14) are valid for any shape of surface 
provided that the coefficient of friction is the same at all points of 
contact.

T2T1

β

T2T1

β

Fig. P8.130

 8.131 Complete the derivation of Eq. (8.15), which relates the tension in 
both parts of a V belt.

 8.132 Solve Prob. 8.112 assuming that the flat belt and drums are 
replaced by a V belt and V pulleys with a 5 368. (The angle a is 
as shown in Fig. 8.15a.)

 8.133 Solve Prob. 8.113 assuming that the flat belt and pulleys are 
replaced by a V belt and V pulleys with a 5 368. (The angle a is 
as shown in Fig. 8.15a.)
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460

REVIEW AND SUMMARY

This chapter was devoted to the study of dry friction, i.e., to prob-
lems involving rigid bodies which are in contact along nonlubricated 
surfaces.

N

F

W

P

P

F Equilibrium Motion

Fm

Fk

Fig. 8.16

Applying a horizontal force P to a block resting on a horizontal sur-
face [Sec. 8.2], we note that the block at first does not move. This 
shows that a friction force F must have developed to balance P
(Fig. 8.16). As the magnitude of P is increased, the magnitude of F
also increases until it reaches a maximum value Fm. If P is further 
increased, the block starts sliding and the magnitude of F drops from 
Fm to a lower value Fk. Experimental evidence shows that Fm and Fk
are proportional to the normal component N of the reaction of the 
surface. We have

 Fm 5 msN  Fk 5 mkN (8.1, 8.2)

where ms and mk are called, respectively, the coefficient of static 
 friction and the coefficient of kinetic friction. These coefficients 
depend on the nature and the condition of the surfaces in contact. 
Approximate values of the coefficients of static friction were given 
in Table 8.1.

It is sometimes convenient to replace the normal force N and the 
friction force F by their resultant R (Fig. 8.17). As the friction force 
increases and reaches its maximum value Fm 5 msN, the angle f that 
R forms with the normal to the surface increases and reaches a 
maximum value fs, called the angle of static friction. If motion actu-
ally takes place, the magnitude of F drops to Fk; similarly the angle f 
drops to a lower value fk, called the angle of kinetic friction. As 
shown in Sec. 8.3, we have

 tan fs 5 ms  tan fk 5 mk (8.3, 8.4)

Static and kinetic friction

Angles of friction

R

W

P

φ
N

F

Fig. 8.17
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461When solving equilibrium problems involving friction, we should keep 
in mind that the magnitude F of the friction force is equal to 
Fm 5 msN only if the body is about to slide [Sec. 8.4]. If motion is not 
impending, F and N should be considered as independent unknowns 
to be determined from the equilibrium equations (Fig. 8.18a). We 

Problems involving friction

W P

N

W P

N

Frequired

Fm  = ms N

(a) (b)

Fig. 8.18

should also check that the value of F required to maintain equilib-
rium is not larger than Fm; if it were, the body would move and the 
magnitude of the friction force would be Fk 5 mkN [Sample Prob. 8.1]. 
On the other hand, if motion is known to be impending, F has 
reached its maximum value Fm 5 msN (Fig. 8.18b), and this expres-
sion may be substituted for F in the equilibrium equations [Sample 
Prob. 8.3]. When only three forces are involved in a free-body dia-
gram, including the reaction R of the surface in contact with the 
body, it is usually more convenient to solve the problem by drawing 
a force triangle [Sample Prob. 8.2].
 When a problem involves the analysis of the forces exerted on 
each other by two bodies A and B, it is important to show the friction 
forces with their correct sense. The correct sense for the friction force 
exerted by B on A, for instance, is opposite to that of the relative 
motion (or impending motion) of A with respect to B [Fig. 8.6].

In the second part of the chapter we considered a number of specific 
engineering applications where dry friction plays an important role. 
In the case of wedges, which are simple machines used to raise heavy 
loads [Sec. 8.5], two or more free-body diagrams were drawn and 
care was taken to show each friction force with its correct sense 
[Sample Prob. 8.4]. The analysis of square-threaded screws, which 
are frequently used in jacks, presses, and other mechanisms, was 
reduced to the analysis of a block sliding on an incline by unwrapping 
the thread of the screw and showing it as a straight line [Sec. 8.6]. 
This is done again in Fig. 8.19, where r denotes the mean radius 
of the thread, L is the lead of the screw, i.e., the distance through 
which the screw advances in one turn, W is the load, and Qr is equal 
to the couple exerted on the screw. It was noted that in the case of 
multiple-threaded screws the lead L of the screw is not equal to its 
pitch, which is the distance measured between two consecutive 
threads.

Wedges and screws

fs

Q

W

R

q

q

L

2   r�

Fig. 8.19

Review and Summary
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462 Friction  Other engineering applications considered in this chapter were 
journal bearings and axle friction [Sec. 8.7], thrust bearings and disk 
friction [Sec. 8.8], wheel friction and rolling resistance [Sec. 8.9], and 
belt friction [Sec. 8.10].

In solving a problem involving a flat belt passing over a fixed cylinder, 
it is important to first determine the direction in which the belt slips 
or is about to slip. If the drum is rotating, the motion or impending 
motion of the belt should be determined relative to the rotating 
drum. For instance, if the belt shown in Fig. 8.20 is about to slip to 

Belt friction

P

O

P'

q
b

Δq
P1 P2

T1 T2

Fig. 8.20

the right relative to the drum, the friction forces exerted by the drum 
on the belt will be directed to the left and the tension will be larger 
in the right-hand portion of the belt than in the left-hand portion. 
Denoting the larger tension by T2, the smaller tension by T1, the 
coefficient of static friction by ms, and the angle (in radians) sub-
tended by the belt by b, we derived in Sec. 8.10 the formulas

  ln 

T2

T1
5 msb (8.13)

  
T2

T1
5 emsb  (8.14)

which were used in solving Sample Probs. 8.7 and 8.8. If the belt 
actually slips on the drum, the coefficient of static friction ms should 
be replaced by the coefficient of kinetic friction mk in both of these 
formulas.
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463

REVIEW PROBLEMS

 8.134 Determine whether the block shown is in equilibrium and find the 
magnitude and direction of the friction force when u 5 358 and 
P 5 200 N.

 8.135 Three 4-kg packages A, B, and C are placed on a conveyor belt 
that is at rest. Between the belt and both packages A and C the 
coefficients of friction are ms 5 0.30 and mk 5 0.20; between pack-
age B and the belt the coefficients are ms 5 0.10 and mk 5 0.08. 
The packages are placed on the belt so that they are in contact 
with each other and at rest. Determine which, if any, of the pack-
ages will move and the friction force acting on each package.

 8.136 The cylinder shown is of weight W and radius r. Express in terms 
W and r the magnitude of the largest couple M that can be applied 
to the cylinder if it is not to rotate, assuming the coefficient of 
static friction to be (a) zero at A and 0.30 at B, (b) 0.25 at A and 
0.30 at B.

 8.137 End A of a slender, uniform rod of length L and weight W bears on 
a surface as shown, while end B is supported by a cord BC. Knowing 
that the coefficients of friction are ms 5 0.40 and mk 5 0.30, deter-
mine (a) the largest value of u for which motion is impending, 
(b) the corresponding value of the tension in the cord.

25°

ms = 0.20
mk = 0.15

800 N

P

q

Fig. P8.134

A
B C

15°

4 kg
4 kg 4 kg

Fig. P8.135

A

B

M

Fig. P8.136

L

L

B

C

A
q

Fig. P8.137
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464 Friction  8.138 A worker slowly moves a 50-kg crate to the left along a loading 
dock by applying a force P at corner B as shown. Knowing that 
the crate starts to tip about the edge E of the loading dock when 
a 5 200 mm, determine (a) the coefficient of kinetic friction 
between the crate and the loading dock, (b) the corresponding 
magnitude P of the force.

 8.139 A window sash weighing 10 lb is normally supported by two 5-lb 
sash weights. Knowing that the window remains open after one 
sash cord has broken, determine the smallest possible value of the 
coefficient of static friction. (Assume that the sash is slightly 
smaller than the frame and will bind only at points A and D.)

 8.140 The slender rod AB of length l 5 600 mm is attached to a collar 
at B and rests on a small wheel located at a horizontal distance 
a 5 80 mm from the vertical rod on which the collar slides. Know-
ing that the coefficient of static friction between the collar and the 
vertical rod is 0.25 and neglecting the radius of the wheel, deter-
mine the range of values of P for which equilibrium is maintained 
when Q 5 100 N and u 5 308.

 8.141 The machine part ABC is supported by a frictionless hinge at B 
and a 108 wedge at C. Knowing that the coefficient of static friction 
is 0.20 at both surfaces of the wedge, determine (a) the force P 
required to move the wedge to the left, (b) the components of the 
corresponding reaction at B.

A B

C D

27 in.

36 in.

Fig. P8.139

q

A

a

B

C

P

Q

l

Fig. P8.140

120 lb

P

8 in.

10 in. 10°

C

D

B

A

Fig. P8.141

P

A

C

B

D

1.2 m

0.9 m

15°

a
E

Fig. P8.138
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465Review Problems 8.142 A conical wedge is placed between two horizontal plates that are 
then slowly moved toward each other. Indicate what will happen 
to the wedge (a) if ms 5 0.20, (b) if ms 5 0.30.

 8.143 In the machinist’s vise shown, the movable jaw D is rigidly attached 
to the tongue AB that fits loosely into the fixed body of the vise. 
The screw is single-threaded into the fixed base and has a mean 
diameter of 0.75 in. and a pitch of 0.25 in. The coefficient of static 
friction is 0.25 between the threads and also between the tongue 
and the body. Neglecting bearing friction between the screw and 
the movable head, determine the couple that must be applied to 
the handle in order to produce a clamping force of 1 kip.

 8.144 A lever of negligible weight is loosely fitted onto a 75-mm-diameter 
fixed shaft. It is observed that the lever will just start rotating if a 
3-kg mass is added at C. Determine the coefficient of static friction 
between the shaft and the lever.

25°

q

Fig. P8.142

Fig. P8.143

D

C

BA

3 in.

1.75 in.
0.75 in.
1.25 in.

A B
O

DC

150 mm 100 mm

30 kg20 kg

75 mm

O

Fig. P8.144

A
B

C D

W

10 in.

12 in.

6 in.

Fig. P8.145

 8.145 In the pivoted motor mount shown, the weight W of the 175-lb 
motor is used to maintain tension in the drive belt. Knowing that 
the coefficient of static friction between the flat belt and drums A 
and B is 0.40, and neglecting the weight of platform CD, determine 
the largest couple that can be transmitted to drum B when the 
drive drum A is rotating clockwise.
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466

COMPUTER PROBLEMS

 8.C1 The position of the 10-kg rod AB is controlled by the 2-kg block 
shown, which is slowly moved to the left by the force P. Knowing that the 
coefficient of kinetic friction between all surfaces of contact is 0.25, write a 
computer program and use it to calculate the magnitude P of the force for 
values of x from 900 to 100 mm, using 50-mm decrements. Using appropri-
ate smaller decrements, determine the maximum value of P and the cor-
responding value of x.

 8.C2 Blocks A and B are supported by an incline that is held in the posi-
tion shown. Knowing that block A weighs 20 lb and that the coefficient of 
static friction between all surfaces of contact is 0.15, write a computer pro-
gram and use it to calculate the value of u for which motion is impending 
for weights of block B from 0 to 100 lb, using 10-lb increments.

A

B

D
P

400 mm

x

1000 mm

Fig. P8.C1

 8.C3 A 300-g cylinder C rests on cylinder D as shown. Knowing that the 
coefficient of static friction ms is the same at A and B, write a computer 
program and use it to determine, for values of ms from 0 to 0.40 and using 
0.05 increments, the largest counterclockwise couple M that can be applied 
to cylinder D if it is not to rotate.

 8.C4 Two rods are connected by a slider block D and are held in equilib-
rium by the couple MA as shown. Knowing that the coefficient of static 
friction between rod AC and the slider block is 0.40, write a computer pro-
gram and use it to determine, for values of u from 0 to 120° and using 10° 
increments, the range of values of MA for which equilibrium is maintained.

A

B

θ

Fig. P8.C2

A

B

C

D M

75 mm

150 mm

150 mm

Fig. P8.C3

2.5 N⋅m
BA

qMA

C

D

150 mm

250 mm

Fig. P8.C4
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467Computer Problems 8.C5 The 10-lb block A is slowly moved up the circular cylindrical sur-
face by a cable that passes over a small fixed cylindrical drum at B. The 
coefficient of kinetic friction is known to be 0.30 between the block and 
the  surface and between the cable and the drum. Write a computer pro-
gram and use it to calculate the force P required to maintain the motion 
for values of u from 0 to 90°, using 10° increments. For the same values 
of u calculate the magnitude of the reaction between the block and the 
surface. [Note that the angle of contact between the cable and the fixed 
drum is b 5 p 2 (u/2).]

 8.C6 A flat belt is used to transmit a couple from drum A to drum B. The 
radius of each drum is 80 mm, and the system is fitted with an idler wheel 
C that is used to increase the contact between the belt and the drums. The 
allowable belt tension is 200 N, and the coefficient of static friction between 
the belt and the drums is 0.30. Write a computer program and use it to  
calculate the largest couple that can be transmitted for values of u from 0 to 
30°, using 5° increments.

q

P

A

B

R

Fig. P8.C5

 8.C7 Two collars A and B that slide on vertical rods with negligible fric-
tion are connected by a 30-in. cord that passes over a fixed shaft at C. 
The coefficient of static friction between the cord and the fixed shaft is 
0.30. Knowing that the weight of collar B is 8 lb, write a computer program 
and use it to determine, for values of u from 0 to 60° and using 10° incre-
ments, the largest and smallest weight of collar A for which equilibrium is 
maintained.

 8.C8 The end B of a uniform beam of length L is being pulled by a station-
ary crane. Initially the beam lies on the ground with end A directly below 
pulley C. As the cable is slowly pulled in, the beam first slides to the left 
with u 5 0 until it has moved through a distance x0. In a second phase, end 
B is raised, while end A keeps sliding to the left until x reaches its maximum 
value xm and u the corresponding value u1. The beam then rotates about 
A¿ while u keeps increasing. As u reaches the value u2, end A starts sliding 
to the right and keeps sliding in an irregular manner until B reaches C. 
Knowing that the coefficients of friction between the beam and the ground 
are ms 5 0.50 and mk 5 0.40, (a) write a program to compute x for any value 
of u while the beam is sliding to the left and use this program to determine
x0, xm, and u1, (b) modify the program to compute for any u the value of x 
for which sliding would be impending to the right and use this new program 
to determine the value u2 of u corresponding to x 5 xm.

CA B
P

θ θ

Q

Fig. P8.C6

10 in. 10 in.

A

B

C q

Fig. P8.C7

L

L

C

B�

Bθ
θ

xm

x
A� A

Fig. P8.C8
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The strength of structural members used 

in the construction of buildings depends 

to a large extent on the properties of 

their cross sections. This includes the 

second moments of area, or moments 

of inertia, of these cross sections.
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Distributed Forces: 
Moments of Inertia

C H A P T E R 
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470

9.1 INTRODUCTION
In Chap. 5, we analyzed various systems of forces distributed over 
an area or volume. The three main types of forces considered were 
(1) weights of homogeneous plates of uniform thickness (Secs. 5.3 
through 5.6), (2) distributed loads on beams (Sec. 5.8) and hydrostatic 
forces (Sec. 5.9), and (3) weights of homogeneous three-dimensional 
bodies (Secs. 5.10 and 5.11). In the case of homogeneous plates, the 
magnitude DW of the weight of an element of a plate was propor-
tional to the area DA of the element. For distributed loads on beams, 
the magnitude DW of each elemental weight was represented by an 
element of area DA 5 DW under the load curve; in the case of 
hydrostatic forces on submerged rectangular surfaces, a similar pro-
cedure was followed. In the case of homogeneous three-dimensional 
bodies, the magnitude DW of the weight of an element of the body 
was proportional to the volume DV of the element. Thus, in all cases 
considered in Chap. 5, the distributed forces were proportional to 
the elemental areas or volumes associated with them. The resultant 
of these forces, therefore, could be obtained by summing the corre-
sponding areas or volumes, and the moment of the resultant about 
any given axis could be determined by computing the first moments 
of the areas or volumes about that axis.
 In the first part of this chapter, we consider distributed forces 
DF whose magnitudes depend not only upon the elements of area 
DA on which these forces act but also upon the distance from DA to 
some given axis. More precisely, the magnitude of the force per unit 
area DF/DA is assumed to vary linearly with the distance to the axis. 
As indicated in the next section, forces of this type are found in the 
study of the bending of beams and in problems involving submerged 
nonrectangular surfaces. Assuming that the elemental forces involved 
are distributed over an area A and vary linearly with the distance y 
to the x axis, it will be shown that while the magnitude of their resul-
tant R depends upon the first moment Qx 5 e y dA of the area A, 
the location of the point where R is applied depends upon the second 
moment, or moment of inertia, Ix 5 e y2 dA of the same area with 
respect to the x axis. You will learn to compute the moments of inertia 
of various areas with respect to given x and y axes. Also introduced 
in the first part of this chapter is the polar moment of inertia JO 5 
e r2 dA of an area, where r is the distance from the element of area 
dA to the point O. To facilitate your computations, a relation will be 
established between the moment of inertia Ix of an area A with respect 
to a given x axis and the moment of inertia Ix9 of the same area with 
respect to the parallel centroidal x9 axis (parallel-axis theorem). You 
will also study the transformation of the moments of inertia of a given 
area when the coordinate axes are rotated (Secs. 9.9 and 9.10).
 In the second part of the chapter, you will learn how to deter-
mine the moments of inertia of various masses with respect to a given 
axis. As you will see in Sec. 9.11, the moment of inertia of a given 
mass about an axis AA9 is defined as I 5 e r2 dm, where r is the 
distance from the axis AA9 to the element of mass dm. Moments of 
inertia of masses are encountered in dynamics in problems involving 
the rotation of a rigid body about an axis. To facilitate the computation 

Chapter 9 Distributed Forces: 
Moments of Inertia

 9.1 Introduction
 9.2 Second Moment, or Moment of 

Inertia, of an Area
 9.3 Determination of the Moment of 

Inertia of an Area by Integration
 9.4 Polar Moment of Inertia
 9.5 Radius of Gyration of an Area
 9.6 Parallel-Axis Theorem
 9.7 Moments of Inertia of Composite 

Areas
 9.8 Product of Inertia
 9.9 Principal Axes and Principal 

Moments of Inertia
 9.10 Mohr’s Circle for Moments and 

Products of Inertia
 9.11 Moment of Inertia of a Mass
 9.12 Parallel-Axis Theorem
 9.13 Moments of Inertia of Thin Plates
 9.14 Determination of the Moment of 

Inertia of a Three-Dimensional 
Body by Integration

 9.15 Moments of Inertia of Composite 
Bodies

 9.16 Moment of Inertia of a Body 
with Respect to an Arbitrary Axis 
Through O. Mass Products of 
Inertia

 9.17 Ellipsoid of Inertia. Principal Axes 
of Inertia

 9.18 Determination of the Principal 
Axes and Principal Moments of 
Inertia of a Body of Arbitrary 
Shape
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471of mass moments of inertia, the parallel-axis theorem will be intro-
duced (Sec. 9.12). Finally, you will learn to analyze the transforma-
tion of moments of inertia of masses when the coordinate axes are 
rotated (Secs. 9.16 through 9.18).

MOMENTS OF INERTIA OF AREAS

9.2  SECOND MOMENT, OR MOMENT OF INERTIA, 
OF AN AREA

In the first part of this chapter, we consider distributed forces DF 
whose magnitudes DF are proportional to the elements of area DA 
on which the forces act and at the same time vary linearly with the 
distance from DA to a given axis.
 Consider, for example, a beam of uniform cross section which 
is subjected to two equal and opposite couples applied at each end 
of the beam. Such a beam is said to be in pure bending, and it is 
shown in mechanics of materials that the internal forces in any sec-
tion of the beam are distributed forces whose magnitudes DF 5 
ky DA vary linearly with the distance y between the element of area 
DA and an axis passing through the centroid of the section. This axis, 
represented by the x axis in Fig. 9.1, is known as the neutral axis of 
the section. The forces on one side of the neutral axis are forces 
of compression, while those on the other side are forces of tension; 
on the neutral axis itself the forces are zero.
 The magnitude of the resultant R of the elemental forces DF 
which act over the entire section is

R 5#  ky dA 5 k #  y dA

The last integral obtained is recognized as the first moment Qx of 
the section about the x axis; it is equal to y A and is thus equal to 
zero, since the centroid of the section is located on the x axis. The 
system of the forces DF thus reduces to a couple. The magnitude M 
of this couple (bending moment) must be equal to the sum of the 
moments DMx 5 y DF 5 ky2 DA of the elemental forces. Integrating 
over the entire section, we obtain

M 5#  ky2 dA 5 k #  y2 dA

The last integral is known as the second moment, or moment of iner-
tia,† of the beam section with respect to the x axis and is denoted by 
Ix. It is obtained by multiplying each element of area dA by the square 
of its distance from the x axis and integrating over the beam section. 
Since each product y2 dA is positive, regardless of the sign of y, or 
zero (if y is zero), the integral Ix will always be positive.
 Another example of a second moment, or moment of inertia, 
of an area is provided by the following problem from hydrostatics: A 

y

x
y

ΔF = ky Δ A

Δ A

Fig. 9.1

†The term second moment is more proper than the term moment of inertia, since, logically, 
the latter should be used only to denote integrals of mass (see Sec. 9.11). In engineering 
practice, however, moment of inertia is used in connection with areas as well as masses.

9.2 Second Moment, or Moment of Inertia, 
of an Area
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472  Distributed Forces: Moments of Inertia vertical circular gate used to close the outlet of a large reservoir is 
submerged under water as shown in Fig. 9.2. What is the resultant 
of the forces exerted by the water on the gate, and what is the 
moment of the resultant about the line of intersection of the plane 
of the gate and the water surface (x axis)?
 If the gate were rectangular, the resultant of the forces of  pressure 
could be determined from the pressure curve, as was done in Sec. 5.9. 
Since the gate is circular, however, a more general method must be 
used. Denoting by y the depth of an element of area DA and by g the 
specific weight of water, the pressure at the element is p 5 gy, and the 
magnitude of the elemental force exerted on DA is DF 5 p DA 5 
gy DA. The magnitude of the resultant of the elemental forces is thus

R 5 #  gy dA 5 g #  y dA

and can be obtained by computing the first moment Qx 5 e y dA 
of the area of the gate with respect to the x axis. The moment Mx 
of the resultant must be equal to the sum of the moments DMx 5 
y DF 5 gy2 DA of the elemental forces. Integrating over the area 
of the gate, we have

Mx 5#
 
gy2 dA 5 g #  y2 dA

Here again, the integral obtained represents the second moment, or 
moment of inertia, Ix of the area with respect to the x axis.

9.3  DETERMINATION OF THE MOMENT OF INERTIA 
OF AN AREA BY INTEGRATION

We defined in the preceding section the second moment, or moment 
of inertia, of an area A with respect to the x axis. Defining in a similar 
way the moment of inertia Iy of the area A with respect to the y axis, 
we write (Fig. 9.3a)

 Ix 5#
 
y2 dA   Iy 5#

 
x2 dA (9.1)

y

x

y

C

Δ A ΔF = gy ΔA

Fig. 9.2

x

y

y

x

(a)

dA = dx dy

dx
dy

dIx = y2 dA dIy = x2 dA

x

y

y

x

(b)

a

dA = ( a – x ) dy

dy

dIx = y2 dA

y
x

y

x

(c)

dA = y dx

dx
dIy = x2 dA

Fig. 9.3
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473These integrals, known as the rectangular moments of inertia of the 
area A, can be more easily evaluated if we choose dA to be a thin strip 
parallel to one of the coordinate axes. To compute Ix, the strip is cho-
sen parallel to the x axis, so that all of the points of the strip are at 
the same distance y from the x axis (Fig. 9.3b); the moment of inertia 
dIx of the strip is then obtained by multiplying the area dA of the strip 
by y2. To compute Iy, the strip is chosen parallel to the y axis so that 
all of the points of the strip are at the same distance x from the y axis 
(Fig. 9.3c); the moment of inertia dIy of the strip is x2 dA.

Moment of Inertia of a Rectangular Area. As an example, let 
us determine the moment of inertia of a rectangle with respect to its 
base (Fig. 9.4). Dividing the rectangle into strips parallel to the x axis, 
we obtain

dA 5 b dy  dIx 5 y2b dy

 Ix 5#
h

0
 by2 dy 5 1

3 bh3 (9.2)

Computing lx and ly Using the Same Elemental Strips. The 
formula just derived can be used to determine the moment of inertia 
dIx with respect to the x axis of a rectangular strip which is parallel 
to the y axis, such as the strip shown in Fig. 9.3c. Setting b 5 dx and 
h 5 y in formula (9.2), we write

dIx 5 1
3 y3 dx

On the other hand, we have

dIy 5 x2 dA 5 x2y dx

The same element can thus be used to compute the moments of 
inertia Ix and Iy of a given area (Fig. 9.5).

9.4 POLAR MOMENT OF INERTIA
An integral of great importance in problems concerning the torsion of 
cylindrical shafts and in problems dealing with the rotation of slabs is

 JO 5#
 
r 

2 dA (9.3)

where r is the distance from O to the element of area dA (Fig. 9.6). 
This integral is the polar moment of inertia of the area A with respect 
to the “pole” O.
 The polar moment of inertia of a given area can be computed 
from the rectangular moments of inertia Ix and Iy of the area if these 
quantities are already known. Indeed, noting that r2 5 x2 1 y2, we 
write

JO 5#
 
r2 dA 5#  (x2 1 y2) dA 5#  y2 dA 1#  x2 dA

h

y

y

b

dy

x

dA = b dy

Fig. 9.4

y

x

y

xdx

dIx =     y3 dx1
3

dIy = x2 y  dx

Fig. 9.5

y

y

x

dA

A

x
r

O

Fig. 9.6

9.4 Polar Moment of Inertia
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474  Distributed Forces: Moments of Inertia that is,

 JO 5 Ix 1 Iy (9.4)

9.5 RADIUS OF GYRATION OF AN AREA
Consider an area A which has a moment of inertia Ix with respect 
to the x axis (Fig. 9.7a). Let us imagine that we concentrate this area 
into a thin strip parallel to the x axis (Fig. 9.7b). If the area A, thus 
concentrated, is to have the same moment of inertia with respect to 
the x axis, the strip should be placed at a distance kx from the x axis, 
where kx is defined by the relation

Ix 5 kx
2A

Solving for kx, we write

 kx 5
B

Ix

A
 (9.5)

The distance kx is referred to as the radius of gyration of the area 
with respect to the x axis. In a similar way, we can define the radii 
of gyration ky and kO (Fig. 9.7c and d); we write

  Iy 5 k2
y 
A    ky 5

B

Iy

A
 (9.6)

   JO 5 k2
O 

A    kO 5
B

JO

A
 (9.7)

If we rewrite Eq. (9.4) in terms of the radii of gyration, we find that

 k2
O 5 k2

x 1 k2
y (9.8)

EXAMPLE For the rectangle shown in Fig. 9.8, let us compute the radius 
of gyration kx with respect to its base. Using formulas (9.5) and (9.2), 
we write

k2
x 5

Ix

A
5

1
3 
bh3

bh
5

h2

3
    kx 5

h
13

The radius of gyration kx of the rectangle is shown in Fig. 9.8. It should not 
be confused with the ordinate y 5 h/2 of the centroid of the area. While kx 
depends upon the second moment, or moment of inertia, of the area, the 
ordinate y is related to the first moment of the area. ◾

kx

y

x

A

O

(a)

y

x

A

O

(b)

ky

y

x

A

O

(c)

kO

y

x

A

O

(d)

Fig. 9.7

h

b

kx   y

C

Fig. 9.8
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475

SAMPLE PROBLEM 9.1

Determine the moment of inertia of a triangle with respect to its base.

SAMPLE PROBLEM 9.2

(a) Determine the centroidal polar moment of inertia of a circular area by 
direct integration. (b) Using the result of part a, determine the moment of 
inertia of a circular area with respect to a diameter.

x

y

r
du

u
O

SOLUTION

a. Polar Moment of Inertia. An annular differential element of area is 
chosen to be dA. Since all portions of the differential area are at the same 
distance from the origin, we write

dJO 5 u2 dA   dA 5 2pu du

JO 5#
 
dJO 5#

r

0
 u

2(2pu du) 5 2p#
r

0
 
u3 du

JO 5
p

2
 r4 ◀

b. Moment of Inertia with Respect to a Diameter. Because of the sym-
metry of the circular area, we have Ix 5 Iy. We then write

JO 5 Ix 1 Iy 5 2Ix   p

2
 r4 5 2Ix   Idiameter 5 Ix 5

p

4
 r4 ◀

SOLUTION

A triangle of base b and height h is drawn; the x axis is chosen to coincide 
with the base. A differential strip parallel to the x axis is chosen to be dA. Since 
all portions of the strip are at the same distance from the x axis, we write

dIx 5 y2 dA  dA 5 l dy

Using similar triangles, we have

l
b

5
h 2 y

h
    l 5 b 

h 2 y

h
    dA 5 b 

h 2 y

h
 dy

Integrating dIx from y 5 0 to y 5 h, we obtain

Ix 5#
 
y2 dA 5#

h

0
 y

2b 

h 2 y

h
 dy 5

b
h #

h

0

(hy2 2 y3) dy

   5
b
h

 ch 

y3

3
2

y4

4
d h

0
 Ix 5

bh3

12
 ◀

x

y

y

dy

b

h

h – y

l
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SOLUTION

Referring to Sample Prob. 5.4, we obtain the following expressions for the 
equation of the curve and the total area:

y 5
b

a2  x2   A 5 1
3ab

Moment of Inertia Ix. A vertical differential element of area is chosen to 
be dA. Since all portions of this element are not at the same distance from 
the x axis, we must treat the element as a thin rectangle. The moment of 
inertia of the element with respect to the x axis is then

 dIx 5 1
3 y3 dx 5

1
3

 a b

a2  x2b3

 dx 5
1
3

  
b3

a6   x6 dx

  Ix 5#
 
dIx 5#

a

0

 
1
3

  
b3

a6   x6 dx 5  c 1
3

  
b3

a6  
x7

7
d a

0

Ix 5
ab3

21
 ◀

Moment of Inertia Iy. The same vertical differential element of area is 
used. Since all portions of the element are at the same distance from the 
y axis, we write

dIy 5 x2 dA 5 x2(y dx) 5 x2 a b

a2  x2b 

dx 5
b

a2  x4 dx

Iy 5#
 
dIy 5#

a

0

 
b

a2  x4 dx 5 c b

a2  
x5

5
d a

0

Iy 5
a3b
5

 ◀

Radii of Gyration kx and ky. We have, by definition,

 k2
x 5

Ix

A
5

ab3/21
ab/3

5
b2

7
 kx 5 21

7 b ◀

and

 k2
y 5

Iy

A
5

a3b/5
ab/3

5 3
5a2 ky 5 23

5a ◀

dxx
x

y

a

y

SAMPLE PROBLEM 9.3

(a) Determine the moment of inertia of the shaded area shown with respect 
to each of the coordinate axes. (Properties of this area were considered in 
Sample Prob. 5.4.) (b) Using the results of part a, determine the radius of 
gyration of the shaded area with respect to each of the coordinate axes.

x

y

b
y = kx2

a

476
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477

SOLVING PROBLEMS
ON YOUR OWN

The purpose of this lesson was to introduce the rectangular and polar moments of 
inertia of areas and the corresponding radii of gyration. Although the problems 

you are about to solve may appear to be more appropriate for a calculus class than for 
one in mechanics, we hope that our introductory comments have convinced you of the 
relevance of the moments of inertia to your study of a variety of engineering topics.

1. Calculating the rectangular moments of inertia Ix and Iy. We defined these 
quantities as
 Ix 5#

 
y2 dA   Iy 5#

 
x2 dA (9.1)

where dA is a differential element of area dx dy. The moments of inertia are the 
second moments of the area; it is for that reason that Ix, for example, depends on 
the perpendicular distance y to the area dA. As you study Sec. 9.3, you should 
recognize the importance of carefully defining the shape and the orientation of 
dA. Further, you should note the following points.
 a. The moments of inertia of most areas can be obtained by means of a 
single integration. The expressions given in Figs. 9.3b and c and Fig. 9.5 can be 
used to calculate Ix and Iy. Regardless of whether you use a single or a double inte-
gration, be sure to show on your sketch the element dA that you have chosen.
 b. The moment of inertia of an area is always positive, regardless of the location 
of the area with respect to the coordinate axes. This is because it is obtained by integrat-
ing the product of dA and the square of distance. (Note how this differs from the results 
for the first moment of the area.) Only when an area is removed (as in the case for a 
hole) will its moment of inertia be entered in your computations with a minus sign.
 c. As a partial check of your work, observe that the moments of inertia are 
equal to an area times the square of a length. Thus, every term in an expression 
for a moment of inertia must be a length to the fourth power.

2. Computing the polar moment of inertia JO. We defined JO as

 JO 5#
 
r2 dA (9.3)

where r2 5 x2 1 y2. If the given area has circular symmetry (as in Sample Prob. 9.2), 
it is possible to express dA as a function of r and to compute JO with a single 
integration. When the area lacks circular symmetry, it is usually easier first to 
calculate Ix and Iy and then to determine JO from
 JO 5 Ix 1 Iy (9.4)
Lastly, if the equation of the curve that bounds the given area is expressed in polar 
coordinates, then dA 5 r dr du and a double integration is required to compute 
the integral for JO [see Prob. 9.27].

3. Determining the radii of gyration kx and ky and the polar radius of gyra-
tion kO. These quantities were defined in Sec. 9.5, and you should realize that 
they can be determined only after the area and the appropriate moments of inertia 
have been computed. It is important to remember that kx is measured in the y 
direction, while ky is measured in the x direction; you should carefully study 
Sec. 9.5 until you understand this point.
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PROBLEMS

478

 9.1 through 9.4 Determine by direct integration the moment of 
inertia of the shaded area with respect to the y axis.

9.5 through 9.8 Determine by direct integration the moment of 
inertia of the shaded area with respect to the x axis.

 9.9 through 9.11 Determine by direct integration the moment of 
inertia of the shaded area with respect to the x axis.

 9.12 through 9.14 Determine by direct integration the moment of 
inertia of the shaded area with respect to the y axis.

x

y

h1
h2

a

Fig. P9.1 and P9.5

x

y

b

y 5 kx1/3

a

Fig. P9.2 and P9.6

h

y

x
a

y = 4h(          )x
a

x2

a2
−

Fig. P9.3 and P9.7

x

y

y = kx4

b

a

Fig. P9.4 and P9.8

b

y

x
a

y1 = kx2

y2 = mx

Fig. P9.9 and P9.12

y

b

x
a

y = kxn

Fig. P9.10 and P9.13

b

y

x
a

y = kex/a

Fig. P9.11 and P9.14
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479Problems 9.15 and 9.16 Determine the moment of inertia and the radius of 
gyration of the shaded area shown with respect to the x axis.

b

y

x
a

y2 = k2x1/2

y1 = k1x2

Fig. P9.15 and P9.17

x

b

y

a

= 1
y2

b2
x2

a2 +

Fig. P9.16 and P9.18

 9.17 and 9.18 Determine the moment of inertia and the radius of 
gyration of the shaded area shown with respect to the y axis.

 9.19 Determine the moment of inertia and the radius of gyration of the 
shaded area shown with respect to the x axis.

 9.20 Determine the moment of inertia and the radius of gyration of the 
shaded area shown with respect to the y axis.

 9.21 and 9.22 Determine the polar moment of inertia and the polar 
radius of gyration of the shaded area shown with respect to point P.

b

b 3b

aa

P

Fig. P9.22

a

a a

P
a
2

a
2

a
2

a
2

Fig. P9.21

2b

b

a

y

x
y = kx2

y = 2b − cx2

Fig. P9.19 and P9.20
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480 Distributed Forces: Moments of Inertia  9.23 and 9.24 Determine the polar moment of inertia and the 
polar radius of gyration of the shaded area shown with respect to 
point P.

a

a

2a2a

P

y

x

y = c + k2x2

y = k1x2

Fig. P9.23

P
r

r
2

Fig. P9.24

 9.25 (a) Determine by direct integration the polar moment of inertia of 
the semiannular area shown with respect to point O. (b) Using the 
result of part a, determine the moments of inertia of the given area 
with respect to the x and y axes.

 9.26 (a) Show that the polar radius of gyration kO of the semiannular 
area shown is approximately equal to the mean radius Rm 5 
(R1 1 R2)/2 for small values of the thickness t 5 R2 2 R1. 
(b) Determine the percentage error introduced by using Rm in 
place of kO for the following values of t/Rm: 1, 1

2, and 1
10.

 9.27 Determine the polar moment of inertia and the polar radius of 
gyration of the shaded area shown with respect to the point O.

 9.28 Determine the polar moment of inertia and the polar radius of 
gyration of the isosceles triangle shown with respect to the 
point O.

 *9.29 Using the polar moment of inertia of the isosceles triangle of 
Prob. 9.28, show that the centroidal polar moment of inertia of a 
circular area of radius r is pr4/2. (Hint: As a circular area is divided 
into an increasing number of equal circular sectors, what is the 
approximate shape of each circular sector?)

 *9.30 Prove that the centroidal polar moment of inertia of a given area 
A cannot be smaller than A2/2p. (Hint: Compare the moment of 
inertia of the given area with the moment of inertia of a circle that 
has the same area and the same centroid.)

O

y

x
a2a

qR = a + kq

Fig. P9.27

y

xO

b
2

b
2

h

Fig. P9.28

O x

y

R2 R1

Fig. P9.25 and P9.26
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4819.6 PARALLEL-AXIS THEOREM
Consider the moment of inertia I of an area A with respect to an axis 
AA9 (Fig. 9.9). Denoting by y the distance from an element of area 
dA to AA9, we write

I 5#  y2 dA

Let us now draw through the centroid C of the area an axis BB9 
parallel to AA9; this axis is called a centroidal axis. Denoting by y9 

A'A

B'B
C

y

y'

d

dA

Fig. 9.9

the distance from the element dA to BB9, we write y 5 y9 1 d, 
where d is the distance between the axes AA9 and BB9. Substituting 
for y in the above integral, we write

 I 5#  y2 dA 5#  (y¿ 1 d)2 dA

 5#  y¿2 dA 1 2d #y¿ dA 1 d2 #dA

The first integral represents the moment of inertia I of the area with 
respect to the centroidal axis BB9. The second integral represents 
the first moment of the area with respect to BB9; since the centroid C 
of the area is located on that axis, the second integral must be zero. 
Finally, we observe that the last integral is equal to the total area A. 
Therefore, we have

 I 5 I 1 Ad2 (9.9)

 This formula expresses that the moment of inertia I of an area 
with respect to any given axis AA9 is equal to the moment of inertia I 
of the area with respect to a centroidal axis BB9 parallel to AA9 
plus the product of the area A and the square of the distance d 
between the two axes. This theorem is known as the parallel-axis 
theorem. Substituting k2A for I and k 

2A for I, the theorem can also 
be expressed as
 k2 5 k 

2 1 d2 (9.10)

 A similar theorem can be used to relate the polar moment 
of inertia JO of an area about a point O to the polar moment of 
inertia JC of the same area about its centroid C. Denoting by d the 
distance between O and C, we write

 JO 5 JC 1 Ad2   or   k2
O 5 k2

C 1 d2 (9.11)

9.6 Parallel-Axis Theorem
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482  Distributed Forces: Moments of Inertia EXAMPLE 1 As an application of the parallel-axis theorem, let us deter-
mine the moment of inertia IT of a circular area with respect to a line 
tangent to the circle (Fig. 9.10). We found in Sample Prob. 9.2 that the 
moment of inertia of a circular area about a centroidal axis is I 5 1

4pr4. We 
can write, therefore,

IT 5 II 1 Ad2 5 1
4pr4 1 (pr2)r2 5 5

4pr4 ◾

EXAMPLE 2 The parallel-axis theorem can also be used to determine 
the centroidal moment of inertia of an area when the moment of inertia of 
the area with respect to a parallel axis is known. Consider, for instance, a 
triangular area (Fig. 9.11). We found in Sample Prob. 9.1 that the moment 
of inertia of a triangle with respect to its base AA9 is equal to 1

12 bh3. Using 
the parallel-axis theorem, we write

 IAA¿ 5 IBB¿ 1 Ad2

 IBB¿ 5 IAA¿ 2 Ad2 5 1
12bh3 2 1

2bh(1
3h)2 5 1

36bh3

It should be observed that the product Ad2 was subtracted from the given 
moment of inertia in order to obtain the centroidal moment of inertia of 
the triangle. Note that this product is added when transferring from a cen-
troidal axis to a parallel axis, but it should be subtracted when transferring 
to a centroidal axis. In other words, the moment of inertia of an area is 
always smaller with respect to a centroidal axis than with respect to any 
parallel axis.
 Returning to Fig. 9.11, we observe that the moment of inertia of the 
triangle with respect to the line DD9 (which is drawn through a vertex) can 
be obtained by writing

IDD¿ 5 IBB¿ 1 Ad¿2 5 1
36bh3 1 1

2bh(2
3h)2 5 1

4bh3

Note that IDD9 could not have been obtained directly from IAA9. The parallel-
axis theorem can be applied only if one of the two parallel axes passes 
through the centroid of the area. ◾

9.7 MOMENTS OF INERTIA OF COMPOSITE AREAS
Consider a composite area A made of several component areas A1, A2, 
A3, . . . Since the integral representing the moment of inertia of A can 
be subdivided into integrals evaluated over A1, A2, A3, . . . , the moment 
of inertia of A with respect to a given axis is obtained by adding the 
moments of inertia of the areas A1, A2, A3, . . . , with respect to the 
same axis. The moment of inertia of an area consisting of several of 
the common shapes shown in Fig. 9.12 can thus be obtained by using 
the formulas given in that figure. Before adding the moments of inertia 
of the component areas, however, the parallel-axis theorem may have 
to be used to transfer each moment of inertia to the desired axis. This 
is shown in Sample Probs. 9.4 and 9.5.
 The properties of the cross sections of various structural shapes 
are given in Fig. 9.13. As noted in Sec. 9.2, the moment of inertia 
of a beam section about its neutral axis is closely related to the com-
putation of the bending moment in that section of the beam. The 

Fig. 9.10

r

T

C

d = r

Fig. 9.11

b
A'A

C
B'B

D'D

h

d' =    h2
3

d =    h1
3

Photo 9.1 Figure 9.13 tabulates data for a small 
sample of the rolled-steel shapes that are readily 
available. Shown above are two examples of 
wide-flange shapes that are commonly used in the 
construction of buildings.
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Quarter circle

C
Rectangle

Triangle

Circle

Semicircle

Ellipse

b

y y'

x'

x

1
12

⎯Ix' =     bh3

1
12

⎯Iy' =     b3h

1
8

Ix = Iy =       r4

1
4

J
O

 =       r4

1
4

⎯Ix =⎯Iy =       r 4

1
2

J
O

 =       r4

1
36

⎯Ix' =     bh3

1
12

Ix =     bh3

1
3

Iy =    b3h

1
12

J
C

 =    bh(b2 + h2)

1
3

Ix =     bh3
h

b

x'

x

x

r

O

y

h C
h
3

xO

C

y

r

xO

C

y

r

x

b

y

a

1
16

Ix = Iy =        r4

1
8

J
O

 =       r4

1
4

⎯Ix =      ab3

1
4

⎯Iy =      a3b
1
4

J
O

 =      ab(a2 + b2)

O

�

�

�

�

�

�

�

�

�

Fig. 9.12 Moments of inertia of common geometric shapes.

determination of moments of inertia is thus a prerequisite to the 
analysis and design of structural members.
 It should be noted that the radius of gyration of a composite area 
is not equal to the sum of the radii of gyration of the component areas. 
In order to determine the radius of gyration of a composite area, it is 
first necessary to compute the moment of inertia of the area.

9.7 Moments of Inertia of Composite Areas
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⎯x

Designation
Area
in2

Depth
in.

Width
in.

Axis X-X

X X

X X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y

Y

Axis Y-Y

W Shapes
(Wide-Flange
Shapes)

S Shapes
(American Standard
Shapes)

C Shapes
(American Standard
Channels)

Angles

W18 × 76†
W16 × 57
W14 × 38
W8 × 31

22.3 
16.8
11.2
  9.12

18.2
16.4
14.1
  8.00

11.0
  7.12
  6.77
  8.00

1330
  758
  385
  110

7.73
6.72
5.87
3.47

  152
    43.1
    26.7
    37.1

2.61
1.60
1.55
2.02

S18 × 54.7†
S12 × 31.8
S10 × 25.4
S6 × 12.5

16.0
  9.31
  7.45
  3.66

18.0
12.0
10.0
  6.00

801
217
123
  22.0

6.00
5.00
4.66
3.33

7.07
4.83
4.07
2.45

4.61 
3.87 
3.11 
2.34

20.7
  9.33
  6.73
  1.80

1.14
1.00
0.950
0.702

C12 × 20.7†
C10 × 15.3
C8 × 11.5
C6 × 8.2

6.08 
4.48 
3.37
2.39

12.0
10.0 
  8.00 
  6.00

2.94
2.60
2.26
1.92

129
  67.3
  32.5
  13.1

35.4
  5.52
  1.23
17.3
  9.43 
  1.09

3.86
2.27
1.31
0.687

0.797
0.711
0.623
0.536

0.698
0.634
0.572
0.512

11.0
  3.75
  1.44
  4.75
  3.75 
  1.19

1.79
1.21
0.926
1.91
1.58
0.953

1.86  
1.18
0.836
1.98
1.74
0.980

35.4
  5.52
  1.23
  6.22
  2.55
  0.390

1.79
1.21
0.926
1.14
0.824
0.569

1.86
1.18
0.836
0.981
0.746
0.487

L6 × 6 × 1‡
L4 × 4 ×
L3 × 3 × 
L6 × 4 × 
L5 × 3 × 
L3 × 2 × 

⎯Ix, in4 ⎯kx, in. ⎯y, in. ⎯Iy, in4 ⎯ky, in. ⎯x, in.

4
1
2
1

2
1

2
1

4
1

  y

  x

Fig. 9.13A Properties of rolled-steel shapes (U.S. customary units).*
*Courtesy of the American Institute of Steel Construction, Chicago, Illinois
†Nominal depth in inches and weight in pounds per foot
‡Depth, width, and thickness in inches

484

bee02286_ch09_468-555.indd Page 484  8/29/11  11:18 AM user-f494bee02286_ch09_468-555.indd Page 484  8/29/11  11:18 AM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


⎯Ix
106 mm4

⎯Iy
106 mm4

⎯y
mm

⎯x
mm

⎯x

Designation
Area
mm2

Depth
mm

Width
mm

Axis X-X

X X

X X

X X

Y

Y

Y

Y

Y

Y

⎯kx
mm

⎯ky
mm

Axis Y-Y

W Shapes
(Wide-Flange
Shapes)

S Shapes
(American Standard
Shapes)

C Shapes
(American Standard
Channels)

W460 × 113†
W410 × 85
W360 × 57.8
W200 × 46.1

14400
10800 
  7230
  5880

462
417 
358
203

279
181
172
203

554
316 
160
  45.8

196
171 
149 
  88.1

63.3 
17.9 
11.1 
15.4

66.3 
40.6 
39.4 
51.3

S460 × 81.4†
S310 × 47.3
S250 × 37.8
S150 × 18.6

10300 
  6010
  4810
  2360

457
305
254
152

333
  90.3
  51.2
    9.16

152
127
118
  84.6

180
123
103
  62.2

8.62 
3.88 
2.80
0.749

29.0 
25.4 
24.1 
17.8

C310 × 30.8†
C250 × 22.8
C200 × 17.1 
C150 × 12.2

3920
2890
2170
1540

305 
254 
203 
152

74.7
66.0
57.4 
48.8

53.7
28.0
13.5
  5.45

117
  98.3 
  79.0
  59.4

1.61
0.945 
0.545 
0.286

20.2
18.1 
15.8
13.6

17.7
16.1 
14.5 
13.0

7100
2420 
  929
3060 
2420 
  768

14.7
  2.30 
  0.512
  7.20
  3.93
  0.454

45.5
30.7
23.5
48.5
40.1
24.2

47.2 
30.0
21.2
50.3
44.2
24.9

14.7
  2.30
  0.512
  2.59
  1.06
  0.162

45.5
30.7
23.5
29.0
20.9
14.5

47.2
30.0
21.2
24.9
18.9
12.4

L152 × 152 × 25.4‡
L102 × 102 × 12.7
L76 × 76 × 6.4
L152 × 102 × 12.7
L127 × 76 × 12.7
L76 × 51 × 6.4

X X

Y

Y

Angles

  y

  x

Fig. 9.13B Properties of rolled-steel shapes (SI units).
†Nominal depth in millimeters and mass in kilograms per meter
‡Depth, width, and thickness in millimeters
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SAMPLE PROBLEM 9.4

The strength of a W14 3 38 rolled-steel beam is increased by attaching a 
9 3 3

4-in. plate to its upper flange as shown. Determine the moment of 
inertia and the radius of gyration of the composite section with respect to 
an axis which is parallel to the plate and passes through the centroid C of 
the section.

SOLUTION

The origin O of the coordinates is placed at the centroid of the wide-flange 
shape, and the distance Y to the centroid of the composite section is com-
puted using the methods of Chap. 5. The area of the wide-flange shape is 
found by referring to Fig. 9.13A. The area and the y coordinate of the 
centroid of the plate are

 A 5 (9 in.)(0.75 in.) 5 6.75 in2

 yy 5 1
2(14.1 in.) 1 1

2(0.75 in.) 5 7.425 in.

Moment of Inertia. The parallel-axis theorem is used to determine the 
moments of inertia of the wide-flange shape and the plate with respect to 
the x9 axis. This axis is a centroidal axis for the composite section but not 
for either of the elements considered separately. The value of Ix for the 
wide-flange shape is obtained from Fig. 9.13A.

 For the wide-flange shape,

Ix9 5 Ix 1 AY2 5 385 1 (11.2)(2.792)2 5 472.3 in4

 For the plate,

 Ix9 5 Ix 1 Ad2 5 ( 1
12)(9)(3

4)3 1 (6.75)(7.425 2 2.792)2 5 145.2 in4

 For the composite area,

 Ix9 5 472.3 1 145.2 5 617.5 in4 Ix9 5 618 in4 ◀

Radius of Gyration. We have

 k2
x¿ 5

Ix¿

A
5

617.5 in4

17.95 in2 kx¿ 5 5.87 in. ◀

Section Area, in2 y, in. yA, in3

Plate 6.75 7.425 50.12
Wide-fl ange shape 11.2  0 0

 oA 5 17.95  oyyA 5 50.12

YoA 5 oyA    YY(17.95) 5 50.12     Y 5 2.792 in.

x

y

d

C

O

7.425 in.
x'

⎯Y

9 in.

14.1 in.

6.77 in.

C

3
4

in.
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SAMPLE PROBLEM 9.5

Determine the moment of inertia of the shaded area with respect to the 
x axis.

SOLUTION

The given area can be obtained by subtracting a half circle from a rectangle. 
The moments of inertia of the rectangle and the half circle will be computed 
separately.

A

C
a

240 mm

120 mm

y y y

x
x

x

A'

x'

=b
−

Moment of Inertia of Rectangle. Referring to Fig. 9.12, we obtain

Ix 5 1
3 bh3 5 1

3 (240 mm)(120 mm)3 5 138.2 3 106 mm4

Moment of Inertia of Half Circle. Referring to Fig. 5.8, we determine the 
location of the centroid C of the half circle with respect to diameter AA9.

a 5
4r
3p

5
(4)(90 mm)

3p
5 38.2 mm

The distance b from the centroid C to the x axis is

b 5 120 mm 2 a 5 120 mm 2 38.2 mm 5 81.8 mm

Referring now to Fig. 9.12, we compute the moment of inertia of the half circle 
with respect to diameter AA9; we also compute the area of the half circle.

 IAA¿ 5 1
8 pr4 5 1

8 p(90 mm)4 5 25.76 3 106 mm4

 A 5 1
2 pr2 5 1

2 p(90 mm)2 5 12.72 3 103 mm2

Using the parallel-axis theorem, we obtain the value of Ix¿:

 IAA¿ 5 Ix¿ 1 Aa2

 25.76 3 106 mm4 5 Ix¿ 1 (12.72 3 103 mm2)(38.2 mm)2

 Ix¿ 5 7.20 3 106 mm4

Again using the parallel-axis theorem, we obtain the value of Ix:

 Ix 5 Ix¿ 1 Ab2 5 7.20 3 106 mm4 1 (12.72 3 103 mm2)(81.8 mm)2

 5 92.3 3 106
 mm4

Moment of Inertia of Given Area. Subtracting the moment of inertia of 
the half circle from that of the rectangle, we obtain

 Ix 5 138.2 3 106 mm4 2 92.3 3 106 mm4

Ix 5 45.9 3 106 mm4 ◀

A'A

C
a = 38.2 mm

x'
120 mm

y

x

b = 81.8 mm

240 mm

120 mm

y

x

r = 90 mm
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SOLVING PROBLEMS
ON YOUR OWN

In this lesson we introduced the parallel-axis theorem and illustrated how it can 
be used to simplify the computation of moments and polar moments of inertia 

of composite areas. The areas that you will consider in the following problems will 
consist of common shapes and rolled-steel shapes. You will also use the parallel-
axis theorem to locate the point of application (the center of pressure) of the 
resultant of the hydrostatic forces acting on a submerged plane area.

1. Applying the parallel-axis theorem. In Sec. 9.6 we derived the parallel-axis 
theorem

 I 5 I 1 Ad2 (9.9)

which states that the moment of inertia I of an area A with respect to a given axis 
is equal to the sum of the moment of inertia I of that area with respect to a paral-
lel centroidal axis and the product Ad2, where d is the distance between the two 
axes. It is important that you remember the following points as you use the parallel-
axis theorem.
 a. The centroidal moment of inertia I  of an area A can be obtained by 
subtracting the product Ad2 from the moment of inertia I of the area with respect 
to a parallel axis. It follows that the moment of inertia I is smaller than the moment 
of inertia I of the same area with respect to any parallel axis.
 b. The parallel-axis theorem can be applied only if one of the two axes 
involved is a centroidal axis. Therefore, as we noted in Example 2, to compute 
the moment of inertia of an area with respect to a noncentroidal axis when the 
moment of inertia of the area is known with respect to another noncentroidal axis, 
it is necessary to first compute the moment of inertia of the area with respect to 
a centroidal axis parallel to the two given axes.

2. Computing the moments and polar moments of inertia of composite 
areas. Sample Probs. 9.4 and 9.5 illustrate the steps you should follow to solve 
problems of this type. As with all composite-area problems, you should show on 
your sketch the common shapes or rolled-steel shapes that constitute the various 
elements of the given area, as well as the distances between the centroidal axes 
of the elements and the axes about which the moments of inertia are to be com-
puted. In addition, it is important that the following points be noted.
 a. The moment of inertia of an area is always positive, regardless of the 
location of the axis with respect to which it is computed. As pointed out in 
the comments for the preceding lesson, it is only when an area is removed (as 
in the case of a hole) that its moment of inertia should be entered in your com-
putations with a minus sign.
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 b. The moments of inertia of a semiellipse and a quarter ellipse can be 
determined by dividing the moment of inertia of an ellipse by 2 and 4, respectively. 
It should be noted, however, that the moments of inertia obtained in this manner are 
with respect to the axes of symmetry of the ellipse. To obtain the centroidal moments 
of inertia of these shapes, the parallel-axis theorem should be used. Note that this 
remark also applies to a semicircle and to a quarter circle and that the expressions 
given for these shapes in Fig. 9.12 are not centroidal moments of inertia.
 c. To calculate the polar moment of inertia of a composite area, you can 
use either the expressions given in Fig. 9.12 for JO or the relationship

 JO 5 Ix 1 Iy (9.4)

depending on the shape of the given area.
 d. Before computing the centroidal moments of inertia of a given area, you 
may find it necessary to first locate the centroid of the area using the methods of 
Chap. 5.

3. Locating the point of application of the resultant of a system of hydrostatic 
forces. In Sec. 9.2 we found that

 R 5 g #  y dA 5 gy A

 Mx 5 g #
 
y2 dA 5 gIx

where y is the distance from the x axis to the centroid of the submerged plane 
area. Since R is equivalent to the system of elemental hydrostatic forces, it fol-
lows that

oMx:  yPR 5 Mx

where yP is the depth of the point of application of R. Then

yP(gy A) 5 gIx   or   yP 5
Ix

yA

In closing, we encourage you to carefully study the notation used in Fig. 9.13 for 
the rolled-steel shapes, as you will likely encounter it again in subsequent engi-
neering courses.
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PROBLEMS

490

 9.31 and 9.32 Determine the moment of inertia and the radius of 
gyration of the shaded area with respect to the x axis.y

xO

12 mm12 mm

8 mm

24 mm 24 mm

24 mm

6 mm

24 mm

6 mm

 Fig. P9.31   and   P9.33  

y

xO

2 in.

in.

2 in.

2 in.

1 in.

1 in.

1 in.

1 in.

1
2

in.1
2 in.1

2

in.1
2

 Fig. P9.32   and   P9.34  

 9.33 and 9.34 Determine the moment of inertia and the radius of 
gyration of the shaded area with respect to the y axis.

9.35 and 9.36 Determine the moments of inertia of the shaded area 
shown with respect to the x and y axes when a 5 20 mm.

 9.37 The shaded area is equal to 50 in2. Determine its centroidal 
moments of inertia Ix and Iy, knowing that Iy 5 2Ix and that the 
polar moment of inertia of the area about point A is JA 5 2250 in4.

9.38 The polar moments of inertia of the shaded area with respect to 
points A, B, and D are, respectively, JA 5 2880 in4, JB 5 6720 in4, 
and JD 5 4560 in4. Determine the shaded area, its centroidal 
moment of inertia JC, and the distance d from C to D.

xC

y

2a 2a

2a

2a

a a

a

a

 Fig. P9.35

y

x
a

a

C

a

a

 Fig. P9.36y

x
C D

BA

d

6 in.

 Fig. P9.37 and P9.38
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491Problems 9.39 Determine the shaded area and its moment of inertia with respect 
to the centroidal axis parallel to AA9, knowing that d1 5 30 mm and 
d2 5 10 mm, and that the moments of inertia with respect to AA9 
and BB9 are 4.1 3 106 mm4 and 6.9 3 106 mm4, respectively.

C

A'

d1

d2
A

B'B

 Fig. P9.39   and   P9.40  

12 mm

18 mm

18 mm

12 mm

22 mm 72 mm 14 mm

A B

 Fig. P9.41  

42 mm

28 mm

36 mm
A B

 Fig. P9.42  

1.2 in.

A B

1.8 in.

5.0 in.

0.9 in.
2.0 in. 2.1 in.

 Fig. P9.43  

A B

1.3 in.

1.0 in.

0.5 in.

3.8 in.
0.5 in.

3.6 in.

 Fig. P9.44  

 9.40 Knowing that the shaded area is equal to 7500 mm2 and that its 
moment of inertia with respect to AA9 is 31 3 106 mm4, determine 
its moment of inertia with respect to BB9, for d1 5 60 mm and 
d2 5 15 mm.

 9.41 through 9.44 Determine the moments of inertia Ix and Iy of 
the area shown with respect to centroidal axes respectively parallel 
and perpendicular to side AB.

 9.45 and 9.46 Determine the polar moment of inertia of the area 
shown with respect to (a) point O, (b) the centroid of the area.

3 in.
4.5 in.

O

 Fig. P9.45

4 in.

4 in.

4 in. 4 in.

O

 Fig. P9.46
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492 Distributed Forces: Moments of Inertia  9.47 and 9.48 Determine the polar moment of inertia of the area 
shown with respect to (a) point O, (b) the centroid of the area.

O

40

Dimensions in mm

4040 40

60
80

 Fig. P9.47  

 9.49 Two channels and two plates are used to form the column section 
shown. For b 5 200 mm, determine the moments of inertia and 
the radii of gyration of the combined section with respect to the 
centroidal x and y axes.

 9.50 Two L6 3 4 3 1
2-in. angles are welded together to form the section 

shown. Determine the moments of inertia and the radii of gyration 
of the combined section with respect to the centroidal x and y 
axes.

10 mm

C250 × 22.8

C

b

y

x

375 mm

 Fig. P9.49  

S310 × 47.3

C x

80 mm80 mm

20 mm

y

 Fig. P9.52

 9.51 Two channels are welded to a rolled W section as shown. Deter-
mine the moments of inertia and the radii of gyration of the com-
bined section with respect to the centroidal x and y axes.

 9.52 Two 20-mm steel plates are welded to a rolled S section as shown. 
Determine the moments of inertia and the radii of gyration of the 
combined section with respect to the centroidal x and y axes.

C

y

x
6 in.

4 in.in.1
2

 Fig. P9.50  

W8 × 31

C8 × 11.5 C

y

x

 Fig. P9.51  

54 mm 54 mm Semiellipse

36 mm

18 mmO

Fig. P9.48
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493Problems 9.53 A channel and a plate are welded together as shown to form a 
section that is symmetrical with respect to the y axis. Determine 
the moments of inertia of the combined section with respect to its 
centroidal x and y axes.

12 in.

0.5 in.

y

x

C8 × 11.5

C

 Fig. P9.53  

L4 × 4 × 1
2

in.1
2

10 in.

 Fig. P9.56

 9.54 The strength of the rolled W section shown is increased by welding 
a channel to its upper flange. Determine the moments of inertia 
of the combined section with respect to its centroidal x and y axes.

 9.55 Two L76 3 76 3 6.4-mm angles are welded to a C250 3 22.8 
channel. Determine the moments of inertia of the combined sec-
tion with respect to centroidal axes respectively parallel and per-
pendicular to the web of the channel.

C

W460 × 113

C250 × 22.8

y

x

 Fig. P9.54

 9.56 Two L4 3 4 3 1
2-in. angles are welded to a steel plate as shown. 

Determine the moments of inertia of the combined section with 
respect to centroidal axes respectively parallel and perpendicular 
to the plate.

 9.57 and 9.58 The panel shown forms the end of a trough that is 
filled with water to the line AA9. Referring to Sec. 9.2, determine 
the depth of the point of application of the resultant of the hydro-
static forces acting on the panel (the center of pressure).

A

a

h

A'

 Fig. P9.57  

A

a

b

h

A'

 Fig. P9.58  

C250 × 22.8

L76 × 76 × 6.4

 Fig. P9.55
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494 Distributed Forces: Moments of Inertia  9.59 and *9.60 The panel shown forms the end of a trough that is 
filled with water to the line AA9. Referring to Sec. 9.2, determine 
the depth of the point of application of the resultant of the hydro-
static forces acting on the panel (the center of pressure).

0.25 m

0.32 m
C D

A B

 Fig. P9.62  

 9.61 A vertical trapezoidal gate that is used as an automatic valve is held 
shut by two springs attached to hinges located along edge AB. 
Knowing that each spring exerts a couple of magnitude 1470 N ? m, 
determine the depth d of water for which the gate will open.

 9.62 The cover for a 0.5-m-diameter access hole in a water storage tank 
is attached to the tank with four equally spaced bolts as shown. 
Determine the additional force on each bolt due to the water pres-
sure when the center of the cover is located 1.4 m below the water 
surface.

1.2 m

0.84 m

0.51 m

0.28 m

d
A

B

D

E

 Fig. P9.61

z

a

b

h

2b

y

x

 Fig. P9.63  

x

y

z
64 mm 64 mm

39 mm

39 mm

 Fig. P9.64  

 *9.63 Determine the x coordinate of the centroid of the volume shown. 
(Hint: The height y of the volume is proportional to the x coordi-
nate; consider an analogy between this height and the water pres-
sure on a submerged surface.)

 *9.64 Determine the x coordinate of the centroid of the volume shown; 
this volume was obtained by intersecting an elliptic cylinder with 
an oblique plane. (See hint of Prob. 9.63.)

A A'

Semiellipse

b

a a

 Fig. P9.59  

a

h

a
A'A

Parabola

 Fig. P9.60  
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 *9.65 Show that the system of hydrostatic forces acting on a submerged 
plane area A can be reduced to a force P at the centroid C of the 
area and two couples. The force P is perpendicular to the area 
and is of magnitude P 5 gAy sin u, where g is the specific weight 
of the liquid, and the couples are Mx9 5 (gIx¿ sin u)i and My9 5 
(gIx¿y¿ sin u)j, where Ix¿y¿ 5 ∫ x9y9 dA (see Sec. 9.8). Note that the 
couples are independent of the depth at which the area is 
submerged.

x

x'

y
y'

C

A

q
⎯y

Mx'

My'

⎯x

P

 Fig. P9.65
P

x

y

x'

y'

AC

CP

q ⎯y

⎯x

yP

xP

 Fig. P9.66  

*9.8 PRODUCT OF INERTIA
The integral

 Ixy 5#
 
xy dA (9.12)

which is obtained by multiplying each element dA of an area A by 
its coordinates x and y and integrating over the area (Fig. 9.14), is 
known as the product of inertia of the area A with respect to the 
x and y axes. Unlike the moments of inertia Ix and Iy, the product 
of inertia Ixy can be positive, negative, or zero.
 When one or both of the x and y axes are axes of symmetry 
for the area A, the product of inertia Ixy is zero. Consider, for 
example, the channel section shown in Fig. 9.15. Since this section 
is symmetrical with respect to the x axis, we can associate with 
each element dA of coordinates x and y an element dA9 of coor-
dinates x and 2y. Clearly, the contributions to Ixy of any pair of 
elements chosen in this way cancel out, and the integral (9.12) 
reduces to zero.
 A parallel-axis theorem similar to the one established in Sec. 9.6 
for moments of inertia can be derived for products of inertia. 
 Consider an area A and a system of rectangular coordinates x and y 

dA

x

y

A
O

x

y

Fig. 9.14

9.8 Product of Inertia 495

 *9.66 Show that the resultant of the hydrostatic forces acting on a sub-
merged plane area A is a force P perpendicular to the area and of 
magnitude P 5 gAy sin u 5 pA, where g is the specific weight of 
the liquid and p is the pressure at the centroid C of the area. Show 
that P is applied at a point CP, called the center of pressure, whose 
coordinates are xp 5 Ixy/Ay and yp 5 Ix/Ay, where Ixy 5 ∫ xy dA 
(see Sec. 9.8). Show also that the difference of ordinates yp 2 y is 
equal to k2

x’/y and thus depends upon the depth at which the area 
is submerged.

dA'

dA

x

y

O

–y

y

x

Fig. 9.15
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496  Distributed Forces: Moments of Inertia (Fig. 9.16). Through the centroid C of the area, of coordinates x and 
y, we draw two centroidal axes x¿ and y¿ which are parallel, respec-
tively, to the x and y axes. Denoting by x and y the coordinates of an 
element of area dA with respect to the original axes, and by x¿ and y¿ 
the coordinates of the same element with respect to the centroidal 
axes, we write x 5 x¿ 1 x and y 5 y¿ 1 y. Substituting into (9.12), 
we obtain the following expression for the product of inertia Ixy:

 Ixy 5#
 
xy dA 5 #  (x¿ 1 x)(y¿ 1 y) dA

 5#  x¿y¿ dA 1 y #  x¿ dA 1 x #  y¿ dA 1 x y #  dA

The first integral represents the product of inertia Ix¿y¿ of the area A 
with respect to the centroidal axes x¿ and y¿. The next two integrals 
represent first moments of the area with respect to the centroidal 
axes; they reduce to zero, since the centroid C is located on these 
axes. Finally, we observe that the last integral is equal to the total 
area A. Therefore, we have

 Ixy 5 Ix¿y¿ 1 x y A (9.13)

*9.9  PRINCIPAL AXES AND PRINCIPAL 
MOMENTS OF INERTIA

Consider the area A and the coordinate axes x and y (Fig. 9.17). 
Assuming that the moments and product of inertia

 Ix 5#
 
y2 dA   Iy 5#

 
x2 dA   Ixy 5#

 
xy dA (9.14)

of the area A are known, we propose to determine the moments and 
product of inertia Ix¿, Iy¿, and Ix¿y¿ of A with respect to new axes x¿ 
and y¿ which are obtained by rotating the original axes about the 
origin through an angle u.
 We first note the following relations between the coordinates 
x¿, y¿ and x, y of an element of area dA:

x¿ 5 x cos u 1 y sin u  y¿ 5 y cos u 2 x sin u

x

y

O

C

⎯y

⎯x

dA

x

y

y'

y'

x'

x'

Fig. 9.16

dA

x
x

y

y

O

y'

y'

x'

x'

q

x cos q

y sin q

Fig. 9.17
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497Substituting for y¿ in the expression for Ix¿, we write

 Ix¿ 5#
 
(y¿ )2 dA 5#  (y cos u 2 x sin u)2 dA

 5 cos2 u #  y2 dA 2 2 sin u cos u #  xy dA 1 sin2 u #  x2 dA

Using the relations (9.14), we write

 Ix¿ 5 Ix cos2 u 2 2Ixy sin u cos u 1 Iy sin
2 u (9.15)

Similarly, we obtain for Iy¿ and Ix¿y¿ the expressions

 Iy¿ 5 Ix sin
2 u 1 2Ixy sin u cos u 1 Iy cos2 u (9.16)

 Ix¿y¿ 5 (Ix 2 Iy) sin u cos u 1 Ixy(cos2 u 2 sin2 u) (9.17)

Recalling the trigonometric relations

sin 2u 5 2 sin u cos u  cos 2u 5 cos2 u 2 sin2 u

and

cos2 u 5
1 1 cos 2u

2
 

sin2 u 5
1 2 cos 2u

2

we can write (9.15), (9.16), and (9.17) as follows:

  Ix¿ 5
Ix 1 Iy

2
1

Ix 2 Iy

2
 cos 2u 2 Ixy sin 2u (9.18)

  Iy¿ 5
Ix 1 Iy

2
2

Ix 2 Iy

2
 cos 2u 1 Ixy sin 2u (9.19)

  Ix¿y¿ 5
Ix 2 Iy

2
 sin 2u 1 Ixy cos 2u  (9.20)

Adding (9.18) and (9.19) we observe that

 Ix¿ 1 Iy¿ 5 Ix 1 Iy (9.21)

This result could have been anticipated, since both members of 
(9.21) are equal to the polar moment of inertia JO.
 Equations (9.18) and (9.20) are the parametric equations of a 
circle. This means that if we choose a set of rectangular axes and 
plot a point M of abscissa Ix¿ and ordinate Ix¿y¿ for any given value of 
the parameter u, all of the points thus obtained will lie on a circle. 
To establish this property, we eliminate u from Eqs. (9.18) and (9.20); 
this is done by transposing (Ix 1 Iy)/2 in Eq. (9.18), squaring both 
members of Eqs. (9.18) and (9.20), and adding. We write

 aIx¿ 2
Ix 1 Iy

2
b2

1 I2
x¿y¿ 5 aIx 2 Iy

2
b2

1 I2
xy (9.22)

Setting

 Iave 5
Ix 1 Iy

2
  and   R 5

B
aIx 2 Iy

2
b2

1 I2
xy (9.23)

we write the identity (9.22) in the form

 (Ix9 2 Iave)
2 1 I2

x9y9 5 R2 (9.24)

9.9 Principal Axes and Principal 
Moments of Inertia
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498  Distributed Forces: Moments of Inertia which is the equation of a circle of radius R centered at the point C 
whose x and y coordinates are Iave and 0, respectively (Fig. 9.18a). We 
observe that Eqs. (9.19) and (9.20) are the parametric equations of the 
same circle. Furthermore, because of the symmetry of the circle about 
the horizontal axis, the same result would have been obtained if instead 
of plotting M, we had plotted a point N of coordinates Iy9 and 2Ix9y9 

(Fig. 9.18b). This property will be used in Sec. 9.10.
 The two points A and B where the above circle intersects the 
horizontal axis (Fig. 9.18a) are of special interest: Point A corre-
sponds to the maximum value of the moment of inertia Ix9, while 
point B corresponds to its minimum value. In addition, both points 
correspond to a zero value of the product of inertia Ix9y9. Thus, the 
values um of the parameter u which correspond to the points A and 
B can be obtained by setting Ix9y9 5 0 in Eq. (9.20). We obtain†

 tan 2um 5 2
2Ixy

Ix 2 Iy
 (9.25)

This equation defines two values 2um which are 180° apart and thus two 
values um which are 90° apart. One of these values corresponds to point 
A in Fig. 9.18a and to an axis through O in Fig. 9.17 with respect to 
which the moment of inertia of the given area is maximum; the other 
value corresponds to point B and to an axis through O with respect to 
which the moment of inertia of the area is minimum. The two axes thus 
defined, which are perpendicular to each other, are called the principal 
axes of the area about O, and the corresponding values Imax and Imin of 
the moment of inertia are called the principal moments of inertia of the 
area about O. Since the two values um defined by Eq. (9.25) were 
obtained by setting Ix9y9 5 0 in Eq. (9.20), it is clear that the product of 
inertia of the given area with respect to its principal axes is zero.
 We observe from Fig. 9.18a that
 Imax 5 Iave 1 R     Imin 5 Iave 2 R (9.26)
Using the values for Iave and R from formulas (9.23), we write

 Imax,min 5
Ix 1 Iy

2
6

B
aIx 2 Iy

2
b2

1 I2
xy (9.27)

Unless it is possible to tell by inspection which of the two principal 
axes corresponds to Imax and which corresponds to Imin, it is necessary 
to substitute one of the values of um into Eq. (9.18) in order to 
determine which of the two corresponds to the maximum value of 
the moment of inertia of the area about O.
 Referring to Sec. 9.8, we note that if an area possesses an axis of 
symmetry through a point O, this axis must be a principal axis of the 
area about O. On the other hand, a principal axis does not need to be 
an axis of symmetry; whether or not an area possesses any axes of sym-
metry, it will have two principal axes of inertia about any point O.
 The properties we have established hold for any point O located 
inside or outside the given area. If the point O is chosen to coincide 
with the centroid of the area, any axis through O is a centroidal axis; 
the two principal axes of the area about its centroid are referred to 
as the principal centroidal axes of the area.

†This relation can also be obtained by differentiating Ix9 in Eq. (9.18) and setting 
dIx9/du 5 0.

O

M

C A

R

B

Ix'y'

Ix'

Ix'

Ix'y'

Imin

Iave

Imax

(a)

Iy'

O C

N R

Ix'y'

(b)

Iave

Iy'

–Ix'y'

Fig. 9.18
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499

SAMPLE PROBLEM 9.6

Determine the product of inertia of the right triangle shown (a) with respect 
to the x and y axes and (b) with respect to centroidal axes parallel to the x 
and y axes.

SOLUTION

a. Product of Inertia Ixy. A vertical rectangular strip is chosen as the dif-
ferential element of area. Using the parallel-axis theorem, we write

dIxy 5 dIx¿y¿ 1 xel yel dA

Since the element is symmetrical with respect to the x9 and y9 axes, we note 
that dIx9y9 5 0. From the geometry of the triangle, we obtain

 y 5 h a1 2
x
b
b      dA 5 y dx 5 h a1 2

x
b
b dx

 xel 5 x      yel 5 1
2y 5 1

2h a1 2
x
b
b

Integrating dIxy from x 5 0 to x 5 b, we obtain

 Ixy 5#
 
dIxy 5#  xel yel  dA 5#

b

0
 x(1

2)h2 a1 2
x
b
b2

 dx

 5 h2#
b

0

a x
2

2
x2

b
1

x3

2b2b dx 5 h2 c x2

4
2

x3

3b
1

x4

8b2 d
b

0

Ixy 5 1
24 b2h2 ◀

b. Product of Inertia I x 99y 99. The coordinates of the centroid of the triangle 
relative to the x and y axes are

x 5 1
3b   y 5 1

3h

Using the expression for Ixy obtained in part a, we apply the parallel-axis 
theorem and write

 Ixy 5 Ix–y– 1 x   yA

 124b2h2 5 Ix–y– 1 (1
3b)(1

3h)(1
2bh)

 Ix–y– 5 1
24 b2h2 2 1

18 b2h2

Ix–y– 5 2 1
72b2h2 ◀

y y�

x

x�
C

b

⎯y

⎯xh

y y'

x

x'y

h

x dx

b

⎯xel

⎯yel

y

x

h

b
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SAMPLE PROBLEM 9.7

For the section shown, the moments of inertia with respect to the x and y 
axes have been computed and are known to be

Ix 5 10.38 in4  Iy 5 6.97 in4

Determine (a) the orientation of the principal axes of the section about O, 
(b) the values of the principal moments of inertia of the section about O.

SOLUTION

We first compute the product of inertia with respect to the x and y axes. The 
area is divided into three rectangles as shown. We note that the product of 
inertia Ix¿y¿ with respect to centroidal axes parallel to the x and y axes is zero 
for each rectangle. Using the parallel-axis theorem Ixy 5 Ix¿y¿ 1 x  yA, we find 
that Ixy reduces to x  yA for each rectangle.

b

a

qm = 127.7°

qm = 37.7°
O

y

x

1.25 in.

1.25 in.

1.75 in.

1.75 in.

I

II

III

O

y

x

O

3 in.

3 in.

in.1
2

4 in.

y

x
in.1

2
in.1

2

Rectangle Area, in2 x, in. y, in. xyA, in4

I 1.5 21.25 11.75 23.28
II 1.5 0 0 0

III 1.5 11.25 21.75 23.28

    o xyA 5 26.56

Ixy 5 ox  yA 5 26.56 in4

a. Principal Axes. Since the magnitudes of Ix, Iy, and Ixy are known, 
Eq. (9.25) is used to determine the values of um:

 tan 2um 5 2
2Ixy

Ix 2 Iy
5 2

2(26.56)
10.38 2 6.97

5 13.85

 2um 5 75.4° and 255.4°
um 5 37.7°   and   um 5 127.7° ◀

b. Principal Moments of Inertia. Using Eq. (9.27), we write

 Imax,min 5
Ix 1 Iy

2
6

B
aIx 2 Iy

2
b2

1 I2
xy

 5
10.38 1 6.97

2
6

B
a10.38 2 6.97

2
b2

1 126.5622
Imax 5 15.45 in4   Imin 5 1.897 in4 ◀

Noting that the elements of the area of the section are more closely distrib-
uted about the b axis than about the a axis, we conclude that Ia 5 Imax 5 
15.45 in4 and Ib 5 Imin 5 1.897 in4. This conclusion can be verified by 
substituting u 5 37.7° into Eqs. (9.18) and (9.19).
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SOLVING PROBLEMS
ON YOUR OWN

In the problems for this lesson, you will continue your work with moments of inertia
and will utilize various techniques for computing products of inertia. Although the 

problems are generally straightforward, several items are worth noting.

1. Calculating the product of inertia Ixy by integration. We defined this quantity as

 Ixy 5#
 
xy dA (9.12)

and stated that its value can be positive, negative, or zero. The product of inertia can 
be computed directly from the above equation using double integration, or it can be 
determined using single integration as shown in Sample Prob. 9.6. When applying the 
latter technique and using the parallel-axis theorem, it is important to remember that 
xel and yel in the equation

dIxy 5 dIx¿y¿ 1 xel yel dA

are the coordinates of the centroid of the element of area dA. Thus, if dA is not 
in the first quadrant, one or both of these coordinates will be negative.

2. Calculating the products of inertia of composite areas. They can easily be 
computed from the products of inertia of their component parts by using the 
parallel-axis theorem
 Ixy 5 Ix¿y¿ 1 x yA (9.13)

The proper technique to use for problems of this type is illustrated in Sample 
Probs. 9.6 and 9.7. In addition to the usual rules for composite-area problems, it 
is essential that you remember the following points.
 a. If either of the centroidal axes of a component area is an axis of sym-
metry for that area, the product of inertia I x 9y 9 for that area is zero. Thus, Ix¿y¿ 
is zero for component areas such as circles, semicircles, rectangles, and isosceles 
triangles which possess an axis of symmetry parallel to one of the coordinate axes.
 b. Pay careful attention to the signs of the coordinates x and y  of each 
component area when you use the parallel-axis theorem [Sample Prob. 9.7].

3. Determining the moments of inertia and the product of inertia for rotated 
coordinate axes. In Sec. 9.9 we derived Eqs. (9.18), (9.19), and (9.20), from 
which the moments of inertia and the product of inertia can be computed for 
coordinate axes which have been rotated about the origin O. To apply these equa-
tions, you must know a set of values Ix, Iy, and Ixy for a given orientation of the 
axes, and you must remember that u is positive for counterclockwise rotations of 
the axes and negative for clockwise rotations of the axes.

4. Computing the principal moments of inertia. We showed in Sec. 9.9 that 
there is a particular orientation of the coordinate axes for which the moments of 
inertia attain their maximum and minimum values, Imax and Imin, and for which 
the product of inertia is zero. Equation (9.27) can be used to compute these values, 
known as the principal moments of inertia of the area about O. The corresponding 
axes are referred to as the principal axes of the area about O, and their orientation 
is defined by Eq. (9.25). To determine which of the principal axes corresponds to 
Imax and which corresponds to Imin, you can either follow the procedure outlined 
in the text after Eq. (9.27) or observe about which of the two principal axes the 
area is more closely distributed; that axis corresponds to Imin [Sample Prob. 9.7].
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PROBLEMS
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 9.67 through 9.70 Determine by direct integration the product of 
inertia of the given area with respect to the x and y axes.

x

y

O

x2

4a2

y2

a2
+ = 1

a

2a

 Fig. P9.67

h

x

y

b

 Fig. P9.68

x

b

y

a

y = kx3

 Fig. P9.69

h

y

x
a

y = 4h(          )x
a

x2

a2
−

 Fig. P9.70

 9.71 through 9.74 Using the parallel-axis theorem, determine the 
product of inertia of the area shown with respect to the centroidal 
x and y axes.

20 mm

20 mm

60 mm
10 mm

10 mm 10 mm100 mm

60 mm

y

x

C

 Fig. P9.71

x

y

40 mm

40 mm

60 mm 60 mm

C

 Fig. P9.72

6 in.

6 in.

y

xC

 Fig. P9.73

0.25 in.
3 in.

2 in.

0.25 in.

0.487 in.

0.980 in.
y

xC

L3 × 2 × 1
4

 Fig. P9.74
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503Problems 9.75 through 9.78 Using the parallel-axis theorem, determine the 
product of inertia of the area shown with respect to the centroidal 
x and y axes.

 9.79 Determine for the quarter ellipse of Prob. 9.67 the moments of 
inertia and the product of inertia with respect to new axes obtained 
by rotating the x and y axes about O (a) through 458 counterclock-
wise, (b) through 308 clockwise.

 9.80 Determine the moments of inertia and the product of inertia of 
the area of Prob. 9.72 with respect to new centroidal axes obtained 
by rotating the x and y axes 308 counterclockwise.

 9.81 Determine the moments of inertia and the product of inertia of 
the area of Prob. 9.73 with respect to new centroidal axes obtained 
by rotating the x and y axes 608 counterclockwise.

 9.82 Determine the moments of inertia and the product of inertia of 
the area of Prob. 9.75 with respect to new centroidal axes obtained 
by rotating the x and y axes 458 clockwise.

 9.83 Determine the moments of inertia and the product of inertia of 
the L3 3 2 3 1

4-in. angle cross section of Prob. 9.74 with respect 
to new centroidal axes obtained by rotating the x and y axes 308 
clockwise.

40 mm

8 mm

100 mm

8 mm

8 mm

40 mm

y

xC

 Fig. P9.75

19 in.

15 in.

9 in. 3 in.

9 in.3 in.

2 in.
2 in.

y

xC

 Fig. P9.76

1.3 in.

5.3 in.

1.0 in.

0.412 in.

0.5 in.

0.5 in.

2.25 in.

3.6 in.

y

C
x

 Fig. P9.77

44.2 mm

76 mm

18.9 mm
12.7 mm

12.7 mm

127 mm

y

xC
L127 × 76 × 12.7 

 Fig. P9.78
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 9.84 Determine the moments of inertia and the product of inertia of 
the L127 3 76 3 12.7-mm angle cross section of Prob. 9.78 with 
respect to new centroidal axes obtained by rotating the x and y 
axes 458 counterclockwise.

 9.85 For the quarter ellipse of Prob. 9.67, determine the orientation of 
the principal axes at the origin and the corresponding values of 
the moments of inertia.

 9.86 through 9.88 For the area indicated, determine the orientation 
of the principal axes at the origin and the corresponding values of 
the moments of inertia.

9.86 Area of Prob. 9.72
9.87 Area of Prob. 9.73
9.88 Area of Prob. 9.75

 9.89 and 9.90 For the angle cross section indicated, determine the 
orientation of the principal axes at the origin and the correspond-
ing values of the moments of inertia.

9.89 The L3 3 2 3 1
4-in. angle cross section of Prob. 9.74

9.90  The L127 3 76 3 12.7-mm angle cross section of 
Prob. 9.78

*9.10  MOHR’S CIRCLE FOR MOMENTS 
AND PRODUCTS OF INERTIA

The circle used in the preceding section to illustrate the relations exist-
ing between the moments and products of inertia of a given area with 
respect to axes passing through a fixed point O was first introduced by 
the German engineer Otto Mohr (1835–1918) and is known as Mohr’s 
circle. It will be shown that if the moments and product of inertia of 
an area A are known with respect to two rectangular x and y axes which 
pass through a point O, Mohr’s circle can be used to graphically deter-
mine (a) the principal axes and principal moments of inertia of the area 
about O and (b) the moments and product of inertia of the area with 
respect to any other pair of rectangular axes x9 and y9 through O.
 Consider a given area A and two rectangular coordinate axes x 
and y (Fig. 9.19a). Assuming that the moments of inertia Ix and Iy 
and the product of inertia Ixy are known, we will represent them on 
a diagram by plotting a point X of coordinates Ix and Ixy and a point Y 
of coordinates Iy and 2Ixy (Fig. 9.19b). If Ixy is positive, as assumed 
in Fig. 9.19a, point X is located above the horizontal axis and point Y 
is located below, as shown in Fig. 9.19b. If Ixy is negative, X is located 
below the horizontal axis and Y is located above. Joining X and Y 
with a straight line, we denote by C the point of intersection of line 
XY with the horizontal axis and draw the circle of center C and 
diameter XY. Noting that the abscissa of C and the radius of the 
circle are respectively equal to the quantities Iave and R defined by 
the formula (9.23), we conclude that the circle obtained is Mohr’s 
circle for the given area about point O. Thus, the abscissas of the 
points A and B where the circle intersects the horizontal axis  represent, 
respectively, the principal moments of inertia Imax and Imin of the area.
 We also note that, since tan (XCA) 5 2Ixy/(Ix 2 Iy), the angle XCA 
is equal in magnitude to one of the angles 2um which satisfy Eq. (9.25); 

504 Distributed Forces: Moments of Inertia
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thus, the angle um, which defines in Fig. 9.19a the principal axis Oa 
corresponding to point A in Fig. 9.19b, is equal to half of the angle 
XCA of Mohr’s circle. We further observe that if Ix . Iy and Ixy . 0, 
as in the case considered here, the rotation which brings CX into CA 
is clockwise. Also, under these conditions, the angle um obtained 
from Eq. (9.25), which defines the principal axis Oa in Fig. 9.19a, is 
negative; thus, the rotation which brings Ox into Oa is also clockwise. 
We conclude that the senses of rotation in both parts of Fig. 9.19 
are the same. If a clockwise rotation through 2um is required to bring 
CX into CA on Mohr’s circle, a clockwise rotation through um will 
bring Ox into the corresponding principal axis Oa in Fig. 9.19a.
 Since Mohr’s circle is uniquely defined, the same circle can be 
obtained by considering the moments and product of inertia of the 
area A with respect to the rectangular axes x9 and y9 (Fig. 9.19a). 
The point X9 of coordinates Ix9 and Ix9y9 and the point Y9 of coordi-
nates Iy9 and 2Ix9y9 are thus located on Mohr’s circle, and the angle 
X9CA in Fig. 9.19b must be equal to twice the angle x9Oa in Fig. 9.19a. 
Since, as noted above, the angle XCA is twice the angle xOa, it 
 follows that the angle XCX9 in Fig. 9.19b is twice the angle xOx9 in 
Fig. 9.19a. The diameter X9Y9, which defines the moments and prod-
uct of inertia Ix9, Iy9, and Ix9y9 of the given area with respect to rect-
angular axes x9 and y9 forming an angle u with the x and y axes can 
be obtained by rotating through an angle 2u the diameter XY which 
corresponds to the moments and product of inertia Ix, Iy, and Ixy. 
We note that the rotation which brings the diameter XY into the 
diameter X9Y9 in Fig. 9.19b has the same sense as the rotation which 
brings the x and y axes into the x9 and y9 axes in Fig. 9.19a.
 It should be noted that the use of Mohr’s circle is not limited 
to graphical solutions, i.e., to solutions based on the careful drawing 
and measuring of the various parameters involved. By merely sketch-
ing Mohr’s circle and using trigonometry, one can easily derive the 
various relations required for a numerical solution of a given problem 
(see Sample Prob. 9.8).

x'

x

y'

q

qm
O

b

a

y

(a)

2q

AB C

Y

2qm

O

Imin

Imax

Ixy

Ix'

Ix'y'

�Ix'y'

�Ixy

Ixy

Ix, Iy

Iy

X
X'

Ix

Iy'

Y'

(b)

Fig. 9.19

9.10 Mohr’s Circle for Moments and 
Products of Inertia

bee02286_ch09_468-555.indd Page 505  8/29/11  11:22 AM user-f494bee02286_ch09_468-555.indd Page 505  8/29/11  11:22 AM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


SAMPLE PROBLEM 9.8

For the section shown, the moments and product of inertia with respect to 
the x and y axes are known to be
Ix 5 7.20 3 106 mm4  Iy 5 2.59 3 106 mm4  Ixy 5 22.54 3 106 mm4

Using Mohr’s circle, determine (a) the principal axes of the section about O, 
(b) the values of the principal moments of inertia of the section about O, 
(c) the moments and product of inertia of the section with respect to the 
x9 and y9 axes which form an angle of 60° with the x and y axes.

y

x

y�

x�

O

q = 60°
L152 × 102 × 12.7

506

y

x

b

a

O

qm = 23.9°

SOLUTION

Drawing Mohr’s Circle. We first plot point X of coordinates Ix 5 7.20, Ixy 5 
22.54, and point Y of coordinates Iy 5 2.59, 2Ixy 5 12.54. Joining X and 
Y with a straight line, we define the center C of Mohr’s circle. The abscissa 
of C, which represents Iave, and the radius R of the circle can be measured 
directly or calculated as follows:

Iave 5 OC 5 1
2(Ix 1 Iy) 5 1

2(7.20 3 106 1 2.59 3 106) 5 4.895 3 106 mm4

CD 5 1
2(Ix 2 Iy) 5 1

2(7.20 3 106 2 2.59 3 106) 5 2.305 3 106 mm4

 R 5 2(CD)2 1 (DX)2 5 2(2.305 3 106)2 1 (2.54 3 106)2

 5 3.430 3 106 mm4

a. Principal Axes. The principal axes of the section correspond to points 
A and B on Mohr’s circle, and the angle through which we should rotate 
CX to bring it into CA defines 2um. We have

tan 2um 5
DX
CD

5
2.54
2.305

5 1.102   2um 5 47.8° l   um 5 23.9° l ◀

Thus, the principal axis Oa corresponding to the maximum value of the moment 
of inertia is obtained by rotating the x axis through 23.9° counterclockwise; the 
principal axis Ob corresponding to the minimum value of the moment of inertia 
can be obtained by rotating the y axis through the same angle.
b. Principal Moments of Inertia. The principal moments of inertia are 
represented by the abscissas of A and B. We have

Imax 5 OA 5 OC 1 CA 5 Iave 1 R 5 (4.895 1 3.430)106 mm4

Imax 5 8.33 3 106 mm4 ◀

Imin 5 OB 5 OC 2 BC 5 Iave 2 R 5 (4.895 2 3.430)106 mm4

Imin 5 1.47 3 106 mm4 ◀

c. Moments and Product of Inertia with Respect to the x9 and y9 Axes.
On Mohr’s circle, the points X9 and Y9, which correspond to the x9 and y9 
axes, are obtained by rotating CX and CY through an angle 2u 5 2(60°) 5 
120° counterclockwise. The coordinates of X9 and Y9 yield the desired 
moments and product of inertia. Noting that the angle that CX9 forms with 
the horizontal axis is f 5 120° 2 47.8° 5 72.2°, we write

Ix9 5 OF 5 OC 1 CF 5 4.895 3 106 mm4 1 (3.430 3 106 mm4) cos 72.2°
Ix¿ 5 5.94 3 106 mm4 ◀

Iy9 5 OG 5 OC 2 GC 5 4.895 3 106 mm4 2 (3.430 3 106 mm4) cos 72.2°
Iy¿ 5 3.85 3 106 mm4 ◀

Ix9y9 5 FX9 5 (3.430 3 106 mm4) sin 72.2°
Ix¿y¿ 5 3.27 3 106 mm4 ◀

2qm = 47.8°

2q = 120°

4.895 × 106 mm4

3.430 × 106 

mm4

Ixy

X

Y

FG

X'

Y'

f

O C Ix, Iy 

O
B E

C D A

Ixy (106 mm4)

Y(2.59, +2.54)

X(7.20, –2.54)

2qm Ix, Iy
(106 mm4) 
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In the problems for this lesson, you will use Mohr’s circle to determine the 
moments and products of inertia of a given area for different orientations of 

the coordinate axes. Although in some cases using Mohr’s circle may not be as 
direct as substituting into the appropriate equations [Eqs. (9.18) through (9.20)], 
this method of solution has the advantage of providing a visual representation of 
the relationships among the various variables. Further, Mohr’s circle shows all of 
the values of the moments and products of inertia which are possible for a given 
problem.

Using Mohr’s circle. The underlying theory was presented in Sec. 9.9, and we 
discussed the application of this method in Sec. 9.10 and in Sample Prob. 9.8. In 
the same problem, we presented the steps you should follow to determine the 
principal axes, the principal moments of inertia, and the moments and product of 
inertia with respect to a specified orientation of the coordinates axes. When you 
use Mohr’s circle to solve problems, it is important that you remember the follow-
ing points.
a. Mohr’s circle is completely defined by the quantities R and Iave, which 
represent, respectively, the radius of the circle and the distance from the origin O
to the center C of the circle. These quantities can be obtained from Eqs. (9.23) 
if the moments and product of inertia are known for a given orientation of the 
axes. However, Mohr’s circle can be defined by other combinations of known 
values [Probs. 9.103, 9.106, and 9.107]. For these cases, it may be necessary to 
first make one or more assumptions, such as choosing an arbitrary location for the 
center when Iave is unknown, assigning relative magnitudes to the moments of 
inertia (for example, Ix . Iy), or selecting the sign of the product of inertia.
b. Point X of coordinates (Ix, Ixy) and point Y of coordinates (Iy, 2Ixy) are both 
located on Mohr’s circle and are diametrically opposite.
c. Since moments of inertia must be positive, the entire Mohr’s circle must lie 
to the right of the Ixy axis; it follows that Iave . R for all cases.
d. As the coordinate axes are rotated through an angle U, the associated 
rotation of the diameter of Mohr’s circle is equal to 2u and is in the same sense 
(clockwise or counterclockwise). We strongly suggest that the known points on the 
circumference of the circle be labeled with the appropriate capital letter, as was 
done in Fig. 9.19b and for the Mohr circles of Sample Prob. 9.8. This will enable 
you to determine, for each value of u, the sign of the corresponding product of 
inertia and to determine which moment of inertia is associated with each of the 
coordinate axes [Sample Prob. 9.8, parts a and c].

Although we have introduced Mohr’s circle within the specific context of the study 
of moments and products of inertia, the Mohr circle technique is also applicable 
to the solution of analogous but physically different problems in mechanics of 
materials. This multiple use of a specific technique is not unique, and as you 
pursue your engineering studies, you will encounter several methods of solution 
which can be applied to a variety of problems.

SOLVING PROBLEMS
ON YOUR OWN
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PROBLEMS
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 9.91 Using Mohr’s circle, determine for the quarter ellipse of Prob. 9.67 
the moments of inertia and the product of inertia with respect to 
new axes obtained by rotating the x and y axes about O (a) through 
458 counterclockwise, (b) through 308 clockwise.

 9.92 Using Mohr’s circle, determine the moments of inertia and the 
product of inertia of the area of Prob. 9.72 with respect to new 
centroidal axes obtained by rotating the x and y axes 308 
counterclockwise.

 9.93 Using Mohr’s circle, determine the moments of inertia and the prod-
uct of inertia of the area of Prob. 9.73 with respect to new centroidal 
axes obtained by rotating the x and y axes 608 counterclockwise.

 9.94 Using Mohr’s circle, determine the moments of inertia and the prod-
uct of inertia of the area of Prob. 9.75 with respect to new centroidal 
axes obtained by rotating the x and y axes 458 clockwise.

 9.95 Using Mohr’s circle, determine the moments of inertia and the 
product of inertia of the L3 3 2 3 14-in. angle cross section of Prob. 
9.74 with respect to new centroidal axes obtained by rotating the 
x and y axes 308 clockwise.

 9.96 Using Mohr’s circle, determine the moments of inertia and the 
product of inertia of the L127 3 76 3 12.7-mm angle cross section 
of Prob. 9.78 with respect to new centroidal axes obtained by rotat-
ing the x and y axes 458 counterclockwise.

 9.97 For the quarter ellipse of Prob. 9.67, use Mohr’s circle to deter-
mine the orientation of the principal axes at the origin and the 
corresponding values of the moments of inertia.

 9.98 through 9.102 Using Mohr’s circle, determine for the area 
indicated the orientation of the principal centroidal axes and the 
corresponding values of the moments of inertia.

9.98 Area of Prob. 9.72
9.99 Area of Prob. 9.76
9.100 Area of Prob. 9.73
9.101 Area of Prob. 9.74
9.102 Area of Prob. 9.77

  (The moments of inertia Ix and Iy of the area of Prob. 9.102 were 
determined in Prob. 9.44.)

 9.103 The moments and product of inertia of an L4 3 3 3 1
4-in. angle 

cross section with respect to two rectangular axes x and y through 
C are, respectively, Ix 5 1.33 in4, Iy 5 2.75 in4, and Ixy , 0, with 
the minimum value of the moment of inertia of the area with 
respect to any axis through C being Imin 5 0.692 in4. Using Mohr’s 
circle, determine (a) the product of inertia Ixy of the area, (b) the 
orientation of the principal axes, (c) the value of Imax.
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509Problems 9.104 and 9.105 Using Mohr’s circle, determine for the cross section 
of the rolled-steel angle shown the orientation of the principal 
centroidal axes and the corresponding values of the moments of 
inertia. (Properties of the cross sections are given in Fig. 9.13.)

C
x

y

18.9 mm

L127 × 76 × 12.7

12.7 mm

12.7 mm

127 mm

44.2 mm

76 mm

 Fig. P9.105  

6.4 mm
76 mm

51 mm

6.4 mm

12.4 mm

24.9 mm
y

xC

L76 × 51 × 6.4

 Fig. P9.104  

 *9.106 For a given area the moments of inertia with respect to two rect-
angular centroidal x and y axes are Ix 5 1200 in4 and Iy 5 300 in4, 
respectively. Knowing that after rotating the x and y axes about 
the centroid 308 counterclockwise, the moment of inertia relative 
to the rotated x axis is 1450 in4, use Mohr’s circle to determine 
(a) the orientation of the principal axes, (b) the principal centroidal 
moments of inertia.

 9.107 It is known that for a given area Iy 5 48 3 106 mm4 and Ixy 5 
220 3 106 mm4, where the x and y axes are rectangular centroidal 
axes. If the axis corresponding to the maximum product of inertia 
is obtained by rotating the x axis 67.58 counterclockwise about C, 
use Mohr’s circle to determine (a) the moment of inertia Ix of the 
area, (b) the principal centroidal moments of inertia.

 9.108 Using Mohr’s circle, show that for any regular polygon (such as a 
pentagon) (a) the moment of inertia with respect to every axis 
through the centroid is the same, (b) the product of inertia with 
respect to every pair of rectangular axes through the centroid is 
zero.

 9.109 Using Mohr’s circle, prove that the expression Ix¿Iy¿ 2 I2
x¿y¿ is inde-

pendent of the orientation of the x9 and y9 axes, where Ix9, Iy9, and 
Ix9y9 represent the moments and product of inertia, respectively, of 
a given area with respect to a pair of rectangular axes x9 and y9 
through a given point O. Also show that the given expression is 
equal to the square of the length of the tangent drawn from the 
origin of the coordinate system to Mohr’s circle.

 9.110 Using the invariance property established in the preceding prob-
lem, express the product of inertia Ixy of an area A with respect to 
a pair of rectangular axes through O in terms of the moments of 
inertia Ix and Iy of A and the principal moments of inertia Imin and 
Imax of A about O. Use the formula obtained to calculate the prod-
uct of inertia Ixy of the L3 3 2 3 1

4-in. angle cross section shown 
in Fig. 9.13A, knowing that its maximum moment of inertia is 
1.257 in4.
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510  Distributed Forces: Moments of Inertia
MOMENTS OF INERTIA OF MASSES

9.11 MOMENT OF INERTIA OF A MASS
Consider a small mass Dm mounted on a rod of negligible mass 
which can rotate freely about an axis AA9 (Fig. 9.20a). If a couple 
is applied to the system, the rod and mass, assumed to be initially 
at rest, will start rotating about AA9. The details of this motion will 
be studied later in dynamics. At present, we wish only to indicate 
that the time required for the system to reach a given speed of 
rotation is proportional to the mass Dm and to the square of the 
distance r. The product r2 Dm provides, therefore, a measure of 
the inertia of the system, i.e., a measure of the resistance the sys-
tem offers when we try to set it in motion. For this reason, the 
product r2 Dm is called the moment of inertia of the mass Dm with 
respect to the axis AA9.

A'

A

r1

r2 r3

Δm1

Δm2
Δm

Δm3

A'

A

m

A'

A

r k

(a) (b) (c)

Fig. 9.20

 Consider now a body of mass m which is to be rotated about 
an axis AA9 (Fig. 9.20b). Dividing the body into elements of mass 
Dm1, Dm2, etc., we find that the body’s resistance to being rotated is 
measured by the sum r2

1 Dm1 1 r2
2 Dm2 1 . . .. This sum defines, 

therefore, the moment of inertia of the body with respect to the axis 
AA9. Increasing the number of elements, we find that the moment 
of inertia is equal, in the limit, to the integral

 I 5#  r2 dm (9.28)
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511 The radius of gyration k of the body with respect to the axis 
AA9 is defined by the relation

 I 5 k2m   or   k 5
B

I
m

 (9.29)

The radius of gyration k represents, therefore, the distance at which 
the entire mass of the body should be concentrated if its moment of 
inertia with respect to AA9 is to remain unchanged (Fig. 9.20c). 
Whether it is kept in its original shape (Fig. 9.20b) or whether it is 
concentrated as shown in Fig. 9.20c, the mass m will react in the 
same way to a rotation, or gyration, about AA9.
 If SI units are used, the radius of gyration k is expressed in 
meters and the mass m in kilograms, and thus the unit used for the 
moment of inertia of a mass is kg ? m2. If U.S. customary units are 
used, the radius of gyration is expressed in feet and the mass in slugs 
(i.e., in lb · s2/ft), and thus the derived unit used for the moment of 
inertia of a mass is lb ? ft ? s2.†
 The moment of inertia of a body with respect to a coordinate 
axis can easily be expressed in terms of the coordinates x, y, z 
of the element of mass dm (Fig. 9.21). Noting, for example, that 
the square of the distance r from the element dm to the y axis is 
z2 1 x2, we express the moment of inertia of the body with respect 
to the y axis as

Iy 5#
 
r2 dm 5 #  (z2 1 x2) dm

Similar expressions can be obtained for the moments of inertia with 
respect to the x and z axes. We write

 Ix 5#
 
(y2 1 z2) dm

  Iy 5#
 
(z2 1 x2) dm (9.30)

 Iz 5#
 
(x2 1 y2) dm

†It should be kept in mind when converting the moment of inertia of a mass from 
U.S. customary units to SI units that the base unit pound used in the derived unit 
lb ? ft ? s2 is a unit of force (not of mass) and should therefore be converted into 
 newtons. We have

1 lb ? ft ? s2 5 (4.45 N)(0.3048 m)(1 s)2 5 1.356 N ? m ? s2

or, since 1 N 5 1 kg ? m/s2,

1 lb ? ft ? s2 5 1.356 kg ? m2

dm

x

y

y

O

z

r z
x

Fig. 9.21

9.11 Moment of Inertia of a Mass

Photo 9.2 As you will discuss in your dynamics 
course, the rotational behavior of the camshaft 
shown is dependent upon the mass moment of 
inertia of the camshaft with respect to its axis of 
rotation.
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512  Distributed Forces: Moments of Inertia 9.12 PARALLEL-AXIS THEOREM
Consider a body of mass m. Let Oxyz be a system of rectangular coor-
dinates whose origin is at the arbitrary point O, and Gx9y9z9 a system 
of parallel centroidal axes, i.e., a system whose origin is at the center of 
gravity G of the body† and whose axes x9, y9, z9 are parallel to the x, y, 
and z axes, respectively (Fig. 9.22). Denoting by x, y, z the coordinates 
of G with respect to Oxyz, we write the following relations between 
the coordinates x, y, z of the element dm with respect to Oxyz and its 
coordinates x9, y9, z9 with respect to the centroidal axes Gx9y9z9:

 x 5 x9 1 x  y 5 y9 1 y  z 5 z9 1 z (9.31)

Referring to Eqs. (9.30), we can express the moment of inertia of 
the body with respect to the x axis as follows:

 Ix 5#
 
(y2 1 z2) dm 5#  [(y¿ 1 y )2 1 (z¿ 1 z )2] dm

 5#  (y¿2 1 z¿2) dm 1 2 y #  y¿ dm 1 2z #  z¿  dm 1 (y 
2 1 z 

2)#  dm

The first integral in this expression represents the moment of inertia 
Ix¿ of the body with respect to the centroidal axis x9; the second and 
third integrals represent the first moment of the body with respect 
to the z9x9 and x9y9 planes, respectively, and, since both planes con-
tain G, the two integrals are zero; the last integral is equal to the 
total mass m of the body. We write, therefore,

 Ix 5 Ix¿ 1 m(y 
2 1 z 

2) (9.32)

and, similarly,

 Iy 5 Iy¿ 1 m(z 
2 1 x 

2)   Iz 5 Iz¿ 1 m(x 
2 1 y 

2) (9.329)

 We easily verify from Fig. 9.22 that the sum z 
2 1 x 

2 represents 
the square of the distance OB between the y and y9 axes. Similarly, 
y 

2 1 z 
2 and x 

2 1 y 
2 represent the squares of the distance between 

the x and x9 axes and the z and z9 axes, respectively. Denoting by d 
the distance between an arbitrary axis AA9 and a parallel centroidal 
axis BB9 (Fig. 9.23), we can, therefore, write the following general 
relation between the moment of inertia I of the body with respect 
to AA9 and its moment of inertia I with respect to BB9:

 I 5 I 1 md2 (9.33)

Expressing the moments of inertia in terms of the corresponding 
radii of gyration, we can also write

 k2 5 k2 1 d2 (9.34)

where k and k represent the radii of gyration of the body about AA9 
and BB9, respectively.

†Note that the term centroidal is used here to define an axis passing through the center 
of gravity G of the body, whether or not G coincides with the centroid of the volume of 
the body.

dm

y

O

G

B

z

x

y'

x'

z'

⎯ z⎯ y

⎯ x

Fig. 9.22

A'

B'

A

B

G

d

Fig. 9.23
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5139.13 MOMENTS OF INERTIA OF THIN PLATES
Consider a thin plate of uniform thickness t, which is made of a 
homogeneous material of density r (density 5 mass per unit vol-
ume). The mass moment of inertia of the plate with respect to an 
axis AA9 contained in the plane of the plate (Fig. 9.24a) is

IAA¿, mass 5#
 
r2 dm

Since dm 5 rt dA, we write

IAA¿, mass 5 rt  #  r2 dA

But r represents the distance of the element of area dA to the axis

9.13 Moments of Inertia of Thin Plates

AA9; the integral is therefore equal to the moment of inertia of the 
area of the plate with respect to AA9. We have

 IAA9, mass 5 rtIAA9, area (9.35)

Similarly, for an axis BB9 which is contained in the plane of the plate 
and is perpendicular to AA9 (Fig. 9.24b), we have

 IBB9, mass 5 rtIBB9, area (9.36)

 Considering now the axis CC9 which is perpendicular to the 
plate and passes through the point of intersection C of AA9 and BB9 
(Fig. 9.24c), we write

 ICC9, mass 5 rtJC, area (9.37)

where JC is the polar moment of inertia of the area of the plate with 
respect to point C.
 Recalling the relation JC 5 IAA9 1 IBB9 which exists between 
polar and rectangular moments of inertia of an area, we write the 
following relation between the mass moments of inertia of a thin 
plate:

 ICC9 5 IAA9 1 IBB9 (9.38)

t

B'

C'

rr

A'

A

dA

C

(a) (b) (c)

A'

A

B

B'

B

dAdA

rr

t t

Fig. 9.24
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514  Distributed Forces: Moments of Inertia Rectangular Plate. In the case of a rectangular plate of sides a 
and b (Fig. 9.25), we obtain the following mass moments of inertia 
with respect to axes through the center of gravity of the plate:

 IAA¿, mass 5 rtIAA¿, area 5 rt( 1
12 a3b)

 IBB¿, mass 5 rtIBB¿, area 5 rt( 1
12 ab3)

Observing that the product rabt is equal to the mass m of the plate, 
we write the mass moments of inertia of a thin rectangular plate as 
follows:
  IAA¿ 5 1

12 ma2   IBB¿ 5 1
12 mb2  (9.39)

  ICC¿ 5 IAA¿ 1 IBB¿ 5 1
12 m(a2 1 b2) (9.40)

Circular Plate. In the case of a circular plate, or disk, of radius r 
(Fig. 9.26), we write

IAA¿, mass 5 rtIAA¿, area 5 rt(1
4 pr4)

Observing that the product rpr2t is equal to the mass m of the plate 
and that IAA9 5 IBB9, we write the mass moments of inertia of a circular 
plate as follows:
  IAA¿ 5 IBB¿ 5 1

4 mr2  (9.41)
  ICC¿ 5 IAA¿ 1 IBB¿ 5 1

2 mr2 (9.42)

9.14  DETERMINATION OF THE MOMENT OF INERTIA 
OF A THREE-DIMENSIONAL BODY 
BY INTEGRATION

The moment of inertia of a three-dimensional body is obtained by 
evaluating the integral I 5 e r2 dm. If the body is made of a homo-
geneous material of density r, the element of mass dm is equal to 
r dV and we can write I 5 re r2 dV. This integral depends only upon 
the shape of the body. Thus, in order to compute the moment of 
inertia of a three-dimensional body, it will generally be necessary to 
perform a triple, or at least a double, integration.
 However, if the body possesses two planes of symmetry, it is 
usually possible to determine the body’s moment of inertia with a 
single integration by choosing as the element of mass dm a thin slab 
which is perpendicular to the planes of symmetry. In the case of 
bodies of revolution, for example, the element of mass would be a 
thin disk (Fig. 9.27). Using formula (9.42), the moment of inertia of 
the disk with respect to the axis of revolution can be expressed as 
indicated in Fig. 9.27. Its moment of inertia with respect to each of 
the other two coordinate axes is obtained by using formula (9.41) 
and the parallel-axis theorem. Integration of the expression obtained 
yields the desired moment of inertia of the body.

9.15 MOMENTS OF INERTIA OF COMPOSITE BODIES
The moments of inertia of a few common shapes are shown in 
Fig. 9.28. For a body consisting of several of these simple shapes, the 
moment of inertia of the body with respect to a given axis can be 
obtained by first computing the moments of inertia of its component 
parts about the desired axis and then adding them together. As was 
the case for areas, the radius of gyration of a composite body cannot 
be obtained by adding the radii of gyration of its component parts.

t

C'

B'

A

B
b

a

A'

C

Fig. 9.25

C'

C

B'

A

B

A'

t
r

Fig. 9.26

O

y'

y

z
dx r

z'

x

x

dm = r   r2 dx

dIx =    r2 dm1
2

dIy = dIy' + x2 dm = (   r2 + x2)dm

dIz = dIz' + x2 dm = (  r2 + x2)dm

1
4
1
4

�

Fig. 9.27 Determination of the moment of 
inertia of a body of revolution.
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515

Slender rod

Thin rectangular plate

Rectangular prism

Thin disk

Circular cylinder

Circular cone

Sphere

G

L
Iy = Iz =     mL21

12

Iy = Iz =     mr21
4

Ix =     m(b2 + c2)1
12

Ix =     m(b2 + c2)1
12

Ix =    mr21
2

Ix =    ma23
10

Iy =     m(c2 + a2)1
12

Iy = Iz =    m(  a2 + h2)3
5

1
4

Ix =    ma21
2

Iy = Iz =     m(3a2 + L2)1
12

Ix = Iy = Iz =    ma22
5

Iz =     m(a2 + b2)1
12

Iy =     mc21
12

Iz =     mb21
12

a

x

x

x

x
a

x

x

x

r

z

z

z

z

z

z

z

y

y

y

y

y

y

h

L

a

c

c

b

b

G

r

y

Fig. 9.28 Mass moments of inertia of common geometric shapes.

9.15 Moments of Inertia of
Composite Bodies
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516

SAMPLE PROBLEM 9.9

Determine the moment of inertia of a slender rod of length L and mass m 
with respect to an axis which is perpendicular to the rod and passes through 
one end of the rod.

SOLUTION

Choosing the differential element of mass shown, we write

dm 5
m
L

 dx

Iy 5#
 
x2 dm 5#

L

0
 x

2
 

m
L

 dx 5 cm
L

 
x3

3
d L

0
  Iy 5 1

3 mL2 ◀

SAMPLE PROBLEM 9.10

For the homogeneous rectangular prism shown, determine the moment of 
inertia with respect to the z axis.

SOLUTION

We choose as the differential element of mass the thin slab shown; thus

dm 5 rbc dx

Referring to Sec. 9.13, we find that the moment of inertia of the element 
with respect to the z9 axis is

dIz¿ 5 1
12 b2 dm

Applying the parallel-axis theorem, we obtain the mass moment of inertia 
of the slab with respect to the z axis.

dIz 5 dIz¿ 1 x2 dm 5 1
12 b2 dm 1 x2 dm 5 ( 1

12 b2 1 x2)rbc dx

Integrating from x 5 0 to x 5 a, we obtain

Iz 5#
 
dIz 5#

a

0
 (

1
12 b2 1 x2)rbc dx 5 rabc( 1

12 b2 1 1
3a

2)

Since the total mass of the prism is m 5 rabc, we can write

 Iz 5 m( 1
12 b2 1 1

3 a2)  Iz 5 1
12 m(4a2 1 b2) ◀

We note that if the prism is thin, b is small compared to a, and the expression 
for Iz reduces to 1

3ma2, which is the result obtained in Sample Prob. 9.9 
when L 5 a.

dx

y

z'

x

x

z

x

y

z
L

x
x

y

z L
dx

x

y

a c

b

z
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517

SAMPLE PROBLEM 9.11

Determine the moment of inertia of a right circular cone with respect to 
(a) its longitudinal axis, (b) an axis through the apex of the cone and per-
pendicular to its longitudinal axis, (c) an axis through the centroid of the 
cone and perpendicular to its longitudinal axis.

z

y

x

h

a

z

y

x dx

y'

x

h

r a

z

y

x

h

y"

⎯x  =    h3
4

SOLUTION

We choose the differential element of mass shown.

r 5 a 

x
h

  dm 5 rpr2 dx 5 rp 

a2

h2 x2 dx

a. Moment of Inertia Ix. Using the expression derived in Sec. 9.13 for a 
thin disk, we compute the mass moment of inertia of the differential ele-
ment with respect to the x axis.

dIx 5 1
2 r2 dm 5 1

2 aa 

x
h
b2arp 

a2

h2 x2 dxb 5 1
2 rp 

a4

h4 x4 dx

Integrating from x 5 0 to x 5 h, we obtain

Ix 5#
 
dIx 5#

h

0

 12 rp 

a4

h4 x4 dx 5 1
2 rp 

a4

h4 
h5

5
5 1

10 rpa4h

Since the total mass of the cone is m 5 1
3rpa2h, we can write

Ix 5 1
10 rpa4h 5 3

10 a2(1
3 rpa2h) 5 3

10 ma2   Ix 5 3
10 ma2 ◀

b. Moment of Inertia Iy. The same differential element is used. Applying 
the parallel-axis theorem and using the expression derived in Sec. 9.13 for 
a thin disk, we write

dIy 5 dIy¿ 1 x2 dm 5 1
4 r2 dm 1 x2 dm 5 (1

4  r2 1 x2) dm

Substituting the expressions for r and dm into the equation, we obtain

dIy 5 a1
4

 
a2

h2 x2 1 x2b arp 

a2

h2 x2 dxb 5 rp 

a2

h2 a a2

4h2 1 1b x4 dx

Iy 5#
 
dIy 5#

h

0
 rp

a2

h2 a a2

4h2 1 1b x4 dx 5 rp
a2

h2 a a2

4h2 1 1b 
h5

5

Introducing the total mass of the cone m, we rewrite Iy as follows:

Iy 5 3
5(1

4 a2 1 h2)1
3rpa2h   Iy 5 3

5 m(1
4 a2 1 h2) ◀

c. Moment of Inertia  I y0. We apply the parallel-axis theorem and write

Iy 5 Iy– 1 mx 
2

Solving for Iy– and recalling that x 5 3
4h, we have

Iy– 5 Iy 2 mx 
2 5 3

5 m(1
4 a2 1 h2) 2 m(3

4 h)2

Iy– 5 3
20 m(a2 1 1

4 h2) ◀
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518

SAMPLE PROBLEM 9.12

A steel forging consists of a 6 3 2 3 2-in. rectangular prism and two cyl-
inders of diameter 2 in. and length 3 in. as shown. Determine the moments 
of inertia of the forging with respect to the coordinate axes, knowing that 
the specific weight of steel is 490 lb/ft3.

SOLUTION

Computation of Masses

Prism

 V 5 (2 in.)(2 in.)(6 in.) 5 24 in3

 W 5
(24 in3)(490 lb/ft3)

1728 in3/ft3 5 6.81 lb

 m 5
6.81 lb

32.2 ft/s2 5 0.211 lb ? s2/ft

Each Cylinder

 V 5 p(1 in.)2(3 in.) 5 9.42 in3

 W 5
(9.42 in3)(490 lb/ft3)

1728 in3/ft3 5 2.67 lb

 m 5
2.67 lb

32.2 ft/s2 5 0.0829 lb ? s2/ft

Moments of Inertia. The moments of inertia of each component are com-
puted from Fig. 9.28, using the parallel-axis theorem when necessary. Note 
that all lengths should be expressed in feet.

Prism

Ix 5 Iz 5 1
12 (0.211 lb ? s2/ft)[( 6

12 ft)
2 1 ( 2

12 ft)
2] 5 4.88 3 1023 lb ? ft ? s2

Iy 5 1
12 (0.211 lb ? s2/ft)[( 2

12 ft)
2 1 ( 2

12 ft)
2] 5 0.977 3 1023 lb ? ft ? s2

Each Cylinder

Ix 5 1
2 ma2 1 my 

2 5 1
2(0.0829 lb ? s2/ft)( 1

12 ft)
2

1 (0.0829 lb ? s2/ft)( 2
12 ft)

2 5 2.59 3 1023 lb ? ft ? s2

Iy 5 1
12 m(3a2 1 L2) 5 mx 

2 5 1
12(0.0829 lb ? s2/ft)[3( 1

12 ft)
2 1 ( 3

12 ft)
2]

1 (0.0829 lb ? s2/ft)(2.5
12  ft)2 5 4.17 3 1023 lb ? ft ? s2

Iz 5 1
12 m(3a2 1 L2) 1 m(x 

2 1y 
2) 5 1

12(0.0829 lb ? s2/ft)[3( 1
12 ft)

2 1 ( 3
12 ft)

2]
 1 (0.0829 lb ? s2/ft)[(2.5

12  ft)2 1 ( 2
12 ft)

2] 5 6.48 3 1023 lb ? ft ? s2

Entire Body. Adding the values obtained,

 Ix 5 4.88 3 1023 1 2(2.59 3 1023) Ix 5 10.06 3 1023 lb ? ft ? s2 ◀

Iy 5 0.977 3 1023 1 2(4.17 3 1023) Iy 5 9.32 3 1023 lb ? ft ? s2 ◀

 Iz 5 4.88 3 1023 1 2(6.48 3 1023) Iz 5 17.84 3 1023 lb ? ft ? s2 ◀

2 in.
6 in.

1 in.
A

B

y

z

x

3 in.

2.5 in.

2 in.

2 in.2 in.

2 in.

2 in.

1 in.
A

B

y

x

3 in.

2 in.

2 in.

z
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SAMPLE PROBLEM 9.13

A thin steel plate which is 4 mm thick is cut and bent to form the machine 
part shown. Knowing that the density of steel is 7850 kg/m3, determine the 
moments of inertia of the machine part with respect to the coordinate axes.

SOLUTION

We observe that the machine part consists of a semicircular plate and a 
rectangular plate from which a circular plate has been removed.

Computation of Masses. Semicircular Plate

V1 5 1
2 pr2t 5 1

2 p(0.08 m)2(0.004 m) 5 40.21 3 1026 m3

 m1 5 rV1 5 (7.85 3 103 kg/m3)(40.21 3 1026 m3) 5 0.3156 kg

Rectangular Plate

 V2 5 (0.200 m)(0.160 m)(0.004 m) 5 128 3 1026 m3

 m2 5 rV2 5 (7.85 3 103 kg/m3)(128 3 1026 m3) 5 1.005 kg

Circular Plate

 V3 5 pa2t 5 p (0.050 m)2(0.004 m) 5 31.42 3 1026 m3

 m3 5 rV3 5 (7.85 3 103 kg/m3)(31.42 3 1026 m3) 5 0.2466 kg

Moments of Inertia. Using the method presented in Sec. 9.13, we com-
pute the moments of inertia of each component.

Semicircular Plate. From Fig. 9.28, we observe that for a circular plate 
of mass m and radius r

Ix 5 1
2 mr2   Iy 5 Iz 5 1

4 mr2

Because of symmetry, we note that for a semicircular plate

Ix 5 1
2(1

2 mr2)   Iy 5 Iz 5 1
2(1

4 mr2)

Since the mass of the semicircular plate is m1 5 1
2 m, we have

 Ix 5 1
2 m1r

2 5 1
2(0.3156 kg)(0.08 m)2 5 1.010 3 1023 kg ? m2

 Iy 5 Iz5 1
4(1

2 mr2)5 1
4 m1r

2 5 1
4(0.3156 kg)(0.08 m)2 5 0.505 3 1023 kg ? m2

Rectangular Plate
 Ix 5 1

12 m2c
2 5 1

12(1.005 kg)(0.16 m)2 5 2.144 3 1023 kg ? m2

 Iz 5 1
3 m2b

2 5 1
3(1.005 kg)(0.2 m)2 5 13.400 3 1023 kg ? m2

 Iy 5 Ix 1 Iz 5 (2.144 1 13.400)(1023) 5 15.544 3 1023 kg ? m2

Circular Plate

 Ix 5 1
4 m3a

2 5 1
4(0.2466 kg)(0.05 m)2 5 0.154 3 1023 kg ? m2

 Iy 5 1
2 m3a

2 1 m3d
2

 5 1
2(0.2466 kg)(0.05 m)2 1 (0.2466 kg)(0.1 m)2 5 2.774 3 1023 kg ?m2

 Iz 5 1
4 m3a

2 1 m3d
2 5 1

4(0.2466 kg)(0.05 m)2 1 (0.2466 kg)(0.1 m)2

 5 2.620 3 1023 kg ? m2

Entire Machine Part

Ix 5 (1.010 1 2.144 2 0.154)(1023) kg ? m2 Ix 5 3.00 3 1023 kg ? m2 ◀

 Iy 5 (0.505 1 15.544 2 2.774)(1023) kg ? m2 Iy 5 13.28 3 1023 kg ? m2 ◀

 Iz 5 (0.505 1 13.400 2 2.620)(1023) kg ? m2 Iz 5 11.29 3 1023 kg ? m2 ◀

z

z
x

x

r = 0.08 m

d = 0.1 m

c = 0.16 m

a = 0.05 m

++

__

y

y

y

z
xb = 0.2 m

y

zz

80

x

Dimensions in mm

8080

80

50

100
100
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SOLVING PROBLEMS
ON YOUR OWN

In this lesson we introduced the mass moment of inertia and the radius of gyra-
tion of a three-dimensional body with respect to a given axis [Eqs. (9.28) and 

(9.29)]. We also derived a parallel-axis theorem for use with mass moments of 
inertia and discussed the computation of the mass moments of inertia of thin plates 
and three-dimensional bodies.

1. Computing mass moments of inertia. The mass moment of inertia I of a body 
with respect to a given axis can be calculated directly from the definition given in 
Eq. (9.28) for simple shapes [Sample Prob. 9.9]. In most cases, however, it is 
necessary to divide the body into thin slabs, compute the moment of inertia of 
a typical slab with respect to the given axis—using the parallel-axis theorem if 
necessary—and integrate the expression obtained.

2. Applying the parallel-axis theorem. In Sec. 9.12 we derived the parallel-axis 
theorem for mass moments of inertia

 I 5 I 1 md2 (9.33)

which states that the moment of inertia I of a body of mass m with respect to a 
given axis is equal to the sum of the moment of inertia I of that body with respect 
to a parallel centroidal axis and the product md2, where d is the distance between 
the two axes. When the moment of inertia of a three-dimensional body is calcu-
lated with respect to one of the coordinate axes, d2 can be replaced by the sum of 
the squares of distances measured along the other two coordinate axes [Eqs. (9.32) 
and (9.32¿)].

3. Avoiding unit-related errors. To avoid errors, it is essential that you be con-
sistent in your use of units. Thus, all lengths should be expressed in meters or 
feet, as appropriate, and for problems using U.S. customary units, masses should 
be given in lb ? s2/ft. In addition, we strongly recommend that you include units 
as you perform your calculations [Sample Probs. 9.12 and 9.13].

4. Calculating the mass moment of inertia of thin plates. We showed in 
Sec. 9.13 that the mass moment of inertia of a thin plate with respect to a given 
axis can be obtained by multiplying the corresponding moment of inertia of the 
area of the plate by the density r and the thickness t of the plate [Eqs. (9.35) 
through (9.37)]. Note that since the axis CC¿ in Fig. 9.24c is perpendicular to the 
plate, ICC¿, mass is associated with the polar moment of inertia JC, area.
  Instead of calculating directly the moment of inertia of a thin plate with 
respect to a specified axis, you may sometimes find it convenient to first compute 
its moment of inertia with respect to an axis parallel to the specified axis and then 
apply the parallel-axis theorem. Further, to determine the moment of inertia of a 
thin plate with respect to an axis perpendicular to the plate, you may wish to first 
determine its moments of inertia with respect to two perpendicular in-plane axes 
and then use Eq. (9.38). Finally, remember that the mass of a plate of area A, 
thickness t, and density r is m 5 rtA.
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5. Determining the moment of inertia of a body by direct single integration. We 
discussed in Sec. 9.14 and illustrated in Sample Probs. 9.10 and 9.11 how single 
integration can be used to compute the moment of inertia of a body that can be 
divided into a series of thin, parallel slabs. For such cases, you will often need to 
express the mass of the body in terms of the body’s density and dimensions. Assum-
ing that the body has been divided, as in the sample problems, into thin slabs 
perpendicular to the x axis, you will need to express the dimensions of each slab 
as functions of the variable x.
 a. In the special case of a body of revolution, the elemental slab is a thin 
disk, and the equations given in Fig. 9.27 should be used to determine the moments 
of inertia of the body [Sample Prob. 9.11].
 b. In the general case, when the body is not of revolution, the differential 
element is not a disk, but a thin slab of a different shape, and the equations of 
Fig. 9.27 cannot be used. See, for example, Sample Prob. 9.10, where the element 
was a thin, rectangular slab. For more complex configurations, you may want to 
use one or more of the following equations, which are based on Eqs. (9.32) and 
(9.32¿) of Sec. 9.12.

 dIx 5 dIx¿ 1 (y 
2
el 1 z 

2
el) dm

 dIy 5 dIy¿ 1 (z 
2
el 1 x 

2
el) dm

 dIz 5 dIz¿ 1 (x 
2
el 1 y 

2
el) dm

where the primes denote the centroidal axes of each elemental slab, and where 
xel, yel, and zel represent the coordinates of its centroid. The centroidal moments 
of inertia of the slab are determined in the manner described earlier for a thin 
plate: Referring to Fig. 9.12 on page 483, calculate the corresponding moments of 
inertia of the area of the slab and multiply the result by the density r and the 
thickness t of the slab. Also, assuming that the body has been divided into thin slabs 
perpendicular to the x axis, remember that you can obtain dIx9 by adding dIy9 and 
dIz9 instead of computing it directly. Finally, using the geometry of the body, express 
the result obtained in terms of the single variable x and integrate in x.

6. Computing the moment of inertia of a composite body. As stated in Sec. 9.15, 
the moment of inertia of a composite body with respect to a specified axis is equal 
to the sum of the moments of its components with respect to that axis. Sample 
Probs. 9.12 and 9.13 illustrate the appropriate method of solution. You must also 
remember that the moment of inertia of a component will be negative only if the 
component is removed (as in the case of a hole).

Although the composite-body problems in this lesson are relatively straightforward, 
you will have to work carefully to avoid computational errors. In addition, if some 
of the moments of inertia that you need are not given in Fig. 9.28, you will have 
to derive your own formulas, using the techniques of this lesson.
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PROBLEMS
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 9.111 A thin plate of mass m is cut in the shape of an equilateral triangle 
of side a. Determine the mass moment of inertia of the plate with 
respect to (a) the centroidal axes AA9 and BB9, (b) the centroidal 
axis CC9 that is perpendicular to the plate.

 9.112 The elliptical ring shown was cut from a thin, uniform plate. 
Denoting the mass of the ring by m, determine its mass moment 
of inertia with respect to (a) the centroidal axis BB9, (b) the cen-
troidal axis CC9 that is perpendicular to the plane of the ring.B

A'

A

B'

C'

C

Fig. P9.111

C
a

A

B

A'

B'

C'

Fig. P9.113

 9.113 A thin semicircular plate has a radius a and a mass m. Determine 
the mass moment of inertia of the plate with respect to (a) the 
centroidal axis BB9, (b) the centroidal axis CC9 that is perpendicu-
lar to the plate.

 9.114 The quarter ring shown has a mass m and was cut from a thin, 
uniform plate. Knowing that r1 5 3

4r2, determine the mass moment 
of inertia of the quarter ring with respect to (a) the axis AA9, 
(b) the centroidal axis CC9 that is perpendicular to the plane of 
the quarter ring.

A
B

A'

C'
b

B'

2b
a

2a

C

Fig. P9.112

A
B

C

O

r1

r2

A'

B'

C'

Fig. P9.114
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523Problems 9.115 A piece of thin, uniform sheet metal is cut to form the machine com-
ponent shown. Denoting the mass of the component by m, determine 
its mass moment of inertia with respect to (a) the x axis, (b) the y axis.

 9.116 A piece of thin, uniform sheet metal is cut to form the machine 
component shown. Denoting the mass of the component by m, deter-
mine its mass moment of inertia with respect to (a) the axis AA9, 
(b) the axis BB9, where the AA9 and BB9 axes are parallel to the x axis 
and lie in a plane parallel to and at a distance a above the xz plane.

 9.117 A thin plate of mass m was cut in the shape of a parallelogram as 
shown. Determine the mass moment of inertia of the plate with respect 
to (a) the x axis, (b) the axis BB9, which is perpendicular to the plate.

 9.118 A thin plate of mass m was cut in the shape of a parallelogram as 
shown. Determine the mass moment of inertia of the plate with respect 
to (a) the y axis, (b) the axis AA9, which is perpendicular to the plate.

 9.119 Determine by direct integration the mass moment of inertia with 
respect to the z axis of the right circular cylinder shown, assuming 
that it has a uniform density and a mass m.

B

B'

y

A

A'
xz

a
a

a

Fig. P9.117 and P9.118

h

2h

a
x

y

Fig. P9.120

 9.120 The area shown is revolved about the x axis to form a homogeneous 
solid of revolution of mass m. Using direct integration, express the 
mass moment of inertia of the solid with respect to the x axis in 
terms of m and h.

 9.121 The area shown is revolved about the x axis to form a homogeneous 
solid of revolution of mass m. Determine by direct integration the 
mass moment of inertia of the solid with respect to (a) the x axis, 
(b) the y axis. Express your answers in terms of m and the dimen-
sions of the solid.

y

x

a

z

L

Fig. P9.119

a

h

2a

y

x

y = kx

Fig. P9.121

A

B

A'

B'

x

y

z

a
2

a

a

a

a

Fig. P9.115 and P9.116
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524 Distributed Forces: Moments of Inertia  9.122 Determine by direct integration the mass moment of inertia with 
respect to the x axis of the pyramid shown, assuming that it has a 
uniform density and a mass m.

y

z
x

b a

h

Fig. P9.122 and P9.123

z

x

y
kxy2 z2+ = 

a

h

Fig. P9.124

 9.123 Determine by direct integration the mass moment of inertia with 
respect to the y axis of the pyramid shown, assuming that it has a 
uniform density and a mass m.

 9.124 Determine by direct integration the mass moment of inertia with 
respect to the y axis of the paraboloid shown, assuming that it has 
a uniform density and a mass m.

 9.125 A thin rectangular plate of mass m is welded to a vertical shaft AB 
as shown. Knowing that the plate forms an angle u with the y axis, 
determine by direct integration the mass moment of inertia of the 
plate with respect to (a) the y axis, (b) the z axis.

x

y

z

A

1
b

a

2 1
b2

B

q

Fig. P9.125
a

a
z

x

y

y = (a2/3 – x2/3)3/2

Fig. P9.126

 *9.126 A thin steel wire is bent into the shape shown. Denoting the mass 
per unit length of the wire by m9, determine by direct integration 
the mass moment of inertia of the wire with respect to each of the 
coordinate axes.
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525Problems 9.127 Shown is the cross section of an idler roller. Determine its mass 
moment of inertia and its radius of gyration with respect to the axis 
AA9. (The specific weight of bronze is 0.310 lb/in3; of aluminum, 
0.100 lb/in3; and of neoprene, 0.0452 lb/in3.)

 9.128 Shown is the cross section of a molded flat-belt pulley. Determine 
its mass moment of inertia and its radius of gyration with respect 
to the axis AA9. (The density of brass is 8650 kg/m3 and the density 
of the fiber-reinforced polycarbonate used is 1250 kg/m3.)

 9.129 The machine part shown is formed by machining a conical surface 
into a circular cylinder. For b 5 1

2h, determine the mass moment 
of inertia and the radius of gyration of the machine part with 
respect to the y axis.

Brass

Polycarbonate
2 mm

A'A
11 mm

22 mm

9.5 mm

17.5 mm

5 mm
17 mm

28 mm

Fig. P9.128

A A'

Neoprene

Aluminum

Bronze

in.11
16

in.13
16

in.1 1
8

in.3
8

in.1
2

in.1
4

Fig. P9.127

xy

z

a

h

Fig. P9.130

x

z

a
a

h
b

y

Fig. P9.129

 9.130 Given the dimensions and the mass m of the thin conical shell 
shown, determine the mass moment of inertia and the radius of 
gyration of the shell with respect to the x axis. (Hint: Assume that 
the shell was formed by removing a cone with a circular base of 
radius a from a cone with a circular base of radius a 1 t, where t 
is the thickness of the wall. In the resulting expressions, neglect 
terms containing t2, t3, etc. Do not forget to account for the dif-
ference in the heights of the two cones.)
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526 Distributed Forces: Moments of Inertia  9.131 A square hole is centered in and extends through the aluminum 
machine component shown. Determine (a) the value of a for which 
the mass moment of inertia of the component with respect to the 
axis AA9, which bisects the top surface of the hole, is maximum, 
(b) the corresponding values of the mass moment of inertia and 
the radius of gyration with respect to the axis AA9. (The specific 
weight of aluminum is 0.100 lb/in3.)

 9.132 The cups and the arms of an anemometer are fabricated from a 
material of density r. Knowing that the mass moment of inertia of 
a thin, hemispherical shell of mass m and thickness t with respect 
to its centroidal axis GG9 is 5ma2/12, determine (a) the mass 
moment of inertia of the anemometer with respect to the axis AA9, 
(b) the ratio of a to l for which the centroidal moment of inertia 
of the cups is equal to 1 percent of the moment of inertia of the 
cups with respect to the axis AA9.

A

A' B

B'

80 mm
G'

G

Fig. P9.133

A

A'

0.4 in.

1.2 in.
1.6 in.

2.4 in.

Fig. P9.134

 9.133 After a period of use, one of the blades of a shredder has been 
worn to the shape shown and is of mass 0.18 kg. Knowing that the 
mass moments of inertia of the blade with respect to the AA9 and 
BB9 axes are 0.320 g ? m2 and 0.680 g ? m2, respectively, determine 
(a) the location of the centroidal axis GG9, (b) the radius of gyration 
with respect to axis GG9.

l

d

a

A

A'

G

G'

a
2

Fig. P9.132

A

A'

4.2 in.

a

a

a
2

4.2 in.

15 in.

Fig. P9.131

 9.134 Determine the mass moment of inertia of the 0.9-lb machine com-
ponent shown with respect to the axis AA9.
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527Problems 9.135 and 9.136 A 2-mm-thick piece of sheet steel is cut and bent 
into the machine component shown. Knowing that the density of 
steel is 7850 kg/m3, determine the mass moment of inertia of the 
component with respect to each of the coordinate axes.

z
x

y

350 mm 150 mm

195 mm

Fig. P9.136

 9.137 A subassembly for a model airplane is fabricated from three pieces 
of 1.5-mm plywood. Neglecting the mass of the adhesive used to 
assemble the three pieces, determine the mass moment of inertia 
of the subassembly with respect to each of the coordinate axes. 
(The density of the plywood is 780 kg/m3.)

 9.138 The cover for an electronic device is formed from sheet aluminum 
that is 0.05 in. thick. Determine the mass moment of inertia of the 
cover with respect to each of the coordinate axes. (The specific 
weight of aluminum is 0.100 lb/in3.)

x

y

z

3 in.

2.4 in.

6.2 in.

Fig. P9.138

x

y

z

1 in.

1.25 in. 2 in.

2.25 in.

3.5 in.

Fig. P9.139

y

x

z 300 mm

120 mm

Fig. P9.137

x

y

z

0.48 m

0.76 m

Fig. P9.135

 9.139 A framing anchor is formed of 0.05-in.-thick galvanized steel. 
Determine the mass moment of inertia of the anchor with respect 
to each of the coordinate axes. (The specific weight of galvanized 
steel is 470 lb/ft3.)
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528 Distributed Forces: Moments of Inertia  *9.140 A farmer constructs a trough by welding a rectangular piece of 
2-mm-thick sheet steel to half of a steel drum. Knowing that the 
density of steel is 7850 kg/m3 and that the thickness of the walls 
of the drum is 1.8 mm, determine the mass moment of inertia of 
the trough with respect to each of the coordinate axes. Neglect 
the mass of the welds.

 9.142 Determine the mass moments of inertia and the radii of gyration 
of the steel machine element shown with respect to the x and y 
axes. (The density of steel is 7850 kg/m3.)

40

44

44

20

20

y

z x

120
120

70
70

Dimensions in mm

Fig. P9.142

40 mm

40 mm

40 mm

20 mm

60 mm

20 mm

80 mm

x

y

z

Fig. P9.141

y

x

z

285 mm

840 mm

210 mm

Fig. P9.140

 9.141 The machine element shown is fabricated from steel. Determine 
the mass moment of inertia of the assembly with respect to 
(a) the x axis, (b) the y axis, (c) the z axis. (The density of steel 
is 7850 kg/m3.)
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529Problems

x

y

z

3.7 in.

0.9 in.

1.35 in.

1.2 in.

1.4 in.

0.6 in.

0.6 in.

0.9 in.
0.9 in.

3.1 in.

9 in.

Fig. P9.143 and P9.144

 9.143 Determine the mass moment of inertia of the steel machine ele-
ment shown with respect to the y axis. (The specific weight of steel 
is 490 lb/ft3.)

50 mm

70 mm

40 mm

16 mm

80 mm

y

x

z

50 mm

38 mm

24 mm

Fig. P9.145

 9.144 Determine the mass moment of inertia of the steel machine ele-
ment shown with respect to the z axis. (The specific weight of steel 
is 490 lb/ft3.)

 9.145 Determine the mass moment of inertia of the steel fixture shown 
with respect to (a) the x axis, (b) the y axis, (c) the z axis. (The 
density of steel is 7850 kg/m3.)

xz

8 in.

8 in. 8 in.

y

16 in.
8 in.

Fig. P9.146

 9.146 Aluminum wire with a weight per unit length of 0.033 lb/ft is used 
to form the circle and the straight members of the figure shown. 
Determine the mass moment of inertia of the assembly with 
respect to each of the coordinate axes.

bee02286_ch09_468-555.indd Page 529  8/29/11  11:25 AM user-f494bee02286_ch09_468-555.indd Page 529  8/29/11  11:25 AM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


 9.148 A homogeneous wire with a mass per unit length of 0.056 kg/m is 
used to form the figure shown. Determine the mass moment of 
inertia of the wire with respect to each of the coordinate axes.

*9.16  MOMENT OF INERTIA OF A BODY WITH 
RESPECT TO AN ARBITRARY AXIS THROUGH O. 
MASS PRODUCTS OF INERTIA

In this section you will see how the moment of inertia of a body can 
be determined with respect to an arbitrary axis OL through the ori-
gin (Fig. 9.29) if its moments of inertia with respect to the three 
coordinate axes, as well as certain other quantities to be defined 
below, have already been determined.
 The moment of inertia IOL of the body with respect to OL is 
equal to e p2dm, where p denotes the perpendicular distance from 
the element of mass dm to the axis OL. If we denote by l the unit 
vector along OL and by r the position vector of the element dm, we 
observe that the perpendicular distance p is equal to r sin u, which 
is the magnitude of the vector product L 3 r. We therefore write

 IOL 5#
 
p2 dm 5#  ZL 3 rZ2 dm (9.43)

Expressing |L 3 r|2 in terms of the rectangular components of the 
vector product, we have

IOL 5#
 
[(lxy 2 lyx)2 1 (lyz 2 lzy)2 1 (lzx 2 lxz)2] dm

where the components lx, ly, lz of the unit vector L represent the 
direction cosines of the axis OL and the components x, y, z of r 
represent the coordinates of the element of mass dm. Expanding the 
squares and rearranging the terms, we write

IOL 5 l2
x #

 
(y2 1 z2) dm 1 l2

y #
 
(z2 1 x2) dm 1 l2

z #
 
(x2 1 y2) dm

 2 2lxly #
 
xy dm 2 2lylz #

 
yz dm 2 2lzlx #

 
zx dm (9.44)

 9.147 The figure shown is formed of 1
8-in.-diameter steel wire. Knowing 

that the specific weight of the steel is 490 lb/ft3, determine the 
mass moment of inertia of the wire with respect to each of the 
coordinate axes.

y

dm

z

x

p

L

O

q
�

r

Fig. 9.29

530 Distributed Forces: Moments of Inertia

1.2 m

1.2 m

1.2 mz x

y

Fig. P9.148

x

y

z

18 in.
18 in.

18 in.

Fig. P9.147
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531 Referring to Eqs. (9.30), we note that the first three integrals 
in (9.44) represent, respectively, the moments of inertia Ix, Iy, and 
Iz of the body with respect to the coordinate axes. The last three 
integrals in (9.44), which involve products of coordinates, are called 
the products of inertia of the body with respect to the x and y axes, 
the y and z axes, and the z and x axes, respectively. We write

Ixy 5#
 
xy dm   Iyz 5#

 
yz dm   Izx 5#

 
zx dm (9.45)

Rewriting Eq. (9.44) in terms of the integrals defined in Eqs. (9.30) 
and (9.45), we have

IOL 5 Ixlx
2 1 Iyl

2
y 1 Izlz

2 2 2Ixylxly 2 2Iyzlylz 2 2Izxlzlx (9.46)

 We note that the definition of the products of inertia of a mass 
given in Eqs. (9.45) is an extension of the definition of the product 
of inertia of an area (Sec. 9.8). Mass products of inertia reduce to 
zero under the same conditions of symmetry as do products of inertia 
of areas, and the parallel-axis theorem for mass products of inertia 
is expressed by relations similar to the formula derived for the prod-
uct of inertia of an area. Substituting the expressions for x, y, and z 
given in Eqs. (9.31) into Eqs. (9.45), we find that

 Ixy 5 Ix¿y¿ 1 mx y
  Iyz 5 Iy¿z¿ 1 my z (9.47)

 Izx 5 Iz¿x¿ 1 mz x

where x, y, z are the coordinates of the center of gravity G of 
the body and Ix¿y¿, Iy¿z¿, Iz¿x¿ denote the products of inertia of the body 
with respect to the centroidal axes x9, y9, z9 (See Fig. 9.22).

*9.17  ELLIPSOID OF INERTIA. PRINCIPAL AXES
OF INERTIA

Let us assume that the moment of inertia of the body considered in the 
preceding section has been determined with respect to a large number 
of axes OL through the fixed point O and that a point Q has been plot-
ted on each axis OL at a distance OQ 5 1/ 1IOL from O. The locus of 
the points Q thus obtained forms a surface (Fig. 9.30). The equation of 
that surface can be obtained by substituting 1/(OQ)2 for IOL in (9.46) and 
then multiplying both sides of the equation by (OQ)2. Observing that

(OQ)lx 5 x  (OQ)ly 5 y  (OQ)lz 5 z

where x, y, z denote the rectangular coordinates of Q, we write

 Ixx
2 1 Iyy2 1 Izz

2 2 2Ixyxy 2 2Iyzyz 2 2Izxzx 5 1 (9.48)

The equation obtained is the equation of a quadric surface. Since 
the moment of inertia IOL is different from zero for every axis OL, 
no point Q can be at an infinite distance from O. Thus, the quadric 
surface obtained is an ellipsoid. This ellipsoid, which defines the 

x

L

y

z

O
1/√IOL

Q(x, y, z)

Fig. 9.30

9.17 Ellipsoid of Inertia. Principal 
Axes of Inertia
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532  Distributed Forces: Moments of Inertia moment of inertia of the body with respect to any axis through O, 
is known as the ellipsoid of inertia of the body at O.
 We observe that if the axes in Fig. 9.30 are rotated, the coef-
ficients of the equation defining the ellipsoid change, since they are 
equal to the moments and products of inertia of the body with 
respect to the rotated coordinate axes. However, the ellipsoid itself 
remains unaffected, since its shape depends only upon the distribu-
tion of mass in the given body. Suppose that we choose as coordinate 
axes the principal axes x¿, y¿, z¿ of the ellipsoid of inertia (Fig. 9.31). 
The equation of the ellipsoid with respect to these coordinate axes 
is known to be of the form

 Ix9x92 1 Iy9y92 1 Iz9z92 5 1 (9.49)

which does not contain any products of the coordinates. Comparing 
Eqs. (9.48) and (9.49), we observe that the products of inertia of the 
body with respect to the x¿, y¿, z¿ axes must be zero. The x¿, y¿, z¿ 
axes are known as the principal axes of inertia of the body at O, and 
the coefficients Ix¿, Iy¿, Iz¿ are referred to as the principal moments 
of inertia of the body at O. Note that, given a body of arbitrary shape 
and a point O, it is always possible to find axes which are the prin-
cipal axes of inertia of the body at O, that is, axes with respect to 
which the products of inertia of the body are zero. Indeed, whatever 
the shape of the body, the moments and products of inertia of the 
body with respect to x, y, and z axes through O will define an ellip-
soid, and this ellipsoid will have principal axes which, by definition, 
are the principal axes of inertia of the body at O.
 If the principal axes of inertia x¿, y¿, z¿ are used as coordinate 
axes, the expression obtained in Eq. (9.46) for the moment of inertia 
of a body with respect to an arbitrary axis through O reduces to

 IOL 5 Ix¿l
2
x¿ 1 Iy¿l

2
y¿ 1 Iz¿l

2
z¿ (9.50)

 The determination of the principal axes of inertia of a body of 
arbitrary shape is somewhat involved and will be discussed in the 
next section. There are many cases, however, where these axes can 
be spotted immediately. Consider, for instance, the homogeneous 
cone of elliptical base shown in Fig. 9.32; this cone possesses two 
mutually perpendicular planes of symmetry OAA¿ and OBB¿. From 
the definition (9.45), we observe that if the x¿y¿ and y¿z¿ planes are 
chosen to coincide with the two planes of symmetry, all of the prod-
ucts of inertia are zero. The x¿, y¿, and z¿ axes thus selected are 
therefore the principal axes of inertia of the cone at O. In the case 
of the homogeneous regular tetrahedron OABC shown in Fig. 9.33, 
the line joining the corner O to the center D of the opposite face is 
a principal axis of inertia at O, and any line through O perpendicular 
to OD is also a principal axis of inertia at O. This property is appar-
ent if we observe that rotating the tetrahedron through 120° about 
OD leaves its shape and mass distribution unchanged. It follows that 
the ellipsoid of inertia at O also remains unchanged under this rota-
tion. The ellipsoid, therefore, is a body of revolution whose axis of 
revolution is OD, and the line OD, as well as any perpendicular line 
through O, must be a principal axis of the ellipsoid.

x

z'

y'
x'y

z

O

Fig. 9.31

z'

A'

B'

A

B

O

x'

y'

Fig. 9.32

B

D

A

C

O

Fig. 9.33
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533*9.18  DETERMINATION OF THE PRINCIPAL AXES 
AND PRINCIPAL MOMENTS OF INERTIA 
OF A BODY OF ARBITRARY SHAPE

The method of analysis described in this section should be used 
when the body under consideration has no obvious property of 
symmetry.
 Consider the ellipsoid of inertia of the body at a given point O 
(Fig. 9.34); let r be the radius vector of a point P on the surface of 
the ellipsoid and let n be the unit vector along the normal to that 
surface at P. We observe that the only points where r and n are col-
linear are the points P1, P2, and P3, where the principal axes intersect 
the visible portion of the surface of the ellipsoid, and the correspond-
ing points on the other side of the ellipsoid.

x

P1

P

P3

P2
r

n

z'

y'
x'y

z

O

Fig. 9.34

 We now recall from calculus that the direction of the normal 
to a surface of equation f (x, y, z) 5 0 at a point P(x, y, z) is defined 
by the gradient §f of the function f at that point. To obtain the points 
where the principal axes intersect the surface of the ellipsoid of iner-
tia, we must therefore write that r and §f are collinear,

 §f 5 (2K)r (9.51)

where K is a constant, r 5 xi 1 yj 1 zk, and

§ f 5
0f

0x
 i 1

0f

0y
 j 1

0f

0x
 k

Recalling Eq. (9.48), we note that the function f(x, y, z) correspond-
ing to the ellipsoid of inertia is

f (x, y, z) 5 Ixx
2 1 Iyy2 1 Izz

2 2 2Ixyxy 2 2Iyzyz 2 2Izxzx 2 1

Substituting for r and §f into Eq. (9.51) and equating the coefficients 
of the unit vectors, we write

 Ixx  2 Ixyy 2 Izxz 5 Kx
 2Ixyx  1 Iyy  2 Iyzz 5 Ky (9.52)
 2Izxx  2 Iyzy 1 Izz  5 Kz

9.18 Determination of the Principal Axes and 
Principal Moments of Inertia of a 

Body of Arbitrary Shape
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534  Distributed Forces: Moments of Inertia Dividing each term by the distance r from O to P, we obtain similar 
equations involving the direction cosines lx, ly, and lz:

 Ixlx    2 Ixyly 2 Izxlz 5 Klx
 2Ixylx 1 Iyly  2 Iyzlz 5 Kly (9.53)
 2Izxlx  2 Iyzly 1 Izlz  5 Klz

Transposing the right-hand members leads to the following homoge-
neous linear equations:

 (Ix 2 K)lx 2 Ixyly 2 Izxlz 5 0
 2Ixylx 1 (Iy 2 K)ly 2 Iyzlz 5 0 (9.54)
 2Izxlx 2 Iyzly 1 (Iz 2 K)lz 5 0

For this system of equations to have a solution different from lx 5 
ly 5 lz 5 0, its discriminant must be zero:

 †
Ix 2 K 2Ixy 2Izx

2Ixy 
Iy 2 K 2Iyz

2Izx 2Iyz Iz 2 K
† 5 0  (9.55)

Expanding this determinant and changing signs, we write

K3 2 (Ix 1 Iy 1 Iz)K
2 1 (IxIy 1 IyIz 1 IzIx 2 I2

xy 2 I2
yz 2 I2

zx)K
 2 (IxIyIz 2 IxI

2
yz 2 IyI

2
zx 2 IzI

2
xy 2 2IxyIyzIzx) 5 0 (9.56)

This is a cubic equation in K, which yields three real, positive roots 
K1, K2, and K3.
 To obtain the direction cosines of the principal axis correspond-
ing to the root K1 we substitute K1 for K in Eqs. (9.54). Since these 
equations are now linearly dependent, only two of them may be used 
to determine lx, ly, and lz. An additional equation may be obtained, 
however, by recalling from Sec. 2.12 that the direction cosines must 
satisfy the relation
 lx

2 1 l2
y 1 lz

2 5 1 (9.57)

Repeating this procedure with K2 and K3, we obtain the direction 
cosines of the other two principal axes.
 We will now show that the roots K1, K2, and K3 of Eq. (9.56) 
are the principal moments of inertia of the given body. Let us sub-
stitute for K in Eqs. (9.53) the root K1, and for lx, ly, and lz the 
corresponding values (lx)1, (ly)1, and (lz)1 of the direction cosines; 
the three equations will be satisfied. We now multiply by (lx)1, (ly)1, 
and (lz)1, respectively, each term in the first, second, and third equa-
tion and add the equations obtained in this way. We write

Ix
2(lx)

2
1 1 I2

y(ly)
2
1 1 Iz

2(lz)
2
1 2 2Ixy(lx)1(ly)1

2 2Iyz(ly)1(lz)1 2 2Izx(lz)1(lx)1 5 K1[(lx)
2
1 1 (ly)

2
1 1 (lz)

2
1]

Recalling Eq. (9.46), we observe that the left-hand member of this 
equation represents the moment of inertia of the body with respect 
to the principal axis corresponding to K1; it is thus the principal 
moment of inertia corresponding to that root. On the other hand, 
recalling Eq. (9.57), we note that the right-hand member reduces to 
K1. Thus K1 itself is the principal moment of inertia. We can show 
in the same fashion that K2 and K3 are the other two principal 
moments of inertia of the body.
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535

SAMPLE PROBLEM 9.14

Consider a rectangular prism of mass m and sides a, b, c. Determine (a) the 
moments and products of inertia of the prism with respect to the coordinate 
axes shown, (b) its moment of inertia with respect to the diagonal OB.

SOLUTION

a. Moments and Products of Inertia with Respect to the Coordinate 
Axes. Moments of Inertia. Introducing the centroidal axes x¿, y¿, z¿, 
with respect to which the moments of inertia are given in Fig. 9.28, we 
apply the parallel-axis theorem:

Ix 5 Ix¿ 1 m(y2 1 z2) 5 1
12m(b2 1 c2) 1 m(1

4b
2 1 1

4c
2)

Ix 5 1
3  m(b2 1 c2) ◀

Similarly, Iy 5 1
3m(c2 1 a2)  Iz 5 1

3m(a2 1 b2) ◀

Products of Inertia. Because of symmetry, the products of inertia with 
respect to the centroidal axes x¿, y¿, z¿ are zero, and these axes are principal 
axes of inertia. Using the parallel-axis theorem, we have

 Ixy 5 Ix9y9 1 mxy 5 0 1 m(1
2a)(1

2b)  Ixy 5 1
4mab ◀

Similarly, Iyz 5 1
4mbc  Izx 5 1

4mca ◀

b. Moment of Inertia with Respect to OB. We recall Eq. (9.46):

IOB 5 Ixlx
2 1 Iyl

2
y 1 Izlz

2 2 2Ixylxly 2 2Iyzlylz 2 2Izxlzlx

where the direction cosines of OB are

lx 5 cos ux 5
OH
OB

5
a

(a2 1 b2 1 c2)1/2

ly 5
b

(a2 1 b2 1 c2)1/2   lz 5
c

(a2 1 b2 1 c2)1/2

Substituting the values obtained for the moments and products of inertia 
and for the direction cosines into the equation for IOB, we have

IOB 5
1

a2 1 b2 1 c2 [1
3m(b2 1 c2)a2 1 1

3m(c2 1 a2)b2 1 1
3m(a2 1 b2)c2

21
2ma2b2 2 1

2mb2c2 2 1
2mc2a2]

IOB 5
m
6

 
a2b2 1 b2c2 1 c2a2

a2 1 b2 1 c2  ◀

Alternative Solution. The moment of inertia IOB can be obtained directly 
from the principal moments of inertia Ix¿, Iy¿, Iz¿, since the line OB passes 
through the centroid O¿. Since the x¿, y¿, z¿ axes are principal axes of inertia, 
we use Eq. (9.50) to write

 IOB 5 Ix¿l
2
x 1 Iy¿l

2
y 1 Iz¿l

2
z

 5
1

a2 1 b2 1 c2 c m
12

(b2 1 c2)a2 1
m
12

 (c2 1 a2)b2 1
m
12

 (a2 1 b2)c2 d
IOB 5

m
6

 
a2b2 1 b2c2 1 c2a2

a2 1 b2 1 c2  ◀
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536

SAMPLE PROBLEM 9.15

If a 5 3c and b 5 2c for the rectangular prism of Sample Prob. 9.14, 
determine (a) the principal moments of inertia at the origin O, (b) the 
principal axes of inertia at O.

SOLUTION

a. Principal Moments of Inertia at the Origin O. Substituting a 5 3c 
and b 5 2c into the solution to Sample Prob. 9.14, we have

Ix 5 5
3mc2  Iy 5 10

3 mc2  Iz 5 13
3 mc2

 Ixy 5 3
2mc2  Iyz 5 1

2mc2  Izx 5 3
4mc2

Substituting the values of the moments and products of inertia into Eq. 
(9.56) and collecting terms yields

K3 2 (28
3  mc2)K2 1 (3479

144  m2c4)K 2 589
54  m3c6 5 0

We then solve for the roots of this equation; from the discussion in Sec. 9.18, 
it follows that these roots are the principal moments of inertia of the body 
at the origin.

K1 5 0.568867mc2  K2 5 4.20885mc2  K3 5 4.55562mc2

 K1 5 0.569mc2    K2 5 4.21mc2    K3 5 4.56mc2   ◀

b. Principal Axes of Inertia at O. To determine the direction of a prin-
cipal axis of inertia, we first substitute the corresponding value of K into 
two of the equations (9.54); the resulting equations together with Eq. (9.57) 
constitute a system of three equations from which the direction cosines of 
the corresponding principal axis can be determined. Thus, we have for the 
first principal moment of inertia K1:

(5
3 2 0.568867)mc2(lx)1 2 3

2mc2(ly)1 2 3
4mc2(lz)1 5 0

23
2mc2(lx)1 1 (10

3  2 0.568867) mc2(ly)1 2 12mc2(lz)1 5 0
(lx)

2
1 1 (ly)

2
1 1 (lz)

2
1 5 1

Solving yields

(lx)1 5 0.836600  (ly)1 5 0.496001  (lz)1 5 0.232557

The angles that the first principal axis of inertia forms with the coordinate 
axes are then

 (ux)1 5 33.2°  (uy)1 5 60.3°  (uz)1 5 76.6° ◀

Using the same set of equations successively with K2 and K3, we find that 
the angles associated with the second and third principal moments of inertia 
at the origin are, respectively,

 (ux)2 5 57.8°  (uy)2 5 146.6°  (uz)2 5 98.0° ◀

and

 (ux)3 5 82.8°  (uy)3 5 76.1°  (uz)3 5 164.3° ◀
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SOLVING PROBLEMS
ON YOUR OWN

In this lesson we defined the mass products of inertia Ixy, Iyz, and Izx of a body 
and showed you how to determine the moments of inertia of that body with 

respect to an arbitrary axis passing through the origin O. You also learned how to 
determine at the origin O the principal axes of inertia of a body and the corre-
sponding principal moments of inertia.

1. Determining the mass products of inertia of a composite body. The mass 
products of inertia of a composite body with respect to the coordinate axes can be 
expressed as the sums of the products of inertia of its component parts with respect 
to those axes. For each component part, we can use the parallel-axis theorem and 
write Eqs. (9.47)

Ixy 5 Ix¿y¿ 1 mx y   Iyz 5 Iy¿z¿ 1 my z   Izx 5 Iz¿x¿ 1 mz x

where the primes denote the centroidal axes of each component part and where 
x, y, and z represent the coordinates of its center of gravity. Keep in mind that 
the mass products of inertia can be positive, negative, or zero, and be sure to take 
into account the signs of x, y, and z.

a. From the properties of symmetry of a component part, you can deduce 
that two or all three of its centroidal mass products of inertia are zero. For instance, 
you can verify that for a thin plate parallel to the xy plane; a wire lying in a plane 
parallel to the xy plane; a body with a plane of symmetry parallel to the xy plane; 
and a body with an axis of symmetry parallel to the z axis, the products of inertia 
Iy¿z¿ and Iz¿x¿ are zero.
 For rectangular, circular, or semicircular plates with axes of symmetry parallel 
to the coordinate axes; straight wires parallel to a coordinate axis; circular and 
semicircular wires with axes of symmetry parallel to the coordinate axes; and rect-
angular prisms with axes of symmetry parallel to the coordinate axes, the products 
of inertia Ix¿y¿, Iy¿z¿, and Iz¿x¿ are all zero.
 b. Mass products of inertia which are different from zero can be computed 
from Eqs. (9.45). Although, in general, a triple integration is required to determine 
a mass product of inertia, a single integration can be used if the given body can 
be divided into a series of thin, parallel slabs. The computations are then similar 
to those discussed in the previous lesson for moments of inertia.

(continued)
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2. Computing the moment of inertia of a body with respect to an arbitrary 
axis OL. An expression for the moment of inertia IOL was derived in Sec. 9.16 
and is given in Eq. (9.46). Before computing IOL, you must first determine the 
mass moments and products of inertia of the body with respect to the given coor-
dinate axes as well as the direction cosines of the unit vector L along OL.

3. Calculating the principal moments of inertia of a body and determining 
its principal axes of inertia. You saw in Sec. 9.17 that it is always possible to 
find an orientation of the coordinate axes for which the mass products of inertia 
are zero. These axes are referred to as the principal axes of inertia and the cor-
responding moments of inertia are known as the principal moments of inertia of 
the body. In many cases, the principal axes of inertia of a body can be determined 
from its properties of symmetry. The procedure required to determine the prin-
cipal moments and principal axes of inertia of a body with no obvious property of 
symmetry was discussed in Sec. 9.18 and was illustrated in Sample Prob. 9.15. It 
consists of the following steps.
 a. Expand the determinant in Eq. (9.55) and solve the resulting cubic 
equation. The solution can be obtained by trial and error or, preferably, with an 
advanced scientific calculator or with the appropriate computer software. The 
roots K1, K2, and K3 of this equation are the principal moments of inertia of the 
body.
 b. To determine the direction of the principal axis corresponding to K1, 
substitute this value for K in two of the equations (9.54) and solve these equations 
together with Eq. (9.57) for the direction cosines of the principal axis correspond-
ing to K1.
 c. Repeat this procedure with K2 and K3 to determine the directions of the 
other two principal axes. As a check of your computations, you may wish to verify 
that the scalar product of any two of the unit vectors along the three axes you have 
obtained is zero and, thus, that these axes are perpendicular to each other.
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PROBLEMS

539

 9.149 Determine the mass products of inertia Ixy, Iyz, and Izx of the steel 
fixture shown. (The density of steel is 7850 kg/m3.) 

50 mm

70 mm

40 mm

16 mm

80 mm

y

x

z

50 mm

38 mm

24 mm

Fig. P9.149

Dimensions in mm

y

x

35
35

60

60

20
10

10

22

22

z

Fig. P9.150

r = 0.55 in. 0.6 in.

5.4 in.

2.4 in.

3.6 in.

0.8 in.

r = 0.8 in. y

xz

Fig. P9.152

x

y

z

1.4 in.

1.1 in.

1.1 in.

1.2 in.
0.3 in.

1.8 in.

0.7 in.

4.5 in.

Fig. P9.151

 9.150 Determine the mass products of inertia Ixy, Iyz, and Izx of the steel 
machine element shown. (The density of steel is 7850 kg/m3.)

 9.151 and 9.152 Determine the mass products of inertia Ixy, Iyz, and 
Izx of the cast aluminum machine component shown. (The specific 
weight of aluminum is 0.100 lb/in3.)
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540 Distributed Forces: Moments of Inertia  9.153 through 9.156 A section of sheet steel 2 mm thick is cut and 
bent into the machine component shown. Knowing that the density 
of steel is 7850 kg/m3, determine the mass products of inertia Ixy, 
Iyz, and Izx of the component.

 9.157 The figure shown is formed of 1.5-mm-diameter aluminum wire. 
Knowing that the density of aluminum is 2800 kg/m3, determine 
the mass products of inertia Ixy, Iyz, and Izx of the wire figure.

200 mm
100 mm

120 mm

y

z x

Fig. P9.154

225 mm
z

x

y

225 mm

400 mm

180 mm

Fig. P9.153

z
x

y

350 mm 150 mm

195 mm

Fig. P9.155

y

z x

225 mmr = 135 mm

Fig. P9.156

180 mm

250 mm

300 mm
z

x

y

Fig. P9.157
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541Problems 9.158 Thin aluminum wire of uniform diameter is used to form the fig-
ure shown. Denoting by m9 the mass per unit length of the wire, 
determine the mass products of inertia Ixy, Iyz, and Izx of the wire 
figure.

 9.159 and 9.160 Brass wire with a weight per unit length w is used 
to form the figure shown. Determine the mass products of inertia 
Ixy, Iyz, and Izx of the wire figure.

z

x

R1

R2

y

Fig. P9.158

a

b

c
x

y

z

Fig. P9.162

h

a

O

y

xz

A

Fig. P9.164

 9.161 Complete the derivation of Eqs. (9.47), which express the parallel-
axis theorem for mass products of inertia.

 9.162 For the homogeneous tetrahedron of mass m shown, (a) determine 
by direct integration the mass product of inertia Izx, (b) deduce Iyz 
and Ixy from the result obtained in part a.

 9.163 The homogeneous circular cone shown has a mass m. Determine 
the mass moment of inertia of the cone with respect to the line 
joining the origin O and point A.

 9.164 The homogeneous circular cylinder shown has a mass m. Deter-
mine the mass moment of inertia of the cylinder with respect to 
the line joining the origin O and point A that is located on the 
perimeter of the top surface of the cylinder.

x

y

z

2a

2a

a

a

a3
2

Fig. P9.159

x

y

z

2a

a
a

a3
2

Fig. P9.160

3a

3aa

O

A

x

y

z
a3

2

Fig. P9.163
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542 Distributed Forces: Moments of Inertia  9.165 Shown is the machine element of Prob. 9.141. Determine its mass 
moment of inertia with respect to the line joining the origin O and 
point A.

40 mm

40 mm

40 mm

20 mm

60 mm

20 mm

80 mm

x

y

z

A

O

Fig. P9.165

x

y

z

O

A
a

a

a

Fig. P9.167

y

z

x

2a

a
A

O

Fig. P9.168

 9.166 Determine the mass moment of inertia of the steel fixture of 
Probs. 9.145 and 9.149 with respect to the axis through the origin 
that forms equal angles with the x, y, and z axes.

 9.167 The thin bent plate shown is of uniform density and weight W. 
Determine its mass moment of inertia with respect to the line 
joining the origin O and point A.

 9.168 A piece of sheet steel of thickness t and specific weight g is cut 
and bent into the machine component shown. Determine the mass 
moment of inertia of the component with respect to the line join-
ing the origin O and point A.

 9.169 Determine the mass moment of inertia of the machine component 
of Probs. 9.136 and 9.155 with respect to the axis through the 
origin characterized by the unit vector l 5 (24i 1 8j 1 k)/9.

 9.170 through 9.172 For the wire figure of the problem indicated, 
determine the mass moment of inertia of the figure with respect 
to the axis through the origin characterized by the unit vector 
l 5 (23i 2 6j 1 2k)/7.

 9.170 Prob. 9.148
 9.171 Prob. 9.147
 9.172 Prob. 9.146
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543Problems 9.173 For the homogeneous circular cylinder shown, of radius a and 
length L, determine the value of the ratio a/L for which the ellip-
soid of inertia of the cylinder is a sphere when computed (a) at the 
centroid of the cylinder, (b) at point A.

 9.174 For the rectangular prism shown, determine the values of the 
ratios b/a and c/a so that the ellipsoid of inertia of the prism is a 
sphere when computed (a) at point A, (b) at point B.

x

y

z

b
2

b
2

A
B

c
2c

2
a
2

a
2

Fig. P9.174

x

y

z
A

a

L
2

L
4 L

4

Fig. P9.173

 9.175 For the right circular cone of Sample Prob. 9.11, determine the 
value of the ratio a/h for which the ellipsoid of inertia of the cone 
is a sphere when computed (a) at the apex of the cone, (b) at the 
center of the base of the cone.

 9.176 Given an arbitrary body and three rectangular axes x, y, and z, 
prove that the mass moment of inertia of the body with respect to 
any one of the three axes cannot be larger than the sum of the 
mass moments of inertia of the body with respect to the other two 
axes. That is, prove that the inequality Ix # Iy 1 Iz and the two 
similar inequalities are satisfied. Further, prove that Iy $ 1

2 Ix if the 
body is a homogeneous solid of revolution, where x is the axis of 
revolution and y is a transverse axis.

 9.177 Consider a cube of mass m and side a. (a) Show that the ellipsoid 
of inertia at the center of the cube is a sphere, and use this 
property to determine the moment of inertia of the cube with 
respect to one of its diagonals. (b) Show that the ellipsoid of 
inertia at one of the corners of the cube is an ellipsoid of revolu-
tion, and determine the principal moments of inertia of the cube 
at that point.

 9.178 Given a homogeneous body of mass m and of arbitrary shape and 
three rectangular axes x, y, and z with origin at O, prove that the 
sum Ix 1 Iy 1 Iz of the mass moments of inertia of the body can-
not be smaller than the similar sum computed for a sphere of the 
same mass and the same material centered at O. Further, using 
the result of Prob. 9.176, prove that if the body is a solid of revolu-
tion, where x is the axis of revolution, its mass moment of inertia 
Iy about a transverse axis y cannot be smaller than 3ma2/10, where 
a is the radius of the sphere of the same mass and the same 
material.
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544 Distributed Forces: Moments of Inertia

a

O

x

z

y

a

B

Fig. P9.179

 *9.179 The homogeneous circular cylinder shown has a mass m, and the 
diameter OB of its top surface forms 458 angles with the x and 
z axes. (a) Determine the principal mass moments of inertia of the 
cylinder at the origin O. (b) Compute the angles that the principal 
axes of inertia at O form with the coordinate axes. (c) Sketch the 
cylinder, and show the orientation of the principal axes of inertia 
relative to the x, y, and z axes.

 9.180 through 9.184 For the component described in the problem 
indicated, determine (a) the principal mass moments of inertia at 
the origin, (b) the principal axes of inertia at the origin. Sketch the 
body and show the orientation of the principal axes of inertia rela-
tive to the x, y, and z axes.

*9.180 Prob. 9.165
*9.181 Probs. 9.145 and 9.149
*9.182 Prob. 9.167
*9.183 Prob. 9.168
*9.184 Probs. 9.148 and 9.170
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545

REVIEW AND SUMMARY

In the first half of this chapter, we discussed the determination of 
the resultant R of forces DF distributed over a plane area A when 
the magnitudes of these forces are proportional to both the areas DA
of the elements on which they act and the distances y from these 
elements to a given x axis; we thus had DF 5 ky DA. We found 
that the magnitude of the resultant R is proportional to the first 
moment Qx 5 ey dA of the area A, while the moment of R about 
the x axis is proportional to the second moment, or moment of inertia, 
Ix 5 ey2 dA of A with respect to the same axis [Sec. 9.2].

The rectangular moments of inertia Ix and Iy of an area [Sec. 9.3] 
were obtained by evaluating the integrals

 Ix 5#
 
y2 dA   Iy 5#

 
x2 dA (9.1)

These computations can be reduced to single integrations by choos-
ing dA to be a thin strip parallel to one of the coordinate axes. We 
also recall that it is possible to compute Ix and Iy from the same 
elemental strip (Fig. 9.35) using the formula for the moment of iner-
tia of a rectangular area [Sample Prob. 9.3].

Rectangular moments of inertia

The polar moment of inertia of an area A with respect to the pole 
O [Sec. 9.4] was defined as

JO 5#
 
r2 dA (9.3)

where r is the distance from O to the element of area dA (Fig. 9.36). 
Observing that r2 5 x2 1 y2, we established the relation

JO 5 Ix 1 Iy (9.4)

y
x

y

xdx

dIx =    y3 dx
3
1

dIy = x2 y dx

Fig. 9.35

y

y

x

dA

A

x
r

O

Fig. 9.36

Polar moment of inertia

bee02286_ch09_468-555.indd Page 545  8/29/11  11:21 AM user-f494bee02286_ch09_468-555.indd Page 545  8/29/11  11:21 AM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


546  Distributed Forces: Moments of Inertia The radius of gyration of an area A with respect to the x axis 
[Sec. 9.5] was defined as the distance kx, where Ix 5 K2

x A. With 
similar definitions for the radii of gyration of A with respect to the 
y axis and with respect to O, we had

 kx 5
B

Ix

A
  ky 5

B

Iy

A
  kO 5

B

JO

A
 (9.5–9.7)

The parallel-axis theorem was presented in Sec. 9.6. It states that the 
moment of inertia I of an area with respect to any given axis AA9 
(Fig. 9.37) is equal to the moment of inertia I of the area with 
respect to the centroidal axis BB9 that is parallel to AA9 plus the 
product of the area A and the square of the distance d between the 
two axes:

 I 5 I 1 Ad2 (9.9)

This formula can also be used to determine the moment of inertia I 
of an area with respect to a centroidal axis BB9 when its moment of 
inertia I with respect to a parallel axis AA9 is known. In this case, 
however, the product Ad2 should be subtracted from the known 
moment of inertia I.
 A similar relation holds between the polar moment of inertia 
JO of an area about a point O and the polar moment of inertia JC of 
the same area about its centroid C. Letting d be the distance between 
O and C, we have

 JO 5 JC 1 Ad2 (9.11)

The parallel-axis theorem can be used very effectively to compute 
the moment of inertia of a composite area with respect to a given 
axis [Sec. 9.7]. Considering each component area separately, we first 
compute the moment of inertia of each area with respect to its cen-
troidal axis, using the data provided in Figs. 9.12 and 9.13 whenever 
possible. The parallel-axis theorem is then applied to determine the 
moment of inertia of each component area with respect to the 
desired axis, and the various values obtained are added [Sample 
Probs. 9.4 and 9.5].

Sections 9.8 through 9.10 were devoted to the transformation of the 
moments of inertia of an area under a rotation of the coordinate axes. 
First, we defined the product of inertia of an area A as

 Ixy 5#
 
xy dA (9.12)

and showed that Ixy 5 0 if the area A is symmetrical with respect to 
either or both of the coordinate axes. We also derived the parallel-
axis theorem for products of inertia. We had

 Ixy 5 Ix¿y¿ 1 x y A (9.13)

where Ix¿y¿ is the product of inertia of the area with respect to the cen-
troidal axes x9 and y9 which are parallel to the x and y axis and x and 
y are the coordinates of the centroid of the area [Sec. 9.8].

Radius of gyration

Parallel-axis theorem

Composite areas

Product of inertia

Fig. 9.37

A'

B'B

A

C

d
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547

In Sec. 9.9 we determined the moments and product of inertia Ix9, 
Iy9, and Ix9y9 of an area with respect to x9 and y9 axes obtained by 
rotating the original x and y coordinate axes through an angle u 
counterclockwise (Fig. 9.38). We expressed Ix9, Iy9, and Ix9y9 in terms of 
the moments and product of inertia Ix, Iy, and Ixy computed with 
respect to the original x and y axes. We had

  Ix¿ 5
Ix 1 Iy

2
1

Ix 2 Iy

2
 cos 2u 2 Ixy sin 2u (9.18)

  Iy¿ 5
Ix 1 Iy

2
2

Ix 2 Iy

2
 cos 2u 1 Ixy sin 2u (9.19)

  Ix¿y¿ 5
Ix 2 Iy

2
 sin 2u 1 Ixy cos 2u  (9.20)

The principal axes of the area about O were defined as the two axes 
perpendicular to each other, with respect to which the moments of 
inertia of the area are maximum and minimum. The corresponding 
values of u, denoted by um, were obtained from the formula

 tan 2um 5 2
2Ixy

Ix 2 Iy
 (9.25)

The corresponding maximum and minimum values of I are called 
the principal moments of inertia of the area about O; we had

 Imax,min 5
Ix 1 Iy

2
 ; 

B
aIx 2 Iy

2
b2

1 I2
xy (9.27)

We also noted that the corresponding value of the product of inertia 
is zero.

The transformation of the moments and product of inertia of an area 
under a rotation of axes can be represented graphically by drawing 
Mohr’s circle [Sec. 9.10]. Given the moments and product of inertia Ix, 
Iy, and Ixy of the area with respect to the x and y coordinate axes, we 

Principal axes

Principal moments of inertia

Mohr’s circle

y
y'

x'

xO

q

Fig. 9.38

Review and Summary

Rotation of axes
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548  Distributed Forces: Moments of Inertia

plot points X (Ix, Ixy) and Y (Iy, 2Ixy) and draw the line joining 
these two points (Fig. 9.39). This line is a diameter of Mohr’s circle 
and thus defines this circle. As the coordinate axes are rotated 
through u, the diameter rotates through twice that angle, and the 
coordinates of X9 and Y9 yield the new values Ix9, Iy9, and Ix9y9 of the 
moments and product of inertia of the area. Also, the angle um and 
the coordinates of points A and B define the principal axes a and b 
and the principal moments of inertia of the area [Sample Prob. 9.8].

The second half of the chapter was devoted to the determination of 
moments of inertia of masses, which are encountered in dynamics 
in problems involving the rotation of a rigid body about an axis. 
The mass moment of inertia of a body with respect to an axis AA9 
(Fig. 9.40) was defined as

 I 5#  r2 dm (9.28)

where r is the distance from AA9 to the element of mass [Sec. 9.11]. 
The radius of gyration of the body was defined as

 k 5
B

I
m

 (9.29)

The moments of inertia of a body with respect to the coordinates 
axes were expressed as

Ix 5#
 

(y2 1 z2) dm

 Iy 5#
 

(z2 1 x2) dm (9.30)

Iz 5#
 

(x2 1 y2) dm

Moments of inertia of masses

x'

x

y'

q

qm

2q

O
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O
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Ixy

Ix'

Ix'y'

–Ix'y'

–Ixy

Ixy

Ix, Iy

Iy

X
X'

Ix

Iy'

Y'

Fig. 9.39
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Fig. 9.40

bee02286_ch09_468-555.indd Page 548  8/29/11  11:21 AM user-f494bee02286_ch09_468-555.indd Page 548  8/29/11  11:21 AM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


549 We saw that the parallel-axis theorem also applies to mass 
moments of inertia [Sec. 9.12]. Thus, the moment of inertia I of a body 
with respect to an arbitrary axis AA9 (Fig. 9.41) can be expressed as

 I 5 I 1 md2 (9.33)

where I is the moment of inertia of the body with respect to the 
centroidal axis BB9 which is parallel to the axis AA9, m is the mass 
of the body, and d is the distance between the two axes.

Parallel-axis theorem

Fig. 9.43

C'

C

B'

A

B

A'

t r

A'

B'

A

B

G

d

Fig. 9.41

t

C'

B'

A

Bb

a

A'

C

Fig. 9.42

The moments of inertia of thin plates can be readily obtained from 
the moments of inertia of their areas [Sec. 9.13]. We found that for 
a rectangular plate the moments of inertia with respect to the axes 
shown (Fig. 9.42) are

 IAA9 5 1
12ma2  IBB9 5 1

12mb2 (9.39)

 ICC9 5 IAA9 1 IBB9 5 1
12m(a2 1 b2) (9.40)

while for a circular plate (Fig. 9.43) they are

 IAA9 5 IBB9 5 1
4mr 2 (9.41)

 ICC9 5 IAA9 1 IBB9 5 1
2mr 2 (9.42)

When a body possesses two planes of symmetry, it is usually possible 
to use a single integration to determine its moment of inertia with 
respect to a given axis by selecting the element of mass dm to be a 
thin plate [Sample Probs. 9.10 and 9.11]. On the other hand, when 
a body consists of several common geometric shapes, its moment of 
inertia with respect to a given axis can be obtained by using the 
formulas given in Fig. 9.28 together with the parallel-axis theorem 
[Sample Probs. 9.12 and 9.13].

In the last portion of the chapter, we learned to determine the 
moment of inertia of a body with respect to an arbitrary axis OL 
which is drawn through the origin O [Sec. 9.16]. Denoting by lx, ly, 

Moments of inertia of thin plates

Composite bodies

Moment of inertia with respect 
to an arbitrary axis

Review and Summary
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550  Distributed Forces: Moments of Inertia lz the components of the unit vector L along OL (Fig. 9.44) and 
introducing the products of inertia

 Ixy 5#
 
xy dm   Iyz 5#

 
yz dm   Izx 5#

 
zx dm (9.45)

we found that the moment of inertia of the body with respect to OL 
could be expressed as

IOL 5 Ixlx
2 1 Iyl

2
y 1 Izlz

2 2 2Ixylxly 2 2Iyzlylz 2 2Izxlzlx (9.46)

Fig. 9.44

y

dm

z

x

p

L

O

q
�

r

Fig. 9.45

x

z'

y' x'y

z

O

By plotting a point Q along each axis OL at a distance OQ 5 11IOL 
from O [Sec. 9.17], we obtained the surface of an ellipsoid, known 
as the ellipsoid of inertia of the body at point O. The principal axes 
x9, y9, z9 of this ellipsoid (Fig. 9.45) are the principal axes of inertia 
of the body; that is, the products of inertia Ix9y9, Iy9z9, Iz9x9 of the body 
with respect to these axes are all zero. There are many situations 
when the principal axes of inertia of a body can be deduced from 
properties of symmetry of the body. Choosing these axes to be the 
coordinate axes, we can then express IOL as

 IOL 5 Ix9lx
2

9 1 Iy9l
2
y9 1 Iz9lz

2
9 (9.50)

where Ix9, Iy9, Iz9 are the principal moments of inertia of the body at O.

 When the principal axes of inertia cannot be obtained by obser-
vation [Sec. 9.17], it is necessary to solve the cubic equation

K3 2 (Ix 1 Iy 1 Iz)K
2 1 (IxIy 1 IyIz 1 IzIx 2 I2

xy 2 I2
yz 2 I2

zx)K
 2 (IxIyIz 2 IxI

2
yz 2 IyI

2
zx 2 IzI

2
xy 2 2IxyIyzIzx) 5 0 (9.56)

We found [Sec. 9.18] that the roots K1, K2, and K3 of this equation 
are the principal moments of inertia of the given body. The direction 
cosines (lx)1, (ly)1, and (lz)1 of the principal axis corresponding to 
the principal moment of inertia K1 are then determined by substitut-
ing K1 into Eqs. (9.54) and solving two of these equations and 
Eq. (9.57) simultaneously. The same procedure is then repeated 
using K2 and K3 to determine the direction cosines of the other two 
principal axes [Sample Prob. 9.15].

Ellipsoid of inertia

Principal axes of inertia
Principal moments of inertia
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551

REVIEW PROBLEMS

9.185 Determine by direct integration the moments of inertia of the 
shaded area with respect to the x and y axes.

9.186 Determine the moment of inertia and the radius of gyration of the 
shaded area shown with respect to the y axis.

a

a

a

y

x

y = kx

Fig. P9.185

b

b

y

x

a a

y = kx3

y = mx

Fig. P9.186

h

h

y

x
a a

y = mx + b

y = c sin kx

Fig. P9.187

18 mm

22 mm

12 mm

12 mm

12 mm

A B

6 mm6 mm

 Fig. P9.188

9.187 Determine the moment of inertia and the radius of gyration of the 
shaded area shown with respect to the x axis.

9.188 Determine the moments of inertia Ix and Iy of the area shown with 
respect to centroidal axes respectively parallel and perpendicular 
to side AB.
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552 Distributed Forces: Moments of Inertia  9.189 Determine the polar moment of inertia of the area shown with 
respect to (a) point O, (b) the centroid of the area.

 9.190 Two L5 3 3 3 1
2-in. angles are welded to a 1

2-in. steel plate. Deter-
mine the distance b and the centroidal moments of inertia Ix and 
Iy of the combined section, knowing that Iy 5 4Ix.

L5 × 3 ×

0.746 in.

1.74 in.

5 in.

3 in.

y

xC

1
2

 in.1
2

 in.1
2

Fig. P9.191 and P9.192

 9.191 Using the parallel-axis theorem, determine the product of inertia 
of the L5 3 3 3 1

2-in. angle cross section shown with respect to 
the centroidal x and y axes.

 9.192 For the L5 3 3 3 12-in. angle cross section shown, use Mohr’s circle 
to determine (a) the moments of inertia and the product of inertia 
with respect to new centroidal axes obtained by rotating the x and 
y axes 308 clockwise, (b) the orientation of the principal axes 
through the centroid and the corresponding values of the moments 
of inertia.

 9.193 A thin plate of mass m has the trapezoidal shape shown. Deter-
mine the mass moment of inertia of the plate with respect to 
(a) the x axis, (b) the y axis.

C'

C

xy

z

a

1.5a

2a

2a

A'

A

Fig. P9.193 and P9.194

O

100 mm

100 mm

50 mm

50 mm

 Fig. P9.189  

xC

y

5 in.

0.5 in.

5 in.

b b

L5 × 3 × 12

 Fig. P9.190

 9.194 A thin plate of mass m has the trapezoidal shape shown. Deter-
mine the mass moment of inertia of the plate with respect to 
(a) the centroidal axis CC9 that is perpendicular to the plate, 
(b) the axis AA9 that is parallel to the x axis and is located at a 
distance 1.5a from the plate.
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553Review Problems 9.195 A 2-mm-thick piece of sheet steel is cut and bent into the machine 
component shown. Knowing that the density of steel is 7850 kg/m3, 
determine the mass moment of inertia of the component with 
respect to each of the coordinate axes.

y

x

z

120 mm

120 mm

150 mm150 mm

150 mm

150 mm

Fig. P9.195

60 mm

45 mm

15 mm
15 mm

45 mm

50 mm

40 mm

45 mm

38 mm

y

x
z

Fig. P9.196

 9.196 Determine the mass moment of inertia and the radius of gyration 
of the steel machine element shown with respect to the x axis. (The 
density of steel is 7850 kg/m3.)
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554

COMPUTER PROBLEMS

 9.C1 Write a computer program that, for an area with known moments and 
product of inertia Ix, Iy, and Ixy, can be used to calculate the moments 
and product of inertia Ix9, Iy9, and Ix9y9 of the area with respect to axes x9 and 
y9 obtained by rotating the original axes counterclockwise through an angle 
u. Use this program to compute Ix9, Iy9, and Ix9y9 for the section of Sample 
Prob. 9.7 for values of u from 0 to 90° using 5° increments.

 9.C2 Write a computer program that, for an area with known moments and 
product of inertia Ix, Iy, and Ixy, can be used to calculate the orientation of 
the principal axes of the area and the corresponding values of the princi pal 
moments of inertia. Use this program to solve (a) Prob. 9.89, (b) Sample 
Prob. 9.7.

 9.C3 Many cross sections can be approximated by a series of rectangles as 
shown. Write a computer program that can be used to calculate the moments 
of inertia and the radii of gyration of cross sections of this type with respect 
to horizontal and vertical centroidal axes. Apply this program to the cross 
sections shown in (a) Figs. P9.31 and P9.33, (b) Figs. P9.32 and P9.34, 
(c) Fig. P9.43, (d) Fig. P9.44.

w2

C3

C

y

x

C2

C1

d2

d1

dn

wn

w1

Fig. P9.C3 and P9.C4

 9.C4 Many cross sections can be approximated by a series of rectangles 
as shown. Write a computer program that can be used to calculate the 
 products of inertia of cross sections of this type with respect to horizontal 
and vertical centroidal axes. Use this program to solve (a) Prob. 9.71, 
(b) Prob. 9.75, (c) Prob. 9.77.

 9.C5 The area shown is revolved about the x axis to form a homoge-
neous solid of mass m. Approximate the area using a series of 400 rect-
angles of the form bcc9b9, each of width Dl, and then write a computer 
program that can be used to determine the mass moment of inertia of the 
solid with respect to the x axis. Use this program to solve part a of 
(a) Sample Prob. 9.11, (b) Prob. 9.121, assuming that in these problems 
m 5 2 kg, a 5 100 mm, and h 5 400 mm.

c

y

x

y = kxn

b

c'

b'Δl

d

l2

l1

Fig. P9.C5
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555Computer Problems 9.C6 A homogeneous wire with a weight per unit length of 0.04 lb/ft is used 
to form the figure shown. Approximate the figure using 10 straight line seg-
ments, and then write a computer program that can be used to determine 
the mass moment of inertia Ix of the wire with respect to the x axis. Use this 
program to determine Ix when (a) a 5 1 in., L 5 11 in., h 5 4 in., (b) a 5 
2 in., L 5 17 in., h 5 10 in., (c) a 5 5 in., L 5 25 in., h 5 6 in.

y

x

y = h(1 –    )a
x

L – a
10

a
L

h

Fig. P9.C6

 *9.C7 Write a computer program that, for a body with known mass moments 
and products of inertia Ix, Iy, Iz, Ixy, Iyz, and Izx, can be used to calculate 
the principal mass moments of inertia K1, K2, and K3 of the body at the 
origin. Use this program to solve part a of (a) Prob. 9.180, (b) Prob. 9.181, 
(c) Prob. 9.184.

 *9.C8 Extend the computer program of Prob. 9.C7 to include the computa-
tion of the angles that the principal axes of inertia at the origin form with the 
 coordinate axes. Use this program to solve (a) Prob. 9.180, (b) Prob. 9.181, 
(c) Prob. 9.184.
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The method of virtual work is particularly 

effective when a simple relation can be 

found among the displacements of the 

points of application of the various forces 

involved. This is the case for the scissor 

lift platform being used by workers to 

gain access to a highway bridge under 

construction.
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Method of Virtual Work
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558

*10.1 INTRODUCTION
In the preceding chapters, problems involving the equilibrium of 
rigid bodies were solved by expressing that the external forces acting 
on the bodies were balanced. The equations of equilibrium oFx 5 0, 
oFy 5 0, oMA 5 0 were written and solved for the desired unknowns. 
A different method, which will prove more effective for solving cer-
tain types of equilibrium problems, will now be considered. This 
method is based on the principle of virtual work and was first 
 formally used by the Swiss mathematician Jean Bernoulli in the 
 eighteenth century.
 As you will see in Sec. 10.3, the principle of virtual work states 
that if a particle or rigid body, or, more generally, a system of con-
nected rigid bodies, which is in equilibrium under various external 
forces, is given an arbitrary displacement from that position of equi-
librium, the total work done by the external forces during the dis-
placement is zero. This principle is particularly effective when applied 
to the solution of problems involving the equilibrium of machines or 
mechanisms consisting of several connected members.
 In the second part of the chapter, the method of virtual work 
will be applied in an alternative form based on the concept of poten-
tial energy. It will be shown in Sec. 10.8 that if a particle, rigid body, 
or system of rigid bodies is in equilibrium, then the derivative of its 
potential energy with respect to a variable defining its position must 
be zero.
 In this chapter, you will also learn to evaluate the mechanical 
efficiency of a machine (Sec. 10.5) and to determine whether a given 
position of equilibrium is stable, unstable, or neutral (Sec. 10.9).

*10.2 WORK OF A FORCE
Let us first define the terms displacement and work as they are used 
in mechanics. Consider a particle which moves from a point A to a 
neighboring point A¿ (Fig. 10.1). If r denotes the position vector 
corresponding to point A, the small vector joining A and A¿ may be 
denoted by the differential dr; the vector dr is called the displace-
ment of the particle. Now let us assume that a force F is acting on 
the particle. The work of the force F corresponding to the displace-
ment dr is defined as the quantity

 dU 5 F ? dr (10.1)

obtained by forming the scalar product of the force F and the dis-
placement dr. Denoting respectively by F and ds the magnitudes of 
the force and of the displacement, and by a the angle formed by F 
and dr, and recalling the definition of the scalar product of two vec-
tors (Sec. 3.9), we write

 dU 5 F ds cos a (10.19)

Being a scalar quantity, work has a magnitude and a sign, but no 
direction. We also note that work should be expressed in units obtained 

 Chapter 10 Method of 
Virtual Work

 10.1 Introduction
 10.2 Work of a Force
 10.3 Principle of Virtual Work
 10.4 Applications of the Principle of 

Virtual Work
 10.5 Real Machines. Mechanical 

Efficiency
 10.6  Work of a Force During a Finite 

Displacement
 10.7 Potential Energy
 10.8 Potential Energy and Equilibrium
 10.9 Stability of Equilibrium

a
dr

A
A'

O

r

F

r + dr

Fig. 10.1
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559by multiplying units of length by units of force. Thus, if U.S. custom-
ary units are used, work should be expressed in ft ? lb or in ? lb. If 
SI units are used, work should be expressed in N ? m. The unit of 
work N ? m is called a joule (J).†
 It follows from (10.1¿) that the work dU is positive if the angle 
a is acute and negative if a is obtuse. Three particular cases are of 
special interest. If the force F has the same direction as dr, the work 
dU reduces to F ds. If F has a direction opposite to that of dr, the 
work is dU 5 2F ds. Finally, if F is perpendicular to dr, the work 
dU is zero.
 The work dU of a force F during a displacement dr can also 
be considered as the product of F and the component ds cos a of 
the displacement dr along F (Fig. 10.2a). This view is particularly 

†The joule is the SI unit of energy, whether in mechanical form (work, potential 
energy, kinetic energy) or in chemical, electrical, or thermal form. We should note that 
even though N ? m 5 J, the moment of a force must be expressed in N ? m, and not in 
joules, since the moment of a force is not a form of energy.

ds cos a

a

a

dr

dr

A

dy G

W

F

(a) (b)

A'

G'

Fig. 10.2

useful in the computation of the work done by the weight W of a 
body (Fig. 10.2b). The work of W is equal to the product of W and 
the vertical displacement dy of the center of gravity G of the body. 
If the displacement is downward, the work is positive; if it is upward, 
the work is negative.
 A number of forces frequently encountered in statics do no 
work: forces applied to fixed points (ds 5 0) or acting in a direction 
perpendicular to the displacement (cos a 5 0). Among these forces 
are the reaction at a frictionless pin when the body supported 
rotates about the pin; the reaction at a frictionless surface when 
the body in contact moves along the surface; the reaction at a roller 
moving along its track; the weight of a body when its center of 
gravity moves horizontally; and the friction force acting on a wheel 
rolling without slipping (since at any instant the point of contact 
does not move). Examples of forces which do work are the weight 
of a body (except in the case considered above), the friction force 
acting on a body sliding on a rough surface, and most forces applied 
on a moving body.

10.2 Work of a Force

Photo 10.1 The forces exerted by the 
hydraulic cylinders to position the bucket lift 
shown can be effectively determined using the 
method of virtual work since a simple relation 
exists among the displacements of the points of 
application of the forces acting on the members 
of the lift.
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560 Method of Virtual Work  In certain cases, the sum of the work done by several forces is 
zero. Consider, for example, two rigid bodies AC and BC connected 
at C by a frictionless pin (Fig. 10.3a). Among the forces acting on 
AC is the force F exerted at C by BC. In general, the work of this 

Fig. 10.3

A

C

B B

–F

F

(a) (b)

T'

T
A

Fig. 10.4

B

B'

A'

–F

F

dr
A

dr'

force will not be zero, but it will be equal in magnitude and opposite 
in sign to the work of the force 2F exerted by AC on BC, since 
these forces are equal and opposite and are applied to the same 
particle. Thus, when the total work done by all the forces acting on 
AB and BC is considered, the work of the two internal forces at C 
cancels out. A similar result is obtained if we consider a system 
 consisting of two blocks connected by an inextensible cord AB 
(Fig. 10.3b). The work of the tension force T at A is equal in magni-
tude to the work of the tension force T¿ at B, since these forces have 
the same magnitude and the points A and B move through the same 
distance; but in one case the work is positive, and in the other it is 
negative. Thus, the work of the internal forces again cancels out.
 It can be shown that the total work of the internal forces hold-
ing together the particles of a rigid body is zero. Consider two par-
ticles A and B of a rigid body and the two equal and opposite forces 
F and 2F they exert on each other (Fig. 10.4). While, in general, 

small displacements dr and dr¿ of the two particles are different, the 
components of these displacements along AB must be equal; other-
wise, the particles would not remain at the same distance from each 
other, and the body would not be rigid. Therefore, the work of F is 
equal in magnitude and opposite in sign to the work of 2F, and their 
sum is zero.
 In computing the work of the external forces acting on a rigid 
body, it is often convenient to determine the work of a couple with-
out considering separately the work of each of the two forces forming 
the couple. Consider the two forces F and 2F forming a couple of 
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561moment M and acting on a rigid body (Fig. 10.5). Any small displace-
ment of the rigid body bringing A and B, respectively, into A¿ and B– 
can be divided into two parts, one in which points A and B undergo 
equal displacements dr1, the other in which A¿ remains fixed while 
B¿ moves into B– through a displacement dr2 of magnitude ds2 5 r du. 
In the first part of the motion, the work of F is equal in magnitude 
and opposite in sign to the work of 2F, and their sum is zero. In 
the second part of the motion, only force F works, and its work is 
dU 5 F ds2 5 Fr du. But the product Fr is equal to the magnitude 
M of the moment of the couple. Thus, the work of a couple of 
moment M acting on a rigid body is

 dU 5 M du (10.2)

where du is the small angle expressed in radians through which the 
body rotates. We again note that work should be expressed in units 
obtained by multiplying units of force by units of length.

*10.3 PRINCIPLE OF VIRTUAL WORK
Consider a particle acted upon by several forces F1, F2, . . . , Fn 
(Fig. 10.6). We can imagine that the particle undergoes a small dis-
placement from A to A¿. This displacement is possible, but it will not 
necessarily take place. The forces may be balanced and the particle 
at rest, or the particle may move under the action of the given forces 
in a direction different from that of AA¿. Since the displacement 
considered does not actually occur, it is called a virtual displacement 
and is denoted by dr. The symbol dr represents a differential of the 
first order; it is used to distinguish the virtual displacement from the 
displacement dr which would take place under actual motion. As you 
will see, virtual displacements can be used to determine whether the 
conditions of equilibrium of a particle are satisfied.
 The work of each of the forces F1, F2, . . . , Fn during the virtual 
displacement dr is called virtual work. The virtual work of all the 
forces acting on the particle of Fig. 10.6 is

 dU 5 F1 ? dr 1 F2 ? dr 1 . . . 1 Fn ? dr
 5 (F1 1 F2 1 . . . 1 Fn) ? dr

or
 dU 5 R ? dr (10.3)

where R is the resultant of the given forces. Thus, the total virtual 
work of the forces F1, F2, . . . , Fn is equal to the virtual work of 
their resultant R.
 The principle of virtual work for a particle states that if a parti-
cle is in equilibrium, the total virtual work of the forces acting on the 
particle is zero for any virtual displacement of the particle. This con-
dition is necessary: if the particle is in equilibrium, the resultant R of 
the forces is zero, and it follows from (10.3) that the total virtual work 
dU is zero. The condition is also sufficient: if the total virtual work 
dU is zero for any virtual displacement, the scalar product R ? dr is 
zero for any dr, and the resultant R must be zero.

Fig. 10.5
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562 Method of Virtual Work  In the case of a rigid body, the principle of virtual work states 
that if a rigid body is in equilibrium, the total virtual work of the 
external forces acting on the rigid body is zero for any virtual displace-
ment of the body. The condition is necessary: if the body is in equi-
librium, all the particles forming the body are in equilibrium and the 
total virtual work of the forces acting on all the particles must be zero; 
but we have seen in the preceding section that the total work of the 
internal forces is zero; the total work of the external forces must there-
fore also be zero. The condition can also be proved to be sufficient.
 The principle of virtual work can be extended to the case of a 
system of connected rigid bodies. If the system remains connected 
during the virtual displacement, only the work of the forces external 
to the system need be considered, since the total work of the internal 
forces at the various connections is zero.

*10.4  APPLICATIONS OF THE PRINCIPLE 
OF VIRTUAL WORK

The principle of virtual work is particularly effective when applied 
to the solution of problems involving machines or mechanisms con-
sisting of several connected rigid bodies. Consider, for instance, the 
toggle vise ACB of Fig. 10.7a, used to compress a wooden block. We 
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wish to determine the force exerted by the vise on the block when 
a given force P is applied at C, assuming that there is no friction. 
Denoting by Q the reaction of the block on the vise, we draw the 
free-body diagram of the vise and consider the virtual displacement 
obtained by giving a positive increment du to the angle u (Fig. 10.7b). 
Choosing a system of coordinate axes with origin at A, we note that 
xB increases while yC decreases. This is indicated in the figure, where 
a positive increment dxB and a negative increment 2dyC are shown. 
The reactions Ax, Ay, and N will do no work during the virtual dis-
placement considered, and we need only compute the work of P and 
Q. Since Q and dxB have opposite senses, the virtual work of Q is 
dUQ 5 2Q dxB. Since P and the increment shown (2dyC) have the 
same sense, the virtual work of P is dUP 5 1P(2dyC) 5 2P dyC. 
The minus signs obtained could have been predicted by simply not-
ing that the forces Q and P are directed opposite to the positive 
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563x and y axes, respectively. Expressing the coordinates xB and yC in 
terms of the angle u and differentiating, we obtain

 xB 5 2l sin u yC 5 l cos u
 dxB 5 2l cos u du  dyC 5 2l sin u du (10.4)

The total virtual work of the forces Q and P is thus

 dU 5 dUQ 1 dUP 5 2Q dxB 2 P dyC

 5 22Ql cos u du 1 Pl sin u du

Making dU 5 0, we obtain

 2Ql cos u du 5 Pl sin u du (10.5)
 Q 5 1

2P tan u (10.6)

 The superiority of the method of virtual work over the conven-
tional equilibrium equations in the problem considered here is clear: 
by using the method of virtual work, we were able to eliminate all 
unknown reactions, while the equation oMA 5 0 would have elimi-
nated only two of the unknown reactions. This property of the 
method of virtual work can be used in solving many problems involv-
ing machines and mechanisms. If the virtual displacement considered 
is consistent with the constraints imposed by the supports and con-
nections, all reactions and internal forces are eliminated and only the 
work of the loads, applied forces, and friction forces need be 
considered.
 The method of virtual work can also be used to solve problems 
involving completely constrained structures, although the virtual dis-
placements considered will never actually take place. Consider, for 
example, the frame ACB shown in Fig. 10.8a. If point A is kept fixed, 
while B is given a horizontal virtual displacement (Fig. 10.8b), we 
need consider only the work of P and Bx. We can thus determine 
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10.4 Applications of the Principle of
Virtual Work

Photo 10.2 The clamping force of the toggle 
clamp shown can be expressed as a function 
of the force applied to the handle by first 
establishing the geometric relations among the 
members of the clamp and then applying the 
method of virtual work.
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564 Method of Virtual Work the reaction component Bx in the same way as the force Q of the 
preceding example (Fig. 10.7b); we have

Bx 5 21
2P tan u

Keeping B fixed and giving to A a horizontal virtual displacement, 
we can similarly determine the reaction component Ax. The compo-
nents Ay and By can be determined by rotating the frame ACB as a 
rigid body about B and A, respectively.
 The method of virtual work can also be used to determine the 
configuration of a system in equilibrium under given forces. For 
example, the value of the angle u for which the linkage of Fig. 10.7 
is in equilibrium under two given forces P and Q can be obtained by 
solving Eq. (10.6) for tan u.
 It should be noted, however, that the attractiveness of the 
method of virtual work depends to a large extent upon the existence 
of simple geometric relations between the various virtual displace-
ments involved in the solution of a given problem. When no such 
simple relations exist, it is usually advisable to revert to the conven-
tional method of Chap. 6.

*10.5 REAL MACHINES. MECHANICAL EFFICIENCY
In analyzing the toggle vise in the preceding section, we assumed that 
no friction forces were involved. Thus, the virtual work consisted only 
of the work of the applied force P and of the reaction Q. But the work 
of the reaction Q is equal in magnitude and opposite in sign to the 
work of the force exerted by the vise on the block. Equation (10.5), 
therefore, expresses that the output work 2Ql cos u du is equal to the 
input work Pl sin u du. A machine in which input and output work 
are equal is said to be an “ideal” machine. In a “real” machine, friction 
forces will always do some work, and the output work will be smaller 
than the input work.
 Consider, for example, the toggle vise of Fig. 10.7a, and assume 
now that a friction force F develops between the sliding block B and 
the horizontal plane (Fig. 10.9). Using the conventional methods of 
statics and summing moments about A, we find N 5 P/2. Denoting 
by m the coefficient of friction between block B and the horizontal 
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565plane, we have F 5 mN 5 mP/2. Recalling formulas (10.4), we find 
that the total virtual work of the forces Q, P, and F during the virtual 
displacement shown in Fig. 10.9 is

 dU 5 2Q dxB 2 P dyC 2 F dxB
 5 22Ql cos u du 1 Pl sin u du 2 mPl cos u du

Making dU 5 0, we obtain

 2Ql cos u du 5 Pl sin u du 2 mPl cos u du (10.7)

which expresses that the output work is equal to the input work 
minus the work of the friction force. Solving for Q, we have

 Q 5 1
2P(tan u 2 m) (10.8)

We note that Q 5 0 when tan u 5 m, that is, when u is equal to the 
angle of friction f, and that Q , 0 when u , f. The toggle vise may 
thus be used only for values of u larger than the angle of friction.
 The mechanical efficiency of a machine is defined as the ratio

 h 5
output work

input work
 (10.9)

Clearly, the mechanical efficiency of an ideal machine is h 5 1, since 
input and output work are then equal, while the mechanical effi-
ciency of a real machine will always be less than 1.
 In the case of the toggle vise we have just analyzed, we write

h 5
output work

input work
5

2Ql cos u du

Pl sin u du

Substituting from (10.8) for Q, we obtain

 h 5
P( tan u 2 m) l cos u du

Pl sin u du
5 1 2 m cot u (10.10)

We check that in the absence of friction forces, we would have m 5 0 
and h 5 1. In the general case, when m is different from zero, the 
efficiency h becomes zero for m cot u 5 1, that is, for tan u 5 m, or 
u 5 tan21 m 5 f. We note again that the toggle vise can be used 
only for values of u larger than the angle of friction f.

10.5 Real Machines. Mechanical Effi ciency
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