
566

SAMPLE PROBLEM 10.1

Using the method of virtual work, determine the magnitude of the couple 
M required to maintain the equilibrium of the mechanism shown.

SAMPLE PROBLEM 10.2

Determine the expressions for u and for the tension in the spring which 
correspond to the equilibrium position of the mechanism. The unstretched 
length of the spring is h, and the constant of the spring is k. Neglect the 
weight of the mechanism.
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SOLUTION

Choosing a coordinate system with origin at E, we write

xD 5 3l cos u    dxD 5 23l sin u du

Principle of Virtual Work. Since the reactions A, Ex, and Ey will do no 
work during the virtual displacement, the total virtual work done by M and 
P must be zero. Noting that P acts in the positive x direction and M acts 
in the positive u direction, we write

dU 5 0: 1M du 1 P dxD 5 0
 1M du 1 P(23l sin u du) 5 0

M 5 3Pl sin u ◀

SOLUTION

With the coordinate system shown

 yB 5 l sin u yC 5 2l sin u
 dyB 5 l cos u du  dyC 5 2l cos u du

The elongation of the spring is s 5 yC 2 h 5 2l sin u 2 h

The magnitude of the force exerted at C by the spring is

 F 5 ks 5 k(2l sin u 2 h) (1)

Principle of Virtual Work. Since the reactions Ax, Ay, and C do no work, 
the total virtual work done by P and F must be zero.

dU 5 0:   P dyB 2 F dyC 5 0
 P(l cos u du) 2 k(2l sin u 2 h)(2l cos u du) 5 0

 sin u 5
P 1 2kh

4kl
 ◀

Substituting this expression into (1), we obtain F 5 1
2P ◀
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567

SAMPLE PROBLEM 10.3

A hydraulic-lift table is used to raise a 1000-kg crate. It consists 
of a platform and of two identical linkages on which hydraulic 
cylinders exert equal forces. (Only one linkage and one cylinder 
are shown.) Members EDB and CG are each of length 2a, and 
member AD is pinned to the midpoint of EDB. If the crate is 
placed on the table, so that half of its weight is supported by the 
system shown, determine the force exerted by each cylinder in 
raising the crate for u 5 608, a 5 0.70 m, and L 5 3.20 m. This 
mechanism has been previously considered in Sample Prob. 6.7.
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SOLUTION

The machine considered consists of the platform and of the 
linkage, with an input force FDH exerted by the cylinder and an 
output force equal and opposite to 1

2W.

Principle of Virtual Work. We first observe that the reactions 
at E and G do no work. Denoting by y the elevation of the 
platform above the base, and by s the length DH of the cylinder-
and-piston assembly, we write

dU 5 0: 21
2W dy 1 FDH ds 5 0 (1)

The vertical displacement dy of the platform is expressed in 
terms of the angular displacement du of EDB as follows:

 y 5 (EB) sin u 5 2a sin u
 dy 5 2a cos u du

To express ds similarly in terms of du, we first note that by the 
law of cosines,

s2 5 a2 1 L2 2 2aL cos u
Differentiating,

2s ds 5 22aL(2sin u) du

  ds 5
aL sin u

s
 du

Substituting for dy and ds into (1), we write

(21
2 W)2a cos u du 1 FDH 

aL sin u
s

 du 5 0

FDH 5 W 

s
L

  cot u

With the given numerical data, we have

 W 5 mg 5 (1000 kg)(9.81 m/s2) 5 9810 N 5 9.81 kN
 s2 5 a2 1 L2 2 2aL cos u
 5 (0.70)2 1 (3.20)2 2 2(0.70)(3.20) cos 608 5 8.49
 s 5 2.91 m

FDH 5 W
s
L

 cot u 5 (9.81 kN)
2.91 m
3.20 m

 cot 60°

FDH 5 5.15 kN ◀
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568

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned to use the method of virtual work, which is a different 
way of solving problems involving the equilibrium of rigid bodies.

The work done by a force during a displacement of its point of application or by 
a couple during a rotation is found by using Eqs. (10.1) and (10.2), respectively:

 dU 5 F ds cos a (10.1)
 dU 5 M du (10.2)

Principle of virtual work. In its more general and more useful form, this principle 
can be stated as follows: If a system of connected rigid bodies is in equilibrium, 
the total virtual work of the external forces applied to the system is zero for any 
virtual displacement of the system.

As you apply the principle of virtual work, keep in mind the following:

1. Virtual displacement. A machine or mechanism in equilibrium has no ten-
dency to move. However, we can cause, or imagine, a small displacement. Since 
it does not actually occur, such a displacement is called a virtual displacement.

2. Virtual work. The work done by a force or couple during a virtual displace-
ment is called virtual work.

3. You need consider only the forces which do work during the virtual 
displacement.

4. Forces which do no work during a virtual displacement that is consistent with 
the constraints imposed on the system are:
 a. Reactions at supports
 b. Internal forces at connections
 c. Forces exerted by inextensible cords and cables
None of these forces need be considered when you use the method of virtual work.

5. Be sure to express the various virtual displacements involved in your com-
putations in terms of a single virtual displacement. This is done in each of the 
three preceding sample problems, where the virtual displacements are all expressed 
in terms of du.

6. Remember that the method of virtual work is effective only in those cases 
where the geometry of the system makes it relatively easy to relate the displace-
ments involved.
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PROBLEMS

569

10.1 and 10.2 Determine the vertical force P that must be applied 
at G to maintain the equilibrium of the linkage.

10.3 and 10.4 Determine the couple M that must be applied to 
member DEFG to maintain the equilibrium of the linkage.

A
B

C
D

E

F
G

30 mm

80 N

18 N⋅m

90 mm

40 mm

40 mm

Fig. P10.1 and P10.3
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150 N75 N

Fig. P10.5

100 lb

A B C
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8 in. 8 in. 8 in.

9 in.

150 lb

Fig. P10.7

10.5 Determine the force P required to maintain the equilibrium of the 
linkage shown. All members are of the same length and the wheels 
at A and B roll freely on the horizontal rod.

300 lb

100 lb

6 in.

A
B

C

D
E F

G

10 in.12 in.8 in.

Fig. P10.2 and P10.4

10.6 Solve Prob. 10.5 assuming that the vertical force P is applied at 
point E.

 10.7 The two-bar linkage shown is supported by a pin and bracket at B
and a collar at D that slides freely on a vertical rod. Determine 
the force P required to maintain the equilibrium of the linkage.
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570 Method of Virtual Work  10.8 Knowing that the maximum friction force exerted by the bottle on 
the cork is 60 lb, determine (a) the force P that must be applied 
to the corkscrew to open the bottle, (b) the maximum force exerted 
by the base of the corkscrew on the top of the bottle.

 10.9 Rod AD is acted upon by a vertical force P at end A and by two 
equal and opposite horizontal forces of magnitude Q at points B 
and C. Derive an expression for the magnitude Q of the horizontal 
forces required for equilibrium.
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 10.10 and 10.11 The slender rod AB is attached to a collar A and 
rests on a small wheel at C. Neglecting the radius of the wheel 
and the effect of friction, derive an expression for the magnitude 
of the force Q required to maintain the equilibrium of the rod.

P

Fig. P10.8

 10.12 Knowing that the line of action of the force Q passes through point 
C, derive an expression for the magnitude of Q required to main-
tain equilibrium.

 10.13 Solve Prob. 10.12 assuming that the force P applied at point A acts 
horizontally to the left.
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571Problems 10.14 The mechanism shown is acted upon by the force P; derive an 
expression for the magnitude of the force Q required to maintain 
equilibrium.

 10.15 and 10.16 Derive an expression for the magnitude of the cou-
ple M required to maintain the equilibrium of the linkage shown.
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 10.17 A uniform rod AB of length l and weight W is suspended from two 
cords AC and BC of equal length. Derive an expression for the 
magnitude of the couple M required to maintain equilibrium of 
the rod in the position shown.

 10.18 Collar B can slide along rod AC and is attached by a pin to a 
block that can slide in the vertical slot shown. Derive an expression 
for the magnitude of the couple M required to maintain 
equilibrium.

 10.19 For the linkage shown, determine the couple M required for equi-
librium when l 5 1.8 ft, Q 5 40 lb, and u 5 658.

 10.20 For the linkage shown, determine the force Q required for equi-
librium when l 5 18 in., M 5 600 lb ? in., and u 5 708.
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Fig. P10.19 and P10.20
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572 Method of Virtual Work  10.21 A 4-kN force P is applied as shown to the piston of the engine 
system. Knowing that AB 5 50 mm and BC 5 200 mm, determine 
the couple M required to maintain the equilibrium of the system 
when (a) u 5 308, (b) u 5 1508.

 10.22 A couple M of magnitude 100 N ? m is applied as shown to 
the crank of the engine system. Knowing that AB 5 50 mm and 
BC 5 200 mm, determine the force P required to maintain the 
equilibrium of the system when (a) u 5 608, (b) u 5 1208.

 10.23 A slender rod of length l is attached to a collar at B and rests on 
a portion of a circular cylinder of radius r. Neglecting the effect 
of friction, determine the value of u corresponding to the equilib-
rium position of the mechanism when l 5 200 mm, r 5 60 mm, 
P 5 40 N, and Q 5 80 N.
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Fig. P10.29 and P10.30

 10.24 A slender rod of length l is attached to a collar at B and rests on 
a portion of a circular cylinder of radius r. Neglecting the effect 
of friction, determine the value of u corresponding to the equilib-
rium position of the mechanism when l 5 14 in., r 5 5 in., P 5 
75 lb, and Q 5 150 lb.

 10.25 Determine the value of u corresponding to the equilibrium position 
of the rod of Prob. 10.10 when l 5 30 in., a 5 5 in., P 5 25 lb, 
and Q 5 40 lb.

 10.26 Determine the values of u corresponding to the equilibrium posi-
tion of the rod of Prob. 10.11 when l 5 600 mm, a 5 100 mm, 
P 5 50 N, and Q 5 90 N.

 10.27 Determine the value of u corresponding to the equilibrium position 
of the mechanism of Prob. 10.12 when P 5 80 N and Q 5 100 N.

 10.28 Determine the value of u corresponding to the equilibrium position 
of the mechanism of Prob. 10.14 when P 5 270 N and Q 5 960 N.

 10.29 A load W of magnitude 600 N is applied to the linkage at B. The 
constant of the spring is k 5 2.5 kN/m, and the spring is unstretched 
when AB and BC are horizontal. Neglecting the weight of the 
linkage and knowing that l 5 300 mm, determine the value of u 
corresponding to equilibrium.

 10.30 A vertical load W is applied to the linkage at B. The constant of 
the spring is k, and the spring is unstretched when AB and BC are 
horizontal. Neglecting the weight of the linkage, derive an equa-
tion in u, W, l, and k that must be satisfied when the linkage is in 
equilibrium.

qP
M

A

B

C

Fig. P10.21 and P10.22

bee02286_ch10_556-599.indd Page 572  08/10/11  2:59 PM user-f494bee02286_ch10_556-599.indd Page 572  08/10/11  2:59 PM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


573Problems 10.31 Two bars AD and DG are connected by a pin at D and by a spring AG. 
Knowing that the spring is 12 in. long when unstretched and that the 
constant of the spring is 125 lb/in., determine the value of x corre-
sponding to equilibrium when a 900-lb load is applied at E as shown.

 10.32 Solve Prob. 10.31 assuming that the 900-lb vertical force is applied 
at C instead of E.

 10.33 Two 5-kg bars AB and BC are connected by a pin at B and by a 
spring DE. Knowing that the spring is 150 mm long when 
unstretched and that the constant of the spring is 1 kN/m, deter-
mine the value of x corresponding to equilibrium.

A 200 mm

200 mm

400 mm

400 mm

B

E

C

D

x

Fig. P10.33

150 N

C

A

B

q

200 mm

200 mm

Fig. P10.34

 10.34 Rod ABC is attached to blocks A and B that can move freely in the 
guides shown. The constant of the spring attached at A is k 5 3 kN/m, 
and the spring is unstretched when the rod is vertical. For the loading 
shown, determine the value of u corresponding to equilibrium.

A

8 in.
G

B

F
E

C

Dx 900 lb

8 in.
8 in.

8 in.
8 in.

8 in.

Fig. P10.31
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574 Method of Virtual Work  10.35 A vertical force P of magnitude 150 N is applied to end E of cable 
CDE, which passes over a small pulley D and is attached to the 
mechanism at C. The constant of the spring is k 5 4 kN/m, and 
the spring is unstretched when u 5 0. Neglecting the weight of 
the mechanism and the radius of the pulley, determine the value 
of u corresponding to equilibrium.

 10.36 A horizontal force P of magnitude 40 lb is applied to the mecha-
nism at C. The constant of the spring is k 5 9 lb/in., and the 
spring is unstretched when u 5 0. Neglecting the weight of 
the mechanism, determine the value of u corresponding to 
equilibrium.
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D

l

l

l

q

Fig. P10.37 and P10.38

 10.37 and 10.38 Knowing that the constant of spring CD is k and 
that the spring is unstretched when rod ABC is horizontal, deter-
mine the value of u corresponding to equilibrium for the data 
indicated.
 10.37 P 5 300 N, l 5 400 mm, k 5 5 kN/m
 10.38 P 5 75 lb, l 5 15 in., k 5 20 lb/in.
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Fig. P10.35
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575Problems 10.39 The lever AB is attached to the horizontal shaft BC that passes 
through a bearing and is welded to a fixed support at C. The 
 torsional spring constant of the shaft BC is K; that is, a couple 
of magnitude K is required to rotate end B through 1 rad. Knowing 
that the shaft is untwisted when AB is horizontal, determine 
the value of u corresponding to the position of equilibrium when 
P 5 100 N, l 5 250 mm, and K 5 12.5 N ? m/rad.

 10.40 Solve Prob. 10.39 assuming that P 5 350 N, l 5 250 mm, and 
K 5 12.5 N ? m/rad. Obtain answers in each of the following 
quadrants: 0 , u , 908, 2708 , u , 3608, 3608 , u , 4508.

 10.41 The position of boom ABC is controlled by the hydraulic cylinder 
BD. For the loading shown, determine the force exerted by the 
hydraulic cylinder on pin B when u 5 658.

 10.42 The position of boom ABC is controlled by the hydraulic cylinder 
BD. For the loading shown, (a) express the force exerted by the 
hydraulic cylinder on pin B as a function of the length BD, 
(b) determine the smallest possible value of the angle u if the maxi-
mum force that the cylinder can exert on pin B is 2.5 kips.

 10.43 The position of member ABC is controlled by the hydraulic cylin-
der CD. For the loading shown, determine the force exerted by 
the hydraulic cylinder on pin C when u 5 558.

B

C

D

A

0.5 m 0.8 m

90°

10 kN

1.5 m

θ

Fig. P10.43 and P10.44

A

B

C

D

24 in.

27 in.

45 in.

q600 lb

Fig. P10.41 and P10.42

 10.44 The position of member ABC is controlled by the hydraulic cylin-
der CD. Determine the angle u knowing that the hydraulic cylin-
der exerts a 15-kN force on pin C.

P

A B

C

l

q

Fig. P10.39
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576 Method of Virtual Work  10.45 The telescoping arm ABC is used to provide an elevated platform 
for construction workers. The workers and the platform together 
weigh 500 lb and their combined center of gravity is located 
directly above C. For the position when u 5 208, determine the 
force exerted on pin B by the single hydraulic cylinder BD.

 10.46 Solve Prob. 10.45 assuming that the workers are lowered to a point 
near the ground so that u 5 2208.

 10.47 Denoting by ms the coefficient of static friction between collar C 
and the vertical rod, derive an expression for the magnitude of the 
largest couple M for which equilibrium is maintained in the posi-
tion shown. Explain what happens if ms $ tan u.

P

q

A

B

C

ll
1
2

M

Fig. P10.47 and P10.48

AB

C

D

15 ft

7.2 ft

2.7 ft

1.5 ft

q

Fig. P10.45

 10.48 Knowing that the coefficient of static friction between collar C and 
the vertical rod is 0.40, determine the magnitude of the largest 
and smallest couple M for which equilibrium is maintained in the 
position shown, when u 5 358, l 5 600 mm, and P 5 300 N.

 10.49 A block of weight W is pulled up a plane forming an angle a with 
the horizontal by a force P directed along the plane. If m is the 
coefficient of friction between the block and the plane, derive an 
expression for the mechanical efficiency of the system. Show that 
the mechanical efficiency cannot exceed 1

2 if the block is to remain 
in place when the force P is removed.

 10.50 Derive an expression for the mechanical efficiency of the jack dis-
cussed in Sec. 8.6. Show that if the jack is to be self-locking, the 
mechanical efficiency cannot exceed 1

2.
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577Problems 10.51 Denoting by ms the coefficient of static friction between the block 
attached to rod ACE and the horizontal surface, derive expressions 
in terms of P, ms, and u for the largest and smallest magnitude of 
the force Q for which equilibrium is maintained.

Q

E

F

l

l

l

P

D

C

B

q q

A

Fig. P10.51 and P10.52

2 kN 3 kN 5 kN

0.9 m

A
B

C D E F G H

0.5 m 0.9 m 1.2 m

1.5 m
1.2 m

1.8 m

Fig. P10.53 and P10.54

 10.52 Knowing that the coefficient of static friction between the block 
attached to rod ACE and the horizontal surface is 0.15, determine 
the magnitude of the largest and smallest force Q for which equi-
librium is maintained when u 5 308, l 5 0.2 m, and P 5 40 N.

 10.53 Using the method of virtual work, determine the reaction at E.

 10.54 Using the method of virtual work, determine separately the force 
and couple representing the reaction at H.

 10.55 Referring to Prob. 10.43 and using the value found for the force 
exerted by the hydraulic cylinder CD, determine the change in the 
length of CD required to raise the 10-kN load by 15 mm.

 10.56 Referring to Prob. 10.45 and using the value found for the force 
exerted by the hydraulic cylinder BD, determine the change in 
the length of BD required to raise the platform attached at C by 
2.5 in.

 10.57 Determine the vertical movement of joint D if the length of mem-
ber BF is increased by 1.5 in. (Hint: Apply a vertical load at joint 
D, and, using the methods of Chap. 6, compute the force exerted 
by member BF on joints B and F. Then apply the method of virtual 
work for a virtual displacement resulting in the specified increase 
in length of member BF. This method should be used only for 
small changes in the lengths of members.)

A B C D

E
F G H

30 ft

40 ft 40 ft 40 ft 40 ft

Fig. P10.57 and P10.58

 10.58 Determine the horizontal movement of joint D if the length of 
member BF is increased by 1.5 in. (See the hint for Prob. 10.57.)
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*10.6  WORK OF A FORCE DURING A FINITE 
DISPLACEMENT

Consider a force F acting on a particle. The work of F corresponding 
to an infinitesimal displacement dr of the particle was defined in 
Sec. 10.2 as
 dU 5 F ? dr (10.1)

The work of F corresponding to a finite displacement of the particle 
from A1 to A2 (Fig. 10.10a) is denoted by U1y2 and is obtained by 
integrating (10.1) along the curve described by the particle:

 U1y2 5#
A2

A1

 F ? dr (10.11)

Using the alternative expression

 dU 5 F ds cos a (10.19)

given in Sec. 10.2 for the elementary work dU, we can also express 
the work U1y2 as

 U1y2 5#
s2

s1

 (F cos a) ds (10.119)

578 Method of Virtual Work

where the variable of integration s measures the distance along the path 
traveled by the particle. The work U1y2 is represented by the area 
under the curve obtained by plotting F cos a against s (Fig. 10.10b). 
In the case of a force F of constant magnitude acting in the direction 
of motion, formula (10.119) yields U1y2 5 F(s2 2 s1).
 Recalling from Sec. 10.2 that the work of a couple of moment 
M during an infinitesimal rotation du of a rigid body is

 dU 5 M du (10.2)

we express as follows the work of the couple during a finite rotation 
of the body:

 U1y2 5#
u2

u1

 M du 
(10.12)

In the case of a constant couple, formula (10.12) yields

U1y2 5 M(u2 2 u1)

s

(b)

O s1 s2

F cos a

(a)O

ds

A

A1

s1

s2

A2

a

Fs

Fig. 10.10
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579Work of a Weight. It was stated in Sec. 10.2 that the work of 
the weight W of a body during an infinitesimal displacement of the 
body is equal to the product of W and the vertical displacement of 
the center of gravity of the body. With the y axis pointing upward, 
the work of W during a finite displacement of the body (Fig. 10.11) 
is obtained by writing

dU 5 2W dy

Integrating from A1 to A2, we have

 U1y2 5 2#
y2

y1

 W dy 5 Wy1 2 Wy2 (10.13)

or
 U1y2 5 2W(y2 2 y1) 5 2W ¢y (10.139)

where Dy is the vertical displacement from A1 to A2. The work of 
the weight W is thus equal to the product of W and the vertical 
displacement of the center of gravity of the body. The work is positive 
when Dy , 0, that is, when the body moves down.

Work of the Force Exerted by a Spring. Consider a body A 
attached to a fixed point B by a spring; it is assumed that the spring 
is undeformed when the body is at A0 (Fig. 10.12a). Experimental 
evidence shows that the magnitude of the force F exerted by the 
spring on a body A is proportional to the deflection x of the spring 
measured from the position A0. We have

 F 5 kx (10.14)

where k is the spring constant, expressed in N/m if SI units are used 
and expressed in lb/ft or lb/in. if U.S. customary units are used. The 
work of the force F exerted by the spring during a finite displacement 
of the body from A1(x 5 x1) to A2(x 5 x2) is obtained by writing

dU 5 2F dx 5 2kx dx

 U1y2 5 2#
x2

x1

 kx dx 5 1
2kx2

1 2 1
2kx2

2 (10.15)

Care should be taken to express k and x in consistent units. For  example, 
if U.S. customary units are used, k should be expressed in lb/ft and x 
expressed in feet, or k in lb/in. and x in inches; in the first case, the work 
is obtained in ft ? lb; in the second case, in in ? lb. We note that the work of 
the force F exerted by the spring on the body is positive when x2 , x1, 
that is, when the spring is returning to its undeformed position.
 Since Eq. (10.14) is the equation of a straight line of slope k 
passing through the origin, the work U1y2 of F during the displace-
ment from A1 to A2 can be obtained by evaluating the area of the 
trapezoid shown in Fig. 10.12b. This is done by computing the values 
F1 and F2 and multiplying the base Dx of the trapezoid by its mean 
height 1

2(F1 1 F2). Since the work of the force F exerted by the spring 
is positive for a negative value of Dx, we write

 U1y2 5 21
2(F1 1 F2) Dx (10.16)

Formula (10.16) is usually more convenient to use than (10.15) and 
affords fewer chances of confusing the units involved.

Fig. 10.11
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y1

y2
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10.6 Work of a Force During a 
Finite Displacement

Spring undeformed
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A

B
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x1

x1 x2

x2

x

F
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(b)

F = kx

Δ x

F

F1

F2

A2

B

A1

x

Fig. 10.12

bee02286_ch10_556-599.indd Page 579  08/10/11  2:59 PM user-f494bee02286_ch10_556-599.indd Page 579  08/10/11  2:59 PM user-f494 /203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles/203/MHDQ294/bee02286_disk1of1/0077402286/bee02286_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


580 Method of Virtual Work *10.7 POTENTIAL ENERGY
Considering again the body of Fig. 10.11, we note from Eq. (10.13) 
that the work of the weight W during a finite displacement is obtained 
by subtracting the value of the function Wy corresponding to the 
second position of the body from its value corresponding to the first 
position. The work of W is thus independent of the actual path fol-
lowed; it depends only upon the initial and final values of the func-
tion Wy. This function is called the potential energy of the body with 
respect to the force of gravity W and is denoted by Vg. We write

 U1y2 5 (Vg)1 2 (Vg)2  with Vg 5 Wy (10.17)

We note that if (Vg)2 . (Vg)1, that is, if the potential energy increases 
during the displacement (as in the case considered here), the work 
U1y2 is negative. If, on the other hand, the work of W is positive, the 
potential energy decreases. Therefore, the potential energy Vg of the 
body provides a measure of the work which can be done by its weight W. 
Since only the change in potential energy, and not the actual value of 
Vg, is involved in formula (10.17), an arbitrary constant can be added 
to the expression obtained for Vg. In other words, the level from which 
the elevation y is measured can be chosen arbitrarily. Note that  potential 
energy is expressed in the same units as work, i.e., in joules (J) if SI units 
are used† and in ft ? lb or in ? lb if U.S. customary units are used.
 Considering now the body of Fig. 10.12a, we note from Eq. 
(10.15) that the work of the elastic force F is obtained by subtracting 
the value of the function 1

2kx2 corresponding to the second position 
of the body from its value corresponding to the first position. This 
function is denoted by Ve and is called the potential energy of the 
body with respect to the elastic force F. We write

 U1y2 5 (Ve)1 2 (Ve)2  with Ve 5 1
2kx2 (10.18)

and observe that during the displacement considered, the work of 
the force F exerted by the spring on the body is negative and the 
potential energy Ve increases. We should note that the expression 
obtained for Ve is valid only if the deflection of the spring is mea-
sured from its undeformed position.
 The concept of potential energy can be used when forces other 
than gravity forces and elastic forces are involved. It remains valid 
as long as the elementary work dU of the force considered is an exact 
differential. It is then possible to find a function V, called potential 
energy, such that

 dU 5 2dV (10.19)

Integrating (10.19) over a finite displacement, we obtain the general 
formula
 U1y2 5 V1 2 V2 (10.20)

which expresses that the work of the force is independent of the path 
followed and is equal to minus the change in potential energy. A force 
which satisfies Eq. (10.20) is said to be a conservative force.‡

Fig. 10.11 (repeated )

A

A1

A2

y1

y2

dy

y

W

Spring undeformed

A0

A

B

B

x1

x2

x

F

A2

B

A1

Fig. 10.12a (repeated )

†See footnote, page 559.

‡A detailed discussion of conservative forces is given in Sec. 13.7 of Dynamics.
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581*10.8 POTENTIAL ENERGY AND EQUILIBRIUM
The application of the principle of virtual work is considerably simpli-
fied when the potential energy of a system is known. In the case of a 
virtual displacement, formula (10.19) becomes dU 5 2dV. Moreover, 
if the position of the system is defined by a single independent variable 
u, we can write dV 5 (dV/du) du. Since du must be different from zero, 
the condition dU 5 0 for the equilibrium of the system becomes

 
dV
du

5 0 
(10.21)

In terms of potential energy, therefore, the principle of virtual work 
states that if a system is in equilibrium, the derivative of its total 
potential energy is zero. If the position of the system depends upon 
several independent variables (the system is then said to possess 
several degrees of freedom), the partial derivatives of V with respect 
to each of the independent variables must be zero.
 Consider, for example, a structure made of two members AC 
and CB and carrying a load W at C. The structure is supported by a 
pin at A and a roller at B, and a spring BD connects B to a fixed point 
D (Fig. 10.13a). The constant of the spring is k, and it is assumed 
that the natural length of the spring is equal to AD and thus that the 
spring is undeformed when B coincides with A. Neglecting the  friction 
forces and the weight of the members, we find that the only forces 
which work during a displacement of the structure are the weight W 
and the force F exerted by the spring at point B (Fig. 10.13b). The 
total potential energy of the system will thus be obtained by adding 
the potential energy Vg corresponding to the gravity force W and the 
potential energy Ve corresponding to the elastic force F.
 Choosing a coordinate system with origin at A and noting that 
the deflection of the spring, measured from its undeformed position, 
is AB 5 xB, we write

Ve 5 1
2 kx2

B  Vg 5 WyC

Expressing the coordinates xB and yC in terms of the angle u, we have

 xB 5 2l sin u    yC 5 l cos u
 Ve 5 1

2 k(2l sin u)2  Vg 5 W(l cos u)
 V 5 Ve 1 Vg 5 2kl2 sin2 u 1 Wl cos u (10.22)

The positions of equilibrium of the system are obtained by equating 
to zero the derivative of the potential energy V. We write

dV
du

5 4kl2 sin u cos u 2 Wl sin u 5 0

or, factoring l sin u,

dV
du

5 l sin u(4kl cos u 2 W) 5 0

There are therefore two positions of equilibrium, corresponding to 
the values u 5 0 and u 5 cos21 (W/4kl), respectively.†

10.8 Potential Energy and Equilibrium

†The second position does not exist if W . 4kl.

Fig. 10.13
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582 Method of Virtual Work *10.9 STABILITY OF EQUILIBRIUM
Consider the three uniform rods of length 2a and weight W shown 
in Fig. 10.14. While each rod is in equilibrium, there is an important 
difference between the three cases considered. Suppose that each 
rod is slightly disturbed from its position of equilibrium and then 
released: rod a will move back toward its original position, rod b will 
keep moving away from its original position, and rod c will remain 
in its new position. In case a, the equilibrium of the rod is said to 
be stable; in case b, it is said to be unstable; and, in case c, it is said 
to be neutral.

q

(a) Stable equilibrium

A

B

W

2a

y

q

q

(b) Unstable equilibrium

A
W

2a

a

y

(c) Neutral equilibrium

AB

B

C

y = a

Fig. 10.14

 Recalling from Sec. 10.7 that the potential energy Vg with 
respect to gravity is equal to Wy, where y is the elevation of the 
point of application of W measured from an arbitrary level, we 
observe that the potential energy of rod a is minimum in the posi-
tion of equilibrium considered, that the potential energy of rod b 
is maximum, and that the potential energy of rod c is constant. 
Equilibrium is thus stable, unstable, or neutral according to 
whether the potential energy is minimum, maximum, or constant 
(Fig. 10.15).
 That the result obtained is quite general can be seen as fol-
lows: We first observe that a force always tends to do positive work 
and thus to decrease the potential energy of the system on which 
it is applied. Therefore, when a system is disturbed from its posi-
tion of equilibrium, the forces acting on the system will tend to 
bring it back to its original position if V is minimum (Fig. 10.15a) 
and to move it farther away if V is maximum (Fig. 10.15b). If V is 
constant (Fig. 10.15c), the forces will not tend to move the system 
either way.
 Recalling from calculus that a function is minimum or maxi-
mum according to whether its second derivative is positive or nega-
tive, we can summarize the conditions for the equilibrium of a system 
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583with one degree of freedom (i.e., a system the position of which is 
defined by a single independent variable u) as follows:

 
dV
du

5 0   d2V
du2 . 0: stable equilibrium

  
dV
du

5 0   d2V
du2 , 0: unstable equilibrium 

(10.23)

10.9  Stability of Equilibrium

If both the first and the second derivatives of V are zero, it is neces-
sary to examine derivatives of a higher order to determine whether 
the equilibrium is stable, unstable, or neutral. The equilibrium will 
be neutral if all derivatives are zero, since the potential energy V is 
then a constant. The equilibrium will be stable if the first derivative 
found to be different from zero is of even order and positive. In all 
other cases the equilibrium will be unstable.
 If the system considered possesses several degrees of freedom, 
the potential energy V depends upon several variables, and it is thus 
necessary to apply the theory of functions of several variables to 
determine whether V is minimum. It can be verified that a system 
with 2 degrees of freedom will be stable, and the corresponding 
potential energy V(u1, u2) will be minimum, if the following relations 
are satisfied simultaneously:

0V
0u1

5
0V
0u2

5 0

 a 02V
0u1 0u2

b2

2
02V
0u2

1
 
02V
0u2

2
, 0 (10.24)

02V
0u2

1
. 0   or   02V

0u2
2

. 0

(a) Stable equilibrium
q

(b) Unstable equilibrium

V

(c) Neutral equilibrium
q

V

q

V

Fig. 10.15
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584

SAMPLE PROBLEM 10.4

A 10-kg block is attached to the rim of a 300-mm-radius disk as shown. 
Knowing that spring BC is unstretched when u 5 0, determine the position 
or positions of equilibrium, and state in each case whether the equilibrium 
is stable, unstable, or neutral.

s

q

A

O

y

y

x

b

a

Undeformed
position

W = mg

F = ks

SOLUTION

Potential Energy. Denoting by s the deflection of the spring from its unde-
formed position and placing the origin of coordinates at O, we obtain

Ve 5 1
2 ks2   Vg 5 Wy 5 mgy

Measuring u in radians, we have

s 5 au  y 5 b cos u

Substituting for s and y in the expressions for Ve and Vg, we write

Ve 5 1
2 
ka2u2   Vg 5 mgb cos u

V 5 Ve 1 Vg 5 1
2 
ka2u2 1 mgb cos u

Positions of Equilibrium. Setting dV/du 5 0, we write

dV
du

5 ka2u 2 mgb sin u 5 0

 sin u 5
ka2

mgb
 u

Substituting a 5 0.08 m, b 5 0.3 m, k 5 4 kN/m, and m 5 10 kg, we obtain

  sin u 5
(4 kN/m)(0.08 m)2

(10 kg)(9.81 m/s2)(0.3 m)
 u

 sin u 5 0.8699 u

where u is expressed in radians. Solving by trial and error for u, we find

 u 5 0 and u 5 0.902 rad
u 5 0   and   u 5 51.78  ◀

Stability of Equilibrium. The second derivative of the potential energy V 
with respect to u is

 
d2V

du2 5 ka2 2 mgb cos u

 5 (4 kN/m)(0.08 m)2 2 (10 kg)(9.81 m/s2)(0.3 m) cos u
 5 25.6 2 29.43 cos u

For u 5 0:  
d2V

du2 5 25.6 2 29.43 cos 0° 5 23.83 , 0

The equilibrium is unstable for u 5 0 ◀

For u 5 51.78:  
d2V

du2 5 25.6 2 29.43 cos 51.7° 5 17.36 . 0

The equilibrium is stable for u 5 51.78 ◀

q

10 kg
A

B O

C

a = 80 mm

b = 300 mm

k = 4 kN/m
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585

SOLVING PROBLEMS
ON YOUR OWN

In this lesson we defined the work of a force during a finite displacement and 
the potential energy of a rigid body or a system of rigid bodies. You learned to 

use the concept of potential energy to determine the equilibrium position of a 
rigid body or a system of rigid bodies.

1. The potential energy V of a system is the sum of the potential energies 
associated with the various forces acting on the system that do work as the system 
moves. In the problems of this lesson you will determine the following:

a. Potential energy of a weight. This is the potential energy due to gravity, 
Vg 5 Wy, where y is the elevation of the weight W measured from some arbitrary 
reference level. Note that the potential energy Vg may be used with any vertical 
force P of constant magnitude directed downward; we write Vg 5 Py.
 b. Potential energy of a spring. This is the potential energy due to the elastic 
force exerted by a spring, Ve 5 1

2 kx2, where k is the constant of the spring and x 
is the deformation of the spring measured from its unstretched position.

Reactions at fixed supports, internal forces at connections, forces exerted by inex-
tensible cords and cables, and other forces which do no work do not contribute 
to the potential energy of the system.

2. Express all distances and angles in terms of a single variable, such as an 
angle u, when computing the potential energy V of a system. This is necessary, 
since the determination of the equilibrium position of the system requires the 
computation of the derivative dV/du.

3. When a system is in equilibrium, the first derivative of its potential energy 
is zero. Therefore:
 a. To determine a position of equilibrium of a system, once its potential 
energy V has been expressed in terms of the single variable u, compute its deriva-
tive and solve the equation dV/du 5 0 for u.
 b. To determine the force or couple required to maintain a system in a 
given position of equilibrium, substitute the known value of u in the equation 
dV/du 5 0 and solve this equation for the desired force or couple.

4. Stability of equilibrium. The following rules generally apply:
 a. Stable equilibrium occurs when the potential energy of the system is mini-
mum, that is, when dV/du 5 0 and d2V/du2 . 0 (Figs. 10.14a and 10.15a).
 b. Unstable equilibrium occurs when the potential energy of the system is maxi-
mum, that is, when dV/du 5 0 and d2V/du2 , 0 (Figs. 10.14b and 10.15b).
 c. Neutral equilibrium occurs when the potential energy of the system is con-
stant; dV/du, d2V/du2, and all the successive derivatives of V are then equal to zero 
(Figs. 10.14c and 10.15c).

See page 583 for a discussion of the case when dV/du, d2V/du2 but not all of the 
successive derivatives of V are equal to zero.
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PROBLEMS

586

10.59 Using the method of Sec. 10.8, solve Prob. 10.29.

10.60 Using the method of Sec. 10.8, solve Prob. 10.30.

10.61 Using the method of Sec. 10.8, solve Prob. 10.31.

10.62 Using the method of Sec. 10.8, solve Prob. 10.32.

10.63 Using the method of Sec. 10.8, solve Prob. 10.33.

10.64 Using the method of Sec. 10.8, solve Prob. 10.35.

10.65 Using the method of Sec. 10.8, solve Prob. 10.37.

10.66 Using the method of Sec. 10.8, solve Prob. 10.38.

10.67 Show that equilibrium is neutral in Prob. 10.1.

10.68 Show that equilibrium is neutral in Prob. 10.7.

10.69 Two uniform rods, each of mass m, are attached to gears of equal 
radii as shown. Determine the positions of equilibrium of the sys-
tem and state in each case whether the equilibrium is stable, 
unstable, or neutral.

10.70 Two uniform rods, AB and CD, are attached to gears of equal radii 
as shown. Knowing that WAB 5 8 lb and WCD 5 4 lb, determine 
the positions of equilibrium of the system and state in each case 
whether the equilibrium is stable, unstable, or neutral.

10.71 Two uniform rods, each of mass m and length l, are attached to 
gears as shown. For the range 0 # u # 1808, determine the posi-
tions of equilibrium of the system and state in each case whether 
the equilibrium is stable, unstable, or neutral.

q

q

A

B

D

C

l

l

Fig. P10.69 and P10.70

q
1.5q

A

B

3a

D

2a

C

Fig. P10.71
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587Problems 10.72 Two uniform rods, each of mass m and length l, are attached to 
drums that are connected by a belt as shown. Assuming that no 
slipping occurs between the belt and the drums, determine the 
positions of equilibrium of the system and state in each case 
whether the equilibrium is stable, unstable, or neutral.

 10.73 Using the method of Sec. 10.8, solve Prob. 10.39. Determine 
whether the equilibrium is stable, unstable, or neutral. (Hint: The 
potential energy corresponding to the couple exerted by a torsion 
spring is 1

2 Ku2, where K is the torsional spring constant and u is 
the angle of twist.)

 10.74 In Prob. 10.40, determine whether each of the positions of equi-
librium is stable, unstable, or neutral. (See hint for Prob. 10.73.)

 10.75 A load W of magnitude 100 lb is applied to the mechanism at C. 
Knowing that the spring is unstretched when u 5 158, determine 
that value of u corresponding to equilibrium and check that the 
equilibrium is stable.

 10.76 A load W of magnitude 100 lb is applied to the mechanism at C. 
Knowing that the spring is unstretched when u 5 308, determine 
that value of u corresponding to equilibrium and check that the 
equilibrium is stable.

 10.77 A slender rod AB, of weight W, is attached to two blocks A and B 
that can move freely in the guides shown. Knowing that the spring 
is unstretched when y 5 0, determine the value of y corresponding 
to equilibrium when W 5 80 N, l 5 500 mm, and k 5 600 N/m.

W

q

A
B

C

l = 20 in.

r = 5 in.

k = 50 lb/in.

Fig. P10.75 and P10.76

D

A

B

C

a

2a

2q

q

Fig. P10.72

y

l

C

B
W

l

A

Fig. P10.77
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588 Method of Virtual Work  10.78 A slender rod AB, of weight W, is attached to two blocks A and B 
that can move freely in the guides shown. Knowing that both 
springs are unstretched when y 5 0, determine the value of y 
 corresponding to equilibrium when W 5 80 N, l 5 500 mm, and 
k 5 600 N/m.

C

B

A

l

l

W

y

Fig. P10.78

 10.79 A slender rod AB, of weight W, is attached to two blocks A and B 
that can move freely in the guides shown. The constant of the 
spring is k, and the spring is unstretched when AB is horizontal. 
Neglecting the weight of the blocks, derive an equation in u, W, l, 
and k that must be satisfied when the rod is in equilibrium.

A

qq

B
aa

brrb

P

Fig. P10.81 and P10.82

C

A

B

q

l
W

Fig. P10.79 and P10.80

 10.80 A slender rod AB, of weight W, is attached to two blocks A and B 
that can move freely in the guides shown. Knowing that the spring 
is unstretched when AB is horizontal, determine three values of u 
corresponding to equilibrium when W 5 300 lb, l 5 16 in., and 
k 5 75 lb/in. State in each case whether the equilibrium is stable, 
unstable, or neutral.

 10.81 A spring AB of constant k is attached to two identical gears as 
shown. Knowing that the spring is undeformed when u 5 0, 
 determine two values of the angle u corresponding to equilibrium 
when P 5 30 lb, a 5 4 in., b 5 3 in., r 5 6 in., and k 5 5 lb/in. 
State in each case whether the equilibrium is stable, unstable, or 
neutral.

 10.82 A spring AB of constant k is attached to two identical gears as 
shown. Knowing that the spring is undeformed when u 5 0, and 
given that a 5 60 mm, b 5 45 mm, r 5 90 mm, and k 5 6 kN/m, 
determine (a) the range of values of P for which a position of 
equilibrium exists, (b) two values of u corresponding to equilibrium 
if the value of P is equal to half the upper limit of the range found 
in part a.
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589Problems 10.83 A slender rod AB is attached to two collars A and B that can move 
freely along the guide rods shown. Knowing that b 5 308 and 
P 5 Q 5 400 N, determine the value of the angle u corresponding 
to equilibrium.

 10.84 A slender rod AB is attached to two collars A and B that can move 
freely along the guide rods shown. Knowing that b 5 308, P 5 
100 N, and Q 5 25 N, determine the value of the angle u cor-
responding to equilibrium.

 10.85 and 10.86 Cart B, which weighs 75 kN, rolls along a sloping 
track that forms an angle b with the horizontal. The spring con-
stant is 5 kN/m, and the spring is unstretched when x 5 0. Deter-
mine the distance x corresponding to equilibrium for the angle b 
indicated.

 10.85 Angle b 5 308
 10.86 Angle b 5 608

 10.87 and 10.88 Collar A can slide freely on the semicircular rod 
shown. Knowing that the constant of the spring is k and that the 
unstretched length of the spring is equal to the radius r, determine 
the value of u corresponding to equilibrium when W 5 50 lb, r 5 
9 in., and k 5 15 lb/in.

P

A

B

L
q

b

Q

Fig. P10.83 and P10.84

A

B
C

qr

W

Fig. P10.87

B

A

C

q

r

W

Fig. P10.88

4 m

x

A

B

b

Fig. P10.85 and P10.86
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590 Method of Virtual Work  10.89 Two bars AB and BC of negligible weight are attached to a single 
spring of constant k that is unstretched when the bars are horizon-
tal. Determine the range of values of the magnitude P of two equal 
and opposite forces P and 2P for which the equilibrium of the 
system is stable in the position shown.

A

D

C

B

la

P

–P

Fig. P10.90

A

B

W

d

h

Fig. P10.91 and P10.92

 10.90 A vertical bar AD is attached to two springs of constant k and is 
in equilibrium in the position shown. Determine the range of 
 values of the magnitude P of two equal and opposite vertical 
forces P and 2P for which the equilibrium position is stable if 
(a) AB 5 CD, (b) AB 5 2CD.

 10.91 Rod AB is attached to a hinge at A and to two springs, each of 
constant k. If h 5 25 in., d 5 12 in., and W 5 80 lb, determine 
the range of values of k for which the equilibrium of the rod is 
stable in the position shown. Each spring can act in either tension 
or compression.

 10.92 Rod AB is attached to a hinge at A and to two springs, each of 
constant k. If h 5 45 in., k 5 6 lb/in., and W 5 60 lb, determine 
the smallest distance d for which the equilibrium of the rod is 
stable in the position shown. Each spring can act in either tension 
or compression.

 10.93 and 10.94 Two bars are attached to a single spring of constant 
k that is unstretched when the bars are vertical. Determine the 
range of values of P for which the equilibrium of the system is 
stable in the position shown.

P

A

B

D

P

A

B

C

D

L
3

L
3

L
3

Fig. P10.93 Fig. P10.94

l l

−PP

A

B

C

Fig. P10.89
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591Problems 10.95 The horizontal bar BEH is connected to three vertical bars. The 
collar at E can slide freely on bar DF. Determine the range of 
values of Q for which the equilibrium of the system is stable in 
the position shown when a 5 24 in., b 5 20 in., and P 5 150 lb.

 10.96 The horizontal bar BEH is connected to three vertical bars. The 
collar at E can slide freely on bar DF. Determine the range of 
values of P for which the equilibrium of the system is stable in the 
position shown when a 5 150 mm, b 5 200 mm, and Q 5 45 N.

 *10.97 Bars AB and BC, each of length l and of negligible weight, are 
attached to two springs, each of constant k. The springs are unde-
formed and the system is in equilibrium when u1 5 u2 5 0. Deter-
mine the range of values of P for which the equilibrium position 
is stable.

 *10.98 Solve Prob. 10.97 knowing that l 5 800 mm and k 5 2.5 kN/m.

 *10.99 Two rods of negligible weight are attached to drums of radius r 
that are connected by a belt and spring of constant k. Knowing 
that the spring is undeformed when the rods are vertical, deter-
mine the range of values of P for which the equilibrium position 
u1 5 u2 5 0 is stable.

  *10.100 Solve Prob. 10.99 knowing that k 5 20 lb/in., r 5 3 in., l 5 6 in., 
and (a) W 5 15 lb, (b) W 5 60 lb.

P

QQ

D
A

B

C F I

H

G

E

a

b

Fig. P10.95 and P10.96P

A

B

C

q1

q2

Fig. P10.97

W

2q

1q

A

B

D

C
r r

l

l

P

Fig. P10.99
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592

REVIEW AND SUMMARY

The first part of this chapter was devoted to the principle of virtual 
work and to its direct application to the solution of equilibrium prob-
lems. We first defined the work of a force F corresponding to the 
small displacement dr [Sec. 10.2] as the quantity

dU 5 F ? dr (10.1)

obtained by forming the scalar product of the force F and the dis-
placement dr (Fig. 10.16). Denoting respectively by F and ds the 
magnitudes of the force and of the displacement, and by a the angle 
formed by F and dr, we wrote

 dU 5 F ds cos a (10.19)

The work dU is positive if a , 908, zero if a 5 908, and negative if 
a . 908. We also found that the work of a couple of moment M
acting on a rigid body is

dU 5 M du (10.2)

where du is the small angle expressed in radians through which the 
body rotates.

Considering a particle located at A and acted upon by several forces 
F1, F2, . . . , Fn [Sec. 10.3], we imagined that the particle moved to 
a new position A9 (Fig. 10.17). Since this displacement did not actu-
ally take place, it was referred to as a virtual displacement and 
denoted by dr, while the corresponding work of the forces was called 
virtual work and denoted by dU. We had

dU 5 F1 ? dr 1 F2 ? dr 1 . . . 1 Fn ? dr

The principle of virtual work states that if a particle is in equilib-
rium, the total virtual work dU of the forces acting on the particle is 
zero for any virtual displacement of the particle.
 The principle of virtual work can be extended to the case of 
rigid bodies and systems of rigid bodies. Since it involves only forces 
which do work, its application provides a useful alternative to the 
use of the equilibrium equations in the solution of many engineering 
problems. It is particularly effective in the case of machines and 
mechanisms consisting of connected rigid bodies, since the work of 
the reactions at the supports is zero and the work of the internal forces 
at the pin connections cancels out [Sec. 10.4; Sample Probs. 10.1, 10.2, 
and 10.3].

Work of a force

Virtual displacement

Principle of virtual work

a

dr

A

A'

F

Fig. 10.16

F2

F1

Fn

A

A'

dr

Fig. 10.17
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593In the case of real machines, however [Sec. 10.5], the work of the 
friction forces should be taken into account, with the result that the 
output work will be less than the input work. Defining the mechanical 
efficiency of a machine as the ratio

 h 5
output work

input work
 (10.9)

we also noted that for an ideal machine (no friction) h 5 1, while 
for a real machine h , 1.

In the second part of the chapter we considered the work of forces 
corresponding to finite displacements of their points of application. 
The work U1y2 of the force F corresponding to a displacement of 
the particle A from A1 to A2 (Fig. 10.18) was obtained by integrating 
the right-hand member of Eq. (10.1) or (10.19) along the curve 
described by the particle [Sec. 10.6]:

 U1y2 5#
A2

A1

 F ? dr  (10.11)

or

 U1y2 5#
s2

s1

 (F  cos a) ds (10.119)

Similarly, the work of a couple of moment M corresponding to a 
finite rotation from u1 to u2 of a rigid body was expressed as

 U1y2 5#
u2

u1

 M du (10.12)

The work of the weight W of a body as its center of gravity moves 
from the elevation y1 to y2 (Fig. 10.19) can be obtained by making 
F 5 W and a 5 1808 in Eq. (10.119):

 U1y2 5 2#
y2

y1

W dy 5 Wy1 2 Wy2 (10.13)

The work of W is therefore positive when the elevation y decreases.

Mechanical efficiency

Work of a force over a finite 
displacement

Work of a weight

O

ds

A

A1

s1

s2

A2

a

Fs

Fig. 10.18

A

A1

A2

y1

y2

dy

y

W

Fig. 10.19

Review and Summary
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594 Method of Virtual Work The work of the force F exerted by a spring on a body A as the 
spring is stretched from x1 to x2 (Fig. 10.20) can be obtained by 
making F 5 kx, where k is the constant of the spring, and a 5 1808 
in Eq. (10.119):

 U1y2 5 2#
x2

x1

 kx dx 5 1
2 kx2

1 2 1
2 kx2

2 (10.15)

The work of F is therefore positive when the spring is returning to 
its undeformed position.

 When the work of a force F is independent of the path actually 
followed between A1 and A2, the force is said to be a conservative 
force, and its work can be expressed as

 U1y2 5 V1 2 V2 (10.20)

where V is the potential energy associated with F, and V1 and V2 
represent the values of V at A1 and A2, respectively [Sec. 10.7]. The 
potential energies associated, respectively, with the force of gravity 
W and the elastic force F exerted by a spring were found to be

 Vg 5 Wy   and   Ve 5 1
2 kx2 (10.17, 10.18)

When the position of a mechanical system depends upon a single 
independent variable u, the potential energy of the system is a func-
tion V(u) of that variable, and it follows from Eq. (10.20) that dU 5 
2dV 5 2(dV/du) du. The condition dU 5 0 required by the prin-
ciple of virtual work for the equilibrium of the system can thus be 
replaced by the condition

 
dV
du

5 0 (10.21)

When all the forces involved are conservative, it may be preferable 
to use Eq. (10.21) rather than apply the principle of virtual work 
directly [Sec. 10.8; Sample Prob. 10.4].

This approach presents another advantage, since it is possible to 
determine from the sign of the second derivative of V whether the 
equilibrium of the system is stable, unstable, or neutral [Sec. 10.9]. 
If d2V/du2 . 0, V is minimum and the equilibrium is stable; if 
d2V/du2 , 0, V is maximum and the equilibrium is unstable; if 
d2V/du2 5 0, it is necessary to examine derivatives of a higher order.

Work of the force exerted by a spring

Potential energy

Alternative expression for the 
principle of virtual work

Stability of equilibrium

Spring undeformed

A0

A

B

B

x1

x2

x

F

A2

B

A1

Fig. 10.20
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595

REVIEW PROBLEMS

 10.101 Determine the horizontal force P that must be applied at A to 
maintain the equilibrium of the linkage.

 10.102 Determine the couple M that must be applied to member ABC
to maintain the equilibrium of the linkage.

 10.103 A spring of constant 15 kN/m connects points C and F of the link-
age shown. Neglecting the weight of the spring and linkage, deter-
mine the force in the spring and the vertical motion of point G
when a vertical downward 120-N force is applied (a) at point C, 
(b) at points C and H.

 10.104 Derive an expression for the magnitude of the force Q required 
to maintain the equilibrium of the mechanism shown.

 10.105 Derive an expression for the magnitude of the couple M required 
to maintain the equilibrium of the linkage shown.

10 in.

5 in.

4 in. 6 in.

9 in.

6 in.

A

B
C

D E

F

G

30 lb

80 lb

180 lb·in.

40 lb

Fig. P10.101 and P10.102

H

C

F

G

D E

BA

Fig. P10.103

90°
A

B
C

P

P

q qQ D

90°
l

l

l

Fig. P10.104q

D
C

A

B

E

a

a

a

a
F

M

P

P

a

Fig. P10.105
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596 Method of Virtual Work  10.106 Two rods AC and CE are connected by a pin at C and by a spring 
AE. The constant of the spring is k, and the spring is unstretched 
when u 5 308. For the loading shown, derive an equation in P, u, 
l, and k that must be satisfied when the system is in equilibrium.

 10.107 A force P of magnitude 240 N is applied to end E of cable CDE, 
which passes under pulley D and is attached to the mechanism at 
C. Neglecting the weight of the mechanism and the radius of the 
pulley, determine the value of u corresponding to equilibrium. 
The constant of the spring is k 5 4 kN/m, and the spring is 
unstretched when u 5 908.

 10.108 Two identical rods ABC and DBE are connected by a pin at B and 
by a spring CE. Knowing that the spring is 4 in. long when 
unstretched and that the constant of the spring is 8 lb/in., deter-
mine the distance x corresponding to equilibrium when a 24-lb 
load is applied at E as shown.

9 in.

6 in.

A

x

D

B
E

C

24 lb

Fig. P10.108

A

B

C

D

E

qq

P

l

l

Fig. P10.106
A

B

C
120 mm

300 mm

300 mm

q D
E

P

Fig. P10.107

P

A

D

E

B

C

a

l

l

a

Fig. P10.110

 10.109 Solve Prob. 10.108 assuming that the 24-lb load is applied at C 
instead of E.

 10.110 Two bars AB and BC are attached to a single spring of constant 
k that is unstretched when the bars are vertical. Determine the 
range of values of P for which the equilibrium of the system is 
stable in the position shown.
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597Review Problems 10.111 A homogeneous hemisphere of radius r is placed on an incline as 
shown. Assuming that friction is sufficient to prevent slipping 
between the hemisphere and the incline, determine the angle u 
corresponding to equilibrium when b 5 108.

 10.112 A homogeneous hemisphere of radius r is placed on an incline as 
shown. Assuming that friction is sufficient to prevent slipping 
between the hemisphere and the incline, determine (a) the largest 
angle b for which a position of equilibrium exists, (b) the angle u 
corresponding to equilibrium when the angle b is equal to half 
the value found in part a. 

q

b

G

C

Fig. P10.111 and P10.112
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598

COMPUTER PROBLEMS

 10.C1 A couple M is applied to crank AB in order to maintain the equi-
librium of the engine system shown when a force P is applied to the piston. 
Knowing that b 5 2.4 in. and l 5 7.5 in., write a computer program that can 
be used to calculate the ratio M/P for values of u from 0 to 1808 using 108 
increments. Using appropriate smaller increments, determine the value of u 
for which the ratio M/P is maximum, and the corresponding value of M/P.

qP
A

B

C

l

b
M

Fig. P10.C1

 10.C2 Knowing that a 5 500 mm, b 5 150 mm, L 5 500 mm, and P 5 
100 N, write a computer program that can be used to calculate the force in 
member BD for values of u from 308 to 1508 using 108 increments. Using 
appropriate smaller increments, determine the range of values of u for which 
the absolute value of the force in member BD is less than 400 N.

A

B

C

b

D

a

L

q

P

Fig. P10.C2

a

C

B

D

A
a

a

90°

q

W

Fig. P10.C4

 10.C3 Solve Prob. 10.C2 assuming that the force P applied at A is directed 
horizontally to the right.

 10.C4 The constant of spring AB is k, and the spring is unstretched when 
u 5 0. (a) Neglecting the weight of the member BCD, write a computer 
program that can be used to calculate the potential energy of the system and 
its derivative dV/du. (b) For W 5 150 lb, a 5 10 in., and k 5 75 lb/in., cal-
culate and plot the potential energy versus u for values of u from 0 to 1658
using 158 increments. (c) Using appropriate smaller increments, determine 
the values of u for which the system is in equilibrium and state in each case 
whether the equilibrium is stable, unstable, or neutral.
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599Computer Problems 10.C5 Two rods, AC and DE, each of length L, are connected by a collar 
that is attached to rod AC at its midpoint B. (a) Write a computer program 
that can be used to calculate the potential energy V of the system and its 
derivative dV/du. (b) For W 5 75 N, P 5 200 N, and L 5 500 mm, calculate 
V and dV/du for values of u from 0 to 708 using 58 increments. (c) Using 
appropriate smaller increments, determine the values of u for which the 
system is in equilibrium and state in each case whether the equilibrium is 
stable, unstable, or neutral.

 10.C6 A slender rod ABC is attached to blocks A and B that can move 
freely in the guides shown. The constant of the spring is k, and the spring 
is unstretched when the rod is vertical. (a) Neglecting the weights of the 
rod and of the blocks, write a computer program that can be used to calculate 
the potential energy V of the system and its derivative dV/du. (b) For P 5 
150 N, l 5 200 mm, and k 5 3 kN/m, calculate and plot the potential energy 
versus u for values of u from 0 to 758 using 58 increments. (c) Using appro-
priate smaller increments, determine any positions of equilibrium in the 
range 0 # u # 758 and state in each case whether the equilibrium is stable, 
unstable, or neutral.

 10.C7 Solve Prob. 10.C6 assuming that the force P applied at C is directed 
horizontally to the right.

P

W

A

D

B

C

E

q

L

Fig. P10.C5

C

A

B

q

l

l

P

Fig. P10.C6 
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The motion of the space shuttle can 

be described in terms of its position, 

velocity, and acceleration. When landing, 

the pilot of the shuttle needs to consider 

the wind velocity and the relative motion 

of the shuttle with respect to the wind. 

The study of motion is known as 

kinematics and is the subject of 

this chapter.

600
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Kinematics of Particles
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 11C H A P T E R
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602

11.1 INTRODUCTION TO DYNAMICS
Chapters 1 to 10 were devoted to statics, i.e., to the analysis of bodies 
at rest. We now begin the study of dynamics, the part of mechanics 
that deals with the analysis of bodies in motion.
 While the study of statics goes back to the time of the Greek 
philosophers, the first significant contribution to dynamics was made 
by Galileo (1564–1642). Galileo’s experiments on uniformly acceler-
ated bodies led Newton (1642–1727) to formulate his fundamental 
laws of motion.
 Dynamics includes:

 1. Kinematics, which is the study of the geometry of motion. 
Kinematics is used to relate displacement, velocity, acceleration, 
and time, without reference to the cause of the motion.

 2. Kinetics, which is the study of the relation existing between the 
forces acting on a body, the mass of the body, and the motion 
of the body. Kinetics is used to predict the motion caused by 
given forces or to determine the forces required to produce a 
given motion.

 Chapters 11 to 14 are devoted to the dynamics of particles; in 
Chap. 11 the kinematics of particles will be considered. The use of 
the word particles does not mean that our study will be restricted to 
small corpuscles; rather, it indicates that in these first chapters the 
motion of bodies—possibly as large as cars, rockets, or airplanes—
will be considered without regard to their size. By saying that the 
bodies are analyzed as particles, we mean that only their motion as 
an entire unit will be considered; any rotation about their own mass 
center will be neglected. There are cases, however, when such a 
rotation is not negligible; the bodies cannot then be considered as 
particles. Such motions will be analyzed in later chapters, dealing 
with the dynamics of rigid bodies.
 In the first part of Chap. 11, the rectilinear motion of a particle 
will be analyzed; that is, the position, velocity, and acceleration of a 
particle will be determined at every instant as it moves along a 
straight line. First, general methods of analysis will be used to study 
the motion of a particle; then two important particular cases will be 
considered, namely, the uniform motion and the uniformly acceler-
ated motion of a particle (Secs. 11.4 and 11.5). In Sec. 11.6 the 
simultaneous motion of several particles will be considered, and the 
concept of the relative motion of one particle with respect to another 
will be introduced. The first part of this chapter concludes with a 
study of graphical methods of analysis and their application to the 
solution of various problems involving the rectilinear motion of par-
ticles (Secs. 11.7 and 11.8).
 In the second part of this chapter, the motion of a particle as 
it moves along a curved path will be analyzed. Since the position, 
velocity, and acceleration of a particle will be defined as vector 
quantities, the concept of the derivative of a vector function will be 
introduced in Sec. 11.10 and added to our mathematical tools. 
Applications in which the motion of a particle is defined by the 
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603rectangular components of its velocity and acceleration will then be 
considered; at this point, the motion of a projectile will be analyzed 
(Sec. 11.11). In Sec. 11.12, the motion of a particle relative to a 
reference frame in translation will be considered. Finally, the cur-
vilinear motion of a particle will be analyzed in terms of components 
other than rectangular. The tangential and normal components of a 
particular velocity and an acceleration will be introduced in 
Sec. 11.13 and the radial and transverse components of its velocity 
and acceleration in Sec. 11.14.

RECTILINEAR MOTION OF PARTICLES

11.2 POSITION, VELOCITY, AND ACCELERATION
A particle moving along a straight line is said to be in rectilinear 
motion. At any given instant t, the particle will occupy a certain posi-
tion on the straight line. To define the position P of the particle, we 
choose a fixed origin O on the straight line and a positive direction 
along the line. We measure the distance x from O to P and record 
it with a plus or minus sign, according to whether P is reached from 
O by moving along the line in the positive or the negative direction. 
The distance x, with the appropriate sign, completely defines the 
position of the particle; it is called the position coordinate of the 
particle considered. For example, the position coordinate corre-
sponding to P in Fig. 11.1a is x 5 15 m; the coordinate correspond-
ing to P9 in Fig. 11.1b is x9 5 22 m.
 When the position coordinate x of a particle is known for every 
value of time t, we say that the motion of the particle is known. The 
“timetable” of the motion can be given in the form of an equation 
in x and t, such as x 5 6t2 2 t3, or in the form of a graph of x versus 
t as shown in Fig. 11.6. The units most often used to measure the 
position coordinate x are the meter (m) in the SI system of units† 
and the foot (ft) in the U.S. customary system of units. Time t is 
usually measured in seconds (s).
 Consider the position P occupied by the particle at time t 
and the corresponding coordinate x (Fig. 11.2). Consider also the 
position P9 occupied by the particle at a later time t 1 ¢t; the 
position coordinate of P9 can be obtained by adding to the coor-
dinate x of P the small displacement ¢x, which will be positive or 
negative according to whether P9 is to the right or to the left of 
P. The average velocity of the particle over the time interval ¢t 
is defined as the quotient of the displacement ¢x and the time 
interval ¢t:

Average velocity 5
¢x
¢t

†Cf. Sec. 1.3.

11.2 Position, Velocity, and Acceleration

Fig. 11.1
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Photo 11.1 The motion of this solar car can be 
described by its position, velocity, and 
acceleration.
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604 Kinematics of Particles If SI units are used, ¢x is expressed in meters and ¢t in seconds; 
the average velocity will thus be expressed in meters per second 
(m/s). If U.S. customary units are used, ¢x is expressed in feet and 
¢t in seconds; the average velocity will then be expressed in feet per 
second (ft/s).
 The instantaneous velocity v of the particle at the instant t is 
obtained from the average velocity by choosing shorter and shorter 
time intervals ¢t and displacements ¢x:

Instantaneous velocity 5 v 5 lim
¢ty0

 
¢x
¢t

The instantaneous velocity will also be expressed in m/s or ft/s. 
Observing that the limit of the quotient is equal, by definition, to 
the derivative of x with respect to t, we write

 
v 5

dx
dt  

(11.1)

The velocity v is represented by an algebraic number which can be 
positive or negative.† A positive value of v indicates that x increases, 
i.e., that the particle moves in the positive direction (Fig. 11.3a); a 
negative value of v indicates that x decreases, i.e., that the particle 
moves in the negative direction (Fig. 11.3b). The magnitude of v is 
known as the speed of the particle.
 Consider the velocity v of the particle at time t and also its 
velocity v 1 ¢v at a later time t 1 ¢t (Fig. 11.4). The average accel-
eration of the particle over the time interval ¢t is defined as the 
quotient of ¢v and ¢t:

Average acceleration 5
¢v
¢t

If SI units are used, ¢v is expressed in m/s and ¢t in seconds; the 
average acceleration will thus be expressed in m/s2. If U.S. customary 
units are used, ¢v is expressed in ft/s and ¢t in seconds; the average 
acceleration will then be expressed in ft/s2.
 The instantaneous acceleration a of the particle at the instant 
t is obtained from the average acceleration by choosing smaller and 
smaller values for ¢t and ¢v:

Instantaneous acceleration 5 a 5 lim
¢ty0

 
¢v
¢t

The instantaneous acceleration will also be expressed in m/s2 or ft/s2. 
The limit of the quotient, which is by definition the derivative of v 

†As you will see in Sec. 11.9, the velocity is actually a vector quantity. However, since 
we are considering here the rectilinear motion of a particle, where the velocity of the 
particle has a known and fixed direction, we need only specify the sense and magnitude 
of the velocity; this can be conveniently done by using a scalar quantity with a plus or 
minus sign. The same is true of the acceleration of a particle in rectilinear motion.

Fig. 11.4
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605with respect to t, measures the rate of change of the velocity. We 
write

 a 5
dv
dt

 (11.2)

or, substituting for v from (11.1),

 a 5
d2x
dt2  (11.3)

The acceleration a is represented by an algebraic number which can 
be positive or negative.† A positive value of a indicates that the 
velocity (i.e., the algebraic number v) increases. This may mean that 
the particle is moving faster in the positive direction (Fig. 11.5a) or 
that it is moving more slowly in the negative direction (Fig. 11.5b); 
in both cases, ¢v is positive. A negative value of a indicates that the  
velocity decreases; either the particle is moving more slowly in the 
positive direction (Fig. 11.5c) or it is moving faster in the negative 
direction (Fig. 11.5d).

†See footnote, page 604.

 The term deceleration is sometimes used to refer to a when 
the speed of the particle (i.e., the magnitude of v) decreases; the par-
ticle is then moving more slowly. For example, the particle of Fig. 11.5 
is decelerated in parts b and c; it is truly accelerated (i.e., moves faster) 
in parts a and d.
 Another expression for the acceleration can be obtained by 
eliminating the differential dt in Eqs. (11.1) and (11.2). Solving (11.1) 
for dt, we obtain dt 5 dx/v; substituting into (11.2), we write

 a 5 v 

dv
dx

 (11.4)

11.2 Position, Velocity, and Acceleration

Fig. 11.5
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606 Kinematics of Particles EXAMPLE Consider a particle moving in a straight line, and assume that 
its position is defined by the equation

x 5 6t2 2 t3

where t is expressed in seconds and x in meters. The velocity v at any time 
t is obtained by differentiating x with respect to t:

v 5
dx
dt

5 12 t 2 3t2

The acceleration a is obtained by differentiating again with respect to t:

a 5
dv
dt

5 12 2 6 t

The position coordinate, the velocity, and the acceleration have been plot-
ted against t in Fig. 11.6. The curves obtained are known as motion 
curves. Keep in mind, however, that the particle does not move along any 
of these curves; the particle moves in a straight line. Since the derivative 
of a function measures the slope of the corresponding curve, the slope 
of the x–t curve at any given time is equal to the value of v at that time 
and the slope of the v−t curve is equal to the value of a. Since a 5 0 at 
t 5 2 s, the slope of the v−t curve must be zero at t 5 2 s; the velocity 
reaches a maximum at this instant. Also, since v 5 0 at t 5 0 and at t 5 
4 s, the tangent to the x−t curve must be horizontal for both of these 
values of t.

 A study of the three motion curves of Fig. 11.6 shows that the motion 
of the particle from t 5 0 to t 5 ∞ can be divided into four phases:

 1. The particle starts from the origin, x 5 0, with no velocity but with a 
positive acceleration. Under this acceleration, the particle gains a posi-
tive velocity and moves in the positive direction. From t 5 0 to t 5 
2 s, x, v, and a are all positive.

 2. At t 5 2 s, the acceleration is zero; the velocity has reached its maxi-
mum value. From t 5 2 s to t 5 4 s, v is positive, but a is negative; 
the particle still moves in the positive direction but more and more 
slowly; the particle is decelerating.

 3. At t 5 4 s, the velocity is zero; the position coordinate x has reached 
its maximum value. From then on, both v and a are negative; the 
particle is accelerating and moves in the negative direction with 
increasing speed.

 4. At t 5 6 s, the particle passes through the origin; its coordinate x is 
then zero, while the total distance traveled since the beginning of the 
motion is 64 m. For values of t larger than 6 s, x, v, and a will all be 
negative. The particle keeps moving in the negative direction, away 
from O, faster and faster. ◾

Fig. 11.6
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60711.3  DETERMINATION OF THE MOTION 
OF A PARTICLE

We saw in the preceding section that the motion of a particle is said 
to be known if the position of the particle is known for every value 
of the time t. In practice, however, a motion is seldom defined by a 
relation between x and t. More often, the conditions of the motion 
will be specified by the type of acceleration that the particle pos-
sesses. For example, a freely falling body will have a constant accel-
eration, directed downward and equal to 9.81 m/s2, or 32.2 ft/s2; a 
mass attached to a spring which has been stretched will have an 
acceleration proportional to the instantaneous elongation of the 
spring measured from the equilibrium position, etc. In general, the 
acceleration of the particle can be expressed as a function of one or 
more of the variables x, v, and t. In order to determine the position 
coordinate x in terms of t, it will thus be necessary to perform two 
successive integrations.
 Let us consider three common classes of motion:

 1. a 5 f(t). The Acceleration Is a Given Function of t. Solving 
(11.2) for dv and substituting f(t) for a, we write

 dv 5 a dt
 dv 5 f(t) dt

  Integrating both members, we obtain the equation

e dv 5 e f(t) dt

  which defines v in terms of t. It should be noted, however, that 
an arbitrary constant will be introduced as a result of the inte-
gration. This is due to the fact that there are many motions 
which correspond to the given acceleration a 5 f(t). In order 
to uniquely define the motion of the particle, it is necessary to 
specify the initial conditions of the motion, i.e., the value v0 of 
the velocity and the value x0 of the position coordinate at t 5 0. 
Replacing the indefinite integrals by definite integrals with 
lower limits corresponding to the initial conditions t 5 0 and 
v 5 v0 and upper limits corresponding to t 5 t and v 5 v, we 
write

 #
v

v0

 dv 5#
t

0
 f(t) dt

  v 2 v0 5#
t

0
 
f(t) dt

  which yields v in terms of t.
   Equation (11.1) can now be solved for dx,

dx 5 v dt

  and the expression just obtained substituted for v. Both mem-
bers are then integrated, the left-hand member with respect 
to x from x 5 x0 to x 5 x, and the right-hand member with 

11.3 Determination of the Motion 
of a Particle
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608 Kinematics of Particles respect to t from t 5 0 to t 5 t. The position coordinate x 
is thus obtained in terms of t; the motion is completely 
determined.

   Two important particular cases will be studied in greater 
detail in Secs. 11.4 and 11.5: the case when a 5 0, correspond-
ing to a uniform motion, and the case when a 5 constant, 
 corresponding to a uniformly accelerated motion.

 2. a 5 f(x). The Acceleration Is a Given Function of x. Rearranging 
Eq. (11.4) and substituting f(x) for a, we write

 v dv 5 a dx
 v dv 5 f(x) dx

  Since each member contains only one variable, we can inte-
grate the equation. Denoting again by v0 and x0, respectively, 
the initial values of the velocity and of the position coordinate, 
we obtain

 #
v

v0

 
v dv 5#

x

x0

 
f(x) dx

 12v2 2 1
2 v2

0 5#
x

x0

 
f(x) dx

  which yields v in terms of x. We now solve (11.1) for dt,

dt 5
dx
v

  and substitute for v the expression just obtained. Both mem-
bers can then be integrated to obtain the desired relation 
between x and t. However, in most cases this last integration 
cannot be performed analytically and one must resort to a 
numerical method of integration.

 3. a 5 f(v). The Acceleration Is a Given Function of v. We can 
now substitute f(v) for a in either (11.2) or (11.4) to obtain 
either of the following relations:

  f(v) 5
dv
dt

   f(v) 5 v 

dv
dx

 dt 5
dv

f(v)
   dx 5

v dv
f(v)

  Integration of the first equation will yield a relation between v 
and t; integration of the second equation will yield a relation 
between v and x. Either of these relations can be used in con-
junction with Eq. (11.1) to obtain the relation between x and 
t which characterizes the motion of the particle.
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609

SAMPLE PROBLEM 11.1

The position of a particle which moves along a straight line is defined by the 
relation x 5 t3 2 6t2 2 15t 1 40, where x is expressed in feet and t in seconds. 
Determine (a) the time at which the velocity will be zero, (b) the position and 
distance traveled by the particle at that time, (c) the acceleration of the particle 
at that time, (d) the distance traveled by the particle from t 5 4 s to t 5 6 s.

SOLUTION

The equations of motion are
 x 5 t3 2 6t2 2 15t 1 40 (1)

  v 5
dx
dt

5 3t2 2 12t 2 15 (2)

  a 5
dv
dt

5 6 t 2 12  (3)

a. Time at Which v 5 0. We set v 5 0 in (2):

 3t2 2 12t 2 15 5 0  t 5 21 s  and t 5 15 s ◀

Only the root t 5 15 s corresponds to a time after the motion has begun: 
for t , 5 s, v , 0, the particle moves in the negative direction; for t . 5 s, 
v . 0, the particle moves in the positive direction.

b. Position and Distance Traveled When v 5 0. Carrying t 5 15 s into 
(1), we have
 x5 5 (5)3 2 6(5)2 2 15(5) 1 40 x5 5 260 ft ◀

The initial position at t 5 0 was x0 5 140 ft. Since v fi 0 during the interval 
t 5 0 to t 5 5 s, we have

Distance traveled 5 x5 2 x0 5 260 ft 2 40 ft 5 2100 ft

Distance traveled 5 100 ft in the negative direction ◀

c. Acceleration When v 5 0. We substitute t 5 15 s into (3):

 a5 5 6(5) 2 12 a5 5 118 ft/s2 ◀

d. Distance Traveled from t 5 4 s to t 5 6 s. The particle moves in the 
negative direction from t 5 4 s to t 5 5 s and in the positive direction from 
t 5 5 s to t 5 6 s; therefore, the distance traveled during each of these 
time intervals will be computed separately.

From t 5 4 s to t 5 5 s:    x5 5 260 ft

 x4 5 (4)3 2 6(4)2 2 15(4) 1 40 5 252 ft

 Distance traveled 5 x5 2 x4 5 260 ft 2 (252 ft) 5 28 ft 
 5 8 ft in the negative direction

From t 5 5 s to t 5 6 s:    x5 5 260 ft

 x6 5 (6)3 2 6(6)2 2 15(6) 1 40 5 250 ft
 Distance traveled 5 x6 2 x5 5 250 ft 2 (260 ft) 5 110 ft 
 5 10 ft in the positive direction

Total distance traveled from t 5 4 s to t 5 6 s is 8 ft 1 10 ft   5 18 ft ◀

x (ft)

v (ft/s)

t (s)

t (s)

t (s)

18

0

0

0

a (ft/s2)

40

60–

+5

+5

+2 +5
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610

SAMPLE PROBLEM 11.2

A ball is tossed with a velocity of 10 m/s directed vertically upward from a 
window located 20 m above the ground. Knowing that the acceleration of 
the ball is constant and equal to 9.81 m/s2 downward, determine (a) the 
velocity v and elevation y of the ball above the ground at any time t, 
(b) the highest elevation reached by the ball and the corresponding value 
of t, (c) the time when the ball will hit the ground and the corresponding 
velocity. Draw the v−t and y−t curves.

SOLUTION

a. Velocity and Elevation. The y axis measuring the position coordinate (or 
elevation) is chosen with its origin O on the ground and its positive sense 
upward. The value of the acceleration and the initial values of v and y are as 
indicated. Substituting for a in a 5 dv/dt and noting that at t 5 0, v0 5 110 m/s, 
we have

 
dv
dt

5 a 5 29.81 m/s2

 #
v

v0510
 dv 5 2#

t

0
 9.81 dt

 [v]v
10 5 2[9.81t]t

0

 v 2 10 5 29.81t
v 5 10 2 9.81t  (1) ◀

Substituting for v in v 5 dy/dt and noting that at t 5 0, y0 5 20 m, we have

 
dy

dt
5 v 5 10 2 9.81t

 #
y

y0520

dy 5#
t

0
 (10 2 9.81t) dt

 [y]y
20 5 [10t 2 4.905t2]t

0

 y 2 20 5 10t 2 4.905t2

y 5 20 1 10t 2 4.905t2  (2) ◀

b. Highest Elevation. When the ball reaches its highest elevation, we have 
v 5 0. Substituting into (1), we obtain

 10 2 9.81t 5 0 t 5 1.019 s ◀

Carrying t 5 1.019 s into (2), we have

 y 5 20 1 10(1.019) 2 4.905(1.019)2 y 5 25.1 m ◀

c. Ball Hits the Ground. When the ball hits the ground, we have y 5 0. 
Substituting into (2), we obtain

20 1 10t 2 4.905t2 5 0    t 5 21.243 s    and    t 5 13.28 s ◀

Only the root t 5 13.28 s corresponds to a time after the motion has begun. 
Carrying this value of t into (1), we have

 v 5 10 2 9.81(3.28) 5 222.2 m/s  v 5 22.2 m/s w ◀

y

O

a = – 9.81 m/s2

v0 = +10 m/s

y0 = +20 m

v (m /s)

t (s)

y (m)

3.28

3.28

–22.2

25.1

1.019

1.019

Velocity-time curve

Position-time
curve

10

20

0

0

t (s)

Slope = a = –9.81 m/s 2

Sl
op

e =
 v 0 

= 
10

 m
 /s

Slope = v = –22.2 m
 /s
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611

SAMPLE PROBLEM 11.3

The brake mechanism used to reduce recoil in certain types of guns consists 
essentially of a piston attached to the barrel and moving in a fixed cylinder 
filled with oil. As the barrel recoils with an initial velocity v0, the piston 
moves and oil is forced through orifices in the piston, causing the piston 
and the barrel to decelerate at a rate proportional to their velocity; that is, 
a 5 2kv. Express (a) v in terms of t, (b) x in terms of t, (c) v in terms of 
x. Draw the corresponding motion curves.

SOLUTION

a. v in Terms of t. Substituting 2kv for a in the fundamental formula 
defining acceleration, a 5 dv/dt, we write

2kv 5
dv
dt

  dv
v

5 2k dt   #
v

v0

 
dv
v

5 2k#
t

0
 dt

 ln 

v
v0

5 2kt v 5 v0e2kt ◀

b. x in Terms of t. Substituting the expression just obtained for v into 
v 5 dx/dt, we write

 v0  
e2kt 5

dx
dt

 #
x

0
 dx 5 v0#

t

0
 e

2kt dt

 x 5 2
v0

k
 [e2kt]t

0 5 2
v0

k
 (e2kt 2 1)

x 5
v0

k
 (1 2 e2kt) ◀

c. v in Terms of x. Substituting 2kv for a in a 5 v dv/dx, we write

 2kv 5 v
dv
dx

 dv 5 2k dx

 #
v

v0

 dv 5 2k#
x

0
 dx

  v 2 v0 5 2kx  v 5 v0 2 kx ◀

Check. Part c could have been solved by eliminating t from the answers 
obtained for parts a and b. This alternative method can be used as a check. 
From part a we obtain e2kt 5 v/v0; substituting into the answer of part b, 
we obtain

x 5
v0

k
 (1 2 e2kt) 5

v0

k
 a1 2

v
v0
b   v 5 v0 2 kx   (checks)

Piston

Oil

v

O t

x

O t

v0

v0

k

v

O x

v0

v0

k
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612

SOLVING PROBLEMS
ON YOUR OWN

In the problems for this lesson, you will be asked to determine the position, the 
velocity, or the acceleration of a particle in rectilinear motion. As you read each 

problem, it is important that you identify both the independent variable (typically 
t or x) and what is required (for example, the need to express v as a function of 
x). You may find it helpful to start each problem by writing down both the given 
information and a simple statement of what is to be determined.

1. Determining v(t ) and a(t ) for a given x(t ). As explained in Sec. 11.2, the 
first and the second derivatives of x with respect to t are respectively equal to the 
velocity and the acceleration of the particle [Eqs. (11.1) and (11.2)]. If the velocity 
and the acceleration have opposite signs, the particle can come to rest and then 
move in the opposite direction [Sample Prob. 11.1]. Thus, when computing the 
total distance traveled by a particle, you should first determine if the particle will 
come to rest during the specified interval of time. Constructing a diagram similar 
to that of Sample Prob. 11.1 that shows the position and the velocity of the particle 
at each critical instant (v 5 vmax, v 5 0, etc.) will help you to visualize the 
motion.

2. Determining v(t ) and x(t ) for a given a(t ). The solution of problems of this 
type was discussed in the first part of Sec. 11.3. We used the initial conditions, 
t 5 0 and v 5 v0, for the lower limits of the integrals in t and v, but any other 
known state (for example, t 5 t1, v 5 v1) could have been used instead. Also, if 
the given function a(t) contains an unknown constant (for example, the constant 
k if a 5 kt), you will first have to determine that constant by substituting a set of 
known values of t and a in the equation defining a(t).

3. Determining v(x) and x(t ) for a given a(x). This is the second case consid-
ered in Sec. 11.3. We again note that the lower limits of integration can be 
any known state (for example, x 5 x1, v 5 v1). In addition, since v 5 vmax when 
a 5 0, the positions where the maximum values of the velocity occur are easily 
determined by writing a(x) 5 0 and solving for x.

4. Determining v(x), v (t ), and x(t ) for a given a(v ). This is the last case treated 
in Sec. 11.3; the appropriate solution techniques for problems of this type are 
illustrated in Sample Prob. 11.3. All of the general comments for the preceding 
cases once again apply. Note that Sample Prob. 11.3 provides a summary of how 
and when to use the equations v 5 dx/dt, a 5 dv/dt, and a 5 v dv/dx.
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613

CONCEPT QUESTIONS

 11.CQ1 A bus travels the 100 miles between A and B at 50 mi/h and then 
another 100 miles between B and C at 70 mi/h. The average speed 
of the bus for the entire 200-mile trip is:

 a. More than 60 mi/h.
 b. Equal to 60 mi/h.
 c. Less than 60 mi/h.

PROBLEMS†

A
C

B

 Fig. P11.CQ1  

t2t1

A

BPosition

time

 Fig. P11.CQ2

END-OF-SECTION PROBLEMS

 11.1 The motion of a particle is defined by the relation x 5 t4 2 10t2 1
8t 1 12, where x and t are expressed in inches and seconds, respec-
tively. Determine the position, the velocity, and the acceleration of 
the particle when t 5 1 s.

 11.2 The motion of a particle is defined by the relation x 5 2t3 2 9t2 1
12t 1 10, where x and t are expressed in feet and seconds, respec-
tively. Determine the time, the position, and the acceleration of 
the particle when v 5 0.

†Answers to all problems set in straight type (such as 11.1) are given at the end of the 
book. Answers to problems with a number set in italic type (such as 11.7 ) are not given.

11.CQ2 Two cars A and B race each other down a straight road. The 
position of each car as a function of time is shown. Which of 
the following statements are true (more than one answer can be 
correct)?

 a. At time t2 both cars have traveled the same distance.
 b. At time t1 both cars have the same speed.
 c. Both cars have the same speed at some time t , t1.
 d. Both cars have the same acceleration at some time t , t1.
 e. Both cars have the same acceleration at some time t1 , t , t2.
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614 Kinematics of Particles  11.3 The vertical motion of mass A is defined by the relation x 5 
10 sin 2t 1 15 cos 2t 1 100, where x and t are expressed in mil-
limeters and seconds, respectively. Determine (a) the position, 
velocity, and acceleration of A when t 5 1 s, (b) the maximum 
velocity and acceleration of A.

 11.4 A loaded railroad car is rolling at a constant velocity when it cou-
ples with a spring and dashpot bumper system. After the coupling, 
the motion of the car is defined by the relation x 5 60e24.8t sin 16t, 
where x and t are expressed in millimeters and seconds, respec-
tively. Determine the position, the velocity, and the acceleration of 
the railroad car when (a) t 5 0, (b) t 5 0.3 s.

A

 Fig. P11.3

v0

k

c

 Fig. P11.4

 11.5 The motion of a particle is defined by the relation x 5 6t4 2 2t3 2 
12t2 1 3t 1 3, where x and t are expressed in meters and seconds, 
respectively. Determine the time, the position, and the velocity 
when a 5 0.

 11.6 The motion of a particle is defined by the relation x 5 t3 2 9t2 1 
24t 2 8, where x and t are expressed in inches and seconds, 
respectively. Determine (a) when the velocity is zero, (b) the posi-
tion and the total distance traveled when the acceleration is zero.

 11.7 The motion of a particle is defined by the relation x 5 2t3 2 15t2 1 
24t 1 4, where x is expressed in meters and t in seconds. Deter-
mine (a) when the velocity is zero, (b) the position and the total 
distance traveled when the acceleration is zero.

 11.8 The motion of a particle is defined by the relation x 5 t3 2 6t2 2 
36t 2 40, where x and t are expressed in feet and seconds, respec-
tively. Determine (a) when the velocity is zero, (b) the velocity, the 
acceleration, and the total distance traveled when x 5 0.

 11.9 The brakes of a car are applied, causing it to slow down at a rate 
of 10 ft/s2. Knowing that the car stops in 300 ft, determine (a) how 
fast the car was traveling immediately before the brakes were 
applied, (b) the time required for the car to stop.

 11.10 The acceleration of a particle is directly proportional to the time t. 
At t 5 0, the velocity of the particle is v 5 16 in./s. Knowing 
that v 5 15 in./s and that x 5 20 in. when t 5 1 s, determine 
the velocity, the position, and the total distance traveled when 
t 5 7 s.

 Fig. P11.9  

A

x

v = 0

300 ft

v0
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615Problems 11.11 The acceleration of a particle is directly proportional to the square of 
the time t. When t 5 0, the particle is at x 5 24 m. Knowing that at 
t 5 6 s, x 5 96 m and v 5 18 m/s, express x and v in terms of t.

 11.12 The acceleration of a particle is defined by the relation a 5 kt2. 
(a) Knowing that v 5 28 m/s when t 5 0 and that v 5 18 m/s 
when t 5 2 s, determine the constant k. (b) Write the equations of 
motion, knowing also that x 5 0 when t 5 2 s.

 11.13 The acceleration of point A is defined by the relation a � �1.8 sin 
kt, where a and t are expressed in m/s2 and seconds, respectively, 
and k �  3 rad/s. Knowing that x � 0 and v � 0.6 m/s when t � 0, 
determine the velocity and position of point A when t � 0.5 s.

 11.14 The acceleration of point A is defined by the relation a � �1.08 
sin kt � 1.44 cos kt, where a and t are expressed in m/s2 and 
seconds, respectively, and k � 3 rad/s. Knowing that x � 0.16 m 
and v � 0.36 m/s when t � 0, determine the velocity and position 
of point A when t � 0.5 s.

 11.15 A piece of electronic equipment that is surrounded by packing mate-
rial is dropped so that it hits the ground with a speed of 4 m/s. After 
contact the equipment experiences an acceleration of a 5 2kx, 
where k is a constant and x is the compression of the packing mate-
rial. If the packing material experiences a maximum compression of 
20 mm, determine the maximum acceleration of the equipment.

A

C

B

D

x

 Fig. P11.13 and P11.14

v

 Fig. P11.15  

 11.16 A projectile enters a resisting medium at x 5 0 with an initial velocity 
v0 5 900 ft/s and travels 4 in. before coming to rest. Assuming that 
the velocity of the projectile is defined by the relation v 5 v0 2 kx, 
where v is expressed in ft/s and x is in feet, determine (a) the initial 
acceleration of the projectile, (b) the time required for the projec-
tile to penetrate 3.9 in. into the resisting medium.

 11.17 The acceleration of a particle is defined by the relation a 5 2k/x. 
It has been experimentally determined that v 5 15 ft/s when 
x 5 0.6 ft and that v 5 9 ft/s when x 5 1.2 ft. Determine 
(a) the velocity of the particle when x 5 1.5 ft, (b) the position of 
the particle at which its velocity is zero.

 11.18 A brass (nonmagnetic) block A and a steel magnet B are in equi-
librium in a brass tube under the magnetic repelling force of 
another steel magnet C located at a distance x 5 0.004 m from B. 
The force is inversely proportional to the square of the distance 
between B and C. If block A is suddenly removed, the acceleration 
of block B is a 5 29.81 1 k/x2, where a and x are expressed in 
m/s2 and meters, respectively, and k 5 4 3 1024 m3/s2. Determine 
the maximum velocity and acceleration of B.

x

v

Fig. P11.16 

A

B

C

x

Fig. P11.18
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616 Kinematics of Particles  11.19 Based on experimental observations, the acceleration of a particle 
is defined by the relation a 5 2(0.1 1 sin x/b), where a and x are 
expressed in m/s2 and meters, respectively. Knowing that 
b 5 0.8 m and that v 5 1 m/s when x 5 0, determine (a) the 
velocity of the particle when x 5 21 m, (b) the position where the 
velocity is maximum, (c) the maximum velocity.

 11.20 A spring AB is attached to a support at A and to a collar. The 
unstretched length of the spring is l. Knowing that the collar is 
released from rest at x 5 x0 and has an acceleration defined by the 
relation a 5 21001x 2 lx/ 2l2 1 x22, determine the velocity of the 
collar as it passes through point C.

 11.21 The acceleration of a particle is defined by the relation a 5 20.8v, 
where a is expressed in m/s2 and v in m/s. Knowing that at t 5 0 
the velocity is 1 m/s, determine (a) the distance the particle will 
travel before coming to rest, (b) the time required for the particle’s 
velocity to be reduced by 50 percent of its initial value.

 11.22 Starting from x 5 0 with no initial velocity, a particle is given an 
acceleration a 5 0.12v2 1 16, where a and v are expressed in ft/s2 
and ft/s, respectively. Determine (a) the position of the particle 
when v 5 3 ft/s, (b) the speed and acceleration of the particle when 
x 5 4 ft.

 11.23 A ball is dropped from a boat so that it strikes the surface of a lake 
with a speed of 16.5 ft/s. While in the water the ball experiences 
an acceleration of a 5 10 2 0.8v, where a and v are expressed in 
ft/s2 and ft/s, respectively. Knowing the ball takes 3 s to reach the 
bottom of the lake, determine (a) the depth of the lake, (b) the 
speed of the ball when it hits the bottom of the lake.

 11.24 The acceleration of a particle is defined by the relation a 5 2k1v, 
where k is a constant. Knowing that x 5 0 and v 5 81 m/s at 
t 5 0 and that v 5 36 m/s when x 5 18 m, determine (a) the 
velocity of the particle when x 5 20 m, (b) the time required for 
the particle to come to rest.

 11.25 A particle is projected to the right from the position x 5 0 with 
an initial velocity of 9 m/s. If the acceleration of the particle is 
defined by the relation a 5 20.6v3/2, where a and v are expressed 
in m/s2 and m/s, respectively, determine (a) the distance the par-
ticle will have traveled when its velocity is 4 m/s, (b) the time when 
v 5 1 m/s, (c) the time required for the particle to travel 6 m.

 11.26 The acceleration of a particle is defined by the relation a 5 0.4(1 2 
kv), where k is a constant. Knowing that at t 5 0 the particle starts 
from rest at x 5 4 m and that when t 5 15 s, v 5 4 m/s, determine 
(a) the constant k, (b) the position of the particle when v 5 6 m/s, 
(c) the maximum velocity of the particle.

 11.27 Experimental data indicate that in a region downstream of a given 
louvered supply vent the velocity of the emitted air is defined by 
v 5 0.18v0/x, where v and x are expressed in m/s and meters, respec-
tively, and v0 is the initial discharge velocity of the air. For v0 5 
3.6 m/s, determine (a) the acceleration of the air at x 5 2 m, (b) the 
time required for the air to flow from x 5 1 to x 5 3 m.

616 Kinematics of Particles

A

BC
l

x0

 Fig. P11.20  

d

 Fig. P11.23

v

x

 Fig. P11.27  
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617Problems 11.28 Based on observations, the speed of a jogger can be approximated 
by the relation v 5 7.5(1 2 0.04x)0.3, where v and x are expressed 
in mi/h and miles, respectively. Knowing that x 5 0 at t 5 0, deter-
mine (a) the distance the jogger has run when t 5 1 h, (b) the jogger’s 
acceleration in ft/s2 at t 5 0, (c) the time required for the jogger to 
run 6 mi.

 11.29 The acceleration due to gravity at an altitude y above the surface 
of the earth can be expressed as

a 5
232.2

31 1 1y/20.9 3 1062 4 2
  where a and y are expressed in ft/s2 and feet, respectively. Using 

this expression, compute the height reached by a projectile fired 
vertically upward from the surface of the earth if its initial velocity 
is (a) 1800 ft/s, (b) 3000 ft/s, (c) 36,700 ft/s.

v

 Fig. P11.28  

P

y

 Fig. P11.29

 11.30 The acceleration due to gravity of a particle falling toward the 
earth is a 5 2gR2/r2, where r is the distance from the center of 
the earth to the particle, R is the radius of the earth, and g is 
the acceleration due to gravity at the surface of the earth. If 
R 5 3960 mi,  calculate the escape velocity, that is, the minimum 
velocity with which a particle must be projected vertically upward 
from the surface of the earth if it is not to return to the earth. 
(Hint: v 5 0 for r 5 `.)

 11.31 The velocity of a particle is v 5 v0[1 2 sin(pt/T)]. Knowing that 
the particle starts from the origin with an initial velocity v0, deter-
mine (a) its position and its acceleration at t 5 3T, (b) its average 
velocity during the interval t 5 0 to t 5 T.

 11.32 The velocity of a slider is defined by the relation v 5 v9sin(vnt 1 f). 
Denoting the velocity and the position of the slider at t 5 0 by 
v0 and x0, respectively, and knowing that the maximum displace-
ment of the slider is 2x0, show that (a) v9 5 (v0

2 1 x0
2vn

2)/2x0vn, 
(b) the maximum value of the velocity occurs when x 5 x0[3 2 
(v0 /x0vn)2]/2.

R

P

r

 Fig. P11.30  
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618 Kinematics of Particles 11.4 UNIFORM RECTILINEAR MOTION
Uniform rectilinear motion is a type of straight-line motion which is 
frequently encountered in practical applications. In this motion, the 
acceleration a of the particle is zero for every value of t. The velocity 
v is therefore constant, and Eq. (11.1) becomes

dx
dt

5 v 5 constant

The position coordinate x is obtained by integrating this equation. 
Denoting by x0 the initial value of x, we write

 #
x

x0

 dv 5 v#
t

0
 dt

 x 2 x0 5 vt

  x 5 x0 1 vt (11.5)

This equation can be used only if the velocity of the particle is known 
to be constant.

11.5  UNIFORMLY ACCELERATED RECTILINEAR MOTION
Uniformly accelerated rectilinear motion is another common type of 
motion. In this motion, the acceleration a of the particle is constant, 
and Eq. (11.2) becomes

dv
dt

5 a 5 constant

The velocity v of the particle is obtained by integrating this 
equation:

 #
v

v0

 dv 5 a #
t

0
 dt

 v 2 v0 5 at

 v 5 v0 1 at (11.6)

where v0 is the initial velocity. Substituting for v in (11.1), we write

dx
dt

5 v0 1 at

Denoting by x0 the initial value of x and integrating, we have

 #
x

x0

 dx 5 #
t

0
 (v0 1 at) dt

 x 2 x0 5 v0 
t 1 1

2 at2

  x 5 x0 1 v0 
t 1 1

2 at2 (11.7)
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61911.6 Motion of Several ParticlesWe can also use Eq. (11.4) and write

v 

dv
dx

5 a 5 constant

v dv 5 a dx

Integrating both sides, we obtain

  #
v

v0

 v dv 5 a #
x

x0

 dx

  12(v2 2 v2
0) 5 a(x 2 x0)

 v2 5 v2
0 1 2a(x 2 x0) (11.8)

 The three equations we have derived provide useful relations 
among position coordinate, velocity, and time in the case of a uni-
formly accelerated motion, as soon as appropriate values have been 
substituted for a, v0, and x0. The origin O of the x axis should first 
be defined and a positive direction chosen along the axis; this direc-
tion will be used to determine the signs of a, v0, and x0. Equation 
(11.6) relates v and t and should be used when the value of v cor-
responding to a given value of t is desired, or inversely. Equation (11.7) 
relates x and t; Eq. (11.8) relates v and x. An important application 
of uniformly accelerated motion is the motion of a freely falling 
body. The acceleration of a freely falling body (usually denoted by g) 
is equal to 9.81 m/s2 or 32.2 ft/s2.
 It is important to keep in mind that the three equations can be 
used only when the acceleration of the particle is known to be con-
stant. If the acceleration of the particle is variable, its motion should 
be determined from the fundamental equations (11.1) to (11.4) 
according to the methods outlined in Sec. 11.3.

11.6 MOTION OF SEVERAL PARTICLES
When several particles move independently along the same line, 
independent equations of motion can be written for each particle. 
Whenever possible, time should be recorded from the same initial 
instant for all particles, and displacements should be measured from 
the same origin and in the same direction. In other words, a single 
clock and a single measuring tape should be used.

Relative Motion of Two Particles. Consider two particles A and 
B moving along the same straight line (Fig. 11.7). If the position 
coordinates xA and xB are measured from the same origin, the dif-
ference xB 2 xA defines the relative position coordinate of B with 
respect to A and is denoted by xB/A. We write

 xB/A 5 xB 2 xA  or   xB 5 xA 1 xB/A (11.9)

Regardless of the positions of A and B with respect to the origin, a 
positive sign for xB/A means that B is to the right of A, and a negative 
sign means that B is to the left of A.

Fig. 11.7

x
 xA

AO B

 xB/A

 xB
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620 Kinematics of Particles  The rate of change of xB/A is known as the relative velocity of B 
with respect to A and is denoted by vB/A. Differentiating (11.9), we write

 vB/A 5 vB 2 vA  or   vB 5 vA 1 vB/A (11.10)

A positive sign for vB/A means that B is observed from A to move in 
the positive direction; a negative sign means that it is observed to 
move in the negative direction.
 The rate of change of vB/A is known as the relative acceleration 
of B with respect to A and is denoted by aB/A. Differentiating (11.10), 
we obtain†

 aB/A 5 aB 2 aA  or   aB 5 aA 1 aB/A (11.11)

Dependent Motions. Sometimes, the position of a particle will 
depend upon the position of another particle or of several other par-
ticles. The motions are then said to be dependent. For example, the 
position of block B in Fig. 11.8 depends upon the position of block A. 
Since the rope ACDEFG is of constant length, and since the lengths 
of the portions of rope CD and EF wrapped around the pulleys remain 
constant, it follows that the sum of the lengths of the segments AC, 
DE, and FG is constant. Observing that the length of the segment AC 
differs from xA only by a constant and that, similarly, the lengths of 
the segments DE and FG differ from xB only by a constant, we write

xA 1 2xB 5 constant

Since only one of the two coordinates xA and xB can be chosen arbi-
trarily, we say that the system shown in Fig. 11.8 has one degree of 
freedom. From the relation between the position coordinates xA and 
xB, it follows that if xA is given an increment ¢xA, that is, if block A 
is lowered by an amount ¢xA, the coordinate xB will receive an incre-
ment ¢xB 5 21

2¢xA. In other words, block B will rise by half the 
same amount; this can easily be checked directly from Fig. 11.8.
 In the case of the three blocks of Fig. 11.9, we can again 
observe that the length of the rope which passes over the pulleys is 
constant, and thus the following relation must be satisfied by the 
position coordinates of the three blocks:

2xA 1 2xB 1 xC 5 constant

Since two of the coordinates can be chosen arbitrarily, we say that 
the system shown in Fig. 11.9 has two degrees of freedom.
 When the relation existing between the position coordinates of 
several particles is linear, a similar relation holds between the veloci-
ties and between the accelerations of the particles. In the case of the 
blocks of Fig. 11.9, for instance, we differentiate twice the equation 
obtained and write

 2 

dxA

dt
1 2 

dxB

dt
1

dxC

dt
5 0    or    2vA 1 2vB 1 vC 5 0

 2 

dvA

dt
1 2 

dvB

dt
1

dvC

dt
5 0    or    2aA 1 2aB 1 aC 5 0

†Note that the product of the subscripts A and B/A used in the right-hand member of 
Eqs. (11.9), (11.10), and (11.11) is equal to the subscript B used in their left-hand member.

Fig. 11.8

 xA

 xB

A

B

C D

E F

G

Fig. 11.9

A

B

C  xB

 xC xA

Photo 11.2 Multiple cables and pulleys are 
used by this shipyard crane.
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SAMPLE PROBLEM 11.4

A ball is thrown vertically upward from the 12-m level in an elevator shaft 
with an initial velocity of 18 m/s. At the same instant an open-platform ele-
vator passes the 5-m level, moving upward with a constant velocity of 2 m/s. 
Determine (a) when and where the ball will hit the elevator, (b) the relative 
velocity of the ball with respect to the elevator when the ball hits the 
elevator.

SOLUTION

Motion of Ball. Since the ball has a constant acceleration, its motion is 
uniformly accelerated. Placing the origin O of the y axis at ground level and 
choosing its positive direction upward, we find that the initial position is 
y0 5 112 m, the initial velocity is v0 5 118 m/s, and the acceleration is 
a 5 29.81 m/s2. Substituting these values in the equations for uniformly 
accelerated motion, we write

 vB 5 v0 1 at vB 5 18 2 9.81t  (1)
 yB 5 y0 1 v0t 1 1

2 
at2   yB 5 12 1 18t 2 4.905t2 (2)

Motion of Elevator. Since the elevator has a constant velocity, its motion 
is uniform. Again placing the origin O at the ground level and choosing the 
positive direction upward, we note that y0 5 15 m and write

 vE 5 12 m/s (3)
 yE 5 y0 1 vE t  yE 5 5 1 2t (4)

Ball Hits Elevator. We first note that the same time t and the same origin 
O were used in writing the equations of motion of both the ball and the 
elevator. We see from the figure that when the ball hits the elevator,

 yE 5 yB (5)

Substituting for yE and yB from (2) and (4) into (5), we have

5 1 2t 5 12 1 18t 2 4.905t2

 t 5 20.39 s  and t 5 3.65 s ◀

Only the root t 5 3.65 s corresponds to a time after the motion has begun. 
Substituting this value into (4), we have

yE 5 5 1 2(3.65) 5 12.30 m
Elevation from ground 5 12.30 m ◀

The relative velocity of the ball with respect to the elevator is

vB/E 5 vB 2 vE 5 (18 2 9.81t) 2 2 5 16 2 9.81t

When the ball hits the elevator at time t 5 3.65 s, we have

vB/E 5 16 2 9.81(3.65)  vB/E 5 219.81 m/s ◀

The negative sign means that the ball is observed from the elevator to be 
moving in the negative sense (downward).

t = t

t = 0

yB
a = –9.81 m/s2

v0 = 18 m/s

vE = 2 m/s

y0 = 12 m

O

t = t

yE

y0 = 5 m
O

yB yE

O

t = 0
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SAMPLE PROBLEM 11.5

Collar A and block B are connected by a cable passing over three pulleys 
C, D, and E as shown. Pulleys C and E are fixed, while D is attached to a 
collar which is pulled downward with a constant velocity of 3 in./s. At t 5 0, 
collar A starts moving downward from position K with a constant accelera-
tion and no initial velocity. Knowing that the velocity of collar A is 12 in./s 
as it passes through point L, determine the change in elevation, the velocity, 
and the acceleration of block B when collar A passes through L.

SOLUTION

Motion of Collar A. We place the origin O at the upper horizontal sur-
face  and choose the positive direction downward. We observe that when 
t 5 0, collar A is at the position K and (vA)0 5 0. Since vA 5 12 in./s 
and xA 2 (xA)0 5 8 in. when the collar passes through L, we write

 v2
A 5 (vA)2

0 1 2aA[xA 2 (xA)0]    (12)2 5 0 1 2aA(8)
 aA 5 9 in./s2

The time at which collar A reaches point L is obtained by writing

vA 5 (vA)0 1 aAt  12 5 0 1 9t  t 5 1.333 s

Motion of Pulley D. Recalling that the positive direction is downward, 
we write

aD 5 0  vD 5 3 in./s  xD 5 (xD)0 1 vD t 5 (xD)0 1 3t

When collar A reaches L, at t 5 1.333 s, we have

xD 5 (xD)0 1 3(1.333) 5 (xD)0 1 4

Thus, xD 2 (xD)0 5 4 in.

Motion of Block B. We note that the total length of cable ACDEB differs 
from the quantity (xA 1 2xD 1 xB) only by a constant. Since the cable length 
is constant during the motion, this quantity must also remain constant. Thus, 
considering the times t 5 0 and t 5 1.333 s, we write

 xA 1 2xD 1 xB 5 (xA)0 1 2(xD)0 1 (xB)0 (1)
 [xA 2 (xA)0] 1 2[xD 2 (xD)0] 1 [xB 2 (xB)0] 5 0 (2)

But we know that xA 2 (xA)0 5 8 in. and xD 2 (xD)0 5 4 in.; substituting 
these values in (2), we find

8 1 2(4) 1 [xB 2 (xB)0] 5 0  xB 2 (xB)0 5 216 in.

Thus: Change in elevation of B 5 16 in.x ◀

Differentiating (1) twice, we obtain equations relating the velocities and the 
accelerations of A, B, and D. Substituting for the velocities and accelerations 
of A and D at t 5 1.333 s, we have

vA 1 2vD 1 vB 5 0:  12 1 2(3) 1 vB 5 0 
 vB 5 218 in./s  vB 5 18 in./sx ◀

aA 1 2aD 1 aB 5 0:  9 1 2(0) 1 aB 5 0 
 aB 5 29 in./s2  aB 5 9 in./s2

x ◀

C E

K

L

A

B

D
8 in.

A

O

L

K

C E

A
B

D

D

8 in.

xA
aA

(xA)0

xA xB

xD

vA = 12 in./s

O

(xD)0

xD

vD = 3 in./s

O
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SOLVING PROBLEMS
ON YOUR OWN

In this lesson we derived the equations that describe uniform rectilinear motion 
(constant velocity) and uniformly accelerated rectilinear motion (constant accel-

eration). We also introduced the concept of relative motion. The equations for 
relative motion [Eqs. (11.9) to (11.11)] can be applied to the independent or 
dependent motions of any two particles moving along the same straight line.

A. Independent motion of one or more particles. The solution of problems of 
this type should be organized as follows:

1. Begin your solution by listing the given information, sketching the system, and 
selecting the origin and the positive direction of the coordinate axis [Sample 
Prob. 11.4]. It is always advantageous to have a visual representation of problems 
of this type.

2. Write the equations that describe the motions of the various particles as 
well as those that describe how these motions are related [Eq. (5) of Sample 
Prob. 11.4].

3. Define the initial conditions, i.e., specify the state of the system corresponding 
to t 5 0. This is especially important if the motions of the particles begin at dif-
ferent times. In such cases, either of two approaches can be used.
 a. Let t 5 0 be the time when the last particle begins to move. You must then 
determine the initial position x0 and the initial velocity v0 of each of the other 
particles.
 b. Let t 5 0 be the time when the first particle begins to move. You must 
then, in each of the equations describing the motion of another particle, replace 
t with t 2 t0, where t0 is the time at which that specific particle begins to move. 
It is important to recognize that the equations obtained in this way are valid only 
for t $ t0.
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B. Dependent motion of two or more particles. In problems of this type the 
particles of the system are connected to each other, typically by ropes or by cables. 
The method of solution of these problems is similar to that of the preceding group 
of problems, except that it will now be necessary to describe the physical connec-
tions between the particles. In the following problems, the connection is provided 
by one or more cables. For each cable, you will have to write equations similar to 
the last three equations of Sec. 11.6. We suggest that you use the following 
procedure:

1. Draw a sketch of the system and select a coordinate system, indicating 
clearly a positive sense for each of the coordinate axes. For example, in Sample 
Prob. 11.5 lengths are measured downward from the upper horizontal support. It 
thus follows that those displacements, velocities, and accelerations which have 
positive values are directed downward.

2. Write the equation describing the constraint imposed by each cable on the 
motion of the particles involved. Differentiating this equation twice, you will obtain 
the corresponding relations among velocities and accelerations.

3. If several directions of motion are involved, you must select a coordinate 
axis and a positive sense for each of these directions. You should also try to locate 
the origins of your coordinate axes so that the equations of constraints will be as 
simple as possible. For example, in Sample Prob. 11.5 it is easier to define the 
various coordinates by measuring them downward from the upper support than 
by measuring them upward from the bottom support.

Finally, keep in mind that the method of analysis described in this lesson and 
the corresponding equations can be used only for particles moving with uniform 
or uniformly accelerated rectilinear motion.
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PROBLEMS
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 11.33 A stone is thrown vertically upward from a point on a bridge 
located 40 m above the water. Knowing that it strikes the water 
4 s after release, determine (a) the speed with which the stone 
was thrown upward, (b) the speed with which the stone strikes 
the water.

 11.34 A motorist is traveling at 54 km/h when she observes that a traffic 
light 240 m ahead of her turns red. The traffic light is timed to 
stay red for 24 s. If the motorist wishes to pass the light without 
stopping just as it turns green again, determine (a) the required 
uniform deceleration of the car, (b) the speed of the car as it passes 
the light.

54 km/h

240 m

 Fig. P11.34  

 11.35 A motorist enters a freeway at 30 mi/h and accelerates uniformly 
to 60 mi/h. From the odometer in the car, the motorist knows 
that she traveled 550 ft while accelerating. Determine (a) the 
acceleration of the car, (b) the time required to reach 60 mi/h.

 11.36 A group of students launches a model rocket in the vertical direc-
tion. Based on tracking data, they determine that the altitude of 
the rocket was 89.6 ft at the end of the powered portion of the 
flight and that the rocket landed 16 s later. Knowing that the 
descent parachute failed to deploy so that the rocket fell freely 
to the ground after reaching its maximum altitude and assuming 
that g 5 32.2 ft/s2, determine (a) the speed v1 of the rocket at the 
end of powered flight, (b) the maximum altitude reached by 
the rocket.

v0 = 30 mi/h

 Fig. P11.35  

v1

89.6 ft

 Fig. P11.36  
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626 Kinematics of Particles  11.37 A small package is released from rest at A and moves along the 
skate wheel conveyor ABCD. The package has a uniform accelera-
tion of 4.8 m/s2 as it moves down sections AB and CD, and its 
velocity is constant between B and C. If the velocity of the package 
at D is 7.2 m/s, determine (a) the distance d between C and D, 
(b) the time required for the package to reach D.

 11.38 A sprinter in a 100-m race accelerates uniformly for the first 35 m 
and then runs with constant velocity. If the sprinter’s time for the 
first 35 m is 5.4 s, determine (a) his acceleration, (b) his final 
velocity, (c) his time for the race.

 11.39 As relay runner A enters the 20-m-long exchange zone with a 
speed of 12.9 m/s, he begins to slow down. He hands the baton to 
runner B 1.82 s later as they leave the exchange zone with the 
same velocity. Determine (a) the uniform acceleration of each of 
the runners, (b) when runner B should begin to run.

 11.40 In a boat race, boat A is leading boat B by 50 m and both boats 
are traveling at a constant speed of 180 km/h. At t 5 0, the boats 
accelerate at constant rates. Knowing that when B passes A, t 5 8 s 
and vA 5 225 km/h, determine (a) the acceleration of A, (b) the 
acceleration of B.

v

 Fig. P11.38  

B

A

C

D

3 m

3 m
d

 Fig. P11.37  

A B

(vA)0 = 12.9 m/s

(vB)0 = 0

20 m

 Fig. P11.39  

A

B

50 m

vB

vA

 Fig. P11.40  
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627Problems 11.41 A police officer in a patrol car parked in a 45 mi/h speed zone 
observes a passing automobile traveling at a slow, constant speed. 
Believing that the driver of the automobile might be intoxicated, 
the officer starts his car, accelerates uniformly to 60 mi/h in 8 s, 
and, maintaining a constant velocity of 60 mi/h, overtakes the 
motorist 42 s after the automobile passed him. Knowing that 18 s 
elapsed before the officer began pursuing the motorist, determine 
(a) the distance the officer traveled before overtaking the motorist, 
(b) the motorist’s speed.

 11.42 Automobiles A and B are traveling in adjacent highway lanes and 
at t 5 0 have the positions and speeds shown. Knowing that 
automobile A has a constant acceleration of 1.8 ft/s2 and that B 
has a constant deceleration of 1.2 ft/s2, determine (a) when and 
where A will overtake B, (b) the speed of each automobile at 
that time.

 11.43 Two automobiles A and B are approaching each other in adjacent 
highway lanes. At t 5 0, A and B are 3200 ft apart, their speeds 
are vA 5 65 mi/h and vB 5 40 mi/h, and they are at points P and 
Q, respectively. Knowing that A passes point Q 40 s after B was 
there and that B passes point P 42 s after A was there, determine 
(a) the uniform accelerations of A and B, (b) when the vehicles 
pass each other, (c) the speed of B at that time.

A B

x

(vA)0 = 24 mi/h (vB)0 = 36 mi/h

75 ft

 Fig. P11.42  

 11.44 An elevator is moving upward at a constant speed of 4 m/s. A man 
standing 10 m above the top of the elevator throws a ball upward 
with a speed of 3 m/s. Determine (a) when the ball will hit the 
elevator, (b) where the ball will hit the elevator with respect to the 
location of the man.

A B

P Q

vB = 40 mi/hvA = 65 mi/h

3200 ft

 Fig. P11.43  

10 m

 Fig. P11.44  
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628 Kinematics of Particles  11.45 Two rockets are launched at a fireworks display. Rocket A is 
launched with an initial velocity v0 5 100 m/s and rocket B is 
launched t1 s later with the same initial velocity. The two rockets 
are timed to explode simultaneously at a height of 300 m as A 
is falling and B is rising. Assuming a constant acceleration g 5 
9.81 m/s2, determine (a) the time t1, (b) the velocity of B relative to 
A at the time of the explosion.

 11.46 Car A is parked along the northbound lane of a highway, and car B 
is traveling in the southbound lane at a constant speed of 60 mi/h. 
At t 5 0, A starts and accelerates at a constant rate aA, while at 
t 5 5 s, B begins to slow down with a constant deceleration of 
magnitude aA/6. Knowing that when the cars pass each other x 5 
294 ft and vA 5 vB, determine (a) the acceleration aA, (b) when 
the vehicles pass each other, (c) the distance d between the vehicles 
at t 5 0.

 11.47 The elevator shown in the figure moves downward with a constant 
velocity of 4 m/s. Determine (a) the velocity of the cable C, (b) the 
velocity of the counterweight W, (c) the relative velocity of the cable 
C with respect to the elevator, (d) the relative velocity of the coun-
terweight W with respect to the elevator.

A B

(vB)0 = 60 mi /h(vA)0 = 0

x

d

 Fig. P11.46  

A B 300 m

v0 v0

 Fig. P11.45  

W

EC

M

 Fig. P11.47 and P11.48  

 11.48 The elevator shown starts from rest and moves upward with a con-
stant acceleration. If the counterweight W moves through 30 ft in 
5 s, determine (a) the acceleration of the elevator and the cable 
C, (b) the velocity of the elevator after 5 s.
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629Problems

 11.52 At the instant shown, slider block B is moving with a constant 
acceleration, and its speed is 150 mm/s. Knowing that after slider 
block A has moved 240 mm to the right its velocity is 60 mm/s, 
determine (a) the accelerations of A and B, (b) the acceleration of 
portion D of the cable, (c) the velocity and the change in position 
of slider block B after 4 s.

 11.53 Collar A starts from rest and moves upward with a constant accelera-
tion. Knowing that after 8 s the relative velocity of collar B with 
respect to collar A is 24 in./s, determine (a) the accelerations of A 
and B, (b) the velocity and the change in position of B after 6 s.

 11.49 Slider block A moves to the left with a constant velocity of 6 m/s. 
Determine (a) the velocity of block B, (b) the velocity of portion 
D of the cable, (c) the relative velocity of portion C of the cable 
with respect to portion D.

B

A

C
D

 Fig. P11.49 and P11.50

BC

DA

 Fig. P11.51 and P11.52

A

B

C

 Fig. P11.53

 11.50 Block B starts from rest and moves downward with a constant 
acceleration. Knowing that after slider block A has moved 9 in. 
its velocity is 6 ft/s, determine (a) the accelerations of A and B, 
(b) the velocity and the change in position of B after 2 s.

 11.51 Slider block B moves to the right with a constant velocity of 
300 mm/s. Determine (a) the velocity of slider block A, (b) the 
velocity of portion C of the cable, (c) the velocity of portion D 
of the cable, (d) the relative velocity of portion C of the cable with 
respect to slider block A.
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630 Kinematics of Particles  11.54 The motor M reels in the cable at a constant rate of 100 mm/s. 
Determine (a) the velocity of load L, (b) the velocity of pulley B 
with respect to load L.

L

100 mm/s

M

B

 Fig. P11.54

D

A  

B  

C  

 Fig. P11.55

 11.55 Block C starts from rest at t 5 0 and moves downward with a 
constant acceleration of 4 in./s2. Knowing that block B has a con-
stant velocity of 3 in./s upward, determine (a) the time when the 
velocity of block A is zero, (b) the time when the velocity of block 
A is equal to the velocity of block D, (c) the change in position of 
block A after 5 s.

 11.56 Block A starts from rest at t 5 0 and moves downward with a 
constant acceleration of 6 in./s2. Knowing that block B moves up 
with a constant velocity of 3 in./s, determine (a) the time when 
the velocity of block C is zero, (b) the corresponding position of 
block C.

C

A

B

 Fig. P11.56
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631Problems 11.57 Block B starts from rest, block A moves with a constant accelera-
tion, and slider block C moves to the right with a constant accelera-
tion of 75 mm/s2. Knowing that at t 5 2 s the velocities of B and 
C are 480 mm/s downward and 280 mm/s to the right, respectively, 
determine (a) the accelerations of A and B, (b) the initial velocities 
of A and C, (c) the change in position of slider block C after 3 s.

 11.58 Block B moves downward with a constant velocity of 20 mm/s. At 
t 5 0, block A is moving upward with a constant acceleration, and 
its velocity is 30 mm/s. Knowing that at t 5 3 s slider block C has 
moved 57 mm to the right, determine (a) the velocity of slider 
block C at t 5 0, (b) the accelerations of A and C, (c) the change 
in position of block A after 5 s.

 11.59 The system shown starts from rest, and each component moves with 
a constant acceleration. If the relative acceleration of block C with 
respect to collar B is 60 mm/s2 upward and the relative acceleration 
of block D with respect to block A is 110 mm/s2 downward, deter-
mine (a) the velocity of block C after 3 s, (b) the change in position 
of block D after 5 s.

BA  

C

 Fig. P11.57 and P11.58

C

A

D

B

 Fig. P11.59 and P11.60

 *11.60 The system shown starts from rest, and the length of the upper 
cord is adjusted so that A, B, and C are initially at the same level. 
Each component moves with a constant acceleration, and after 2 s 
the relative change in position of block C with respect to block A 
is 280 mm upward. Knowing that when the relative velocity of 
collar B with respect to block A is 80 mm/s downward, the dis-
placements of A and B are 160 mm downward and 320 mm down-
ward, respectively, determine (a) the accelerations of A and B if 
aB . 10 mm/s2, (b) the change in position of block D when the 
velocity of block C is 600 mm/s upward.
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632 Kinematics of Particles *11.7  GRAPHICAL SOLUTION OF RECTILINEAR-
MOTION PROBLEMS

It was observed in Sec. 11.2 that the fundamental formulas

v 5
dx
dt

  and   a 5
dv
dt

have a geometrical significance. The first formula expresses that the 
velocity at any instant is equal to the slope of the x–t curve at the 
same instant (Fig. 11.10). The second formula expresses that the accel-

t2t1

x1

x2

t

t2t1 t

t2t1 t

x

v2

v1

v

a

Area

Area

v2 − v1 =       �
t1

t2

x2 − x1 =        �
t1

t2

      a dt 

       v dt 

Fig. 11.11

eration is equal to the slope of the v–t curve. These two properties 
can be used to determine graphically the v–t and a–t curves of a 
motion when the x–t curve is known.
 Integrating the two fundamental formulas from a time t1 to a 
time t2, we write

 x2 2 x1 5#
t2

t1

 v dt   and   v2 2 v1 5#
t2

t1

 a dt (11.12)

The first formula expresses that the area measured under the v−t 
curve from t1 to t2 is equal to the change in x during that time inter-
val (Fig. 11.11). Similarly, the second formula expresses that the area 
measured under the a–t curve from t1 to t2 is equal to the change 
in v during that time interval. These two properties can be used to 
determine graphically the x–t curve of a motion when its v−t curve 
or its a–t curve is known (see Sample Prob. 11.6).
 Graphical solutions are particularly useful when the motion con-
sidered is defined from experimental data and when x, v, and a are 
not analytical functions of t. They can also be used to advantage when 
the motion consists of distinct parts and when its analysis requires 
writing a different equation for each of its parts. When using a graphi-
cal solution, however, one should be careful to note that (1) the area 
under the v–t curve measures the change in x, not x itself, and simi-
larly, that the area under the a–t curve measures the change in v; 
(2) an area above the t axis corresponds to an increase in x or v, while 
an area located below the t axis measures a decrease in x or v.
 It will be useful to remember in drawing motion curves that if 
the velocity is constant, it will be represented by a horizontal straight 
line; the position coordinate x will then be a linear function of t and 
will be represented by an oblique straight line. If the acceleration is 

Slop
e

Slop
e

dx
dt

 = v

v a

dv
dt

 = a

x v a

ttt t1t1t1

x

Fig. 11.10
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633constant and different from zero, it will be represented by a hori-
zontal straight line; v will then be a linear function of t, represented 
by an oblique straight line, and x will be expressed as a second-degree 
polynomial in t, represented by a parabola. If the acceleration is a 
linear function of t, the velocity and the position coordinate will be 
equal, respectively, to second-degree and third-degree polynomials; 
a will then be represented by an oblique straight line, v by a parab-
ola, and x by a cubic. In general, if the acceleration is a polynomial 
of degree n in t, the velocity will be a polynomial of degree n 1 1 and 
the position coordinate a polynomial of degree n 1 2; these polyno-
mials are represented by motion curves of a corresponding degree.

*11.8 OTHER GRAPHICAL METHODS
An alternative graphical solution can be used to determine the posi-
tion of a particle at a given instant directly from the a–t curve. 
Denoting the values of x and v at t 5 0 as x0 and v0 and their values 
at t 5 t1 as x1 and v1, and observing that the area under the v–t 
curve can be divided into a rectangle of area v0 t1 and horizontal dif-
ferential elements of area (t1 2 t) dv (Fig. 11.12a), we write

x1 2 x0 5 area under v – t curve 5 v0 
t1 1#

v1

v0

 (t1 2 t) dv

Substituting dv 5 a dt in the integral, we obtain

x1 2 x0 5 v0 
t1 1#

t1

0
 (t1 2 t) a dt

Referring to Fig. 11.12b, we note that the integral represents the 
first moment of the area under the a–t curve with respect to the line 
t 5 t1 bounding the area on the right. This method of solution is 
known, therefore, as the moment-area method. If the abscissa t of 
the centroid C of the area is known, the position coordinate x1 can 
be obtained by writing

 x1 5 x0 1 v0 t1 1 (area under a–t curve)(t1 2 t) (11.13)

If the area under the a–t curve is a composite area, the last term 
in (11.13) can be obtained by multiplying each component area by 
the distance from its centroid to the line t 5 t1. Areas above the t 
axis should be considered as positive and areas below the t axis as 
negative.
 Another type of motion curve, the v−x curve, is sometimes used. 
If such a curve has been plotted (Fig. 11.13), the acceleration a can 
be obtained at any time by drawing the normal AC to the curve and 
measuring the subnormal BC. Indeed, observing that the angle 
between AC and AB is equal to the angle u between the horizontal 
and the tangent at A (the slope of which is tan u 5 dv/dx), we write

BC 5 AB tan u 5 v 

dv
dx

and thus, recalling formula (11.4),

BC 5 a Fig. 11.13

v

x
B C

A

θ

Slope =
 ta

n q =
dv

dx

v

a

θ

Fig. 11.12
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t1 – t
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O tt
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tt t1

dv
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(b)
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t1 – t

t1 –t t

11.8 Other Graphical Methods
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634

SAMPLE PROBLEM 11.6

A subway car leaves station A; it gains speed at the rate of 4 ft/s2 for 6 s 
and then at the rate of 6 ft/s2 until it has reached the speed of 48 ft/s. The 
car maintains the same speed until it approaches station B; brakes are then 
applied, giving the car a constant deceleration and bringing it to a stop in 
6 s. The total running time from A to B is 40 s. Draw the a−t, v−t, and x−t 
curves, and determine the distance between stations A and B.

SOLUTION

Acceleration-Time Curve. Since the acceleration is either constant or zero, 
the a−t curve is made of horizontal straight-line segments. The values of t2 
and a4 are determined as follows:

0 , t , 6: Change in v 5 area under a – t curve
    v6 2 0 5 (6 s)(4 ft/s2) 5 24 ft/s
6 , t , t2: Since the velocity increases from 24 to 48 ft/s,
  Change in v 5 area under a – t curve

48 ft/s 2 24 ft/s 5 (t2 2 6)(6 ft/s2)  t2 5 10 s
t2 , t , 34: Since the velocity is constant, the acceleration is zero.
34 , t , 40: Change in v 5 area under a – t curve
  0 2 48 ft/s 5 (6 s) a4  a4 5 28 ft/s2

The acceleration being negative, the corresponding area is below the t axis; 
this area represents a decrease in velocity.

Velocity-Time Curve. Since the acceleration is either constant or zero, the 
v−t curve is made of straight-line segments connecting the points deter-
mined above.

Change in x 5 area under v−t curve

 0 , t , 6: x6 2 0 5 1
2(6)(24) 5 72 ft

 6 , t , 10: x10 2 x6 5 1
2(4)(24 1 48) 5 144 ft

10 , t , 34: x34 2 x10 5 (24)(48) 5 1152 ft
34 , t , 40: x40 2 x34 5 1

2(6)(48) 5 144 ft

Adding the changes in x, we obtain the distance from A to B:

 d 5 x40 2 0 5 1512 ft
 d 5 1512 ft ◀

Position-Time Curve. The points determined above should be joined by 
three arcs of parabola and one straight-line segment. In constructing the 
x−t curve, keep in mind that for any value of t the slope of the tangent to 
the x−t curve is equal to the value of v at that instant.

A B

x
d

8

a (ft/s2)

t2

a4

6

6
34 40

4

2

0

–8

–6

–4

–2
t (s)

60 10 34 40

48

24

v (ft /s)

t (s)

0 6 10 4034

x (ft)

1512 ft

t (s)

bee02324_ch11_600-693.indd Page 634  7/8/11  11:36 AM user-f494bee02324_ch11_600-693.indd Page 634  7/8/11  11:36 AM user-f494 /203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles/203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


635

SOLVING PROBLEMS
ON YOUR OWN

In this lesson (Secs. 11.7 and 11.8), we reviewed and developed several graphical 
techniques for the solution of problems involving rectilinear motion. These tech-

niques can be used to solve problems directly or to complement analytical methods 
of solution by providing a visual description, and thus a better understanding, of 
the motion of a given body. We suggest that you sketch one or more motion curves 
for several of the problems in this lesson, even if these problems are not part of 
your homework assignment.

1. Drawing x−t, v−t, and a−t curves and applying graphical methods. The 
following properties were indicated in Sec. 11.7 and should be kept in mind as 
you use a graphical method of solution.
 a. The slopes of the x−t and v−t curves at a time t1 are respectively equal 
to the velocity and the acceleration at time t1.
 b. The areas under the a−t and v−t curves between the times t1 and t2 are 
respectively equal to the change ¢v in the velocity and to the change ¢x in the 
position coordinate during that time interval.
 c. If one of the motion curves is known, the fundamental properties we have 
summarized in paragraphs a and b will enable you to construct the other two 
curves. However, when using the properties of paragraph b, the velocity and the 
position coordinate at time t1 must be known in order to determine the velocity 
and the position coordinate at time t2. Thus, in Sample Prob. 11.6, knowing that 
the initial value of the velocity was zero allowed us to find the velocity at t 5 6 s: 
v6 5 v0 1 ¢v 5 0 1 24 ft/s 5 24 ft/s.

If you have previously studied the shear and bending-moment diagrams for a 
beam, you should recognize the analogy that exists between the three motion 
curves and the three diagrams representing respectively the distributed load, the 
shear, and the bending moment in the beam. Thus, any techniques that you learned 
regarding the construction of these diagrams can be applied when drawing the 
motion curves.

2. Using approximate methods. When the a–t and v–t curves are not repre-
sented by analytical functions or when they are based on experimental data, it is 
often necessary to use approximate methods to calculate the areas under these 
curves. In those cases, the given area is approximated by a series of rectangles of 
width ¢t. The smaller the value of ¢t, the smaller the error introduced by the 
approximation. The velocity and the position coordinate are obtained by writing

v 5 v0 1 oaave ¢t  x 5 x0 1 ovave ¢t

where aave and vave are the heights of an acceleration rectangle and a velocity 
rectangle, respectively.

(continued)
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636

3. Applying the moment-area method. This graphical technique is used when 
the a−t curve is given and the change in the position coordinate is to be determined. 
We found in Sec. 11.8 that the position coordinate x1 can be expressed as

 x1 5 x0 1 v0t1 1 (area under a – t curve)(t1 2 t) (11.13)

Keep in mind that when the area under the a−t curve is a composite area, the 
same value of t1 should be used for computing the contribution of each of the 
component areas.

4. Determining the acceleration from a v–x curve. You saw in Sec. 11.8 that 
it is possible to determine the acceleration from a v–x curve by direct measure-
ment. It is important to note, however, that this method is applicable only if the 
same linear scale is used for the v and x axes (for example, 1 in. 5 10 ft and 1 in. 5 
10 ft/s). When this condition is not satisfied, the acceleration can still be deter-
mined from the equation

a 5 v 

dv
dx

where the slope dv/dx is obtained as follows: First, draw the tangent to the curve at 
the point of interest. Next, using appropriate scales, measure along that tangent cor-
responding increments ¢x and ¢v. The desired slope is equal to the ratio ¢v/¢x.
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PROBLEMS

637

 11.61 A particle moves in a straight line with the acceleration shown 
in the figure. Knowing that it starts from the origin with v0 5 
214 ft/s, plot the v–t and x–t curves for 0 , t , 15 s and deter-
mine (a) the maximum value of the velocity of the particle, (b) the 
maximum value of its position coordinate.

 11.62 For the particle and motion of Prob. 11.61, plot the v–t and x–t
curves for 0 , t , 15 s and determine the velocity of the particle, 
its position, and the total distance traveled after 10 s.

 11.63 A particle moves in a straight line with the velocity shown in the 
figure. Knowing that x 5 2540 m at t 5 0, (a) construct the a–t 
and x–t curves for 0 , t , 50 s, and determine (b) the total dis-
tance traveled by the particle when t 5 50 s, (c) the two times at 
which x 5 0.

8

3

0
t (s)

–5

a (ft/s2)

2 5

8

 Fig. P11.61   and P11.62

60

–20
–5

t (s)

v (m/s)

26 41 46
10

 Fig. P11.63   and P11.64

v

 Fig. P11.66

 11.64 A particle moves in a straight line with the velocity shown in the 
figure. Knowing that x 5 2540 m at t 5 0, (a) construct the a–t 
and x–t curves for 0 , t , 50 s, and determine (b) the maximum 
value of the position coordinate of the particle, (c) the values of t 
for which the particle is at x 5 100 m.

 11.65 During a finishing operation the bed of an industrial planer 
moves alternately 30 in. to the right and 30 in. to the left. The 
velocity of the bed is limited to a maximum value of 6 in./s to the 
right and 12 in./s to the left; the acceleration is successively equal 
to 6 in./s2 to the right, zero, 6 in./s2 to the left, zero, etc. Determine 
the time required for the bed to complete a full cycle, and draw 
the v–t and x–t curves.

 11.66 A parachutist is in free fall at a rate of 200 km/h when he opens 
his parachute at an altitude of 600 m. Following a rapid and con-
stant deceleration, he then descends at a constant rate of 50 km/h 
from 586 m to 30 m, where he maneuvers the parachute into the 
wind to further slow his descent. Knowing that the parachutist 
lands with a negligible downward velocity, determine (a) the time 
required for the parachutist to land after opening his parachute, 
(b) the initial deceleration.
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638 Kinematics of Particles  11.67 A commuter train traveling at 40 mi/h is 3 mi from a station. The 
train then decelerates so that its speed is 20 mi/h when it is 0.5 mi 
from the station. Knowing that the train arrives at the station 
7.5 min after beginning to decelerate and assuming constant 
decelerations, determine (a) the time required for the train to 
travel the first 2.5 mi, (b) the speed of the train as it arrives at the 
station, (c) the final constant deceleration of the train.

x

A B

60 in.

 Fig. P11.68  

40 mi/h
3 mi

 Fig. P11.67

 11.68 A temperature sensor is attached to slider AB which moves back 
and forth through 60 in. The maximum velocities of the slider are 
12 in./s to the right and 30 in./s to the left. When the slider is 
moving to the right, it accelerates and decelerates at a constant rate 
of 6 in./s2; when moving to the left, the slider accelerates and decel-
erates at a constant rate of 20 in./s2. Determine the time required 
for the slider to complete a full cycle, and construct the v–t and 
x–t curves of its motion.

 11.69 In a water-tank test involving the launching of a small model boat, 
the model’s initial horizontal velocity is 6 m/s and its horizontal 
acceleration varies linearly from 212 m/s2 at t 5 0 to 22 m/s2 at 
t 5 t1 and then remains equal to 22 m/s2 until t 5 1.4 s. Know-
ing that v 5 1.8 m/s when t 5 t1, determine (a) the value of t1, 
(b) the velocity and the position of the model at t 5 1.4 s.

 11.70 The acceleration record shown was obtained for a small airplane 
traveling along a straight course. Knowing that x 5 0 and v 5 
60 m/s when t 5 0, determine (a) the velocity and position of 
the plane at t 5 20 s, (b) its average velocity during the interval 
6 s , t , 14 s.

 11.71 In a 400-m race, runner A reaches her maximum velocity vA in 
4 s with constant acceleration and maintains that velocity until she 
reaches the halfway point with a split time of 25 s. Runner B 
reaches her maximum velocity vB in 5 s with constant acceleration 
and maintains that velocity until she reaches the halfway point 
with a split time of 25.2 s. Both runners then run the second 
half of the race with the same constant deceleration of 0.1 m/s2. 
Determine (a) the race times for both runners, (b) the position 
of the winner relative to the loser when the winner reaches the 
finish line.

x

v0 = 6 m/s

 Fig. P11.69
0.75

6 8
0

10

12 14 20 t(s)
–0.75

a (m/s2)

 Fig. P11.70

B

200 m 200 m

A

 Fig. P11.71
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639Problems 11.72 A car and a truck are both traveling at the constant speed of 35 mi/h; 
the car is 40 ft behind the truck. The driver of the car wants to 
pass the truck, i.e., he wishes to place his car at B, 40 ft in front 
of the truck, and then resume the speed of 35 mi/h. The maximum 
acceleration of the car is 5 ft/s2 and the maximum deceleration 
obtained by applying the brakes is 20 ft/s2. What is the shortest 
time in which the driver of the car can complete the passing opera-
tion if he does not at any time exceed a speed of 50 mi/h? Draw 
the v–t curve.

A B

16 ft
40 ft 50 ft 40 ft

 Fig. P11.72

A (vA)0

(vB)0

(vA)0

380 ft

B
(vB)0

 Fig. P11.74
12 m

 Fig. P11.75

 11.73 Solve Prob. 11.72, assuming that the driver of the car does not pay 
any attention to the speed limit while passing and concentrates on 
reaching position B and resuming a speed of 35 mi/h in the short-
est possible time. What is the maximum speed reached? Draw the 
v–t curve.

 11.74 Car A is traveling on a highway at a constant speed (vA)0 5 60 mi/h 
and is 380 ft from the entrance of an access ramp when car B 
enters the acceleration lane at that point at a speed (vB)0 5 15 mi/h.
Car B accelerates uniformly and enters the main traffic lane after 
traveling 200 ft in 5 s. It then continues to accelerate at the same 
rate until it reaches a speed of 60 mi/h, which it then maintains. 
Determine the final distance between the two cars.

 11.75  An elevator starts from rest and moves upward, accelerating at a 
rate of 1.2 m/s2 until it reaches a speed of 7.8 m/s, which it then 
maintains. Two seconds after the elevator begins to move, a man 
standing 12 m above the initial position of the top of the elevator 
throws a ball upward with an initial velocity of 20 m/s. Determine 
when the ball will hit the elevator.
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640 Kinematics of Particles  11.76 Car A is traveling at 40 mi/h when it enters a 30 mi/h speed zone. 
The driver of car A decelerates at a rate of 16 ft/s2 until reaching a 
speed of 30 mi/h, which she then maintains. When car B, which 
was initially 60 ft behind car A and traveling at a constant speed of 
45 mi/h, enters the speed zone, its driver decelerates at a rate of 
20 ft/s2 until reaching a speed of 28 mi/h. Knowing that the driver 
of car B maintains a speed of 28 mi/h, determine (a) the closest that 
car B comes to car A, (b) the time at which car A is 70 ft in front 
of car B.

2

0
21

4.5 t(s)t1

–6

a (m/s2)

 Fig. P11.78

B A

60 ft

(vB)0 = 45 mi/h (vA)0 = 40 mi/h

 Fig. P11.76

 11.77 An accelerometer record for the motion of a given part of a mecha-
nism is approximated by an arc of a parabola for 0.2 s and a straight 
line for the next 0.2 s as shown in the figure. Knowing that v � 0 
when t � 0 and x � 0.8 ft when t � 0.4 s, (a) construct the v – t 
curve for 0 � t � 0.4 s, (b) determine the position of the part at 
t � 0.3 s and t � 0.2 s.

0

16

24

a (ft/s2)

0 0.2 0.4 t (s)

a = 24 – 200t2

a = 32 – 80t

 Fig. P11.77

 11.78 A car is traveling at a constant speed of 54 km/h when its driver 
sees a child run into the road. The driver applies her brakes until 
the child returns to the sidewalk and then accelerates to resume 
her original speed of 54 km/h; the acceleration record of the car 
is shown in the figure. Assuming x 5 0 when t 5 0, determine 
(a) the time t1 at which the velocity is again 54 km/h, (b) the posi-
tion of the car at that time, (c) the average velocity of the car 
during the interval 1 s # t # t1.
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641Problems 11.79 An airport shuttle train travels between two terminals that are 
1.6 mi apart. To maintain passenger comfort, the acceleration of 
the train is limited to 64 ft/s2, and the jerk, or rate of change of 
acceleration, is limited to 60.8 ft/s2 per second. If the shuttle has 
a maximum speed of 20 mi/h, determine (a) the shortest time for 
the shuttle to travel between the two terminals, (b) the corre-
sponding average velocity of the shuttle.

 11.80 During a manufacturing process, a conveyor belt starts from rest 
and travels a total of 1.2 ft before temporarily coming to rest. 
Knowing that the jerk, or rate of change of acceleration, is limited 
to 64.8 ft/s2 per second, determine (a) the shortest time required 
for the belt to move 1.2 ft, (b) the maximum and average values 
of the velocity of the belt during that time.

 11.81 Two seconds are required to bring the piston rod of an air cylinder 
to rest; the acceleration record of the piston rod during the 2 s is 
as shown. Determine by approximate means (a) the initial velocity 
of the piston rod, (b) the distance traveled by the piston rod as it 
is brought to rest.

a (m/s2)

t (s)

6.0

7.0

5.0

4.0

3.0

2.0

1.0

0
0 2 4 6 8 10 12 14 16 18 20 22

 Fig. P11.82

t (s)

4.0

3.0

2.0

1.0

0

–a (m/s2)

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

 Fig. P11.81

 11.82 The acceleration record shown was obtained during the speed tri-
als of a sports car. Knowing that the car starts from rest, determine 
by approximate means (a) the velocity of the car at t 5 8 s, (b) the 
distance the car has traveled at t 5 20 s.
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642 Kinematics of Particles  11.83 A training airplane has a velocity of 126 ft/s when it lands on an 
aircraft carrier. As the arresting gear of the carrier brings the air-
plane to rest, the velocity and the acceleration of the airplane are 
recorded; the results are shown (solid curve) in the figure. Deter-
mine by approximate means (a) the time required for the airplane 
to come to rest, (b) the distance traveled in that time.
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 Fig. P11.84
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 Fig. P11.87

 11.84 Shown in the figure is a portion of the experimentally determined 
v–x curve for a shuttle cart. Determine by approximate means the 
acceleration of the cart when (a) x 5 10 in., (b) v 5 80 in./s.

 11.85 Using the method of Sec. 11.8, derive the formula x 5 x0 1 v0t 1 
1
2 at2 for the position coordinate of a particle in uniformly accelerated 
rectilinear motion.

 11.86 Using the method of Sec. 11.8, determine the position of the particle 
of Prob. 11.61 when t 5 8 s.

 11.87 The acceleration of an object subjected to the pressure wave of a 
large explosion is defined approximately by the curve shown. The 
object is initially at rest and is again at rest at time t1. Using the 
method of Sec. 11.8, determine (a) the time t1, (b) the distance 
through which the object is moved by the pressure wave.

 11.88 For the particle of Prob. 11.63, draw the a–t curve and determine, 
using the method of Sec. 11.8, (a) the position of the particle when 
t 5 52 s, (b) the maximum value of its position coordinate.
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643CURVILINEAR MOTION OF PARTICLES

11.9  POSITION VECTOR, VELOCITY, 
AND ACCELERATION

When a particle moves along a curve other than a straight line, we say 
that the particle is in curvilinear motion. To define the position P occu-
pied by the particle at a given time t, we select a fixed reference system, 
such as the x, y, z axes shown in Fig. 11.14a, and draw the vector r 
joining the origin O and point P. Since the vector r is characterized by its 
magnitude r and its direction with respect to the reference axes, it com-
pletely defines the position of the particle with respect to those axes; the 
vector r is referred to as the position vector of the particle at time t.
 Consider now the vector r9 defining the position P9 occupied by 
the same particle at a later time t 1 ¢t. The vector ¢r joining P and 
P9 represents the change in the position vector during the time interval 
¢t since, as we can easily check from Fig. 11.14a, the vector r9 is 
obtained by adding the vectors r and ¢r according to the triangle 
rule. We note that ¢r represents a change in direction as well as a 
change in magnitude of the position vector r. The average velocity of 
the particle over the time interval ¢t is defined as the quotient of ¢r 
and ¢t. Since ¢r is a vector and ¢t is a scalar, the quotient ¢r/¢t is 
a vector attached at P, of the same direction as ¢r and of magnitude 
equal to the magnitude of ¢r divided by ¢t (Fig. 11.14b).
 The instantaneous velocity of the particle at time t is obtained 
by choosing shorter and shorter time intervals ¢t and, correspond-
ingly, shorter and shorter vector increments ¢r. The instantaneous 
velocity is thus represented by the vector

 v 5 lim
¢ty0

 
¢r
¢t

 (11.14)

As ¢t and ¢r become shorter, the points P and P9 get closer; the 
vector v obtained in the limit must therefore be tangent to the path 
of the particle (Fig. 11.14c).
 Since the position vector r depends upon the time t, we can 
refer to it as a vector function of the scalar variable t and denote it 
by r(t). Extending the concept of derivative of a scalar function intro-
duced in elementary calculus, we will refer to the limit of the quo-
tient ¢r/¢t as the derivative of the vector function r(t). We write

 v 5
dr
dt

 (11.15)

 The magnitude v of the vector v is called the speed of the particle. 
It can be obtained by substituting for the vector ¢r in formula (11.14) 
the magnitude of this vector represented by the straight-line segment 
PP9. But the length of the segment PP9 approaches the length ¢s of 
the arc PP9 as ¢t decreases (Fig. 11.14a), and we can write

 v 5 lim
¢ty0

 
PP¿
¢t

5 lim
¢ty0

 
¢s
¢t

    v 5
ds
dt

 (11.16)

11.9 Position Vector, Velocity, and Acceleration

Fig. 11.14
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644 Kinematics of Particles

The speed v can thus be obtained by differentiating with respect to t 
the length s of the arc described by the particle.
 Consider the velocity v of the particle at time t and its velocity v9 
at a later time t 1 ¢t (Fig. 11.15a). Let us draw both vectors v and v9 
from the same origin O9 (Fig. 11.15b). The vector ¢v joining Q and 
Q9 represents the change in the velocity of the particle during the time 
interval ¢t, since the vector v9 can be obtained by adding the vectors 
v and ¢v. We should note that ¢v represents a change in the direction 
of the velocity as well as a change in speed. The average acceleration 
of the particle over the time interval ¢t is defined as the quotient of 
¢v and ¢t. Since ¢v is a vector and ¢t a scalar, the quotient ¢v/¢t is 
a vector of the same direction as ¢v.
 The instantaneous acceleration of the particle at time t is 
obtained by choosing smaller and smaller values for ¢t and ¢v. The 
instantaneous acceleration is thus represented by the vector

 a 5 lim
¢ty0

 
¢v
¢t

 (11.17)

Noting that the velocity v is a vector function v(t) of the time t, we 
can refer to the limit of the quotient ¢v/¢t as the derivative of v 
with respect to t. We write

 a 5
dv
dt

 (11.18)

 We observe that the acceleration a is tangent to the curve 
described by the tip Q of the vector v when the latter is drawn from 
a fixed origin O9 (Fig. 11.15c) and that, in general, the acceleration 
is not tangent to the path of the particle (Fig. 11.15d). The curve 
described by the tip of v and shown in Fig. 11.15c is called the 
hodograph of the motion.Fig. 11.15
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64511.10 DERIVATIVES OF VECTOR FUNCTIONS
We saw in the preceding section that the velocity v of a particle in 
curvilinear motion can be represented by the derivative of the vector 
function r(t) characterizing the position of the particle. Similarly, the 
acceleration a of the particle can be represented by the derivative 
of the vector function v(t). In this section, we will give a formal 
definition of the derivative of a vector function and establish a few 
rules governing the differentiation of sums and products of vector 
functions.
 Let P(u) be a vector function of the scalar variable u. By that we 
mean that the scalar u completely defines the magnitude and direction 
of the vector P. If the vector P is drawn from a fixed origin O and the 
scalar u is allowed to vary, the tip of P will describe a given curve in 
space. Consider the vectors P corresponding, respectively, to the  values 
u and u 1 ¢u of the scalar variable (Fig. 11.16a). Let ¢P be the vector 
joining the tips of the two given vectors; we write

¢P 5 P(u 1 ¢u) 2 P(u)

Dividing through by ¢u and letting ¢u approach zero, we define the 
derivative of the vector function P(u):

 
dP
du

5 lim
¢uy0

 
¢P
¢u

5 lim
¢uy0

 
P(u 1 ¢u) 2 P(u)

¢u
 (11.19)

As ¢u approaches zero, the line of action of ¢P becomes tangent 
to the curve of Fig. 11.16a. Thus, the derivative dP/du of the vector 
function P(u) is tangent to the curve described by the tip of  P(u) 
(Fig. 11.16b).
 The standard rules for the differentiation of the sums and prod-
ucts of scalar functions can be extended to vector functions. Consider 
first the sum of two vector functions P(u) and Q(u) of the same scalar 
variable u. According to the definition given in (11.19), the derivative 
of the vector P 1 Q is

d(P 1 Q)
du

5 lim
¢uy0

 
¢(P 1 Q)

¢u
5 lim

¢uy0
 a¢P

¢u
1

¢Q
¢u
b

or since the limit of a sum is equal to the sum of the limits of its terms,

d(P 1 Q)
du

5 lim
¢uy0

 
¢P
¢u

1 lim
¢uy0

 
¢Q
¢u

 
d(P 1 Q)

du
5

dP
du

1
dQ
du

 (11.20)

 The product of a scalar function f(u) and a vector function P(u) 
of the same scalar variable u will now be considered. The derivative 
of the vector f P is

d( f P)

du
5 lim

¢uy0
 
( f 1 ¢f )(P 1 ¢P) 2 f P

¢u
5 lim

¢uy0 
a ¢f

¢u
P 1 f 

¢P
¢u
b

11.10 Derivatives of Vector Functions

Fig. 11.16
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646 Kinematics of Particles or recalling the properties of the limits of sums and products,

 
d(f P)

du
5

df

du
 P 1 f 

dP
du

 (11.21)

The derivatives of the scalar product and the vector product of two 
vector functions P(u) and Q(u) can be obtained in a similar way. We 
have

  
d(P ? Q)

du
5

dP
du

? Q 1 P ?
dQ
du

 (11.22)

  
d(P 3 Q)

du
5

dP
du

3 Q 1 P 3
dQ
du

 (11.23)†

 The properties established above can be used to determine the 
rectangular components of the derivative of a vector function P(u). 
Resolving P into components along fixed rectangular axes x, y, z, we 
write
 P 5 Pxi 1 Pyj 1 Pzk (11.24)

where Px, Py, Pz are the rectangular scalar components of the vector 
P, and i, j, k the unit vectors corresponding, respectively, to the x, y, 
and z axes (Sec. 2.12). By (11.20), the derivative of P is equal to the 
sum of the derivatives of the terms in the right-hand member. Since 
each of these terms is the product of a scalar and a vector function, 
we should use (11.21). But the unit vectors i, j, k have a constant 
magnitude (equal to 1) and fixed directions. Their derivatives are 
therefore zero, and we write

 
dP
du

5
dPx

du
 i 1

dPy

du
 j 1

dPz

du
 k (11.25)

Noting that the coefficients of the unit vectors are, by definition, the 
scalar components of the vector dP/du, we conclude that the rectan-
gular scalar components of the derivative dP/du of the vector func-
tion P(u) are obtained by differentiating the corresponding scalar 
components of P.

Rate of Change of a Vector. When the vector P is a function 
of the time t, its derivative dP/dt represents the rate of change of P 
with respect to the frame Oxyz. Resolving P into rectangular com-
ponents, we have, by (11.25),

dP
dt

5
dPx

dt
 i 1

dPy

dt
 j 1

dPz

dt
 k

or, using dots to indicate differentiation with respect to t,

 Ṗ 5 Ṗxi 1 Ṗyj 1 Ṗzk (11.259)

†Since the vector product is not commutative (Sec. 3.4), the order of the factors in 
Eq. (11.23) must be maintained.
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647 As you will see in Sec. 15.10, the rate of change of a vector as 
observed from a moving frame of reference is, in general, different 
from its rate of change as observed from a fixed frame of reference. 
However, if the moving frame O9x9y9z9 is in translation, i.e., if its 
axes remain parallel to the corresponding axes of the fixed frame 
Oxyz (Fig. 11.17), the same unit vectors i, j, k are used in both 
frames, and at any given instant the vector P has the same compo-
nents Px, Py, Pz in both frames. It follows from (11.259) that the rate of 
change Ṗ is the same with respect to the frames Oxyz and O9x9y9z9. 
We state, therefore: The rate of change of a vector is the same with 
respect to a fixed frame and with respect to a frame in translation. 
This property will greatly simplify our work, since we will be con-
cerned mainly with frames in translation.

11.11  RECTANGULAR COMPONENTS OF VELOCITY 
AND ACCELERATION

When the position of a particle P is defined at any instant by its 
rectangular coordinates x, y, and z, it is convenient to resolve the 
velocity v and the acceleration a of the particle into rectangular com-
ponents (Fig. 11.18).
 Resolving the position vector r of the particle into rectangular 
components, we write

 r 5 xi 1 yj 1 zk (11.26)

where the coordinates x, y, z are functions of t. Differentiating twice, 
we obtain

  v 5
dr
dt

5 x
.
i 1 y

.
j 1 z

. k (11.27)

  a 5
dv
dt

5 ẍi 1 ÿj 1 z̈k (11.28)

where x. , y. , z.  and ẍ , ÿ , z̈  represent, respectively, the first and second 
derivatives of x, y, and z with respect to t. It follows from (11.27) 
and (11.28) that the scalar components of the velocity and accelera-
tion are
 vx 5 ẋ    vy 5 ẏ    vz 5 ż (11.29)
 ax 5 ẍ    ay 5 ÿ    az 5 z̈ (11.30)

A positive value for vx indicates that the vector component vx is 
directed to the right, and a negative value indicates that it is directed 
to the left. The sense of each of the other vector components can 
be determined in a similar way from the sign of the corresponding 
scalar component. If desired, the magnitudes and directions of the 
velocity and acceleration can be obtained from their scalar compo-
nents by the methods of Secs. 2.7 and 2.12.
 The use of rectangular components to describe the position, 
the velocity, and the acceleration of a particle is particularly effective 
when the component ax of the acceleration depends only upon t, x, 
and/or vx, and when, similarly, ay depends only upon t, y, and/or vy, 

11.11 Rectangular Components of Velocity 
and Acceleration

Fig. 11.17
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648 Kinematics of Particles and az upon t, z, and/or vz. Equations (11.30) can then be integrated 
independently, and so can Eqs. (11.29). In other words, the motion 
of the particle in the x direction, its motion in the y direction, and 
its motion in the z direction can be considered separately.
 In the case of the motion of a projectile, for example, it can be 
shown (see Sec. 12.5) that the components of the acceleration are

ax 5 ẍ 5 0    ay 5 ÿ 5 2g    az 5 z̈ 5 0

if the resistance of the air is neglected. Denoting by x0, y0, and z0 
the coordinates of a gun, and by (vx)0, (vy)0, and (vz)0 the components 
of the initial velocity v0 of the projectile (a bullet), we integrate twice 
in t and obtain

 vx 5 ẋ 5 (vx)0       vy 5 ẏ 5 (vy)0 2 gt        vz 5 ż 5 (vz)0

 x 5 x0 1 (vx)0t      y 5 y0 1 (vy)0t 2 1
2gt2      z 5 z0 1 (vz)0t

If the projectile is fired in the xy plane from the origin O, we have 
x0 5 y0 5 z0 5 0 and (vz)0 5 0, and the equations of motion 
reduce  to
 vx 5 (vx)0    vy 5 (vy)0 2 gt      vz 5 0
 x 5 (vx)0t    y 5 (vy)0t 2 1

2gt2    z 5 0

These equations show that the projectile remains in the xy plane, 
that its motion in the horizontal direction is uniform, and that its 
motion in the vertical direction is uniformly accelerated. The motion 
of a projectile can thus be replaced by two independent rectilinear 
motions, which are easily visualized if we assume that the projectile 
is fired vertically with an initial velocity (vy)0 from a platform moving 
with a constant horizontal velocity (vx)0 (Fig. 11.19). The coordinate 
x of the projectile is equal at any instant to the distance traveled by 
the platform, and its coordinate y can be computed as if the projec-
tile were moving along a vertical line.
 It can be observed that the equations defining the coordinates 
x and y of a projectile at any instant are the parametric equations 
of a parabola. Thus, the trajectory of a projectile is parabolic. This 
result, however, ceases to be valid when the resistance of the air 
or the variation with altitude of the acceleration of gravity is taken 
into account.

11.12  MOTION RELATIVE TO A FRAME 
IN TRANSLATION

In the preceding section, a single frame of reference was used to 
describe the motion of a particle. In most cases this frame was 
attached to the earth and was considered as fixed. Situations in 
which it is convenient to use several frames of reference simultane-
ously will now be analyzed. If one of the frames is attached to the 
earth, it will be called a fixed frame of reference, and the other 
frames will be referred to as moving frames of reference. It should 
be understood, however, that the selection of a fixed frame of refer-
ence is purely arbitrary. Any frame can be designated as “fixed”; all 
other frames not rigidly attached to this frame will then be described 
as “moving.”

Fig. 11.19
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Photo 11.3 The motion of this snowboarder in 
the air will be a parabola assuming we can 
neglect air resistance.
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649 Consider two particles A and B moving in space (Fig. 11.20); 
the vectors rA and rB define their positions at any given instant with 
respect to the fixed frame of reference Oxyz. Consider now a sys-
tem of axes x9, y9, z9 centered at A and parallel to the x, y, z axes. 
While the origin of these axes moves, their orientation remains the 
same; the frame of reference Ax9y9z9 is in translation with respect 
to Oxyz. The vector rB/A joining A and B defines the position of B 
relative to the moving frame Ax9y9z9 (or, for short, the position of 
B relative to A).
 We note from Fig. 11.20 that the position vector rB of particle B 
is the sum of the position vector rA of particle A and of the position 
vector rB/A of B relative to A; we write

 rB 5 rA 1 rB/A (11.31)

Differentiating (11.31) with respect to t within the fixed frame of 
reference, and using dots to indicate time derivatives, we have

 ṙB 5 ṙA 1 ṙB/A (11.32)

The derivatives ṙA and ṙB represent, respectively, the velocities vA 
and vB of the particles A and B. Since Ax9y9z9 is in translation, the 
derivative ṙB/A represents the rate of change of rB/A with respect to 
the frame Ax9y9z9 as well as with respect to the fixed frame (Sec. 
11.10). This derivative, therefore, defines the velocity vB/A of B rela-
tive to the frame Ax9y9z9 (or, for short, the velocity vB/A of B relative 
to A). We write

 vB 5 vA 1 vB/A (11.33)

Differentiating Eq. (11.33) with respect to t, and using the derivative 
v̇B/A to define the acceleration aB/A of B relative to the frame Ax9y9z9 
(or, for short, the acceleration aB/A of B relative to A), we write

 aB 5 aA 1 aB/A (11.34)

 The motion of B with respect to the fixed frame Oxyz is 
referred to as the absolute motion of B. The equations derived in 
this section show that the absolute motion of B can be obtained by 
combining the motion of A and the relative motion of B with respect 
to the moving frame attached to A. Equation (11.33), for example, 
expresses that the absolute velocity vB of particle B can be obtained 
by adding vectorially the velocity of A and the velocity of B relative 
to the frame Ax9y9z9. Equation (11.34) expresses a similar property 
in terms of the accelerations.† We should keep in mind, however, 
that the frame Ax9y9z9 is in translation; that is, while it moves with A, 
it maintains the same orientation. As you will see later (Sec. 15.14), 
different relations must be used in the case of a rotating frame of 
reference.

11.12 Motion Relative to a Frame
in Translation

†Note that the product of the subscripts A and B/A used in the right-hand member of 
Eqs. (11.31) through (11.34) is equal to the subscript B used in their left-hand member.

Fig. 11.20
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Photo 11.4 The pilot of a helicopter must take 
into account the relative motion of the ship when 
landing. 
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650

SAMPLE PROBLEM 11.7

A projectile is fired from the edge of a 150-m cliff with an initial velocity 
of 180 m/s at an angle of 30° with the horizontal. Neglecting air resistance, 
find (a) the horizontal distance from the gun to the point where the pro-
jectile strikes the ground, (b) the greatest elevation above the ground 
reached by the projectile.

SOLUTION

The vertical and the horizontal motion will be considered separately.

Vertical Motion. Uniformly Accelerated Motion. Choosing the positive 
sense of the y axis upward and placing the origin O at the gun, we have

 (vy)0 5 (180 m/s) sin 30° 5 190 m/s
 a 5 29.81 m/s2

Substituting into the equations of uniformly accelerated motion, we have

 vy 5 (vy)0 1 at      vy 5 90 2 9.81t (1)
 y 5 (vy)0t 1 1

2 at2    y 5 90t 2 4.90t2 (2)
 v2

y 5 (vy)
2
0 1 2ay    v2

y 5 8100 2 19.62y (3)

Horizontal Motion. Uniform Motion. Choosing the positive sense of the 
x axis to the right, we have

(vx)0 5 (180 m/s) cos 30° 5 1155.9 m/s

Substituting into the equation of uniform motion, we obtain

 x 5 (vx)0t    x 5 155.9t (4)

a. Horizontal Distance. When the projectile strikes the ground, we have

y 5 2150 m

Carrying this value into Eq. (2) for the vertical motion, we write

2150 5 90t 2 4.90t2 t2 2 18.37t 2 30.6 5 0 t 5 19.91 s

Carrying t 5 19.91 s into Eq. (4) for the horizontal motion, we obtain

 x 5 155.9(19.91) x 5 3100 m ◀

b. Greatest Elevation. When the projectile reaches its greatest elevation, 
we have vy 5 0; carrying this value into Eq. (3) for the vertical motion, 
we write

0 5 8100 2 19.62y    y 5 413 m
Greatest elevation above ground 5 150 m 1 413 m 5 563 m ◀

x

30°

180 m/s

150 m

O

y

30°

180 m/s

–150 m

a = –9.81 m /s2

(vy)0

x
O 30°

180 m/s

(vx)0
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651

SAMPLE PROBLEM 11.8

A projectile is fired with an initial velocity of 800 ft/s at a target B located 
2000 ft above the gun A and at a horizontal distance of 12,000 ft. Neglecting 
air resistance, determine the value of the firing angle a.

SOLUTION

The horizontal and the vertical motion will be considered separately.

Horizontal Motion. Placing the origin of the coordinate axes at the gun, 
we have

(vx)0 5 800 cos a

Substituting into the equation of uniform horizontal motion, we obtain

x 5 (vx)0t  x 5 (800 cos a)t

The time required for the projectile to move through a horizontal distance 
of 12,000 ft is obtained by setting x equal to 12,000 ft.

 12,000 5 (800 cos a)t

 t 5
12,000

800 cos a
5

15
cos a

Vertical Motion

(vy)0 5 800 sin a  a 5 232.2 ft/s2

Substituting into the equation of uniformly accelerated vertical motion, 
we obtain

y 5 (vy)0t 1 1
2 at2    y 5 (800 sin a)t 2 16.1t2

Projectile Hits Target. When x 5 12,000 ft, we must have y 5 2000 ft. 
Substituting for y and setting t equal to the value found above, we write

2000 5 800 sin a 

15
cos a

2 16.1a 15
cos a

b2

Since 1/cos2 a 5 sec2 a 5 1 1 tan2 a, we have

2000 5 800(15) tan a 2 16.1(152)(1 1 tan2 a)
3622 tan2 a 2 12,000 tan a 1 5622 5 0

Solving this quadratic equation for tan a, we have

tan a 5 0.565  and  tan a 5 2.75
a 5 29.5°  and  a 5 70.0° ◀

The target will be hit if either of these two firing angles is used (see figure).

70.0°

29.5°A

B

(vx)0 = 800 cos �
x

O

v0 = 800 ft /s
B

a

12,000 ft

800 ft /s

2000 ftA

B

a

12,000 ft

(vy)0 = 800 sin a

a = – 32.2 ft /s2

O
v0 = 800 ft /s

B

a

y

2000 ft

bee02324_ch11_600-693.indd Page 651  7/8/11  11:36 AM user-f494bee02324_ch11_600-693.indd Page 651  7/8/11  11:36 AM user-f494 /203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles/203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


652

SAMPLE PROBLEM 11.9

Automobile A is traveling east at the constant speed of 36 km/h. As automobile 
A crosses the intersection shown, automobile B starts from rest 35 m north of 
the intersection and moves south with a constant acceleration of 1.2 m/s2. 
Determine the position, velocity, and acceleration of B relative to A 5 s after 
A crosses the intersection.

SOLUTION

We choose x and y axes with origin at the intersection of the two streets 
and with positive senses directed respectively east and north.

Motion of Automobile A. First the speed is expressed in m/s:

vA 5 a36 

km
h
b a1000 m

1 km
b a 1 h

3600 s
b 5 10 m/s

Noting that the motion of A is uniform, we write, for any time t,

 aA 5 0
 vA 5 110 m/s
 xA 5 (xA)0 1 vAt 5 0 1 10t

For t 5 5 s, we have

 aA 5 0 aA 5 0
 vA 5 110 m/s vA 5 10 m/s y
 xA 5 1(10 m/s)(5 s) 5 150 m  rA 5 50 m y

Motion of Automobile B. We note that the motion of B is uniformly ac-
celerated and write

 aB 5 21.2 m/s2

 vB 5 (vB)0 1 at 5 0 2 1.2 t
 yB 5 (yB)0 1 (vB)0t 1 1

2 aBt2 5 35 1 0 2 1
2(1.2)t2

For t 5 5 s, we have

 aB 5 21.2 m/s2 aB 5 1.2 m/s2
w

 vB 5 2(1.2 m/s2)(5 s) 5 26 m/s vB 5 6 m/sw
 yB 5 35 2 1

2(1.2 m/s2)(5 s)2 5 120 m  rB 5 20 mx

Motion of B Relative to A. We draw the triangle corresponding to the vec-
tor equation rB 5 rA 1 rB/A and obtain the magnitude and direction of the 
position vector of B relative to A.

rB/A 5 53.9 m    a 5 21.8°    rB/A 5 53.9 m b 21.8° ◀

Proceeding in a similar fashion, we find the velocity and acceleration of B 
relative to A.
 vB 5 vA 1 vB/A
 vB/A 5 11.66 m/s  b 5 31.0°  vB/A 5 11.66 m/s d 31.0° ◀

 aB 5 aA 1 aB/A aB/A 5 1.2 m/s2
w ◀

A

B

36 km /h

1.2 m /s2
35 m

rB

rA

rB/ArB/A

vB

vA

vB/A vB/A

aB aB/A aB/A

a

b

20 m

10 m/s

6 m/s

1.2 m/s2

50 m

A

B

x

y

xA

yB

35 m
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653

SOLVING PROBLEMS
ON YOUR OWN

In the problems for this lesson, you will analyze the two- and three-dimensional 
motion of a particle. While the physical interpretations of the velocity and accel-

eration are the same as in the first lessons of the chapter, you should remember 
that these quantities are vectors. In addition, you should understand from your 
experience with vectors in statics that it will often be advantageous to express 
position vectors, velocities, and accelerations in terms of their rectangular scalar 
components [Eqs. (11.27) and (11.28)]. Furthermore, given two vectors A and B, 
recall that A ? B 5 0 if A and B are perpendicular to each other, while A 3 B 5 0 
if A and B are parallel.

A. Analyzing the motion of a projectile. Many of the following problems deal 
with the two-dimensional motion of a projectile, where the resistance of the air 
can be neglected. In Sec. 11.11, we developed the equations which describe this 
type of motion, and we observed that the horizontal component of the velocity 
remained constant (uniform motion) while the vertical component of the accelera-
tion was constant (uniformly accelerated motion). We were able to consider sepa-
rately the horizontal and the vertical motions of the particle. Assuming that the 
projectile is fired from the origin, we can write the two equations

x 5 (vx)0t   y 5 (vy)0t 2 1
2gt2

1. If the initial velocity and firing angle are known, the value of y correspond-
ing to any given value of x (or the value of x for any value of y) can be obtained 
by solving one of the above equations for t and substituting for t into the other, 
equation [Sample Prob. 11.7].

2. If the initial velocity and the coordinates of a point of the trajectory are 
known, and you wish to determine the firing angle a, begin your solution by 
expressing the components (vx)0 and (vy)0 of the initial velocity as functions of the 
angle a. These expressions and the known values of x and y are then substituted 
into the above equations. Finally, solve the first equation for t and substitute that 
value of t into the second equation to obtain a trigonometric equation in a, which 
you can solve for that unknown [Sample Prob. 11.8].

(continued)
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654

B. Solving translational two-dimensional relative-motion problems. You saw 
in Sec. 11.12 that the absolute motion of a particle B can be obtained by combin-
ing the motion of a particle A and the relative motion of B with respect to a frame 
attached to A which is in translation. The velocity and acceleration of B can then 
be expressed as shown in Eqs. (11.33) and (11.34), respectively.

1. To visualize the relative motion of B with respect to A, imagine that you 
are attached to particle A as you observe the motion of particle B. For example, 
to a passenger in automobile A of Sample Prob. 11.9, automobile B appears to be 
heading in a southwesterly direction (south should be obvious; and west is due 
to the fact that automobile A is moving to the east—automobile B then appears 
to travel to the west). Note that this conclusion is consistent with the direction 
of vB/A.

2. To solve a relative-motion problem, first write the vector equations (11.31), 
(11.33), and (11.34), which relate the motions of particles A and B. You may then 
use either of the following methods:
 a. Construct the corresponding vector triangles and solve them for the 
desired position vector, velocity, and acceleration [Sample Prob. 11.9].
 b. Express all vectors in terms of their rectangular components and solve 
the two independent sets of scalar equations obtained in that way. If you choose 
this approach, be sure to select the same positive direction for the displacement, 
velocity, and acceleration of each particle.
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PROBLEMS

655

CONCEPT QUESTIONS

 11.CQ3 Two model rockets are fired simultaneously from a ledge and fol-
low the trajectories shown. Neglecting air resistance, which of the 
rockets will hit the ground first?

 a. A.
 b. B.
 c. They hit at the same time.
 d. The answer depends on h.

 11.CQ4 Ball A is thrown straight up. Which of the following statements 
about the ball are true at the highest point in its path?

 a. The velocity and acceleration are both zero.
 b. The velocity is zero, but the acceleration is not zero.
 c. The velocity is not zero, but the acceleration is zero.
 d. Neither the velocity nor the acceleration is zero.

 11.CQ5 Ball A is thrown straight up with an initial speed v0 and reaches a 
maximum elevation h before falling back down. When A reaches its 
maximum elevation, a second ball is thrown straight upward with 
the same initial speed v0. At what height, y, will the balls cross paths?

 a. y 5 h
 b. y . h/2
 c. y 5 h/2
 d. y , h/2
 e. y 5 0

 11.CQ6 Two cars are approaching an intersection at constant speeds as 
shown. What velocity will car B appear to have to an observer in 
car A?

 a. n b. q c. r d. p e. o

h

A

B

 Fig. P11.CQ3

v0

h

y
A

 Fig. P11.CQ4

vA

vB

 Fig. P11.CQ6

 11.CQ7 Blocks A and B are released from rest in the positions shown. Ne-
glecting friction between all surfaces, which figure best indicates 
the direction a of the acceleration of block B?

a. b. c. d. e.
aB

aB

aB

a = q

aB

a > q
aB

a < q

q

A

B

 Fig. P11.CQ7
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656 Kinematics of Particles END-OF-SECTION PROBLEMS

 11.89 A ball is thrown so that the motion is defined by the equations 
x 5 5t and y 5 2 1 6t 2 4.9t2, where x and y are expressed in meters 
and t is expressed in seconds. Determine (a) the velocity at t 5 l s, 
(b) the horizontal distance the ball travels before hitting the ground.

 11.90 The motion of a vibrating particle is defined by the position 
 vector r 5 10(1 2 e23t)i 1 (4e22t sin 15t)j, where r and t are 
expressed in millimeters and seconds, respectively. Determine 
the velocity and acceleration when (a) t 5 0, (b) t 5 0.5 s.

 11.91 The motion of a vibrating particle is defined by the position vector 
r 5 (4 sin pt)i 2 (cos 2pt)j, where r is expressed in inches and 
t in seconds. (a) Determine the velocity and acceleration when 
t 5 1 s. (b) Show that the path of the particle is parabolic.

 11.92 The motion of a particle is defined by the equations x 5 10t 2 
5 sin t and y 5 10 2 5 cos t, where x and y are expressed in feet 
and t is expressed in seconds. Sketch the path of the  particle for 
the time interval 0 # t # 2p, and determine (a) the magnitudes of 
the smallest and largest velocities reached by the particle, (b) the 
corresponding times, positions, and directions of the velocities.

 11.93 The damped motion of a vibrating particle is defined by the posi-
tion vector r 5 x1[1 2 1/(t 1 1)]i 1 (y1e2pt/2 cos 2pt)j, where t is 
expressed in seconds. For x1 5 30 mm and y1 5 20 mm, determine 
the position, the velocity, and the acceleration of the particle when 
(a) t 5 0, (b) t 5 1.5 s.

y

x

 Fig. P11.89 

3

1

2

0

−1

−2

2 4 6 8 10

y

x

 Fig. P11.90

y

O
x

4 in. 4 in.

1 in.

1 in.

 Fig. P11.91

1.0

0.5

0

–0.5

–1.0

0.2 0.4 0.6

y/y1

x/x1

 Fig. P11.93

 11.94 The motion of a particle is defined by the position vector r 5 
A(cos t 1 t sin t)i 1 A(sin t 2 t cos t)j, where t is expressed in 
seconds. Determine the values of t for which the position vector 
and the acceleration are (a) perpendicular, (b) parallel.

y

P
r

xO P0A

 Fig. P11.94
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657Problems 11.95 The three-dimensional motion of a particle is defined by the posi-
tion vector r 5 (Rt cos vnt)i 1 ctj 1 (Rt sin vnt)k. Determine 
the magnitudes of the velocity and acceleration of the particle. 
(The space curve described by the particle is a conic helix.)

 *11.96 The three-dimensional motion of a particle is defined by the 
  position vector r 5 (At cos t)i 1 (A2t2 1 1)j 1 (Bt sin t)k, 

where r and t are expressed in feet and seconds, respectively. 
Show that the curve described by the particle lies on the hyper-
boloid (y/A)2 2 (x/A)2 2 (z/B)2 5 1. For A 5 3 and B 5 1, 
determine (a) the magnitudes of the velocity and acceleration 
when t 5 0, (b) the smallest nonzero value of t for which the 
position vector and the velocity are perpendicular to each other.

 11.97 An airplane used to drop water on brushfires is flying horizontally 
in a straight line at 180 mi/h at an altitude of 300 ft. Determine 
the distance d at which the pilot should release the water so that 
it will hit the fire at B.

A

v0

B

d

 Fig. P11.97

y

xz

y2

A2
x2

A2
z2

B2
– – = 1

 Fig. P11.96

 11.98 A helicopter is flying with a constant horizontal velocity of 180 km/h 
and is directly above point A when a loose part begins to fall. The 
part lands 6.5 s later at point B on an inclined surface. Determine 
(a) the distance d between points A and B. (b) the initial height h.

d

10°

h

A

B

180 km/h

 Fig. P11.98
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658 Kinematics of Particles  11.99 A baseball pitching machine “throws” baseballs with a horizontal 
velocity v0. Knowing that height h varies between 788 mm and 
1068 mm, determine (a) the range of values of v0, (b) the values 
of a corresponding to h 5 788 mm and h 5 1068 mm.

A

CB

v0

15°

2 ft

1.2 ft

d

10 ft

 Fig. P11.101

 11.100 While delivering newspapers, a girl throws a newspaper with a 
horizontal velocity v0. Determine the range of values of v0 if the 
newspaper is to land between points B and C.

 11.101 Water flows from a drain spout with an initial velocity of 2.5 ft/s at 
an angle of 15° with the horizontal. Determine the range of values 
of the distance d for which the water will enter the trough BC.

v0A

Bh
1.5 m

12.2 m

a

 Fig. P11.99

v0A

B

C

14 in.

8 in.
8 in.

8 in.

36 in.

4 ft

7 ft

 Fig. P11.100
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659Problems 11.102 Milk is poured into a glass of height 140 mm and inside diameter 
66 mm. If the initial velocity of the milk is 1.2 m/s at an angle of 
40° with the horizontal, determine the range of values of the 
height h for which the milk will enter the glass.

 11.103 A volleyball player serves the ball with an initial velocity v0 of 
magnitude 13.40 m/s at an angle of 20° with the horizontal. Deter-
mine (a) if the ball will clear the top of the net, (b) how far from 
the net the ball will land.

v0

A

40°

B C

h

80 mm

 Fig. P11.102

A

B

v0

25°
5°

d

 Fig. P11.104

 11.104 A golfer hits a golf ball with an initial velocity of 160 ft/s at an 
angle of 25° with the horizontal. Knowing that the fairway slopes 
downward at an average angle of 5°, determine the distance d 
between the golfer and point B where the ball first lands.

 11.105 A homeowner uses a snowblower to clear his driveway. Knowing 
that the snow is discharged at an average angle of 40° with the 
horizontal, determine the initial velocity v0 of the snow.

v0

A
C

20°

2.1 m 2.43 m

9 m

 Fig. P11.103

A

B
v0

40°
3.5 ft

2 ft

14 ft

Fig. P11.105
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660 Kinematics of Particles  11.106 At halftime of a football game souvenir balls are thrown to the 
spectators with a velocity v0. Determine the range of values of v0 
if the balls are to land between points B and C.

 11.107 A basketball player shoots when she is 16 ft from the backboard. 
Knowing that the ball has an initial velocity v0 at an angle of 30° 
with the horizontal, determine the value of v0 when d is equal to 
(a) 9 in., (b) 17 in.

A

B

C

8 m

10 m

7 m

1.5 m2 m

v0

40° 35°

 Fig. P11.106

30°
A

B v0

d
16 ft

10 ft

6.8 ft

 Fig. P11.107

12.2 m 6.4 m

0.914 m

5°

v0

h

 Fig. P11.108

 11.108 A tennis player serves the ball at a height h 5 2.5 m with an initial 
velocity of v0 at an angle of 58 with the horizontal. Determine the 
range of v0 for which the ball will land in the service area that 
extends to 6.4 m beyond the net.
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661Problems 11.109 The nozzle at A discharges cooling water with an initial velocity 
v0 at an angle of 6° with the horizontal onto a grinding wheel 
350 mm in diameter. Determine the range of values of the initial 
velocity for which the water will land on the grinding wheel 
between points B and C.

v0

vB

A
B

0.6 m

0.68 m

14 m

a
q

 Fig. P11.111

 11.110 While holding one of its ends, a worker lobs a coil of rope over 
the lowest limb of a tree. If he throws the rope with an initial 
velocity v0 at an angle of 65° with the horizontal, determine the 
range of values of v0 for which the rope will go over only the 
lowest limb.

 11.111 The pitcher in a softball game throws a ball with an initial velocity 
v0 of 72 km/h at an angle a with the horizontal. If the height of 
the ball at point B is 0.68 m, determine (a) the angle a, (b) the 
angle u that the velocity of the ball at point B forms with the 
horizontal.

10°

6°

v0

20 mm

A B

C 30°
205 mm

200 mm

 Fig. P11.109 65°

v0

A

B

C

0.9 m

0.7 m

5.7 m

5 m

 Fig. P11.110

 11.112 A model rocket is launched from point A with an initial velocity 
v0 of 75 m/s. If the rocket’s descent parachute does not deploy and 
the rocket lands a distance d � 100 m from A, determine (a) the 
angle a that v0 forms with the vertical, (b) the maximum height 
above point A reached by the rocket, (c) the duration of the flight.

d

 Fig. P11.112
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662 Kinematics of Particles  11.113 The initial velocity v0 of a hockey puck is 105 mi/h. Determine 
(a) the largest value (less than 45°) of the angle a for which the 
puck will enter the net, (b) the corresponding time required for 
the puck to reach the net.

A

B

1.1 m

d

v0

C

a

 Fig. P11.114

 11.114 A worker uses high-pressure water to clean the inside of a long 
drainpipe. If the water is discharged with an initial velocity v0 of 
11.5 m/s, determine (a) the distance d to the farthest point B on 
the top of the pipe that the worker can wash from his position at 
A, (b) the corresponding angle a.

 11.115 An oscillating garden sprinkler which discharges water with an 
initial velocity v0 of 8 m/s is used to water a vegetable garden. 
Determine the distance d to the farthest point B that will be 
watered and the corresponding angle a when (a) the vegetables are 
just beginning to grow, (b) the height h of the corn is 1.8 m.

v0

DC

2.5 ft
16 ft

4 ft

B EA

a

 Fig. P11.113

vv00

A B

d

1.5 m

hv0

a

 Fig. P11.115

  *11.116 A mountain climber plans to jump from A to B over a crevasse. 
Determine the smallest value of the climber’s initial velocity v0 and 
the corresponding value of angle a so that he lands at B. Fig. P11.116
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663Problems 11.117 The velocities of skiers A and B are as shown. Determine the 
velocity of A with respect to B.

 Fig. P11.120

 11.118 The three blocks shown move with constant velocities. Find the 
velocity of each block, knowing that the relative velocity of A with 
respect to C is 300 mm/s upward and that the relative velocity of 
B with respect to A is 200 mm/s downward.

 11.119 Three seconds after automobile B passes through the intersec-
tion shown, automobile A passes through the same intersection. 
Knowing that the speed of each automobile is constant, deter-
mine (a) the relative velocity of B with respect to A, (b) the 
change in position of B with respect to A during a 4-s interval, 
(c) the distance between the two automobiles 2 s after A has 
passed through the intersection.

 11.120 Shore-based radar indicates that a ferry leaves its slip with a veloc-
ity v 5 18 km/h d70°, while instruments aboard the ferry indicate 
a speed of 18.4 km/h and a heading of 30° west of south relative 
to the river. Determine the velocity of the river.

A

B

25°

10°

45 ft/s

30 ft/s

 Fig. P11.117

A B

D

C

Fig. P11.118

70°

A

B

30 mi/h30 mi/h45 mi/h45 mi/h

N

S

 Fig. P11.119
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664 Kinematics of Particles  11.121 Airplanes A and B are flying at the same altitude and are tracking 
the eye of hurricane C. The relative velocity of C with respect to 
A is vC/A 5 350 km/h d75°, and the relative velocity of C with 
respect to B is vC/B 5 400 km/h c 40°. Determine (a) the relative 
velocity of B with respect to A, (b) the velocity of A if ground-based 
radar indicates that the hurricane is moving at a speed of 30 km/h 
due north, (c) the change in position of C with respect to B during 
a 15-min interval.

 11.122 Pin P moves at a constant speed of 150 mm/s in a counterclock-
wise sense along a circular slot which has been milled in the 
slider block A shown. Knowing that the block moves downward 
at a constant speed of 100 mm/s, determine the velocity of pin 
P when (a) u 5 308, (b) u 5 1208.

25°

15°

A

B

 Fig. P11.124

B

A

q = 50°

 Fig. P11.123

 11.123 Knowing that at the instant shown assembly A has a velocity of 9 in./s 
and an acceleration of 15 in./s2 both directed downward, determine 
(a) the velocity of block B, (b) the acceleration of block B.

 11.124 Knowing that at the instant shown block A has a velocity of 8 in./s 
and an acceleration of 6 in./s2 both directed down the incline, deter-
mine (a) the velocity of block B, (b) the acceleration of block B.

A

B

C
N

 Fig. P11.121

q
P

30 mm

 Fig. P11.122
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665Problems 11.125 A boat is moving to the right with a constant deceleration of 
0.3 m/s2 when a boy standing on the deck D throws a ball with an 
initial velocity relative to the deck which is vertical. The ball rises 
to a maximum height of 8 m above the release point and the boy 
must step forward a distance d to catch it at the same height as 
the release point. Determine (a) the distance d, (b) the relative 
velocity of the ball with respect to the deck when the ball is 
caught.

A

B
75°

20°

C

 Fig. P11.126 vB

vA = 5 ft/s

3 ft

15°

A

B

 Fig. P11.127

 11.126 The assembly of rod A and wedge B starts from rest and moves 
to the right with a constant acceleration of 2 mm/s2. Determine 
(a) the acceleration of wedge C, (b) the velocity of wedge C when 
t 5 10 s.

8 m

D
d

vD

aD = 0.3 m/s2

 Fig. P11.125

 11.127 Determine the required velocity of the belt B if the relative veloc-
ity with which the sand hits belt B is to be (a) vertical, (b) as small 
as possible.
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666 Kinematics of Particles  11.128 Conveyor belt A, which forms a 20° angle with the horizontal, 
moves at a constant speed of 4 ft/s and is used to load an airplane. 
Knowing that a worker tosses duffel bag B with an initial velocity 
of 2.5 ft/s at an angle of 30° with the horizontal, determine the 
velocity of the bag relative to the belt as it lands on the belt.

 11.129 During a rainstorm the paths of the raindrops appear to form an 
angle of 308 with the vertical and to be directed to the left when 
observed from a side window of a train moving at a speed of 
15 km/h. A short time later, after the speed of the train has 
increased to 24 km/h, the angle between the vertical and the paths 
of the drops appears to be 458. If the train were stopped, at what 
angle and with what velocity would the drops be observed to fall?

 11.130 As observed from a ship moving due east at 9 km/h, the wind 
appears to blow from the south. After the ship has changed course 
and speed, and as it is moving north at 6 km/h, the wind appears 
to blow from the southwest. Assuming that the wind velocity is 
constant during the period of observation, determine the magni-
tude and direction of the true wind velocity.

 11.131 When a small boat travels north at 5 km/h, a flag mounted on its 
stern forms an angle u 5 50° with the centerline of the boat as shown. 
A short time later, when the boat travels east at 20 km/h, angle u is 
again 50°. Determine the speed and the direction of the wind.

q

 Fig. P11.131

vA

(vB)0

30°

20°
A

B

1.5 ft

 Fig. P11.128

bee02324_ch11_600-693.indd Page 666  7/8/11  11:36 AM user-f494bee02324_ch11_600-693.indd Page 666  7/8/11  11:36 AM user-f494 /203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles/203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


 11.132 As part of a department store display, a model train D runs on a 
slight incline between the store’s up and down escalators. When 
the train and shoppers pass point A, the train appears to a shopper 
on the up escalator B to move downward at an angle of 22° with 
the horizontal, and to a shopper on the down escalator C to move 
upward at an angle of 23° with the horizontal and to travel to the 
left. Knowing that the speed of the escalators is 3 ft/s, determine 
the speed and the direction of the train.

11.13 TANGENTIAL AND NORMAL COMPONENTS
We saw in Sec. 11.9 that the velocity of a particle is a vector tangent 
to the path of the particle but that, in general, the acceleration is 
not tangent to the path. It is sometimes convenient to resolve the 
acceleration into components directed, respectively, along the tan-
gent and the normal to the path of the particle.

Plane Motion of a Particle. First, let us consider a particle which 
moves along a curve contained in the plane of the figure. Let P be 
the position of the particle at a given instant. We attach at P a unit 
vector et tangent to the path of the particle and pointing in the direc-
tion of motion (Fig. 11.21a). Let e9t be the unit vector corresponding 
to the position P9 of the particle at a later instant. Drawing both vec-
tors from the same origin O9, we define the vector ¢et 5 e9t 2 et 
(Fig. 11.21b). Since et and e9t are of unit length, their tips lie on a 
circle of radius 1. Denoting by ¢u the angle formed by et and e9t, we 
find that the magnitude of ¢et is 2 sin (¢u/2). Considering now the 
vector ¢et/¢u, we note that as ¢u approaches zero, this vector 
becomes tangent to the unit circle of Fig. 11.21b, i.e., perpendicular 
to et, and that its magnitude approaches

lim
¢uy0

2 sin(¢u/2)
¢u

5 lim
¢uy0

 sin(¢u/2)
¢u/2

5 1

y

O x

P

P'

en

et

et

Δete't

e't

(a)

(b)

Δq

O'

1

Fig. 11.21

vB

vC

30°

A

B

C

D

30°

 Fig. P11.132

11.13 Tangential and Normal Components 667
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668 Kinematics of Particles Thus, the vector obtained in the limit is a unit vector along the 
 normal to the path of the particle, in the direction toward which et 
turns. Denoting this vector by en, we write

en 5 lim
¢uy0

 
¢et

¢u

 en 5
det

du
 (11.35)

 Since the velocity v of the particle is tangent to the path, it can be 
expressed as the product of the scalar v and the unit vector et. We have

 v 5 vet (11.36)

To obtain the acceleration of the particle, (11.36) will be differenti-
ated with respect to t. Applying the rule for the differentiation of 
the product of a scalar and a vector function (Sec. 11.10), we write

 a 5
dv
dt

5
dv
dt

 et 1 v 

det

dt
 (11.37)

But

det

dt
5

det

du
 
du

ds
 
ds
dt

Recalling from (11.16) that ds/dt 5 v, from (11.35) that det/du 5 en, 
and from elementary calculus that du/ds is equal to 1/r, where r is 
the radius of curvature of the path at P (Fig. 11.22), we have

 
det

dt
5

v
r

 en (11.38)

Substituting into (11.37), we obtain

 a 5
dv
dt

 et 1
v2

r
 en (11.39)

Thus, the scalar components of the acceleration are

 at 5
dv
dt

  an 5
v2

r
 (11.40)

 The relations obtained express that the tangential component 
of the acceleration is equal to the rate of change of the speed of the 
particle, while the normal component is equal to the square of the 
speed divided by the radius of curvature of the path at P. If the speed 
of the particle increases, at is positive and the vector component at 
points in the direction of motion. If the speed of the particle 
decreases, at is negative and at points against the direction of motion. 
The vector component an, on the other hand, is always directed 
toward the center of curvature C of the path (Fig. 11.23).
 We conclude from the above that the tangential component of 
the acceleration reflects a change in the speed of the particle, while 

Photo 11.5 The passengers in a train traveling 
around a curve will experience a normal 
acceleration toward the center of curvature 
of the path.

C

P

P'
et

e't

Δq

Δs
ρ

Δ q = Δs
ρ

O x

y

Fig. 11.22

an =      en
v2

ρ

a t =      et
dv
dt

C

P

y

O x

Fig. 11.23
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669its normal component reflects a change in the direction of motion 
of the particle. The acceleration of a particle will be zero only if both 
its components are zero. Thus, the acceleration of a particle moving 
with constant speed along a curve will not be zero unless the particle 
happens to pass through a point of inflection of the curve (where the 
radius of curvature is infinite) or unless the curve is a straight line.
 The fact that the normal component of the acceleration depends 
upon the radius of curvature of the path followed by the particle is 
taken into account in the design of structures or mechanisms as 
widely different as airplane wings, railroad tracks, and cams. In order 
to avoid sudden changes in the acceleration of the air particles flowing 
past a wing, wing profiles are designed without any sudden change 
in curvature. Similar care is taken in designing railroad curves, to 
avoid sudden changes in the acceleration of the cars (which would be 
hard on the equipment and unpleasant for the passengers). A straight 
section of track, for instance, is never directly followed by a circular 
section. Special transition sections are used to help pass smoothly 
from the infinite radius of curvature of the straight section to the 
finite radius of the circular track. Likewise, in the design of high-
speed cams, abrupt changes in acceleration are avoided by using tran-
sition curves which produce a continuous change in acceleration.

Motion of a Particle in Space. The relations (11.39) and (11.40) 
still hold in the case of a particle moving along a space curve. How-
ever, since there are an infinite number of straight lines which are 
perpendicular to the tangent at a given point P of a space curve, it is 
necessary to define more precisely the direction of the unit vector en.
 Let us consider again the unit vectors et and e9t tangent to the 
path of the particle at two neighboring points P and P9 (Fig. 11.24a) 
and the vector ¢et representing the difference between et and e9t 
(Fig. 11.24b). Let us now imagine a plane through P (Fig. 11.24a) 
parallel to the plane defined by the vectors et, e9t, and ¢et (Fig. 11.24b). 
This plane contains the tangent to the curve at P and is parallel to 
the tangent at P9. If we let P9 approach P, we obtain in the limit the 
plane which fits the curve most closely in the neighborhood of P. 
This plane is called the osculating plane at P.† It follows from this 

11.13 Tangential and Normal Components

y

O
x

et

e't

et

Δet

e't

Osculating
plane

z

y'

x'

z'

P

P'

O'

(a) (b)

Δθ

y

O
x

et

en

eb

z

P

(c)

Fig. 11.24

†From the Latin osculari, to kiss. 
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670 Kinematics of Particles definition that the osculating plane contains the unit vector en, since 
this vector represents the limit of the vector ¢et/¢u. The normal 
defined by en is thus contained in the osculating plane; it is called 
the principal normal at P. The unit vector eb 5 et 3 en which com-
pletes the right-handed triad et, en, eb (Fig. 11.24c) defines the 
binormal at P. The binormal is thus perpendicular to the osculating 
plane. We conclude that the acceleration of the particle at P can be 
resolved into two components, one along the tangent, the other along 
the principal normal at P, as indicated in Eq. (11.39). Note that the 
acceleration has no component along the binormal.

11.14 RADIAL AND TRANSVERSE COMPONENTS
In certain problems of plane motion, the position of the particle P is 
defined by its polar coordinates r and u (Fig. 11.25a). It is then con-
venient to resolve the velocity and acceleration of the particle into 
components parallel and perpendicular, respectively, to the line OP. 
These components are called radial and transverse components.

 We attach at P two unit vectors, er and eu (Fig. 11.25b). The 
vector er is directed along OP and the vector eu is obtained by rotat-
ing er through 90° counterclockwise. The unit vector er defines the 
radial direction, i.e., the direction in which P would move if r were 
increased and u were kept constant; the unit vector eu defines the 
transverse direction, i.e., the direction in which P would move if u 
were increased and r were kept constant. A derivation similar to the 
one we used in Sec. 11.13 to determine the derivative of the unit 
vector et leads to the relations

 
der

du
5 eu   deu

du
5 2er (11.41)

where 2er denotes a unit vector of sense opposite to that of er 
(Fig. 11.25c). Using the chain rule of differentiation, we express the 
time derivatives of the unit vectors er and eu as follows:

der

dt
5

der

du
 
du

dt
5 eu 

du

dt
  deu

dt
5

deu

du
 
du

dt
5 2er 

du

dt

or, using dots to indicate differentiation with respect to t,

 ėr 5 u
.
eu   ėu 5 2u

.
er (11.42)

P
P

O O

r

θ θ

(a) (b) (c)

er

r = rer

eθ

er

eθ

e'θ

e'r
Δeθ

Δer

Δθ

O'

Δθ

Fig. 11.25

Photo 11.6 The footpads on an elliptical 
trainer undergo curvilinear motion.
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671 To obtain the velocity v of the particle P, we express the posi-
tion vector r of P as the product of the scalar r and the unit vector 
er and differentiate with respect to t:

v 5
d
dt

 (rer) 5 ·rer 1 rėr

or, recalling the first of the relations (11.42),

 v 5 ·rer 1 ru
.
eu (11.43)

Differentiating again with respect to t to obtain the acceleration, 
we write

a 5
dv
dt

5 r̈er 1 ṙėr 1 ṙu̇eu 1 r üeu 1 ru̇ėu

or, substituting for ėr and ėu from (11.42) and factoring er and eu,

 a 5 (r̈ 2 ru
.
2)er 1 (rü 1 2r

.
u
.
)eu (11.44)

The scalar components of the velocity and the acceleration in the 
radial and transverse directions are, therefore,

 vr 5 ṙ  vu 5 ru̇ (11.45)

 ar 5 r̈ 2 ru̇2  au 5 rü  1 2ṙu̇ (11.46)

It is important to note that ar is not equal to the time derivative of vr 
and that au is not equal to the time derivative of vu.
 In the case of a particle moving along a circle of center O, we 
have r 5 constant and ṙ 5 r̈ 5 0, and the formulas (11.43) and 
(11.44) reduce, respectively, to

 v 5 ru̇eu  a 5 2ru̇2er 1 rüeu (11.47)

Extension to the Motion of a Particle in Space: Cylindrical 
Coordinates. The position of a particle P in space is sometimes 
defined by its cylindrical coordinates R, u, and z (Fig. 11.26a). It is 
then convenient to use the unit vectors eR, eu, and k shown in Fig. 
11.26b. Resolving the position vector r of the particle P into compo-
nents along the unit vectors, we write

 r 5 ReR 1 zk (11.48)

Observing that eR and eu define, respectively, the radial and trans-
verse directions in the horizontal xy plane, and that the vector k, 
which defines the axial direction, is constant in direction as well as 
in magnitude, we easily verify that

  v 5
dr
dt

5 R
.
eR 1 Ru

.
eu 1 z

. k  (11.49)

  a 5
dv
dt

5 (R̈ 2 Ru
.
2)eR 1 (Rü 1 2R

.
u
.
)eu 1 z̈k (11.50)

11.14 Radial and Transverse Components

Fig. 11.26

O y

x

θ

(a)

(b)

eR

eθ

z

z

R

P
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x

θ

z

P

zk

k

r

ReR
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672

SAMPLE PROBLEM 11.10

A motorist is traveling on a curved section of highway of radius 2500 ft at 
the speed of 60 mi/h. The motorist suddenly applies the brakes, causing the 
automobile to slow down at a constant rate. Knowing that after 8 s the speed 
has been reduced to 45 mi/h, determine the acceleration of the automobile 
immediately after the brakes have been applied.

SAMPLE PROBLEM 11.11

Determine the minimum radius of curvature of the trajectory described by 
the projectile considered in Sample Prob. 11.7.

A

a t = 2.75 ft /s2

a n = 3.10 ft /s2

a

a
Motion

SOLUTION

Tangential Component of Acceleration. First the speeds are expressed 
in ft/s.

 60 mi/h 5 a60 

mi
h
b a5280 ft

1 mi
b a 1 h

3600 s
b 5 88 ft/s

 45 mi/h 5 66 ft/s

Since the automobile slows down at a constant rate, we have

at 5 average at 5
¢v
¢t

5
66 ft/s 2 88 ft/s

8 s
5 22.75 ft/s2

Normal Component of Acceleration. Immediately after the brakes have 
been applied, the speed is still 88 ft/s, and we have

an 5
v2

r
5

(88 ft/s)2

2500 ft
5 3.10 ft/s2

Magnitude and Direction of Acceleration. The magnitude and direction 
of the resultant a of the components an and at are

  tan a 5
an

at
5

3.10 ft/s2

2.75 ft/s2  a 5 48.4° ◀

  a 5
an

 sin a
5

3.10 ft/s2

 sin 48.4°
 

a 5 4.14 ft/s2 ◀

SOLUTION

Since an 5 v2/r, we have r 5 v2/an. The radius will be small when v is small 
or when an is large. The speed v is minimum at the top of the trajectory since 
vy 5 0 at that point; an is maximum at that same point, since the direction of 
the vertical coincides with the direction of the normal. Therefore, the  minimum 
radius of curvature occurs at the top of the trajectory. At this point, we have

v 5 vx 5 155.9 m/s    an 5 a 5 9.81 m/s2

    r 5
v2

an
5

(155.9 m/s)2

9.81 m/s2  r 5 2480 m ◀

a = a n

v = vx

A

vA = 60 mi /h

2500 ft
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673

SAMPLE PROBLEM 11.12

The rotation of the 0.9-m arm OA about O is defined by the relation 
u 5 0.15t2, where u is expressed in radians and t in seconds. Collar B slides 
along the arm in such a way that its distance from O is r 5 0.9 2 0.12t2, 
where r is expressed in meters and t in seconds. After the arm OA has 
rotated through 30°, determine (a) the total velocity of the collar, (b) the 
total acceleration of the collar, (c) the relative acceleration of the collar with 
respect to the arm.

SOLUTION

Time t at which U 5 30°. Substituting u 5 30° 5 0.524 rad into the 
expression for u, we obtain

u 5 0.15t2    0.524 5 0.15t2    t 5 1.869 s

Equations of Motion. Substituting t 5 1.869 s in the expressions for r, u, 
and their first and second derivatives, we have

 r 5 0.9 2 0.12t2 5 0.481 m  u 5 0.15t2 5 0.524 rad
 ṙ 5 20.24t 5 20.449 m/s   u̇ 5 0.30t 5 0.561 rad /s
 r̈ 5 20.24 5 20.240 m/s2   ü 5 0.30 5 0.300 rad /s2

a. Velocity of B. Using Eqs. (11.45), we obtain the values of vr and vu 
when t 5 1.869 s.

 vr 5 ṙ 5 20.449 m/s
 vu 5 ru̇ 5 0.481(0.561) 5 0.270 m/s

Solving the right triangle shown, we obtain the magnitude and direction of 
the velocity,

v 5 0.524 m/s  b 5 31.0° ◀

b. Acceleration of B. Using Eqs. (11.46), we obtain

 ar 5 r̈ 2 ru̇2

 5 20.240 2 0.481(0.561)2 5 20.391 m/s2

 au 5 rü 1 2ṙu̇
 5 0.481(0.300) 1 2(20.449)(0.561) 5 20.359 m/s2

a 5 0.531 m/s2  g 5 42.6° ◀

c. Acceleration of B with Respect to Arm OA. We note that the motion 
of the collar with respect to the arm is rectilinear and defined by the coor-
dinate r. We write

aB/OA 5  r̈ 5 20.240 m/s2

aB/OA 5 0.240 m/s2 toward O. ◀

O

B
A

q

r

er

eq

A

B

B

B

B

O

q
O

O

v = vrer + vUeU

vU = (0.270 m /s)eU

vr = (–0.449 m /s)er

aU = (–0.359 m/s2)eq

a r = (–0.391 m/s2)er

aB/OA = (–0.240 m/s2)er

a = arer + aUeU

b

30°

g

r

r = 0.481 m

a

v

q

q

q

qq

q

q
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674

SOLVING PROBLEMS 
ON YOUR OWN

You will be asked in the following problems to express the velocity and the 
acceleration of particles in terms of either their tangential and normal compo-

nents or their radial and transverse components. Although those components may 
not be as familiar to you as the rectangular components, you will find that they 
can simplify the solution of many problems and that certain types of motion are 
more easily described when they are used.

1. Using tangential and normal components. These components are most often 
used when the particle of interest travels along a circular path or when the radius 
of curvature of the path is to be determined. Remember that the unit vector et is 
tangent to the path of the particle (and thus aligned with the velocity) while the 
unit vector en is directed along the normal to the path and always points toward 
its center of curvature. It follows that, as the particle moves, the directions of the 
two unit vectors are constantly changing.

2. Expressing the acceleration in terms of its tangential and normal compo-
nents. We derived in Sec. 11.13 the following equation, applicable to both the 
two-dimensional and the three-dimensional motion of a particle:

a 5
dv
dt

 et 1
v2

r
 en (11.39)

The following observations may help you in solving the problems of this lesson.
 a. The tangential component of the acceleration measures the rate of change 
of the speed: at 5 dv/dt. It follows that when at is constant, the equations for 
uniformly accelerated motion can be used with the acceleration equal to at. Fur-
thermore, when a particle moves at a constant speed, we have at 5 0 and the 
acceleration of the particle reduces to its normal component.
 b. The normal component of the acceleration is always directed toward the 
center of curvature of the path of the particle, and its magnitude is an 5 v2/r. 
Thus, the normal component can be easily determined if the speed of the particle 
and the radius of curvature r of the path are known. Conversely, when the speed 
and normal acceleration of the particle are known, the radius of curvature of the 
path can be obtained by solving this equation for r [Sample Prob. 11.11].
 c. In three-dimensional motion, a third unit vector is used, eb 5 et 3 en, 
which defines the direction of the binormal. Since this vector is perpendicular to 
both the velocity and the acceleration, it can be obtained by writing

eb 5
v 3 a
0 v 3 a 0
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675

3. Using radial and transverse components. These components are used to 
analyze the plane motion of a particle P, when the position of P is defined by its 
polar coordinates r and u. As shown in Fig. 11.25, the unit vector er, which defines 
the radial direction, is attached to P and points away from the fixed point O, while 
the unit vector eu, which defines the transverse direction, is obtained by rotating 
er counterclockwise through 90°. The velocity and the acceleration of a particle 
were expressed in terms of their radial and transverse components in Eqs. (11.43) 
and (11.44), respectively. You will note that the expressions obtained contain the 
first and second derivatives with respect to t of both coordinates r and u.

In the problems of this lesson, you will encounter the following types of problems 
involving radial and transverse components:
 a. Both r and U are known functions of t. In this case, you will compute 
the first and second derivatives of r and u and substitute the expressions obtained 
into Eqs. (11.43) and (11.44).
 b. A certain relationship exists between r and U. First, you should deter-
mine this relationship from the geometry of the given system and use it to express 
r as a function of u. Once the function r 5 f(u) is known, you can apply the chain 
rule to determine r

.  in terms of u and u̇, and r̈  in terms of u, u̇, ü :

 ṙ 5 f 9(u)u̇

 r̈ 5 f 0(u)u̇2 1 f 9(u)ü

The expressions obtained can then be substituted into Eqs. (11.43) and (11.44).
 c. The three-dimensional motion of a particle, as indicated at the end of 
Sec. 11.14, can often be effectively described in terms of the cylindrical coordi-
nates R, u, and z (Fig. 11.26). The unit vectors then should consist of eR, eu, and k. 
The corresponding components of the velocity and the acceleration are given 
in Eqs. (11.49) and (11.50). Please note that the radial distance R is always measured 
in a plane parallel to the xy plane, and be careful not to confuse the position vec-
tor r with its radial component ReR.
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PROBLEMS

676

CONCEPT QUESTIONS

 11.CQ8 The Ferris wheel is rotating with a constant angular velocity v. 
What is the direction of the acceleration of point A?
a. n b. h c. g d. m e. The acceleration is zero.

 11.CQ9 A race car travels around the track shown at a constant speed. At 
which point will the race car have the largest acceleration?
a. A. b. B. c. C. d. D. e. The acceleration will be zero 

at all the points.

A
r

B

 Fig. P11.133B
A

ρ

 Fig. P11.134

 11.134 Determine the maximum speed that the cars of the roller-coaster 
can reach along the circular portion AB of the track if r 5 25 m 
and the normal component of their acceleration cannot exceed 3g.

A

 Fig. P11.CQ8

C

B

A

D

v

 Fig. P11.CQ9

 11.CQ10 A child walks across merry-go-round A with a constant speed u
relative to A. The merry-go-round undergoes fixed-axis rotation 
about its center with a constant angular velocity v counterclock-
wise. When the child is at the center of A, as shown, what is the 
direction of his acceleration when viewed from above?
a. n b. m c. h d. g e. The acceleration is zero.

END-OF-SECTION PROBLEMS

 11.133 Determine the smallest radius that should be used for a highway 
if the normal component of the acceleration of a car traveling at 
72 km/h is not to exceed 0.8 m/s2.

ω

u

A

 Fig. P11.CQ10
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677Problems 11.135 A bull-roarer is a piece of wood that produces a roaring sound when 
attached to the end of a string and whirled around in a circle. Deter-
mine the magnitude of the normal acceleration of a bull-roarer when 
it is spun in a circle of radius 0.9 m at a speed of 20 m/s.

v0

0.9 m

 Fig. P11.135

B

P

O

0.8 m

 Fig. P11.138

 11.139 A monorail train starts from rest on a curve of radius 400 m and 
accelerates at the constant rate at. If the maximum total accelera-
tion of the train must not exceed 1.5 m/s2, determine (a) the short-
est distance in which the train can reach a speed of 72 km/h, (b) the 
corresponding constant rate of acceleration at.

 11.140 A motorist starts from rest at point A on a circular entrance ramp 
when t 5 0, increases the speed of her automobile at a constant rate 
and enters the highway at point B. Knowing that her speed continues 
to  increase at the same rate until it reaches 100 km/h at point C, 
determine (a) the speed at point B, (b) the magnitude of the total 
acceleration when t 5 20 s.

B C

A

150 m

100 m

 Fig. P11.140

v

 Fig. P11.137

 11.136 To test its performance, an automobile is driven around a circular test 
track of diameter d. Determine (a) the value of d if when the speed 
of the automobile is 45 mi/h, the normal component of the accelera-
tion is 11 ft/s2, (b) the speed of the automobile if d 5 600 ft and the 
normal component of the acceleration is measured to be 0.6g.

 11.137 An outdoor track is 420 ft in diameter. A runner increases her 
speed at a constant rate from 14 to 24 ft/s over a distance of 95 ft. 
Determine the magnitude of the total acceleration of the runner 
2 s after she begins to increase her speed.

 11.138 A robot arm moves so that P travels in a circle about point B, which 
is not moving. Knowing that P starts from rest, and its speed 
increases at a constant rate of 10 mm/s2, determine (a) the magni-
tude of the acceleration when t 5 4 s, (b) the time for the magni-
tude of the acceleration to be 80 mm/s2.
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678 Kinematics of Particles  11.141 Race car A is traveling on a straight portion of the track while race 
car B is traveling on a circular portion of the track. At the instant 
shown, the speed of A is increasing at the rate of 10 m/s2, and the 
speed of B is decreasing at the rate of 6 m/s2. For the position 
shown, determine (a) the velocity of B relative to A, (b) the accelera-
tion of B relative to A.

 11.142 At a given instant in an airplane race, airplane A is flying horizon-
tally in a straight line, and its speed is being increased at the rate of 
8 m/s2. Airplane B is flying at the same altitude as airplane A and, 
as it rounds a pylon, is following a circular path of 300-m radius. 
Knowing that at the given instant the speed of B is being decreased 
at the rate of 3 m/s2, determine, for the positions shown, (a) the 
velocity of B relative to A, (b) the acceleration of B relative to A.

15°

A

vA

 Fig. P11.144

A

vA

25°

 Fig. P11.145

A 40°

vA

 Fig. P11.143

A

30°

400 m

B

300 m

450  km/h

540 km/h

 Fig. P11.142

50°

A

B

200 km/h
300 m

240 km/h

 Fig. P11.141

 11.143 From a photograph of a homeowner using a snowblower, it is deter-
mined that the radius of curvature of the trajectory of the snow 
was 30 ft as the snow left the discharge chute at A. Determine 
(a) the discharge velocity vA of the snow, (b) the radius of curvature 
of the trajectory at its maximum height.

 11.144 A basketball is bounced on the ground at point A and rebounds 
with a velocity vA of magnitude 7.5 ft/s as shown. Determine the 
radius of curvature of the trajectory described by the ball (a) at 
point A, (b) at the highest point of the trajectory.

 11.145 A golfer hits a golf ball from point A with an initial velocity of 
50 m/s at an angle of 25° with the horizontal. Determine the radius 
of curvature of the trajectory described by the ball (a) at point A, 
(b) at the highest point of the trajectory.
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679Problems 11.146 Three children are throwing snowballs at each other. Child A 
throws a snowball with a horizontal velocity v0. If the snowball just 
passes over the head of child B and hits child C, determine the 
radius of curvature of the trajectory described by the snowball 
(a) at point B, (b) at point C.

vA

50° A

 Fig. P11.147

25°A

vA

 Fig. P11.149

A

B

C

1 m

2 m

7 m d

v0

 Fig. P11.146

 11.147 Coal is discharged from the tailgate A of a dump truck with an 
initial velocity vA 5 2 m/s d 50°. Determine the radius of  curvature 
of the trajectory described by the coal (a) at point A, (b) at the point 
of the trajectory 1 m below point A.

 11.148 From measurements of a photograph, it has been found that as the 
stream of water shown left the nozzle at A, it had a radius of cur-
vature of 25 m. Determine (a) the initial velocity vA of the stream, 
(b) the radius of curvature of the stream as it reaches its maximum 
height at B.

A

B

4

3

vA

 Fig. P11.148

 11.149 A child throws a ball from point A with an initial velocity vA of 
20 m/s at an angle of 25° with the horizontal. Determine the 
velocity of the ball at the points of the trajectory described by the 
ball where the radius of curvature is equal to three-quarters of 
its value at A.
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680 Kinematics of Particles  11.150 A projectile is fired from point A with an initial velocity v0. 
(a) Show that the radius of curvature of the trajectory of the pro-
jectile reaches its minimum value at the highest point B of the 
trajectory. (b) Denoting by u the angle formed by the trajectory 
and the horizontal at a given point C, show that the radius of 
curvature of the trajectory at C is r 5 rmin/cos3u.

A

B

C qminr

r

v0

x

a

 Fig. P11.150

  *11.151 Determine the radius of curvature of the path described by the 
particle of Prob. 11.95 when t 5 0.

  *11.152 Determine the radius of curvature of the path described by the 
particle of Prob. 11.96 when t 5 0, A 5 3, and B 5 1.

 11.153 and 11.154 A satellite will travel indefinitely in a circular orbit 
around a planet if the normal component of the acceleration of the 
satellite is equal to g(Ryr)2, where g is the acceleration of gravity 
at the surface of the planet, R is the radius of the planet, and r is 
the distance from the center of the planet to the satellite. Knowing 
that the diameter of the sun is 1.39 Gm and that the acceleration 
of gravity at its surface is 274 m/s2, determine the radius of the 
orbit of the indicated planet around the sun assuming that the orbit 
is circular.

11.153 Earth: (ymean)orbit 5 107 Mm/h.
11.154 Saturn: (ymean)orbit 5 34.7 Mm/h.

 11.155 through 11.157 Determine the speed of a satellite relative to 
the indicated planet if the satellite is to travel indefinitely in a 
circular orbit 100 mi above the surface of the planet. (See informa-
tion given in Probs. 11.153–11.154.)

11.155 Venus: g 5 29.20 ft/s2, R 5 3761 mi.
11.156 Mars: g 5 12.17 ft/s2, R 5 2102 mi.
11.157 Jupiter: g 5 75.35 ft/s2, R 5 44,432 mi.

 11.158 A satellite is traveling in a circular orbit around Mars at an altitude 
of 300 km. After the altitude of the satellite is adjusted, it is found 
that the time of one orbit has increased by 10 percent. Knowing 
that the radius of Mars is 3382 km, determine the new altitude of 
the satellite. (See information given in Probs. 11.153–11.154).
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681Problems 11.159 Knowing that the radius of the earth is 6370 km, determine the 
time of one orbit of the Hubble Space Telescope knowing that the 
telescope travels in a circular orbit 590 km above the surface of 
the earth. (See information given in Probs. 11.153–11.154.)

 11.160 Satellites A and B are traveling in the same plane in circular orbits 
around the earth at altitudes of 120 and 200 mi, respectively. If at 
t 5 0 the satellites are aligned as shown and knowing that the 
radius of the earth is R 5 3960 mi, determine when the satellites 
will next be radially aligned. (See information given in Probs. 
11.153–11.154.)

 11.161 The oscillation of rod OA about O is defined by the relation u 5 
(3yp)(sin pt), where u and t are expressed in radians and seconds, 
respectively. Collar B slides along the rod so that its distance from 
O is r 5 6(1 2 e22t) where r and t are expressed in inches and 
seconds, respectively. When t 5 1 s, determine (a) the velocity of 
the collar, (b) the acceleration of the collar, (c) the acceleration of 
the collar relative to the rod.

A

B

rB

rA

 Fig. P11.160

P

r
q

 Fig. P11.163

O

B

A

q
r

 Fig. P11.161 and P11.162

 11.162 The rotation of rod OA about O is defined by the relation u 5 
t3 2 4t, where u and t are expressed in radians and seconds, 
respectively. Collar B slides along the rod so that its distance from 
O is r 5 2.5t3 2 5t2, where r and t are expressed in inches and 
seconds, respectively. When t 5 1 s, determine (a) the velocity of 
the collar, (b) the acceleration of the collar, (c) the radius of cur-
vature of the path of the collar.

 11.163 The path of particle P is the ellipse defined by the relations 
r 5 2/(2 2 cos pt) and u 5 pt, where r is expressed in meters, 
t is in seconds, and u is in radians. Determine the velocity and the 
acceleration of the particle when (a) t 5 0, (b) t 5 0.5 s.

 11.164 The two-dimensional motion of a particle is defined by the rela-
tions r 5 2a cos u and u 5 bt2/2, where a and b are constants. 
Determine (a) the magnitudes of the velocity and acceleration at 
any instant, (b) the radius of curvature of the path. What conclu-
sion can you draw regarding the path of the particle?
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682 Kinematics of Particles  11.165 As rod OA rotates, pin P moves along the parabola BCD. Knowing 
that the equation of this parabola is r 5 2b/(1 1 cos u) and that 
u 5 kt, determine the velocity and acceleration of P when (a) u 5 0, 
(b) u 5 908.

 11.166 The pin at B is free to slide along the circular slot DE and along 
the rotating rod OC. Assuming that the rod OC rotates at a constant 
rate 

·
u, (a) show that the acceleration of pin B is of constant mag-

nitude, (b) determine the direction of the acceleration of pin B.

 11.167 To study the performance of a race car, a high-speed camera is 
positioned at point A. The camera is mounted on a mechanism 
which permits it to record the motion of the car as the car travels 
on straightaway BC. Determine (a) the speed of the car in terms 
of b, u, and 

·
u, (b) the magnitude of the acceleration in terms of 

b, u, 
·
u, and ü .

 11.168 After taking off, a helicopter climbs in a straight line at a constant 
angle b. Its flight is tracked by radar from point A. Determine the 
speed of the helicopter in terms of d, b, u, and 

·
u.

A

O

D

P

C

B

θ

r

b

Fig. P11.165

r

b

B
D C

A
O

E

b

θ

Fig. P11.166

B

r

A q

C

v a

b

 Fig. P11.167

B

A q

d

v

b

Fig. P11.168
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683Problems 11.169 At the bottom of a loop in the vertical plane an airplane has a 
horizontal velocity of 315 mi/h and is speeding up at a rate of 
10 ft/s2. The radius of curvature of the loop is 1 mi. The plane is 
being tracked by radar at O. What are the recorded values of r. , r̈ , ·
u, and ü  for this instant?

 11.170 Pin C is attached to rod BC and slides freely in the slot of rod 
OA which rotates at the constant rate v. At the instant when 
b � 608,  determine (a) r.  and 

·
u, (b) r̈ and ü . Express your answers 

in terms of d and v.

315 mi/hr

1800 ft

2400 ft

q

1 mi

r

Fig. P11.169

r

d

B

A

C

b d
O q

Fig. P11.170

 11.171 For the race car of Prob. 11.167, it was found that it took 0.5 s for 
the car to travel from the position u 5 60° to the position u 5 35°. 
Knowing that b 5 25 m, determine the average speed of the car 
during the 0.5-s interval.

 11.172 For the helicopter of Prob. 11.168, it was found that when the 
helicopter was at B, the distance and the angle of elevation of the 
helicopter were r 5 3000 ft and u 5 20°, respectively. Four sec-
onds later, the radar station sighted the helicopter at r 5 3320 ft 
and u 5 23.1°. Determine the average speed and the angle of climb 
b of the helicopter during the 4-s interval.
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684 Kinematics of Particles  11.173 and 11.174 A particle moves along the spiral shown; deter-
mine the magnitude of the velocity of the particle in terms of b, u, 
and 

·
u.

O
b

Hyperbolic spiral  rq  = b

Fig. P11.173 and P11.175

O

Logarithmic spiral  r = ebq

Fig. P11.174 and P11.176

 11.175 and 11.176 A particle moves along the spiral shown. Know-
ing that 

·
u is constant and denoting this constant by v, determine 

the magnitude of the acceleration of the particle in terms of b, u, 
and v.

 11.177 The motion of a particle on the surface of a right circular cylinder 
is defined by the relations R 5 A, u 5 2pt, and z 5 B sin 2pnt, 
where A and B are constants and n is an integer. Determine the 
magnitudes of the velocity and acceleration of the particle at any 
time t.

y

z

B

A

B

n = 10
x

Fig. P11.177

h

B

A

P

O

f

q

d

r

Fig. P11.178

 11.178 Show that r
.

5 hf
.

  sin u knowing that at the instant shown, step 
AB of the step exerciser is rotating counterclockwise at a constant 
rate 

·
f.

 11.179 The three-dimensional motion of a particle is defined by the 
 relations R 5 A(1 2 e2t), u 5 2pt, and z 5 B(1 2 e2t). Determine 
the magnitudes of the velocity and acceleration when (a) t 5 0, 
(b) t 5 .̀

  *11.180 For the conic helix of Prob. 11.95, determine the angle that the 
osculating plane forms with the y axis.

  *11.181 Determine the direction of the binormal of the path described by 
the particle of Prob. 11.96 when (a) t 5 0, (b) t 5 p/2 s.
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685

REVIEW AND SUMMARY

In the first half of the chapter, we analyzed the rectilinear motion of 
a particle, i.e., the motion of a particle along a straight line. To define 
the position P of the particle on that line, we chose a fixed origin O 
and a positive direction (Fig. 11.27). The distance x from O to P, 
with the appropriate sign, completely defines the position of the 
particle on the line and is called the position coordinate of the par-
ticle [Sec. 11.2].

The velocity v of the particle was shown to be equal to the time 
derivative of the position coordinate x,

 v 5
dx
dt

 (11.1)

and the acceleration a was obtained by differentiating v with respect 
to t,

 a 5
dv
dt

 (11.2)

or

 a 5
d2x
dt2  (11.3)

We also noted that a could be expressed as

 a 5 v
dv
dx

 (11.4)

 We observed that the velocity v and the acceleration a were 
represented by algebraic numbers which can be positive or negative. 
A positive value for v indicates that the particle moves in the positive 
direction, and a negative value that it moves in the negative direc-
tion. A positive value for a, however, may mean that the particle is 
truly accelerated (i.e., moves faster) in the positive direction, or that 
it is decelerated (i.e., moves more slowly) in the negative direction. 
A negative value for a is subject to a similar interpretation [Sample 
Prob. 11.1].

In most problems, the conditions of motion of a particle are defined 
by the type of acceleration that the particle possesses and by the 
initial conditions [Sec. 11.3]. The velocity and position of the particle 
can then be obtained by integrating two of the equations (11.1) to 
(11.4). Which of these equations should be selected depends upon 
the type of acceleration involved [Sample Probs. 11.2 and 11.3].

Position coordinate of a particle
in rectilinear motion

Velocity and acceleration
in rectilinear motion

Determination of the velocity
and acceleration by integration

O P

x
x

Fig. 11.27
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686 Kinematics of Particles Two types of motion are frequently encountered: the uniform recti-
linear motion [Sec. 11.4], in which the velocity v of the particle is 
constant and

 x 5 x0 1 vt (11.5)

and the uniformly accelerated rectilinear motion [Sec. 11.5], in which 
the acceleration a of the particle is constant and we have

 v 5 v0 1 at (11.6)
 x 5 x0 1 v0t 1 1

2at2 (11.7)
 v2 5 v2

0 1 2a(x 2 x0) (11.8)

When two particles A and B move along the same straight line, 
we may wish to consider the relative motion of B with respect to A 

Uniform rectilinear motion

Uniformly accelerated rectilinear 
motion

Relative motion of two particles

x
 xA

AO B

 xB

 xB/A

Fig. 11.28

[Sec. 11.6]. Denoting by xB/A the relative position coordinate of B 
with respect to A (Fig. 11.28), we had

 xB 5 xA 1 xB/A (11.9)

Differentiating Eq. (11.9) twice with respect to t, we obtained 
successively

 vB 5 vA 1 vB/A (11.10)
 aB 5 aA 1 aB/A (11.11)

where vB/A and aB/A represent, respectively, the relative velocity and 
the relative acceleration of B with respect to A.

When several blocks are connected by inextensible cords, it is possi-
ble to write a linear relation between their position coordinates. 
Similar relations can then be written between their velocities and 
between their accelerations and can be used to analyze their motion 
[Sample Prob. 11.5].

It is sometimes convenient to use a graphical solution for problems 
involving the rectilinear motion of a particle [Secs. 11.7 and 11.8]. 
The graphical solution most commonly used involves the x−t, v−t, 
and a−t curves [Sec. 11.7; Sample Prob. 11.6]. It was shown that, at 
any given time t,

v 5 slope of x – t curve
a 5 slope of v – t curve

while, over any given time interval from t1 to t2,

v2 2 v1 5 area under a – t curve
x2 2 x1 5 area under v – t curve

In the second half of the chapter, we analyzed the curvilinear motion 
of a particle, i.e., the motion of a particle along a curved path. The 
position P of the particle at a given time [Sec. 11.9] was defined by 

Blocks connected by inextensible 
cords

Graphical solutions

Position vector and velocity 
in curvilinear motion
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687Review and Summarythe position vector r joining the O of the coordinates and point P 
(Fig. 11.29). The velocity v of the particle was defined by the 
relation

 v 5
dr
dt

 (11.15)

and was found to be a vector tangent to the path of the particle and 
of magnitude v (called the speed of the particle) equal to the time 
derivative of the length s of the arc described by the particle:

 v 5
ds
dt

 (11.16)

The acceleration a of the particle was defined by the relation

 a 5
dv
dt

 (11.18)

and we noted that, in general, the acceleration is not tangent to the 
path of the particle.

Before proceeding to the consideration of the components of velocity 
and acceleration, we reviewed the formal definition of the derivative 
of a vector function and established a few rules governing the differ-
entiation of sums and products of vector functions. We then showed 
that the rate of change of a vector is the same with respect to a fixed 
frame and with respect to a frame in translation [Sec. 11.10].

Denoting by x, y, and z the rectangular coordinates of a particle P, 
we found that the rectangular components of the velocity and accel-
eration of P equal, respectively, the first and second derivatives with 
respect to t of the corresponding coordinates:

  vx 5 x
.    vy 5 y

.    vz 5 z
.  (11.29)

  ax 5 ẍ    ay 5 ÿ    az 5 z̈  (11.30)

When the component ax of the acceleration depends only upon t, x, 
and/or vx, and when similarly ay depends only upon t, y, and/or vy, 
and az upon t, z, and/or vz, Eq. (11.30) can be integrated indepen-
dently. The analysis of the given curvilinear motion can thus be 
reduced to the analysis of three independent rectilinear component 
motions [Sec. 11.11]. This approach is particularly effective in the 
study of the motion of projectiles [Sample Probs. 11.7 and 11.8].

For two particles A and B moving in space (Fig. 11.30), we consid-
ered the relative motion of B with respect to A, or more precisely, 
with respect to a moving frame attached to A and in translation 
with A [Sec. 11.12]. Denoting by rB/A the relative position vector of 
B with respect to A (Fig. 11.30), we had

 rB 5 rA 1 rByA (11.31)

Denoting by vB/A and aB/A, respectively, the relative velocity and the 
relative acceleration of B with respect to A, we also showed that

 vB 5 vA 1 vB/A (11.33)
and
 aB 5 aA 1 aB/A (11.34)

Acceleration in curvilinear motion

Derivative of a vector function

Rectangular components of velocity 
and acceleration

Component motions

Relative motion of two particles

O

y

x

P

P0

r

v

s

Fig. 11.29

rB/A
rA

rB

y

O x

z

B

A x'

z'

y'

Fig. 11.30
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688 Kinematics of Particles It is sometimes convenient to resolve the velocity and acceleration of 
a particle P into components other than the rectangular x, y, and z 
components. For a particle P moving along a path contained in a 
plane, we attached to P unit vectors et tangent to the path and en 
normal to the path and directed toward the center of curvature of 
the path [Sec. 11.13]. We then expressed the velocity and acceleration 
of the particle in terms of tangential and normal components. We 
wrote

 v 5 vet (11.36)

and

 a 5
dv
dt

 et 1
v2

r
 en (11.39)

where v is the speed of the particle and r the radius of curvature of 
its path [Sample Probs. 11.10 and 11.11]. We observed that while 
the velocity v is directed along the tangent to the path, the accelera-
tion a consists of a component at directed along the tangent to the 
path and a component an directed toward the center of curvature of 
the path (Fig. 11.31).

For a particle P moving along a space curve, we defined the plane 
which most closely fits the curve in the neighborhood of P as the 
osculating plane. This plane contains the unit vectors et and en which 
define, respectively, the tangent and principal normal to the curve. 
The unit vector eb which is perpendicular to the osculating plane 
defines the binormal.

When the position of a particle P moving in a plane is defined by its 
polar coordinates r and u, it is convenient to use radial and transverse 
components directed, respectively, along the position vector r of the 
particle and in the direction obtained by rotating r through 90° counter-
clockwise [Sec. 11.14]. We attached to P unit vectors er and eu 
directed, respectively, in the radial and transverse directions (Fig. 11.32). 
We then expressed the velocity and acceleration of the particle in 
terms of radial and transverse components

 v 5 r
. er 1 r

·
ueu (11.43)

 a 5 (r$ 2 r
·
u2)er 1 (ru

$
1 2 ·r

·
u)eu (11.44)

where dots are used to indicate differentiation with respect to time. 
The scalar components of the velocity and acceleration in the radial 
and transverse directions are therefore

  vr 5 ·r    vu 5 r
·
u  (11.45)

  ar 5 r$ 2 r
·
u2    au 5 ru

$
1 2 ·r

·
u (11.46)

It is important to note that ar is not equal to the time derivative 
of vr, and that au is not equal to the time derivative of vu [Sample 
Prob. 11.12].

 The chapter ended with a discussion of the use of cylindrical 
coordinates to define the position and motion of a particle in space.

Tangential and normal components

Motion along a space curve

Radial and transverse components

Fig. 11.31

an =      en
v2

ρ

a t =      et
dv
dt

C

P

y

O x

Fig. 11.32

r = rer

er

eθ

O

P

θ
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689

REVIEW PROBLEMS

 11.182 The motion of a particle is defined by the relation x 5 2t3 2 15t2 1 
24t 1 4, where x and t are expressed in meters and seconds, respec-
tively. Determine (a) when the velocity is zero, (b) the position and 
the total distance traveled when the acceleration is zero.

 11.183 A particle starting from rest at x 5 1 m is accelerated so that its 
velocity doubles in magnitude between x 5 2 m and x 5 8 m. 
Knowing that the acceleration of the particle is defined by the 
relation a 5 k[x 2 (A/x)], determine the values of the constants A 
and k if the particle has a velocity of 29 m/s when x 5 16 m.

 11.184 A particle moves in a straight line with the acceleration shown in 
the figure. Knowing that the particle starts from the origin with 
v0 � �2 m/s, (a) construct the v – t and x – t curves for 0 � t � 18 s, 
(b) determine the position and the velocity of the particle and the 
total distance traveled when t � 18 s.

11.185 The velocities of commuter trains A and B are as shown. Knowing 
that the speed of each train is constant and that B reaches the 
crossing 10 min after A passed through the same crossing, deter-
mine (a) the relative velocity of B with respect to A, (b) the dis-
tance between the fronts of the engines 3 min after A passed 
through the crossing.

66 km/h

48 km/h 25°B

A

 Fig. P11.185

6

2

12
8

t (s)

a (m /s2)

0.75–

Fig. P11.184
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690 Kinematics of Particles  11.186 Slider block B starts from rest and moves to the right with a con-
stant acceleration of 1 ft/s2. Determine (a) the relative acceleration 
of portion C of the cable with respect to slider block A, (b) the 
velocity of portion C of the cable after 2 s.

 11.187 Collar A starts from rest at t 5 0 and moves downward with 
a constant acceleration of 7 in./s2. Collar B moves upward with a 
constant acceleration, and its initial velocity is 8 in./s. Knowing that 
collar B moves through 20 in. between t 5 0 and t 5 2 s, determine 
(a) the accelerations of collar B and block C, (b) the time at which 
the velocity of block C is zero, (c) the distance through which block 
C will have moved at that time.

 11.188 A golfer hits a ball with an initial velocity of magnitude v0 at an 
angle a with the horizontal. Knowing that the ball must clear the 
tops of two trees and land as close as possible to the flag, deter-
mine v0 and the distance d when the golfer uses (a) a six-iron with 
a 5 318, (b) a five-iron with a 5 278.

A
C

B

Fig. P11.186

C

A

B

Fig. P11.187

12 m 14 m

30 m 70 m
10 m

d

a

v0

Fig. P11.188

 11.189 As the truck shown begins to back up with a constant acceleration 
of 4 ft/s2, the outer section B of its boom starts to retract with a 
constant acceleration of 1.6 ft/s2 relative to the truck. Determine 
(a) the acceleration of section B, (b) the velocity of section B when 
t 5 2 s.

 11.190 A motorist traveling along a straight portion of a highway is decreas-
ing the speed of his automobile at a constant rate before exiting 
from the highway onto a circular exit ramp with a radius of 560 ft. 
He continues to decelerate at the same constant rate so that 10 s 
after entering the ramp, his speed has decreased to 20 mi/h, a speed 
which he then maintains. Knowing that at this constant speed the 
total acceleration of the automobile is equal to one-quarter of its 
value prior to entering the ramp, determine the maximum value 
of the total acceleration of the automobile.

A

B

50°

Fig. P11.189

560 ft

 Fig. P11.190
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691Review Problems 11.191 Sand is discharged at A from a conveyor belt and falls onto the top 
of a stockpile at B. Knowing that the conveyor belt forms an angle 
a 5 258 with the horizontal, determine (a) the speed v0 of the 
belt, (b) the radius of curvature of the trajectory described by the 
sand at point B.

 11.192 The end point B of a boom is originally 5 m from fixed point A 
when the driver starts to retract the boom with a constant radial 
acceleration of r̈ 5 21.0 m/s2 and lower it with a constant angular 
acceleration u

$
5 20.5 rad/s2. At t 5 2 s, determine (a) the velocity 

of point B, (b) the acceleration of point B, (c) the radius of curva-
ture of the path.

 11.193 A telemetry system is used to quantify kinematic values of a ski 
jumper immediately before she leaves the ramp. According to 
the system r 5 500 ft, r

.
5 2105 ft/s, r̈ 5 210 ft/s2, u 5 258, 

u
.

5 0.07 rad/s, u
$

5 0.06 rad/s2. Determine (a) the velocity of the 
skier immediately before she leaves the jump, (b) the acceleration 
of the skier at this instant, (c) the distance of the jump d neglecting 
lift and air resistance.

v0

a

A

B
18 ft

30 ft

 Fig. P11.191

A

B

60°

 Fig. P11.192

10 ft

30°

q
d

r

Fig. P11.193

bee02324_ch11_600-693.indd Page 691  11/8/11  4:22 PM user-f494bee02324_ch11_600-693.indd Page 691  11/8/11  4:22 PM user-f494 /203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles/203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


692

COMPUTER PROBLEMS

 11.C1 The mechanism shown is known as a Whitworth quick-return 
 mechanism. The input rod AP rotates at a constant rate 

·
f, and the pin P

is free to slide in the slot of the output rod BD. Plot u versus f and 
·
u

versus f for one revolution of rod AP. Assume 
·

f 5 1 rad/s, l 5 4 in., and 
(a) b 5 2.5 in., (b) b 5 3 in., (c) b 5 3.5 in.

 11.C2 A ball is dropped with a velocity v0 at an angle a with the vertical 
onto the top step of a flight of stairs consisting of 8 steps. The ball rebounds 
and bounces down the steps as shown. Each time the ball bounces, at points 
A, B, C, . . . , the horizontal component of its velocity remains constant and 
the magnitude of the vertical component of its velocity is reduced by 
k percent. Use computational software to determine (a) if the ball bounces 
down the steps without skipping any step, (b) if the ball bounces down the 
steps without bouncing twice on the same step, (c) the first step on which 
the ball bounces twice. Use values of v0 from 1.8 m/s to 3.0 m/s in 0.6-m/s 
increments, values of a from 18° to 26° in 4° increments, and values of k 
equal to 40 and 50.

D

B

A

q

P

b
lf

Fig. P11.C1

A

B

C

a

0.15 m

v0

0.15 m

0.15 m

0.15 m

0.3 m 0.3 m 0.3 m

Fig. P11.C2

 11.C3 In an amusement park ride, “airplane” A is attached to the 10-m-long 
rigid member OB. To operate the ride, the airplane and OB are rotated so 
that 70° # u0 # 130° and then are allowed to swing freely about O. The 
airplane is subjected to the acceleration of gravity and to a deceleration due 
to air resistance, 2kv2, which acts in a direction opposite to that of its veloc-
ity v. Neglecting the mass and the aerodynamic drag of OB and the friction 
in the bearing at O, use computational software or write a computer pro-
gram to determine the speed of the airplane for given values of u0 and u
and the value of u at which the airplane first comes to rest after being 
released. Use values of u0 from 70° to 130° in 30° increments, and deter-
mine the maximum speed of the airplane and the first two values of u at 
which v 5 0. For each value of u0, let (a) k 5 0, (b) k 5 2 3 1024 m21, 
(c) k 5 4 3 1022 m21. (Hint: Express the tangential acceleration of the 
airplane in terms of g, k, and u. Recall that vu 5 r

·
u.)

q
O

A

B

Fig. P11.C3
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693Computer Problems 11.C4 A motorist traveling on a highway at a speed of 60 mi/h exits onto 
an ice-covered exit ramp. Wishing to stop, he applies his brakes until his 
automobile comes to rest. Knowing that the magnitude of the total accelera-
tion of the automobile cannot exceed 10 ft/s2, use computational software 
to determine the minimum time required for the automobile to come to 
rest and the distance it travels on the exit ramp during that time if the exit 
ramp (a) is straight, (b) has a constant radius of curvature of 800 ft. Solve 
each part assuming that the driver applies his brakes so that dv/dt, during 
each time interval, (1) remains constant, (2) varies linearly.

 11.C5 An oscillating garden sprinkler discharges water with an initial 
velocity v0 of 10 m/s. (a) Knowing that the sides but not the top of arbor 
BCDE are open, use computational software to calculate the distance d to 
the point F that will be watered for values of a from 20° to 80°. (b) Deter-
mine the maximum value of d and the corresponding value of a.

A B

d

C

v0

2.2 m 3.2 m

1.8 m

D

E F
a

Fig. P11.C5
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The forces experienced by the 

 passengers on a roller coaster will 

 depend on whether the roller-coaster car 

is traveling up a hill or down a hill, in 

a straight line, or along a horizontal or 

vertical curved path. The relation existing 

among force, mass, and acceleration will 

be studied in this chapter.

694
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Kinetics of Particles:
Newton’s Second Law
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696

12.1 INTRODUCTION
Newton’s first and third laws of motion were used extensively in statics 
to study bodies at rest and the forces acting upon them. These two 
laws are also used in dynamics; in fact, they are sufficient for the study 
of the motion of bodies which have no acceleration. However, when 
bodies are accelerated, i.e., when the magnitude or the direction of 
their velocity changes, it is necessary to use Newton’s second law of 
motion to relate the motion of the body with the forces acting on it.
 In this chapter we will discuss Newton’s second law and apply 
it to the analysis of the motion of particles. As we state in Sec. 12.2, 
if the resultant of the forces acting on a particle is not zero, the 
particle will have an acceleration proportional to the magnitude of 
the resultant and in the direction of this resultant force. Moreover, 
the ratio of the magnitudes of the resultant force and of the accelera-
tion can be used to define the mass of the particle.
 In Sec. 12.3, the linear momentum of a particle is defined as 
the product L 5 mv of the mass m and velocity v of the particle, 
and it is demonstrated that Newton’s second law can be expressed 
in an alternative form relating the rate of change of the linear 
momentum with the resultant of the forces acting on that particle.
 Section 12.4 stresses the need for consistent units in the solu-
tion of dynamics problems and provides a review of the International 
System of Units (SI units) and the system of U.S. customary units.
 In Secs. 12.5 and 12.6 and in the Sample Problems which fol-
low, Newton’s second law is applied to the solution of engineering 
problems, using either rectangular components or tangential and 
normal components of the forces and accelerations involved. We 
recall that an actual body—including bodies as large as a car, rocket, 
or airplane—can be considered as a particle for the purpose of ana-
lyzing its motion as long as the effect of a rotation of the body about 
its mass center can be ignored.
 The second part of the chapter is devoted to the solution of 
problems in terms of radial and transverse components, with particu-
lar emphasis on the motion of a particle under a central force. In 
Sec. 12.7, the angular momentum HO of a particle about a point O 
is defined as the moment about O of the linear momentum of the 
particle: HO 5 r 3 mv. It then follows from Newton’s second law 
that the rate of change of the angular momentum HO of a particle 
is equal to the sum of the moments about O of the forces acting on 
that particle.
 Section 12.9 deals with the motion of a particle under a central 
force, i.e., under a force directed toward or away from a fixed point O. 
Since such a force has zero moment about O, it follows that 
the angular momentum of the particle about O is conserved. This 
property greatly simplifies the analysis of the motion of a particle 
under a central force; in Sec. 12.10 it is applied to the solution of 
problems involving the orbital motion of bodies under gravitational 
attraction.
 Sections 12.11 through 12.13 are optional. They present a more 
extensive discussion of orbital motion and contain a number of prob-
lems related to space mechanics.

 Chapter 12 Kinetics of Particles:
Newton’s Second Law

 12.1 Introduction
 12.2 Newton’s Second Law of Motion
 12.3  Linear Momentum of a Particle. 

Rate of Change of Linear 
Momentum

 12.4 Systems of Units
 12.5 Equations of Motion
 12.6 Dynamic Equilibrium
 12.7 Angular Momentum of a Particle. 

Rate of Change of Angular 
Momentum

 12.8 Equations of Motion in Terms 
of Radial and Transverse 
Components

 12.9 Motion Under a Central Force. 
Conservation of Angular 
Momentum

 12.10 Newton’s Law of Gravitation
 12.11 Trajectory of a Particle Under a 

Central Force
 12.12 Application to Space Mechanics
 12.13 Kepler’s Laws of Planetary 

Motion
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69712.2 NEWTON’S SECOND LAW OF MOTION
Newton’s second law can be stated as follows:
 If the resultant force acting on a particle is not zero, the particle 
will have an acceleration proportional to the magnitude of the resul-
tant and in the direction of this resultant force.
 Newton’s second law of motion is best understood by imagining 
the following experiment: A particle is subjected to a force F1 of 
constant direction and constant magnitude F1. Under the action of 
that force, the particle is observed to move in a straight line and in 
the direction of the force (Fig. 12.1a). By determining the position 
of the particle at various instants, we find that its acceleration has a 
constant magnitude a1. If the experiment is repeated with forces F2, 
F3, . . . , of different magnitude or direction (Fig. 12.1b and c), we 
find each time that the particle moves in the direction of the force 
acting on it and that the magnitudes a1, a2, a3, . . . , of the accelera-
tions are proportional to the magnitudes F1, F2, F3, . . . , of the cor-
responding forces:

F1

a1
5

F2

a2
5

F3

a3
5 p 5 constant

 The constant value obtained for the ratio of the magnitudes of 
the forces and accelerations is a characteristic of the particle under 
consideration; it is called the mass of the particle and is denoted by m. 
When a particle of mass m is acted upon by a force F, the force F and 
the acceleration a of the particle must therefore satisfy the relation

 F 5 ma (12.1)

This relation provides a complete formulation of Newton’s second law; 
it expresses not only that the magnitudes of F and a are proportional 
but also (since m is a positive scalar) that the vectors F and a have 
the same direction (Fig. 12.2). We should note that Eq. (12.1) still 
holds when F is not constant but varies with time in magnitude or 
direction. The magnitudes of F and a remain proportional, and the 
two vectors have the same direction at any given instant. However, 
they will not, in general, be tangent to the path of the particle.
 When a particle is subjected simultaneously to several forces, 
Eq. (12.1) should be replaced by

 oF 5 ma (12.2)

where oF represents the sum, or resultant, of all the forces acting 
on the particle.
 It should be noted that the system of axes with respect to which 
the acceleration a is determined is not arbitrary. These axes must 
have a constant orientation with respect to the stars, and their origin 
must either be attached to the sun† or move with a constant velocity 

12.2 Newton’s Second Law of Motion

†More accurately, to the mass center of the solar system.

Fig. 12.1

F1

a1

(a)

F2

a2

(b)

F3

a3

(c)

Fig. 12.2

a

m

F = ma

Photo 12.1 When the racecar accelerates 
forward the rear tires have a friction force acting on 
them in the direction the car is moving.
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698 Kinetics of Particles: Newton’s Second Law with respect to the sun. Such a system of axes is called a newtonian 
frame of reference.† A system of axes attached to the earth does not 
constitute a newtonian frame of reference, since the earth rotates 
with respect to the stars and is accelerated with respect to the sun. 
However, in most engineering applications, the acceleration a can be 
determined with respect to axes attached to the earth and Eqs. (12.1) 
and (12.2) used without any appreciable error. On the other hand, 
these equations do not hold if a represents a relative acceleration 
measured with respect to moving axes, such as axes attached to an 
accelerated car or to a rotating piece of machinery.
 We observe that if the resultant oF of the forces acting on the 
particle is zero, it follows from Eq. (12.2) that the acceleration a of 
the particle is also zero. If the particle is initially at rest (v0 5 0) 
with respect to the newtonian frame of reference used, it will thus 
remain at rest (v 5 0). If originally moving with a velocity v0, the 
particle will maintain a constant velocity v 5 v0; that is, it will move 
with the constant speed v0 in a straight line. This, we recall, is the 
statement of Newton’s first law (Sec. 2.10). Thus, Newton’s first law 
is a particular case of Newton’s second law and can be omitted from 
the fundamental principles of mechanics.

12.3  LINEAR MOMENTUM OF A PARTICLE. RATE 
OF CHANGE OF LINEAR MOMENTUM

Replacing the acceleration a by the derivative dv/dt in Eq. (12.2), 
we write

oF 5 m
dv
dt

or, since the mass m of the particle is constant,

 oF 5
d
dt

(mv) (12.3)

 The vector mv is called the linear momentum, or simply the 
momentum, of the particle. It has the same direction as the velocity 
of the particle, and its magnitude is equal to the product of the mass 
m and the speed v of the particle (Fig. 12.3). Equation (12.3) 
expresses that the resultant of the forces acting on the particle is 
equal to the rate of change of the linear momentum of the particle. 
It is in this form that the second law of motion was originally stated 
by Newton. Denoting by L the linear momentum of the particle,

 L 5 mv (12.4)

and by L
.

 its derivative with respect to t, we can write Eq. (12.3) in 
the alternative form

 oF 5 L
.

 (12.5)

†Since stars are not actually fixed, a more rigorous definition of a newtonian frame of 
reference (also called an inertial system) is one with respect to which Eq. (12.2) holds.

Fig. 12.3

v

m
mv
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699 It should be noted that the mass m of the particle is assumed 
to be constant in Eqs. (12.3) to (12.5). Equation (12.3) or (12.5) 
should therefore not be used to solve problems involving the motion 
of bodies, such as rockets, which gain or lose mass. Problems of that 
type will be considered in Sec. 14.12.†
 It follows from Eq. (12.3) that the rate of change of the linear 
momentum mv is zero when oF 5 0. Thus, if the resultant force act-
ing on a particle is zero, the linear momentum of the particle remains 
constant, in both magnitude and direction. This is the  principle of 
conservation of linear momentum for a particle, which can be recog-
nized as an alternative statement of Newton’s first law (Sec. 2.10).

12.4 SYSTEMS OF UNITS
In using the fundamental equation F 5 ma, the units of force, mass, 
length, and time cannot be chosen arbitrarily. If they are, the mag-
nitude of the force F required to give an acceleration a to the mass 
m will not be numerically equal to the product ma; it will be only 
proportional to this product. Thus, we can choose three of the four 
units arbitrarily but must choose the fourth unit so that the equation 
F 5 ma is satisfied. The units are then said to form a system of 
consistent kinetic units.
 Two systems of consistent kinetic units are currently used by 
American engineers, the International System of Units (SI units‡) 
and the system of U.S. customary units. Both systems were discussed 
in detail in Sec. 1.3 and are described only briefly in this section.

International System of Units (SI Units). In this system, the 
base units are the units of length, mass, and time, and are called, 
respectively, the meter (m), the kilogram (kg), and the second (s). All 
three are arbitrarily defined (Sec. 1.3). The unit of force is a derived 
unit. It is called the newton (N) and is defined as the force which 
gives an acceleration of 1 m/s2 to a mass of 1 kg (Fig. 12.4). From 
Eq. (12.1) we write

1 N 5 (1 kg)(1 m/s2) 5 1 kg ? m/s2

The SI units are said to form an absolute system of units. This means 
that the three base units chosen are independent of the location 
where measurements are made. The meter, the kilogram, and the 
second may be used anywhere on the earth; they may even be used 
on another planet. They will always have the same significance.
 The weight W of a body, or force of gravity exerted on that 
body, should, like any other force, be expressed in newtons. Since a 
body subjected to its own weight acquires an acceleration equal to 
the acceleration of gravity g, it follows from Newton’s second law 
that the magnitude W of the weight of a body of mass m is

 W 5 mg (12.6)

†On the other hand, Eqs. (12.3) and (12.5) do hold in relativistic mechanics, where the 
mass m of the particle is assumed to vary with the speed of the particle.

‡SI stands for Système International d’Unités (French).

Fig. 12.4

a = 1 m/s2

m = 1 kg
F = 1 N

12.4 Systems of Units
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700 Kinetics of Particles: Newton’s Second Law Recalling that g 5 9.81 m/s2, we find that the weight of a body of 
mass 1 kg (Fig. 12.5) is

W 5 (1 kg)(9.81 m/s2) 5 9.81 N

 Multiples and submultiples of the units of length, mass, and 
force are frequently used in engineering practice. They are, respec-
tively, the kilometer (km) and the millimeter (mm); the megagram†  
(Mg) and the gram (g); and the kilonewton (kN). By definition,

1 km 5 1000 m  1 mm 5 0.001 m
1 Mg 5 1000 kg   1 g 5 0.001 kg

1 kN 5 1000 N

The conversion of these units to meters, kilograms, and newtons, 
respectively, can be effected simply by moving the decimal point 
three places to the right or to the left.
 Units other than the units of mass, length, and time can all be 
expressed in terms of these three base units. For example, the unit 
of linear momentum can be obtained by recalling the definition of 
linear momentum and writing

mv 5 (kg)(m/s) 5 kg ? m/s

U.S. Customary Units. Most practicing American engineers still 
commonly use a system in which the base units are the units of 
length, force, and time. These units are, respectively, the foot (ft), the 
pound (lb), and the second (s). The second is the same as the corre-
sponding SI unit. The foot is defined as 0.3048 m. The pound is 
defined as the weight of a platinum standard, called the standard 
pound, which is kept at the National Institute of Standards and Tech-
nology outside Washington and the mass of which is 0.453 592 43 kg. 
Since the weight of a body depends upon the gravitational attraction 
of the earth, which varies with location, it is specified that the stan-
dard pound should be placed at sea level and at a latitude of 45° to 
properly define a force of 1 lb. Clearly, the U.S. customary units do 
not form an absolute system of units. Because of their dependence 
upon the gravitational attraction of the earth, they are said to form 
a gravitational system of units.
 While the standard pound also serves as the unit of mass in 
commercial transactions in the United States, it cannot be so used 
in engineering computations since such a unit would not be consis-
tent with the base units defined in the preceding paragraph. Indeed, 
when acted upon by a force of 1 lb, that is, when subjected to its 
own weight, the standard pound receives the acceleration of gravity, 
g 5 32.2 ft/s2 (Fig. 12.6), and not the unit acceleration required by 
Eq. (12.1). The unit of mass consistent with the foot, the pound, and 
the second is the mass which receives an acceleration of 1 ft/s2 when 
a force of 1 lb is applied to it (Fig. 12.7). This unit, sometimes called 
a slug, can be derived from the equation F 5 ma after substituting 
1 lb and 1 ft/s2 for F and a, respectively. We write

F 5 ma  1 lb 5 (1 slug)(1 ft/s2)

†Also known as a metric ton.

Fig. 12.5

a = 9.81 m/s2

m = 1 kg

W = 9.81 N

Fig. 12.7

a = 1 ft/s2

m = 1 slug
(= 1 lb⋅s2/ft)

F = 1 lb

Fig. 12.6

a = 32.2 ft/s2

m = 1 lb

F = 1 lb
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701and obtain

1 slug 5
1 lb

1 ft/s2
5 1 lb ? s2/ft

Comparing Figs. 12.6 and 12.7, we conclude that the slug is a mass 
32.2 times larger than the mass of the standard pound.
 The fact that bodies are characterized in the U.S. customary 
system of units by their weight in pounds rather than by their mass 
in slugs was a convenience in the study of statics, where we were 
dealing for the most part with weights and other forces and only 
seldom with masses. However, in the study of kinetics, which involves 
forces, masses, and accelerations, it will be repeatedly necessary to 
express in slugs the mass m of a body, the weight W of which has 
been given in pounds. Recalling Eq. (12.6), we will write

 m 5
W
g

 (12.7)

where g is the acceleration of gravity (g 5 32.2 ft/s2).
 Units other than the units of force, length, and time can all be 
expressed in terms of these three base units. For example, the unit 
of linear momentum can be obtained by using the definition of linear 
momentum to write

mv 5 (lb ? s2/ft)(ft/s) 5 lb ? s

Conversion from One System of Units to Another. The con-
version from U.S. customary units to SI units, and vice versa, was 
discussed in Sec. 1.4. You will recall that the conversion factors 
obtained for the units of length, force, and mass are, respectively,

 Length: 1 ft 5 0.3048 m
 Force: 1 lb 5 4.448 N
 Mass: 1 slug 5 1 lb ? s2/ft 5 14.59 kg

Although it cannot be used as a consistent unit of mass, the mass of 
the standard pound is, by definition,

1 pound-mass 5 0.4536 kg

This constant can be used to determine the mass in SI units (kilo-
grams) of a body which has been characterized by its weight in U.S. 
customary units (pounds).

12.5 EQUATIONS OF MOTION
Consider a particle of mass m acted upon by several forces. We 
recall from Sec. 12.2 that Newton’s second law can be expressed by 
the equation

 oF 5 ma (12.2)

which relates the forces acting on the particle and the vector ma 
(Fig. 12.8). In order to solve problems involving the motion of a 
particle, however, it will be found more convenient to replace 
Eq. (12.2) by equivalent equations involving scalar quantities.

= 
m m

ma

F1

F2

Fig. 12.8

12.5 Equations of Motion
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702 Kinetics of Particles: Newton’s Second Law Rectangular Components. Resolving each force F and the 
acceleration a into rectangular components, we write

o(Fxi 1 Fyj 1 Fzk) 5 m(axi 1 ayj 1 azk)

from which it follows that

 oFx 5 max  oFy 5 may  oFz 5 maz (12.8)

Recalling from Sec. 11.11 that the components of the acceleration 
are equal to the second derivatives of the coordinates of the particle, 
we have
 oFx 5 mẍ  oFy 5 mÿ  oFz 5 mz̈ (12.89)

 Consider, as an example, the motion of a projectile. If the resis-
tance of the air is neglected, the only force acting on the projectile 
after it has been fired is its weight W 5 2Wj. The equations defin-
ing the motion of the projectile are therefore

mẍ 5 0  mÿ 5 2W  mz̈ 5 0

and the components of the acceleration of the projectile are

ẍ 5 0   ÿ 5 2
W
m

5 2g   z̈ 5 0

where g is 9.81 m/s2 or 32.2 ft/s2. The equations obtained can be 
integrated independently, as shown in Sec. 11.11, to obtain the veloc-
ity and displacement of the projectile at any instant.
 When a problem involves two or more bodies, equations of 
motion should be written for each of the bodies (see Sample 
Probs. 12.3 and 12.4). You will recall from Sec. 12.2 that all accelerations 
should be measured with respect to a newtonian frame of reference. 
In most engineering applications, accelerations can be determined with 
respect to axes attached to the earth, but relative accelerations mea-
sured with respect to moving axes, such as axes attached to an acceler-
ated body, cannot be substituted for a in the equations of motion.

Tangential and Normal Components. Resolving the forces and the 
acceleration of the particle into components along the tangent to the 
path (in the direction of motion) and the normal (toward the inside of 

Photo 12.2 The pilot of a fighter aircraft will 
experience very large normal forces when taking 
a sharp turn.

Fig. 12.9

=
man

ma t

n

m

t

n

m

t
ΣFn

ΣFt

the path) (Fig. 12.9), and substituting into Eq. (12.2), we obtain the 
two scalar equations
 oFt 5 mat  oFn 5 man (12.9)

Substituting for at and an from Eqs. (11.40), we have

 oFt 5 m
dv
dt

  oFn 5 m
v2

r
 (12.99)

The equations obtained may be solved for two unknowns.
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70312.6 DYNAMIC EQUILIBRIUM
Returning to Eq. (12.2) and transposing the right-hand member, we 
write Newton’s second law in the alternative form

 oF 2 ma 5 0 (12.10)

which expresses that if we add the vector 2ma to the forces acting 
on the particle, we obtain a system of vectors equivalent to zero 
(Fig. 12.10). The vector 2ma, of magnitude ma and of direction 
opposite to that of the acceleration, is called an inertia vector. The 
particle may thus be considered to be in equilibrium under the given 
forces and the inertia vector. The particle is said to be in dynamic 
equilibrium, and the problem under consideration can be solved by 
the methods developed earlier in statics.
 In the case of coplanar forces, all the vectors shown in Fig. 12.10, 
including the inertia vector, can be drawn tip-to-tail to form a closed-
vector polygon. Or the sums of the components of all the vectors in 
Fig. 12.10, again including the inertia vector, can be equated to zero. 
Using rectangular components, we therefore write

 oFx 5 0  oFy 5 0  including inertia vector (12.11)

When tangential and normal components are used, it is more conve-
nient to represent the inertia vector by its two components 2mat and 
2man in the sketch itself (Fig. 12.11). The tangential component of 
the inertia vector provides a measure of the resistance the particle 
offers to a change in speed, while its normal component (also called 
centrifugal force) represents the tendency of the particle to leave its 
curved path. We should note that either of these two components may 
be zero under special conditions: (1) If the particle starts from rest, its 
initial velocity is zero and the normal component of the inertia vector 
is zero at t 5 0; (2) if the particle moves at constant speed along its 
path, the tangential component of the inertia vector is zero and only 
its normal component needs to be considered.
 Because they measure the resistance that particles offer when 
we try to set them in motion or when we try to change the conditions 
of their motion, inertia vectors are often called inertia forces. The 
inertia forces, however, are not forces like the forces found in statics, 
which are either contact forces or gravitational forces (weights). 
Many people, therefore, object to the use of the word “force” when 
referring to the vector 2ma or even avoid altogether the concept of 
dynamic equilibrium. Others point out that inertia forces and actual 
forces, such as gravitational forces, affect our senses in the same way 
and cannot be distinguished by physical measurements. A man riding 
in an elevator which is accelerated upward will have the feeling that 
his weight has suddenly increased; and no measurement made 
within the elevator could establish whether the elevator is truly accel-
erated or whether the force of attraction exerted by the earth has 
suddenly increased.
 Sample problems have been solved in this text by the direct 
application of Newton’s second law, as illustrated in Figs. 12.8 and 
12.9, rather than by the method of dynamic equilibrium.

12.6 Dynamic Equilibrium

Fig. 12.10

= 0

–ma

F1

F2

m

= 0
–ma t

–ma n

F1

F2

F3

n

m

t

Fig. 12.11

Photo 12.3 The angle each rider is with respect 
to the horizontal will depend on the weight of the 
rider and the speed of rotation.

bee02324_ch12_694-732.indd Page 703  7/15/11  3:02 PM user-f494bee02324_ch12_694-732.indd Page 703  7/15/11  3:02 PM user-f494 /203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles/203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


704

SAMPLE PROBLEM 12.1

A 200-lb block rests on a horizontal plane. Find the magnitude of the force P 
required to give the block an acceleration of 10 ft/s2 to the right. The coeffi-
cient of kinetic friction between the block and the plane is mk 5 0.25.

SOLUTION

The mass of the block is

m 5
W
g

5
200 lb

32.2 ft/s2 
5 6.21 lb ? s2/ft

We note that F 5 mkN 5 0.25N and that a 5 10 ft/s2. Expressing that the 
forces acting on the block are equivalent to the vector ma, we write

y
1  oFx 5 ma:  P cos 30° 2 0.25N 5 (6.21 lb ? s2/ft)(10 ft/s2)
 P cos 30° 2 0.25N 5 62.1 lb (1)
1xoFy 5 0:   N 2 P sin 30° 2 200 lb 5 0 (2)

Solving (2) for N and substituting the result into (1), we obtain

N 5 P sin 30° 1 200 lb
 P cos 30° 2 0.25(P sin 30° 1 200 lb) 5 62.1 lb P 5 151 lb ◀

=

P
30°

N
F

W = 200 lb

ma

m = 6.21 lb⋅s2/ft

P

30°

200 lb

SAMPLE PROBLEM 12.2

An 80-kg block rests on a horizontal plane. Find the magnitude of the force P 
required to give the block an acceleration of 2.5 m/s2 to the right. The coeffi-
cient of kinetic friction between the block and the plane is mk 5 0.25.

SOLUTION

The weight of the block is

W 5 mg 5 (80 kg)(9.81 m/s2) 5 785 N

We note that F 5 mkN 5 0.25N and that a 5 2.5 m/s2. Expressing that the 
forces acting on the block are equivalent to the vector ma, we write

y
1  oFx 5 ma:  P cos 30° 2 0.25N 5 (80 kg)(2.5 m/s2)
 P cos 30° 2 0.25N 5 200 N (1)
1xoFy 5 0:   N 2 P sin 30° 2 785 N 5 0 (2)

Solving (2) for N and substituting the result into (1), we obtain

N 5 P sin 30° 1 785 N
P cos 30° 2 0.25(P sin 30° 1 785 N) 5 200 N   P 5 535 N ◀

=

P

30°

N
F

W = 785 N

ma

m = 80 kg 

P

30°

80 kg
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SAMPLE PROBLEM 12.3

The two blocks shown start from rest. The horizontal plane and the pulley 
are frictionless, and the pulley is assumed to be of negligible mass. Deter-
mine the acceleration of each block and the tension in each cord.

SOLUTION

Kinematics. We note that if block A moves through xA to the right, block 
B moves down through

xB 5 1
2xA

Differentiating twice with respect to t, we have

 aB 5 1
2aA (1)

Kinetics. We apply Newton’s second law successively to block A, block B, 
and pulley C.

Block A. Denoting by T1 the tension in cord ACD, we write

y
1  oFx 5 mAaA: T1 5 100aA (2)

Block B. Observing that the weight of block B is

WB 5 mBg 5 (300 kg)(9.81 m/s2) 5 2940 N

and denoting by T2 the tension in cord BC, we write

1woFy 5 mBaB:     2940 2 T2 5 300aB

or, substituting for aB from (1),

2940 2 T2 5 300(1
2aA)

 T2 5 2940 2 150aA (3)

Pulley C. Since mC is assumed to be zero, we have

1woFy 5 mCaC 5 0: T2 2 2T1 5 0 (4)

Substituting for T1 and T2 from (2) and (3), respectively, into (4) we write

 2940 2 150aA 2 2(100aA) 5 0
 2940 2 350aA 5 0 aA 5 8.40 m/s2 ◀

Substituting the value obtained for aA into (1) and (2), we have

 aB 5 1
2 aA 5 1

2(8.40 m/s2) aB 5 4.20 m/s2 ◀

 T1 5 100aA 5 (100 kg)(8.40 m/s2) T1 5 840 N ◀

Recalling (4), we write

 T2 5 2T1  T2 5 2(840 N) T2 5 1680 N ◀

We note that the value obtained for T2 is not equal to the weight of block B.

=

=

=

B

A

WA

WB = 2940 N

T1

T1 T1

T2

T2

N

 0

mAaA

mBaB

mA = 100 kg

mB = 300 kg

C

100 kg

300 kg

A

B

D

C
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SAMPLE PROBLEM 12.4

The 12-lb block B starts from rest and slides on the 30-lb wedge A, which 
is supported by a horizontal surface. Neglecting friction, determine (a) the 
acceleration of the wedge, (b) the acceleration of the block relative to the 
wedge.

SOLUTION

Kinematics. We first examine the acceleration of the wedge and the accel-
eration of the block.

Wedge A. Since the wedge is constrained to move on the horizontal sur-
face, its acceleration aA is horizontal. We will assume that it is directed to 
the right.

Block B. The acceleration aB of block B can be expressed as the sum of 
the acceleration of A and the acceleration of B relative to A. We have

aB 5 aA 1 aB/A

where aB/A is directed along the inclined surface of the wedge.

Kinetics. We draw the free-body diagrams of the wedge and of the block 
and apply Newton’s second law.

Wedge A. We denote the forces exerted by the block and the horizontal 
surface on wedge A by N1 and N2, respectively.

y
1  oFx 5 mAaA:     N1 sin 30° 5 mAaA

 0.5N1 5 (WA/g)aA (1)

Block B. Using the coordinate axes shown and resolving aB into its com-
ponents aA and aB/A, we write

1poFx 5 mBax:    2WB sin 30° 5 mBaA cos 30° 2 mBaB/A

 2WB sin 30° 5 (WB/g)(aA cos 30° 2 aB/A)
   aB/A 5 aA cos 30° 1 g sin 30° (2)
1roFy 5 mBay:  N1 2 WB cos 30° 5 2mBaA sin 30°
 N1 2 WB cos 30° 5 2(WB/g)aA sin 30° (3)

a. Acceleration of Wedge A. Substituting for N1 from Eq. (1) into Eq. (3), 
we have

2(WA/g)aA 2 WB cos 30° 5 2(WB/g)aA sin 30°

Solving for aA and substituting the numerical data, we write

aA 5
WB cos 30°

2WA 1 WB sin 30°
 g 5

(12 lb) cos 30°
2(30 lb) 1 (12 lb) sin 30°

 (32.2 ft/s2)

 aA 5 15.07 ft/s2 aA 5 5.07 ft/s2 
y ◀

b. Acceleration of Block B Relative to A. Substituting the value obtained 
for aA into Eq. (2), we have

aB/A 5 (5.07 ft/s2) cos 30° 1 (32.2 ft/s2) sin 30°
 aB/A 5 120.5 ft/s2 aB/A 5 20.5 ft/s2 d30° ◀

30°
A

B

=

=

30°

30°

30°

30°

A

B

WA

WB

N1

N1

N2

mAaA

aA

aA

aB/A

mBaA

mBaB/A

y y

x x
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SAMPLE PROBLEM 12.6

Determine the rated speed of a highway curve of radius r 5 400 ft banked 
through an angle u 5 18°. The rated speed of a banked highway curve is 
the speed at which a car should travel if no lateral friction force is to be 
exerted on its wheels.

SOLUTION

The car travels in a horizontal circular path of radius r. The normal com-
ponent an of the acceleration is directed toward the center of the path; its 
magnitude is an 5 v2/r, where v is the speed of the car in ft/s. The mass m 
of the car is W/g, where W is the weight of the car. Since no lateral friction 
force is to be exerted on the car, the reaction R of the road is shown per-
pendicular to the roadway. Applying Newton’s second law, we write

 1hoFy 5 0: R cos u 2 W 5 0 
  

R 5
W

cosu 
(1)

z
1  oFn 5 man:

 
R sin u 5

W
g

 an 
(2)

Substituting for R from (1) into (2), and recalling that an 5 v2/r,

W
 cos u

 sin u 5
W
g

 
v2

r
  v2 5 g r tan u

Substituting r 5 400 ft and u 5 18° into this equation, we obtain

v2 5 (32.2 ft/s2)(400 ft) tan 18°
 v 5 64.7 ft/s v 5 44.1 mi/h ◀

SAMPLE PROBLEM 12.5

The bob of a 2-m pendulum describes an arc of circle in a vertical plane. If 
the tension in the cord is 2.5 times the weight of the bob for the position 
shown, find the velocity and the acceleration of the bob in that position.

SOLUTION

The weight of the bob is W 5 mg; the tension in the cord is thus 2.5 mg. 
Recalling that an is directed toward O and assuming a t as shown, we apply 
Newton’s second law and obtain

 1 ooFt 5 mat: mg sin 30° 5 mat

 at 5 g sin 30° 5 14.90 m/s2 at 5 4.90 m/s2o ◀

 1 roFn 5 man: 2.5  mg 2 mg cos 30° 5 man

 an 5 1.634 g 5 116.03 m/s2  an 5 16.03 m/s2r ◀

Since an 5 v2/r, we have v2 5 ran 5 (2 m)(16.03 m/s2)

 v 5 65.66 m/s  v 5 5.66 m/s
G
 (up or down) ◀

=
T = 2.5 mg

W = mg

man

n

t

mat

30°

30°
2 m

O

m

n

y

W

R

man

 = 18° 90°

 = 18°

 = 18°

=

q

q

q

bee02324_ch12_694-732.indd Page 707  7/15/11  3:02 PM user-f494bee02324_ch12_694-732.indd Page 707  7/15/11  3:02 PM user-f494 /203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles/203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


708

SOLVING PROBLEMS
ON YOUR OWN

In the problems for this lesson, you will apply Newton’s second law of motion,
oF 5 ma, to relate the forces acting on a particle to the motion of the 

particle.

1. Writing the equations of motion. When applying Newton’s second law to the 
types of motion discussed in this lesson, you will find it most convenient to express 
the vectors F and a in terms of either their rectangular components or their tan-
gential and normal components.

a. When using rectangular components, and recalling from Sec. 11.11 the 
expressions found for ax, ay, and az, you will write

oFx 5 mẍ  oFy 5 mÿ  oFz 5 mz̈

 b. When using tangential and normal components, and recalling from 
Sec. 11.13 the expressions found for at and an, you will write

oFt 5 m 

dv
dt

  oFn 5 m 

v2

r

2. Drawing a free-body diagram showing the applied forces and an equivalent 
diagram showing the vector ma or its components will provide you with a pictorial 
representation of Newton’s second law [Sample Probs. 12.1 through 12.6]. These 
diagrams will be of great help to you when writing the equations of motion. Note 
that when a problem involves two or more bodies, it is usually best to consider 
each body separately.

3. Applying Newton’s second law. As we observed in Sec. 12.2, the acceleration 
used in the equation oF 5 ma should always be the absolute acceleration of the 
particle (that is, it should be measured with respect to a newtonian frame of refer-
ence). Also, if the sense of the acceleration a is unknown or is not easily deduced, 
assume an arbitrary sense for a (usually the positive direction of a coordinate axis) 
and then let the solution provide the correct sense. Finally, note how the solutions 
of Sample Probs. 12.3 and 12.4 were divided into a kinematics portion and a kinet-
ics portion, and how in Sample Prob. 12.4 we used two systems of coordinate axes 
to simplify the equations of motion.

4. When a problem involves dry friction, be sure to review the relevant sections 
of Statics [Secs. 8.1 to 8.3] before attempting to solve that problem. In particular, 
you should know when each of the equations F 5 msN and F 5 mkN may be used. 
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You should also recognize that if the motion of a system is not specified, it is 
necessary first to assume a possible motion and then to check the validity of that 
assumption.

5. Solving problems involving relative motion. When a body B moves with 
respect to a body A, as in Sample Prob. 12.4, it is often convenient to express the 
acceleration of B as

aB 5 aA 1 aB/A 

where aB/A is the acceleration of B relative to A, that is, the acceleration of B as 
observed from a frame of reference attached to A and in translation. If B is 
observed to move in a straight line, aB/A will be directed along that line. On the 
other hand, if B is observed to move along a circular path, the relative acceleration 
aB/A should be resolved into components tangential and normal to that path.

6. Finally, always consider the implications of any assumption you make. 
Thus, in a problem involving two cords, if you assume that the tension in one of 
the cords is equal to its maximum allowable value, check whether any require-
ments set for the other cord will then be satisfied. For instance, will the tension 
T in that cord satisfy the relation 0 # T # Tmax? That is, will the cord remain taut 
and will its tension be less than its maximum allowable value?
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PROBLEMS

710

CONCEPT QUESTIONS

 12.CQ1 A 1000-lb boulder B is resting on a 200-lb platform A when 
truck C accelerates to the left with a constant acceleration. 
Which of the following statements are true (more than one may 
be true)?

 a. The tension in the cord connected to the truck is 200 lb.
 b. The tension in the cord connected to the truck is 1200 lb.
 c. The tension in the cord connected to the truck is greater than 

1200 lb.
 d. The normal force between A and B is 1000 lb.
 e. The normal force between A and B is 1200 lb.
 f. None of the above are true.

 12.CQ2 Marble A is placed in a hollow tube, and the tube is swung in a 
horizontal plane causing the marble to be thrown out. As viewed 
from the top, which of the following choices best describes the 
path of the marble after leaving the tube?

 a. 1 b. 2 c. 3 d. 4 e. 5

 12.CQ3 The two systems shown start from rest. On the left, two 40-lb 
weights are connected by an inextensible cord, and on the right, 
a constant 40-lb force pulls on the cord. Neglecting all frictional 
forces, which of the following statements is true?

 a. Blocks A and C will have the same acceleration.
 b. Block C will have a larger acceleration than block A.
 c. Block A will have a larger acceleration than block C.
 d. Block A will not move.
 e. None of the above are true.

C

A

B

 Fig. P12.CQ1  

4

3

2

5

Top View

1

A

w

w

 Fig. P12.CQ2  

40 lb

40 lbA

B

40 lb

40 lb

C

 Fig. P12.CQ3

 12.CQ4 Blocks A and B are released from rest in the position shown. 
Neglecting friction, the normal force between block A and the 
ground is:

 a. Less than the weight of A plus the weight of B.
b. Equal to the weight of A plus the weight of B.
c. Greater than the weight of A plus the weight of B.

B

A

 Fig. P12.CQ4  
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711Problems 12.CQ5 People sit on a Ferris wheel at points A, B, C, and D. The Ferris 
wheel travels at a constant angular velocity. At the instant shown, 
which person experiences the largest force from his or her chair 
(back and seat)? Assume you can neglect the size of the chairs— 
that is, the people are located the same distance from the axis of 
rotation.

 a. A
 b. B
 c. C
 d. D
 e. The force is the same for all the passengers.

FREE BODY PRACTICE PROBLEMS

 12.F1 Crate A is gently placed with zero initial velocity onto a moving 
conveyor belt. The coefficient of kinetic friction between the crate 
and the belt is mk. Draw the FBD and KD for A immediately after 
it contacts the belt.

A

B

C

D

 Fig. P12.CQ5  

Av

Fig. P12.F1

 12.F2 Two blocks weighing WA and WB are at rest on a conveyor that is 
initially at rest. The belt is suddenly started in an upward direction 
so that slipping occurs between the belt and the boxes. Assuming 
the coefficient of friction between the boxes and the belt is mk, 
draw the FBDs and KDs for blocks A and B. How would you 
determine if A and B remain in contact?

 12.F3 Objects A, B, and C have masses mA, mB, and mC, respectively. 
The coefficient of kinetic friction between A and B is mk, and the 
friction between A and the ground is negligible and the pulleys are 
massless and frictionless. Assuming B slides on A, draw the FBD 
and KD for each of the three masses A, B, and C.

A B

q

Fig. P12.F2

C

B
A

Fig. P12.F3

 12.F4 Blocks A and B have masses mA and mB, respectively. Neglect-
ing  friction between all surfaces, draw the FBD and KD for 
each mass.

B

A

q

Fig. P12.F4
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712 Kinetics of Particles: Newton’s Second Law  12.F5 Blocks A and B have masses mA and mB, respectively. Neglecting 
friction between all surfaces, draw the FBD and KD for the two 
systems shown.

Fig. P12.F5

A P

System 2

System 1B

q

 12.F6 A pilot of mass m flies a jet in a half-vertical loop of radius R so that 
the speed of the jet, v, remains constant. Draw a FBD and KD of 
the pilot at points A, B, and C.

A

B

C

R

Fig. P12.F6

 12.F7 Wires AC and BC are attached to a sphere which revolves at a con-
stant speed v in the horizontal circle of radius r as shown. Draw a 
FBD and KD of C.

 12.F8 A collar of mass m is attached to a spring and slides without fric-
tion along a circular rod in a vertical plane. The spring has an un-
deformed length of 5 in. and a constant k. Knowing that the collar 
has a speed v at point B, draw the FBD and KD of the collar at 
this point.

B

A

C

r

d

1

2q

q

Fig. P12.F7 A

B

C O
5 in.

7 in.

Fig. P12.F8
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713ProblemsEND-OF-SECTION PROBLEMS

 12.1 Astronauts who landed on the moon during the Apollo 15, 16, and 
17 missions brought back a large collection of rocks to the earth. 
Knowing the rocks weighed 139 lb when they were on the moon, 
determine (a) the weight of the rocks on the earth, (b) the mass 
of the rocks in slugs. The acceleration due to gravity on the moon 
is 5.30 ft/s2.

 12.2 The value of g at any latitude f may be obtained from the formula

g 5 32.09(1 1 0.0053 sin2 f)ft/s2

  which takes into account the effect of the rotation of the earth, 
as well as the fact that the earth is not truly spherical. Determine 
to four significant figures (a) the weight in pounds, (b) the mass 
in pounds, (c) the mass in lb ? s2/ft, at the latitudes of 0°, 45°, 60°, 
of a silver bar, the mass of which has been officially designated 
as 5 lb.

 12.3 A 400-kg satellite has been placed in a circular orbit 1500 km above 
the surface of the earth. The acceleration of gravity at this elevation 
is 6.43 m/s2. Determine the linear momentum of the satellite, 
knowing that its orbital speed is 25.6 3 103 km/h.

 12.4 A spring scale A and a lever scale B having equal lever arms are 
fastened to the roof of an elevator, and identical packages are 
attached to the scales as shown. Knowing that when the elevator 
moves downward with an acceleration of 1 m/s2 the spring scale 
indicates a load of 60 N, determine (a) the weight of the packages, 
(b) the load indicated by the spring scale and the mass needed to 
balance the lever scale when the elevator moves upward with an 
acceleration of 1 m/s2.

 12.5 In anticipation of a long 7° upgrade, a bus driver accelerates at a 
constant rate of 3 ft/s2 while still on a level section of the highway. 
Knowing that the speed of the bus is 60 mi/h as it begins to climb 
the grade and that the driver does not change the setting of his 
throttle or shift gears, determine the distance traveled by the bus 
up the grade when its speed has decreased to 50 mi/h.

 12.6 A hockey player hits a puck so that it comes to rest in 10 s after 
sliding 100 ft on the ice. Determine (a) the initial velocity of 
the puck, (b) the coefficient of friction between the puck and 
the ice.

 12.7 The acceleration of a package sliding at point A is 3 m/s2. Assuming 
that the coefficient of kinetic friction is the same for each section, 
determine the acceleration of the package at point B.

 12.8 Determine the maximum theoretical speed that may be achieved 
over a distance of 60 m by a car starting from rest, knowing that 
the coefficient of static friction is 0.80 between the tires and the 
pavement and that 60 percent of the weight of the car is distrib-
uted over its front wheels and 40 percent over its rear wheels. 
Assume (a) four-wheel drive, (b) front-wheel drive, (c) rear-wheel 
drive.

A

B

 Fig. P12.4

15°

A

B

30°

 Fig. P12.7
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714 Kinetics of Particles: Newton’s Second Law  12.9 If an automobile’s braking distance from 90 kmyh is 45 m on level 
pavement, determine the automobile’s braking distance from 90 kmyh 
when it is (a) going up a 5° incline, (b) going down a 3-percent 
incline. Assume the braking force is independent of grade.

 12.10 A mother and her child are skiing together, and the mother is 
holding the end of a rope tied to the child’s waist. They are moving 
at a speed of 7.2 km/h on a gently sloping portion of the ski slope 
when the mother observes that they are approaching a steep 
descent. She pulls on the rope with an average force of 7 N. Know-
ing the coefficient of friction between the child and the ground is 
0.1 and the angle of the rope does not change, determine (a) the 
time required for the child’s speed to be cut in half, (b) the dis-
tance traveled in this time.

20 kg

20°

5°

 Fig. P12.10

 12.11 The coefficients of friction between the load and the flatbed trailer 
shown are ms 5 0.40 and mk 5 0.30. Knowing that the speed of 
the rig is 72 km/h, determine the shortest distance in which the 
rig can be brought to a stop if the load is not to shift.

 12.12 A light train made up of two cars is traveling at 90 km/h when the 
brakes are applied to both cars. Knowing that car A has a mass of 
25 Mg and car B a mass of 20 Mg, and that the braking force is 
30 kN on each car, determine (a) the distance traveled by the train 
before it comes to a stop, (b) the force in the coupling between 
the cars while the train is slowing down.

4 m

 Fig. P12.11

90 km/h

20 Mg25 Mg
BA

 Fig. P12.12
A

200 lb

350 lb

B

30°

 Fig. P12.13

 12.13 The two blocks shown are originally at rest. Neglecting the masses 
of the pulleys and the effect of friction in the pulleys and between 
block A and the incline, determine (a) the acceleration of each 
block, (b) the tension in the cable.
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715Problems 12.14 Solve Prob. 12.13, assuming that the coefficients of friction between 
block A and the incline are ms 5 0.25 and mk 5 0.20.

 12.15 Each of the systems shown is initially at rest. Neglecting axle fric-
tion and the masses of the pulleys, determine for each system 
(a) the acceleration of block A, (b) the velocity of block A after it 
has moved through 10 ft, (c) the time required for block A to reach 
a velocity of 20 ft/s.

AA A
100 lb 100 lb

2100 lb

2200 lb200 lb200 lb

(1) (2) (3)

 Fig. P12.15

 12.16 Boxes A and B are at rest on a conveyor belt that is initially at 
rest. The belt is suddenly started in an upward direction so that 
slipping occurs between the belt and the boxes. Knowing that the 
coefficients of kinetic friction between the belt and the boxes are 
(mk)A 5 0.30 and (mk)B 5 0.32, determine the initial acceleration 
of each box.

 12.17 A 5000-lb truck is being used to lift a 1000-lb boulder B that is on 
a 200-lb pallet A. Knowing the acceleration of the truck is 1 ft/s2, 
determine (a) the horizontal force between the tires and the ground, 
(b) the force between the boulder and the pallet.

A B

100 lb

80 lb

15°

 Fig. P12.16

A

B

a

 Fig. P12.17

 12.18 Block A has a mass of 40 kg, and block B has a mass of 8 kg. The 
coefficients of friction between all surfaces of contact are ms 5 
0.20 and mk 5 0.15. If P 5 0, determine (a) the acceleration of 
block B, (b) the tension in the cord.

 12.19 Block A has a mass of 40 kg, and block B has a mass of 8 kg. The 
coefficients of friction between all surfaces of contact are ms 5 
0.20 and mk 5 0.15. If P 5 40 N y, determine (a) the acceleration 
of block B, (b) the tension in the cord.

B

P

25°

A

 Fig. P12.18 and P12.19

bee02324_ch12_694-732.indd Page 715  7/15/11  3:02 PM user-f494bee02324_ch12_694-732.indd Page 715  7/15/11  3:02 PM user-f494 /203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles/203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


716 Kinetics of Particles: Newton’s Second Law  12.20 A package is at rest on a conveyor belt which is initially at rest. 
The belt is started and moves to the right for 1.3 s with a constant 
acceleration of 2 m/s2. The belt then moves with a constant decel-
eration a2 and comes to a stop after a total displacement of 2.2 m. 
Knowing that the coefficients of friction between the package and 
the belt are ms 5 0.35 and mk 5 0.25, determine (a) the decelera-
tion a2 of the belt, (b) the displacement of the package relative to 
the belt as the belt comes to a stop.

 12.21 A baggage conveyor is used to unload luggage from an airplane. 
The 10-kg duffel bag A is sitting on top of the 20-kg suitcase B. 
The conveyor is moving the bags down at a constant speed of 
0.5 m/s when the belt suddenly stops. Knowing that the coefficient 
of friction between the belt and B is 0.3 and that bag A does not 
slip on suitcase B, determine the smallest allowable coefficient of 
static friction between the bags.

 12.22 To unload a bound stack of plywood from a truck, the driver first 
tilts the bed of the truck and then accelerates from rest. Knowing 
that the coefficients of friction between the bottom sheet of ply-
wood and the bed are ms 5 0.40 and mk 5 0.30, determine (a) the 
smallest acceleration of the truck which will cause the stack of 
plywood to slide, (b) the acceleration of the truck which causes 
corner A of the stack to reach the end of the bed in 0.9 s.

 12.23 To transport a series of bundles of shingles A to a roof, a contractor 
uses a motor-driven lift consisting of a horizontal platform BC which 
rides on rails attached to the sides of a ladder. The lift starts from 
rest and initially moves with a constant acceleration a1 as shown. The 
lift then decelerates at a constant rate a2 and comes to rest at D, near 
the top of the ladder. Knowing that the coefficient of static friction 
between a bundle of shingles and the horizontal platform is 0.30, 
determine the largest allowable acceleration a1 and the largest allow-
able deceleration a2 if the bundle is not to slide on the platform.

A

B C

4.4 m

65°

0.8 m

a1

D

 Fig. P12.23

2 m 20°
A

 Fig. P12.22

 Fig. P12.20

B

v0

20°
A

 Fig. P12.21
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717Problems 12.24 An airplane has a mass of 25 Mg and its engines develop a total 
thrust of 40 kN during take-off. If the drag D exerted on the plane 
has a magnitude D 5 2.25 v2, where v is expressed in meters per 
second and D in newtons, and if the plane becomes airborne at a 
speed of 240 km/h, determine the length of runway required for 
the plane to take off.

 12.25 The propellers of a ship of weight W can produce a propulsive 
force F0; they produce a force of the same magnitude but of oppo-
site direction when the engines are reversed. Knowing that the 
ship was proceeding forward at its maximum speed v0 when the 
engines were put into reverse, determine the distance the ship 
travels before coming to a stop. Assume that the frictional resis-
tance of the water varies directly with the square of the velocity.

 12.26 A constant force P is applied to a piston and rod of total mass m 
to make them move in a cylinder filled with oil. As the piston 
moves, the oil is forced through orifices in the piston and exerts 
on the piston a force of magnitude kv in a direction opposite to 
the motion of the piston. Knowing that the piston starts from rest 
at t 5 0 and x 5 0, show that the equation relating x, v, and t, 
where x is the distance traveled by the piston and v is the speed 
of the piston, is linear in each of these variables.

P

 Fig. P12.26

A

BC
l

x0

 Fig. P12.27

P

BA C

D

Fig. P12.28

 12.27 A spring AB of constant k is attached to a support at A and to 
a collar of mass m. The unstretched length of the spring is l. 
Knowing that the collar is released from rest at x 5 x0 and neglect-
ing friction between the collar and the horizontal rod, determine 
the magnitude of the velocity of the collar as it passes through 
point C.

 12.28 Block A has a mass of 10 kg, and blocks B and C have masses of 
5 kg each. Knowing that the blocks are initially at rest and that B 
moves through 3 m in 2 s, determine (a) the magnitude of the 
force P, (b) the tension in the cord AD. Neglect the masses of the 
pulleys and axle friction.
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718 Kinetics of Particles: Newton’s Second Law

CBCB

A A

CB

(a) (b) (c)

A

 Fig. P12.29

 12.29 A 40-lb sliding panel is supported by rollers at B and C. A 25-lb 
counterweight A is attached to a cable as shown and, in cases a 
and c, is initially in contact with a vertical edge of the panel. 
Neglecting friction, determine in each case shown the acceleration 
of the panel and the tension in the cord immediately after the 
system is released from rest.

 12.30 The coefficients of friction between blocks A and C and the hori-
zontal surfaces are ms 5 0.24 and mk 5 0.20. Knowing that mA 5 
5 kg, mB 5 10 kg, and mC 5 10 kg, determine (a) the  tension in 
the cord, (b) the acceleration of each block.

B

A C

 Fig. P12.30

 12.31 A 10-lb block B rests as shown on a 20-lb bracket A. The coeffi-
cients of friction are ms 5 0.30 and mk 5 0.25 between block B 
and bracket A, and there is no friction in the pulley or between 
the bracket and the horizontal surface. (a) Determine the maximum 
weight of block C if block B is not to slide on bracket A. (b) If 
the weight of block C is 10 percent larger than the answer found 
in a, determine the accelerations of A, B, and C.

Fig. P12.31

C

B
A
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719Problems 12.32 The masses of blocks A, B, C, and D are 9 kg, 9 kg, 6 kg, and 
7  kg, respectively. Knowing that a downward force of magnitude 
120 N is applied to block D, determine (a) the acceleration of each 
block, (b) the tension in cord ABC. Neglect the weights of the 
pulleys and the effect of friction.

 12.33 The masses of blocks A, B, C, and D are 9 kg, 9 kg, 6 kg, and 
7  kg, respectively. Knowing that a downward force of magnitude 
50 N is applied to block B and that the system starts from rest, 
determine at t 5 3 s the velocity (a) of D relative to A, (b) of C 
relative to D. Neglect the weights of the pulleys and the effect 
of  friction.

 12.34 The 15-kg block B is supported by the 25-kg block A and is 
attached to a cord to which a 225-N horizontal force is applied 
as shown. Neglecting friction, determine (a) the acceleration of 
block A, (b) the acceleration of block B relative to A.

A

C

1.8 m

B

q

 Fig. P12.36

D

A  

B  

C  

 Fig. P12.32 and P12.33

 12.35 Block B of mass 10 kg rests as shown on the upper surface of a 
22-kg wedge A. Knowing that the system is released from rest and 
neglecting friction, determine (a) the acceleration of B, (b) the 
velocity of B relative to A at t 5 0.5 s.

 12.36 A 450-g tetherball A is moving along a horizontal circular path at 
a constant speed of 4 m/s. Determine (a) the angle u that the cord 
forms with pole BC, (b) the tension in the cord.

A

B

15 kg

25 kg

25°

225 N

 Fig. P12.34

B

30°

A

20°

 Fig. P12.35
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720 Kinetics of Particles: Newton’s Second Law  12.37 During a hammer thrower’s practice swings, the 7.1-kg head A of 
the hammer revolves at a constant speed v in a horizontal  circle 
as shown. If r 5 0.93 m and u 5 60°, determine (a) the tension 
in wire BC, (b) the speed of the hammer’s head.

B

A

C

30°

45°

5 kg

1.6 m

 Fig. P12.38, P12.39, and P12.40

A C
D

30°

0.2 m

B

70°

 Fig. P12.41

 12.38 A single wire ACB passes through a ring at C attached to a sphere 
which revolves at a constant speed v in the horizontal circle shown. 
Knowing that the tension is the same in both portions of the wire, 
determine the speed v.

 12.39 Two wires AC and BC are tied at C to a sphere which revolves at 
a constant speed v in the horizontal circle shown. Determine the 
range of values of v for which both wires remain taut.

 *12.40 Two wires AC and BC are tied at C to a sphere which revolves at 
a constant speed v in the horizontal circle shown. Determine the 
range of the allowable values of v if both wires are to remain taut 
and if the tension in either of the wires is not to exceed 60 N.

 12.41 A 100-g sphere D is at rest relative to drum ABC which rotates 
at a constant rate. Neglecting friction, determine the range of the 
allowable values of the velocity v of the sphere if neither of 
the normal forces exerted by the sphere on the inclined surfaces 
of the drum is to exceed 1.1 N.

A

C

B

q r

 Fig. P12.37
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721Problems

 *12.43 The 1.2-lb flyballs of a centrifugal governor revolve at a constant 
speed v in the horizontal circle of 6-in. radius shown. Neglecting 
the weights of links AB, BC, AD, and DE and requiring that the 
links support only tensile forces, determine the range of the allow-
able values of v so that the magnitudes of the forces in the links 
do not exceed 17 lb.

 12.44 A 130-lb wrecking ball B is attached to a 45-ft-long steel cable AB 
and swings in the vertical arc shown. Determine the tension in the 
cable (a) at the top C of the swing, (b) at the bottom D of the 
swing, where the speed of B is 13.2 ft/s.

B

A

C

15°

40°
3 ft

 Fig. P12.42

A

B

C

D

E

20°

1.2 lb 1.2 lb30°

 Fig. P12.43

 *12.42 As part of an outdoor display, a 12-lb model C of the earth is 
attached to wires AC and BC and revolves at a constant speed v 
in the horizontal circle shown. Determine the range of the allow-
able values of v if both wires are to remain taut and if the tension 
in either of the wires is not to exceed 26 lb.

A

BC

D

20°

 Fig. P12.44

 12.45 During a high-speed chase, a 2400-lb sports car traveling at a 
speed of 100 mi/h just loses contact with the road as it reaches the 
crest A of a hill. (a) Determine the radius of curvature r of the 
vertical profile of the road at A. (b) Using the value of r found in 
part a, determine the force exerted on a 160-lb driver by the seat of 
his 3100-lb car as the car, traveling at a constant speed of 50 mi/h, 
passes through A.

A

r

 Fig. P12.45
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722 Kinetics of Particles: Newton’s Second Law

A

B

O

v

q

900 mm

 Fig. P12.48

250 mm

1 m/s
A

B

θ

 Fig. P12.49

 12.46 A child having a mass of 22 kg sits on a swing and is held in the 
position shown by a second child. Neglecting the mass of the 
swing, determine the tension in rope AB (a) while the second child 
holds the swing with his arms outstretched horizontally, (b) imme-
diately after the swing is released.

 12.47 The roller-coaster track shown is contained in a vertical plane. The 
portion of track between A and B is straight and horizontal, while 
the portions to the left of A and to the right of B have radii of 
curvature as indicated. A car is traveling at a speed of 72 km/h 
when the brakes are suddenly applied, causing the wheels of the 
car to slide on the track (mk 5 0.20). Determine the initial decel-
eration of the car if the brakes are applied as the car (a) has almost 
reached A, (b) is traveling between A and B, (c) has just passed B.

A

B

35°

 Fig. P12.46

A B

r = 45 m

r = 30 m

 Fig. P12.47

 12.48 A 250-g block fits inside a small cavity cut in arm OA, which 
rotates in the vertical plane at a constant rate such that v 5 3 m/s. 
Knowing that the spring exerts on block B a force of magnitude 
P 5 1.5 N and neglecting the effect of friction, determine the range 
of values of u for which block B is in contact with the face of the 
cavity closest to the axis of rotation O.

 12.49 A series of small packages, each with a mass of 0.5 kg, are dis-
charged from a conveyor belt as shown. Knowing that the coeffi-
cient of static friction between each package and the conveyor belt 
is 0.4, determine (a) the force exerted by the belt on the package 
just after it has passed point A, (b) the angle u defining the point 
B where the packages first slip relative to the belt.

bee02324_ch12_694-732.indd Page 722  7/15/11  3:02 PM user-f494bee02324_ch12_694-732.indd Page 722  7/15/11  3:02 PM user-f494 /203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles/203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


723Problems

A

B

C

1200 m

 Fig. P12.50

 12.50 A 54-kg pilot flies a jet trainer in a half-vertical loop of 1200-m 
radius so that the speed of the trainer decreases at a constant rate. 
Knowing that the pilot’s apparent weights at points A and C are 
1680 N and 350 N, respectively, determine the force exerted on 
her by the seat of the trainer when the trainer is at point B.

θ

 Fig. P12.52

 12.52 A curve in a speed track has a radius of 1000 ft and a rated speed 
of 120 mi/h. (See Sample Prob. 12.6 for the definition of rated 
speed.) Knowing that a racing car starts skidding on the curve 
when traveling at a speed of 180 mi/h, determine (a) the banking 
angle u, (b) the coefficient of static friction between the tires and 
the track under the prevailing conditions, (c) the minimum speed 
at which the same car could negotiate the curve.

70°

A

5 m O

v0

1.5 m

 Fig. P12.51

 12.51 A carnival ride is designed to allow the general public to experi-
ence high-acceleration motion. The ride rotates about point O in 
a horizontal circle such that the rider has a speed v0. The rider 
reclines on a platform A which rides on rollers such that friction 
is negligible. A mechanical stop prevents the platform from rolling 
down the incline. Determine (a) the speed v0 at which the platform 
A begins to roll upward, (b) the normal force experienced by an 
80-kg rider at this speed.
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724 Kinetics of Particles: Newton’s Second Law  12.53 Tilting trains, such as the American Flyer which will run from 
Washington to New York and Boston, are designed to travel 
safely at high speeds on curved sections of track which were 
built for slower, conventional trains. As it enters a curve, each 
car is tilted by hydraulic actuators mounted on its trucks. The 
tilting feature of the cars also increases passenger comfort by 
eliminating or greatly reducing the side force Fs (parallel to the 
floor of the car) to which passengers feel subjected. For a train 
traveling at 100 mi/h on a curved section of track banked through 
an angle u 5 6° and with a rated speed of 60 mi/h, determine 
(a) the magnitude of the side force felt by a passenger of weight W 
in a standard car with no tilt (f 5 0), (b) the required angle 
of tilt f if the passenger is to feel no side force. (See Sample 
Prob. 12.6 for the definition of rated speed.)

 12.54 Tests carried out with the tilting trains described in Prob. 12.53 
revealed that passengers feel queasy when they see through the 
car windows that the train is rounding a curve at high speed, yet 
do not feel any side force. Designers, therefore, prefer to reduce, 
but not eliminate that force. For the train of Prob. 12.53, deter-
mine the required angle of tilt f if passengers are to feel side 
forces equal to 10 percent of their weights.

 12.55 A 3-kg block is at rest relative to a parabolic dish which rotates at 
a constant rate about a vertical axis. Knowing that the coefficient 
of static friction is 0.5 and that r 5 2 m, determine the maximum 
allowable velocity v of the block.

v
 Fig. P12.56

q

f

 Fig. P12.53 and P12.54

y = r2

4

2 m

r

y

 Fig. P12.55

 12.56 Three seconds after a polisher is started from rest, small tufts of 
fleece from along the circumference of the 225-mm-diameter pol-
ishing pad are observed to fly free of the pad. If the polisher is 
started so that the fleece along the circumference undergoes a con-
stant tangential acceleration of 4 m/s2, determine (a) the speed v of a 
tuft as it leaves the pad, (b) the magnitude of the force required to 
free a tuft if the average mass of a tuft is 1.6 mg.
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725Problems 12.57 A turntable A is built into a stage for use in a theatrical production. 
It is observed during a rehearsal that a trunk B starts to slide on 
the turntable 10 s after the turntable begins to rotate. Knowing that 
the trunk undergoes a constant tangential acceleration of 0.24 m/s2, 
determine the coefficient of static friction between the trunk and 
the turntable.

A

B

D

C

a

v

r

 Fig. P12.58 and P12.59

A
B

C
D

q
E

26 in.

 Fig. P12.60

A B2.5 m

 Fig. P12.57

 12.58 A small, 300-g collar D can slide on portion AB of a rod which is 
bent as shown. Knowing that a 5 40° and that the rod rotates 
about the vertical AC at a constant rate of 5 rad/s, determine the 
value of r for which the collar will not slide on the rod if the effect 
of friction between the rod and the collar is neglected.

 12.59 A small, 200-g collar D can slide on portion AB of a rod which is 
bent as shown. Knowing that the rod rotates about the vertical AC 
at a constant rate and that a 5 30° and r 5 600 mm, determine 
the range of values of the speed v for which the collar will not 
slide on the rod if the coefficient of static friction between the rod 
and the collar is 0.30.

 12.60 A semicircular slot of 10-in. radius is cut in a flat plate which rotates 
about the vertical AD at a constant rate of 14 rad/s. A small, 0.8-lb 
block E is designed to slide in the slot as the plate rotates. Knowing 
that the coefficients of friction are ms 5 0.35 and mk 5 0.25, deter-
mine whether the block will slide in the slot if it is released in the 
position corresponding to (a) u 5 80°, (b) u 5 40°. Also determine 
the magnitude and the direction of the friction force exerted on the 
block immediately after it is released.
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726 Kinetics of Particles: Newton’s Second Law  12.61 A small block B fits inside a slot cut in arm OA which rotates in a 
vertical plane at a constant rate. The block remains in contact with 
the end of the slot closest to A and its speed is 1.4 m/s for 0 # u # 
150°. Knowing that the block begins to slide when u 5 150°, deter-
mine the coefficient of static friction between the block and the slot.

 12.62 The parallel-link mechanism ABCD is used to transport a compo-
nent I between manufacturing processes at stations E, F, and G by 
picking it up at a station when u 5 0 and depositing it at the next 
station when u 5 180°. Knowing that member BC remains hori-
zontal throughout its motion and that links AB and CD rotate at 
a constant rate in a vertical plane in such a way that vB 5 2.2 ft/s, 
determine (a) the minimum value of the coefficient of static fric-
tion between the component and BC if the component is not to 
slide on BC while being transferred, (b) the values of u for which 
sliding is impending.

I

B
E F G

C

DA

10 in. 10 in.

10 in. 10 in.

q

vB

20 in. 20 in.

 Fig. P12.62

A

B

x

y

V
l

d

Anode

Cathode

Screen

d

L

 Fig. P12.64

 12.63 Knowing that the coefficients of friction between the component 
I and member BC of the mechanism of Prob. 12.62 are mS 5 0.35 
and mk 5 0.25, determine (a) the maximum allowable constant 
speed vB if the component is not to slide on BC while being trans-
ferred, (b) the values of u for which sliding is impending.

 12.64 In the cathode-ray tube shown, electrons emitted by the cathode 
and attracted by the anode pass through a small hole in the anode 
and then travel in a straight line with a speed v0 until they strike 
the screen at A. However, if a difference of potential V is established 
between the two parallel plates, the electrons will be subjected to 
a force F perpendicular to the plates while they travel between the 
plates and will strike the screen at point B, which is at a distance 
d from A. The magnitude of the force F is F 5 eV/d, where 2e is 
the charge of an electron and d is the distance between the plates. 
Derive an expression for the deflection d in terms of V, v0, the 
charge 2e and the mass m of an electron, and the dimensions d, 
l, and L.

 12.65 In Prob. 12.64, determine the smallest allowable value of the ratio 
d/l in terms of e, m, v0, and V if at x 5 l the minimum permissible 
distance between the path of the electrons and the positive plate 
is 0.05d.

B

0.3 m

O

q

A

 Fig. P12.61
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72712.7  ANGULAR MOMENTUM OF A PARTICLE. RATE 
OF CHANGE OF ANGULAR MOMENTUM

Consider a particle P of mass m moving with respect to a newtonian 
frame of reference Oxyz. As we saw in Sec. 12.3, the linear momen-
tum of the particle at a given instant is defined as the vector mv 
obtained by multiplying the velocity v of the particle by its mass m. 
The moment about O of the vector mv is called the moment of 
momentum, or the angular momentum, of the particle about O at 
that instant and is denoted by HO. Recalling the definition of the 
moment of a vector (Sec. 3.6) and denoting by r the position vector 
of P, we write

 HO 5 r 3 mv (12.12)

and note that HO is a vector perpendicular to the plane containing 
r and mv and of magnitude

 HO 5 rmv sin f (12.13)

where f is the angle between r and mv (Fig. 12.12). The sense of HO 
can be determined from the sense of mv by applying the right-hand 
rule. The unit of angular momentum is obtained by multiplying the 
units of length and of linear momentum (Sec. 12.4). With SI units, 
we have

(m)(kg ? m/s) 5 kg ? m2/s

With U.S. customary units, we write

(ft)(lb ? s) 5 ft ? lb ? s

 Resolving the vectors r and mv into components and applying 
formula (3.10), we write

 HO 5 †
i
x

mvx

 
j
y

mvy

 
k
z

mvz

†  (12.14)

The components of HO, which also represent the moments of the 
linear momentum mv about the coordinate axes, can be obtained by 
expanding the determinant in (12.14). We have

 Hx 5 m(yvz 2 zvy)
 Hy 5 m(zvx 2 xvz) (12.15)
 Hz 5 m(xvy 2 yvx)

 In the case of a particle moving in the xy plane, we have z 5 
vz 5 0 and the components Hx and Hy reduce to zero. The angular 
momentum is thus perpendicular to the xy plane; it is then com-
pletely defined by the scalar

 HO 5 Hz 5 m(xvy 2 yvx) (12.16)

12.7 Angular Momentum of a Particle. Rate of 
Change of Angular Momentum

Fig. 12.12

P

HO

r
O

z

x

y

mv

f
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728 Kinetics of Particles: Newton’s Second Law which will be positive or negative according to the sense in which 
the particle is observed to move from O. If polar coordinates are 
used, we resolve the linear momentum of the particle into radial and 
transverse components (Fig. 12.13) and write

 HO 5 rmv sin f 5 rmvu (12.17)

or, recalling from (11.45) that vu 5 ru
.
,

 HO 5 mr2u
.
 (12.18)

 Let us now compute the derivative with respect to t of the 
angular momentum HO of a particle P moving in space. Differentiat-
ing both members of Eq. (12.12), and recalling the rule for the dif-
ferentiation of a vector product (Sec. 11.10), we write

H
.

O 5 r
.

3 mv 1 r 3 mv̇ 5 v 3 mv 1 r 3 ma

Since the vectors v and mv are collinear, the first term of the 
expression obtained is zero; and, by Newton’s second law, ma is 
equal to the sum oF of the forces acting on P. Noting that r 3 oF 
represents the sum oMO of the moments about O of these forces, 
we write

 ©MO 5 H
.

O (12.19)

 Equation (12.19), which results directly from Newton’s second 
law, states that the sum of the moments about O of the forces acting 
on the particle is equal to the rate of change of the moment of momen-
tum, or angular momentum, of the particle about O.

12.8  EQUATIONS OF MOTION IN TERMS OF RADIAL 
AND TRANSVERSE COMPONENTS

Consider a particle P, of polar coordinates r and u, which moves in 
a plane under the action of several forces. Resolving the forces and 
the acceleration of the particle into radial and transverse components 
(Fig. 12.14) and substituting into Eq. (12.2), we obtain the two scalar 
equations

 oFr 5 mar  oFu 5 mau (12.20)

Substituting for ar and au from Eqs. (11.46), we have

  oFr 5 m(r̈ 2 ru
.
2)  (12.21)

  oFu 5 m(rü 1 2r
.
u
.
) (12.22)

The equations obtained can be solved for two unknowns.

Fig. 12.13

P

O

r

mv

mvr

mv
f

q

q

Photo 12.4 The forces on the specimens used 
in a high speed centrifuge can be described in 
terms of radial and transverse components.
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 Equation (12.22) could have been derived from Eq. (12.19). 
Recalling (12.18) and noting that oMO 5 roFu, Eq. (12.19) yields

 roFu 5
d
dt

 (mr2u
.
)

 5 m(r2ü 1 2rr
.
u
.
)

and, after dividing both members by r,

 oFu 5 m(rü 1 2r
.
u
.
) (12.22)

12.9  MOTION UNDER A CENTRAL FORCE. 
CONSERVATION OF ANGULAR MOMENTUM

When the only force acting on a particle P is a force F directed 
toward or away from a fixed point O, the particle is said to be moving 
under a central force, and the point O is referred to as the center of 
force (Fig. 12.15). Since the line of action of F passes through O, 
we must have oMO 5 0 at any given instant. Substituting into 
Eq. (12.19), we therefore obtain

H
.

O 5 0

for all values of t and, integrating in t,

 HO 5 constant  (12.23)

We thus conclude that the angular momentum of a particle moving 
under a central force is constant, in both magnitude and direction.
 Recalling the definition of the angular momentum of a particle 
(Sec. 12.7), we write

 r 3 mv 5 HO 5 constant (12.24)

from which it follows that the position vector r of the particle P must 
be perpendicular to the constant vector HO. Thus, a particle under 

12.9 Motion Under a Central Force. 
Conservation of Angular Momentum

Fig. 12.15
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730 Kinetics of Particles: Newton’s Second Law a central force moves in a fixed plane perpendicular to HO. The vector 
HO and the fixed plane are defined by the initial position vector r0 
and the initial velocity v0 of the particle. For convenience, let us 
assume that the plane of the figure coincides with the fixed plane of 
motion (Fig. 12.16).
 Since the magnitude HO of the angular momentum of the par-
ticle P is constant, the right-hand member in Eq. (12.13) must be 
constant. We therefore write

 rmv sin f 5 r0mv0 sin f0 (12.25)

This relation applies to the motion of any particle under a central 
force. Since the gravitational force exerted by the sun on a planet is 
a central force directed toward the center of the sun, Eq. (12.25) is 
fundamental to the study of planetary motion. For a similar reason, 
it is also fundamental to the study of the motion of space vehicles in 
orbit about the earth.
 Alternatively, recalling Eq. (12.18), we can express the fact that 
the magnitude HO of the angular momentum of the particle P is 
constant by writing

 mr2u
.

5 HO 5 constant (12.26)

or, dividing by m and denoting by h the angular momentum per unit 
mass HO/m,

 r2u
.

5 h (12.27)

Equation (12.27) can be given an interesting geometric interpreta-
tion. Observing from Fig. 12.17 that the radius vector OP sweeps 
an infinitesimal area dA 5 1

2 r2 du as it rotates through an angle du, 
and defining the areal velocity of the particle as the quotient 
dA/dt, we note that the left-hand member of Eq. (12.27) repre-
sents twice the areal velocity of the particle. We thus conclude that 
when a particle moves under a central force, its areal velocity is 
constant.

12.10 NEWTON’S LAW OF GRAVITATION
As you saw in the preceding section, the gravitational force exerted 
by the sun on a planet or by the earth on an orbiting satellite is an 
important example of a central force. In this section, you will learn 
how to determine the magnitude of a gravitational force.
 In his law of universal gravitation, Newton states that two par-
ticles of masses M and m at a distance r from each other attract each 
other with equal and opposite forces F and 2F directed along the 
line joining the particles (Fig. 12.18). The common magnitude F of 
the two forces is

 F 5 G 

Mm
r2  (12.28)

Fig. 12.16

O

P
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mv

mv0

P0r0

  0f

P
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F
dq

r d

dA

q

q

Fig. 12.17
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Fig. 12.18
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731where G is a universal constant, called the constant of gravitation. 
Experiments show that the value of G is (66.73 6 0.03) 3 
10212 m3/kg ? s2 in SI units or approximately 34.4 3 1029 ft4/lb ? s4 in 
U.S. customary units. Gravitational forces exist between any pair of 
bodies, but their effect is appreciable only when one of the bodies 
has a very large mass. The effect of gravitational forces is apparent in 
the cases of the motion of a planet about the sun, of satellites orbiting 
about the earth, or of bodies falling on the surface of the earth.
 Since the force exerted by the earth on a body of mass m 
located on or near its surface is defined as the weight W of the body, 
we can substitute the magnitude W 5 mg of the weight for F, and 
the radius R of the earth for r, in Eq. (12.28). We obtain

 W 5 mg 5
GM
R2  m   or   g 5

GM
R2  (12.29)

where M is the mass of the earth. Since the earth is not truly spheri-
cal, the distance R from the center of the earth depends upon the 
point selected on its surface, and the values of W and g will thus 
vary with the altitude and latitude of the point considered. Another 
reason for the variation of W and g with latitude is that a system of 
axes attached to the earth does not constitute a newtonian frame of 
reference (see Sec. 12.2). A more accurate definition of the weight 
of a body should therefore include a component representing the 
centrifugal force due to the rotation of the earth. Values of g at sea 
level vary from 9.781 m/s2, or 32.09 ft/s2, at the equator to 9.833 m/s2, 
or 32.26 ft/s2, at the poles.†
 The force exerted by the earth on a body of mass m located in 
space at a distance r from its center can be found from Eq. (12.28). 
The computations will be somewhat simplified if we note that accord-
ing to Eq. (12.29), the product of the constant of gravitation G and 
the mass M of the earth can be expressed as

 GM 5 gR2 (12.30)

where g and the radius R of the earth will be given their average 
values g 5 9.81 m/s2 and R 5 6.37 3 106 m in SI units‡ and g 5 
32.2 ft/s2 and R 5 (3960 mi)(5280 ft/mi) in U.S. customary units.
 The discovery of the law of universal gravitation has often been 
attributed to the belief that, after observing an apple falling from a 
tree, Newton had reflected that the earth must attract an apple and 
the moon in much the same way. While it is doubtful that this inci-
dent actually took place, it may be said that Newton would not have 
formulated his law if he had not first perceived that the acceleration 
of a falling body must have the same cause as the acceleration which 
keeps the moon in its orbit. This basic concept of the continuity of 
gravitational attraction is more easily understood today, when the gap 
between the apple and the moon is being filled with artificial earth 
satellites.

†A formula expressing g in terms of the latitude f was given in Prob. 12.2.

‡The value of R is easily found if one recalls that the circumference of the earth is 
2πR 5 40 3 106 m.

12.10 Newton’s Law of Gravitation
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732

SAMPLE PROBLEM 12.8

A satellite is launched in a direction parallel to the surface of the earth with 
a velocity of 18,820 mi/h from an altitude of 240 mi. Determine the velocity 
of the satellite as it reaches its maximum altitude of 2340 mi. It is recalled 
that the radius of the earth is 3960 mi.

SOLUTION

Since the satellite is moving under a central force directed toward the center O 
of the earth, its angular momentum HO is constant. From Eq. (12.13) we have

rmv sin f 5 HO 5 constant

which shows that v is minimum at B, where both r and sin f are maximum. 
Expressing conservation of angular momentum between A and B,

rAmvA 5 rBmvB

vB 5 vA 

rA

rB
5 (18,820 mi/h) 

3960 mi 1 240 mi
3960 mi 1 2340 mi

vB 5 12,550 mi/h ◀

SAMPLE PROBLEM 12.7

A block B of mass m can slide freely on a frictionless arm OA which rotates 
in a horizontal plane at a constant rate u

.
0. Knowing that B is released at a 

distance r0 from O, express as a function of r, (a) the component vr of the 
velocity of B along OA, (b) the magnitude of the horizontal force F exerted 
on B by the arm OA.

SOLUTION

Since all other forces are perpendicular to the plane of the figure, the only 
force shown acting on B is the force F perpendicular to OA.

Equations of Motion. Using radial and transverse components,

 1p  oFr 5 mar: 0 5 m(r̈ 2 r u̇2) (1)
 1r oFu 5 mau: F 5 m(r ü 1 2ṙ u̇) (2)

a. Component vr of Velocity. Since vr 5 ṙ , we have

r̈ 5 v
.

r 5
dvr

dt
5

dvr

dr
 
dr
dt

5 vr 

dvr

dr

Substituting for r̈ in (1), recalling that u̇ 5  u̇0, and separating the variables,

vr
 dvr 5  u̇2

0r dr

Multiplying by 2, and integrating from 0 to vr and from r0 to r,

 vr
2 5  u̇2

0(r
2 2 r 2

0) vr 5  u̇0(r
2 2 r2

0)
1/2 ◀

b. Horizontal Force F. Setting u̇ 5  u̇0,  ü 5 0, ṙ 5 vr in Eq. (2), and sub-
stituting for vr the expression obtained in part a,

 F 5 2m u̇0(r
2 2 r2

0)
1/2u̇0 F 5 2mu̇2

0(r
2 2 r2

0)
1/2 ◀

q

ma

mar

O

F

=
q

mvA

mvB

rB rA

mv

O
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f

q

vr
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733

In this lesson we continued our study of Newton’s second law by expressing the 
force and the acceleration in terms of their radial and transverse components, 

where the corresponding equations of motion are

oFr 5 mar: oFr 5 m(r̈ 2 ru̇2)
oFu 5 mau: oFu 5 m(rü 1 2ṙu̇)

We introduced the moment of the momentum, or the angular momentum, HO of 
a particle about O:

 HO 5 r 3 mv (12.12)

and found that HO is constant when the particle moves under a central force with 
its center located at O.

1. Using radial and transverse components. Radial and transverse components 
were introduced in the last lesson of Chap. 11 [Sec. 11.14]; you should review that 
material before attempting to solve the following problems. Also, our comments 
in the preceding lesson regarding the application of Newton’s second law (drawing 
a free-body diagram and a ma diagram, etc.) still apply [Sample Prob. 12.7]. Finally, 
note that the solution of that sample problem depends on the application of tech-
niques developed in Chap. 11—you will need to use similar techniques to solve 
some of the problems of this lesson.

2. Solving problems involving the motion of a particle under a central force. 
In problems of this type, the angular momentum HO of the particle about the 
center of force O is conserved. You will find it convenient to introduce the constant 
h 5 HO/m representing the angular momentum per unit mass. Conservation of 
the angular momentum of the particle P about O can then be expressed by either 
of the following equations

rv sin f 5 h  or  r 2u̇ 5 h

where r and u are the polar coordinates of P, and f is the angle that the velocity 
v of the particle forms with the line OP (Fig. 12.16). The constant h can be deter-
mined from the initial conditions and either of the above equations can be solved 
for one unknown.

SOLVING PROBLEMS
ON YOUR OWN

(continued)
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734

3. In space-mechanics problems involving the orbital motion of a planet about 
the sun, or a satellite about the earth, the moon, or some other planet, the central 
force F is the force of gravitational attraction; it is directed toward the center of 
force O and has the magnitude

 F 5 G 

Mm
r2  (12.28)

Note that in the particular case of the gravitational force exerted by the earth, 
the product GM can be replaced by gR2, where R is the radius of the earth 
[Eq. 12.30].

The following two cases of orbital motion are frequently encountered:

 a. For a satellite in a circular orbit, the force F is normal to the orbit and 
you can write F 5 man; substituting for F from Eq. (12.28) and observing that 
an 5 v2/r 5 v2/r, you will obtain

G 

Mm
r2 5 m 

v2

r
  or   v2 5

GM
r

 b. For a satellite in an elliptic orbit, the radius vector r and the velocity v of 
the satellite are perpendicular to each other at the points A and B which are, 
respectively, farthest and closest to the center of force O [Sample Prob. 12.8]. 
Thus, conservation of angular momentum of the satellite between these two points 
can be expressed as

rAmvA 5 rBmvB
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PROBLEMS

735

FREE-BODY PRACTICE PROBLEMS

12.F9 Four pins slide in four separate slots cut in a horizontal circular 
plate as shown. When the plate is at rest, each pin has a velocity 
directed as shown and of the same constant magnitude u. Each 
pin has a mass m and maintains the same velocity relative to the 
plate when the plate rotates about O with a constant counterclock-
wise angular velocity �. Draw the FBDs and KDs to determine 
the forces on pins P1 and P2. 

12.F10 At the instant shown, the length of the boom AB is being de-
creased at the constant rate of 0.2 m/s, and the boom is being 
lowered at the constant rate of 0.08 rad/s. If the mass of the men 
and lift connected to the boom at point B is m, draw the FBD and 
KD that could be used to determine the horizontal and vertical 
forces at B.

 12.F11 Disk A rotates in a horizontal plane about a vertical axis at the 
constant rate u

.
0. Slider B has a mass m and moves in a frictionless 

slot cut in the disk. The slider is attached to a spring of constant 
k, which is undeformed when r 5 0. Knowing that the slider is 
released with no radial velocity in the position r 5 r0, draw a FBD 
and KD at an arbitrary distance r from O.

B

O

E

D
C

r

q

0.2 m

Fig. P12.F12

A

B

a

6 m

Fig. P12.F10

  0
⋅ 

B

A

O

Spring

r

q

Fig. P12.F11

u

u

u

uOP1

P2

P3

P4

r

r
r

r

Fig. P12.F9

12.F12 Pin B has a mass m and slides along the slot in the rotating arm OC 
and along the slot DE which is cut in a fixed horizontal plate. Ne-
glecting friction and knowing that rod OC rotates at the  constant 
rate u

.
0, draw a FBD and KD that can be used to determine the 

forces P and Q exerted on pin B by rod OC and the wall of slot 
DE, respectively.
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736 Kinetics of Particles: Newton’s Second Law END-OF-SECTION PROBLEMS

 12.66 Rod OA rotates about O in a horizontal plane. The motion of the 
0.5-lb collar B is defined by the relations r 5 10 1 6 cos pt and u 5 
p(4t2 2 8t), where r is expressed in inches, t in seconds, and u in 
radians. Determine the radial and transverse components of the 
force exerted on the collar when (a) t 5 0, (b) t 5 0.5 s.

 12.67 Rod OA oscillates about O in a horizontal plane. The motion of 
the 2-lb collar B is defined by the relations r 5 6(1 2 e22t) and 
u 5 (3/p)(sin pt), where r is expressed in inches, t in seconds, and 
u in radians. Determine the radial and transverse components of 
the force exerted on the collar when (a) t 5 1 s, (b) t 5 1.5 s.

 12.68 The 3-kg collar B slides on the frictionless arm AA9. The arm is 
attached to drum D and rotates about O in a horizontal plane at the 
rate  u̇ 5 0.75t, where  u̇ and t are expressed in rad/s and seconds, 
respectively. As the arm-drum assembly rotates, a mechanism within 
the drum releases cord so that the collar moves outward from O with 
a constant speed of 0.5 m/s. Knowing that at t 5 0, r 5 0, determine 
the time at which the tension in the cord is equal to the magnitude 
of the horizontal force exerted on B by arm AA9.

 12.69 The horizontal rod OA rotates about a vertical shaft according to 
the relation  u̇ 5 10t, where u̇ and t are expressed in rad/s and 
seconds, respectively. A 250-g collar B is held by a cord with a 
breaking strength of 18 N. Neglecting friction, determine, imme-
diately after the cord breaks, (a) the relative acceleration of the 
collar with respect to the rod, (b) the magnitude of the horizontal 
force exerted on the collar by the rod.
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D

Fig. P12.68
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Fig. P12.69
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Fig. P12.70
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Fig. P12.71 and P12.72
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r

Fig. P12.66 and P12.67

 12.70 Pin B weighs 4 oz and is free to slide in a horizontal plane along 
the rotating arm OC and along the circular slot DE of radius 
b 5 20 in. Neglecting friction and assuming that u̇ 5 15 rad/s and 
ü 5 250 rad/s2 for the position u 5 20°, determine for that position 
(a) the radial and transverse components of the resultant force 
exerted on pin B, (b) the forces P and Q exerted on pin B, respec-
tively, by rod OC and the wall of slot DE.

 12.71 The two blocks are released from rest when r 5 0.8 m and u 5 
30°. Neglecting the mass of the pulley and the effect of friction in 
the pulley and between block A and the horizontal surface, deter-
mine (a) the initial tension in the cable, (b) the initial acceleration 
of block A, (c) the initial acceleration of block B.

 12.72 The velocity of block A is 2 m/s to the right at the instant when 
r 5 0.8 m and u 5 30°. Neglecting the mass of the pulley and the 
effect of friction in the pulley and between block A and the hori-
zontal surface, determine, at this instant, (a) the tension in the cable, 
(b) the acceleration of block A, (c) the acceleration of block B.
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737Problems *12.73 Slider C has a weight of 0.5 lb and may move in a slot cut in arm 
AB, which rotates at the constant rate  u̇0 5 10 rad/s in a horizontal 
plane. The slider is attached to a spring of constant k 5 2.5 lb/ft, 
which is unstretched when r 5 0. Knowing that the slider is released 
from rest with no radial velocity in the position r 5 18 in. and 
neglecting friction, determine for the position r 5 12 in. (a) the 
radial and transverse components of the velocity of the slider, (b) the 
radial and transverse components of its acceleration, (c) the horizon-
tal force exerted on the slider by arm AB.

 12.74 A particle of mass m is projected from point A with an initial 
velocity v0 perpendicular to line OA and moves under a central 
force F directed away from the center of force O. Knowing that the 
particle follows a path defined by the equation r 5 r0 /1cos 2u 
and using Eq. (12.27), express the radial and transverse components 
of the velocity v of the particle as functions of u.

 12.75 For the particle of Prob. 12.74, show (a) that the velocity of the 
particle and the central force F are proportional to the distance r 
from the particle to the center of force O, (b) that the radius of 
curvature of the path is proportional to r3.

 12.76 A particle of mass m is projected from point A with an initial 
velocity v0 perpendicular to line OA and moves under a central 
force F along a semicircular path of diameter OA. Observing that 
r 5 r0 cos u and using Eq. (12.27), show that the speed of the 
particle is v 5 v0/cos2 u.

A B

C
r

  0 = 10 rad/s⋅ q

O

Fig. P12.73

r0
AO

F

mr

θ v0

v

Fig. P12.74

 12.77 For the particle of Prob. 12.76, determine the tangential compo-
nent Ft of the central force F along the tangent to the path of the 
particle for (a) u 5 0, (b) u 5 45°.

 12.78 Determine the mass of the earth knowing that the mean radius of 
the moon’s orbit about the earth is 238,910 mi and that the moon 
requires 27.32 days to complete one full revolution about the earth.

 12.79 Show that the radius r of the moon’s orbit can be determined from 
the radius R of the earth, the acceleration of gravity g at the 
surface of the earth, and the time t required for the moon to 
complete one full revolution about the earth. Compute r knowing 
that t 5 27.3 days, giving the answer in both SI and U.S. custom-
ary units.

O
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v0
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m
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Fig. P12.76
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738 Kinetics of Particles: Newton’s Second Law  12.80 Communication satellites are placed in a geosynchronous orbit, i.e., 
in a circular orbit such that they complete one full revolution about 
the earth in one sidereal day (23.934 h), and thus appear stationary 
with respect to the ground. Determine (a) the altitude of these 
satellites above the surface of the earth, (b) the velocity with which 
they describe their orbit. Give the answers in both SI and U.S. 
customary units.

 12.81 Show that the radius r of the orbit of a moon of a given planet can 
be determined from the radius R of the planet, the acceleration of 
gravity at the surface of the planet, and the time t required by 
the moon to complete one full revolution about the planet. Deter-
mine the acceleration of gravity at the surface of the planet Jupiter 
knowing that R 5 71 492 km and that t 5 3.551 days and r 5 
670.9 3 103 km for its moon Europa.

 12.82 The orbit of the planet Venus is nearly circular with an orbital 
velocity of 126.5 3 103 km/h. Knowing that the mean distance 
from the center of the sun to the center of Venus is 108 3 106 km 
and that the radius of the sun is 695.5 3 103 km, determine 
(a) the mass of the sun, (b) the acceleration of gravity at the surface 
of the sun.

 12.83 A satellite is placed into a circular orbit about the planet Saturn 
at an altitude of 2100 mi. The satellite describes its orbit with a 
velocity of 54.7 3 103 mi/h. Knowing that the radius of the orbit 
about Saturn and the periodic time of Atlas, one of Saturn’s moons, 
are 85.54 3 103 mi and 0.6017 days, respectively, determine (a) the 
radius of Saturn, (b) the mass of Saturn. (The periodic time of a 
satellite is the time it requires to complete one full revolution about 
the planet.)

 12.84 The periodic times (see Prob. 12.83) of the planet Uranus’s moons 
Juliet and Titania have been observed to be 0.4931 days and 
8.706 days, respectively. Knowing that the radius of Juliet’s orbit 
is 40,000 mi, determine (a) the mass of Uranus, (b) the radius of 
Titania’s orbit.

 12.85 A 500-kg spacecraft first is placed into a circular orbit about the 
earth at an altitude of 4500 km and then is transferred to a cir-
cular orbit about the moon. Knowing that the mass of the moon 
is 0.01230 times the mass of the earth and that the radius of the 
moon is 1737 km, determine (a) the gravitational force exerted on 
the spacecraft as it was orbiting the earth, (b) the required radius 
of the orbit of the spacecraft about the moon if the periodic times 
(see Prob. 12.83) of the two orbits are to be equal, (c) the accel-
eration of gravity at the surface of the moon.

 12.86 A space vehicle is in a circular orbit of 2200-km radius around the 
moon. To transfer it to a smaller circular orbit of 2080-km radius, 
the vehicle is first placed on an elliptic path AB by reducing its 
speed by 26.3 m/s as it passes through A. Knowing that the mass 
of the moon is 73.49 3 1021 kg, determine (a) the speed of the 
vehicle as it approaches B on the elliptic path, (b) the amount by 
which its speed should be reduced as it approaches B to insert it 
into the smaller circular orbit.

2080 km

2200 km

A B

Fig. P12.86
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739Problems 12.87 Plans for an unmanned landing mission on the planet Mars called 
for the earth-return vehicle to first describe a circular orbit at an 
altitude dA 5 2200 km above the surface of the planet with a 
velocity of 2771 m/s. As it passed through point A, the vehicle 
was to be inserted into an elliptic transfer orbit by firing its 
engine and increasing its speed by DvA 5 1046 m/s. As it passed 
through point B, at an altitude dB 5 100 000 km, the vehicle was 
to be inserted into a second transfer orbit located in a slightly 
different plane, by changing the direction of its velocity and 
reducing its speed by DvB 5 222.0 m/s. Finally, as the vehicle 
passed through point C, at an altitude dC 5 1000 km, its speed 
was to be increased by DvC 5 660 m/s to insert it into its return 
trajectory. Knowing that the radius of the planet Mars is R 5 
3400 km, determine the velocity of the vehicle after completion 
of the last maneuver.

 12.88 To place a communications satellite into a geosynchronous orbit 
(see Prob. 12.80) at an altitude of 22,240 mi above the surface of 
the earth, the satellite first is released from a space shuttle, which 
is in a circular orbit at an altitude of 185 mi, and then is propelled 
by an upper-stage booster to its final altitude. As the satellite 
passes through A, the booster’s motor is fired to insert the satellite 
into an elliptic transfer orbit. The booster is again fired at B to 
insert the satellite into a geosynchronous orbit. Knowing that the 
second firing increases the speed of the satellite by 4810 ft/s, deter-
mine (a) the speed of the satellite as it approaches B on the elliptic 
transfer orbit, (b) the increase in speed resulting from the first 
firing at A.

D COB

A

S

380 mi

180 mi

Fig. P12.89

 12.89 A space shuttle S and a satellite A are in the circular orbits 
shown. In order for the shuttle to recover the satellite, the shuttle 
is first placed in an elliptic path BC by increasing its speed by 
DvB 5 280 ft/s as it passes through B. As the shuttle approaches C, 
its speed is increased by DvC 5 260 ft/s to insert it into a second 
elliptic transfer orbit CD. Knowing that the distance from O to 
C is 4289 mi, determine the amount by which the speed of the 
shuttle should be increased as it approaches D to insert it into 
the circular orbit of the satellite.

C BA

Circular orbit

Second transfer orbit

Return trajectory 
First transfer orbit

O

R

Fig. P12.87
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R = 3960 mi

22,240 mi
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740 Kinetics of Particles: Newton’s Second Law  12.90 A 1-kg collar can slide on a horizontal rod which is free to rotate 
about a vertical shaft. The collar is initially held at A by a cord 
attached to the shaft. A spring of constant 30 N/m is attached to 
the collar and to the shaft and is undeformed when the collar is 
at A. As the rod rotates at the rate  u̇ 5 16 rad/s, the cord is cut 
and the collar moves out along the rod. Neglecting friction and 
the mass of the rod, determine (a) the radial and transverse com-
ponents of the acceleration of the collar at A, (b) the acceleration 
of the collar relative to the rod at A, (c) the transverse component 
of the velocity of the collar at B.

 12.91 A 1-lb ball A and a 2-lb ball B are mounted on a horizontal rod 
which rotates freely about a vertical shaft. The balls are held in the 
positions shown by pins. The pin holding B is suddenly removed and 
the ball moves to position C as the rod rotates. Neglecting friction 
and the mass of the rod and knowing that the initial speed of A is 
vA 5 8 ft/s, determine (a) the radial and transverse components of 
the acceleration of ball B immediately after the pin is removed, 
(b) the acceleration of ball B relative to the rod at that instant, 
(c) the speed of ball A after ball B has reached the stop at C.

 12.92 Two 2.6-lb collars A and B can slide without friction on a frame, 
consisting of the horizontal rod OE and the vertical rod CD, which 
is free to rotate about CD. The two collars are connected by a cord 
running over a pulley that is attached to the frame at O and a stop 
prevents collar B from moving. The frame is rotating at the rate u̇ 5 
12 rad/s and r 5 0.6 ft when the stop is removed allowing collar A 
to move out along rod OE. Neglecting friction and the mass of the 
frame, determine, for the position r 5 1.2 ft, (a) the transverse com-
ponent of the velocity of collar A, (b) the tension in the cord and the 
acceleration of collar A relative to the rod OE.

BA

450 mm

150 mm

Fig. P12.90

A B

C

16 in. 16 in.

8 in.10 in.

vA

vB

Fig. P12.91

 12.93 A small ball swings in a horizontal circle at the end of a cord of 
length l1, which forms an angle u1 with the vertical. The cord is then 
slowly drawn through the support at O until the length of the free 
end is l2. (a) Derive a relation among l1, l2, u1, and u2. (b) If the ball 
is set in motion so that initially l1 5 0.8 m and u1 5 35°, determine 
the angle u2 when l2 5 0.6 m.

r

E

A

O

D

B

C

Fig. P12.92
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74112.11 Trajectory of a Particle 
Under a Central Force*12.11  TRAJECTORY OF A PARTICLE 

UNDER A CENTRAL FORCE
Consider a particle P moving under a central force F. We propose 
to obtain the differential equation which defines its trajectory.
 Assuming that the force F is directed toward the center of force 
O, we note that oFr and oFu reduce, respectively, to 2F and zero 
in Eqs. (12.21) and (12.22). We therefore write

  m(r̈ 2 ru
.
2) 5 2F (12.31)

  m(rü 1 2r
.
u
.
) 5 0  (12.32)

These equations define the motion of P. We will, however, replace 
Eq. (12.32) by Eq. (12.27), which is equivalent to Eq. (12.32), as can 
easily be checked by differentiating it with respect to t, but which is 
more convenient to use. We write

 r2u
.

5 h   or   r2
 

du

dt
5 h (12.33)

 Equation (12.33) can be used to eliminate the independent vari-
able t from Eq. (12.31). Solving Eq. (12.33) for u

.
 or du/dt, we have

 u
.

5
du

dt
5

h
r2 (12.34)

from which it follows that

  r. 5
dr
dt

5
dr
du

 
du

dt
5

h
r2 

dr
du

5 2h
d
du

 a1
r
b (12.35)

  r̈ 5
dr

.

dt
5

dr
.

du
 
du

dt
5

h
r2 

dr
.

du
 

or, substituting for r.  from (12.35),

 r̈ 5
h
r2 

d
du
c2h 

d
du

 a1
r
b d

  r̈ 5 2
h2

r2  
d2

du2 a1
r
b  (12.36)

Substituting for u and r̈  from (12.34) and (12.36), respectively, in 
Eq. (12.31) and introducing the function u 5 1/r, we obtain after 
reductions

 
d2u
du2 1 u 5

F
mh2u2 (12.37)

In deriving Eq. (12.37), the force F was assumed directed toward O. 
The magnitude F should therefore be positive if F is actually directed 
toward O (attractive force) and negative if F is directed away from 
O (repulsive force). If F is a known function of r and thus of u, 
Eq. (12.37) is a differential equation in u and u. This differential 
equation defines the trajectory followed by the particle under the 
central force F. The equation of the trajectory can be obtained by 
solving the differential equation (12.37) for u as a function of u and 
determining the constants of integration from the initial conditions.
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742 Kinetics of Particles: Newton’s Second Law *12.12 APPLICATION TO SPACE MECHANICS
After the last stages of their launching rockets have burned out, earth 
satellites and other space vehicles are subjected to only the gravitational 
pull of the earth. Their motion can therefore be determined from 
Eqs. (12.33) and (12.37), which govern the motion of a particle under 
a central force, after F has been replaced by the expression obtained 
for the force of gravitational attraction.† Setting in Eq. (12.37)

  F 5
GMm

r2 5 GMmu2

 where M 5 mass of earth
 m 5 mass of space vehicle
 r 5 distance from center of earth to vehicle
 u 5 1/r

we obtain the differential equation

 
d2u
du2 1 u 5

GM
h2  (12.38)

where the right-hand member is observed to be a constant.
 The solution of the differential equation (12.38) is obtained by 
adding the particular solution u 5 GM/h2 to the general solution u 5 
C cos (u 2 u0) of the corresponding homogeneous equation (i.e., the 
equation obtained by setting the right-hand member equal to zero). 
Choosing the polar axis so that u0 5 0, we write

 
1
r

5 u 5
GM
h2 1 C cos u (12.39)

Equation (12.39) is the equation of a conic section (ellipse, parabola, 
or hyperbola) in the polar coordinates r and u. The origin O of the 
coordinates, which is located at the center of the earth, is a focus of 
this conic section, and the polar axis is one of its axes of symmetry 
(Fig. 12.19).
 The ratio of the constants C and GM/h2 defines the eccentricity ´ 
of the conic section; letting

 e 5
C

GM/h2 5
Ch2

GM
 (12.40)

we can write Eq. (12.39) in the form

 
1
r

5
GM
h2 (1 1 e cos u) (12.399)

This equation represents three possible trajectories.

 1. ´ . 1, or C . GM/h2: There are two values u1 and 2u1 of 
the polar angle, defined by cos u1 5 2GM/Ch2, for which the 

†It is assumed that the space vehicles considered here are attracted by the earth only 
and that their mass is negligible compared with the mass of the earth. If a vehicle moves 
very far from the earth, its path may be affected by the attraction of the sun, the moon, 
or another planet.

Photo 12.5 The Hubble telescope was carried 
into orbit by the space shuttle in 1990 (first 
geosynchronous from NASA).

Fig. 12.19
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74312.12 Application to Space Mechanicsright-hand member of Eq. (12.39) becomes zero. For both 
these values, the radius vector r becomes infinite; the conic 
section is a hyperbola (Fig. 12.20).

 2. ´ 5 1, or C 5 GM/h2: The radius vector becomes infinite for 
u 5 180°; the conic section is a parabola.

 3. ´ , 1, or C , GM/h2: The radius vector remains finite for 
every value of u; the conic section is an ellipse. In the particular 
case when ´ 5 C 5 0, the length of the radius vector is con-
stant; the conic section is a circle.

 Let us now see how the constants C and GM/h2, which character-
ize the trajectory of a space vehicle, can be determined from the 
 vehicle’s position and velocity at the beginning of its free flight. We will 
assume that, as is generally the case, the powered phase of its flight 
has been programmed in such a way that as the last stage of the launch-
ing rocket burns out, the vehicle has a velocity parallel to the surface 
of the earth (Fig. 12.21). In other words, we will assume that the space 
vehicle begins its free flight at the vertex A of its trajectory.†
 Denoting the radius vector and speed of the vehicle at the 
beginning of its free flight by r0 and v0, respectively, we observe 
that the velocity reduces to its transverse component and, thus, that 
v0 5 r0u

.
0. Recalling Eq. (12.27), we express the angular momentum 

per unit mass h as

 h 5 r2
0u

.
0 5 r0v0 (12.41)

The value obtained for h can be used to determine the constant 
GM/h2. We also note that the computation of this constant will be 
simplified if we use the relation obtained in Sec. 12.10.

 GM 5 gR2 (12.30)

where R is the radius of the earth (R 5 6.37 3 106 m or 3960 mi) 
and g is the acceleration of gravity at the surface of the earth.
 The constant C is obtained by setting u 5 0, r 5 r0 in (12.39):

 C 5
1
r0

2
GM
h2  (12.42)

Substituting for h from (12.41), we can then easily express C in terms 
of r0 and v0.
 Let us now determine the initial conditions corresponding to 
each of the three fundamental trajectories indicated above. Consid-
ering first the parabolic trajectory, we set C equal to GM/h2 in 
Eq. (12.42) and eliminate h between Eqs. (12.41) and (12.42). Solv-
ing for v0, we obtain

v0 5
A

2GM
r0

We can easily check that a larger value of the initial velocity corre-
sponds to a hyperbolic trajectory and a smaller value corresponds to an 
elliptic orbit. Since the value of v0 obtained for the parabolic trajectory 

†Problems involving oblique launchings will be considered in Sec. 13.9.
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744 Kinetics of Particles: Newton’s Second Law is the smallest value for which the space vehicle does not return to its 
starting point, it is called the escape velocity. We write therefore

 vesc 5
A

2GM
r0

  or   vesc 5
B

2gR2

r0
 (12.43)

if we make use of Eq. (12.30). We note that the trajectory will be 
(1) hyperbolic if v0 . vesc, (2) parabolic if v0 5 vesc, and (3) elliptic 
if v0 , vesc.
 Among the various possible elliptic orbits, the one obtained 
when C 5 0, the circular orbit, is of special interest. The value of the 
initial velocity corresponding to a circular orbit is easily found to be

 vcirc 5
A

GM
r0

  or   vcirc 5
B

gR2

r0
 (12.44)

if Eq. (12.30) is taken into account. We note from Fig. 12.22 that 
for values of v0 larger than vcirc but smaller than vesc, point A where 
free flight begins is the point of the orbit closest to the earth; this 
point is called the perigee, while point A9, which is farthest away 
from the earth, is known as the apogee. For values of v0 smaller than 
vcirc, point A is the apogee, while point A0, on the other side of the 
orbit, is the perigee. For values of v0 much smaller than vcirc, the 
trajectory of the space vehicle intersects the surface of the earth; in 
such a case, the vehicle does not go into orbit.
 Ballistic missiles, which were designed to hit the surface of the 
earth, also travel along elliptic trajectories. In fact, we should now 
realize that any object projected in vacuum with an initial velocity v0 
smaller than vesc will move along an elliptic path. It is only when the 
distances involved are small that the gravitational field of the earth 
can be assumed uniform and that the elliptic path can be approxi-
mated by a parabolic path, as was done earlier (Sec. 11.11) in the 
case of conventional projectiles.

Periodic Time. An important characteristic of the motion of an 
earth satellite is the time required by the satellite to describe its 
orbit. This time, known as the periodic time of the satellite, is denoted 
by t. We first observe, in view of the definition of areal velocity 
(Sec. 12.9), that t can be obtained by dividing the area inside the 
orbit by the areal velocity. Noting that the area of an ellipse is equal 
to pab, where a and b denote the semimajor and semiminor axes, 
respectively, and that the areal velocity is equal to h/2, we write

 t 5
2pab

h
 (12.45)

 While h can be readily determined from r0 and v0 in the case of 
a satellite launched in a direction parallel to the surface of the earth, 
the semiaxes a and b are not directly related to the initial conditions. 
Since, on the other hand, the values r0 and r1 of r corresponding to 
the perigee and apogee of the orbit can easily be determined from 
Eq. (12.39), we will express the semiaxes a and b in terms of r0 and r1.
 Consider the elliptic orbit shown in Fig. 12.23. The earth’s cen-
ter is located at O and coincides with one of the two foci of the 

Fig. 12.22
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74512.13 Kepler’s Laws of Planetary Motionellipse, while the points A and A9 represent, respectively, the perigee 
and apogee of the orbit. We easily check that

r0 1 r1 5 2a

and thus
 a 5 1

2(r0 1 r1) (12.46)

Recalling that the sum of the distances from each of the foci to any 
point of the ellipse is constant, we write

O9B 1 BO 5 O 9A 1 OA 5 2a  or  BO 5 a

On the other hand, we have CO 5 a 2 r0. We can therefore write

b2 5 (BC)2 5 (BO)2 2 (CO)2 5 a2 2 (a 2 r0)
2

b2 5 r0(2a 2 r0) 5 r0r1
and thus
 b 5 1r0r1 (12.47)

Formulas (12.46) and (12.47) indicate that the semimajor and semi-
minor axes of the orbit are equal, respectively, to the arithmetic and 
geometric means of the maximum and minimum values of the radius 
vector. Once r0 and r1 have been determined, the lengths of the 
semiaxes can be easily computed and substituted for a and b in for-
mula (12.45).

*12.13 KEPLER’S LAWS OF PLANETARY MOTION
The equations governing the motion of an earth satellite can be used 
to describe the motion of the moon around the earth. In that case, 
however, the mass of the moon is not negligible compared with the 
mass of the earth, and the results obtained are not entirely accurate.
 The theory developed in the preceding sections can also be 
applied to the study of the motion of the planets around the sun. 
Although another error is introduced by neglecting the forces exerted 
by the planets on one another, the approximation obtained is excel-
lent. Indeed, even before Newton had formulated his fundamental 
theory, the properties expressed by Eq. (12.39), where M now rep-
resents the mass of the sun, and by Eq. (12.33) had been discovered 
by the German astronomer Johann Kepler (1571–1630) from astro-
nomical observations of the motion of the planets.
 Kepler’s three laws of planetary motion can be stated as follows:

 1. Each planet describes an ellipse, with the sun located at one 
of its foci.

 2. The radius vector drawn from the sun to a planet sweeps equal 
areas in equal times.

 3. The squares of the periodic times of the planets are propor-
tional to the cubes of the semimajor axes of their orbits.

 The first law states a particular case of the result established in 
Sec. 12.12, and the second law expresses that the areal velocity of 
each planet is constant (see Sec. 12.9). Kepler’s third law can also be 
derived from the results obtained in Sec. 12.12.†

†See Prob. 12.120.

Fig. 12.23 (repeated)
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746

SAMPLE PROBLEM 12.9

A satellite is launched in a direction parallel to the surface of the earth with a 
velocity of 36 900 km/h from an altitude of 500 km. Determine (a) the maxi-
mum altitude reached by the satellite, (b) the periodic time of the satellite.

SOLUTION

a. Maximum Altitude. After the satellite is launched, it is subjected only 
to the gravitational attraction of the earth; its motion is thus governed by 
Eq. (12.39),

 
1
r

5
GM

h2 1 C cos u 
(1)

Since the radial component of the velocity is zero at the point of launching A, 
we have h 5 r0v0. Recalling that for the earth R 5 6370 km, we compute

 r0 5 6370 km 1 500 km 5 6870 km 5 6.87 3 106 m

 v0 5 36 900 km/h 5
36.9 3 106 m
3.6 3 103 s

5 10.25 3 103 m/s

 h 5 r0v0 5 (6.87 3 106 m)(10.25 3 103 m/s) 5 70.4 3 109 m2/s
 h2 5 4.96 3 1021 m4/s2

Since GM 5 gR2, where R is the radius of the earth, we have

 GM 5 gR2 5 (9.81 m/s2)(6.37 3 106 m)2 5 398 3 1012 m3/s2

 
GM

h2 5
398 3 1012 m3/s2

4.96 3 1021 m4/s2 5 80.3 3 1029 m21

 Substituting this value into (1), we obtain

 
1
r

5 80.3 3 1029 m21 1 C cos u (2)

Noting that at point A we have u 5 0 and r 5 r0 5 6.87 3 106 m, we 
compute the constant C:

1
6.87 3 106 m

5 80.3 3 1029 m21 1 C cos 0°  C 5 65.3 3 1029 m21

At A9, the point on the orbit farthest from the earth, we have u 5 180°. 
Using (2), we compute the corresponding distance r1:

1
r1

 5 80.3 3 1029 m21 1 (65.3 3 1029 m21) cos 180°

 r1 5 66.7 3 106 m 5 66 700 km
Maximum altitude 5 66 700 km 2 6370 km 5 60 300 km ◀

b. Periodic Time. Since A and A9 are the perigee and apogee, respectively, 
of the elliptic orbit, we use Eqs. (12.46) and (12.47) and compute the semi-
major and semiminor axes of the orbit:

 a 5 1
2(r0 1 r1) 5 1

2(6.87 1 66.7)(106) m 5 36.8 3 106 m

 b 5 1r0r1 5 1(6.87)(66.7) 3 106 m 5 21.4 3 106 m

 t 5
2pab

h
5

2p(36.8 3 106m)(21.4 3 106m)

70.4 3 109 m2/s
t 5 70.3 3 103 s 5 1171 min 5 19 h 31 min ◀

R
A' A

r1

v0

r0

r
q

OA' A
C

B

r1 r0

a

b

Maximum altitude

36,900 km/h

Earth

500 km
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747

SOLVING PROBLEMS
ON YOUR OWN

In this lesson, we continued our study of the motion of a particle under a central 
force and applied the results to problems in space mechanics. We found that the 

trajectory of a particle under a central force is defined by the differential equation

d2u
d u2 1 u 5

F
mh2u2 (12.37)

where u is the reciprocal of the distance r of the particle to the center of force 
(u 5 1/r), F is the magnitude of the central force F, and h is a constant equal to the 
angular momentum per unit mass of the particle. In space-mechanics problems, F
is the force of gravitational attraction exerted on the satellite or spacecraft by the 
sun, earth, or other planet about which it travels. Substituting F 5 GMm/r2 5 
GMmu2 into Eq. (12.37), we obtain for that case

d2u
d u2 1 u 5

GM
h2  (12.38)

where the right-hand member is a constant.

1. Analyzing the motion of satellites and spacecraft. The solution of the 
 differential equation (12.38) defines the trajectory of a satellite or spacecraft. It 
was obtained in Sec. 12.12 and was given in the alternative forms

1
r

5
GM
h2  1 C cos u   or   1

r
5  

GM
h2  (1 1 e cos u) (12.39, 12.399)

Remember when applying these equations that u 5 0 always corresponds to the 
perigee (the point of closest approach) of the trajectory (Fig. 12.19) and that h is 
a constant for a given trajectory. Depending on the value of the eccentricity ´, the 
trajectory will be a hyperbola, a parabola, or an ellipse.
 a. E . 1: The trajectory is a hyperbola, so that for this case the spacecraft 
never returns to its starting point.
 b. E 5 1: The trajectory is a parabola. This is the limiting case between 
open (hyperbolic) and closed (elliptic) trajectories. We had observed for this case 
that the velocity v0 at the perigee is equal to the escape velocity vesc,

v0 5 vesc 5
A

2GM
r0

 (12.43)

Note that the escape velocity is the smallest velocity for which the spacecraft does 
not return to its starting point.
 c. E , 1: The trajectory is an elliptic orbit. For problems involving elliptic 
orbits, you may find that the relation derived in Prob. 12.102,

1
r0

1
1
r1

5
2GM

h2

(continued)
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748

will be useful in the solution of subsequent problems. When you apply this equa-
tion, remember that r0 and r1 are the distances from the center of force to the 
perigee (u 5 0) and apogee (u 5 180°), respectively; that h 5 r0v0 5 r1v1; and 
that, for a satellite orbiting the earth, GMearth 5 gR2, where R is the radius of the 
earth. Also recall that the trajectory is a circle when ´ 5 0.

2. Determining the point of impact of a descending spacecraft. For problems 
of this type, you may assume that the trajectory is elliptic and that the initial point 
of the descent trajectory is the apogee of the path (Fig. 12.22). Note that at the 
point of impact, the distance r in Eqs. (12.39) and (12.399) is equal to the radius 
R of the body on which the spacecraft lands or crashes. In addition, we have h 5 
RvI sin fI, where vI is the speed of the spacecraft at impact and fI is the angle 
that its path forms with the vertical at the point of impact.

3. Calculating the time to travel between two points on a trajectory. For 
central force motion, the time t required for a particle to travel along a portion of 
its trajectory can be determined by recalling from Sec. 12.9 that the rate at which 
area is swept per unit time by the position vector r is equal to one-half of the 
angular momentum per unit mass h of the particle: dA/dt 5 h/2. It follows, since h 
is a constant for a given trajectory, that

t 5
2A
h

where A is the total area swept in the time t.
 a. In the case of an elliptic trajectory, the time required to complete one 
orbit is called the periodic time and is expressed as

 t 5
2(pab)

h
 (12.45)

where a and b are the semimajor and semiminor axes, respectively, of the ellipse 
and are related to the distances r0 and r1 by

 a 5 1
2(r0 1 r1)  and  b 5 1r0r1 (12.46, 12.47)

 b. Kepler’s third law provides a convenient relation between the periodic 
times of two satellites describing elliptic orbits about the same body [Sec. 12.13]. 
Denoting the semimajor axes of the two orbits by a1 and a2, respectively, and the 
corresponding periodic times by t1 and t2, we have

t2
1

t2
2

5
a3

1

a3
2

 c. In the case of a parabolic trajectory, you may be able to use the expres-
sion given on the inside of the front cover of the book for a parabolic or a 
semiparabolic area to calculate the time required to travel between two points of 
the trajectory.

bee02324_ch12_733-761.indd Page 748  7/15/11  3:03 PM user-f494bee02324_ch12_733-761.indd Page 748  7/15/11  3:03 PM user-f494 /203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles/203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


PROBLEMS

749

CONCEPTS QUESTIONS

 12.CQ6 A uniform crate C with mass mC is being transported to the left by 
a forklift with a constant speed v1. What is the magnitude of the 
angular momentum of the crate about point D, that is, the upper 
left corner of the crate?

 a. 0
 b. mv1a
 c. mv1b
 d. mv12a2 1 b2

 12.CQ7 A uniform crate C with mass mC is being transported to the left 
by a forklift with a constant speed v1. What is the magnitude of 
the angular momentum of the crate about point A, that is, the 
point of contact between the front tire of the forklift and the 
ground?
a. 0
b. mv1d
c. 3mv1

d. mv1232 1 d2

END-OF-SECTION PROBLEMS

 12.94 A particle of mass m is projected from point A with an initial 
velocity v0 perpendicular to OA and moves under a central force 
F along an elliptic path defined by the equation r 5 r0/(2 2
cos u). Using Eq. (12.37), show that F is inversely proportional 
to the square of the distance r from the particle to the center 
of force O.

A

G

B

3 ft 3 ft4 ft

3 ft

D

C

d

a

b

v1

 Fig. P12.CQ6 and P12.CQ7  

AO

r

q

r0

F

m v0

v

Fig. P12.94
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750 Kinetics of Particles: Newton’s Second Law  12.95 A particle of mass m describes the logarithmic spiral r 5 r0 e
bu 

under a central force F directed toward the center of force O. 
Using Eq. (12.37), show that F is inversely proportional to the cube 
of the distance r from the particle to O.

 12.96 For the particle of Prob. 12.74, and using Eq. (12.37), show that 
the central force F is proportional to the distance r from the par-
ticle to the center of force O.

 12.97 A particle of mass m describes the path defined by the equation 
r 5 r0 sin u under a central force F directed toward the center of 
force O. Using Eq. (12.37), show that F is inversely proportional 
to the fifth power of the distance r from the particle to O.

 12.98 It was observed that during its second flyby of the earth, the Galileo 
spacecraft had a velocity of 14.1 km/s as it reached its  minimum 
altitude of 303 km above the surface of the earth. Determine the 
eccentricity of the trajectory of the spacecraft during this portion 
of its flight.

 12.99 It was observed that during the Galileo spacecraft’s first flyby of 
the earth, its minimum altitude was 600 mi above the surface of 
the earth. Assuming that the trajectory of the spacecraft was para-
bolic, determine the maximum velocity of Galileo during its first 
flyby of the earth.

 12.100 As a space probe approaching the planet Venus on a parabolic tra-
jectory reaches point A closest to the planet, its velocity is decreased 
to insert it into a circular orbit. Knowing that the mass and the 
radius of Venus are 4.87 3 1024 kg and 6052 km, respectively, deter-
mine (a) the velocity of the probe as it approaches A, (b) the 
decrease in velocity required to insert it into the circular orbit.

 12.101 It was observed that as the Voyager I spacecraft reached the point 
of its trajectory closest to the planet Saturn, it was at a distance of 
185 3 103 km from the center of the planet and had a velocity of 
21.0 km/s. Knowing that Tethys, one of Saturn’s moons, describes a 
circular orbit of radius 295 3 103 km at a speed of 11.35 km/s, 
determine the eccentricity of the trajectory of Voyager I on its 
approach to Saturn.

 12.102 A satellite describes an elliptic orbit about a planet of mass M. 
Denoting by r0 and r1, respectively, the minimum and maximum 
values of the distance r from the satellite to the center of the 
planet, derive the relation

1
r0

1
1
r1

5
2GM

h2

  where h is the angular momentum per unit mass of the satellite.

 12.103 A space probe is describing a circular orbit about a planet of radius 
R. The altitude of the probe above the surface of the planet is aR 
and its speed is v0. To place the probe in an elliptic orbit which 
will bring it closer to the planet, its speed is reduced from v0 to 
bv0, where b , 1, by firing its engine for a short interval of time. 
Determine the smallest permissible value of b if the probe is not 
to crash on the surface of the planet.

280 km

A

C

B

Fig. P12.100

Fig. P12.102

A B
O

r1r0
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751Problems 12.104 At main engine cutoff of its thirteenth flight, the space shuttle 
Discovery was in an elliptic orbit of minimum altitude 60 km and 
maximum altitude 500 km above the surface of the earth. Know-
ing that at point A the shuttle had a velocity v0 parallel to the 
surface of the earth and that the shuttle was transferred to a cir-
cular orbit as it passed through point B, determine (a) the speed 
v0 of the shuttle at A, (b) the increase in speed required at B to 
insert the shuttle into the circular orbit.

60 km 500 km

R = 6370 km

A B

v0

Fig. P12.104

A' B'A B

164.5 × 106 mi  

202 × 106 mi  

85.5 × 106 mi  

92 × 106 mi  

Fig. P12.107

A

C

Circular orbit

5600 mi

Second transfer orbit

First transfer orbit

B

rB rA

Approach trajectory

Fig. P12.105

 12.105 A space probe is to be placed in a circular orbit of 5600-mi radius 
about the planet Venus in a specified plane. As the probe reaches 
A, the point of its original trajectory closest to Venus, it is inserted 
in a first elliptic transfer orbit by reducing its speed of DvA. This 
orbit brings it to point B with a much reduced velocity. There the 
probe is inserted in a second transfer orbit located in the specified 
plane by changing the direction of its velocity and further reduc-
ing its speed by DvB. Finally, as the probe reaches point C, it is 
inserted in the desired circular orbit by reducing its speed by DvC. 
Knowing that the mass of Venus is 0.82 times the mass of the 
earth, that rA 5 9.3 3 103 mi and rB 5 190 3 103 mi, and that 
the probe approaches A on a parabolic trajectory, determine by 
how much the velocity of the probe should be reduced (a) at A, 
(b) at B, (c) at C.

 12.106 For the space probe of Prob. 12.105, it is known that rA 5 9.3 3 103 mi 
and that the velocity of the probe is reduced to 20,000 ft/s as it 
passes through A. Determine (a) the distance from the center of 
Venus to point B, (b) the amounts by which the velocity of the probe 
should be reduced at B and C, respectively.

 12.107 As it describes an elliptic orbit about the sun, a spacecraft reaches a 
maximum distance of 202 3 106 mi from the center of the sun at 
point A (called the aphelion) and a minimum distance of 92 3 106 mi 
at point B (called the perihelion). To place the spacecraft in a smaller 
elliptic orbit with aphelion at A9 and perihelion at B9, where A9 and 
B9 are located 164.5 3 106 mi and 85.5 3 106 mi, respectively, from 
the center of the sun, the speed of the spacecraft is first reduced as 
it passes through A and then is further reduced as it passes through 
B9. Knowing that the mass of the sun is 332.8 3 103 times the mass 
of the earth, determine (a) the speed of the spacecraft at A, (b) the 
amounts by which the speed of the spacecraft should be reduced at 
A and B9 to insert it into the desired elliptic orbit.
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752 Kinetics of Particles: Newton’s Second Law  12.108 Halley’s comet travels in an elongated elliptic orbit for which the 
minimum distance from the sun is approximately 1

2 rE, where rE 5 
150 3 106 km is the mean distance from the sun to the earth. Know-
ing that the periodic time of Halley’s comet is about 76 years, deter-
mine the maximum distance from the sun reached by the comet.

 12.109 Based on observations made during the 1996 sighting of comet 
Hyakutake, it was concluded that the trajectory of the comet is a 
highly elongated ellipse for which the eccentricity is approximately 
e 5 0.999887. Knowing that for the 1996 sighting the minimum 
distance between the comet and the sun was 0.230RE, where RE 
is the mean distance from the sun to the earth, determine the 
periodic time of the comet.

 12.110 A space probe is to be placed in a circular orbit of radius 4000 km 
about the planet Mars. As the probe reaches A, the point of its 
original trajectory closest to Mars, it is inserted into a first elliptic 
transfer orbit by reducing its speed. This orbit brings it to point B 
with a much-reduced velocity. There the probe is inserted into a 
second transfer orbit by further reducing its speed. Knowing that 
the mass of Mars is 0.1074 times the mass of the earth, that rA 5 
9000 km and rB 5 180 000 km, and that the probe approaches A 
on a parabolic trajectory, determine the time needed for the space 
probe to travel from A to B on its first transfer orbit.

 12.111 A space shuttle is in an elliptic orbit of eccentricity 0.0356 and a 
minimum altitude of 300 km above the surface of the earth. Know-
ing that the radius of the earth is 6370 km, determine the periodic 
time for the orbit.

 12.112 The Clementine spacecraft described an elliptic orbit of minimum 
altitude hA 5 400 km and maximum altitude hB 5 2940 km above 
the surface of the moon. Knowing that the radius of the moon is 
1737 km and that the mass of the moon is 0.01230 times the mass 
of the earth, determine the periodic time of the spacecraft.

A BhBhA

Fig. P12.112

C

AB

Second transfer orbit

First
transfer

orbit

Approach trajectory

4000 km

rB rA

O

Fig. P12.110

B

R

A

b v0

nR

O

Fig. P12.114

 12.113 Determine the time needed for the space probe of Prob. 12.100 
to travel from B to C.

 12.114 A space probe is describing a circular orbit of radius nR with a 
velocity v0 about a planet of radius R and center O. As the probe 
passes through point A, its velocity is reduced from v0 to bv0, 
where b , 1, to place the probe on a crash trajectory. Express in 
terms of n and b the angle AOB, where B denotes the point of 
impact of the probe on the planet.
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753Problems 12.115 A long-range ballistic trajectory between points A and B on the earth’s 
surface consists of a portion of an ellipse with the apogee at point C. 
Knowing that point C is 1500 km above the surface of the earth and 
the range Rf of the trajectory is 6000 km, determine (a) the velocity 
of the projectile at C, (b) the eccentricity e of the trajectory.

 12.116 A space shuttle is describing a circular orbit at an altitude of 563 km 
above the surface of the earth. As it passes through point A, it fires 
its engine for a short interval of time to reduce its speed by 152 m/s 
and begin its descent toward the earth. Determine the angle AOB so 
that the altitude of the shuttle at point B is 121 km. (Hint: Point A is 
the apogee of the elliptic descent trajectory.)

Fig. P12.117

vB

44,000 mi

A

B

O
Fig. P12.116

A

B

O

563 km

R = 6370 km

Fig. P12.118 and P12.119

A B
O

r1r0

R = 6370 km

O

A

C

B

vC

f

Fig. P12.115

 12.117 As a spacecraft approaches the planet Jupiter, it releases a probe 
which is to enter the planet’s atmosphere at point B at an altitude 
of 280 mi above the surface of the planet. The trajectory of 
the probe is a hyperbola of eccentricity e 5 1.031. Knowing that 
the radius and the mass of Jupiter are 44,423 mi and 1.30 3 1026 
slug, respectively, and that the velocity vB of the probe at B forms 
an angle of 82.9° with the direction of OA, determine (a) the angle 
AOB, (b) the speed vB of the probe at B.

 12.118 A satellite describes an elliptic orbit about a planet. Denoting by 
r0 and r1 the distances corresponding, respectively, to the perigee 
and apogee of the orbit, show that the curvature of the orbit at 
each of these two points can be expressed as

1
r

5
1
2

 a 1
r0

1
1
r1
b

 12.119 (a) Express the eccentricity ´ of the elliptic orbit described by a satel-
lite about a planet in terms of the distances r0 and r1 corresponding, 
respectively, to the perigee and apogee of the orbit. (b) Use the result 
obtained in part a and the data given in Prob. 12.109, where RE 5 
149.6 3 106 km, to determine the approximate maximum distance 
from the sun reached by comet Hyakutake.

 12.120 Derive Kepler’s third law of planetary motion from Eqs. (12.39) 
and (12.45).

 12.121 Show that the angular momentum per unit mass h of a satellite 
describing an elliptic orbit of semimajor axis a and eccentricity e 
about a planet of mass M can be expressed as

h 5 2GMa(1 2 e2)
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754

REVIEW AND SUMMARY

This chapter was devoted to Newton’s second law and its application 
to the analysis of the motion of particles.

Denoting by m the mass of a particle, by oF the sum, or resultant, 
of the forces acting on the particle, and by a the acceleration of the 
particle relative to a newtonian frame of reference [Sec. 12.2], we 
wrote

oF 5 ma (12.2)

Introducing the linear momentum of a particle, L 5 mv [Sec. 12.3], 
we saw that Newton’s second law can also be written in the form

 oF 5 L̇ (12.5)

which expresses that the resultant of the forces acting on a particle is 
equal to the rate of change of the linear momentum of the particle.

Equation (12.2) holds only if a consistent system of units is used. With 
SI units, the forces should be expressed in newtons, the masses in 
kilograms, and the accelerations in m/s2; with U.S. customary units, 
the forces should be expressed in pounds, the masses in lb · s2/ft (also 
referred to as slugs), and the accelerations in ft/s2 [Sec. 12.4].

To solve a problem involving the motion of a particle, Eq. (12.2) should 
be replaced by equations containing scalar quantities [Sec. 12.5]. Using 
rectangular components of F and a, we wrote

 oFx 5 max  oFy 5 may  oFz 5 maz (12.8)

Using tangential and normal components, we had

 ©Ft 5 m 

dv
dt

    ©Fn 5 m 

v2

r
 (12.99)

We also noted [Sec. 12.6] that the equations of motion of a particle 
can be replaced by equations similar to the equilibrium equations 
used in statics if a vector 2ma of magnitude ma but of sense oppo-
site to that of the acceleration is added to the forces applied to the 
particle; the particle is then said to be in dynamic equilibrium. For 
the sake of uniformity, however, all the Sample Problems were solved 
by using the equations of motion, first with rectangular components 
[Sample Probs. 12.1 through 12.4], then with tangential and normal 
components [Sample Probs. 12.5 and 12.6].

Newton’s second law

Linear momentum

Consistent systems of units

Equations of motion for a particle

Dynamic equilibrium
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755In the second part of the chapter, we defined the angular momentum 
HO of a particle about a point O as the moment about O of the linear 
momentum mv of that particle [Sec. 12.7]. We wrote

 HO 5 r 3 mv (12.12)

and noted that HO is a vector perpendicular to the plane containing 
r and mv (Fig. 12.24) and of magnitude

 HO 5 rmv sin f (12.13)

Resolving the vectors r and mv into rectangular components, we 
expressed the angular momentum HO in the determinant form

 HO 5 † i j k
x y z

mvx mvy mvz

†  (12.14)

In the case of a particle moving in the xy plane, we have z 5 
vz 5 0. The angular momentum is perpendicular to the xy plane and 
is completely defined by its magnitude. We wrote

 HO 5 Hz 5 m(xvy 2 yvx) (12.16)

Computing the rate of change H
.

O of the angular momentum HO, 
and applying Newton’s second law, we wrote the equation

 oMO 5 H
.

O (12.19)

which states that the sum of the moments about O of the forces acting 
on a particle is equal to the rate of change of the angular momentum 
of the particle about O.

In many problems involving the plane motion of a particle, it is found 
convenient to use radial and transverse components [Sec. 12.8, Sam-
ple Prob. 12.7] and to write the equations

 oFr 5 m(r̈ 2 ru̇2) (12.21)
 oFu 5 m(rü  1 2ṙu̇) (12.22)

When the only force acting on a particle P is a force F directed 
toward or away from a fixed point O, the particle is said to be moving 
under a central force [Sec. 12.9]. Since oMO 5 0 at any given instant, 
it follows from Eq. (12.19) that H

.
O 5 0 for all values of t and, thus, 

that

 HO 5 constant (12.23)

We concluded that the angular momentum of a particle moving under 
a central force is constant, both in magnitude and direction, and that 
the particle moves in a plane perpendicular to the vector HO.

Angular momentum

Rate of change of angular 
momentum

Radial and transverse components

Motion under a central force

P

HO

r
O

z

x

y

mv

f

Fig. 12.24

Review and Summary
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756 Kinetics of Particles: Newton’s Second Law  Recalling Eq. (12.13), we wrote the relation

 rmv sin f 5 r0mv0 sin f0 (12.25)

for the motion of any particle under a central force (Fig. 12.25). 
Using polar coordinates and recalling Eq. (12.18), we also had

 r2u̇ 5 h (12.27)

where h is a constant representing the angular momentum per unit 
mass, HO/m, of the particle. We observed (Fig. 12.26) that the in -
finitesimal area dA swept by the radius vector OP as it rotates 
through du is equal to 1

2r2du and, thus, that the left-hand mem  ber 
of Eq. (12.27) represents twice the areal velocity dA/dt of the 
 particle. Therefore, the areal velocity of a particle moving under a 
central force is constant.

O

P

r

mv

mv0

P0r0

0

f

f

Fig. 12.25

An important application of the motion under a central force is pro-
vided by the orbital motion of bodies under gravitational attraction 
[Sec. 12.10]. According to Newton’s law of universal gravitation, two 
particles at a distance r from each other and of masses M and m, 
respectively, attract each other with equal and opposite forces F and 
2F directed along the line joining the particles (Fig. 12.27). The 
common magnitude F of the two forces is

 F 5 G
Mm
r2  (12.28)

where G is the constant of gravitation. In the case of a body of mass m 
subjected to the gravitational attraction of the earth, the product GM, 
where M is the mass of the earth, can be expressed as

 GM 5 gR2 (12.30)

where g 5 9.81 m/s2 5 32.2 ft/s2 and R is the radius of the earth.

It was shown in Sec. 12.11 that a particle moving under a central 
force describes a trajectory defined by the differential equation

 
d2u
du2 1 u 5

F
mh2u2 (12.37)

Newton’s law of universal 
gravitation

Orbital motion

P

r

O

F
d

r d

dA

q

q

q

Fig. 12.26

r
F

m

–F

M

Fig. 12.27
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757Review and Summarywhere F . 0 corresponds to an attractive force and u 5 1/r. In the 
case of a particle moving under a force of gravitational attraction 
[Sec. 12.12], we substituted for F the expression given in Eq. (12.28). 
Measuring u from the axis OA joining the focus O to the point A of 
the trajectory closest to O (Fig. 12.28), we found that the solution 
to Eq. (12.37) was

 
1
r

5 u 5
GM
h2 1 C cos u (12.39)

This is the equation of a conic of eccentricity ´ 5 Ch2/GM. The 
conic is an ellipse if ´ , 1, a parabola if ´ 5 1, and a hyperbola if 
´ . 1. The constants C and h can be determined from the initial 
conditions; if the particle is projected from point A (u 5 0, r 5 r0) 
with an initial velocity v0 perpendicular to OA, we have h 5 r0v0 
[Sample Prob. 12.9].

It was also shown that the values of the initial velocity corresponding, 
respectively, to a parabolic and a circular trajectory were

 vesc 5
A

2GM
r0

 (12.43)

 vcirc 5
A

GM
r0

 (12.44)

and that the first of these values, called the escape velocity, is the 
smallest value of v0 for which the particle will not return to its starting 
point.

The periodic time t of a planet or satellite was defined as the time 
required by that body to describe its orbit. It was shown that

 
t 5

2pab
h

 (12.45)

where h 5 r0v0 and where a and b represent the semimajor and 
semiminor axes of the orbit. It was further shown that these semiaxes 
are respectively equal to the arithmetic and geometric means of the 
maximum and minimum values of the radius vector r.

The last section of the chapter [Sec. 12.13] presented Kepler’s laws 
of planetary motion and showed that these empirical laws, obtained 
from early astronomical observations, confirm Newton’s laws of 
motion as well as his law of gravitation.

Escape velocity

Periodic time

Kepler’s laws

A

r

O

q

Fig. 12.28
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758

REVIEW PROBLEMS

12.122 In the braking test of a sports car its velocity is reduced from 
70  mi/h to zero in a distance of 170 ft with slipping impending. 
Knowing that the coefficient of kinetic friction is 80 percent of the 
coefficient of static friction, determine (a) the coefficient of static 
friction, (b) the stopping distance for the same initial velocity if the 
car skids. Ignore air resistance and rolling resistance.

 12.123 A bucket is attached to a rope of length L 5 1.2 m and is made 
to revolve in a horizontal circle. Drops of water leaking from the 
bucket fall and strike the floor along the perimeter of a circle of 
radius a. Determine the radius a when u 5 308.

 12.124 A 12-lb block B rests as shown on the upper surface of a 30-lb 
wedge A. Neglecting friction, determine immediately after the 
 system is released from rest (a) the acceleration of A, (b) the accel-
eration of B relative to A.

 12.125 A 500-lb crate B is suspended from a cable attached to a 40-lb 
trolley A which rides on an inclined I-beam as shown. Knowing 
that at the instant shown the trolley has an acceleration of 1.2 ft/s2 up 
and to the right, determine (a) the acceleration of B relative to A, 
(b) the tension in cable CD.

A

B

12 lb

30 lb

30°

Fig. P12.124

A B

 = 45 mr

 = 30 mr

Fig. P12.126

2L

L

q

a

Fig. P12.123

 12.126 The roller-coaster track shown is contained in a vertical plane. The 
portion of track between A and B is straight and horizontal, while 
the portions to the left of A and to the right of B have radii of 
curvature as indicated. A car is traveling at a speed of 72 km/h 
when the brakes are suddenly applied, causing the wheels of the 
car to slide on the track (mk 5 0.25). Determine the initial decel-
eration of the car if the brakes are applied as the car (a) has almost 
reached A, (b) is traveling between A and B, (c) has just passed B.

A

B

C D

T

25°

 Fig. P12.125
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759Review Problems 12.127 The 100-g pin B slides along the slot in the rotating arm OC and 
along the slot DE which is cut in a fixed horizontal plate. Neglect-
ing friction and knowing that rod OC rotates at the  constant rate   
u̇0 5 12 rad/s, determine for any given value of u (a) the radial and 
transverse components of the resultant force F exerted on pin B, 
(b) the forces P and Q exerted on pin B by rod OC and the wall 
of slot DE, respectively.

A

B

O

C
200 g

r = 600 mm

q

Fig. P12.128

B

O

E

D
C

r

q

0.2 m

Fig. P12.127

 12.128 A small 200-g collar C can slide on a semicircular rod which is 
made to rotate about the vertical AB at the constant rate of 6 rad/s. 
Determine the minimum required value of the coefficient of static 
friction between the collar and the rod if the collar is not to slide 
when (a) u 5 90°, (b) u 5 75°, (c) u 5 45°. Indicate in each case 
the direction of the impending motion.

 12.129 Telemetry technology is used to quantify kinematic values of 
a  200-kg roller-coaster cart as it passes overhead. According to 
the  system, r 5 25 m, r

.
5 210 m/s, r̈ 5 22 m/s2, u 5 908, 

u
.

5 20.4 rad/s, ü 5 20.32 rad/s2. At this instant, determine 
(a) the normal force between the cart and the track, (b) the radius 
of curvature of the track.

r

m

q

Fig. P12.129

 12.130 The radius of the orbit of a moon of a given planet is equal to 
twice the radius of that planet. Denoting by r the mean density 
of the planet, show that the time required by the moon to com-
plete one full revolution about the planet is (24p/Gr)1/2, where 
G is the constant of gravitation.
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760 Kinetics of Particles: Newton’s Second Law  12.131 At engine burnout on a mission, a shuttle had reached point A at an 
altitude of 40 mi above the surface of the earth and had a horizontal 
velocity v0. Knowing that its first orbit was elliptic and that the 
shuttle was transferred to a circular orbit as it passed through point B 
at an altitude of 170 mi, determine (a) the time needed for the 
shuttle to travel from A to B on its original elliptic orbit, (b) the 
periodic time of the shuttle on its final circular orbit.

   0
⋅ 

B

A

O

Spring

r

q

Fig. P12.133

A O B

v0

50 mi 170 mi

R = 3960 mi

Fig. P12.131

 12.132 It was observed that as the Galileo spacecraft reached the point 
on its trajectory closest to Io, a moon of the planet Jupiter, it was 
at a distance of 1750 mi from the center of Io and had a velocity 
of 49.4 3 103 ft/s. Knowing that the mass of Io is 0.01496 times 
the mass of the earth, determine the eccentricity of the trajectory 
of the spacecraft as it approached Io.

  *12.133 Disk A rotates in a horizontal plane about a of vertical axis at the 
constant rate u̇0 5 10 rad/s. Slider B has mass 1 kg and moves in 
a frictionless slot cut in the disk. The slider is attached to a spring 
of constant k, which is undeformed when r 5 0. Knowing that 
the slider is released with no radial velocity in the position r 5 
500 mm, determine the position of the slider and the horizontal 
force exerted on it by the disk at t 5 0.1 s for (a) k 5 100 N/m, 
(b) k 5 200 N/m.

bee02324_ch12_733-761.indd Page 760  7/15/11  3:03 PM user-f494bee02324_ch12_733-761.indd Page 760  7/15/11  3:03 PM user-f494 /203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles/203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


761

COMPUTER PROBLEMS

 12.C1 Block B of mass 10 kg is initially at rest as shown on the upper 
surface of a 20-kg wedge A which is supported by a horizontal surface. A 
2-kg block C is connected to block B by a cord which passes over a pulley 
of negligible mass. Using computational software and denoting by m the 
coefficient of friction at all surfaces, use this program to determine the accel-
erations for values of m $ 0. Use 0.01 increments for m until the wedge does 
not move and then use 0.1 increments until no motion occurs.

 12.C2 A small, 1-lb block is at rest at the top of a cylindrical surface. The 
block is given an initial velocity v0 to the right of magnitude 10 ft/s, which 
causes it to slide on the cylindrical surface. Using computational software 
calculate and plot the values of u at which the block leaves the surface for 
values of mk, the coefficient of kinetic friction between the block and the 
surface, from 0 to 0.4.

 12.C3 A block of mass m is attached to a spring of constant k. The block is 
released from rest when the spring is in a horizontal and undeformed position. 
Use computational software to determine, for various selected values of k/m 
and r0, (a) the length of the spring and the magnitude and direction of the 
velocity of the block as the block passes directly under the point of suspension 
of the spring, (b) the value of k/m when r0 5 1 m for which that velocity is 
horizontal.

5 ft

v0

q

Fig. P12.C2
r0

Fig. P12.C3

A

30°

C

B

Fig. P12.C1

 12.C4 Use computational software to determine the ranges of values of u
for which the block E of Prob. 12.60 will not slide in the semicircular slot of 
the flat plate. Assuming a coefficient of static friction of 0.35, determine the 
ranges of values when the constant rate of rotation of the plate is (a) 14 rad/s, 
(b) 2 rad/s.
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A golf ball will deform upon impact as 

shown by this high-speed photo. The 

maximum deformation will occur when 

the club head velocity and the ball

 velocity are the same. In this chapter 

impacts will be analyzed using the 

coefficient of restitution and 

conservation of linear  momentum. 

The kinetics of particles  using energy 

and momentum methods is the subject 

of this chapter.
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764

13.1 INTRODUCTION
In the preceding chapter, most problems dealing with the motion of 
particles were solved through the use of the fundamental equation 
of motion F 5 ma. Given a particle acted upon by a force F, we 
could solve this equation for the acceleration a; then, by applying 
the principles of kinematics, we could determine from a the velocity 
and position of the particle at any time.
 Using the equation F 5 ma together with the principles of 
kinematics allows us to obtain two additional methods of analysis, the 
method of work and energy and the method of impulse and momen-
tum. The advantage of these methods lies in the fact that they make 
the determination of the acceleration unnecessary. Indeed, the 
method of work and energy directly relates force, mass, velocity, and 
displacement, while the method of impulse and momentum relates 
force, mass, velocity, and time.
 The method of work and energy will be considered first. In 
Secs. 13.2 through 13.4, the work of a force and the kinetic energy 
of a particle are discussed and the principle of work and energy is 
applied to the solution of engineering problems. The concepts of 
power and efficiency of a machine are introduced in Sec. 13.5.
 Sections 13.6 through 13.8 are devoted to the concept of poten-
tial energy of a conservative force and to the application of the prin-
ciple of conservation of energy to various problems of practical 
interest. In Sec. 13.9, the principles of conservation of energy and 
of conservation of angular momentum are used jointly to solve prob-
lems of space mechanics.
 The second part of the chapter is devoted to the principle of 
impulse and momentum and to its application to the study of the 
motion of a particle. As you will see in Sec. 13.11, this principle is 
particularly effective in the study of the impulsive motion of a particle, 
where very large forces are applied for a very short time interval.
 In Secs. 13.12 through 13.14, the central impact of two bodies 
will be considered. It will be shown that a certain relation exists 
between the relative velocities of the two colliding bodies before and 
after impact. This relation, together with the fact that the total 
momentum of the two bodies is conserved, can be used to solve a 
number of problems of practical interest.
 Finally, in Sec. 13.15, you will learn to select from the three 
fundamental methods presented in Chaps. 12 and 13 the method 
best suited for the solution of a given problem. You will also see how 
the principle of conservation of energy and the method of impulse 
and momentum can be combined to solve problems involving only 
conservative forces, except for a short impact phase during which 
impulsive forces must also be taken into consideration.

13.2 WORK OF A FORCE
We will first define the terms displacement and work as they are 
used in mechanics.† Consider a particle which moves from a point 

Chapter 13 Kinetics of Particles: 
Energy and Momentum Methods

 13.1 Introduction
 13.2 Work of a Force
 13.3 Kinetic Energy of a Particle. 

Principle of Work and Energy
 13.4 Applications of the Principle of 

Work and Energy
 13.5 Power and Efficiency
 13.6 Potential Energy
 13.7 Conservative Forces
 13.8 Conservation of Energy
 13.9 Motion Under a Conservative 

Central Force. Application to 
Space Mechanics

 13.10 Principle of Impulse and 
Momentum

 13.11 Impulsive Motion
 13.12 Impact
 13.13 Direct Central Impact
 13.14 Oblique Central Impact
 13.15 Problems Involving Energy and 

Momentum

†The definition of work was given in Sec. 10.2, and the basic properties of the work of 
a force were outlined in Secs. 10.2 and 10.6. For convenience, we repeat here the 
 portions of this material which relate to the kinetics of particles.
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765

A to a neighboring point A9 (Fig. 13.1). If r denotes the position 
vector corresponding to point A, the small vector joining A and A9 
can be denoted by the differential dr; the vector dr is called the 
displacement of the particle. Now, let us assume that a force F is 
acting on the particle. The work of the force F corresponding to the 
displacement dr is defined as the quantity

 dU 5 F ? dr (13.1)

obtained by forming the scalar product of the force F and the dis-
placement dr. Denoting by F and ds, respectively, the magnitudes of 
the force and of the displacement, and by a the angle formed by F 
and dr, and recalling the definition of the scalar product of two vec-
tors (Sec. 3.9), we write

 dU 5 F ds cos a (13.19)

Using formula (3.30), we can also express the work dU in terms of 
the rectangular components of the force and of the displacement:

 dU 5 Fx dx 1 Fy dy 1 Fz dz (13.10)

Being a scalar quantity, work has a magnitude and a sign but no 
direction. We also note that work should be expressed in units 
obtained by multiplying units of length by units of force. Thus, if 
U.S. customary units are used, work should be expressed in ft ? lb 
or in ? lb. If SI units are used, work should be expressed in N ? m. 
The unit of work N ? m is called a joule (J).† Recalling the conver-
sion factors indicated in Sec. 12.4, we write

1 ft ? lb 5 (1 ft)(1 lb) 5 (0.3048 m)(4.448 N) 5 1.356 J

It follows from (13.19) that the work dU is positive if the angle a is 
acute and negative if a is obtuse. Three particular cases are of special 

13.2 Work of a Force

O

A
A'

F

r

dr

a

r + dr 

Fig. 13.1

†The joule (J) is the SI unit of energy, whether in mechanical form (work, potential 
energy, kinetic energy) or in chemical, electrical, or thermal form. We should note that 
even though N ? m 5 J, the moment of a force must be expressed in N ? m and not in 
joules, since the moment of a force is not a form of energy. 
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766 Kinetics of Particles: Energy and Momentum 
Methods

interest. If the force F has the same direction as dr, the work dU 
reduces to F ds. If F has a direction opposite to that of dr, the work is 
dU 5 2F ds. Finally, if F is perpendicular to dr, the work dU is zero.
 The work of F during a finite displacement of the particle from 
A1 to A2 (Fig. 13.2a) is obtained by integrating Eq. (13.1) along the 
path described by the particle. This work, denoted by U1y2, is

 U1y2 5 #
A2

A1

 F ? dr (13.2)

Using the alternative expression (13.19) for the elementary work dU, 
and observing that F cos a represents the tangential component Ft 
of the force, we can also express the work U1y2 as

 U1y2 5 #
s2

s1

 
(F cos a) ds 5 #

s2

s1

 
Ft ds (13.29)

where the variable of integration s measures the distance traveled by 
the particle along the path. The work U1y2 is represented by the 
area under the curve obtained by plotting Ft 5 F cos a against s 
(Fig. 13.2b).
 When the force F is defined by its rectangular components, 
the expression (13.10) can be used for the elementary work. We 
then write

 U1y2 5 #
A2

A1

 
(Fx dx 1 Fy dy 1 Fz dz) (13.20)

where the integration is to be performed along the path described 
by the particle.

Work of a Constant Force in Rectilinear Motion. When a particle 
moving in a straight line is acted upon by a force F of constant mag-
nitude and of constant direction (Fig. 13.3), formula (13.29) yields

 U1y2 5 (F cos a) Dx (13.3)

where a 5 angle the force forms with direction of motion
 Dx 5 displacement from A1 to A2

Work of the Force of Gravity. The work of the weight W of a 
body, i.e., of the force of gravity exerted on that body, is obtained by 
substituting the components of W into (13.10) and (13.20). With the 
y axis chosen upward (Fig. 13.4), we have Fx 5 0, Fy 5 2W, and 
Fz 5 0, and we write

 dU 5 2W dy

  U1y2 5 2#
y2

y1

  
W dy 5 Wy1 2 Wy2 (13.4)

or

 U1y2 5 2W(y2 2 y1) 5 2W Dy (13.49)

where Dy is the vertical displacement from A1 to A2. The work of 
the weight W is thus equal to the product of W and the vertical 

O

O

A

F

dr

ds

s

s

s1

s1

s2

s2

A2

A1

Ft

a

(a)

(b)

Fig. 13.2

O

A2

A1

x

A

F

a

Δx

Fig. 13.3

A2

A

A1

y2

y1

dy

y

W

Fig. 13.4
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767displacement of the center of gravity of the body. The work is posi-
tive when Dy , 0, that is, when the body moves down.

Work of the Force Exerted by a Spring. Consider a body A 
attached to a fixed point B by a spring; it is assumed that the spring 
is undeformed when the body is at A0 (Fig. 13.5a). Experimental 
evidence shows that the magnitude of the force F exerted by the 
spring on body A is proportional to the deflection x of the spring 
measured from the position A0. We have

 F 5 kx (13.5)

where k is the spring constant, expressed in N/m or kN/m if SI units 
are used and in lb/ft or lb/in. if U.S. customary units are used.†
 The work of the force F exerted by the spring during a finite 
displacement of the body from A1(x 5 x1) to A2(x 5 x2) is obtained 
by writing

  dU 5 2F dx 5 2kx dx

 U1y2 5 2#
x2

x1

 kx dx 5 1
2 kx2

1 2 1
2 kx2

2 (13.6)

Care should be taken to express k and x in consistent units. For 
example, if U.S. customary units are used, k should be expressed in 
lb/ft and x in feet, or k in lb/in. and x in inches; in the first case, the 
work is obtained in ft ? lb, in the second case, in in ? lb. We note 
that the work of the force F exerted by the spring on the body is 
positive when x2 , x1, that is, when the spring is returning to its 
undeformed position.
 Since Eq. (13.5) is the equation of a straight line of slope k 
passing through the origin, the work U1y2 of F during the displace-
ment from A1 to A2 can be obtained by evaluating the area of the 
trapezoid shown in Fig. 13.5b. This is done by computing F1 and F2 
and multiplying the base Dx of the trapezoid by its mean height 
1
2(F1 1 F2). Since the work of the force F exerted by the spring is 
positive for a negative value of Dx, we write

 U1y2 5 21
2(F1 1 F2) ¢x (13.69)

Formula (13.69) is usually more convenient to use than (13.6) and 
affords fewer chances of confusing the units involved.

Work of a Gravitational Force. We saw in Sec. 12.10 that two 
particles of mass M and m at a distance r from each other attract 
each other with equal and opposite forces F and 2F, directed along 
the line joining the particles and of magnitude

F 5 G 
Mm
r2

†The relation F 5 kx is correct under static conditions only. Under dynamic condi-
tions, formula (13.5) should be modified to take the inertia of the spring into account. 
However, the error introduced by using the relation F 5 kx in the solution of kinetics 
problems is small if the mass of the spring is small compared with the other masses in 
motion.

F

x

A0

A1

F2

F1

Spring undeformed

B

B

B

F

(a)

(b)

F = kx

A

A2

x1

x

x2

x2x1

Δ x

Fig. 13.5

13.2 Work of a Force
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768 Kinetics of Particles: Energy and Momentum 
Methods

Let us assume that the particle M occupies a fixed position O while the 
particle m moves along the path shown in Fig. 13.6. The work of the 
force F exerted on the particle m during an infinitesimal displacement 
of the particle from A to A9 can be obtained by multiplying the magni-
tude F of the force by the radial component dr of the displacement. 
Since F is directed toward O, the work is negative and we write

dU 5 2F dr 5 2G 
Mm
r2  dr

The work of the gravitational force F during a finite displacement 
from A1(r 5 r1) to A2(r 5 r2) is therefore

 U1y2 5 2#
r2

r1

 
GMm

r2  dr 5
GMm

r2
2

GMm
r1

 (13.7)

where M is the mass of the earth. This formula can be used to 
determine the work of the force exerted by the earth on a body of 
mass m at a distance r from the center of the earth, when r is larger 
than the radius R of the earth. Recalling the first of the relations 
(12.29), we can replace the product GMm in Eq. (13.7) by WR2, 
where R is the radius of the earth (R 5 6.37 3 106 m or 3960 mi) 
and W is the weight of the body at the surface of the earth.
 A number of forces frequently encountered in problems of kinet-
ics do no work. They are forces applied to fixed points (ds 5 0) or 
acting in a direction perpendicular to the displacement (cos a 5 0). 
Among the forces which do no work are the following: the reaction at 
a frictionless pin when the body supported rotates about the pin, the 
reaction at a frictionless surface when the body in contact moves along 
the surface, the reaction at a roller moving along its track, and the 
weight of a body when its center of gravity moves horizontally.

13.3  KINETIC ENERGY OF A PARTICLE. PRINCIPLE 
OF WORK AND ENERGY

Consider a particle of mass m acted upon by a force F and moving 
along a path which is either rectilinear or curved (Fig. 13.7). Express-
ing Newton’s second law in terms of the tangential components of 
the force and of the acceleration (see Sec. 12.5), we write

Ft 5 mat   or   Ft 5 m 
dv
dt

where v is the speed of the particle. Recalling from Sec. 11.9 that 
v 5 ds/dt, we obtain

Ft 5 m 
dv
ds

 
ds
dt

5 mv 
dv
ds

 Ft ds 5 mv dv

Integrating from A1, where s 5 s1 and v 5 v1, to A2, where s 5 s2 
and v 5 v2, we write

 #
s2

s1

 Ft ds 5 m#
v2

v1

 v dv 5 1
2 mv2

2 2 1
2 mv2

1 (13.8)

The left-hand member of Eq. (13.8) represents the work U1y2 of the 
force F exerted on the particle during the displacement from A1 to 

Fig. 13.6

O

A2

A1

r2

r1
q

dr

F

–F

M

r

A'

A
m

dq

A2

A1

F

Ft

Fn

m a

Fig. 13.7
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769A2; as indicated in Sec. 13.2, the work U1y2 is a scalar quantity. The 
expression 1

2 mv2 is also a scalar quantity; it is defined as the kinetic 
energy of the particle and is denoted by T. We write

 T 5 1
2 mv2 (13.9)

Substituting into (13.8), we have

 U1y2 5 T2 2 T1 (13.10)

which expresses that, when a particle moves from A1 to A2 under the 
action of a force F, the work of the force F is equal to the change 
in kinetic energy of the particle. This is known as the principle of 
work and energy. Rearranging the terms in (13.10), we write

 T1 1 U1y2 5 T2 (13.11)

Thus, the kinetic energy of the particle at A2 can be obtained by adding 
to its kinetic energy at A1 the work done during the displacement from 
A1 to A2 by the force F exerted on the particle. Like Newton’s second 
law from which it is derived, the principle of work and energy applies 
only with respect to a newtonian frame of reference (Sec. 12.2). The 
speed v used to determine the kinetic energy T should therefore be 
measured with respect to a newtonian frame of reference.
 Since both work and kinetic energy are scalar quantities, their 
sum can be computed as an ordinary algebraic sum, the work U1y2 
being considered as positive or negative according to the direction 
of F. When several forces act on the particle, the expression U1y2 
represents the total work of the forces acting on the particle; it is 
obtained by adding algebraically the work of the various forces.
 As noted above, the kinetic energy of a particle is a scalar quan-
tity. It further appears from the definition T 5 1

2 mv2 that regardless 
of the direction of motion of the particle the kinetic energy is always 
positive. Considering the particular case when v1 5 0 and v2 5 v, and 
substituting T1 5 0 and T2 5 T into (13.10), we observe that the work 
done by the forces acting on the particle is equal to T. Thus, the kinetic 
energy of a particle moving with a speed v represents the work which 
must be done to bring the particle from rest to the speed v. Substitut-
ing T1 5 T and T2 5 0 into (13.10), we also note that when a particle 
moving with a speed v is brought to rest, the work done by the forces 
acting on the particle is 2T. Assuming that no energy is dissipated 
into heat, we conclude that the work done by the forces exerted by 
the particle on the bodies which cause it to come to rest is equal to 
T. Thus, the kinetic energy of a particle also represents the capacity 
to do work associated with the speed of the particle.
 The kinetic energy is measured in the same units as work, i.e., 
in joules if SI units are used and in ft ? lb if U.S. customary units 
are used. We check that, in SI units,

T 5 1
2 mv2 5 kg(m/s)2 5 (kg ? m/s2)m 5 N ? m 5 J

while, in customary units,

T 5 1
2 mv2 5 (lb ? s2/ft)(ft/s)2 5 ft ? lb

13.3 Kinetic Energy of a Particle. Principle of 
Work and Energy
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770 Kinetics of Particles: Energy and Momentum 
Methods 13.4  APPLICATIONS OF THE PRINCIPLE

OF WORK AND ENERGY
The application of the principle of work and energy greatly simpli-
fies the solution of many problems involving forces, displacements, 
and velocities. Consider, for example, the pendulum OA consisting 
of a bob A of weight W attached to a cord of length l (Fig. 13.8a). 
The pendulum is released with no initial velocity from a horizontal 
position OA1 and allowed to swing in a vertical plane. We wish to 
determine the speed of the bob as it passes through A2, directly 
under O.
 We first determine the work done during the displacement 
from A1 to A2 by the forces acting on the bob. We draw a free-body 
diagram of the bob, showing all the actual forces acting on it, i.e., 
the weight W and the force P exerted by the cord (Fig. 13.8b). (An 
inertia vector is not an actual force and should not be included in 
the free-body diagram.) We note that the force P does no work, 
since it is normal to the path; the only force which does work is 
thus the weight W. The work of W is obtained by multiplying its 
magnitude W by the vertical displacement l (Sec. 13.2); since the 
displacement is downward, the work is positive. We therefore write 
U1y2 5 Wl.
 Now considering the kinetic energy of the bob, we find T1 5 0 
at A1 and T2 5 1

2(W/g)v2
2 at A2. We can now apply the principle of 

work and energy; recalling formula (13.11), we write

T1 1 U1y2 5 T2   0 1 Wl 5
1
2

 
W
g

 v2
2

Solving for v2, we find v2 5 12gl. We note that the speed obtained 
is that of a body falling freely from a height l.
 The example we have considered illustrates the following 
advantages of the method of work and energy:

 1. In order to find the speed at A2, there is no need to determine 
the acceleration in an intermediate position A and to integrate 
the expression obtained from A1 to A2.

 2. All quantities involved are scalars and can be added directly, 
without using x and y components.

 3. Forces which do no work are eliminated from the solution of 
the problem.

 What is an advantage in one problem, however, may be a dis-
advantage in another. It is evident, for instance, that the method of 
work and energy cannot be used to directly determine an accelera-
tion. It is also evident that in determining a force which is normal 
to the path of the particle, a force which does no work, the method 
of work and energy must be supplemented by the direct application 
of Newton’s second law. Suppose, for example, that we wish to deter-
mine the tension in the cord of the pendulum of Fig. 13.8a as the 
bob passes through A2. We draw a free-body diagram of the bob in 
that position (Fig. 13.9) and express Newton’s second law in terms 
of tangential and normal components. The equations oFt 5 mat and 
oFn 5 man yield, respectively,  at 5 0 and

(a) (b)

A2

A1

A

l

O

A

W

P

Fig. 13.8

=A2

W

A2 ma t

P

man

Fig. 13.9
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771
P 2 W 5 man 5

W
g

 
v2

2

l

But the speed at A2 was determined earlier by the method of work 
and energy. Substituting v2

2 5 2gl and solving for P, we write

P 5 W 1
W
g

 
2gl

l
5 3W

 When a problem involves two particles or more, the principle 
of work and energy can be applied to each particle separately. Adding 
the kinetic energies of the various particles, and considering the work 
of all the forces acting on them, we can also write a single equation 
of work and energy for all the particles involved. We have

 T1 1 U1y2 5 T2 (13.11)

where T represents the arithmetic sum of the kinetic energies of the 
particles involved (all terms are positive) and U1y2 is the work of all 
the forces acting on the particles, including the forces of action and 
reaction exerted by the particles on each other. In problems involving 
bodies connected by inextensible cords or links, however, the work 
of the forces exerted by a given cord or link on the two bodies it 
connects cancels out, since the points of application of these forces 
move through equal distances (see Sample Prob. 13.2).†
 Since friction forces have a direction opposite of that of the 
displacement of the body on which they act, the work of friction 
forces is always negative. This work represents energy dissipated into 
heat and always results in a decrease in the kinetic energy of the 
body involved (see Sample Prob. 13.3).

13.5 POWER AND EFFICIENCY
Power is defined as the time rate at which work is done. In the 
selection of a motor or engine, power is a much more important 
criterion than is the actual amount of work to be performed. Either 
a small motor or a large power plant can be used to do a given 
amount of work; but the small motor may require a month to do the 
work done by the power plant in a matter of minutes. If DU is the 
work done during the time interval Dt, then the average power dur-
ing that time interval is

Average power 5
¢U
¢t

Letting Dt approach zero, we obtain at the limit

 Power 5
dU
dt

 (13.12)

†The application of the method of work and energy to a system of particles is discussed 
in detail in Chap. 14.

13.5 Power and Effi ciency
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772 Kinetics of Particles: Energy and Momentum 
Methods

Substituting the scalar product F ? dr for dU, we can also write

Power 5
dU
dt

5
F ? dr

dt

and, recalling that dr/dt represents the velocity v of the point of 
application of F,

 Power 5 F ? v (13.13)

 Since power was defined as the time rate at which work is 
done, it should be expressed in units obtained by dividing units of 
work by the unit of time. Thus, if SI units are used, power should 
be expressed in J/s; this unit is called a watt (W). We have

1 W 5 1 J/s 5 1 N ? m/s

If U.S. customary units are used, power should be expressed in 
ft ? lb/s or in horsepower (hp), with the latter defined as

1 hp 5 550 ft ? lb/s

Recalling from Sec. 13.2 that 1 ft ? lb 5 1.356 J, we verify that

1 ft ? lb/s 5 1.356 J/s 5 1.356 W
1 hp 5 550(1.356 W) 5 746 W 5 0.746 kW

 The mechanical efficiency of a machine was defined in Sec. 
10.5 as the ratio of the output work to the input work:

 h 5
output work

input work
 (13.14)

This definition is based on the assumption that work is done at a 
constant rate. The ratio of the output to the input work is therefore 
equal to the ratio of the rates at which output and input work are 
done, and we have

 h 5
power output

power input
 (13.15)

Because of energy losses due to friction, the output work is always 
smaller than the input work, and consequently the power output is 
always smaller than the power input. The mechanical efficiency of a 
machine is therefore always less than 1.
 When a machine is used to transform mechanical energy into 
electric energy, or thermal energy into mechanical energy, its overall 
efficiency can be obtained from formula (13.15). The overall effi-
ciency of a machine is always less than 1; it provides a measure of 
all the various energy losses involved (losses of electric or thermal 
energy as well as frictional losses). Note that it is necessary to express 
the power output and the power input in the same units before using 
formula (13.15).
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SAMPLE PROBLEM 13.1

An automobile weighing 4000 lb is driven down a 5° incline at a speed of 
60 mi/h when the brakes are applied, causing a constant total braking force 
(applied by the road on the tires) of 1500 lb. Determine the distance trav-
eled by the automobile as it comes to a stop.

SAMPLE PROBLEM 13.2

Two blocks are joined by an inextensible cable as shown. If the system is 
released from rest, determine the velocity of block A after it has moved 2 m. 
Assume that the coefficient of kinetic friction between block A and the plane 
is mk 5 0.25 and that the pulley is weightless and frictionless.

5°

300 kg

200 kg

A

B

v1 = 60 mi/h
v2 = 0

x

5°

5°

4000 lb

1500 lb

N

SOLUTION

Kinetic Energy

Position 1: v1 5 a60 
mi
h
b a5280 ft

1 mi
ba 1 h

3600 s
b 5 88 ft/s

 T1 5 1
2 mv2

1 5 1
2(4000/32.2)(88)2 5 481,000 ft ? lb

Position 2: v2 5 0  T2 5 0

Work U1y2 5 21500x 1 (4000 sin 5°)x 5 21151x
Principle of Work and Energy

 T1 1 U1y2 5 T2
 481,000 2 1151x 5 0 x 5 418 ft ◀

2 mWB

WA

mB

mA

FC

FA

FC

NA
2 m

v1 = 0

v1 = 0

v2 = v

v2 = v
SOLUTION

Work and Energy for Block A. We denote the friction force by FA and 
the force exerted by the cable by FC, and write

mA 5 200 kg  WA 5 (200 kg)(9.81 m/s2) 5 1962 N
FA 5 mkNA 5 mkWA 5 0.25(1962 N) 5 490 N

T1 1 U1y2 5 T2:  0 1 FC(2 m) 2 FA(2 m) 5 1
2 mAv2

 FC(2 m) 2 (490 N)(2 m) 5 1
2(200 kg)v2 (1)

Work and Energy for Block B. We write

mB 5 300 kg  WB 5 (300 kg)(9.81 m/s2) 5 2940 N
T1 1 U1y2 5 T2:  0 1 WB(2 m) 2 FC(2 m) 5 1

2 mBv2

 (2940 N)(2 m) 2 FC(2 m) 5 1
2(300 kg)v2  (2)

 Adding the left-hand and right-hand members of (1) and (2), we observe 
that the work of the forces exerted by the cable on A and B cancels out:

  (2940 N)(2 m) 2 (490 N)(2 m) 5 1
2(200 kg 1 300 kg)v2

4900 J 5 1
2(500 kg)v2 v 5 4.43 m/s ◀
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SAMPLE PROBLEM 13.3

A spring is used to stop a 60-kg package which is sliding on a horizontal 
surface. The spring has a constant k 5 20 kN/m and is held by cables so 
that it is initially compressed 120 mm. Knowing that the package has a 
velocity of 2.5 m/s in the position shown and that the maximum additional 
deflection of the spring is 40 mm, determine (a) the coefficient of kinetic 
friction between the package and the surface, (b) the velocity of the package 
as it passes again through the position shown.

SOLUTION

a. Motion from Position 1 to Position 2
Kinetic Energy Position 1:  v1 5 2.5 m/s

T1 5 1
2 mv2

1 5 1
2(60 kg)(2.5 m/s)2 5 187.5 N ? m 5 187.5 J

Position 2: (maximum spring deflection):  v2 5 0  T2 5 0
Work
Friction Force F. We have

F 5 mkN 5 mkW 5 mkmg 5 mk(60 kg)(9.81 m/s2) 5 (588.6 N)mk

The work of F is negative and equal to

(U1y2)f 5 2Fx 5 2(588.6 N)mk(0.600 m 1 0.040 m) 5 2(377 J)mk

Spring Force P. The variable force P exerted by the spring does an amount 
of negative work equal to the area under the force-deflection curve of the 
spring force. We have

Pmin 5 kx0 5 (20 kN/m)(120 mm) 5 (20 000 N/m)(0.120 m) 5 2400 N
 Pmax 5 Pmin 1 k Dx 5 2400 N 1 (20 kN/m)(40 mm) 5 3200 N
(U1y2)e 5 21

2(Pmin 1 Pmax) Dx 5 21
2(2400 N 1 3200 N)(0.040 m) 5 2112.0 J

The total work is thus

U1y2 5 (U1y2)f 1 (U1y2)e 5 2(377 J)mk 2 112.0 J

Principle of Work and Energy

T1 1 U1y2 5 T2:  187.5 J 2 (377 J)mk 2 112.0 J 5 0 mk 5 0.20 ◀

b. Motion from Position 2 to Position 3
Kinetic Energy. Position 2:  v2 5 0  T2 5 0
Position 3: T3 5 1

2mv2
3 5 1

2(60 kg)v2
3

Work. Since the distances involved are the same, the numerical values of 
the work of the friction force F and of the spring force P are the same as 
above. However, while the work of F is still negative, the work of P is now 
positive.

U2y3 5 2(377 J)mk 1 112.0 J 5 275.5 J 1 112.0 J 5 136.5 J

Principle of Work and Energy

T2 1 U2y3 5 T3:    0 1 36.5 J 5 1
2(60 kg)v2

3
  v3 5 1.103 m/s v3 5 1.103 m/sz ◀

2.5 m/s Cable

60 kg

600 mm

N
F = mkN

P

Pmin

Pmax

x

Δx = 40 mm

P

v1

600 mm 40 mm

1

v2 = 0

2

W

v3

640 mm

3

v2 = 0

2

N
F = mkN

W

P
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SAMPLE PROBLEM 13.4

A 2000-lb car starts from rest at point 1 and moves without friction down 
the track shown. (a) Determine the force exerted by the track on the car 
at point 2, where the radius of curvature of the track is 20 ft. (b) Determine 
the minimum safe value of the radius of curvature at point 3.

SOLUTION

a. Force Exerted by the Track at Point 2. The principle of work and 
energy is used to determine the velocity of the car as it passes through 
point 2.

Kinetic Energy. T1 5 0   T2 5 1
2 mv2

2 5
1
2

 
W
g

 v2
2

Work. The only force which does work is the weight W. Since the vertical 
displacement from point 1 to point 2 is 40 ft downward, the work of the 
weight is

U1y2 5 1W(40 ft)

Principle of Work and Energy

T1 1 U1y2 5 T2      0 1 W(40 ft) 5
1
2

 
W
g

 v2
2

v2
2 5 80g 5 80(32.2)      v2 5 50.8 ft/s

Newton’s Second Law at Point 2. The acceleration an of the car at point 2 
has a magnitude an 5 v2

2yr and is directed upward. Since the external forces 
acting on the car are W and N, we write

 1xoFn 5 man:  2W 1 N 5 man

  5
W
g

 
v2

2

r

  5
W
g

 
80g

20
N 5 5W  N 5 10,000 lbx ◀

b. Minimum Value of R at Point 3. Principle of Work and Energy. 
Applying the principle of work and energy between point 1 and point 3, we 
obtain

T1 1 U1y3 5 T3      0 1 W(25 ft) 5
1
2

 
W
g

 v2
3

v2
3 5 50g 5 50(32.2)      v3 5 40.1 ft/s

Newton’s Second Law at Point 3. The minimum safe value of r occurs 
when N 5 0. In this case, the acceleration an, of magnitude an 5 v2

3yr, is 
directed downward, and we write

 1woFn 5 man:  W 5
W
g

 
v2

3

r

  5
W
g

 
50g

r
 r 5 50 ft ◀

1

2

340 ft

15 ft
r2 = 20 ft

W

N

=

man

W

N = 0

=
man
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SOLUTION

Since the force F exerted by the motor cable has the same direction as the 
velocity vD of the dumbwaiter, the power is equal to FvD, where vD 5 8 ft/s. 
To obtain the power, we must first determine F in each of the two 
given situations.

a. Uniform Motion. We have aC 5 aD 5 0; both bodies are in equilibrium.

Free Body C:    1xoFy 5 0:    2T 2 800 lb 5 0    T 5 400 lb
Free Body D:    1xoFy 5 0:         F 1 T 2 600 lb 5 0

F 5 600 lb 2 T 5 600 lb 2 400 lb 5 200 lb
FvD 5 (200 lb)(8 ft/s) 5 1600 ft ? lb/s

Power 5 (1600 ft ? lb/s) 

1 hp

550 ft ? lb/s
5 2.91 hp ◀

b. Accelerated Motion. We have

aD 5 2.5 ft/s2
x    aC 5 21

2aD 5 1.25 ft/s2
w

The equations of motion are

Free Body C:     1woFy 5 mCaC:  800 2 2T 5 
800
32.2

 (1.25) T 5 384.5 lb

Free Body D:    1xoFy 5 mDaD:    F 1 T 2 600 5 
600
32.2 

(2.5)

F 1 384.5 2 600 5 46.6    F 5 262.1 lb
FvD 5 (262.1 lb)(8 ft/s) 5 2097 ft ? lb/s

Power 5 (2097 ft ? lb/s) 

1 hp

550 ft ? lb/s
5 3.81 hp ◀

SAMPLE PROBLEM 13.5

The dumbwaiter D and its load have a combined weight of 600 lb, while 
the counterweight C weighs 800 lb. Determine the power delivered by the 
electric motor M when the dumbwaiter (a) is moving up at a constant speed 
of 8 ft/s, (b) has an instantaneous velocity of 8 ft/s and an acceleration of 
2.5 ft/s2, both directed upward.

M

C D

C

C C

D

800 lb

800 lb

600 lb

T

vC

mCaC

mD aD

vD

2T

2T

F

D D

600 lb

T F

=

=
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777

SOLVING PROBLEMS
ON YOUR OWN

In the preceding chapter, you solved problems dealing with the motion of a 
particle by using the fundamental equation F 5 ma to determine the accelera-

tion a. By applying the principles of kinematics you were then able to determine 
from a the velocity and displacement of the particle at any time. In this lesson we 
combined F 5 ma and the principles of kinematics to obtain an additional method 
of analysis called the method of work and energy. This eliminates the need to 
calculate the acceleration and will enable you to relate the velocities of the particle 
at two points along its path of motion. To solve a problem by the method of work 
and energy you will follow these steps:

1. Computing the work of each of the forces. The work U1y2 of a given force 
F during the finite displacement of the particle from A1 to A2 is defined as

 U1y2 5#
 
F ? dr   or   U1y2 5#

 
(F cos a) ds (13.2, 13.29)

where a is the angle between F and the displacement dr. The work U1y2 is a 
scalar quantity and is expressed in ft ? lb or in ? lb in the U.S. customary system 
of units and in N ? m or joules (J) in the SI system of units. Note that the work 
done is zero for a force perpendicular to the displacement (a 5 90°). Negative 
work is done for 90° , a , 180° and in particular for a friction force, which is 
always opposite in direction to the displacement (a 5 180°).

The work U1y2 can be easily evaluated in the following cases that you will 
encounter:

 a. Work of a constant force in rectilinear motion

 U1y2 5 (F cos a) Dx (13.3)

 where a 5 angle the force forms with the direction of motion
 Dx 5 displacement from A1 to A2 (Fig. 13.3)

 b. Work of the force of gravity

 U1y2 5 2W Dy (13.49)

where Dy is the vertical displacement of the center of gravity of the body of 
weight W. Note that the work is positive when Dy is negative, that is, when the 
body moves down (Fig. 13.4).

 c. Work of the force exerted by a spring

 U1y2 5 1
2kx2

1 2 1
2kx2

2 (13.6)

where k is the spring constant and x1 and x2 are the elongations of the spring cor-
responding to the positions A1 and A2 (Fig. 13.5).

(continued)
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 d. Work of a gravitational force

 U1y2 5
GMm

r2
2

GMm
r1

 
(13.7)

for a displacement of the body from A1(r 5 r1) to A2(r 5 r2) (Fig. 13.6).

2. Calculate the kinetic energy at A1 and A2. The kinetic energy T is

 T 5 1
2mv2 (13.9)

where m is the mass of the particle and v is the magnitude of its velocity. The 
units of kinetic energy are the same as the units of work, that is, ft ? lb or in ? lb 
if U.S. customary units are used and N ? m or joules (J) if SI units are used.

3. Substitute the values for the work done U1y2 and the kinetic energies T1 
and T2 into the equation

 T1 1 U1y2 5 T2 (13.11)

You will now have one equation which you can solve for one unknown. Note that 
this equation does not yield the time of travel or the acceleration directly. How-
ever, if you know the radius of curvature r of the path of the particle at a point 
where you have obtained the velocity v, you can express the normal component 
of the acceleration as an 5 v2/r and obtain the normal component of the force 
exerted on the particle by writing Fn 5 mv2/r.

4. Power was introduced in this lesson as the time rate at which work is 
done, P 5 dU/dt. Power is measured in ft ? lb/s or horsepower (hp) in U.S. 
customary units and in J/s or watts (W) in the SI system of units. To calculate the 
power, you can use the equivalent formula,

 P 5 F ? v (13.13)

where F and v denote the force and the velocity, respectively, at a given time 
[Sample Prob. 13.5]. In some problems [see, e.g., Prob. 13.47], you will be asked 
for the average power, which can be obtained by dividing the total work by the 
time interval during which the work is done.
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PROBLEMS

779

CONCEPT QUESTION

13.CQ1 Block A is traveling with a speed v0 on a smooth surface when the 
surface suddenly becomes rough with a coefficient of friction of m
causing the block to stop after a distance d. If block A were travel-
ing twice as fast, that is, at a speed 2v0, how far will it travel on the 
rough surface before stopping?

 a. d/2
 b. d
 c. 12d
 d. 2d
 e. 4d

END-OF-SECTION PROBLEMS

 13.1 A 400-kg satellite was placed in a circular orbit 1500 km above 
the surface of the earth. At this elevation the acceleration of grav-
ity is 6.43 m/s2. Determine the kinetic energy of the satellite, 
knowing that its orbital speed is 25.6 3 103 km/h.

 13.2 A 1-lb stone is dropped down the “bottomless pit” at Carlsbad Cav-
erns and strikes the ground with a speed of 95 ft/s. Neglecting air 
resistance, (a) determine the kinetic energy of the stone as it strikes 
the ground and the height h from which it was dropped. (b) Solve 
part a assuming that the same stone is dropped down a hole on the 
moon. (Acceleration of gravity on the moon 5 5.31 ft/s2.)

B

A v

30 ft

Fig. P13.5 and P13.6

smooth

v0

rough

d

Fig. P13.CQ1

Fig. P13.2

v0

40°

2 ft

Fig. P13.3

13.3 A baseball player hits a 5.1-oz baseball with an initial velocity of 
140 ft/s at an angle of 408 with the horizontal as shown. Determine 
(a) the kinetic energy of the ball immediately after it is hit, (b) the 
kinetic energy of the ball when it reaches its maximum height, (c) 
the maximum height above the ground reached by the ball.

13.4 A 500-kg communications satellite is in a circular geosynchronous 
orbit and completes one revolution about the earth in 23 h and 
56 min at an altitude of 35 800 km above the surface of the earth. 
Knowing that the radius of the earth is 6370 km, determine the 
kinetic energy of the satellite.

 13.5 In an ore-mixing operation, a bucket full of ore is suspended from a 
traveling crane which moves along a stationary bridge. The bucket is 
to swing no more than 10 ft horizontally when the crane is brought to a 
sudden stop. Determine the maximum allowable speed v of the crane.

 13.6 In an ore-mixing operation, a bucket full of ore is suspended from 
a traveling crane which moves along a stationary bridge. The crane 
is traveling at a speed of 10 ft/s when it is brought to a sudden 
stop. Determine the maximum horizontal distance through which 
the bucket will swing.
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780 Kinetics of Particles: Energy and Momentum 
Methods

 13.7 Determine the maximum theoretical speed that may be achieved 
over a distance of 110 m by a car starting from rest assuming there 
is no slipping. The coefficient of static friction between the tires 
and pavement is 0.75, and 60 percent of the weight of the car is 
distributed over its front wheels and 40 percent over its rear 
wheels. Assume (a) front-wheel drive, (b) rear-wheel drive.

 13.8 Skid marks on a drag racetrack indicate that the rear (drive) wheels 
of a car slip for the first 20 m of the 400-m track. (a) Knowing 
that the coefficient of kinetic friction is 0.60, determine the speed 
of the car at the end of the first 20-m portion of the track if it 
starts from rest and the front wheels are just off the ground. 
(b) What is the maximum theoretical speed of the car at the finish 
line if, after skidding for 20 m, it is driven without the wheels 
slipping for the remainder of the race? Assume that while the car 
is rolling without slipping, 60 percent of the weight of the car is 
on the rear wheels and the coefficient of static friction is 0.75. 
Ignore air resistance and rolling resistance.

 13.9 A package is projected up a 15° incline at A with an initial velocity 
of 8 m/s. Knowing that the coefficient of kinetic friction between 
the package and the incline is 0.12, determine (a) the maximum 
distance d that the package will move up the incline, (b) the veloc-
ity of the package as it returns to its original position.

 13.10 A 1.4-kg model rocket is launched vertically from rest with a con-
stant thrust of 25 N until the rocket reaches an altitude of 15 m 
and the thrust ends. Neglecting air resistance, determine (a) the 
speed of the rocket when the thrust ends, (b) the maximum height 
reached by the rocket, (c) the speed of the rocket when it returns 
to the ground.

 13.11 Packages are thrown down an incline at A with a velocity of 1 m/s. 
The packages slide along the surface ABC to a conveyor belt which 
moves with a velocity of 2 m/s. Knowing that mk 5 0.25 between 
the packages and the surface ABC, determine the distance d if the 
packages are to arrive at C with a velocity of 2 m/s.

 13.12 Packages are thrown down an incline at A with a velocity of 1 m/s. 
The packages slide along the surface ABC to a conveyor belt which 
moves with a velocity of 2 m/s. Knowing that d 5 7.5 m and mk 5 0.25 
between the packages and all surfaces, determine (a) the speed of 
the package at C, (b) the distance a package will slide on the con-
veyor belt before it comes to rest relative to the belt.

 13.13 Boxes are transported by a conveyor belt with a velocity v0 to a 
fixed incline at A where they slide and eventually fall off at B. 
Knowing that mk 5 0.40, determine the velocity of the conveyor 
belt if the boxes leave the incline at B with a velocity of 8 ft/s.

 13.14 Boxes are transported by a conveyor belt with a velocity v0 to a 
fixed incline at A where they slide and eventually fall off at B. 
Knowing that mk 5 0.40, determine the velocity of the conveyor 
belt if the boxes are to have zero velocity at B.

A

C
B

10 m

d

15°

Fig. P13.9

30°

B

C

A

7 m

2 m/s

1 m/s

d

Fig. P13.11 and P13.12

15°B

A

v0

20 ft

Fig. P13.13 and P13.14

Fig. P13.8
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781Problems 13.15 A 1200-kg trailer is hitched to a 1400-kg car. The car and trailer 
are traveling at 72 km/h when the driver applies the brakes on 
both the car and the trailer. Knowing that the braking forces 
exerted on the car and the trailer are 5000 N and 4000 N, respec-
tively, determine (a) the distance traveled by the car and trailer 
before they come to a stop, (b) the horizontal component of the 
force exerted by the trailer hitch on the car.

 13.16 A trailer truck enters a 2 percent uphill grade traveling at 72 km/h 
and reaches a speed of 108 km/h in 300 m. The cab has a mass of 
1800 kg and the trailer 5400 kg. Determine (a) the average force 
at the wheels of the cab, (b) the average force in the  coupling 
between the cab and the trailer.

30 mi/h

40 tons50 tons40 tons
A CB

Fig. P13.17 and P13.18

CROSS COUNTRY MOVERS
CROSS COUNTRY MOVERS

108 km/h
72 km/h

2% up grade

300 m

Fig. P13.16

 13.17 The subway train shown is traveling at a speed of 30 mi/h when 
the brakes are fully applied on the wheels of cars B and C, causing 
them to slide on the track, but are not applied on the wheels of 
car A. Knowing that the coefficient of kinetic friction is 0.35 
between the wheels and the track, determine (a) the distance 
required to bring the train to a stop, (b) the force in each 
coupling.

A B C

D

Fig. P13.15 

Fig. P13.19

A B

h

 13.18 The subway train shown is traveling at a speed of 30 mi/h when 
the brakes are fully applied on the wheels of car A, causing it to 
slide on the track, but are not applied on the wheels of cars B or C. 
Knowing that the coefficient of kinetic friction is 0.35 between the 
wheels and the track, determine (a) the distance required to bring 
the train to a stop, (b) the force in each coupling.

 13.19 Blocks A and B weigh 25 lb and 10 lb, respectively, and they are 
both at a height 6 ft above the ground when the system is released 
from rest. Just before hitting the ground block A is moving at a 
speed of 9 ft/s. Determine (a) the amount of energy dissipated in 
friction by the pulley, (b) the tension in each portion of the cord 
during the motion.
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782 Kinetics of Particles: Energy and Momentum 
Methods

 13.20 The system shown is at rest when a constant 30-lb force is applied 
to collar B. (a) If the force acts through the entire motion, determine 
the speed of collar B as it strikes the support at C. (b) After what 
distance d should the 30-lb force be removed if the collar is to 
reach support C with zero velocity?

 13.21 Car B is towing car A at a constant speed of 10 m/s on an uphill 
grade when the brakes of car A are fully applied causing all four 
wheels to skid. The driver of car B does not change the throttle 
setting or change gears. The masses of the cars A and B are 1400 kg 
and 1200 kg, respectively, and the coefficient of kinetic friction 
is 0.8. Neglecting air resistance and rolling resistance, determine 
(a) the distance traveled by the cars before they come to a stop, 
(b) the tension in the cable.

Fig. P13.20

B

A

C
30 lb

18 lb

6 lb

2 ft

A B

5 m10 m/s
10 m/s

5°

Fig. P13.21

A

30 kg

25 kg
B

250 N

Fig. P13.22 and P13.23

 13.22 The system shown is at rest when a constant 250-N force is applied 
to block A. Neglecting the masses of the pulleys and the effect of 
friction in the pulleys and between block A and the horizontal 
surface, determine (a) the velocity of block B after block A has 
moved 2 m, (b) the tension in the cable.

 13.23 The system shown is at rest when a constant 250-N force is applied 
to block A. Neglecting the masses of the pulleys and the effect of 
friction in the pulleys and assuming that the coefficients of friction 
between block A and the horizontal surface are ms 5 0.25 and 
mk 5 0.20, determine (a) the velocity of block B after block A has 
moved 2 m, (b) the tension in the cable.
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783Problems 13.24 Two blocks A and B, of mass 4 kg and 5 kg, respectively, are con-
nected by a cord which passes over pulleys as shown. A 3-kg collar 
C is placed on block A and the system is released from rest. After 
the blocks have moved 0.9 m, collar C is removed and blocks A 
and B continue to move. Determine the speed of block A just 
before it strikes the ground.

 13.25 Four packages, each weighing 6 lb, are held in place by friction on 
a conveyor which is disengaged from its drive motor. When the 
system is released from rest, package 1 leaves the belt at A just as 
package 4 comes onto the inclined portion of the belt at B. Deter-
mine (a) the speed of package 2 as it leaves the belt at A, (b) the 
speed of package 3 as it leaves the belt at A. Neglect the mass of 
the belt and rollers.

A

B

C

D

0.3 m

0.6 m

1 m

Fig. P13.24

6 lb

6 ft

A

B

1

6 lb

6 lb

6 lb

5 ft

5 ft

5 ft
2

3
4

Fig. P13.25

 13.26 A 3-kg block rests on top of a 2-kg block supported by but not 
attached to a spring of constant 40 N/m. The upper block is  suddenly 
removed. Determine (a) the maximum speed reached by the 2-kg 
block, (b) the maximum height reached by the 2-kg block.

 13.27 Solve Prob. 13.26, assuming that the 2-kg block is attached to the 
spring.

 13.28 An 8-lb collar C slides on a horizontal rod between springs 
A and B. If the collar is pushed to the right until spring B is com-
pressed 2 in. and released, determine the distance through which 
the collar will travel assuming (a) no friction between the collar 
and the rod, (b) a coefficient of friction mk 5 0.35.

2 kg

3 kg

Fig. P13.26

6 in.A B

k = 18 lb/in. k = 12 lb/in.

C

16 in.

Fig. P13.28
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784 Kinetics of Particles: Energy and Momentum 
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 13.29 A 6-lb block is attached to a cable and to a spring as shown. 
The constant of the spring is k 5 8 lb/in. and the tension in the 
cable is 3 lb. If the cable is cut, determine (a) the maximum dis-
placement of the block, (b) the maximum speed of the block.

 13.30 A 10-kg block is attached to spring A and connected to spring B 
by a cord and pulley. The block is held in the position shown with 
both springs unstretched when the support is removed and the 
block is released with no initial velocity. Knowing that the constant 
of each spring is 2 kN/m, determine (a) the velocity of the block 
after it has moved down 50 mm, (b) the maximum velocity achieved 
by the block.

m pp

a a

Fig. P13.32

6 lb

Fig. P13.29

B

C

A

k = 2 kN/m

k = 2 kN/m

10 kg

Fig. P13.30

A

B

400 mm

450 mm
75 mm

k2

k1

150 N

Fig. P13.31

 13.31 A 5-kg collar A is at rest on top of, but not attached to, a spring 
with stiffness k1 5 400 N/m when a constant 150-N force is applied 
to the cable. Knowing A has a speed of 1 m/s when the upper 
spring is compressed 75 mm, determine the spring stiffness k2. 
Ignore friction and the mass of the pulley.

 13.32 A piston of mass m and cross-sectional area A is in equilibrium 
under the pressure p at the center of a cylinder closed at both 
ends. Assuming that the piston is moved to the left a distance a/2 
and released, and knowing that the pressure on each side of the 
piston varies inversely with the volume, determine the velocity of 
the piston as it again reaches the center of the cylinder. Neglect 
friction between the piston and the cylinder and express your 
answer in terms of m, a, p, and A.
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785Problems 13.33 An uncontrolled automobile traveling at 65 mph strikes squarely a 
highway crash cushion of the type shown in which the automobile 
is brought to rest by successively crushing steel barrels. The mag-
nitude F of the force required to crush the barrels is shown as a 
function of the distance x the automobile has moved into the cush-
ion. Knowing that the weight of the automobile is 2250 lb and 
neglecting the effect of friction, determine (a) the distance the 
automobile will move into the cushion before it comes to rest, 
(b) the maximum deceleration of the automobile.

v0

y

x

z
145

F(kips)

x(ft)

36
27
18

Fig. P13.33

 13.34 Two types of energy-absorbing fenders designed to be used on a 
pier are statically loaded. The force-deflection curve for each type 
of fender is given in the graph. Determine the maximum deflec-
tion of each fender when a 90-ton ship moving at 1 miyh strikes 
the fender and is brought to rest.

 13.35 Nonlinear springs are classified as hard or soft, depending upon 
the curvature of their force-deflection curve (see figure). If a 
delicate instrument having a mass of 5 kg is placed on a spring 
of length l so that its base is just touching the undeformed spring 
and then inadvertently released from that position, determine 
the maximum deflection xm of the spring and the maximum 
force Fm exerted by the spring, assuming (a) a linear spring of 
constant k 5 3 kN/m, (b) a hard, nonlinear spring, for which 
F 5 (3 kN/m)(x 1 160x3).

x(in.)2
0

20

40

60

80

4 6 8 10 12

F(kips)

A

B

Fig. P13.34

F(lb)

x(in.)

Soft spring

x

l

Linear spring

Hard spring

Fig. P13.35

 13.36 A rocket is fired vertically from the surface of the moon with a 
speed v0. Derive a formula for the ratio hn/hu of heights reached 
with a speed v, if Newton’s law of gravitation is used to calculate 
hn and a uniform gravitational field is used to calculate hu. Express 
your answer in terms of the acceleration of gravity gm on the surface 
of the moon, the radius Rm of the moon, and the speeds v and v0.

bee02324_ch13_762-865.indd Page 785  11/8/11  5:09 PM user-f494bee02324_ch13_762-865.indd Page 785  11/8/11  5:09 PM user-f494 /203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles/203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


786 Kinetics of Particles: Energy and Momentum 
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 13.37 Express the acceleration of gravity gh at an altitude h above the 
surface of the earth in terms of the acceleration of gravity g0 at 
the surface of the earth, the altitude h, and the radius R of 
the earth. Determine the percent error if the weight that an object 
has on the surface of earth is used as its weight at an altitude of 
(a) 1 km, (b) 1000 km.

 13.38 A golf ball struck on earth rises to a maximum height of 60 m 
and hits the ground 230 m away. How high will the same golf ball 
travel on the moon if the magnitude and direction of its velocity 
are the same as they were on earth immediately after the ball was 
hit? Assume that the ball is hit and lands at the same elevation 
in both cases and that the effect of the atmosphere on the earth 
is neglected, so that the trajectory in both cases is a parabola. The 
acceleration of gravity on the moon is 0.165 times that on earth.

 13.39 The sphere at A is given a downward velocity v0 of magnitude 
5 m/s and swings in a vertical plane at the end of a rope of length 
l 5 2 m attached to a support at O. Determine the angle u at 
which the rope will break, knowing that it can withstand a maxi-
mum tension equal to twice the weight of the sphere.

 13.40 The sphere at A is given a downward velocity v0 and swings in a 
vertical circle of radius l and center O. Determine the smallest 
velocity v0 for which the sphere will reach point B as it swings 
about point O (a) if AO is a rope, (b) if AO is a slender rod of 
negligible mass.

 13.41 A small sphere B of weight W is released from rest in the position 
shown and swings freely in a vertical plane, first about O and then 
about the peg A after the cord comes in contact with the peg. Deter-
mine the tension in the cord (a) just before the sphere comes in 
contact with the peg, (b) just after it comes in contact with the peg.

 13.42 A roller coaster starts from rest at A, rolls down the track to B, 
describes a circular loop of 40-ft diameter, and moves up and 
down past point E. Knowing that h 5 60 ft and assuming no 
energy loss due to friction, determine (a) the force exerted by his 
seat on a 160-lb rider at B and D, (b) the minimum value of the 
radius of curvature at E if the roller coaster is not to leave the 
track at that point.

hm

Rm

he = 60 m

230 m

Moon trajectory

Earth trajectory

v

Fig. P13.38

A

B

O
l

v0

q

Fig. P13.39 and P13.40

A

BO
30°

q

1 ft

2 ft

Fig. P13.41

�

h

A

D

C

B

E

r 5 20 ft

Fig. P13.42
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787Problems 13.43 In Prob. 13.42, determine the range of values of h for which the 
roller coaster will not leave the track at D or E, knowing that the 
radius of curvature at E is r 5 75 ft. Assume no energy loss due 
to friction.

 13.44 A small block slides at a speed v on a horizontal surface. Knowing 
that h 5 0.9 m, determine the required speed of the block if it is 
to leave the cylindrical surface BCD when u 5 308.

 13.45 A small block slides at a speed v 5 8 ft/s on a horizontal surface 
at a height h 5 3 ft above the ground. Determine (a) the angle u 
at which it will leave the cylindrical surface BCD, (b) the distance 
x at which it will hit the ground. Neglect friction and air 
resistance.

 13.46 A chair-lift is designed to transport 1000 skiers per hour from the 
base A to the summit B. The average mass of a skier is 70 kg and 
the average speed of the lift is 75 m/min. Determine (a) the average 
power required, (b) the required capacity of the motor if the 
mechanical efficiency is 85 percent and if a 300-percent overload 
is to be allowed.

 13.47 It takes 15 s to raise a 1200-kg car and the supporting 300-kg 
hydraulic car-lift platform to a height of 2.8 m. Determine 
(a) the average output power delivered by the hydraulic pump to 
lift the system, (b) the average electric power required, knowing 
that the overall conversion efficiency from electric to mechanical 
power for the system is 82 percent.

 13.48 The velocity of the lift of Prob. 13.47 increases uniformly from zero 
to its maximum value at mid-height in 7.5 s and then decreases 
uniformly to zero in 7.5 s. Knowing that the peak power output of 
the hydraulic pump is 6 kW when the velocity is maximum, deter-
mine the maximum lift force provided by the pump.

 13.49 (a) A 120-lb woman rides a 15-lb bicycle up a 3-percent slope at 
a constant speed of 5 ft/s. How much power must be developed 
by the woman? (b) A 180-lb man on an 18-lb bicycle starts down 
the same slope and maintains a constant speed of 20 ft/s by brak-
ing. How much power is dissipated by the brakes? Ignore air resis-
tance and rolling resistance.

q

B

C

D E

x

v

h

Fig. P13.44 and P13.45

750 m

300 m

B

A

Fig. P13.46

v

Fig. P13.47

5 ft/s 20 ft/s

(a) (b)

3% slope

Fig. P13.49
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Fig. P13.51

l

b

Fig. P13.50

 13.50 A power specification formula is to be derived for electric motors 
which drive conveyor belts moving solid material at different 
rates to different heights and distances. Denoting the efficiency 
of a motor by h and neglecting the power needed to drive the 
belt itself, derive a formula (a) in the SI system of units for 
the power P in kW, in terms of the mass flow rate m in kg/h, 
the height b and horizontal distance l in meters and (b) in U.S. 
customary units, for the power in hp, in terms of the material 
flow rate w in tons/h, and the height b and horizontal distance 
l in feet.

 13.51 In an automobile drag race, the rear (drive) wheels of a l000-kg 
car skid for the first 20 m and roll with sliding impending during 
the remaining 380 m. The front wheels of the car are just off the 
ground for the first 20 m, and for the remainder of the race 
80 percent of the weight is on the rear wheels. Knowing that the 
coefficients of friction are ms 5 0.90 and mk 5 0.68, determine the 
power developed by the car at the drive wheels (a) at the end of 
the 20-m portion of the race, (b) at the end of the race. Give your 
answer in kW and in hp. Ignore the effect of air resistance and 
rolling friction.

 13.52 The frictional resistance of a ship is known to vary directly as the 
1.75 power of the speed v of the ship. A single tugboat at full 
power can tow the ship at a constant speed of 4.5 km/h by exerting 
a constant force of 300 kN. Determine (a) the power developed 
by the tugboat, (b) the maximum speed at which two tugboats, 
capable of delivering the same power, can tow the ship.

 13.53 A train of total mass equal to 500 Mg starts from rest and acceler-
ates uniformely to a speed of 90 km/h in 50 s. After reaching this 
speed, the train travels with a constant velocity. The track is hori-
zontal and axle friction and rolling resistance result in a total force 
of 15 kN in a direction opposite to the direction of motion. Deter-
mine the power required as a function of time.

 13.54 The elevator E has a weight of 6600 lb when fully loaded and is 
connected as shown to a counterweight W of weight of 2200 lb. 
Determine the power in hp delivered by the motor (a) when 
the elevator is moving down at a constant speed of 1 ft/s, 
(b) when it has an upward velocity of 1 ft/s and a deceleration 
of 0.18 ft/s2.

E

W

C

M

Fig. P13.54
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78913.6 Potential Energy13.6 POTENTIAL ENERGY†
Let us consider again a body of weight W which moves along a 
curved path from a point A1 of elevation y1 to a point A2 of elevation 
y2 (Fig. 13.4). We recall from Sec. 13.2 that the work of the force 
of gravity W during this displacement is

 U1y2 5 Wy1 2 Wy2 (13.4)

The work of W may thus be obtained by subtracting the value of the 
function Wy corresponding to the second position of the body from 
its value corresponding to the first position. The work of W is inde-
pendent of the actual path followed; it depends only upon the initial 
and final values of the function Wy. This function is called the poten-
tial energy of the body with respect to the force of gravity W and is 
denoted by Vg. We write

 U1y2 5 (Vg)1 2 (Vg)2    with Vg 5 Wy (13.16)

We note that if (Vg)2 . (Vg)1, that is, if the potential energy increases 
during the displacement (as in the case considered here), the work 
U1y2 is negative. If, on the other hand, the work of W is positive, 
the potential energy decreases. Therefore, the potential energy Vg of 
the body provides a measure of the work which can be done by its 
weight W. Since only the change in potential energy, and not the 
actual value of Vg, is involved in formula (13.16), an arbitrary con-
stant can be added to the expression obtained for Vg. In other words, 
the level, or datum, from which the elevation y is measured can be 
chosen arbitrarily. Note that potential energy is expressed in the 
same units as work, i.e., in joules if SI units are used and in ft ? lb 
or in ? lb if U.S. customary units are used.
 It should be noted that the expression just obtained for the poten-
tial energy of a body with respect to gravity is valid only as long as the 
weight W of the body can be assumed to remain constant, i.e., as long 
as the displacements of the body are small compared with the radius 
of the earth. In the case of a space vehicle, however, we should take 
into consideration the variation of the force of gravity with the distance 
r from the center of the earth. Using the expression obtained in 
Sec. 13.2 for the work of a gravitational force, we write (Fig. 13.6)

 U1y2 5
GMm

r2
2

GMm
r1

 (13.7)

The work of the force of gravity can therefore be obtained by subtract-
ing the value of the function 2GMm/r corresponding to the second 
position of the body from its value corresponding to the first position. 
Thus, the expression which should be used for the potential energy Vg 
when the variation in the force of gravity cannot be neglected is

 Vg 5 2
GMm

r
 (13.17)

A2

A

A1

y2

y1

dy

y

W

Fig. 13.4 (repeated )

†Some of the material in this section has already been considered in Sec. 10.7.

O

A2

A1

r2

r1
q
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F

–F

M

r

A'

A
m

dq

Fig. 13.6 (repeated )
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Taking the first of the relations (12.29) into account, we write Vg in 
the alternative form

 Vg 5 2
WR2

r
 (13.179)

where R is the radius of the earth and W is the value of the weight 
of the body at the surface of the earth. When either of the relations 
(13.17) or (13.179) is used to express Vg, the distance r should, of 
course, be measured from the center of the earth.† Note that Vg is al-
ways negative and that it approaches zero for very large values of r.
 Consider now a body attached to a spring and moving from a 
position A1, corresponding to a deflection x1 of the spring, to a position 
A2, corresponding to a deflection x2 of the spring (Fig. 13.5). We recall 
from Sec. 13.2 that the work of the force F exerted by the spring on 
the body is

 U1y2 5 1
2kx2

1 2 1
2kx2

2 (13.6)

The work of the elastic force is thus obtained by subtracting the 
value of the function 1

2kx2 corresponding to the second position of 
the body from its value corresponding to the first position. This func-
tion is denoted by Ve and is called the potential energy of the body 
with respect to the elastic force F. We write

 U1y2 5 (Ve)1 2 (Ve)2   with Ve 5 1
2kx2 (13.18)

and observe that during the displacement considered, the work of 
the force F exerted by the spring on the body is negative and the 
potential energy Ve increases. You should note that the expression 
obtained for Ve is valid only if the deflection of the spring is mea-
sured from its undeformed position. On the other hand, formula 
(13.18) can be used even when the spring is rotated about its fixed 
end (Fig. 13.10a). The work of the elastic force depends only upon 
the initial and final deflections of the spring (Fig. 13.10b).

A0

A1

Spring undeformed

B

B

B

F

A

A2

x1

x

x2

Fig. 13.5 (repeated )

†The expressions given for Vg in (13.17) and (13.179) are valid only when r $ R, that 
is, when the body considered is above the surface of the earth.

Fig. 13.10

Undeformed length

(a) (b)

O

A1 A2

x1

x2

F = kx

(Ve)1 =     kx1 21
2

(Ve)2 =     kx2 21
2

x

F

x2

x1

–U1     2
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79113.7 Conservative Forces

Fig. 13.11

(a)

(b)

x

y

z

O

x

y

z

O

F

F

A(x, y, z)

A2(x2, y2, z2)

A1(x1, y1, z1)

A(x, y, z)

A1(x1, y1, z1)

 The concept of potential energy can be used when forces other 
than gravity forces and elastic forces are involved. Indeed, it remains 
valid as long as the work of the force considered is independent of 
the path followed by its point of application as this point moves from 
a given position A1 to a given position A2. Such forces are said to be 
conservative forces; the general properties of conservative forces are 
studied in the following section.

*13.7 CONSERVATIVE FORCES
As indicated in the preceding section, a force F acting on a particle 
A is said to be conservative if its work U1y2 is independent of the 
path followed by the particle A as it moves from A1 to A2 (Fig. 13.11a). 
We can then write

 U1y2 5 V(x1, y1, z1) 2 V(x2, y2, z2) (13.19)

or, for short,

 U1y2 5 V1 2 V2 (13.199)

The function V(x, y, z) is called the potential energy, or potential 
function, of F.
 We note that if A2 is chosen to coincide with A1, that is, if the 
particle describes a closed path (Fig. 13.11b), we have V1 5 V2 and 
the work is zero. Thus for any conservative force F we can write

 C  F ? dr 5 0 (13.20)

where the circle on the integral sign indicates that the path is closed.
 Let us now apply (13.19) between two neighboring points 
A(x, y, z) and A9(x 1 dx, y 1 dy, z 1 dz). The elementary work dU 
corresponding to the displacement dr from A to A9 is

dU 5 V(x, y, z) 2 V(x 1 dx, y 1 dy, z 1 dz)

or

 dU 5 2dV(x, y, z) (13.21)

Thus, the elementary work of a conservative force is an exact 
differential.
 Substituting for dU in (13.21) the expression obtained in (13.10) 
and recalling the definition of the differential of a function of several 
variables, we write

Fx dx 1 Fy 
 dy 1 Fz dz 5 2a 0V

0x
 dx 1

0V
0y

 dy 1
0V
0z

 dzb
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from which it follows that

 Fx 5 2
0V
0x

   Fy 5 2
0V
0y

   Fz 5 2
0V
0z

 (13.22)

It is clear that the components of F must be functions of the coordi-
nates x, y, and z. Thus, a necessary condition for a conservative force 
is that it depend only upon the position of its point of application. 
The relations (13.22) can be expressed more concisely if we write

F 5 Fx 
i 1 Fyj 1 Fzk 5 2a 0V

0x
  i 1

0V
0y

 j 1
0V
0z

 kb
The vector in parentheses is known as the gradient of the scalar function 
V and is denoted by grad V. We thus write for any conservative force

 F 5 2grad V (13.23)

 The relations (13.19) to (13.23) were shown to be satisfied by 
any conservative force. It can also be shown that if a force F satisfies 
one of these relations, F must be a conservative force.

13.8 CONSERVATION OF ENERGY
We saw in the preceding two sections that the work of a conservative 
force, such as the weight of a particle or the force exerted by a spring, 
can be expressed as a change in potential energy. When a particle 
moves under the action of conservative forces, the principle of work 
and energy stated in Sec. 13.3 can be expressed in a modified form. 
Substituting for U1y2 from (13.199) into (13.10), we write

V1 2 V2 5 T2 2 T1

 T1 1 V1 5 T2 1 V2 (13.24)

Formula (13.24) indicates that when a particle moves under the 
action of conservative forces, the sum of the kinetic energy and 
of the potential energy of the particle remains constant. The sum 
T 1 V is called the total mechanical energy of the particle and is 
denoted by E.
 Consider, for example, the pendulum analyzed in Sec. 13.4, 
which is released with no velocity from A1 and allowed to swing in 
a vertical plane (Fig. 13.12). Measuring the potential energy from 
the level of A2, we have, at A1,

T1 5 0  V1 5 Wl  T1 1 V1 5 Wl

Recalling that at A2 the speed of the pendulum is v2 5 12gl, we have

T2 5 1
2mv2

2 5
1
2

 
W
g

 (2gl) 5 Wl   V2 5 0

T2 1 V2 5 WlFig. 13.12

A1

A2

A3

A
A'

Datum

l

bee02324_ch13_762-865.indd Page 792  21/09/11  7:34 AM user-f501bee02324_ch13_762-865.indd Page 792  21/09/11  7:34 AM user-f501 /204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles/204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


793We thus check that the total mechanical energy E 5 T 1 V of the 
pendulum is the same at A1 and A2. Whereas the energy is entirely 
potential at A1, it becomes entirely kinetic at A2, and as the pendu-
lum keeps swinging to the right, the kinetic energy is transformed 
back into potential energy. At A3, T3 5 0 and V3 5 Wl.
 Since the total mechanical energy of the pendulum remains 
constant and since its potential energy depends only upon its ele-
vation, the kinetic energy of the pendulum will have the same 
value at any two points located on the same level. Thus, the speed 
of the pendulum is the same at A and at A9 (Fig. 13.12). This result 
can be extended to the case of a particle moving along any given 
path, regardless of the shape of the path, as long as the only forces 
acting on the particle are its weight and the normal reaction of the 
path. The particle of Fig. 13.13, for example, which slides in a 
vertical plane along a frictionless track, will have the same speed 
at A, A9, and A0.
 While the weight of a particle and the force exerted by a spring 
are conservative forces, friction forces are nonconservative forces. In 
other words, the work of a friction force cannot be expressed as a 
change in potential energy. The work of a friction force depends 
upon the path followed by its point of application; and while the 
work U1y2 defined by (13.19) is positive or negative according to the 
sense of motion, the work of a friction force, as we noted in 
Sec. 13.4, is always negative. It follows that when a mechanical sys-
tem involves friction, its total mechanical energy does not remain 
constant but decreases. The energy of the system, however, is not 
lost; it is transformed into heat, and the sum of the mechanical 
energy and of the thermal energy of the system remains constant.
 Other forms of energy can also be involved in a system. For 
instance, a generator converts mechanical energy into electric energy; 
a gasoline engine converts chemical energy into mechanical energy; 
a nuclear reactor converts mass into thermal energy. If all forms of 
energy are considered, the energy of any system can be considered 
as constant and the principle of conservation of energy remains valid 
under all conditions.

13.9  MOTION UNDER A CONSERVATIVE CENTRAL 
FORCE. APPLICATION TO SPACE MECHANICS

We saw in Sec. 12.9 that when a particle P moves under a central 
force F, the angular momentum HO of the particle about the center 
of force O is constant. If the force F is also conservative, there exists 
a potential energy V associated with F, and the total energy E 5 
T 1 V of the particle is constant (Sec. 13.8). Thus, when a particle 
moves under a conservative central force, both the principle of con-
servation of angular momentum and the principle of conservation of 
energy can be used to study its motion.
 Consider, for example, a space vehicle of mass m moving under 
the earth’s gravitational force. Let us assume that it begins its free 
flight at point P0 at a distance r0 from the center of the earth, with 
a velocity v0 forming an angle f0 with the radius vector OP0 

13.9 Motion Under a Conservative Central 
Force. Application to Space Mechanics

Fig. 13.13

Start

v

v

v

A A' A"
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(Fig. 13.14). Let P be a point of the trajectory described by the 
vehicle; we denote by r the distance from O to P, by v the velocity 
of the vehicle at P, and by f the angle formed by v and the radius 
vector OP. Applying the principle of conservation of angular momen-
tum about O between P0 and P (Sec. 12.9), we write

 r0mv0 sin f0 5 rmv sin f (13.25)

Recalling the expression (13.17) obtained for the potential energy 
due to a gravitational force, we apply the principle of conservation 
of energy between P0 and P and write

T0 1 V0 5 T 1 V

 1
2mv2

0 2
GMm

r0
5 1

2mv2 2
GMm

r
 (13.26)

where M is the mass of the earth.
 Equation (13.26) can be solved for the magnitude v of the 
velocity of the vehicle at P when the distance r from O to P is known; 
Eq. (13.25) can then be used to determine the angle f that the 
velocity forms with the radius vector OP.
 Equations (13.25) and (13.26) can also be used to determine 
the maximum and minimum values of r in the case of a satellite 
launched from P0 in a direction forming an angle f0 with the 
vertical OP0 (Fig. 13.15). The desired values of r are obtained by 
making f 5 90° in (13.25) and eliminating v between Eqs. (13.25) 
and (13.26).

Fig. 13.14

O

r

P

v

f

f0

P0

v0

r0

Fig. 13.15

A

A'

90°

90°

rmax

rmin

O

r0

P0

f0

vmin

vmax

v0

 It should be noted that the application of the principles of 
conservation of energy and of conservation of angular momentum 
leads to a more fundamental formulation of the problems of space 
mechanics than does the method indicated in Sec. 12.12. In all cases 
involving oblique launchings, it will also result in much simpler com-
putations. And while the method of Sec. 12.12 must be used when 
the actual trajectory or the periodic time of a space vehicle is to be 
determined, the calculations will be simplified if the conservation 
principles are first used to compute the maximum and minimum 
values of the radius vector r.
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795

SAMPLE PROBLEM 13.6

A 20-lb collar slides without friction along a vertical rod as shown. The 
spring attached to the collar has an undeformed length of 4 in. and a con-
stant of 3 lb/in. If the collar is released from rest in position 1, determine 
its velocity after it has moved 6 in. to position 2.

1

2

6 in.

8 in.

SOLUTION

Position 1. Potential Energy. The elongation of the spring is

x1 5 8 in. 2 4 in. 5 4 in.

and we have

Ve 5 1
2kx2

1 5 1
2(3 lb/in.)(4 in.)2 5 24 in ? lb

Choosing the datum as shown, we have Vg 5 0. Therefore,

V1 5 Ve 1 Vg 5 24 in ? lb 5 2 ft ? lb

Kinetic Energy. Since the velocity in position 1 is zero, T1 5 0.

Position 2. Potential Energy. The elongation of the spring is

x2 5 10 in. 2 4 in. 5 6 in.

and we have

 Ve 5 1
2kx2

2 5 1
2(3 lb/in.)(6 in.)2 5 54 in ? lb

 Vg 5 Wy 5 (20 lb)(26 in.) 5 2120 in ? lb

Therefore,

V2 5 Ve 1 Vg 5 54 2 120 5 266 in ? lb
 5 25.5 ft ? lb

Kinetic Energy

T2 5 1
2mv2

2 5
1
2

 
20

32.2
 v2

2 5 0.311v2
2

Conservation of Energy. Applying the principle of conservation of energy 
between positions 1 and 2, we write

 T1 1 V1 5 T2 1 V2

0 1 2 ft ? lb 5 0.311v2
2 2 5.5 ft ? lb

 v2 5 64.91 ft/s
v2 5 4.91 ft/sw ◀

1

2

6 in.

Datum8 in.

20 lb

20 lb

10 in.
v2

v1 = 0

F1

F2

x

F

x1 =  4 in.

x2 =  6 in.
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SAMPLE PROBLEM 13.7

The 0.5-lb pellet is pushed against the spring at A and released from rest. 
Neglecting friction, determine the smallest deflection of the spring for 
which the pellet will travel around the loop ABCDE and remain at all times 
in contact with the loop.

k = 3 lb/in.

W = 0.5 lb

EC

D

B

A

2 ft

SOLUTION

Required Speed at Point D. As the pellet passes through the highest point 
D, its potential energy with respect to gravity is maximum and, thus, its 
kinetic energy and speed are minimum. Since the pellet must remain in 
contact with the loop, the force N exerted on the pellet by the loop must 
be equal to or greater than zero. Setting N 5 0, we compute the smallest 
possible speed vD.

1woFn 5 man:     W 5 man    mg 5 man    an 5 g

an 5
v2

D

r
:  v2

D 5 ran 5 rg 5 (2 ft)(32.2 ft/s2) 5 64.4 ft2/s2

Position 1. Potential Energy. Denoting by x the deflection of the spring 
and noting that k 5 3 lb/in. 5 36 lb/ft, we write

Ve 5 1
2kx2 5 1

2(36  lb/ft)x2 5 18x2

Choosing the datum at A, we have Vg 5 0; therefore

V1 5 Ve 1 Vg 5 18x2

Kinetic Energy. Since the pellet is released from rest, vA 5 0 and we 
have T1 5 0.

Position 2. Potential Energy. The spring is now undeformed; thus Ve 5 0. 
Since the pellet is 4 ft above the datum, we have

Vg 5 Wy 5 (0.5 lb)(4 ft) 5 2 ft ? lb
 V2 5 Ve 1 Vg 5 2 ft ? lb

Kinetic Energy. Using the value of v2
D obtained above, we write

T2 5 1
2mv2

D 5
1
2

 
0.5  lb

32 .2  ft/s2 (64.4  ft2/s2) 5 0.5 ft ? lb

Conservation of Energy. Applying the principle of conservation of energy 
between positions 1 and 2, we write

 T1 1 V1 5 T2 1 V2

0 1 18x2 5 0.5 ft ? lb 1 2 ft ? lb
 x 5 0.3727 ft x 5 4.47 in. ◀

=
manW

vD

vA = 0

EC

D

B A

Position 2

Datum
Position 1

4 ft
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SAMPLE PROBLEM 13.8

A sphere of mass m 5 0.6 kg is attached to an elastic cord of constant k 5 
100 N/m, which is undeformed when the sphere is located at the origin O. 
Knowing that the sphere may slide without friction on the horizontal surface 
and that in the position shown its velocity vA has a magnitude of 20 m/s, 
determine (a) the maximum and minimum distances from the sphere to the 
origin O, (b) the corresponding values of its speed.

vA

60°
A

O

0.5 m

SOLUTION

The force exerted by the cord on the sphere passes through the fixed point 
O, and its work can be expressed as a change in potential energy. It is 
therefore a conservative central force, and both the total energy of the 
sphere and its angular momentum about O are conserved.

Conservation of Angular Momentum About O. At point B, where the 
distance from O is maximum, the velocity of the sphere is perpendicular to 
OB and the angular momentum is rmmvm. A similar property holds at point 
C, where the distance from O is minimum. Expressing conservation of angu-
lar momentum between A and B, we write

 rAmvA sin 60° 5 rmmvm

(0.5 m)(0.6 kg)(20 m/s) sin 60° 5 rm(0.6 kg)vm

 vm 5
8.66
rm

 (1)

Conservation of Energy

At point A:   TA 5 1
2 mv2

A  5
1
2(0.6 kg)(20 m/s)2 5 120 J

  VA 5 1
2 kr2

A  5
1
2(100 N/m)(0.5 m)2 5 12.5 J

At point B:   TB 5 1
2 mv2

m 5
1
2(0.6 kg)v2

m 5 0.3v2
m

  VB 5 1
2 kr2

m  5
1
2(100 N/m)r2

m 5 50r2
m

Applying the principle of conservation of energy between points A and B, 
we write

 TA 1 VA 5 TB 1 VB

 120 1 12.5 5 0.3v2
m 1 50r2

m (2)

a. Maximum and Minimum Values of Distance. Substituting for vm from 
Eq. (1) into Eq. (2) and solving for r2

m, we obtain

r2
m 5 2.468 or 0.1824  rm 5 1.571 m, r9m 5 0.427 m ◀

b. Corresponding Values of Speed. Substituting the values obtained for 
rm and r9m into Eq. (1), we have

  vm 5
8.66
1.571

 vm 5 5.51 m/s ◀ 

  v¿m 5
8.66
0.427

 v9m 5 20.3 m/s ◀

Note. It can be shown that the path of the sphere is an ellipse of center O.

B
C

O

vm

rmr'm

rA
v'm

vA

60°
90°

90°

A
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SAMPLE PROBLEM 13.9

A satellite is launched in a direction parallel to the surface of the earth with 
a velocity of 36 900 km/h from an altitude of 500 km. Determine (a) the 
maximum altitude reached by the satellite, (b) the maximum allowable error 
in the direction of launching if the satellite is to go into orbit and come no 
closer than 200 km to the surface of the earth.

SOLUTION

a. Maximum Altitude. We denote by A9 the point of the orbit farthest 
from the earth and by r1 the corresponding distance from the center of the 
earth. Since the satellite is in free flight between A and A9, we apply the 
principle of conservation of energy:

 TA 1 VA 5 TA9 1 VA9

 1
2mv2

0 2
GMm

r0
5 1

2mv2
1 2

GMm
r1

 (1)

Since the only force acting on the satellite is the force of gravity, which is 
a central force, the angular momentum of the satellite about O is conserved. 
Considering points A and A9, we write

 r0mv0 5 r1mv1      v1 5 v0 
r0

r1
 (2)

Substituting this expression for v1 into Eq. (1), dividing each term by the 
mass m, and rearranging the terms, we obtain

 1
2v

2
0 a1 2

r2
0

r2
1
b 5

GM
r0

 a1 2
r0

r1
b      1 1

r0

r1
5

2GM

r0v
2
0

 (3)

Recalling that the radius of the earth is R 5 6370 km, we compute

 r0 5 6370 km 1 500 km 5 6870 km 5 6.87 3 106 m
 v0 5 36 900 km/h 5 (36.9 3 106 m)y(3.6 3 103 s) 5 10.25 3 103 m/s
 GM 5 gR2 5 (9.81 m/s2)(6.37 3 106 m)2 5 398 3 1012 m3/s2

Substituting these values into (3), we obtain r1 5 66.8 3 106 m.

Maximum altitude 5 66.8 3 106 m 2 6.37 3 106 m 5 60.4 3 106 m 5 
60 400 km ◀

b. Allowable Error in Direction of Launching. The satellite is launched 
from P0 in a direction forming an angle f0 with the vertical OP0. The value 
of f0 corresponding to rmin 5 6370 km 1 200 km 5 6570 km is obtained 
by applying the principles of conservation of energy and of conservation of 
angular momentum between P0 and A:

 1
2mv2

0 2
GMm

r0
5 1

2mv2
max 2

GMm
rmin

 
(4)

 r0mv0 sin f0 5 rminmvmax (5)

Solving (5) for vmax and then substituting for vmax into (4), we can solve (4) 
for sin f0. Using the values of v0 and GM computed in part a and noting 
that r0/rmin 5 6870/6570 5 1.0457, we find

sin f0 5 0.9801    f0 5 90° 6 11.5°    Allowable error 5 6 11.5° ◀

r0

r1

v1

A
R

A'

v0

O

r0

P0
f0

f = 90°
rmin

vmax

A

A'

v0

O

Maximum altitude

Earth

500 km

36 900 km/h

bee02324_ch13_762-865.indd Page 798  21/09/11  7:34 AM user-f501bee02324_ch13_762-865.indd Page 798  21/09/11  7:34 AM user-f501 /204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles/204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


799

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned that when the work done by a force F acting on a 
particle A is independent of the path followed by the particle as it moves from 

a given position A1 to a given position A2 (Fig. 13.11a), then a function V, called 
potential energy, can be defined for the force F. Such forces are said to be con-
servative forces, and you can write

 U1y2 5 V(x1, y1, z1) 2 V(x2, y2, z2) (13.19)

or, for short,

 U1y2 5 V1 2 V2 (13.199)

Note that the work is negative when the change in the potential energy is positive, 
i.e., when V2 . V1.

Substituting the above expression into the equation for work and energy, you can 
write

 T1 1 V1 5 T2 1 V2 (13.24)

which shows that when a particle moves under the action of a conservative force 
the sum of the kinetic and potential energies of the particle remains constant.

Your solution of problems using the above formula will consist of the following 
steps.

1. Determine whether all the forces involved are conservative. If some of the 
forces are not conservative, for example if friction is involved, you must use the 
method of work and energy from the previous lesson, since the work done by such 
forces depends upon the path followed by the particle and a potential function 
does not exist. If there is no friction and if all the forces are conservative, you can 
proceed as follows.

2. Determine the kinetic energy T 5 1
2mv2 at each end of the path.
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3. Compute the potential energy for all the forces involved at each end of 
the path. You will recall that the following expressions for the potential energy 
were derived in this lesson.
 a. The potential energy of a weight W close to the surface of the earth and 
at a height y above a given datum,

 Vg 5 Wy (13.16)

 b. The potential energy of a mass m located at a distance r from the cen-
ter of the earth, large enough so that the variation of the force of gravity must be 
taken into account,

 Vg 5 2
GMm

r
 (13.17)

where the distance r is measured from the center of the earth and Vg is equal to 
zero at r 5 `.
 c. The potential energy of a body with respect to an elastic force F 5 kx,

 Ve 5 1
2kx2 (13.18)

where the distance x is the deflection of the elastic spring measured from its 
undeformed position and k is the spring constant. Note that Ve depends only upon 
the deflection x and not upon the path of the body attached to the spring. Also, 
Ve is always positive, whether the spring is compressed or elongated.

4. Substitute your expressions for the kinetic and potential energies into 
Eq. (13.24). You will be able to solve this equation for one unknown, for example, 
for a velocity [Sample Prob. 13.6]. If more than one unknown is involved, you will 
have to search for another condition or equation, such as the minimum speed 
[Sample Prob. 13.7] or the minimum potential energy of the particle. For prob-
lems involving a central force, a second equation can be obtained by using con-
servation of angular momentum [Sample Prob. 13.8]. This is especially useful in 
applications to space mechanics [Sec. 13.9].
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PROBLEMS

801

CONCEPT QUESTIONS

 13.CQ2 Two small balls A and B with masses 2m and m, respectively, are 
released from rest at a height h above the ground. Neglecting air 
resistance, which of the following statements is true when the two 
balls hit the ground?

 a. The kinetic energy of A is the same as the kinetic energy of B.
 b. The kinetic energy of A is half the kinetic energy of B.
 c. The kinetic energy of A is twice the kinetic energy of B.
 d. The kinetic energy of A is four times the kinetic energy of B.

 13.CQ3 A small block A is released from rest and slides down the friction-
less ramp to the loop. The maximum height h of the loop is the 
same as the initial height of the block. Will A make it completely 
around the loop without losing contact with the track?

 a. Yes
 b. No
 c. Need more information

END-OF-SECTION PROBLEMS

 13.55 A force P is slowly applied to a plate that is attached to two springs 
and causes a deflection x0. In each of the two cases shown, derive 
an expression for the constant ke, in terms of k1 and k2, of the single 
spring equivalent to the given system, that is, of the single spring 
which will undergo the same deflection x0 when subjected to the 
same force P.

h

B
A

2m
m

Fig. P13.CQ2

h

A

Fig. P13.CQ3

k1 k2

(a) (b)

k1

k2

x0

P P

x0

Fig. P13.55

 13.56 A loaded railroad car of mass m is rolling at a constant velocity v0 
when it couples with a massless bumper system. Determine the 
maximum deflection of the bumper assuming the two springs are 
(a) in series (as shown), (b) in parallel.

v0

k1 k2

Fig. P13.56
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802 Kinetics of Particles: Energy and Momentum 
Methods

 13.59 A 3-lb collar C may slide without friction along a horizontal rod. It 
is attached to three springs, each of constant k 5 2 lb/in. and 6-in. 
undeformed length. Knowing that the collar is released from rest in 
the position shown, determine the maximum speed it will reach in 
the ensuing motion.

 13.60 A 500-g collar can slide without friction on the curved rod BC in 
a horizontal plane. Knowing that the undeformed length of the 
spring is 80 mm and that k 5 400 kN/m, determine (a) the velocity 
that the collar should be given at A to reach B with zero velocity, 
(b) the velocity of the collar when it eventually reaches C.

 13.61 An elastic cord is stretched between two points A and B, located 
800 mm apart in the same horizontal plane. When stretched directly 
between A and B, the tension is 40 N. The cord is then stretched 
as shown until its midpoint C has moved through 300 mm to C9; a 
force of 240 N is required to hold the cord at C9. A 0.1-kg pellet is 
placed at C9, and the cord is released. Determine the speed of the 
pellet as it passes through C.

C

BDA

6 in.

6 in. 6 in.

Fig. P13.59

240 N

400 mm

C

A

B

C9

400 mm

300 mm

Fig. P13.61

A

B

C O
6 in.

8 in.

Fig. P13.58

A

B

C

150 mm

k
100 mm

200 mm

Fig. P13.60

 13.57 A 600-g collar C may slide along a horizontal, semicircular rod 
ABD. The spring CE has an undeformed length of 250 mm and a 
spring constant of 135 N/m. Knowing that the collar is released 
from rest at A and neglecting friction, determine the speed of the 
collar (a) at B, (b) at D.

 13.58 A 3-lb collar is attached to a spring and slides without friction 
along a circular rod in a horizontal plane. The spring has an unde-
formed length of 7 in. and a constant k 5 1.5 lb/in. Knowing that 
the collar is in equilibrium at A and is given a slight push to get 
it moving, determine the velocity of the collar (a) as it passes 
through B, (b) as it passes through C.

300

180240

Dimensions in mm

C

O

E

A

y

z
x

DB

200

Fig. P13.57
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803Problems 13.62 An elastic cable is to be designed for bungee jumping from a tower 
130 ft high. The specifications call for the cable to be 85 ft long 
when unstretched, and to stretch to a total length of 100 ft when 
a 600-lb weight is attached to it and dropped from the tower. 
Determine (a) the required spring constant k of the cable, (b) how 
close to the ground a 186-lb man will come if he uses this cable 
to jump from the tower.

 13.63 It is shown in mechanics of materials that the stiffness of an elastic 
cable is k 5 AE/L, where A is the cross-sectional area of the cable, 
E is the modulus of elasticity, and L is the length of the cable. A 
winch is lowering a 4000-lb piece of machinery using a constant 
speed of 3 ft/s when the winch suddenly stops. Knowing that the 
steel cable has a diameter of 0.4 in., E 5 29 3 106 lb/in2, and 
when the winch stops L 5 30 ft, determine the maximum down-
ward displacement of the piece of machinery from the point it was 
when the winch stopped.

 13.64 A 2-kg collar is attached to a spring and slides without friction in 
a vertical plane along the curved rod ABC. The spring is unde-
formed when the collar is at C and its constant is 600 N/m. If the 
collar is released at A with no initial velocity, determine its velocity 
(a) as it passes through B, (b) as it reaches C.

Fig. P13.62

3 ft/s

30 ft

Fig. P13.63

B

OC A

200 mm

150 mm 250 mm

Fig. P13.64

Fig. P13.65

AB

C

F

E

y

z

x

200 mm

500 mm

300 mm

400 mm

 13.65 A 1-kg collar can slide along the rod shown. It is attached to an 
elastic cord anchored at F, which has an undeformed length of 
250 mm and spring constant of 75 N/m. Knowing that the collar 
is released from rest at A and neglecting friction, determine the 
speed of the collar (a) at B, (b) at E.
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804 Kinetics of Particles: Energy and Momentum 
Methods

 13.66 A thin circular rod is supported in a vertical plane by a bracket at 
A. Attached to the bracket and loosely wound around the rod is a 
spring of constant k 5 3 lb/ft and undeformed length equal to the 
arc of circle AB. An 8-oz collar C, not attached to the spring, can 
slide without friction along the rod. Knowing that the collar is 
released from rest at an angle u with the vertical, determine 
(a) the smallest value of u for which the collar will pass through 
D and reach point A, (b) the velocity of the collar as it reaches 
point A.

Fig. P13.66

A

BC

D

O

θ

12 in.

A

B

D

f

0.3 ft

25 lb

k = 600 lb/ft

2.1 ft

1.1 ft

C

Fig. P13.67

 13.67 The system shown is in equilibrium when f 5 0. Knowing that 
initially f 5 90° and that block C is given a slight nudge when the 
system is in that position, determine the speed of the block as it 
passes through the equilibrium position f 5 0. Neglect the weight 
of the rod.

 13.68 A spring is used to stop a 50-kg package which is moving down a 
20° incline. The spring has a constant k 5 30 kN/m and is held by 
cables so that it is initially compressed 50 mm. Knowing that the 
velocity of the package is 2 m/s when it is 8 m from the spring and 
neglecting friction, determine the maximum additional deformation 
of the spring in bringing the package to rest.

 13.69 Solve Prob. 13.68 assuming the kinetic coefficient of friction 
between the package and the incline is 0.2.

 13.70 A section of track for a roller coaster consists of two circular arcs 
AB and CD joined by a straight portion BC. The radius of AB is 
27 m and the radius of CD is 72 m. The car and its occupants, of 
total mass 250 kg, reach point A with practically no velocity and 
then drop freely along the track. Determine the normal force 
exerted by the track on the car as the car reaches point B. Ignore 
air resistance and rolling resistance.

 13.71 A section of track for a roller coaster consists of two circular arcs 
AB and CD joined by a straight portion BC. The radius of AB is 
27 m and the radius of CD is 72 m. The car and its occupants, of 
total mass 250 kg, reach point A with practically no velocity and 
then drop freely along the track. Determine the maximum and 
minimum values of the normal force exerted by the track on the 
car as the car travels from A to D. Ignore air resistance and rolling 
resistance.

8 m

20°

Cable

2 m/s

50 kg

Fig. P13.68

27 m

18 m

B

C

D

A

r = 72 m40°

Fig. P13.70 and P13.71
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805Problems 13.72 A 1-lb collar is attached to a spring and slides without friction along 
a circular rod in a vertical plane. The spring has an undeformed 
length of 5 in. and a constant k 5 10 lb/ft. Knowing that the collar is 
released from being held at A, determine the speed of the collar 
and the normal force between the collar and the rod as the collar 
passes through B.

 13.73 A 10-lb collar is attached to a spring and slides without friction 
along a fixed rod in a vertical plane. The spring has an undeformed 
length of 14 in. and a constant k 5 4 lb/in. Knowing that the collar 
is released from rest in the position shown, determine the force 
exerted by the rod on the collar at (a) point A, (b) point B. Both 
these points are on the curved portion of the rod.

A

B

C O
5 in.

7 in.

Fig. P13.72

A

B

14 in.

10 lb

14 in.

14 in.

14 in.

k = 4 lb/in.

Fig. P13.73

 13.74 An 8-oz package is projected upward with a velocity v0 by a spring 
at A; it moves around a frictionless loop and is deposited at C. For 
each of the two loops shown, determine (a) the smallest velocity 
v0 for which the package will reach C, (b) the corresponding force 
exerted by the package on the loop just before the package leaves 
the loop at C.

r = 1.5 ft
B

A

v0

7.5 ft

r = 1.5 ft

CC

B

A

v0

7.5 ft

Fig. P13.74 and P13.75

 13.75 If the package of Prob. 13.74 is not to hit the horizontal surface at 
C with a speed greater than 10 ft/s, (a) show that this requirement 
can be satisfied only by the second loop, (b) determine the largest 
allowable initial velocity v0 when the second loop is used.
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806 Kinetics of Particles: Energy and Momentum 
Methods

 13.76 A small package of weight W is projected into a vertical return 
loop at A with a velocity v0. The package travels without friction 
along a circle of radius r and is deposited on a horizontal surface 
at C. For each of the two loops shown, determine (a) the smallest 
velocity v0 for which the package will reach the horizontal surface 
at C, (b) the corresponding force exerted by the loop on the pack-
age as it passes point B.

 13.77 The 1-kg ball at A is suspended by an inextensible cord and given 
an initial horizontal velocity of 5 m/s. If l 5 0.6 m and xB 5 0, 
determine yB so that the ball will enter the basket.

 *13.78 Packages are moved from point A on the upper floor of a ware-
house to point B on the lower floor, 12 ft directly below A, by 
means of a chute, the centerline of which is in the shape of a helix 
of vertical axis y and radius R 5 8 ft. The cross section of the 
chute is to be banked in such a way that each package, after being 
released at A with no velocity, will slide along the centerline of the 
chute without ever touching its edges. Neglecting friction, 
(a) express as a function of the elevation y of a given point P of 
the centerline the angle f formed by the normal to the surface of 
the chute at P and the principal normal of the centerline at that 
point, (b) determine the magnitude and direction of the force 
exerted by the chute on a 20-lb package as it reaches point B. Hint: 
The principal normal to the helix at any point P is horizontal and 
directed toward the y axis, and the radius of curvature of the helix 
is r 5 R[1 1 (h/2pR)2].

l

yB

A

xB

v0

θ

Fig. P13.77

y

z

O

B

A

x

R = 8 ft

h = 12 ft

Fig. P13.78

B

C C

r

A (1) (2)

v0

B
r

A

v0

Fig. P13.76
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807Problems *13.79 Prove that a force F(x, y, z) is conservative if, and only if, the fol-
lowing relations are satisfied:

0Fx

0y
5

0Fy

0x
  

0Fy

0z
5

0Fz

0y
  

0Fz

0x
5

0Fx

0z

 13.80 The force F 5 (yzi 1 zxj 1 xyk)/xyz acts on the particle P(x, y, z) 
which moves in space. (a) Using the relation derived in Prob. 13.79, 
show that this force is a conservative force. (b) Determine the poten-
tial function associated with F.

 *13.81 A force F acts on a particle P(x, y) which moves in the xy plane. 
Determine whether F is a conservative force and compute the work 
of F when P describes in a clockwise sense the path A, B, C, A includ-
ing the quarter circle x2 1 y2 5 a2, if (a) F 5 kyi, (b) F 5 k(yi 1 xj).

a

y

x

B

C
A

Fig. P13.81

BA

C

EF

a

y

x

z

D

O

a

a

Fig. P13.82

Fig. P13.86

13 950 km

17 440 km 17 440 km

606 km
R = 6370 km

B

C

A

 *13.82 The potential function associated with a force P in space is known 
to be V(x, y, z) 5 2(x2 1 y2 1 z2)1/2. (a) Determine the x, y, and 
z components of P. (b) Calculate the work done by P from O to 
D by integrating along the path OABD, and show that it is equal 
to the negative of the change in potential from O to D.

 *13.83 (a) Calculate the work done from D to O by the force P of Prob. 13.82 
by integrating along the diagonal of the cube. (b) Using the result 
obtained and the answer to part b of Prob. 13.82, verify that the work 
done by a conservative force around the closed path OABDO is zero. 

 *13.84 The force F 5 (xi 1 yj 1 zk)/(x2 1 y2 1 z2)3/2 acts on the particle 
P(x, y, z) which moves in space. (a) Using the relations derived in 
Prob. 13.79, prove that F is a conservative force. (b) Determine the 
potential function V(x, y, z) associated with F.

 13.85 (a) Determine the kinetic energy per unit mass which a missile must 
have after being fired from the surface of the earth if it is to reach an 
infinite distance from the earth. (b) What is the initial velocity of the 
missile (called the escape velocity)? Give your answers in SI units 
and show that the answer to part b is independent of the firing angle.

 13.86 A satellite describes an elliptic orbit of minimum altitude 606 km 
above the surface of the earth. The semimajor and semiminor axes 
are 17 440 km and 13 950 km, respectively. Knowing that the speed 
of the satellite at point C is 4.78 km/s, determine (a) the speed at 
point A, the perigee, (b) the speed at point B, the apogee.
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808 Kinetics of Particles: Energy and Momentum 
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 13.87 While describing a circular orbit 200 mi above the earth a space 
vehicle launches a 6000-lb communications satellite. Determine 
(a) the additional energy required to place the satellite in a geo-
synchronous orbit at an altitude of 22,000 mi above the surface of 
the earth, (b) the energy required to place the satellite in the same 
orbit by launching it from the surface of the earth, excluding the 
energy needed to overcome air resistance. (A geosynchronous 
orbit is a circular orbit in which the satellite appears stationary 
with respect to the ground.)

 13.88 A lunar excursion module (LEM) was used in the Apollo moon-
landing missions to save fuel by making it unnecessary to launch 
the entire Apollo spacecraft from the moon’s surface on its return 
trip to earth. Check the effectiveness of this approach by comput-
ing the energy per pound required for a spacecraft (as weighed on 
the earth) to escape the moon’s gravitational field if the spacecraft 
starts from (a) the moon’s surface, (b) a circular orbit 50 mi above 
the moon’s surface. Neglect the effect of the earth’s gravitational 
field. (The radius of the moon is 1081 mi and its mass is 0.0123 times 
the mass of the earth.)

 13.89 Knowing that the velocity of an experimental space probe fired from 
the earth has a magnitude vA 5 32.5 Mm/h at point A, determine 
the speed of the probe as it passes through point B.

A

B

R = 6370 km

hA = 4300 km

vA

vB

hB = 12 700 km

Fig. P13.89

1500 km

B

A

R = 6370 km

Fig. P13.90

 13.90 A spacecraft is describing a circular orbit at an altitude of 1500 
km above the surface of the earth. As it passes through point A, 
its speed is reduced by 40 percent and it enters an elliptic crash 
trajectory with the apogee at point A. Neglecting air resistance, 
determine the speed of the spacecraft when it reaches the earth’s 
surface at point B.

 13.91 Observations show that a celestial body traveling at 1.2 3 106 mi/h 
appears to be describing about point B a circle of radius equal to 
60 light years. Point B is suspected of being a very dense concentra-
tion of mass called a black hole. Determine the ratio MB/MS of the 
mass at B to the mass of the sun. (The mass of the sun is 330,000 
times the mass of the earth, and a light year is the distance traveled 
by light in 1 year at 186,300 mi/s.)
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809Problems 13.92 (a) Show that, by setting r 5 R 1 y in the right-hand member of 
Eq. (13.179) and expanding that member in a power series in y/R, 
the expression in Eq. (13.16) for the potential energy Vg due to 
gravity is a first-order approximation for the expression given in 
Eq. (13.179). (b) Using the same expansion, derive a second-order 
approximation for Vg.

 13.93 Collar A has a mass of 3 kg and is attached to a spring of constant 
1200 N/m and of undeformed length equal to 0.5 m. The system is 
set in motion with r 5 0.3 m, vu 5 2 m/s, and vr 5 0. Neglecting the 
mass of the rod and the effect of friction, determine the radial and 
transverse components of the velocity of the collar when r 5 0.6 m.

 13.94 Collar A has a mass of 3 kg and is attached to a spring of constant 
1200 N/m and of undeformed length equal to 0.5 m. The system 
is set in motion with r 5 0.3 m, vu 5 2 m/s, and vr 5 0. Neglect-
ing the mass of the rod and the effect of friction, determine 
(a) the maximum distance between the origin and the collar, 
(b) the corresponding speed. (Hint: Solve the equation obtained 
for r by trial and error.)

 13.95 A 4-lb collar A and a 1.5-lb collar B can slide without friction on 
a frame, consisting of the horizontal rod OE and the vertical rod 
CD, which is free to rotate about CD. The two collars are con-
nected by a cord running over a pulley that is attached to the 
frame at O. At the instant shown, the velocity vA of collar A has a 
magnitude of 6 ft/s and a stop prevents collar B from moving. If 
the stop is suddenly removed, determine (a) the velocity of collar A 
when it is 8 in. from O, (b) the velocity of collar A when 
collar B comes to rest. (Assume that collar B does not hit O, that 
collar A does not come off rod OE, and that the mass of the frame 
is negligible.)

 13.96 A 1.5-lb ball that can slide on a horizontal frictionless surface is 
attached to a fixed point O by means of an elastic cord of constant 
k 5 1 lb/in. and undeformed length 2 ft. The ball is placed at 
point A, 3 ft from O, and given an initial velocity v0 perpendicular 
to OA. Determine (a) the smallest allowable value of the initial 
speed v0 if the cord is not to become slack, (b) the closest distance 
d that the ball will come to point O if it is given half the initial 
speed found in part a.

 13.97 A 1.5-lb ball that can slide on a horizontal frictionless surface 
is attached to a fixed point O by means of an elastic cord of constant 
k 5 1 lb/in. and undeformed length 2 ft. The ball is placed at 
point A, 3 ft from O, and given an initial velocity v0 perpendicular 
to OA, allowing the ball to come within a distance d 5 9 in. of 
point O after the cord has become slack. Determine (a) the initial 
speed v0 of the ball, (b) its maximum speed.

 13.98 Using the principles of conservation of energy and conservation of 
angular momentum, solve part a of Sample Prob. 12.9.

 13.99 Solve Sample Prob. 13.8, assuming that the elastic cord is replaced 
by a central force F of magnitude (80/r2) N directed toward O.

1 m

r A
B

C

D

O

vθ

vr

Fig. P13.93 and P13.94

B

C

A

D

O

vA4 in.

E

Fig. P13.95

1 ft

2 ft

O

A

d

v

v0

Fig. P13.96 and P13.97
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810 Kinetics of Particles: Energy and Momentum 
Methods

 13.100 A spacecraft is describing an elliptic orbit of minimum altitude 
hA 5 2400 km and maximum altitude hB 5 9600 km above the 
surface of the earth. Determine the speed of the spacecraft at A.

vA

A B

115 × 103 mi 183 × 103 mi

Saturn

Tethys

Fig. P13.102

hA

A BO

vA

vB

6370 km

hB

Fig. P13.100

O 185 mi

22,230 mi
R = 3960 mi

AB

Fig. P13.101

vA

A B

350 × 103 km 100 × 103 km

Jupiter

Fig. P13.103

 13.101 While describing a circular orbit, 185 mi above the surface of the 
earth, a space shuttle ejects at point A an inertial upper stage (IUS) 
carrying a communications satellite to be placed in a geosynchro-
nous orbit (see Prob. 13.87) at an altitude of 22,230 mi above the 
surface of the earth. Determine (a) the velocity of the IUS relative 
to the shuttle after its engine has been fired at A, (b) the increase 
in velocity required at B to place the satellite in its final orbit.

 13.102 A spacecraft approaching the planet Saturn reaches point A with a 
velocity vA of magnitude 68.8 3 103 ft/s. It is to be placed in an 
elliptic orbit about Saturn so that it will be able to periodically 
examine Tethys, one of Saturn’s moons. Tethys is in a circular orbit 
of radius 183 3 103 mi about the center of Saturn, traveling at a 
speed of 37.2 3 103 ft/s. Determine (a) the decrease in speed 
required by the spacecraft at A to achieve the desired orbit, (b) the 
speed of the spacecraft when it reaches the orbit of Tethys at B.

 13.103 A spacecraft traveling along a parabolic path toward the planet 
 Jupiter is expected to reach point A with a velocity vA of magnitude 
26.9 km/s. Its engines will then be fired to slow it down, placing it 
into an elliptic orbit which will bring it to within 100 3 103 km of 
Jupiter. Determine the decrease in speed Dv at point A which will 
place the spacecraft into the required orbit. The mass of Jupiter is 
319 times the mass of the earth.
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811Problems

BA O

6370 km

h1 h2

Fig. P13.105

 13.104 As a first approximation to the analysis of a space flight from the 
earth to Mars, it is assumed that the orbits of the earth and Mars 
are circular and coplanar. The mean distances from the sun to the 
earth and to Mars are 149.6 3 106 km and 227.8 3 106 km, respec-
tively. To place the spacecraft into an elliptical transfer orbit at 
point A, its speed is increased over a short interval of time to vA 
which is faster than the earth’s orbital speed. When the spacecraft 
reaches point B on the elliptical transfer orbit, its speed vB is 
increased to the orbital speed of Mars. Knowing that the mass of 
the sun is 332.8 3 103 times the mass of the earth, determine the 
increase in velocity required (a) at A, (b) at B.

 13.105 The optimal way of transferring a space vehicle from an inner 
circular orbit to an outer coplanar circular orbit is to fire its 
engines as it passes through A to increase its speed and place it 
in an elliptic transfer orbit. Another increase in speed as it 
passes through B will place it in the desired circular orbit. For 
a vehicle in a circular orbit about the earth at an altitude h1 5 
200 mi, which is to be transferred to a circular orbit at an alti-
tude h2 5 500 mi, determine (a) the required increases in speed 
at A and at B, (b) the total energy per unit mass required to 
 execute the transfer.

 13.106 During a flyby of the earth, the velocity of a spacecraft is 10.4 km/s 
as it reaches its minimum altitude of 990 km above the surface at 
point A. At point B the spacecraft is observed to have an altitude of 
8350 km. Determine (a) the magnitude of the velocity at point B, 
(b) the angle fB.

 13.107 A space platform is in a circular orbit about the earth at an alti-
tude of 300 km. As the platform passes through A, a rocket car-
rying a communications satellite is launched from the platform 
with a relative velocity of magnitude 3.44 km/s in a direction 
tangent to the orbit of the platform. This was intended to place 
the rocket in an elliptic transfer orbit bringing it to point B, where 
the rocket would again be fired to place the satellite in a geosyn-
chronous orbit of radius 42 140 km. After launching, it was dis-
covered that the relative velocity imparted to the rocket was too 
large. Determine the angle g at which the rocket will cross the 
intended orbit at point C.

Transfer
orbit

Orbit
of Mars

BA
Sun

Orbit
of earth

Fig. P13.104

990 km

6370 km

8350 km

B

fB

A

Fig. P13.106

Fig. P13.107

300 km

Intended
trajectory

Actual
trajectory

AB

C

R = 6370 km
42 140 km

γ
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 13.108 A satellite is projected into space with a velocity v0 at a distance 
r0 from the center of the earth by the last stage of its launching 
rocket. The velocity v0 was designed to send the satellite into a 
circular orbit of radius r0. However, owing to a malfunction of 
control, the satellite is not projected horizontally but at an angle 
a with the horizontal and, as a result, is propelled into an elliptic 
orbit. Determine the maximum and minimum values of the dis-
tance from the center of the earth to the satellite.

225 mi

A

BO

R = 3960 mi

vB

fB

Fig. P13.110

a

rmin

r0

v0

rmax

r0

Fig. P13.108

vC

vB    

C

O
B

140 km

1740 km

f

Fig. P13.109

 13.109 Upon the LEM’s return to the command module, the Apollo 
spacecraft was turned around so that the LEM faced to the 
rear. The LEM was then cast adrift with a velocity of 200 m/s 
relative to the command module. Determine the magnitude and 
direction (angle f formed with the vertical OC) of the velocity 
vC of the LEM just before it crashed at C on the moon’s 
surface.

 13.110 A space vehicle is in a circular orbit at an altitude of 225 mi above 
the earth. To return to earth, it decreases its speed as it passes 
through A by firing its engine for a short interval of time in a 
direction opposite to the direction of its motion. Knowing that the 
velocity of the space vehicle should form an angle fB 5 60° with 
the vertical as it reaches point B at an altitude of 40 mi, determine 
(a) the required speed of the vehicle as it leaves its circular orbit 
at A, (b) its speed at point B.

  *13.111 In Prob. 13.110, the speed of the space vehicle was decreased as it 
passed through A by firing its engine in a direction opposite to the 
direction of motion. An alternative strategy for taking the space 
vehicle out of its circular orbit would be to turn it around so that 
its engine would point away from the earth and then give it an 
incremental velocity DvA toward the center O of the earth. This 
would likely require a smaller expenditure of energy when firing 
the engine at A, but might result in too fast a descent at B. Assum-
ing this strategy is used with only 50 percent of the energy expen-
diture used in Prob. 13.110, determine the resulting values of fB 
and vB.
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813Problems 13.112 Show that the values vA and vP of the speed of an earth satellite 
at the apogee A and the perigee P of an elliptic orbit are defined 
by the relations

 v2
A 5

2GM
rA 1 rP

 
rP

rA
  v2

P 5
2GM

rA 1 rP
 
rA

rP

  where M is the mass of the earth, and rA and rP represent, respec-
tively, the maximum and minimum distances of the orbit to the 
center of the earth.

 13.113 Show that the total energy E of an earth satellite of mass m describ-
ing an elliptic orbit is E 5 2GMm/(rA 1 rP), where M is the mass of 
the earth, and rA and rP represent, respectively, the maximum and 
minimum distances of the orbit to the center of the earth. (Recall 
that the gravitational potential energy of a satellite was defined as 
being zero at an infinite distance from the earth.)

  *13.114 A space probe describes a circular orbit of radius nR with a velocity 
v0 about a planet of radius R and center O. Show that (a) in order 
for the probe to leave its orbit and hit the planet at an angle u with 
the vertical, its velocity must be reduced to av0, where

  a 5 sin u 

B

2(n 2 1)

n2 2 sin2 u

  (b) the probe will not hit the planet if a is larger than 12/(1 1 n).

 13.115 A missile is fired from the ground with an initial velocity v0 forming 
an angle f0 with the vertical. If the missile is to reach a maximum 
altitude equal to aR, where R is the radius of the earth, (a) show 
that the required angle f0 is defined by the relation

sin f0 5 (1 1 a) 
B

1 2
 a

1 1 a
 avesc

v0
b2

  where vesc is the escape velocity, (b) determine the range of allow-
able values of v0.

 13.116 A spacecraft of mass m describes a circular orbit of radius r1 
around the earth. (a) Show that the additional energy DE which 
must be imparted to the spacecraft to transfer it to a circular orbit 
of larger radius r2 is

¢E 5
GMm1r2 2 r12

2r1r2

  where M is the mass of the earth. (b) Further show that if the 
transfer from one circular orbit to the other is executed by placing 
the spacecraft on a transitional semielliptic path AB, the amounts 
of energy DEA and DEB which must be imparted at A and B are, 
respectively, proportional to r2 and r1:

¢EA 5
r2

r1 1 r2
 ¢E  ¢EB 5

r1

r1 1 r2
 ¢E

  *13.117 Using the answers obtained in Prob. 13.108, show that the intended 
circular orbit and the resulting elliptic orbit intersect at the ends 
of the minor axis of the elliptic orbit.

Fig. P13.116

BA
O

r1 r2

PA O

vA

vP

rA rP

Fig. P13.112 and P13.113
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  *13.118 (a) Express in terms of rmin and vmax the angular momentum per 
unit mass, h, and the total energy per unit mass, E/m, of a space 
vehicle moving under the gravitational attraction of a planet of 
mass M (Fig. 13.15). (b) Eliminating vmax between the equations 
obtained, derive the formula

1
rmin

5
GM

h2
 c1 1

B
1 1

2E
m

 a h
GM
b2

 d
  (c) Show that the eccentricity £ of the trajectory of the vehicle can 

be expressed as

e 5
B

1 1
2E
m

 a h
GM
b2

  (d ) Further show that the trajectory of the vehicle is a hyperbola, 
an ellipse, or a parabola, depending on whether E is positive, nega-
tive, or zero.

13.10 PRINCIPLE OF IMPULSE AND MOMENTUM
A third basic method for the solution of problems dealing with the 
motion of particles will be considered now. This method is based on 
the principle of impulse and momentum and can be used to solve 
problems involving force, mass, velocity, and time. It is of particular 
interest in the solution of problems involving impulsive motion and 
problems involving impact (Secs. 13.11 and 13.12).
 Consider a particle of mass m acted upon by a force F. As we 
saw in Sec. 12.3, Newton’s second law can be expressed in the form

 F 5
d
dt

 (mv) (13.27)

where mv is the linear momentum of the particle. Multiplying both 
sides of Eq. (13.27) by dt and integrating from a time t1 to a time t2, 
we write

 F dt 5 d(mv)

 #
t2

t1

F dt 5 mv2 2 mv1

or, transposing the last term,

 mv1 1 #
t2

t1

 F dt 5 mv2 (13.28)

The integral in Eq. (13.28) is a vector known as the linear impulse, 
or simply the impulse, of the force F during the interval of time 
considered. Resolving F into rectangular components, we write

 Imp1y2 5 #
t2

t1

 F dt

  5 i#
t2

t1

 Fx dt 1 j#
t2

t1

 Fy dt 1 k#
t2

t1

 Fz dt (13.29)

814 Kinetics of Particles: Energy and Momentum 
Methods

Photo 13.2 This impact test between an F-4 
Phantom and a rigid reinforced target was to 
determine the impact force as a function of time.

Photo 13.1
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815and note that the components of the impulse of the force F are, 
respectively, equal to the areas under the curves obtained by plotting 
the components Fx, Fy, and Fz against t (Fig. 13.16). In the case of a 
force F of constant magnitude and direction, the impulse is repre-
sented by the vector F(t2 2 t1), which has the same direction as F.
 If SI units are used, the magnitude of the impulse of a force is 
expressed in N ? s. But, recalling the definition of the newton, we have

N ? s 5 (kg ? m/s2) ? s 5 kg ? m/s

which is the unit obtained in Sec. 12.4 for the linear momentum of 
a particle. We thus check that Eq. (13.28) is dimensionally correct. 
If U.S. customary units are used, the impulse of a force is expressed 
in lb ? s, which is also the unit obtained in Sec. 12.4 for the linear 
momentum of a particle.
 Equation (13.28) expresses that when a particle is acted upon by 
a force F during a given time interval, the final momentum mv2 of the 
particle can be obtained by adding vectorially its initial momentum 
mv1 and the impulse of the force F during the time interval considered 

13.10 Principle of Impulse and Momentum

O

Fz

t1 t2 t

O

Fy

t1 t2 t

O

Fx

t1 t2 t

Fig. 13.16

mv1

mv2

=+

t2

t1

Imp 1    2 =     F dt�

Fig. 13.17

(Fig. 13.17). We write

 mv1 1 Imp1y2 5 mv2 (13.30)

We note that while kinetic energy and work are scalar quantities, 
momentum and impulse are vector quantities. To obtain an analytic 
solution, it is thus necessary to replace Eq. (13.30) by the corre-
sponding component equations

 (mvx)1 1 #
t2

t1

 Fx dt 5 (mvx)2

  (mvy)1 1 #
t2

t1

 Fy dt 5 (mvy)2 (13.31)

 (mvz)1 1 #
t2

t1

 Fz dt 5 (mvz)2

 When several forces act on a particle, the impulse of each of 
the forces must be considered. We have

 mv1 1 o Imp1y2 5 mv2 (13.32)
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816 Kinetics of Particles: Energy and Momentum 
Methods

Again, the equation obtained represents a relation between vector 
quantities; in the actual solution of a problem, it should be replaced 
by the corresponding component equations.
 When a problem involves two particles or more, each particle 
can be considered separately and Eq. (13.32) can be written for each 
particle. We can also add vectorially the momenta of all the particles 
and the impulses of all the forces involved. We write then

 omv1 1 o Imp1y2 5 omv2 (13.33)
Since the forces of action and reaction exerted by the particles on 
each other form pairs of equal and opposite forces, and since the time 
interval from t1 to t2 is common to all the forces involved, the impulses 
of the forces of action and reaction cancel out and only the impulses 
of the external forces need be considered.†
 If no external force is exerted on the particles or, more gener-
ally, if the sum of the external forces is zero, the second term in 
Eq. (13.33) vanishes and Eq. (13.33) reduces to

 omv1 5 omv2 (13.34)
which expresses that the total momentum of the particles is con-
served. Consider, for example, two boats, of mass mA and mB, initially 
at rest, which are being pulled together (Fig. 13.18). If the resistance 

†We should note the difference between this statement and the corresponding 
 statement made in Sec. 13.4 regarding the work of the forces of action and reaction 
between several particles. While the sum of the impulses of these forces is always zero, 
the sum of their work is zero only under special circumstances, e.g., when the various 
bodies involved are connected by inextensible cords or links and are thus constrained to 
move through equal distances.

‡Blue equals signs are used in Fig. 13.18 and throughout the remainder of this chapter 
to express that two systems of vectors are equipollent, i.e., that they have the same 
resultant and moment resultant (cf. Sec. 3.19). Red equals signs will continue to be 
used to indicate that two systems of vectors are equivalent, i.e., that they have the same 
effect. This and the concept of conservation of momentum for a system of particles will 
be discussed in greater detail in Chap. 14.

=
mAvA = 0 mBvB = 0

mAv'A mBv'B

Fig. 13.18

of the water is neglected, the only external forces acting on the boats 
are their weights and the buoyant forces exerted on them. Since 
these forces are balanced, we write

 omv1 5 omv2

 0 5 mAv9A 1 mBv9B

where v9A and v9B represent the velocities of the boats after a finite 
interval of time. The equation obtained indicates that the boats move 
in opposite directions (toward each other) with velocities inversely 
proportional to their masses.‡
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81713.11 IMPULSIVE MOTION
A force acting on a particle during a very short time interval that is 
large enough to produce a definite change in momentum is called 
an impulsive force and the resulting motion is called an impulsive 
motion. For example, when a baseball is struck, the contact between 
bat and ball takes place during a very short time interval Dt. But the 
average value of the force F exerted by the bat on the ball is very 
large, and the resulting impulse F Dt is large enough to change the 
sense of motion of the ball (Fig. 13.19).
 When impulsive forces act on a particle, Eq. (13.32) becomes

 mv1 1 oF Dt 5 mv2 (13.35)

Any force which is not an impulsive force may be neglected, since 
the corresponding impulse F Dt is very small. Nonimpulsive forces 
include the weight of the body, the force exerted by a spring, or any 
other force which is known to be small compared with an impulsive 
force. Unknown reactions may or may not be impulsive; their 
impulses should therefore be included in Eq. (13.35) as long as they 
have not been proved negligible. The impulse of the weight of the 
baseball considered above, for example, may be neglected. If the 
motion of the bat is analyzed, the impulse of the weight of the bat 
can also be neglected. The impulses of the reactions of the player’s 
hands on the bat, however, should be included; these impulses will 
not be negligible if the ball is incorrectly hit.
 We note that the method of impulse and momentum is particu-
larly effective in the analysis of the impulsive motion of a particle, 
since it involves only the initial and final velocities of the particle and 
the impulses of the forces exerted on the particle. The direct applica-
tion of Newton’s second law, on the other hand, would require the 
determination of the forces as functions of the time and the integra-
tion of the equations of motion over the time interval Dt.
 In the case of the impulsive motion of several particles, 
Eq. (13.33) can be used. It reduces to

 omv1 1 oF Dt 5 omv2 (13.36)

where the second term involves only impulsive, external forces. If all 
the external forces acting on the various particles are nonimpulsive, 
the second term in Eq. (13.36) vanishes and this equation reduces 
to Eq. (13.34). We write

 omv1 5 omv2 (13.34)

which expresses that the total momentum of the particles is con-
served. This situation occurs, for example, when two particles which 
are moving freely collide with one another. We should note, however, 
that while the total momentum of the particles is conserved, their 
total energy is generally not conserved. Problems involving the col-
lision or impact of two particles will be discussed in detail in 
Secs. 13.12 through 13.14.

13.11 Impulsive Motion

mv1 mv2 =+ FΔ t

WΔ t ≈ 0

Fig. 13.19 
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818

SAMPLE PROBLEM 13.10

An automobile weighing 4000 lb is driven down a 5° incline at a speed of 
60 mi/h when the brakes are applied, causing a constant total braking force 
(applied by the road on the tires) of 1500 lb. Determine the time required 
for the automobile to come to a stop.

SOLUTION

We apply the principle of impulse and momentum. Since each force is 
constant in magnitude and direction, each corresponding impulse is equal 
to the product of the force and of the time interval t.

5°

5°

=+

Wt

Ft

Nt

mv1
mv2 = 0

 mv1 1 o Imp1y2 5 mv2
 1q components:  mv1 1 (W sin 5°)t 2 Ft 5 0
(4000/32.2)(88 ft/s) 1 (4000 sin 5°)t 2 1500t 5 0 t 5 9.49 s ◀

SAMPLE PROBLEM 13.11

A 4-oz baseball is pitched with a velocity of 80 ft/s toward a batter. After 
the ball is hit by the bat B, it has a velocity of 120 ft/s in the direction 
shown. If the bat and ball are in contact 0.015 s, determine the average 
impulsive force exerted on the ball during the impact.

SOLUTION

We apply the principle of impulse and momentum to the ball. Since the 
weight of the ball is a nonimpulsive force, it can be neglected.
 mv1 1 o Imp1y2 5 mv2
y
1  x components: 2mv1 1 Fx Dt 5 mv2 cos 40°

 2
4
16

32.2
 (80 ft/s) 1 Fx(0.015 s) 5

4
16

32.2
 (120 ft/s) cos 40°

 Fx 5 189.0 lb
 1xy components: 0 1 Fy Dt 5 mv2 sin 40°

  Fy(0.015 s) 5

4
16

32.2
 (120 ft/s) sin 40°

 Fy 5 139.9 lb
From its components Fx and Fy we determine the magnitude and direction 
of the force F:
 F 5 97.5 lb a 24.2° ◀

40°+ =mv1

mv2

Fx Δ t

Fy Δ t

40°

B

120 ft /s

80 ft /s
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819

SAMPLE PROBLEM 13.12

A 10-kg package drops from a chute into a 25-kg cart with a velocity of 3 m/s. 
Knowing that the cart is initially at rest and can roll freely, determine (a) the 
final velocity of the cart, (b) the impulse exerted by the cart on the package, 
(c) the fraction of the initial energy lost in the impact.

SOLUTION

We first apply the principle of impulse and momentum to the package-cart 
system to determine the velocity v2 of the cart and package. We then apply 
the same principle to the package alone to determine the impulse F Dt 
exerted on it.

a. Impulse-Momentum Principle: Package and Cart

 mPv1 1 o Imp1y2 5 (mP 1 mC)v2
y
1  x components: mP v1 cos 30° 1 0 5 (mP 1 mC)v2
 (10 kg)(3 m/s) cos 30° 5 (10 kg 1 25 kg)v2
 v2 5 0.742 m/sy  ◀ 
We note that the equation used expresses conservation of momentum in the 
x direction.

b. Impulse-Momentum Principle: Package

30° + =
mPv1

(mP + mC)v2

R Δ t

Fx Δ t

Fy Δ t

30°

+ =
mPv1

mPv2

 mPv1 1 o Imp1y2 5 mPv2
 y1  x components: (10 kg)(3 m/s) cos 30° 1 Fx Dt 5 (10 kg)(0.742 m/s)
 Fx Dt 5 218.56 N ? s
1xy components: 2mP v1 sin 30° 1 Fy Dt 5 0
 2(10 kg)(3 m/s) sin 30° 1 Fy Dt 5 0
 Fy Dt 5 115 N ? s

The impulse exerted on the package is F Dt 5 23.9 N ? s b 38.9° ◀ 

c. Fraction of Energy Lost. The initial and final energies are

 T1 5 1
2 mP v2

1 5 1
2(10 kg)(3 m/s)2 5 45 J

 T2 5 1
2(mP 1 mC)v2

2 5 1
2(10 kg 1 25 kg)(0.742 m/s)2 5 9.63 J

The fraction of energy lost is 
T1 2 T2

T1
5

45 J 2 9.63 J

45 J
5 0.786 ◀ 

30°
3 m/s
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820

SOLVING PROBLEMS
ON YOUR OWN

In this lesson we integrated Newton’s second law to derive the principle of 
impulse and momentum for a particle. Recalling that the linear momentum of 

a particle was defined as the product of its mass m and its velocity v [Sec. 12.3], 
we wrote

 mv1 1 o Imp1y2 5 mv2 (13.32)

This equation expresses that the linear momentum mv2 of a particle at time t2 can 
be obtained by adding to its linear momentum mv1 at time t1 the impulses of the 
forces exerted on the particle during the time interval t1 to t2. For computing 
purposes, the momenta and impulses may be expressed in terms of their rectan-
gular components, and Eq. (13.32) can be replaced by the equivalent scalar equa-
tions. The units of momentum and impulse are N ? s in the SI system of units 
and lb ? s in U.S. customary units. To solve problems using this equation you can 
follow these steps:

1. Draw a diagram showing the particle, its momentum at t1 and at t2, and the 
impulses of the forces exerted on the particle during the time interval t1 to t2.

2. Calculate the impulse of each force, expressing it in terms of its rectangular 
components if more than one direction is involved. You may encounter the follow-
ing cases:
 a. The time interval is finite and the force is constant.

Imp1y2 5 F(t2 2 t1)

 b. The time interval is finite and the force is a function of t.

Imp1y2 5 #
t2

t1

 F(t) dt

 c. The time interval is very small and the force is very large. The force is 
called an impulsive force and its impulse over the time interval t2 2 t1 5 Dt is

Imp1y2 5 F Dt

Note that this impulse is zero for a nonimpulsive force such as the weight of a 
body, the force exerted by a spring, or any other force which is known to be small 
by comparison with the impulsive forces. Unknown reactions, however, cannot be 
assumed to be nonimpulsive and their impulses should be taken into account.

3. Substitute the values obtained for the impulses into Eq. (13.32) or into the 
equivalent scalar equations. You will find that the forces and velocities in the 
problems of this lesson are contained in a plane. You will, therefore, write two 
scalar equations and solve these equations for two unknowns. These unknowns 
may be a time [Sample Prob. 13.10], a velocity and an impulse [Sample 
Prob. 13.12], or an average impulsive force [Sample Prob. 13.11].
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821

4. When several particles are involved, a separate diagram should be drawn for 
each particle, showing the initial and final momentum of the particle, as well as 
the impulses of the forces exerted on the particle.
 a. It is usually convenient, however, to first consider a diagram including all 
the particles. This diagram leads to the equation

 omv1 1 o Imp1y2 5 omv2 (13.33)

where the impulses of only the forces external to the system need be considered. 
Therefore, the two equivalent scalar equations will not contain any of the impulses 
of the unknown internal forces.
 b. If the sum of the impulses of the external forces is zero, Eq. (13.33) 
reduces to

 omv1 5 omv2 (13.34)

which expresses that the total momentum of the particles is conserved. This occurs 
either if the resultant of the external forces is zero or, when the time interval Dt 
is very short (impulsive motion), if all the external forces are nonimpulsive. Keep 
in mind, however, that the total momentum may be conserved in one direction, 
but not in another [Sample Prob. 13.12].
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PROBLEMS

822

CONCEPT QUESTIONS

 13.CQ4 A large insect impacts the front windshield of a sports car traveling 
down a road. Which of the following statements is true during the 
collision?
a. The car exerts a greater force on the insect than the insect 

exerts on the car.
b. The insect exerts a greater force on the car than the car exerts 

on the insect.
c. The car exerts a force on the insect, but the insect does not 

exert a force on the car.
d. The car exerts the same force on the insect as the insect exerts 

on the car.
e. Neither exerts a force on the other; the insect gets smashed 

simply because it gets in the way of the car.

13.CQ5 The expected damages associated with two types of perfectly plas-
tic collisions are to be compared. In the first case, two  identical 
cars traveling at the same speed impact each other head-on. In 
the second case, the car impacts a massive concrete wall. In which 
case would you expect the car to be more damaged?
a. Case 1
b. Case 2
c. The same damage in each case

IMPULSE-MOMENTUM PRACTICE PROBLEMS

13.F1 The initial velocity of the block in position A is 30 ft/s. The co-
efficient of kinetic friction between the block and the plane is 
mk 5 0.30. Draw the impulse-momentum diagram that can be 
used to determine the time it takes for the block to reach B with 
zero velocity, if u 5 208.

 13.F2 A 4-lb collar which can slide on a frictionless vertical rod is acted 
upon by a force P which varies in magnitude as shown. Knowing 
that the collar is initially at rest, draw the impulse-momentum 
diagram that can be used to determine its velocity at t 5 3 s.

Case 1

Case 2

vA

vA vA

Fig. P13.CQ5

A

B
vA

v = 0

q

Fig. P13.F1

P (lb)

t (s)

10

21 30

P

4 lb

Fig. P13.F2
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823Problems 13.F3 The 15-kg suitcase A has been propped up against one end of a 40-
kg luggage carrier B and is prevented from sliding down by other 
luggage. When the luggage is unloaded and the last heavy trunk is 
removed from the carrier, the suitcase is free to slide down, caus-
ing the 40-kg carrier to move to the left with a velocity vB of mag-
nitude 0.8 m/s. Neglecting friction, draw the impulse-momentum 
diagrams that can be used to determine (a) the velocity of A as it 
rolls on the carrier, (b) the velocity of the carrier after the suitcase 
hits the right side of the carrier without bouncing back.

4 in.

16 in.
B

vB

vA/B
A

AG
G

Fig. P13.F3

B

v'

vB

A
vA

50°

Fig. P13.F4

B'

B

L

A

v0

a

Fig. P13.F5

 13.F4 Car A was traveling west at a speed of 15 m/s and car B was trav-
eling north at an unknown speed when they slammed into each 
other at an intersection. Upon investigation it was found that after 
the crash the two cars got stuck and skidded off at an angle of 508 
north of east. Knowing the masses of A and B are mA and mB, re-
spectively, draw the impulse-momentum diagram that can be used 
to determine the velocity of B before impact.

 13.F5 Two identical spheres A and B, each of mass m, are attached to an 
inextensible inelastic cord of length L and are resting at a distance 
a from each other on a frictionless horizontal surface. Sphere B 
is given a velocity v0 in a direction perpendicular to line AB and 
moves it without friction until it reaches B9 where the cord be-
comes taut. Draw the impulse-momentum diagram that can be 
used to determine the magnitude of the velocity of each sphere 
immediately after the cord has become taut.

END-OF-SECTION PROBLEMS

 13.119 A 35 000-Mg ocean liner has an initial velocity of 4 km/h. Neglect-
ing the frictional resistance of the water, determine the time 
required to bring the liner to rest by using a single tugboat which 
exerts a constant force of 150 kN.
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824 Kinetics of Particles: Energy and Momentum 
Methods

 13.120 A 2500-lb automobile is moving at a speed of 60 mi/h when the 
brakes are fully applied, causing all four wheels to skid. Determine 
the time required to stop the automobile (a) on dry pavement 
(mk 5 0.75), (b) on an icy road (mk 5 0.10).

 13.121 A sailboat weighing 980 lb with its occupants is running down 
wind at 8 mi/h when its spinnaker is raised to increase its speed. 
Determine the net force provided by the spinnaker over the 10-s 
interval that it takes for the boat to reach a speed of 12 mi/h.

 13.122 A truck is hauling a 300-kg log out of a ditch using a winch 
attached to the back of the truck. Knowing the winch applies a 
constant force of 2500 N and the coefficient of kinetic friction 
between the ground and the log is 0.45, determine the time for 
the log to reach a speed of 0.5 m/s.

 13.123 A truck is traveling down a road with a 3-percent grade at a speed 
of 55 mi/h when the brakes are applied. Knowing the coefficients 
of friction between the load and the flatbed trailer shown are 
ms 5 0.40 and mk 5 0.35, determine the shortest time in which 
the rig can be brought to a stop if the load is not to shift.

20°

Fig. P13.122

Fig. P13.123

 13.124 Steep safety ramps are built beside mountain highways to enable 
vehicles with defective brakes to stop. A 10-ton truck enters a 158 
ramp at a high speed v0 5 108 ft/s and travels for 6 s before its speed 
is reduced to 36 ft/s. Assuming constant deceleration, determine 
(a) the magnitude of the braking force, (b) the additional time required 
for the truck to stop. Neglect air resistance and rolling resistance.

 13.125 Baggage on the floor of the baggage car of a high-speed train is not 
prevented from moving other than by friction. The train is traveling 
down a 5-percent grade when it decreases its speed at a constant rate 
from 120 mi/h to 60 mi/h in a time interval of 12 s. Determine the 
smallest allowable value of the coefficient of static friction between 
a trunk and the floor of the baggage car if the trunk is not to slide.

 13.126 A 2-kg particle is acted upon by the force, expressed in newtons, 
F 5 (8 2 6t)i 1 (4 2 t2)j 1 (4 1 t)k. Knowing that the velocity of 
the particle is v 5 (150 m/s)i 1 (100 m/s)j 2 (250 m/s)k at t 5 0, 
determine (a) the time at which the velocity of the particle is parallel 
to the yz plane, (b) the corresponding velocity of the particle.

CROSS COUNTRY MOVERS

v0

15°

Fig. P13.124

v

Fig. P13.121
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825Problems 13.127 A truck is traveling down a road with a 4-percent grade at a speed 
of 60 mi/h when its brakes are applied to slow it down to 20 mi/h. 
An antiskid braking system limits the braking force to a value 
at which the wheels of the truck are just about to slide. Knowing that 
the coefficient of static friction between the road and the wheels is 
0.60, determine the shortest time needed for the truck to slow down.

 13.128 Skid marks on a drag race track indicate that the rear (drive) 
wheels of a car slip for the first 20 m of the 400-m track. (a) Know-
ing that the coefficient of kinetic friction is 0.60, determine the 
shortest possible time for the car to travel the initial 20-m portion 
of the track if it starts from rest with its front wheels just off the 
ground. (b) Determine the minimum time for the car to run the 
whole race if, after skidding for 20 m, the wheels roll without slid-
ing for the remainder of the race. Assume for the rolling portion 
of the race that 65 percent of the weight is on the rear wheels and 
that the coefficient of static friction is 0.85. Ignore air resistance 
and rolling resistance.

 13.129 The subway train shown is traveling at a speed of 30 mi/h when 
the brakes are fully applied on the wheels of cars B and C, causing 
them to slide on the track, but are not applied on the wheels of 
car A. Knowing that the coefficient of kinetic friction is 0.35 
between the wheels and the track, determine (a) the time required 
to bring the train to a stop, (b) the force in each coupling.

 13.130 Solve Prob. 13.129, assuming that the brakes are applied only on 
the wheels of car A.

 13.131 A trailer truck with a 2000-kg cab and an 8000-kg trailer is travel-
ing on a level road at 90 km/h. The brakes on the trailer fail and 
the antiskid system of the cab provides the largest possible force 
which will not cause the wheels of the cab to slide. Knowing that 
the coefficient of static friction is 0.65, determine (a) the shortest 
time for the rig to come to a stop, (b) the force in the coupling 
during that time.

 13.132 The system shown is at rest when a constant 150-N force is applied 
to collar B. Neglecting the effect of friction, determine (a) the time 
at which the velocity of collar B will be 2.5 m/s to the left, (b) the 
corresponding tension in the cable.

Fig. P13.128

90 km/h

CROSS COUNTRY MOVERS
2000 kg

8000 kg

Fig. P13.131

150 N

B

8 kg

A3 kg

C

Fig. P13.132

Fig. P13.129

30 mi/h

40 tons50 tons40 tons
A CB
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826 Kinetics of Particles: Energy and Momentum 
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 13.133 An 8-kg cylinder C rests on a 4-kg platform A supported by a cord 
which passes over the pulleys D and E and is attached to a 4-kg 
block B. Knowing that the system is released from rest, determine 
(a) the velocity of block B after 0.8 s, (b) the force exerted by the 
cylinder on the platform.

 13.134 An estimate of the expected load on over-the-shoulder seat belts 
is to be made before designing prototype belts that will be evalu-
ated in automobile crash tests. Assuming that an automobile travel-
ing at 45 mi/h is brought to a stop in 110 ms, determine 
(a) the average impulsive force exerted by a 200-lb man on the 
belt, (b) the maximum force Fm exerted on the belt if the force-
time diagram has the shape shown.

 13.135 A 60-g model rocket is fired vertically. The engine applies a thrust 
P which varies in magnitude as shown. Neglecting air resistance 
and the change in mass of the rocket, determine (a) the maximum 
speed of the rocket as it goes up, (b) the time for the rocket to 
reach its maximum elevation.

B

4 kg

A

C8 kg

D E

4 kg

Fig. P13.133

1100

F (lb)

Fm

t (ms)

Fig. P13.134

P (N)

13

P
5

0.2 0.3 0.8 t(s)

Fig. P13.135

 13.136 A simplified model consisting of a single straight line is to be 
obtained for the variation of pressure inside the 10-mm-diameter 
barrel of a rifle as a 20-g bullet is fired. Knowing that it takes 
1.6 ms for the bullet to travel the length of the barrel and that 
the velocity of the bullet upon exit is 700 m/s, determine the value 
of p0.

1.60

p (MPa)

t (ms)

p0

Fig. P13.136
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827Problems 13.137 A 125-lb block initially at rest is acted upon by a force P which 
varies as shown. Knowing that the coefficients of friction between 
the block and the horizontal surface are ms 5 0.50 and mk 5 0.40, 
determine (a) the time at which the block will start moving, 
(b) the maximum speed reached by the block, (c) the time at which 
the block will stop moving.

 13.138 Solve Prob. 13.137, assuming that the weight of the block is 175 lb.

 13.139 A baseball player catching a ball can soften the impact by pulling 
his hand back. Assuming that a 5-oz ball reaches his glove at 
90 mi/h and that the player pulls his hand back during the impact 
at an average speed of 30 ft/s over a distance of 6 in., bringing the 
ball to a stop, determine the average impulsive force exerted on 
the player’s hand.

 13.140 A 1.62-oz golf ball is hit with a golf club and leaves it with a 
velo c ity of 100 mi/h. We assume that for 0 # t # t0, where t0 is 
the duration of the impact, the magnitude F of the force exerted 
on the ball can be expressed as F 5 Fm sin (pt/t0). Knowing that 
t0 5 0.5 ms, determine the maximum value Fm of the force 
exerted on the ball.

 13.141 The triple jump is a track-and-field event in which an athlete gets 
a running start and tries to leap as far as he can with a hop, step, 
and jump. Shown in the figure is the initial hop of the athlete. 
Assuming that he approaches the takeoff line from the left with a 
horizontal velocity of 10 m/s, remains in contact with the ground 
for 0.18 s, and takes off at a 50° angle with a velocity of 12 m/s, 
determine the vertical component of the average impulsive force 
exerted by the ground on his foot. Give your answer in terms of 
the weight W of the athlete.

 13.142 The last segment of the triple jump track-and-field event is the 
jump, in which the athlete makes a final leap, landing in a sand-
filled pit. Assuming that the velocity of a 80-kg athlete just before 
landing is 9 m/s at an angle of 35° with the horizontal and that 
the athlete comes to a complete stop in 0.22 s after landing, deter-
mine the horizontal component of the average impulsive force 
exerted on his feet during landing.

125 lb
P

0 8

P (lb)

100

t (s)
16

Fig. P13.137

6 in.

90 mi/h

Fig. P13.139

9 m/s 35°

Landing pit

Fig. P13.142

10 m/s

12 m/s

Take-
off line

50°

Fig. P13.141
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828 Kinetics of Particles: Energy and Momentum 
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 13.143 The design for a new cementless hip implant is to be studied using 
an instrumented implant and a fixed simulated femur. Assuming 
the punch applies an average force of 2 kN over a time of 2 ms to 
the 200-g implant, determine (a) the velocity of the implant imme-
diately after impact, (b) the average resistance of the implant to 
penetration if the implant moves 1 mm before coming to rest.

 13.144 A 25-g steel-jacketed bullet is fired horizontally with a velocity of 
600 m/s and ricochets off a steel plate along the path CD with a 
velocity of 400 m/s. Knowing that the bullet leaves a 10-mm 
scratch on the plate and assuming that its average speed is 500 m/s 
while it is in contact with the plate, determine the magnitude and 
direction of the average impulsive force exerted by the bullet on 
the plate.

 13.145 A 25-ton railroad car moving at 2.5 mi/h is to be coupled to a 
50-ton car which is at rest with locked wheels (mk 5 0.30). Deter-
mine (a) the velocity of both cars after the coupling is completed, 
(b) the time it takes for both cars to come to rest.

Fig. P13.143

A B
C

D

15�

20�10 mm

Fig. P13.144

50 ton

25 ton

2.5 mi/h

Fig. P13.145

 13.146 At an intersection car B was traveling south and car A was traveling 
30° north of east when they slammed into each other. Upon inves-
tigation it was found that after the crash the two cars got stuck 
and skidded off at an angle of 10° north of east. Each driver 
claimed that he was going at the speed limit of 50 km/h and that 
he tried to slow down but couldn’t avoid the crash because the 
other driver was going a lot faster. Knowing that the masses of cars 
A and B were 1500 kg and 1200 kg, respectively, determine 
(a) which car was going faster, (b) the speed of the faster of the 
two cars if the slower car was traveling at the speed limit.

A

B

30°

10°
v

vA

vB

N

Fig. P13.146
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829Problems 13.147 The 650-kg hammer of a drop-hammer pile driver falls from a 
height of 1.2 m onto the top of a 140-kg pile, driving it 110 mm 
into the ground. Assuming perfectly plastic impact (e 5 0), deter-
mine the average resistance of the ground to penetration.

 13.148 A small rivet connecting two pieces of sheet metal is being clinched 
by hammering. Determine the impulse exerted on the rivet and 
the energy absorbed by the rivet under each blow, knowing that the 
head of the hammer has a weight of 1.5 lb and that it strikes the 
rivet with a velocity of 20 ft/s. Assume that the hammer does not 
rebound and that the anvil is supported by springs and (a) has an 
infinite mass (rigid support), (b) has a weight of 9 lb.

 13.149 Bullet B weighs 0.5 oz and blocks A and C both weigh 3 lb. The 
coefficient of friction between the blocks and the plane is mk 5 0.25. 
Initially the bullet is moving at v0 and blocks A and C are at rest 
(Fig. 1). After the bullet passes through A it becomes embedded in 
block C and all three objects come to stop in the positions shown 
(Fig. 2). Determine the initial speed of the bullet v0.

1.2 m

140 kg

650 kg

Fig. P13.147

20 ft/s

Fig. P13.148

A

6 in. (1)

(2)

4 in.

C

C
Bv0

B
A

Fig. P13.149

 13.150 A 180-lb man and a 120-lb woman stand at opposite ends of a 
300-lb boat, ready to dive, each with a 16-ft/s velocity relative to 
the boat. Determine the velocity of the boat after they have both 
dived, if (a) the woman dives first, (b) the man dives first.

Fig. P13.150
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 13.151 A 75-g ball is projected from a height of 1.6 m with a horizontal 
velocity of 2 m/s and bounces from a 400-g smooth plate supported 
by springs. Knowing that the height of the rebound is 0.6 m, deter-
mine (a) the velocity of the plate immediately after the impact, 
(b) the energy lost due to the impact.

 13.152 A 2-kg sphere A is connected to a fixed point O by an inextensible 
cord of length 1.2 m. The sphere is resting on a frictionless hori-
zontal surface at a distance of 0.5 m from O when it is given a 
velocity v0 in a direction perpendicular to line OA. It moves freely 
until it reaches position A9, when the cord becomes taut. Deter-
mine the maximum allowable velocity v0 if the impulse of the force 
exerted on the cord is not to exceed 3 N ? s.

 13.153 A 1-oz bullet is traveling with a velocity of 1400 ft/s when it impacts 
and becomes embedded in a 5-lb wooden block. The block can move 
vertically without friction. Determine (a) the velocity of the bullet 
and block immediately after the impact, (b) the horizontal and verti-
cal components of the impulse exerted by the block on the bullet.

 13.154 In order to test the resistance of a chain to impact, the chain is 
suspended from a 240-lb rigid beam supported by two columns. A 
rod attached to the last link is then hit by a 60-lb block dropped from 
a 5-ft height. Determine the initial impulse exerted on the chain and 
the energy absorbed by the chain, assuming that the block does not 
rebound from the rod and that the columns supporting the beam are 
(a) perfectly rigid, (b) equivalent to two perfectly elastic springs.

1.6 m

75 g

0.6 m

2 m/s

400 g

Fig. P13.151

A'

A

v0

1.2 m

0.5 m

O

Fig. P13.152

m

30°

M

v0

Fig. P13.153

5 ft

Fig. P13.154
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83113.12 IMPACT
A collision between two bodies which occurs in a very small interval 
of time and during which the two bodies exert relatively large forces 
on each other is called an impact. The common normal to the sur-
faces in contact during the impact is called the line of impact. If the 
mass centers on the two colliding bodies are located on this line, the 
impact is a central impact. Otherwise, the impact is said to be eccen-
tric. Our present study will be limited to the central impact of two 
particles. The analysis of the eccentric impact of two rigid bodies will 
be considered later, in Sec. 17.12.

 If the velocities of the two particles are directed along the line 
of impact, the impact is said to be a direct impact (Fig. 13.20a). If 
either or both particles move along a line other than the line of 
impact, the impact is said to be an oblique impact (Fig. 13.20b).

13.13 DIRECT CENTRAL IMPACT
Consider two particles A and B, of mass mA and mB, which are moving 
in the same straight line and to the right with known velocities vA and 
vB (Fig. 13.21a). If vA is larger than vB, particle A will eventually strike 
particle B. Under the impact, the two particles will deform and, at the 
end of the period of deformation, they will have the same velocity u 
(Fig. 13.21b). A period of restitution will then take place, at the end 
of which, depending upon the magnitude of the impact forces and 
upon the materials involved, the two particles either will have regained 
their original shape or will stay permanently deformed. Our purpose 
here is to determine the velocities v9A and v9B of the particles at the 
end of the period of restitution (Fig. 13.21c).
 Considering first the two particles as a single system, we note 
that there is no impulsive, external force. Thus, the total momentum 
of the two particles is conserved, and we write

mAvA 1 mBvB 5 mAv9A 1 mBv9B

Since all the velocities considered are directed along the same axis, 
we can replace the equation obtained by the following relation involv-
ing only scalar components:

 mAvA 1 mBvB 5 mAv9A 1 mBv9B (13.37)

Fig. 13.20
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13.13 Direct Central Impact

Fig. 13.21
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832 Kinetics of Particles: Energy and Momentum 
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A positive value for any of the scalar quantities vA, vB, v9A, or v9B 
means that the corresponding vector is directed to the right; a 
 negative value indicates that the corresponding vector is directed to 
the left.
 To obtain the velocities v9A and v9B, it is necessary to establish a 
second relation between the scalars v9A and v9B. For this purpose, let 
us now consider the motion of particle A during the period of 
 deformation and apply the principle of impulse and momentum. 
Since the only impulsive force acting on A during this period is 
the force P exerted by B (Fig. 13.22a), we write, using again scalar 
components,

 mAvA 2 e P dt 5 mAu (13.38)

where the integral extends over the period of deformation. Consider-
ing now the motion of A during the period of restitution, and denot-
ing by R the force exerted by B on A during this period (Fig. 13.22b), 
we write

 mAu 2 e R dt 5 mAv9A (13.39)

where the integral extends over the period of restitution.

Fig. 13.22

A

A A

A

A

A

mAvA

mAv'A

mAu

mAu

=

=

+

+

(a) Period of deformation

(b) Period of restitution

P dt�

R dt�

 In general, the force R exerted on A during the period of res-
titution differs from the force P exerted during the period of defor-
mation, and the magnitude e R dt of its impulse is smaller than the 
magnitude e P dt of the impulse of P. The ratio of the magnitudes 
of the impulses corresponding, respectively, to the period of restitu-
tion and to the period of deformation is called the coefficient of res-
titution and is denoted by e. We write

 e 5
e  R dt

e  P dt
 (13.40)

The value of the coefficient e is always between 0 and 1. It depends 
to a large extent on the two materials involved, but it also varies 
considerably with the impact velocity and the shape and size of the 
two colliding bodies.
 Solving Eqs. (13.38) and (13.39) for the two impulses and sub-
stituting into (13.40), we write

 e 5
u 2 vA¿
vA 2 u

 (13.41)
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833A similar analysis of particle B leads to the relation

 e 5
v¿B 2 u
u 2 vB

 (13.42)

Since the quotients in (13.41) and (13.42) are equal, they are also 
equal to the quotient obtained by adding, respectively, their numera-
tors and their denominators. We have, therefore,

e 5
(u 2 v¿A) 1 (v¿B 2 u)
(vA 2 u) 1 (u 2 vB)

5
v¿B 2 v¿A
vA 2 vB

and

 v9B 2 v9A 5 e(vA 2 vB) (13.43)

Since v9B 2 v9A represents the relative velocity of the two particles 
after impact and vA 2 vB represents their relative velocity before 
impact, formula (13.43) expresses that the relative velocity of the two 
particles after impact can be obtained by multiplying their relative 
velocity before impact by the coefficient of restitution. This property 
is used to determine experimentally the value of the coefficient of 
restitution of two given materials.
 The velocities of the two particles after impact can now be 
obtained by solving Eqs. (13.37) and (13.43) simultaneously for v9A 
and v9B. It is recalled that the derivation of Eqs. (13.37) and (13.43) 
was based on the assumption that particle B is located to the right 
of A, and that both particles are initially moving to the right. If par-
ticle B is initially moving to the left, the scalar vB should be consid-
ered negative. The same sign convention holds for the velocities after 
impact: A positive sign for v9A will indicate that particle A moves to 
the right after impact, and a negative sign will indicate that it moves 
to the left.
 Two particular cases of impact are of special interest:

 1. e 5 0, Perfectly Plastic Impact. When e 5 0, Eq. (13.43) yields 
v9B 5 v9A. There is no period of restitution, and both particles 
stay together after impact. Substituting v9B 5 v9A 5 v9 into 
Eq. (13.37), which expresses that the total momentum of the 
particles is conserved, we write

 mAvA 1 mBvB 5 (mA 1 mB)v9 (13.44)

  This equation can be solved for the common velocity v9 of the 
two particles after impact.

 2. e 5 1, Perfectly Elastic Impact. When e 5 1, Eq. (13.43) 
reduces to

 v9B 2 v9A 5 vA 2 vB (13.45)

  which expresses that the relative velocities before and after 
impact are equal. The impulses received by each particle dur-
ing the period of deformation and during the period of restitu-
tion are equal. The particles move away from each other after 
impact with the same velocity with which they approached each 

13.13 Direct Central Impact

Photo 13.3 The height the tennis ball bounces 
decreases after each impact because it has a 
coefficient of restitution less than one and energy is 
lost with each bounce.
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834 Kinetics of Particles: Energy and Momentum 
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other before impact. The velocities v9A and v9B can be obtained 
by solving Eqs. (13.37) and (13.45) simultaneously.

 It is worth noting that in the case of a perfectly elastic impact, the 
total energy of the two particles, as well as their total momentum, is 
conserved. Equations (13.37) and (13.45) can be written as follows:

 mA(vA 2 v9A) 5 mB(v9B 2 vB) (13.379)
 vA 1 v9A 5 vB 1 v9B (13.459)

Multiplying (13.379) and (13.459) member by member, we have

mA(vA 2 v9A)(vA 1 v9A) 5 mB(v9B 2 vB)(v9B 1 vB)
mAv2

A 2 mA(v9A)2 5 mB(v9B)2 2 mBv2
B

Rearranging the terms in the equation obtained and multiplying by 1
2, 

we write

 1
2mAv2

A 1 1
2mBv2

B 5 1
2mA(v¿A)2 1 1

2mB(v¿B)2 (13.46)

which expresses that the kinetic energy of the particles is conserved. 
It should be noted, however, that in the general case of impact, i.e., 
when e is not equal to 1, the total energy of the particles is not con-
served. This can be shown in any given case by comparing the kinetic 
energies before and after impact. The lost kinetic energy is in part 
transformed into heat and in part spent in generating elastic waves 
within the two colliding bodies.

13.14 OBLIQUE CENTRAL IMPACT
Let us now consider the case when the velocities of the two colliding 
particles are not directed along the line of impact (Fig. 13.23). As 
indicated in Sec. 13.12, the impact is said to be oblique. Since the 

Fig. 13.23
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velocities v9A and v9B of the particles after impact are unknown in 
direction as well as in magnitude, their determination will require 
the use of four independent equations.
 We choose as coordinate axes the n axis along the line of impact, 
i.e., along the common normal to the surfaces in contact, and the t 
axis along their common tangent. Assuming that the particles are 
perfectly smooth and frictionless, we observe that the only impulses 

Photo 13.4 When pool balls strike each other 
there is a transfer of momentum.
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835

exerted on the particles during the impact are due to internal forces 
directed along the line of impact, i.e., along the n axis (Fig. 13.24). 
It follows that

 1. The component along the t axis of the momentum of each 
particle, considered separately, is conserved; hence the t com-
ponent of the velocity of each particle remains unchanged. 
We write

 (vA)t 5 (v9A)t  (vB)t 5 (v9B)t (13.47)

 2. The component along the n axis of the total momentum of the 
two particles is conserved. We write

 mA(vA)n 1 mB(vB)n 5 mA(v9A)n 1 mB(v9B)n (13.48)

 3. The component along the n axis of the relative velocity of the 
two particles after impact is obtained by multiplying the n com-
ponent of their relative velocity before impact by the coeffi-
cient of restitution. Indeed, a derivation similar to that given 
in Sec. 13.13 for direct central impact yields

 (v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n] (13.49)

 We have thus obtained four independent equations which can 
be solved for the components of the velocities of A and B after impact. 
This method of solution is illustrated in Sample Prob. 13.15.
 Our analysis of the oblique central impact of two particles has 
been based so far on the assumption that both particles moved freely 
before and after the impact. Let us now examine the case when one 
or both of the colliding particles is constrained in its motion. Con-
sider, for instance, the collision between block A, which is constrained 
to move on a horizontal surface, and ball B, which is free to move 
in the plane of the figure (Fig. 13.25). Assuming no friction between 
the block and the ball, or between the block and the horizontal 
surface, we note that the impulses exerted on the system consist of 
the impulses of the internal forces F and 2F directed along the line 
of impact, i.e., along the n axis, and of the impulse of the external 
force Fext exerted by the horizontal surface on block A and directed 
along the vertical (Fig. 13.26).
 The velocities of block A and ball B immediately after the impact 
are represented by three unknowns: the magnitude of the velocity v9A 
of block A, which is known to be horizontal, and the magnitude and 

Fig. 13.24
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13.14 Oblique Central Impact
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direction of the velocity v9B of ball B. We must therefore write three 
equations by expressing that

 1. The component along the t axis of the momentum of ball B is 
conserved; hence the t component of the velocity of ball B 
remains unchanged. We write

 (vB)t 5 (v9B)t (13.50)

 2. The component along the horizontal x axis of the total momen-
tum of block A and ball B is conserved. We write

 mAvA 1 mB(vB)x 5 mAv9A 1 mB(v9B)x (13.51)

 3. The component along the n axis of the relative velocity of 
block A and ball B after impact is obtained by multiplying 
the n component of their relative velocity before impact by the 
coefficient of restitution. We write again

 (v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n] (13.49)

 We should note, however, that in the case considered here, the 
validity of Eq. (13.49) cannot be established through a mere extension 
of the derivation given in Sec. 13.13 for the direct central impact of 
two particles moving in a straight line. Indeed, these particles were 
not subjected to any external impulse, while block A in the present 
analysis is subjected to the impulse exerted by the horizontal surface. 
To prove that Eq. (13.49) is still valid, we will first apply the principle 
of impulse and momentum to block A over the period of deformation 
(Fig. 13.27). Considering only the horizontal components, we write

 mAvA 2 (e P dt) cos u 5 mAu (13.52)

where the integral extends over the period of deformation and where 
u represents the velocity of block A at the end of that period. Con-
sidering now the period of restitution, we write in a similar way

 mAu 2 (e R dt) cos u 5 mAv9A (13.53)

where the integral extends over the period of restitution.

n
t

BA

n
t

B

A

n
t

BAmAvA

mBvB

mAv'A
mBv'B

=+
FΔ t

FextΔ t

–FΔ t

x

y

q

Fig. 13.26

n

mAvA =+
x

y

mAu
q

P dt�

Pext  dt�Fig. 13.27
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837 Recalling from Sec. 13.13 the definition of the coefficient of 
restitution, we write

 e 5
e R  dt

e P dt
 (13.40)

Solving Eqs. (13.52) and (13.53) for the integrals e P dt and e R dt, 
and substituting into Eq. (13.40), we have, after reductions,

e 5
u 2 v¿A
vA 2 u

or, multiplying all velocities by cos u to obtain their projections on 
the line of impact.

 e 5
un 2 (v¿A)n

(vA)n 2 un
 (13.54)

We note that Eq. (13.54) is identical to Eq. (13.41) of Sec. 13.13, 
except for the subscripts n which are used here to indicate that we 
are considering velocity components along the line of impact. Since 
the motion of ball B is unconstrained, the proof of Eq. (13.49) can 
be completed in the same manner as the derivation of Eq. (13.43) 
of Sec. 13.13. Thus, we conclude that the relation (13.49) between 
the components along the line of impact of the relative velocities 
of two colliding particles remains valid when one of the particles is 
constrained in its motion. The validity of this relation is easily 
extended to the case when both particles are constrained in their 
motion.

13.15  PROBLEMS INVOLVING ENERGY 
AND MOMENTUM

You now have at your disposal three different methods for the solu-
tion of kinetics problems: the direct application of Newton’s second 
law, oF 5 ma; the method of work and energy; and the method of 
impulse and momentum. To derive maximum benefit from these 
three methods, you should be able to choose the method best suited 
for the solution of a given problem. You should also be prepared to 
use different methods for solving the various parts of a problem 
when such a procedure seems advisable.
 You have already seen that the method of work and energy is 
in many cases more expeditious than the direct application of 
 Newton’s second law. As indicated in Sec. 13.4, however, the method 
of work and energy has limitations, and it must sometimes be supple-
mented by the use of oF 5 ma. This is the case, for example, when 
you wish to determine an acceleration or a normal force.
 For the solution of problems involving no impulsive forces, it will 
usually be found that the equation oF 5 ma yields a solution just as 
fast as the method of impulse and momentum and that the method of 
work and energy, if it applies, is more rapid and more convenient. 
However, in problems of impact, the method of impulse and momen-
tum is the only practicable method. A solution based on the direct 
application of oF 5 ma would be unwieldy, and the method of work 

13.15 Problems Involving Energy and 
Momentum
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838 Kinetics of Particles: Energy and Momentum 
Methods

and energy cannot be used since impact (unless perfectly elastic) 
involves a loss of mechanical energy.
 Many problems involve only conservative forces, except for a 
short impact phase during which impulsive forces act. The solution 
of such problems can be divided into several parts. The part corre-
sponding to the impact phase calls for the use of the method of 
impulse and momentum and of the relation between relative veloci-
ties, and the other parts can usually be solved by the method of work 
and energy. If the problem involves the determination of a normal 
force, however, the use of oF 5 ma is necessary.
 Consider, for example, a pendulum A, of mass mA and length l, 
which is released with no velocity from a position A1 (Fig. 13.28a). 
The pendulum swings freely in a vertical plane and hits a second 
pendulum B, of mass mB and same length l, which is initially at rest. 
After the impact (with coefficient of restitution e), pendulum B 
swings through an angle u that we wish to determine.
 The solution of the problem can be divided into three parts:

 1. Pendulum A Swings from A1 to A2. The principle of conserva-
tion of energy can be used to determine the velocity (vA)2 of 
the pendulum at A2 (Fig. 13.28b).

 2. Pendulum A Hits Pendulum B. Using the fact that the total 
momentum of the two pendulums is conserved and the rela-
tion between their relative velocities, we determine the 
velocities (vA)3 and (vB)3 of the two pendulums after impact 
(Fig. 13.28c).

 3. Pendulum B Swings from B3 to B4. Applying the principle of 
conservation of energy to pendulum B, we determine the maxi-
mum elevation y4 reached by that pendulum (Fig. 13.28d). The 
angle u can then be determined by trigonometry.

Fig. 13.28

(vA)1 = 0

(vB)2 = 0(vA)2 (vA)3 (vB)3

(a) (b) (d)

Conservation
of energy

Conservation
of energy

l

l l l l l l

l

A1

B1 A3 B3
A4

B4

A2 B2

Impact:
Conservation of momentum

Relative velocities

(c)

q

y4

 We note that if the tensions in the cords holding the pendulums 
are to be determined, the method of solution just described should 
be supplemented by the use of oF 5 ma.
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SAMPLE PROBLEM 13.13

A 20-Mg railroad car moving at a speed of 0.5 m/s to the right collides with 
a 35-Mg car which is at rest. If after the collision the 35-Mg car is observed 
to move to the right at a speed of 0.3 m/s, determine the coefficient of 
restitution between the two cars.

SOLUTION

We express that the total momentum of the two cars is conserved.

SAMPLE PROBLEM 13.14

A ball is thrown against a frictionless, vertical wall. Immediately before the 
ball strikes the wall, its velocity has a magnitude v and forms an angle of 30° 
with the horizontal. Knowing that e 5 0.90, determine the magnitude and 
direction of the velocity of the ball as it rebounds from the wall.

=
vA = 0.5 m /s vB = 0

mBvBmAvA mBv'BmAv'A

v'B = 0.3 m /sv'A

20 Mg 35 Mg 20 Mg 35 Mg

mAvA 1 mBvB 5 mAv9A 1 mBv9B
(20 Mg)(10.5 m/s) 1 (35 Mg)(0) 5 (20 Mg)v9A 1 (35 Mg)(10.3 m/s)

v9A 5 20.025 m/s    v9A 5 0.025 m/s z

The coefficient of restitution is obtained by writing

e 5
v¿B 2 v¿A
vA 2 vB

5
10.3 2 (20.025)

10.5 2 0
5

0.325
0.5

   e 5 0.65 ◀

30°

v'n

v't

vn

vt

v

v'

32.7°

0.500v

0.779v

SOLUTION

We resolve the initial velocity of the ball into components respectively per-
pendicular and parallel to the wall:

vn 5 v cos 30° 5 0.866v  vt 5 v sin 30° 5 0.500v

Motion Parallel to the Wall. Since the wall is frictionless, the impulse it 
exerts on the ball is perpendicular to the wall. Thus, the component parallel 
to the wall of the momentum of the ball is conserved and we have

v9t 5 vt 5 0.500v x

Motion Perpendicular to the Wall. Since the mass of the wall (and earth) 
is essentially infinite, expressing that the total momentum of the ball and 
wall is conserved would yield no useful information. Using the relation 
(13.49) between relative velocities, we write

 0 2 v9n 5 e(vn 2 0)
 v9n 5 20.90(0.866v) 5 20.779v  v9n 5 0.779v z

Resultant Motion. Adding vectorially the components v9n and v9t,
v9 5 0.926v b 32.7° ◀
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SAMPLE PROBLEM 13.15

The magnitude and direction of the velocities of two identical frictionless 
balls before they strike each other are as shown. Assuming e 5 0.90, deter-
mine the magnitude and direction of the velocity of each ball after the 
impact.

SOLUTION

The impulsive forces that the balls exert on each other during the impact 
are directed along a line joining the centers of the balls called the line of 
impact. Resolving the velocities into components directed, respectively, 
along the line of impact and along the common tangent to the surfaces in 
contact, we write

 (vA)n 5 vA cos 30° 5 126.0 ft/s
 (vA)t 5 vA sin 30° 5 115.0 ft/s
 (vB)n 5 2vB cos 60° 5 220.0 ft/s
 (vB)t 5 vB sin 60° 5 134.6 ft/s

Principle of Impulse and Momentum. In the adjoining sketches we show 
in turn the initial momenta, the impulses, and the final momenta.

Motion Along the Common Tangent. Considering only the t components, 
we apply the principle of impulse and momentum to each ball separately. 
Since the impulsive forces are directed along the line of impact, the t com-
ponent of the momentum, and hence the t component of the velocity of 
each ball, is unchanged. We have

(v9A)t 5 15.0 ft/s x  (v9B)t 5 34.6 ft/s x

Motion Along the Line of Impact. In the n direction, we consider the two 
balls as a single system and note that by Newton’s third law, the internal 
impulses are, respectively, F Dt and 2F Dt and cancel. We thus write that 
the total momentum of the balls is conserved:

 mA(vA)n 1 mB(vB)n 5 mA(v9A)n 1 mB(v9B)n

 m(26.0) 1 m(220.0) 5 m(v9A)n 1 m(v9B)n

 (v9A)n 1 (v9B)n 5 6.0 (1)

Using the relation (13.49) between relative velocities, we write

 (v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n]
 (v9B)n 2 (v9A)n 5 (0.90)[26.0 2 (220.0)]
 (v9B)n 2 (v9A)n 5 41.4 (2)

Solving Eqs. (1) and (2) simultaneously, we obtain

 (v9A)n 5 217.7        (v9B)n 5 123.7
 (v9A)n 5 17.7 ft/s z    (v9B)n 5 23.7 ft/s  y

Resultant Motion. Adding vectorially the velocity components of each ball, 
we obtain

v9A 5 23.2 ft/s b 40.3°    v9B 5 41.9 ft/s a 55.6° ◀

t

n

B

m

30°

vA = 30 ft /s
vB = 40 ft /s

A

m

60°

B

m

30°

vA = 30 ft /s
vB = 40 ft /s

A

m

60°

mA(vA)n

mA(vA)t

mB(vB)n

mB(vB)t

F Δt – F Δt

+
=

mA(v'A)n

mA(v'A)t

mB(v'B)n

mB(v'B)t

v'A = 23.2 ft /s

v'B = 41.9 ft /s

34.6

15.0

17.7 23.7

� = 55.6°� = 40.3°
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SAMPLE PROBLEM 13.16

Ball B is hanging from an inextensible cord BC. An identical ball A is 
released from rest when it is just touching the cord and acquires a velocity 
v0 before striking ball B. Assuming perfectly elastic impact (e 5 1) and no 
friction, determine the velocity of each ball immediately after impact.

SOLUTION

Since ball B is constrained to move in a circle of center C, its velocity vB 
after impact must be horizontal. Thus the problem involves three unknowns: 
the magnitude v9B of the velocity of B, and the magnitude and direction of 
the velocity v9A of A after impact.

Impulse-Momentum Principle: Ball A

 mvA 1 F Dt 5 mv9A
1q t components:   mv0 sin 30° 1 0 5 m(v9A)t

 (v9A)t 5 0.5v0 (1)

We note that the equation used expresses conservation of the momentum 
of ball A along the common tangent to balls A and B.

Impulse-Momentum Principle: Balls A and B

 mvA 1 T Dt 5 mv9A 1 mv9B
 y1  x components:    0 5 m(v9A)t cos 30° 2 m(v9A)n sin 30° 2 mv9B

We note that the equation obtained expresses conservation of the total momen-
tum in the x direction. Substituting for (v9A)t from Eq. (1) and re arranging 
terms, we write

 0.5(v9A)n 1 v9B 5 0.433v0 (2)

Relative Velocities Along the Line of Impact. Since e 5 1, Eq. (13.49) yields

 (v9B)n 2 (v9A)n 5 (vA)n 2 (vB)n

 v9B sin 30° 2 (v9A)n 5 v0 cos 30° 2 0
 0.5v9B 2 (v9A)n 5 0.866v0 (3)

Solving Eqs. (2) and (3) simultaneously, we obtain

(v9A)n 5 20.520v0    v9B 5 0.693v0

v9B 5 0.693v0 z ◀

Recalling Eq. (1) we draw the adjoining sketch and obtain by trigonometry

v9A 5 0.721v0    b 5 46.1°    a 5 46.1° 2 30° 5 16.1°
v9A 5 0.721v0 a 16.1° ◀

T Δt 

x
30°

m(v'A)n

m(v'A)t

+ =
mv0

A

B B B

A A

mv'B

B

C

A

A

v0

30°
b

vB = 0

vA = v0

a

30°

A

B

n

30°
A

B

n

(v'A)n

(v'A)t
v'B

A

n

x

t

v'A

(v'A)t = 0.5v0

(v'A)n = 0.520v0

A

B

m(v'A)n

m(v'A)t

F Δt 

+ =

2r
2r

sin q =

q = 30°

30°

= 0.5

n

r

r

mv0

q

A

n

t

A

t

A
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SAMPLE PROBLEM 13.17

A 30-kg block is dropped from a height of 2 m onto the 10-kg pan of a spring 
scale. Assuming the impact to be perfectly plastic, determine the maximum 
deflection of the pan. The constant of the spring is k 5 20 kN/m.

SOLUTION

The impact between the block and the pan must be treated separately; 
therefore we divide the solution into three parts.

30 kg

10 kg 2 m

A

B

2 m

1 2 3 4

Conservation
of energy

Conservation
of energy

Impact: Total
momentum conserved

(vA)2

v3

v4 = 0

x3

(vB)1 = 0 (vB)2 = 0

(vA)1 = 0

h

No deformation
of spring )(Datum

for Vg = 0)(
x4

Conservation of Energy. Block: WA 5 (30 kg)(9.81 m/s2) 5 294 N

T1 5 1
2mA(vA)2

1 5 0  V1 5 WAy 5 (294 N)(2 m) 5 588 J
 T2 5 1

2mA(vA)2
2 5 1

2(30 kg)(vA)2
2  V2 5 0

T1 1 V1 5 T2 1 V2:  0 1 588 J 5 1
2(30 kg)(vA)2

2 1 0
(vA)2 5 16.26 m/s  (vA)2 5 6.26 m/sw

Impact: Conservation of Momentum. Since the impact is perfectly plastic, 
e 5 0; the block and pan move together after the impact.

mA(vA)2 1 mB(vB)2 5 (mA 1 mB)v3
 (30 kg)(6.26 m/s) 1 0 5 (30 kg 1 10 kg)v3

v3 5 14.70 m/s  v3 5 4.70 m/sw

Conservation of Energy. Initially the spring supports the weight WB of 
the pan; thus the initial deflection of the spring is

x3 5
WB

k
5

(10 kg)(9.81 m/s2)

20 3 103 N/m
5

98.1 N
20 3 103 N/m

5 4.91 3 1023 m

Denoting by x4 the total maximum deflection of the spring, we write

T3 5 1
2(mA 1 mB)v2

3 5 1
2(30 kg 1 10 kg)(4.70 m/s)2 5 442 J

V3 5 Vg 1 Ve 5 0 1 1
2kx2

3 5 1
2(20 3 103)(4.91 3 1023)2 5 0.241 J

T4 5 0
V4 5 Vg 1 Ve 5 (WA 1 WB)(2h) 1 1

2kx2
4 5 2(392)h 1 1

2(20 3 103)x2
4

Noting that the displacement of the pan is h 5 x4 2 x3, we write

T3 1 V3 5 T4 1 V4:
442 1 0.241 5 0 2 392(x4 2 4.91 3 1023) 1 1

2(20 3 103)x2
4

x4 5 0.230 m    h 5 x4 2 x3 5 0.230 m 2 4.91 3 1023 m
 h 5 0.225 m h 5 225 mm ◀
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SOLVING PROBLEMS
ON YOUR OWN

This lesson deals with the impact of two bodies, i.e., with a collision occurring 
in a very small interval of time. You will solve a number of impact problems 

by expressing that the total momentum of the two bodies is conserved and noting 
the relationship which exists between the relative velocities of the two bodies 
before and after impact.

1. As a first step in your solution you should select and draw the following 
coordinate axes: the t axis, which is tangent to the surfaces of contact of the two 
colliding bodies, and the n axis, which is normal to the surfaces of contact and 
defines the line of impact. In all the problems of this lesson the line of impact 
passes through the mass centers of the colliding bodies, and the impact is referred 
to as a central impact.

2. Next you will draw a diagram showing the momenta of the bodies before 
impact, the impulses exerted on the bodies during impact, and the final momenta 
of the bodies after impact (Fig. 13.24). You will then observe whether the impact 
is a direct central impact or an oblique central impact.

3. Direct central impact. This occurs when the velocities of bodies A and B 
before impact are both directed along the line of impact (Fig. 13.20a).
 a. Conservation of momentum. Since the impulsive forces are internal to the 
system, you can write that the total momentum of A and B is conserved,

 mAvA 1 mBvB 5 mAv9A 1 mBv9B (13.37)

where vA and vB denote the velocities of bodies A and B before impact and v9A 
and v9B denote their velocities after impact.
 b. Coefficient of restitution. You can also write the following relation between 
the relative velocities of the two bodies before and after impact,

v9B 2 v9A 5 e(vA 2 vB) (13.43)

where e is the coefficient of restitution between the two bodies.

Note that Eqs. (13.37) and (13.43) are scalar equations which can be solved for two 
unknowns. Also, be careful to adopt a consistent sign convention for all velocities.

4. Oblique central impact. This occurs when one or both of the initial velocities 
of the two bodies is not directed along the line of impact (Fig. 13.20b). To solve 
problems of this type, you should first resolve into components along the t axis and 
the n axis the momenta and impulses shown in your diagram.

(continued)
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 a. Conservation of momentum. Since the impulsive forces act along the line 
of impact, i.e., along the n axis, the component along the t axis of the momentum 
of each body is conserved. Therefore, you can write for each body that the t com-
ponents of its velocity before and after impact are equal,

 (vA)t 5 (v9A)t  (vB)t 5 (v9B)t (13.47)

Also, the component along the n axis of the total momentum of the system is 
conserved,

 mA(vA)n 1 mB(vB)n 5 mA(v9A)n 1 mB(v9B)n (13.48)

 b. Coefficient of restitution. The relation between the relative velocities of 
the two bodies before and after impact can be written in the n direction only,

 (v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n] (13.49)

You now have four equations that you can solve for four unknowns. Note that after 
finding all the velocities, you can determine the impulse exerted by body A on 
body B by drawing an impulse-momentum diagram for B alone and equating 
components in the n direction.
 c. When the motion of one of the colliding bodies is constrained, you must 
include the impulses of the external forces in your diagram. You will then observe 
that some of the above relations do not hold. However, in the example shown in 
Fig. 13.26 the total momentum of the system is conserved in a direction perpen-
dicular to the external impulse. You should also note that when a body A bounces 
off a fixed surface B, the only conservation of momentum equation which can be 
used is the first of Eqs. (13.47) [Sample Prob. 13.14].

5. Remember that energy is lost during most impacts. The only exception is 
for perfectly elastic impacts (e 5 1), where energy is conserved. Thus, in the gen-
eral case of impact, where e , 1, the energy is not conserved. Therefore, be 
careful not to apply the principle of conservation of energy through an impact 
situation. Instead, apply this principle separately to the motions preceding and 
following the impact [Sample Prob. 13.17].
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PROBLEMS

845

CONCEPT QUESTION

 13.CQ6 A 5-kg ball A strikes a 1-kg ball B that is initially at rest. Is it pos-
sible that after the impact A is not moving and B has a speed of 5v?
a. Yes
b. No
Explain your answer.

IMPULSE-MOMENTUM PRACTICE PROBLEMS

 13.F6 A sphere with a speed v0 rebounds after striking a frictionless 
inclined plane as shown. Draw the impulse-momentum diagram 
that can be used to find the velocity of the sphere after the impact.

13.F7 An 80-Mg railroad engine A coasting at 6.5 km/h strikes a 20-Mg 
flatcar C carrying a 30-Mg load B which can slide along the floor of 
the car (mk 5 0.25). The flatcar was at rest with its brakes released. 
Instead of A and C coupling as expected, it is observed that A
rebounds with a speed of 2 km/h after the impact. Draw impulse-
momentum diagrams that can be used to determine (a) the coef-
ficient of restitution and the speed of the flatcar immediately after 
impact, (b) the time it takes the load to slide to a stop relative to 
the car.

A B

v

5vA B

Before After

Fig. P13.CQ6

v0

q

Fig. P13.F6

A

B

C

20 Mg

30 Mg
6.5 km/h

Fig. P13.F7

13.F8 Two frictionless balls strike each other as shown. The coefficient 
of restitution between the balls is e. Draw the impulse-momentum 
diagram that could be used to find the velocities of A and B after 
the impact.

13.F9 A 10-kg ball A moving horizontally at 12 m/s strikes a 10-kg block 
B. The coefficient of restitution of the impact is 0.4 and the coeffi-
cient of kinetic friction between the block and the inclined surface 
is 0.5. Draw the impulse-momentum diagram that can be used to 
determine the speeds of A and B after the impact.

vA

vB

40°

25°
B

A

Fig. P13.F8

vA

A
B

q

q

Fig. P13.F9
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846 Kinetics of Particles: Energy and Momentum 
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 13.F10 Block A of mass mA strikes ball B of mass mB with a speed of vA as 
shown. Draw the impulse-momentum diagram that can be used to 
determine the speeds of A and B after the impact and the impulse 
during the impact.

END-OF-SECTION PROBLEMS

 13.155 The coefficient of restitution between the two collars is known to 
be 0.70. Determine (a) their velocities after impact, (b) the energy 
loss during impact.

 13.156 Collars A and B, of the same mass m, are moving toward each 
other with identical speeds as shown. Knowing that the coefficient 
of restitution between the collars is e, determine the energy lost 
in the impact as a function of m, e, and v.

 13.157 One of the requirements for tennis balls to be used in official com-
petition is that, when dropped onto a rigid surface from a height 
of 100 in., the height of the first bounce of the ball must be in the 
range 53 in. # h # 58 in. Determine the range of the coefficients 
of restitution of the tennis balls satisfying this requirement.

 13.158 Two disks sliding on a frictionless horizontal plane with opposite 
velocities of the same magnitude v0 hit each other squarely. Disk 
A is known to have a weight of 6 lb and is observed to have zero 
velocity after impact. Determine (a) the weight of disk B, knowing 
that the coefficient of restitution between the two disks is 0.5, 
(b) the range of possible values of the weight of disk B if the coef-
ficient of restitution between the two disks is unknown.

 13.159 To apply shock loading to an artillery shell, a 20-kg pendulum A is 
released from a known height and strikes impactor B at a known 
velocity v0. Impactor B then strikes the 1-kg artillery shell C.  Knowing 
the coefficient of restitution between all objects is e, determine the 
mass of B to maximize the impulse applied to the artillery shell C.

 13.160 Two identical cars A and B are at rest on a loading dock with brakes 
released. Car C, of a slightly different style but of the same weight, 
has been pushed by dockworkers and hits car B with a velocity of 
1.5 m/s. Knowing that the coefficient of restitution is 0.8 between 
B and C and 0.5 between A and B, determine the velocity of each 
car after all collisions have taken place.

vA

A

L

B

20°

Fig. P13.F10

A B

1 m/s

5 kg 3 kg

1.5 m/s

Fig. P13.155

A B

v v

Fig. P13.156

A

A

B

B

v0 v0

v'

Fig. P13.158

v0

A
C

B

Fig. P13.159

CBA

1.5 m/s

Fig. P13.160
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847Problems 13.161 Three steel spheres of equal weight are suspended from the ceiling 
by cords of equal length which are spaced at a distance slightly 
greater than the diameter of the spheres. After being pulled back 
and released, sphere A hits sphere B, which then hits sphere C. 
Denoting by e the coefficient of restitution between the spheres 
and by v0 the velocity of A just before it hits B, determine (a) the 
velocities of A and B immediately after the first collision, (b) the 
velocities of B and C immediately after the second collision. 
(c) Assuming now that n spheres are suspended from the ceiling 
and that the first sphere is pulled back and released as described 
above, determine the velocity of the last sphere after it is hit for 
the first time. (d) Use the result of part c to obtain the velocity of 
the last sphere when n 5 5 and e 5 0.9.

 13.162 At an amusement park there are 200-kg bumper cars A, B, and C that 
have riders with masses of 40 kg, 60 kg, and 35 kg,  respectively. Car 
A is moving to the right with a velocity vA 5 2 m/s and car C has a 
velocity vB 5 1.5 m/s to the left, but car B is initially at rest. The 
coefficient of restitution between each car is 0.8. Determine the final 
velocity of each car, after all impacts, assuming (a) cars A and C hit 
car B at the same time, (b) car A hits car B before car C does.

 13.163 At an amusement park there are 200-kg bumper cars A, B, and C 
that have riders with masses of 40 kg, 60 kg, and 35 kg, respectively. 
Car A is moving to the right with a velocity vA 5 2 m/s when it 
hits stationary car B. The coefficient of restitution between each 
car is 0.8. Determine the velocity of car C so that after car B col-
lides with car C the velocity of car B is zero.

 13.164 Two identical billiard balls can move freely on a horizontal table. 
Ball A has a velocity v0 as shown and hits ball B, which is at rest, 
at a point C defined by u 5 458. Knowing that the coefficient of 
restitution between the two balls is e 5 0.8 and assuming no fric-
tion, determine the velocity of each ball after impact.

A

B

x

y

vA

vB'

6 in.

10 in.

q

Fig. P13.165

A

A'

B Cv0

Fig. P13.161

vA vC

A CB

Fig. P13.162 and P13.163

A'q

B
A C

v0

Fig. P13.164

 13.165 The coefficient of restitution is 0.9 between the two 2.37-in.-
diameter billiard balls A and B. Ball A is moving in the direction 
shown with a velocity of 3 ft/s when it strikes ball B, which is at 
rest. Knowing that after impact B is moving in the x direction, 
determine (a) the angle u, (b) the velocity of B after impact.
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848 Kinetics of Particles: Energy and Momentum 
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 13.166 A 600-g ball A is moving with a velocity of magnitude 6 m/s when 
it is hit as shown by a 1-kg ball B which has a velocity of magnitude 
4 m/s. Knowing that the coefficient of restitution is 0.8 and assum-
ing no friction, determine the velocity of each ball after impact.

 13.167 Two identical hockey pucks are moving on a hockey rink at the 
same speed of 3 m/s and in perpendicular directions when they 
strike each other as shown. Assuming a coefficient of restitution 
e 5 0.9, determine the magnitude and direction of the velocity of 
each puck after impact.

 13.168 Two identical pool balls of 57.15 mm diameter may move freely on 
a pool table. Ball B is at rest and ball A has an initial velocity 
v 5 v0i. (a) Knowing that b 5 50 mm and e 5 0.7, determine the 
velocity of each ball after impact. (b) Show that if e 5 1, the final 
velocities of the balls form a right angle for all values of b.

 13.169 A boy located at point A halfway between the center O of a semi-
circular wall and the wall itself throws a ball at the wall in a direc-
tion forming an angle of 45° with OA. Knowing that after hitting 
the wall the ball rebounds in a direction parallel to OA, determine 
the coefficient of restitution between the ball and the wall.

 13.170 The Mars Pathfinder spacecraft used large airbags to cushion its 
impact with the planet’s surface when landing. Assuming the 
spacecraft had an impact velocity of 18.5 m/s at an angle of 458 
with respect to the horizontal, the coefficient of restitution is 0.85 
and neglecting friction, determine (a) the height of the first 
bounce, (b) the length of the first bounce. (Acceleration of gravity 
on Mars 5 3.73 m/s2.)

50°

40°

A
B

vA = 6 m/s

vB = 4 m/s

Fig. P13.166

20°
A

vA

vB

Fig. P13.167

x

y

v

b
A

B

Fig. P13.168

R
2

R

O
A

B

v

v�

45°

Fig. P13.169

45°

18.5 m/s

Fig. P13.170
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849Problems 13.171 A girl throws a ball at an inclined wall from a height of 3 ft, hitting 
the wall at A with a horizontal velocity v0 of magnitude 25 ft/s. 
Knowing that the coefficient of restitution between the ball and 
the wall is 0.9 and neglecting friction, determine the distance d 
from the foot of the wall to the point B where the ball will hit the 
ground after bouncing off the wall.

 13.172 A sphere rebounds as shown after striking an inclined plane with a 
vertical velocity v0 of magnitude v0 5 5 m/s. Knowing that a 5 30° 
and e 5 0.8 between the sphere and the plane, determine the 
height h reached by the sphere.

 13.173 A sphere rebounds as shown after striking an inclined plane with 
a vertical velocity v0 of magnitude v0 5 6 m/s. Determine the value 
of a that will maximize the horizontal distance the ball travels 
before reaching its maximum height h assuming the coefficient of 
restitution between the ball and the ground is (a) e 5 1, 
(b) e 5 0.8.

 13.174 Two cars of the same mass run head-on into each other at C. After 
the collision, the cars skid with their brakes locked and come to a 
stop in the positions shown in the lower part of the figure. Know-
ing that the speed of car A just before impact was 5 mi/h and that 
the coefficient of kinetic friction between the pavement and the 
tires of both cars is 0.30, determine (a) the speed of car B just 
before impact, (b) the effective coefficient of restitution between 
the two cars.

Fig. P13.171

C

A

B
3 ft 60°

d

v0

A

B
h

v0

a

Fig. P13.172 and P13.173

A

A B
C

C

vA vB

12 ft

3 ft

B

Fig. P13.174
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850 Kinetics of Particles: Energy and Momentum 
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 13.175 A 1-kg block B is moving with a velocity v0 of magnitude v0 5 2 m/s 
as it hits the 0.5-kg sphere A, which is at rest and hanging from a 
cord attached at O. Knowing that mk 5 0.6 between the block and 
the horizontal surface and e 5 0.8 between the block and the 
sphere, determine after impact (a) the maximum height h reached 
by the sphere, (b) the distance x traveled by the block.

 13.177 After having been pushed by an airline employee, an empty 40-kg 
luggage carrier A hits with a velocity of 5 m/s an identical carrier 
B containing a 15-kg suitcase equipped with rollers. The impact 
causes the suitcase to roll into the left wall of carrier B. Knowing 
that the coefficient of restitution between the two  carriers is 0.80 
and that the coefficient of restitution between the suitcase and the 
wall of carrier B is 0.30, determine (a) the velocity of carrier B 
after the suitcase hits its wall for the first time, (b) the total energy 
lost in that impact.

A
B

O

v0h

x

Fig. P13.175

v0

36 in.

1.5 lb

0.25 lb

v0

0.25 lb

10 in.24 in.

(1) (2)

1.5 lb

Fig. P13.176

Fig. P13.177

A B

C

5 m/s

 13.176 A 0.25-lb ball thrown with a horizontal velocity v0 strikes a 1.5-lb 
plate attached to a vertical wall at a height of 36 in. above the 
ground. It is observed that after rebounding, the ball hits the ground 
at a distance of 24 in. from the wall when the plate is rigidly attached 
to the wall (Fig. 1) and at a distance of 10 in. when a foam-rubber 
mat is placed between the plate and the wall (Fig. 2). Determine 
(a) the coefficient of restitution e between the ball and the plate, 
(b) the initial velocity v0 of the ball.
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851Problems 13.178 Blocks A and B each weigh 0.8 lb and block C weighs 2.4 lb. The 
coefficient of friction between the blocks and the plane is mk 5 0.30. 
Initially block A is moving at a speed v0 5 15 ft/s and blocks B 
and C are at rest (Fig. 1). After A strikes B and B strikes C, all 
three blocks come to a stop in the positions shown (Fig. 2). Deter-
mine (a) the coefficients of restitution between A and B and 
between B and C, (b) the displacement x of block C.

0.6 m

h

B

A

Fig. P13.179 and P13.180

 13.179 A 0.5-kg sphere A is dropped from a height of 0.6 m onto a 1.0-kg 
plate B, which is supported by a nested set of springs and is initially 
at rest. Knowing that the coefficient of restitution between the 
sphere and the plate is e 5 0.8, determine (a) the height h reached 
by the sphere after rebound, (b) the constant k of the single spring 
equivalent to the given set if the maximum deflection of the plate 
is observed to be equal to 3h.

 13.180 A 0.5-kg sphere A is dropped from a height of 0.6 m onto 1.0-kg 
plate B, which is supported by a nested set of springs and is initially 
at rest. Knowing that the set of springs is equivalent to a single 
spring of constant k 5 900 N/m, determine (a) the value of the 
coefficient of restitution between the sphere and the plate for 
which the height h reached by the sphere after rebound is maxi-
mum, (b) the corresponding value of h, (c) the corresponding value 
of the maximum deflection of the plate.

 13.181 The three blocks shown are identical. Blocks B and C are at rest 
when block B is hit by block A, which is moving with a velocity vA 
of 3 ft/s. After the impact, which is assumed to be perfectly plastic 
(e 5 0), the velocity of blocks A and B decreases due to friction, 
while block C picks up speed, until all three blocks are moving 
with the same velocity v. Knowing that the coefficient of kinetic 
friction between all surfaces is mk 5 0.20, determine (a) the time 
required for the three blocks to reach the same velocity, (b) the total 
distance traveled by each block during that time.

A B C

A B C

v0

3 in. 3 in.

(1)

(2)

12 in.

3 in.

12 in.

12 in. x

Fig. P13.178

A B

C

A B

C

v

vA = 3 ft/s

Fig. P13.181
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 13.182 Block A is released from rest and slides down the frictionless sur-
face of B until it hits a bumper on the right end of B. Block A has 
a mass of 10 kg and object B has a mass of 30 kg and B can roll 
freely on the ground. Determine the velocities of A and B imme-
diately after impact when (a) e 5 0, (b) e 5 0.7.

 13.183 A 20-g bullet fired into a 4-kg wooden block suspended from cords 
AC and BD penetrates the block at point E, halfway between C 
and D, without hitting cord BD. Determine (a) the maximum 
height h to which the block and the embedded bullet will swing 
after impact, (b) the total impulse exerted on the block by the two 
cords during the impact.

 13.184 A 2-lb ball A is suspended from a spring of constant 10 lb/in. and 
is initially at rest when it is struck by 1-lb ball B as shown. Neglect-
ing friction and knowing the coefficient of restitution between the 
balls is 0.6, determine (a) the velocities of A and B after the impact, 
(b) the maximum height reached by A.

 13.185 Ball B is hanging from an inextensible cord. An identical ball A is 
released from rest when it is just touching the cord and drops 
through the vertical distance hA 5 8 in. before striking ball B. 
Assuming e 5 0.9 and no friction, determine the resulting maxi-
mum vertical displacement hB of the ball B.

Fig. P13.182

0.2 m

B

A

A B

DC
E

4 kg

20 g

600 m/s

20°

l = 1.5 m

h

Fig. P13.183

B

A

k

20°

2 ft/s

Fig. P13.184
A

B

hA

hB

Fig. P13.185

 13.186 A 70-g ball B dropped from a height h0 5 1.5 m reaches a height 
h2 5 0.25 m after bouncing twice from identical 210-g plates. Plate 
A rests directly on hard ground, while plate C rests on a foam-
rubber mat. Determine (a) the coefficient of restitution between 
the ball and the plates, (b) the height h1 of the ball’s first bounce.

A

B

C h2

h0
h1

Fig. P13.186
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853Problems 13.187 A 700-g sphere A moving with a velocity v0 parallel to the ground 
strikes the inclined face of a 2.1-kg wedge B which can roll freely 
on the ground and is initially at rest. After impact the sphere is 
observed from the ground to be moving straight up. Knowing 
that the coefficient of restitution between the sphere and the 
wedge is e 5 0.6, determine (a) the angle u that the inclined face 
of the wedge makes with the horizontal, (b) the energy lost due 
to the impact.

 13.188 When the rope is at an angle of a 5 30° the 1-lb sphere A has a 
speed v0 5 4 ft/s. The coefficient of restitution between A and the 
2-lb wedge B is 0.7 and the length of rope l 5 2.6 ft. The spring 
constant has a value of 2 lb/in. and u 5 20°. Determine (a) the 
velocities of A and B immediately after the impact, (b) the maxi-
mum deflection of the spring assuming A does not strike B again 
before this point.

v0
A

B
q

Fig. P13.187

l

k

a

B
A

q
v0

Fig. P13.188 and P13.189

 13.189 When the rope is at an angle of a 5 30° the 1-kg sphere A has a 
speed v0 5 0.6 m/s. The coefficient of restitution between A and 
the 2-kg wedge B is 0.8 and the length of rope l 5 0.9 m. The 
spring constant has a value of 1500 N/m and u 5 20°. Determine 
(a) the velocities of A and B immediately after the impact, (b) the 
maximum deflection of the spring assuming A does not strike B 
again before this point.
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854

REVIEW AND SUMMARY

This chapter was devoted to the method of work and energy and to 
the method of impulse and momentum. In the first half of the 
 chapter we studied the method of work and energy and its applica-
tion to the analysis of the motion of particles.

We first considered a force F acting on a particle A and defined the 
work of F corresponding to the small displacement dr [Sec. 13.2] as 
the quantity

 dU 5 F ? dr (13.1)

or, recalling the definition of the scalar product of two vectors,

 dU 5 F ds cos a (13.19)

where a is the angle between F and dr (Fig. 13.29). The work of F 
during a finite displacement from A1 to A2, denoted by U1y2, was 
obtained by integrating Eq. (13.1) along the path described by the 
particle:

 U1y2 5 #
A2

A1

 F ? dr (13.2)

For a force defined by its rectangular components, we wrote

 U1y2 5 #
A2

A1

 (Fx dx 1 Fy dy 1 Fz dz) (13.20)

The work of the weight W of a body as its center of gravity moves 
from the elevation y1 to y2 (Fig. 13.30) was obtained by substituting 
Fx 5 Fz 5 0 and Fy 5 2W into Eq. (13.20) and integrating. We found

 U1y2 5 2#
y2

y1

 W dy 5 Wy1 2 Wy2 (13.4)

Work of a force

Work of a weight

A1

s1

s2

s

A2

F

O

A

dr
ds

a

Fig. 13.29

A2

A

A1

y2

y1

dy

y

W

Fig. 13.30
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855Review and Summary

The work of a force F exerted by a spring on a body A during a 
finite displacement of the body (Fig. 13.31) from A1(x 5 x1) to 
A2(x 5 x2) was obtained by writing

 dU 5 2F dx 5 2kx dx

 U1y2 5 2#
x2

x1

 kx dx 5 1
2 kx2

1 2 1
2 kx2

2 (13.6)

The work of F is therefore positive when the spring is returning to 
its undeformed position.

Work of the force exerted by a spring

A0

A1

Spring undeformed

B

B

B

F

A

A2

x1

x

x2

Fig. 13.31

Fig. 13.32

O

A2

A1

r2

r1
q

dr

F

–F

M

r

A'

A
m

dq

The work of the gravitational force F exerted by a particle of mass M 
located at O on a particle of mass m as the latter moves from A1 to 
A2 (Fig. 13.32) was obtained by recalling from Sec. 12.10 the expres-
sion for the magnitude of F and writing

 U1y2 5 2#
r2

r1

 
GMm

r2  dr 5
GMm

r2
2

GMm
r1

 (13.7)

The kinetic energy of a particle of mass m moving with a velocity v 
[Sec. 13.3] was defined as the scalar quantity

 T 5 1
2mv2 (13.9)

Work of the gravitational force

Kinetic energy of a particle
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856 Kinetics of Particles: Energy and Momentum 
Methods

From Newton’s second law we derived the principle of work and
energy, which states that the kinetic energy of a particle at A2 can 
be obtained by adding to its kinetic energy at A1 the work done dur-
ing the displacement from A1 to A2 by the force F exerted on the 
particle:

 T1 1 U1y2 5 T2 (13.11)

The method of work and energy simplifies the solution of many 
problems dealing with forces, displacements, and velocities, since it 
does not require the determination of accelerations [Sec. 13.4]. We 
also note that it involves only scalar quantities and that forces which 
do no work need not be considered [Sample Probs. 13.1 and 13.3]. 
However, this method should be supplemented by the direct applica-
tion of Newton’s second law to determine a force normal to the path 
of the particle [Sample Prob. 13.4].

The power developed by a machine and its mechanical efficiency 
were discussed in Sec. 13.5. Power was defined as the time rate at 
which work is done:

 Power 5
dU
dt

5 F ? v (13.12, 13.13)

where F is the force exerted on the particle and v the velocity of the 
particle [Sample Prob. 13.5]. The mechanical efficiency, denoted by 
h, was expressed as

 h 5
power output

power input
 (13.15)

When the work of a force F is independent of the path followed 
[Secs. 13.6 and 13.7], the force F is said to be a conservative force, 
and its work is equal to minus the change in the potential energy V 
associated with F:

 U1y2 5 V1 2 V2 (13.199)

The following expressions were obtained for the potential energy 
associated with each of the forces considered earlier:

Force of gravity (weight): Vg 5 Wy (13.16)

Gravitational force: Vg 5 2
GMm

r
 (13.17)

Elastic force exerted by a spring: Ve 5 1
2 kx2 (13.18)

Principle of work and energy

Method of work and energy

Power and mechanical efficiency

Conservative force. Potential energy
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857Substituting for U1y2 from Eq. (13.199) into Eq. (13.11) and re arranging 
the terms [Sec. 13.8], we obtained

 T1 1 V1 5 T2 1 V2 (13.24)

This is the principle of conservation of energy, which states that 
when a particle moves under the action of conservative forces, the 
sum of its kinetic and potential energies remains constant. The appli-
cation of this principle facilitates the solution of problems involving 
only conservative forces [Sample Probs. 13.6 and 13.7].

Recalling from Sec. 12.9 that, when a particle moves under a central 
force F, its angular momentum about the center of force O remains 
constant, we observed [Sec. 13.9] that, if the central force F is also 
conservative, the principles of conservation of angular momentum 
and of conservation of energy can be used jointly to analyze the 
motion of the particle [Sample Prob. 13.8]. Since the gravitational 
force exerted by the earth on a space vehicle is both central and 
conservative, this approach was used to study the motion of such 
vehicles [Sample Prob. 13.9] and was found particularly effective in 
the case of an oblique launching. Considering the initial position P0 
and an arbitrary position P of the vehicle (Fig. 13.33), we wrote

(HO)0 5 HO: r0mv0 sin f0 5 rmv sin f (13.25)

T0 1 V0 5 T 1 V:  1
2mv2

0 2
GMm

r0
5 1

2mv2 2
GMm

r
 (13.26)

where m was the mass of the vehicle and M the mass of the earth.

The second half of the chapter was devoted to the method of impulse 
and momentum and to its application to the solution of various types 
of problems involving the motion of particles.

 The linear momentum of a particle was defined [Sec. 13.10] as 
the product mv of the mass m of the particle and its velocity v. From 
Newton’s second law, F 5 ma, we derived the relation

 mv1 1 #
t2

t1

 F dt 5 mv2 (13.28)

where mv1 and mv2 represent the momentum of the particle at a 
time t1 and a time t2, respectively, and where the integral defines the 
linear impulse of the force F during the corresponding time interval. 
We wrote therefore

 mv1 1 Imp1y2 5 mv2 (13.30)

which expresses the principle of impulse and momentum for a 
particle.

Principle of conservation of energy

Motion under a gravitational force

Principle of impulse and momentum 
for a particle

Review and Summary

O

r

P

v

f

f0

P0

v0

r0

Fig. 13.33
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858 Kinetics of Particles: Energy and Momentum 
Methods

 When the particle considered is subjected to several forces, the 
sum of the impulses of these forces should be used; we had

 mv1 1 o Imp1y2 5 mv2 (13.32)

 Since Eqs. (13.30) and (13.32) involve vector quantities, it is 
necessary to consider their x and y components separately when apply-
ing them to the solution of a given problem [Sample Probs. 13.10 
and 13.11].

The method of impulse and momentum is particularly effective in 
the study of the impulsive motion of a particle, when very large 
forces, called impulsive forces, are applied for a very short interval 
of time Dt, since this method involves the impulses F Dt of the 
forces, rather than the forces themselves [Sec. 13.11]. Neglecting the 
impulse of any nonimpulsive force, we wrote

 mv1 1 oF Dt 5 mv2 (13.35)

In the case of the impulsive motion of several particles, we had

 omv1 1 oF Dt 5 omv2 (13.36)

where the second term involves only impulsive, external forces [Sam-
ple Prob. 13.12].

 In the particular case when the sum of the impulses of the 
external forces is zero, Eq. (13.36) reduces to omv1 5 omv2; that is, 
the total momentum of the particles is conserved.

In Secs. 13.12 through 13.14, we considered the central impact of two 
colliding bodies. In the case of a direct central impact [Sec. 13.13], 
the two colliding bodies A and B were moving along the line of impact 
with velocities vA and vB, respectively (Fig. 13.34). Two equations 
could be used to determine their velocities v9A and v9B after the impact. 

Impulsive motion

Direct central impact

vA

vB

Line of

im
pact

B

A

Fig. 13.34
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859The first expressed conservation of the total momentum of the 
two bodies,

 mAvA 1 mBvB 5 mAv9A 1 mBv9B (13.37)

where a positive sign indicates that the corresponding velocity is 
directed to the right, while the second related the relative velocities 
of the two bodies before and after the impact,

 v9B 2 v9A 5 e(vA 2 vB) (13.43)

The constant e is known as the coefficient of restitution; its value lies 
between 0 and 1 and depends in a large measure on the materials 
involved. When e 5 0, the impact is said to be perfectly plastic; when 
e 5 1, it is said to be perfectly elastic [Sample Prob. 13.13].

In the case of an oblique central impact [Sec. 13.14], the velocities 
of the two colliding bodies before and after the impact were resolved 
into n components along the line of impact and t components along 
the common tangent to the surfaces in contact (Fig. 13.35). We 
observed that the t component of the velocity of each body remained 

Oblique central impact

Review and Summary

unchanged, while the n components satisfied equations similar to 
Eqs. (13.37) and (13.43) [Sample Probs. 13.14 and 13.15]. It was 
shown that although this method was developed for bodies moving 
freely before and after the impact, it could be extended to the case 
when one or both of the colliding bodies is constrained in its motion 
[Sample Prob. 13.16].

In Sec. 13.15, we discussed the relative advantages of the three fun-
damental methods presented in this chapter and the preceding one, 
namely, Newton’s second law, work and energy, and impulse and 
momentum. We noted that the method of work and energy and the 
method of impulse and momentum can be combined to solve prob-
lems involving a short impact phase during which impulsive forces 
must be taken into consideration [Sample Prob. 13.17].

Using the three fundamental 
methods of kinetic analysis

A
v'A

v'B

vA

vB

Line of

im
pact

n

t

B

Fig. 13.35
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860

REVIEW PROBLEMS

 13.190 A 32,000-lb airplane lands on an aircraft carrier and is caught by an 
arresting cable. The cable is inextensible and is paid out at A and B 
from mechanisms located below deck and consisting of pistons mov-
ing in long oil-filled cylinders. Knowing that the piston-cylinder 
system maintains a constant tension of 85 kips in the cable during 
the entire landing, determine the landing speed of the airplane if it 
travels a distance d 5 95 ft after being caught by the cable.

A

B

C

d

35 ft

35 ft

Fig. P13.190

 13.191 A 2-oz pellet shot vertically from a spring-loaded pistol on the 
surface of the earth rises to a height of 300 ft. The same pellet 
shot from the same pistol on the surface of the moon rises to a 
height of 1900 ft. Determine the energy dissipated by aerodynamic 
drag when the pellet is shot on the surface of the earth. (The 
acceleration of gravity on the surface of the moon is 0.165 times 
that on the surface of the earth.)

 13.192 A satellite describes an elliptic orbit about a planet of mass M. The 
minimum and maximum values of the distance r from the satellite 
to the center of the planet are, respectively, r0 and r1. Use the 
principles of conservation of energy and conservation of angular 
momentum to derive the relation

1
r0

1
1
r1

5
2GM

h2

  where h is the angular momentum per unit mass of the satellite 
and G is the constant of gravitation.

 13.193 A 60-g steel sphere attached to a 200-mm cord can swing about 
point O in a vertical plane. It is subjected to its own weight 
and to a force F exerted by a small magnet embedded in the 
ground. The magnitude of that force expressed in newtons is 
F 5 3000/r2, where r is the distance from the magnet to the 
sphere expressed in millimeters. Knowing that the sphere is 
released from rest at A, determine its speed as it passes through 
point B.

A B
O

r1r0

v0

Fig. P13.192

200 mm

B

O

100 mm
12 mm

A

Fig. P13.193
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861Review Problems 13.194 A shuttle is to rendezvous with a space station which is in a circular 
orbit at an altitude of 250 mi above the surface of the earth. The 
shuttle has reached an altitude of 40 mi when its engine is turned 
off at point B. Knowing that at that time the velocity v0 of the 
shuttle forms an angle f0 5 55° with the vertical, determine the 
required magnitude of v0 if the trajectory of the shuttle is to be 
tangent at A to the orbit of the space station.

 13.195 A 300-g block is released from rest after a spring of constant 
k 5 600 N/m has been compressed 160 mm. Determine the force 
exerted by the loop ABCD on the block as the block passes through 
(a) point A, (b) point B, (c) point C. Assume no friction.

13.196 A small sphere B of mass m is attached to an inextensible cord of 
length 2a, which passes around the fixed peg A and is attached to 
a fixed support at O. The sphere is held close to the support at O 
and released with no initial velocity. It drops freely to point C, 
where the cord becomes taut, and swings in a vertical plane, first 
about A and then about O. Determine the vertical distance from 
line OD to the highest point C0 that the sphere will reach.

250 mi

A

BO

R = 3960 mi

v0

f0

Fig. P13.194 

CA

B

D

800 mm

Fig. P13.195

45°

DO

B

A

C
C�

C�

a

Fig. P13.196

k = 500 N/m
B

30°
900 g

1.2 m

300 g

A

Fig. P13.197

 13.197 A 300-g collar A is released from rest, slides down a frictionless 
rod, and strikes a 900-g collar B which is at rest and supported by 
a spring of constant 500 N/m. Knowing that the coefficient of res-
titution between the two collars is 0.9, determine (a) the maximum 
distance collar A moves up the rod after impact, (b) the maximum 
distance collar B moves down the rod after impact.

bee02324_ch13_762-865.indd Page 861  21/09/11  7:35 AM user-f501bee02324_ch13_762-865.indd Page 861  21/09/11  7:35 AM user-f501 /204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles/204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


862 Kinetics of Particles: Energy and Momentum 
Methods

 13.198 Blocks A and B are connected by a cord which passes over pulleys 
and through a collar C. The system is released from rest when 
x 5 1.7 m. As block A rises, it strikes collar C with perfectly plastic 
impact (e 5 0). After impact, the two blocks and the collar keep 
moving until they come to a stop and reverse their motion. As A 
and C move down, C hits the ledge and blocks A and B keep 
moving until they come to another stop. Determine (a) the velocity 
of the blocks and collar immediately after A hits C, (b) the distance 
the blocks and collar move after the impact before coming to a 
stop, (c) the value of x at the end of one complete cycle.

 13.199 A 2-kg ball B is traveling horizontally at 10 m/s when it strikes 2-kg 
ball A. Ball A is initially at rest and is attached to a spring with 
constant 100 N/m and an unstretched length of 1.2 m. Knowing 
the coefficient of restitution between A and B is 0.8 and friction 
between all surfaces is negligible, determine the normal force 
between A and the ground when it is at the bottom of the hill.

1.2 m
3 m/s

40°

0.4 m

0.7 m
k

A

B

Fig. P13.199

 13.200 A 2-kg block A is pushed up against a spring compressing it a 
distance x 5 0.1 m. The block is then released from rest and slides 
down the 20° incline until it strikes a 1-kg sphere B which is sus-
pended from a 1-m inextensible rope. The spring constant k 5 800 
N/m, the coefficient of friction between A and the ground is 0.2, 
the distance A slides from the unstretched length of the spring 
d 5 1.5 m, and the coefficient of restitution between A and B is 
0.8. When a 5 40°, determine (a) the speed of B, (b) the tension 
in the rope.

20°

L

B

k

�

dx

A

Fig. P13.200

A

C

x

3 kg
6 kg

5 kg

B

Fig. P13.198
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863Review Problems   *13.201 The 2-lb ball at A is suspended by an inextensible cord and given 
an initial horizontal velocity of v0. If l 5 2 ft, xB 5 0.3 ft, and 
yB 5 0.4 ft, determine the initial velocity v0 so that the ball will 
enter the basket. (Hint: Use a computer to solve the resulting set 
of equations.)

l

yB

A

xB

v0

θ

Fig. P13.201
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864

COMPUTER PROBLEMS

 13.C1 A 12-lb collar is attached to a spring anchored at point C and can 
slide on a frictionless rod forming an angle of 30° with the vertical. The 
spring is of constant k and is unstretched when the collar is at A. Knowing 
that the collar is released from rest at A, use computational software to 
determine the velocity of the collar at point B for values of k from 0.1 to 
2.0 lb/in.

A C

B

20 in.

20 in.

30°

Fig. P13.C1

 13.C2 Skid marks on a drag race track indicate that the rear (drive) wheels 
of a 2000-lb car slip with the front wheels just off the ground for the first 
60 ft of the 1320-ft track. The car is driven with slipping impending, with 
60 percent of its weight on the rear wheels, for the remaining 1260 ft of the 
race. Knowing that the coefficients of kinetic and static friction are 0.60 and 
0.85, respectively, and that the force due to the aerodynamic drag is Fd 5 
0.0098v2, where the speed v is expressed in ft/s and the force Fd in lb, use 
computational software to determine the time elapsed and the speed of the 
car at various points along the track, (a) taking the force Fd into account, 
(b) ignoring the force Fd. If you write a computer program use increments of 
distance Dx 5 0.1 ft in your calculations, and tabulate your results every 5 ft 
for the first 60 ft and every 90 ft for the remaining 1260 ft. [Hint: The 
time Dti required for the car to move through the increment of distance 
Dxi can be obtained by dividing Dxi by the average velocity 1

2(vi 1 vi11)
of the car over Dxi if the acceleration of the car is assumed to remain 
constant over Dx.]

 13.C3 A 5-kg bag is gently pushed off the top of a wall and swings in a 
vertical plane at the end of a 2.4-m rope which can withstand a maximum 
tension Fm. For Fm from 40 to 140 N use computational software to deter-
mine (a) the difference in elevation h between point A and point B where 
the rope will break, (b) the distance d from the vertical wall to the point 
where the bag will strike the floor.

 13.C4 Use computational software to determine (a) the time required for 
the system of Prob. 13.198 to complete 10 successive cycles of the motion 
described in that problem, starting with x 5 1.7 m, (b) the value of x at the 
end of the tenth cycle.

A C

B

q

2.4 m

3 m

h

Fig. P13.C3
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865Computer Problems 13.C5 A 700-g ball B is hanging from an inextensible cord attached to a 
support at C. A 350-g ball A strikes B with a velocity v0 at an angle u0 with 
the vertical. Assuming no friction and denoting by e the coefficient of restitu-
tion, use computational software to determine the magnitudes v9A and v9B of 
the velocities of the balls immediately after impact and the percentage of 
energy lost in the collision for v0 5 6 m/s and values of u0 from 20° to 150°, 
assuming (a) e 5 1, (b) e 5 0.75, (c) e 5 0.

C

v0
A

B

0q

Fig. P13.C5

 13.C6 In Prob. 13.110, a space vehicle was in a circular orbit at an altitude 
of 225 mi above the surface of the earth. To return to earth it decreased its 
speed as it passed through A by firing its engine for a short interval of time 
in a direction opposite to the direction of its motion. Its resulting velocity 
as it reached point B at an altitude of 40 mi formed an angle fB 5 60° with 
the vertical. An alternative strategy for taking the space vehicle out of its 
circular orbit would be to turn it around so that its engine pointed away 
from the earth and then give it an incremental velocity DvA toward the 
center O of the earth. This would likely require a smaller expenditure of 
energy when firing the engine at A, but might result in too fast a descent 
at B. Assuming that this strategy is used, use computational software to 
determine the values of fB and vB for an energy expenditure ranging from 
5 to 100 percent of that needed in Prob. 13.110.

225 mi

A

BO

R = 3960 mi

vB

fB

Fig. P13.C6
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