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Nomenclature

Roman Letters

a Pipe radius
A Cross-sectional area
Aijk Coefficients of pump dynamic characteristics
[A] Rotordynamic force matrix
Ar Cross-sectional area ratio
B Breadth of passage or flow
[B] Rotordynamic moment matrix
c Chord of the blade or foil
c Speed of sound
c Rotordynamic coefficient: cross-coupled damping
cb Interblade spacing
cPL Specific heat of liquid
C Compliance
C Rotordynamic coefficient: direct damping
CD Drag coefficient
CL Lift coefficient
Cp Coefficient of pressure
Cpmin Minimum coefficient of pressure
d Ratio of blade thickness to blade spacing
D Impeller diameter or typical flow dimension
Df Diffusion factor
DT Determinant of transfer matrix [T ]
e Specific internal energy
E Energy flux
E Young’s modulus
f Friction coefficient
F Force
g Acceleration due to gravity
gs Component of g in the s direction
h Specific enthalpy
h Blade tip spacing
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10 NOMENCLATURE

hp Pitch of a helix
hT Total specific enthalpy
h∗ Piezometric head
H Total head rise
H(s, θ, t) Clearance geometry
I Acoustic impulse
I, J Integers such that ω/Ω = I/J
IP Pump impedance
j Square root of −1
k Rotordynamic coefficient: cross-coupled stiffness
kL Thermal conductivity of the liquid
K Rotordynamic coefficient: direct stiffness
KG Gas constant
� Pipe length or distance to measuring point
L Lift
L Inertance
L Axial length
L Latent heat
m Mass flow rate
m Rotordynamic coefficient: cross-coupled added mass
mG Mass of gas in bubble
mD Constant related to the drag coefficient
mL Constant related to the lift coefficient
M Moment
M Mach number, u/c
M Rotordynamic coefficient: direct added mass
n Coordinate measured normal to a surface
N Specific speed
N(RN) Cavitation nuclei number density distribution function
NPSP Net positive suction pressure
NPSE Net positive suction energy
NPSH Net positive suction head
p Pressure
pA Radiated acoustic pressure
pT Total pressure
pG Partial pressure of gas
pS Sound pressure level
pV Vapor pressure
P Power
q̃n Vector of fluctuating quantities
Q Volume flow rate (or heat)
Q Rate of heat addition
r Radial coordinate in turbomachine
R Radial dimension in turbomachine
R Bubble radius
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R Resistance
RN Cavitation nucleus radius
Re Reynolds number
s Coordinate measured in the direction of flow
s Solidity
S Surface tension of the saturated vapor/liquid interface
S Suction specific speed
Si Inception suction specific speed
Sa Fractional head loss suction specific speed
Sb Breakdown suction specific speed
Sf Slip factor
t Time
T Temperature or torque
Tij Transfer matrix elements
[T ] Transfer matrix based on p̃T , m̃
[T ∗] Transfer matrix based on p̃, m̃
[TP ] Pump transfer matrix
[TS] System transfer matrix
u Velocity in the s or x directions
ui Velocity vector
U Fluid velocity
U∞ Velocity of upstream uniform flow
v Fluid velocity in non-rotating frame
V Volume or fluid velocity
w Fluid velocity in rotating frame
Ẇ Rate of work done on the fluid
z Elevation
ZCF Common factor of ZR and ZS

ZR Number of rotor blades
ZS Number of stator blades

Greek Letters

α Angle of incidence
αL Thermal diffusivity of liquid
β Angle of relative velocity vector
βb Blade angle relative to cross-plane
γn Wave propagation speed
Γ Geometric constant
δ Deviation angle at flow discharge
δ Clearance
ε Eccentricity
ε Angle of turn
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η Efficiency
θ Angular coordinate
θc Camber angle
θ∗ Momentum thickness of a blade wake
Θ Thermal term in the Rayleigh-Plesset equation
ϑ Inclination of discharge flow to the axis of rotation
κ Bulk modulus of the liquid
µ Dynamic viscosity
ν Kinematic viscosity
ρ Density of fluid
σ Cavitation number
σi Cavitation inception number
σa Fractional head loss cavitation number
σb Breakdown cavitation number
σc Choked cavitation number
σTH Thoma cavitation factor
Σ Thermal parameter for bubble growth
Σ1,2,3 Geometric constants
τ Blade thickness
φ Flow coefficient
ψ Head coefficient
ψ0 Head coefficient at zero flow
ω Radian frequency of whirl motion or other excitation
ωP Bubble natural frequency
Ω Radian frequency of shaft rotation

Subscripts

On any variable, Q:
Qo Initial value, upstream value or reservoir value
Q1 Value at inlet
Q2 Value at discharge
Qa Component in the axial direction
Qb Pertaining to the blade
Q∞ Value far from the bubble or in the upstream flow
QB Value in the bubble
QC Critical value
QD Design value
QE Equilibrium value
QG Value for the gas
QH1 Value at the inlet hub
QH2 Value at the discharge hub
Qi Components of vector Q
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Qi Pertaining to a section, i, of the hydraulic system
QL Saturated liquid value
Qm Meridional component
QM Mean or maximum value
QN Nominal conditions or pertaining to nuclei
Qn, Qt Components normal and tangential to whirl orbit
QP Pertaining to the pump
Qr Component in the radial direction
Qs Component in the s direction
QT1 Value at the inlet tip
QT2 Value at the discharge tip
QV Saturated vapor value
Qx Component in the x direction
Qy Component in the y direction
Qθ Component in the circumferential (or θ) direction

Superscripts and other qualifiers

On any variable, Q:
Q̄ Mean value of Q or complex conjugate of Q
Q̃ Complex amplitude of Q
Q̇ Time derivative of Q
Q̈ Second time derivative of Q
Q∗ Rotordynamics: denotes dimensional Q
Re{Q} Real part of Q
Im{Q} Imaginary part of Q
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Chapter 1

INTRODUCTION

1.1 SUBJECT

The subject of this monograph is the fluid dynamics of liquid turbomachines,
particularly pumps. Rather than attempt a general treatise on turbomachines,
we shall focus attention on those special problems and design issues associated
with the flow of liquid through a rotating machine. There are two characteristics
of a liquid that lead to these special problems, and cause a significantly different
set of concerns than would occur in, say, a gas turbine. These are the potential
for cavitation and the high density of liquids that enhances the possibility of
damaging unsteady flows and forces.

1.2 CAVITATION

The word cavitation refers to the formation of vapor bubbles in regions of low
pressure within the flow field of a liquid. In some respects, cavitation is similar
to boiling, except that the latter is generally considered to occur as a result of
an increase of temperature rather than a decrease of pressure. This difference in
the direction of the state change in the phase diagram is more significant than
might, at first sight, be imagined. It is virtually impossible to cause any rapid
uniform change in temperature throughout a finite volume of liquid. Rather,
temperature change most often occurs by heat transfer through a solid bound-
ary. Hence, the details of the boiling process generally embrace the detailed
interaction of vapor bubbles with a solid surface, and the thermal boundary
layer on that surface. On the other hand, a rapid, uniform change in pressure
in a liquid is commonplace and, therefore, the details of the cavitation process
may differ considerably from those that occur in boiling. Much more detail on
the process of cavitation is included in later sections.

It is sufficient at this juncture to observe that cavitation is generally a malev-
olent process, and that the deleterious consequences can be divided into three
categories. First, cavitation can cause damage to the material surfaces close
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16 CHAPTER 1. INTRODUCTION

to the area where the bubbles collapse when they are convected into regions of
higher pressure. Cavitation damage can be very expensive, and very difficult
to eliminate. For most designers of hydraulic machinery, it is the preeminent
problem associated with cavitation. Frequently, one begins with the objective
of eliminating cavitation completely. However, there are many circumstances
in which this proves to be impossible, and the effort must be redirected into
minimizing the adverse consequences of the phenomenon.

The second adverse effect of cavitation is that the performance of the pump,
or other hydraulic device, may be significantly degraded. In the case of pumps,
there is generally a level of inlet pressure at which the performance will decline
dramatically, a phenomenon termed cavitation breakdown. This adverse effect
has naturally given rise to changes in the design of a pump so as to minimize
the degradation of the performance; or, to put it another way, to optimize the
performance in the presence of cavitation. One such design modification is the
addition of a cavitating inducer upstream of the inlet to a centrifugal or mixed
flow pump impeller. Another example is manifest in the blade profiles used
for supercavitating propellers. These supercavitating hydrofoil sections have
a sharp leading edge, and are shaped like curved wedges with a thick, blunt
trailing edge.

The third adverse effect of cavitation is less well known, and is a consequence
of the fact that cavitation affects not only the steady state fluid flow, but also
the unsteady or dynamic response of the flow. This change in the dynamic
performance leads to instabilities in the flow that do not occur in the absence
of cavitation. Examples of these instabilities are “rotating cavitation,” which
is somewhat similar to the phenomenon of rotating stall in a compressor, and
“auto-oscillation,” which is somewhat similar to compressor surge. These insta-
bilities can give rise to oscillating flow rates and pressures that can threaten the
structural integrity of the pump or its inlet or discharge ducts. While a complete
classification of the various types of unsteady flow arising from cavitation has
yet to be constructed, we can, nevertheless, identify a number of specific types
of instability, and these are reviewed in later chapters of this monograph.

1.3 UNSTEADY FLOWS

While it is true that cavitation introduces a special set of fluid-structure inter-
action issues, it is also true that there are many such unsteady flow problems
which can arise even in the absence of cavitation. One reason these issues may
be more critical in a liquid turbomachine is that the large density of a liquid
implies much larger fluid dynamic forces. Typically, fluid dynamic forces scale
like ρΩ2D4 where ρ is the fluid density, and Ω and D are the typical frequency
of rotation and the typical length, such as the span or chord of the impeller
blades or the diameter of the impeller. These forces are applied to blades whose
typical thickness is denoted by τ . It follows that the typical structural stresses
in the blades are given by ρΩ2D4/τ2, and, to minimize structural problems, this
quantity will have an upper bound which will depend on the material. Clearly
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this limit will be more stringent when the density of the fluid is larger. In many
pumps and liquid turbines it requires thicker blades (larger τ ) than would be
advisable from a purely hydrodynamic point of view.

This monograph presents a number of different unsteady flow problems that
are of concern in the design of hydraulic pumps and turbines. For example,
when a rotor blade passes through the wake of a stator blade (or vice versa),
it will encounter an unsteady load which is endemic to all turbomachines. Re-
cent investigations of these loads will be reviewed. This rotor-stator interaction
problem is an example of a local unsteady flow phenomenon. There also exist
global unsteady flow problems, such as the auto-oscillation problem mentioned
earlier. Other global unsteady flow problems are caused by the fluid-induced
radial loads on an impeller due to flow asymmetries, or the fluid-induced ro-
tordynamic loads that may increase or decrease the critical whirling speeds of
the shaft system. These last issues have only recently been addressed from a
fundamental research perspective, and a summary of the conclusions is included
in this monograph.

1.4 TRENDS IN HYDRAULIC

TURBOMACHINERY

Though the constraints on a turbomachine design are as varied as the almost
innumerable applications, there are a number of ubiquitous trends which allow
us to draw some fairly general conclusions. To do so we make use of the affinity
laws that are a consequence of dimensional analysis, and relate performance
characteristics to the density of the fluid, ρ, the typical rotational speed, Ω, and
the typical diameter, D, of the pump. Thus the volume flow rate through the
pump, Q, the total head rise across the pump, H , the torque, T , and the power
absorbed by the pump, P , will scale according to

Q α ΩD3 (1.1)
H α Ω2D2 (1.2)
T α ρD5Ω2 (1.3)
P α ρD5Ω3 (1.4)

These simple relations allow basic scaling predictions and initial design esti-
mates. Furthermore, they permit consideration of optimal characteristics, such
as the power density which, according to the above, should scale like ρD2Ω3.

One typical consideration arising out of the affinity laws relates to optimizing
the design of a pump for a particular power level, P , and a particular fluid, ρ.
This fixes the value of D5Ω3. If one wished to make the pump as small as
possible (small D) to reduce weight (as is critical in the rocket engine context)
or to reduce cost, this would dictate not only a higher rotational speed, Ω,
but also a higher impeller tip speed, ΩD/2. However, as we shall see in the
next chapter, the propensity for cavitation increases as a parameter called the
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cavitation number decreases, and the cavitation number is inversely proportional
to the square of the tip speed or Ω2D2/4. Consequently, the increase in tip
speed suggested above could lead to a cavitation problem. Often, therefore, one
designs the smallest pump that will still operate without cavitation, and this
implies a particular size and speed for the device.

Furthermore, as previously mentioned, the typical fluid-induced stresses in
the structure will be given by ρΩ2D4/τ2, and, if D5Ω3 is fixed and if one
maintains the same geometry, D/τ , then the stresses will increase like D−4/3

as the size, D, is decreased. Consequently, fluid/structure interaction problems
will increase. To counteract this the blades are often made thicker (D/τ is
decreased), but this usually leads to a decrease in the hydraulic performance of
the turbomachine. Consequently an optimal design often requires a balanced
compromise between hydraulic and structural requirements. Rarely does one
encounter a design in which this compromise is optimal.

Of course, the design of a pump, compressor or turbine involves many factors
other than the technical issues discussed above. Many compromises and engi-
neering judgments must be made based on constraints such as cost, reliability
and the expected life of a machine. This book will not attempt to deal with
such complex issues, but will simply focus on the advances in the technical data
base associated with cavitation and unsteady flows. For a broader perspective
on the design issues, the reader is referred to engineering texts such as those
listed at the end of this chapter.

1.5 BOOK STRUCTURE

The intention of this monograph is to present an account of both the cavitation
issues and the unsteady flow issues, in the hope that this will help in the design of
more effective liquid turbomachines. In chapter 2 we review some of the basic
principles of the fluid mechanical design of turbomachines for incompressible
fluids, and follow that, in chapter 3, with a discussion of the two-dimensional
performance analyses based on the flows through cascades of foils. A brief
review of three-dimensional effects and secondary flows follows in chapter 4.
Then, in chapter 5, we introduce the parameters which govern the phenomenon
of cavitation, and describe the different forms which cavitation can take. This is
followed by a discussion of the factors which influence the onset or inception of
cavitation. Chapter 6 introduces concepts from the analyses of bubble dynamics,
and relates those ideas to two of the byproducts of the phenomenon, cavitation
damage and noise. The isssues associated with the performance of a pump
under cavitating conditions are addressed in chapter 7.

The last three chapters deal with unsteady flows and vibration in pumps.
Chapter 8 presents a survey of some of the vibration problems in pumps. Chap-
ter 9 provides details of the two basic approaches to the analysis of instabilites
and unsteady flow problems in hydraulic systems, namely the methods of so-
lution in the time domain and in the frequency domain. Where possible, it
includes a survey of the existing information on the dynamic response of pumps
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under cavitating and non-cavitating conditions. The final chapter 10 deals with
the particular fluid/structure interactions associated with rotordynamic shaft
vibrations, and elucidates the fluid-induced rotordynamic forces that can result
from the flows through seals and through and around impellers.
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Chapter 2

BASIC PRINCIPLES

2.1 GEOMETRIC NOTATION

The geometry of a generalized turbomachine rotor is sketched in figure 2.1, and
consists of a set of rotor blades (number = ZR) attached to a hub and operating
within a static casing. The radii of the inlet blade tip, inlet blade hub, discharge
blade tip, and discharge blade hub are denoted by RT1, RH1, RT2, and RH2,
respectively. The discharge blade passage is inclined to the axis of rotation at
an angle, ϑ, which would be close to 90◦ in the case of a centrifugal pump, and
much smaller in the case of an axial flow machine. In practice, many pumps and
turbines are of the “mixed flow” type , in which the typical or mean discharge
flow is at some intermediate angle, 0 < ϑ < 90◦.

The flow through a general rotor is normally visualized by developing a
meridional surface (figure 2.2), that can either correspond to an axisymmetric

Figure 2.1: Cross-sectional view through the axis of a pump impeller.

21
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stream surface, or be some estimate thereof. On this meridional surface (see
figure 2.2) the fluid velocity in a non-rotating coordinate system is denoted by
v(r) (with subscripts 1 and 2 denoting particular values at inlet and discharge)
and the corresponding velocity relative to the rotating blades is denoted by
w(r). The velocities, v and w, have components vθ and wθ in the circumfer-
ential direction, and vm and wm in the meridional direction. Axial and radial
components are denoted by the subscripts a and r. The velocity of the blades is
Ωr. As shown in figure 2.2, the flow angle β(r) is defined as the angle between
the relative velocity vector in the meridional plane and a plane perpendicular
to the axis of rotation. The blade angle βb(r) is defined as the inclination of the
tangent to the blade in the meridional plane and the plane perpendicular to the
axis of rotation. If the flow is precisely parallel to the blades, β = βb. Specific
values of the blade angle at the leading and trailing edges (1 and 2) and at the
hub and tip (H and T ) are denoted by the corresponding suffices, so that, for
example, βbT2 is the blade angle at the discharge tip.

At the leading edge it is important to know the angle α(r) with which the
flow meets the blades, and, as defined in figure 2.3,

α(r) = βb1(r) − β1(r). (2.1)

This angle, α, is called the incidence angle, and, for simplicity, we shall denote
the values of the incidence angle at the tip, α(RT1), and at the hub, α(RH1),
by αT and αH , respectively. Since the inlet flow can often be assumed to be
purely axial (v1(r) = va1 and parallel with the axis of rotation), it follows that
β1(r) = tan−1(va1/Ωr), and this can be used in conjunction with equation 2.1
in evaluating the incidence angle for a given flow rate.

The incidence angle should not be confused with the “angle of attack”, which
is the angle between the incoming relative flow direction and the chord line (the
line joining the leading edge to the trailing edge). Note, however, that, in an
axial flow pump with straight helicoidal blades, the angle of attack is equal to
the incidence angle.

At the trailing edge, the difference between the flow angle and the blade
angle is again important. To a first approximation one often assumes that the
flow is parallel to the blades, so that β2(r) = βb2(r). A departure from this
idealistic assumption is denoted by the deviation angle, δ(r), where, as shown
in figure 2.3:

δ(r) = βb2(r) − β2(r) (2.2)

This is normally a function of the ratio of the width of the passage between the
blades to the length of the same passage, a geometric parameter known as the
solidity which is defined more precisely below. Other angles, that are often used,
are the angle through which the flow is turned, known as the deflection angle,
β2 − β1, and the corresponding angle through which the blades have turned,
known as the camber angle and denoted by θc = βb2 − βb1.

Deviation angles in radial machines are traditionally represented by the slip
velocity, vθs, which is the difference between the actual and ideal circumferential
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Figure 2.2: Developed meridional surface and velocity triangle.

velocities of the discharge flow, as shown in figure 2.4. It follows that

vθs = ΩR2 − vθ2 − vr2 cot βb2 (2.3)

This, in turn, is used to define a parameter known as the slip factor, Sf , where

Sf = 1 − vθs

ΩR2
= 1 − φ2 (cotβ2 − cotβb2) (2.4)

Other, slightly different “slip factors” have also been used in the literature; for
example, Stodola (1927), who originated the concept, defined the slip factor as
1 − vθs

/
ΩR2(1− φ2 cotβb2). However, the definition 2.4 is now widely used. It
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Figure 2.3: Repeat of figure 2.2 showing the definitions of the incidence angle
at the leading edge and the deviation angle at the trailing edge.

Figure 2.4: Velocity vectors at discharge indicating the slip velocity, vθs.

follows that the deviation angle, δ, and the slip factor, Sf , are related by

δ = βb2 − cot−1

(
cot βb2 +

(1 − Sf)
φ2

)
(2.5)

where the flow coefficient, φ2, is defined later in equation 2.17.
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Figure 2.5: Schematics of (a) a linear cascade and (b) a radial cascade.

2.2 CASCADES

We now turn to some specific geometric features that occur frequently in dis-
cussions of pumps and other turbomachines. In a purely axial flow machine,
the development of a cylindrical surface within the machine produces a linear
cascade of the type shown in figure 2.5(a). The centerplane of the blades can
be created using a “generator”, say z = z∗(r), which is a line in the rz−plane.
If this line is rotated through a helical path, it describes a helicoidal surface of
the form

z = z∗(r) +
hpθ

2π
(2.6)

where hp is the “pitch” of the helix. Of course, in many machines, the pitch is
also a function of θ so that the flow is turned by the blades. If, however, the
pitch is constant, the development of a cylindrical surface will yield a cascade
with straight blades and constant blade angle, βb. Moreover, the blade thickness
is often neglected, and the blades in figure 2.5(a) then become infinitely thin
lines. Such a cascade of infinitely thin, flat blades is referred to as a flat plate
cascade.

It is convenient to use the term “simple” cascade to refer to those geometries
for which the blade angle, βb, is constant whether in an axial, radial, or mixed
flow machine. Clearly, the flat plate cascade is the axial flow version of a simple
cascade.

Now compare the geometries of the cascades at different radii within an axial
flow machine. Later, we analyse the cavitating flow occurring at different radii
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(see figure 7.35). Often the pitch at a given axial position is the same at all
radii. Then it follows that the radial variation in the blade angle, βb(r), must
be given by

βb(r) = tan−1

[
RT tanβbT

r

]
(2.7)

where βbT is the blade angle at the tip, r = RT .
In a centrifugal machine in which the flow is purely radial, a cross-section of

the flow would be as shown in figure 2.5(b), an array known as a radial cascade.
In a simple radial cascade, the angle, βb, is uniform along the length of the
blades. The resulting blade geometry is known as a logarithmic spiral, since it
follows that the coordinates of the blades are given by the equation

θ − θ0 = A ln r (2.8)

where A = cotβb and θ0 are constants. Logarithmic spiral blades are therefore
equivalent to straight blades in a linear cascade. Note that a fluid particle in a
flow of uniform circulation and constant source strength at the origin will follow
a logarithmic spiral since all velocities will be of the form C/r where C is a
uniform constant.

In any of type of pump, the ratio of the length of a blade passage to its
width is important in determining the degree to which the flow is guided by the
blades. The solidity, s, is the geometric parameter that is used as a measure
of this geometric characteristic, and s can be defined for any simple cascade as
follows. If we identify the difference between the θ coordinates for the same point
on adjacent blades (call this ∆θA) and the difference between the θ coordinates
for the leading and trailing edges of a blade (call this ∆θB), then the solidity
for a simple cascade is defined by

s =
∆θB

∆θA cosβb
(2.9)

Applying this to the linear cascade of figure 2.5(a), we find the familiar

s = c/h (2.10)

In an axial flow pump this corresponds to s = ZRc/2πRT1, where c is the chord
of the blade measured in the developed meridional plane of the blade tips. On
the other hand, for the radial cascade of figure 2.5(b), equation 2.9 yields the
following expression for the solidity:

s = ZR�n
(
R2

/
R1

)/
2π sinβb (2.11)

which is, therefore, geometrically equivalent to c/h in the linear cascade.
In practice, there exist many “mixed flow” pumps whose geometries lie be-

tween that of an axial flow machine (ϑ = 0, figure 2.1) and that of a radial
machine (ϑ = π/2). The most general analysis of such a pump would require
a cascade geometry in which figures 2.5(a) and 2.5(b) were projections of the
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geometry of a meridional surface (figure 2.2) onto a cylindrical surface and onto
a plane perpendicular to the axis, respectively. (Note that the βb marked in
figure 2.5(b) is not appropriate when that diagram is used as a projection). We
shall not attempt such generality here; rather, we observe that the meridional
surface in many machines is close to conical. Denoting the inclination of the
cone to the axis by ϑ, we can use equation 2.9 to obtain an expression for the
solidity of a simple cascade in this conical geometry,

s = ZR�n
(
R2

/
R1

) /
2π sinβb sinϑ (2.12)

Clearly, this includes the expressions 2.10 and 2.11 as special cases.

2.3 FLOW NOTATION

The flow variables that are important are, of course, the static pressure, p, the
total pressure, pT , and the volume flow rate, Q. Often the total pressure is
defined by the total head, pT /ρg. Moreover, in most situations of interest in
the context of turbomachinery, the potential energy associated with the earth’s
gravitational field is negligible relative to the kinetic energy of the flow, so that,
by definition

pT = p+
1
2
ρv2 (2.13)

pT = p+
1
2
ρ
(
v2

m + v2
θ

)
(2.14)

pT = p+
1
2
ρ
(
w2 + 2rΩvθ − Ω2r2

)
(2.15)

using the velocity triangle of figure 2.2. In an incompressible flow, the total
pressure represents the total mechanical energy per unit volume of fluid, and,
therefore, the change in total pressure across the pump, pT

2 −pT
1 , is a fundamental

measure of the mechanical energy imparted to the fluid by the pump.
It follows that, in a pump with an incompressible fluid, the overall character-

istics that are important are the volume flow rate, Q, and the total pressure rise,
ρgH , where H = (pT

2 − pT
1 )/ρg is the total head rise. These dimensional char-

acteristics are conveniently nondimensionalized by defining a head coefficient,
ψ,

ψ = (pT
2 − pT

1 )/ρR2
T2Ω

2 = gH/R2
T2Ω

2 (2.16)

and one of two alternative flow coefficients, φ1 and φ2:

φ1 = Q/A1RT1Ω or φ2 = Q/A2RT2Ω (2.17)

where A1 and A2 are the inlet and discharge areas, respectively. The discharge
flow coefficient is the nondimensional parameter most often used to describe
the flow rate. However, in discussions of cavitation, which occurs at the inlet to
a pump impeller, the inlet flow coefficient is a more sensible parameter. Note
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that, for a purely axial inflow, the incidence angle is determined by the flow
coefficient, φ1:

α(r) = βb1(r) − tan−1(φ1r/RT1) (2.18)

Furthermore, for a given deviation angle, specifying φ2 fixes the geometry of
the velocity triangle at discharge from the pump.

Frequently, the conditions at inlet and/or discharge are nonuniform and one
must subdivide the flow into annular streamtubes, as indicated in figure 2.2.
Each streamtube must then be analysed separately, using the blade geometry
pertinent at that radius. The mass flow rate, m, through an individual stream-
tube is given by

m = 2πρrvmdn (2.19)

where n is a coordinate measured normal to the meridional surface, and, in the
present text, will be useful in describing the discharge geometry.

Conservation of mass requires that m have the same value at inlet and
discharge. This yields a relation between the inlet and discharge meridional
velocities, that involves the cross-sectional areas of the streamtube at these two
locations. The total volume flow rate through the turbomachine, Q, is then
related to the velocity distribution at any location by the integral

Q =
∫

2πrvm(r)dn (2.20)

The total head rise across the machine, H , is given by the integral of the
total rate of work done on the flow divided by the total mass flow rate:

H =
1
Q

∫
(pT

2 (r) − pT
1 (r))

ρg
2πrvm(r)dn (2.21)

These integral expressions for the flow rate and head rise will be used in later
chapters.

2.4 SPECIFIC SPEED

At the beginning of any pump design process, neither the size nor the shape
of the machine is known. The task the pump is required to perform is to use
a shaft rotating at a frequency, Ω (in rad/s), to pump a certain flow rate, Q
(in m3/s) through a head rise, H (in m). As in all fluid mechanical formula-
tions, one should first seek a nondimensional parameter (or parameters) which
distinguishes the nature of this task. In this case, there is one and only one
nondimensional parametric group that is appropriate and this is known as the
“specific speed”, denoted by N . The form of the specific speed is readily deter-
mined by dimensional analysis:

N =
ΩQ

1
2

(gH)
3
4

(2.22)



2.5. PUMP GEOMETRIES 29

Though originally constructed to allow evaluation of the shaft speed needed
to produce a particular head and flow, the name “specific speed” is slightly
misleading, because N is just as much a function of flow rate and head rise
as it is of shaft speed. Perhaps a more general name, like “the basic perfor-
mance parameter”, would be more appropriate. Note that the specific speed is
a size-independent parameter, since the size of the machine is not known at the
beginning of the design process.

The above definition of the specific speed has employed a consistent set
of units, so that N is truly dimensionless. With these consistent units, the
values of N for most common turbomachines lie in the range between 0.1 and
4.0 (see below). Unfortunately, it has been traditional in industry to use an
inconsistent set of units in calculating N . In the USA, the g is dropped from
the denominator, and values for the speed, flow rate, and head in rpm, gpm,
and ft are used in calculating N . This yields values that are a factor of 2734.6
larger than the values ofN obtained using consistent units. The situation is even
more confused since the Europeans use another set of inconsistent units (rpm,
m3/s, head in m, and no g) while the British employ a definition similar to the
U.S., but with Imperial gallons rather than U.S. gallons. One can only hope
that the pump (and turbine) industries would cease the use of these inconsistent
measures that would be regarded with derision by any engineer outside of the
industry. In this monograph, we shall use the dimensionally consistent and,
therefore, universal definition of N .

Note that, since Q and gH were separately nondimensionalized in the def-
initions 2.16 and 2.17, N can be related to the corresponding flow and head
coefficients by

N =
[

π

cos ϑ

(
1 − R2

H2

R2
T2

)] 1
2 φ

1
2
2

ψ
3
4

(2.23)

In the case of a purely centrifugal discharge (ϑ = π/2), the quantity within the
square brackets reduces to 2πB2/RT2.

Since turbomachines are designed for specific tasks, the subscripted ND will
be used to denote the design value of the specific speed for a given machine.

2.5 PUMP GEOMETRIES

Since the task specifications for a pump (or turbine or compressor or other
machine) can be reduced to the single parameter, ND, it is not surprising that
the overall or global geometries of pumps, that have evolved over many decades,
can be seen to fit quite neatly into a single parameter family of shapes. This
family is depicted in figure 2.6. These geometries reflect the fact that an axial
flow machine, whether a pump, turbine, or compressor, is more efficient at high
specific speeds (high flow rate, low head) while a radial machine, that uses the
centrifugal effect, is more efficient at low specific speeds (low flow rate, high
head). The same basic family of geometries is presented quantitatively in figure
2.7, where the anticipated head and flow coefficients are also plotted. While the
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Figure 2.6: Ranges of specific speeds for typical turbomachines and typical pump
geometries for different design speeds (from Sabersky, Acosta and Hauptmann
1989).

existence of this parametric family of designs has emerged almost exclusively
as a result of trial and error, some useful perspectives can be obtained from
an approximate analysis of the effects of the pump geometry on the hydraulic
performance (see section 4.3).

Normally, turbomachines are designed to have their maximum efficiency at
the design specific speed, ND. Thus, in any graph of efficiency against spe-
cific speed, each pump geometry will trace out a curve with a maximum at its
optimum specific speed, as illustrated by the individual curves in figure 2.8.
Furthermore, Balje (1981) has made note of another interesting feature of this
family of curves in the graph of efficiency against specific speed. First, he cor-
rects the curves for the different viscous effects which can occur in machines
of different size and speed, by comparing the data on efficiency at the same
effective Reynolds number using the diagram reproduced as figure 2.9. Then,
as can be seen in figure 2.8, the family of curves for the efficiency of different
types of machines has an upper envelope with a maximum at a specific speed
of unity. Maximum possible efficiencies decline for values of ND greater or less



2.6. ENERGY BALANCE 31

Figure 2.7: General design guidelines for pumps indicating the optimum ratio
of inlet to discharge tip radius, RT1/RT2, and discharge width ratio, B2/RT2,
for various design specific speeds, ND. Also shown are approximate pump per-
formance parameters, the design flow coefficient, φD, and the design head coef-
ficient, ψD (adapted from Sabersky, Acosta and Hauptmann 1989).

than unity. Thus the “ideal” pump would seem to be that with a design specific
speed of unity, and the maximum obtainable efficiency seems to be greatest at
this specific speed. Fortunately, from a design point of view, one of the spec-
ifications has some flexibility, namely the shaft speed, Ω. Though the desired
flow rate and head rise are usually fixed, it may be possible to choose the drive
motor to turn at a speed, Ω, which brings the design specific speed close to the
optimum value of unity.

2.6 ENERGY BALANCE

The next step in the assessment of the performance of a turbomachine is to
consider the application of the first and second laws of thermodynamics to such
devices. In doing so we shall characterize the inlet and discharge flows by their
pressure, velocity, enthalpy, etc., assuming that these are uniform flows. It is
understood that when the inlet and discharge flows are non-uniform, the analysis
actually applies to a single streamtube and the complete energy balance requires
integration over all of the streamtubes.
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Figure 2.8: Compilation by Balje (1981) of maximum efficiencies for various
kinds of pumps as a function of design specific speed, ND . Since efficiency is
also a function of Reynolds number the data has been corrected to a Reynolds
number, 2ΩR2

T2/ν , of 108.

Figure 2.9: The dependence of hydraulic efficiency, ηP , and shaft efficiency, ηS ,
on Reynolds number, 2ΩR2

T2/ν (from Balje 1981).
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The basic thermodynamic measure of the energy stored in a unit mass of
flowing fluid is the total specific enthalpy (total enthalpy per unit mass) denoted
by hT and defined by

hT = h+
1
2
|u|2 + gz = e+

p

ρ
+

1
2
|u|2 + gz (2.24)

where e is the specific internal energy, |u| is the magnitude of the fluid velocity,
and z is the vertical elevation. This expression omits any energy associated
with additional external forces (for example, those due to a magnetic field), and
assumes that the process is chemically inert.

Consider the steady state operation of a fluid machine in which the entering
fluid has a total specific enthalpy of hT

1 , the discharging fluid has a total specific
enthalpy of hT

2 , the mass flow rate is m, the net rate of heat addition to the
machine is Q, and the net rate of work done on the fluid in the machine by
external means is Ẇ . It follows from the first law of thermodynamics that

m(hT
2 − hT

1 ) = Q + Ẇ (2.25)

Now consider incompressible, inviscid flow. It is a fundamental property of
such a flow that it contains no mechanism for an exchange of thermal and me-
chanical energy, and, therefore, equation 2.25 divides into two parts, governing
the mechanical and thermal components of the total enthalpy, as follows

(p/ρ+
1
2
|u|2 + gz)2 − (p/ρ+

1
2
|u|2 + gz)1 =

(pT
2 − pT

1 )
ρ

=
Ẇ

m
(2.26)

e2 − e1 = Q/m (2.27)

Thus, for incompressible inviscid flow, the fluid mechanical problem (for which
equation 2.26 represents the basic energy balance) can be decoupled from the
heat transfer problem (for which the heat balance is represented by equation
2.27).

It follows that, if T is the torque applied by the impeller to the fluid, then
the rate of work done on the fluid is Ẇ = TΩ. Consequently, in the case of an
ideal fluid which is incompressible and inviscid, equation 2.26 yields a relation
connecting the total pressure rise across the pump, pT

2 −pT
1 , the mass flow rate,

m, and the torque:

m
(pT

2 − pT
1 )

ρ
= TΩ (2.28)

Furthermore, the second law of thermodynamics implies that, in the pres-
ence of irreversible effects such as those caused by viscosity, the equality in
equation 2.28 should be replaced by an inequality, namely a “less than” sign.
Consequently, in a real pump operating with an incompressible fluid, viscous
effects will cause some of the input energy to be converted to heat rather than to
an increase in the stored energy in the fluid. It follows that the right hand side
of equation 2.28 is the actual work done on the fluid by the impeller, and the
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left hand side is the fraction of that work which ends up as mechanical energy
stored in the fluid. It is, therefore, appropriate to define a quantity, ηP , known
as the pump hydraulic efficiency, to represent that fraction of the work done
on the fluid that ends up as an increase in the mechanical energy stored in the
fluid:

ηP = m
(
pT
2 − pT

1

) /
ρTΩ (2.29)

Of course, additional mechanical losses may occur in a pump. These can
cause the rate of work transmitted through the external shaft of the pump to be
greater than the rate at which the impeller does work on the fluid. For example,
losses may occur in the bearings or as a result of the “disk friction” losses caused
by the fluid dynamic drag on other, non-active surfaces rotating with the shaft.
Consequently, the overall (or shaft) efficiency, ηS , may be significantly smaller
than ηP . For approximate evaluations of these additional losses, the reader is
referred to the work of Balje (1981).

Despite all these loss mechanisms, pumps can be surprisingly efficient. A well
designed centrifugal pump should have an overall efficiency in the neighborhood
of 85% and some very large pumps (for example those in the Grand Coulee
Dam) can exceed 90%. Even centrifugal pumps with quite simple and crude
geometries can often be 60% efficient.

2.7 NONCAVITATING PUMP

PERFORMANCE

It is useful at this point to develop an approximate and idealized evaluation of
the hydraulic performance of a pump in the absence of cavitation. This will
take the form of an analytical expression for the head rise (or ψ) as a function
of the flow rate (or φ2).

To simplify this analysis it is assumed that the flow is incompressible, ax-
isymmetric and steady in the rotating framework of the impeller blades; that
the blades are infinitely thin; and that viscous losses can be neglected. Under
these conditions the flow in any streamtube, such as depicted in figure 2.2, will
follow the Bernoulli equation for a rotating system (see, for example, Sabersky,
Acosta and Hauptmann 1989),

2p1

ρ
+ w2

1 − r21Ω
2 =

2p2

ρ
+w2

2 − r22Ω
2 (2.30)

This equation can be usefully interpreted as an energy equation as follows. The
terms p + 1

2ρw
2 on either side are the total pressure or mechanical energy per

unit volume of fluid, and this quantity would be the same at inlet and discharge
were it not for the fact that “potential” energy is stored in the rotating fluid.
The term ρ(r21 − r22)Ω2/2 represents the difference in this “potential” energy at
inlet and discharge. Clearly, when there are losses, equation 2.30 will no longer
be true.
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Using the definition of the total pressure (equation 2.13) and the relations
between the velocities derived from the velocity triangles of figure 2.2, equation
2.30 can be manipulated to yield the following expression for the total pressure
rise, (pT

2 − pT
1 ), for a given streamtube:

pT
2 − pT

1 = p2 − p1 +
ρ

2
(
v2
2 − v2

1

)
(2.31)

= ρ(Ωr2vθ2 − Ωr1vθ1) (2.32)

In the absence of inlet swirl (vθ1 = 0), this leads to the nondimensional perfor-
mance characteristic

ψ = 1 − φ2 cotβb2 (2.33)

using the definitions in equations 2.16 and 2.17. Here we have assumed that
the inlet and discharge conditions are uniform which, in effect, restricts the
result to a turbomachine in which the widths, B1 and B2 (figure 2.1), are such
that B1 � RT1, B2 � RT2, and in which the velocities of the flow and the
impeller are uniform across both the inlet and the discharge. Usually this is
not the case, and the results given by equations 2.32 and 2.33 then become
applicable to each individual streamtube. Integration over all the streamtubes is
necessary to obtain the performance characteristic for the machine. An example
of this integration was given in section 2.3. Even in these nonuniform cases, the
simple expression 2.33 is widely used in combination with some mean or effective
discharge blade angle, βb2, to estimate the performance of a pump.

It is important to note that the above results can be connected with those of
the preceding section by applying the angular momentum theorem (Newton’s
second law of motion applied to rotational motion) to relate the torque, T , to
the net flux of angular momentum out of the pump:

T = m(r2vθ2 − r1vθ1) (2.34)

where, as before, m is the mass flow rate. Note that this momentum equation
2.34 holds whether or not there are viscous losses. In the absence of viscous
losses, a second expression for the torque, T , follows from equation 2.28. By
equating the two expressions, the result 2.32 for the performance in the absence
of viscous losses is obtained by an alternative method.

2.8 SEVERAL SPECIFIC IMPELLERS

AND PUMPS

Throughout this monograph, we shall make reference to experimental data on
various phenomena obtained with several specific impellers and pumps. It is
appropriate at this point to include a brief description of these components.
The descriptions will also serve as convenient examples of pump geometries.

Impeller X, which is shown in figure 2.10, is a five-bladed centrifugal pump
impeller made by Byron Jackson Pump Division of Borg Warner International
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Figure 2.10: A centrifugal pump impeller designated Impeller X.

Figure 2.11: A vaneless spiral volute (designated Volute A) designed to be
matched to Impeller X.
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Figure 2.12: Two cavitating inducers for which performance data is presented.
On the left a 7.58 cm diameter, 9◦ helical Impeller V (a 10.2 cm version is
designated Impeller VII). On the right a 7.58 cm diameter scale model of the
impeller in the SSME low pressure LOX turbopump, Impeller IV (a 10.2 cm
version is designated Impeller VI).

Products. It has a discharge radius, RT2 = 8.1 cm, a discharge blade angle,
βbT2, of 23◦, and a design specific speed, ND , of 0.57. Impeller X was often
tested in combination with Volute A (figure 2.11), a single exit, spiral volute
with a base circle of 18.3 cm and a spiral angle of 4◦. It is designed to match
Impeller X at a flow coefficient of φ2 = 0.092. This implies that the principles
of fluid continuity and momentum have been utilized in the design, so that
the volute collects a circumferentially uniform discharge from the impeller and
channels it to the discharge line in such a way that the pressure in the volute is
circumferentially uniform, and in a way that minimizes the viscous losses in the
decelerating flow. For given volute and impeller geometries, these objectives
can only by met at one “design” flow coefficient, as described in section 4.4.
We would therefore expect that the hydraulic losses would increase, and the
efficiency decrease, at off-design conditions. It is valuable to emphasize that the
performance of a pump depends not only on the separate designs of the impeller
and volute but also on the matching of the two components.

Two particular axial flow pumps or inducers, designed to function with cav-
itation, will also be referred to frequently. These are shown in figure 2.12. In
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a number of contexts, data for several simple 9◦ helical inducers (βbT1 = 9◦)
will be used for illustrative purposes, and a typical geometry is shown on the
left of figure 2.12. Two 7.58 cm diameter versions were deployed: Impeller III
had straight, radial leading edges and Impeller V, with swept leading edges, is
shown in figure 2.12. A 10.2 cm diameter version with swept leading edges is
designated Impeller VII.

The second inducer geometry is pertinent to a somewhat lower specific speed.
Impellers IV (7.58 cm diameter) and VI (10.2 cm diameter) were scale models
of the low pressure liquid oxygen impeller in the Space Shuttle Main Engine
(SSME). These have a design flow coefficient of about 0.076; other dimensions
are given in table 7.1. Furthermore, some detailed data on blade angles, βb1(r),
and blade thickness are given in figure 7.39.
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Chapter 3

TWO-DIMENSIONAL
PERFORMANCE
ANALYSIS

3.1 INTRODUCTION

In this and the following chapter, we briefly survey the more detailed analyses
of the flow in axial and centrifugal pumps, and provide a survey of some of
the models used to synthesize the noncavitating performance of these turbo-
machines. The survey begins in this chapter with a summary of some of the
results that emerge from a more detailed analysis of the two-dimensional flow in
the meridional plane of the turbomachine, while neglecting most of the three-
dimensional effects. In this regard, sections 3.2 through 3.4 address the analyses
of linear cascades for axial flow machines, and section 3.5 summarizes the anal-
yses of radial cascades for centrifugal machines. Three-dimensional effects are
addressed in the next chapter.

3.2 LINEAR CASCADE ANALYSES

The fluid mechanics of a linear cascade will now be examined in more detail,
so that the role played by the geometry of the blades and information on the
resulting forces on individual blades may be used to supplement the analysis of
section 2.7. Referring to the periodic control volume indicated in figure 3.1, and
applying the momentum theorem to this control volume, the forces, Fx and Fy,
imposed by the fluid on each blade (per unit depth normal to the sketch), are
given by

Fx = −(p2 − p1)h (3.1)
Fy = ρhvm(w1 cos β1 −w2 cosβ2) (3.2)

39
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Figure 3.1: Schematic of a linear cascade showing the blade geometry, the pe-
riodic control volume and the definition of the lift, L, and drag, D, forces on a
blade.

where, as a result of continuity, vm1 = vm2 = vm. Note that Fy is entirely
consistent with the expression 2.34 for the torque, T .

To proceed, we define the vector mean of the relative velocities, w1 and w2,
as having a magnitude wM and a direction βM , where by simple geometry

cotβM =
1
2

(cotβ1 + cotβ2) (3.3)

wM = vm

/
sinβM (3.4)

It is conventional and appropriate (as discussed below) to define the lift, L,
and the drag, D, components of the total force on a blade, (F 2

x + F 2
y )

1
2 , as

the components normal and tangential to the vector mean velocity, wM . More
specifically, as shown in figure 3.1,

L = −Fx cos βM + Fy sinβM (3.5)

D = Fx sinβM + Fy cos βM (3.6)
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where L and D are forces per unit depth normal to the sketch. Nondimensional
lift and drag coefficients are defined as

CL = L
/1

2
ρw2

Mc ; CD = D
/1

2
ρw2

M c (3.7)

The list of fundamental relations is complete if we write the expression for the
pressure difference across the cascade as

p1 − p2 = ∆pT
L +

ρ

2
(
w2

1 − w2
2

)
(3.8)

where ∆pT
L denotes the total pressure loss across the cascade caused by viscous

effects. In frictionless flow, ∆pT
L = 0, and the relation 3.8 becomes the Bernoulli

equation in rotating coordinates (equation 2.30 with r1 = r2 as is appropriate
here). A nondimensional loss coefficient, f , is defined as

f = ∆pT
L

/1
2
ρw2

M (3.9)

Equations 3.1 through 3.9 can be manipulated to obtain expressions for the lift
and drag coefficients as follows

CD = 2f sinβM

/
s (3.10)

CL =
2
s

[
ψ

φ
sinβM +

f(φ − cos βM sinβM )
sinβM

]
(3.11)

where s = c/h is the solidity, ψ is the head coefficient, (pT
2 − pT

1 )
/
ρΩ2R2, and

φ is the flow coefficient, vm

/
ΩR. Note that in frictionless flow CD = 0 and

CL = 2ψ sinβM

/
φs; then the total force (lift) on the foil is perpendicular to the

direction defined by the βM of equation 3.3. This provides confirmation that
the directions we chose in defining L and D (see figure 3.1) were appropriate
for, in frictionless flow, CD must indeed be zero.

Also note that equations 3.1 through 3.9 yield the head/flow characteristic
given by

ψ = φ (cotβ1 − cotβ2) − fφ2
(
1 + cot2 βM

)
(3.12)

which, when there is no inlet swirl or prerotation so that tanβ1 = φ, becomes

ψ = 1 − φ cotβ2 − f

[
φ2 +

1
4

(1 + φ cotβ2)
2

]
(3.13)

In frictionless flow, when the discharge is parallel with the blades (β2 = βb2),
this, of course, reduces to the characteristic equation 2.33. Note that the use of
the relation 3.13 allows us to write the expression 3.11 for the lift coefficient as

CL =
2
s

[2 sinβM (cot β1 − cotβM ) − f cosβM ] (3.14)
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Figure 3.2: Calculated head/flow characteristics for some linear cascades.

Figure 3.2 presents examples of typical head/flow characteristics resulting
from equation 3.13 for some chosen values of β2 and the friction coefficient, f .
It should be noted that, in any real turbomachine, f will not be constant but
will vary substantially with the flow coefficient, φ, which determines the angle
of incidence and other flow characteristics. More realistic cases are presented a
little later in figure 3.3.

The observant reader will have noted that all of the preceding equations of
this section involve only the inclinations of the flow and not of the blades, which
have existed only as ill-defined objects that achieve the turning of the flow. In
order to progress further, it is necessary to obtain a detailed solution of the
flow, one result of which will be the connection between the flow angles (βM ,
β2) and the geometry of the blades, including the blade angles (βb, βb1, βb2).
A large literature exists describing methods for the solutions of these flows, but
such detail is beyond the scope of this text. As in most high Reynolds number
flows, one begins with potential flow solutions, for which the reader should
consult a modern text, such as that by Horlock (1973), or the valuable review
by Roudebush (1965). König (1922) produced one of the earliest potential flow
solutions, namely that for a simple flat plate cascade of infinitely thin blades.
This was used to generate figure 3.4. Such potential flow methods must be
supplemented by viscous analyses of the boundary layers on the blades and the
associated wakes in the discharge flow. Leiblein (1965) provided an excellent
review of these viscous flow methods, and some of his basic methodology will
be introduced later.
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To begin with, however, one can obtain some useful insights by employing our
basic knowledge and understanding of lift and drag coefficients obtained from
tests, both those on single blades (airfoils, hydrofoils) and those on cascades of
blades. One such observation is that the lift coefficient, CL, is proportional to
the sine of the angle of attack, where the angle of attack is defined as the angle
between the mean flow direction, βM , and a mean blade angle, βbM . Thus

CL = mL sin(βbM − βM ) (3.15)

where mL is a constant, a property of the blade or cascade geometry. In the case
of frictionless flow (f = 0), the expression 3.15 may be substituted into equation
3.14, resulting in an expression for βM . When this is used with equation 3.13,
the following head/flow characteristic results:

ψ =
2mLs sinβbM

4 +mLs sinβbM

[
1 − φ

(
cot βbM +

vθ1

vm1

)]
(3.16)

where, for convenience, the first factor on the right-hand side is denoted by

ψ0 =
2mLs sinβbM

4 +mLs sinβbM
=
[
1 +

cotβ2 − cotβb2

cotβ1 − cot β2

]−1

(3.17)

The factor, ψ0, is known as the frictionless shut-off head coefficient, since it is
equal to the head coefficient at zero flow rate. The second expression for ψ0

follows from the preceding equations, and will be used later. Note that, unlike
equation 3.13, the head/flow characteristic of equation 3.16 is given in terms of
mL and practical quantities, such as the blade angle, βbM , and the inlet swirl
or prerotation, vθ1

/
vm1.

It is also useful to consider the drag coefficient, CD, for it clearly defines f
and the viscous losses in the cascade. Instead of being linear with angle of attack,
CD will be an even function so an appropriate empirical result corresponding
to equation 3.15 would be

CD = CD0 +mD sin2 (βbM − βM ) (3.18)

where CD0 and mD are constants. Some head/flow characteristics resulting
from typical values of CD0 and mD are shown in figure 3.3. Note that these
performance curves have a shape that is closer to practical performance curves
than the constant friction factor results of figure 3.2.

3.3 DEVIATION ANGLE

While the simple, empirical approach of the last section has practical and edu-
cational value, it is also valuable to consider the structure of the flow in more
detail, and to examine how higher level solutions to the flow might be used to
predict the performance of a cascade of a particular geometry. In doing so, it is
important to distinguish between performance characteristics that are the result
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Figure 3.3: Calculated head/flow characteristics for a linear cascade using blade
drag coefficients given by equation 3.18 with CD0 = 0.02. The corresponding
characteristics with CD0 = mD = 0 are shown in figure 3.2.

of idealized inviscid flow and those that are caused by viscous effects. Consider,
first, the inviscid flow effects. König (1922) was the first to solve the potential
flow through a linear cascade, in particular for a simple cascade of infinitely
thin, straight blades. The solution leads to values of the deviation, δ, that,
in turn, allow evaluation of the shut-off head coefficient, ψ0, through equation
3.17. This is shown as a function of solidity in figure 3.4. Note that for solidities
greater than about unity, the idealized, potential flow exits the blade passages
parallel to the blades, and hence ψ0 → 1.

Another approach to the same issue of relating the flow angle, β2, to the
blade angles, is to employ an empirical rule for the deviation angle, δ = βb2−β2

(equation 2.2), in terms of other geometric properties of the cascade. One early
empirical relation suggested by Constant (1939) (see Horlock 1973) relates the
deviation to the camber angle, θc, and the solidity, s, through

δN = C θc

/
s

1
2 (3.19)

where the subscript N refers to nominal conditions, somewhat arbitrarily defined
as the operating condition at which the deflection (β2 − β1) has a value that is
80% of that at which stall would occur. Constant suggested a value of 0.26 for
the constant, C. Note that β2 can then be evaluated and the head rise obtained
from the characteristic 3.12. Later investigators explored the variations in the
deviation angle with other flow parameters (see, for example, Howell 1942),
and devised more complex correlations for use in the design of axial flow rotors
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(Horlock 1973). However, the basic studies of Leiblein on the boundary layers
in linear cascades, and the role which these viscous effects play in determining
the deviation and the losses, superceded much of this empirical work.

3.4 VISCOUS EFFECTS IN LINEAR
CASCADES

It is also of value to examine in more detail the mechanism of viscous loss in
a cascade. Even in two-dimensional cascade flow, the growth of the boundary
layers on the pressure and suction surfaces of the blades, and the wakes they
form downstream of the blades (see figure 3.5), are complex, and not amenable
to simple analysis. However, as the reviews by Roudebush and Lieblein (1965)
and Lieblein (1965) demonstrate, it is nevertheless possible to provide some
qualitative guidelines for the resulting viscous effects on cascade performance. In
this respect, the diffusion factor, introduced by Lieblein et al. (1953), is a useful
concept that is based on the following approximations. First, we note that under
normal operating conditions, the boundary layer on the suction surface will be
much thicker than that on the pressure surface of the foil, so that, to a first
approximation, we may neglect the latter. Then, the thickness of the wake (and
therefore the total pressure loss) will be primarily determined by that fraction
of the suction surface over which the velocity gradient is adverse, since that is
where the majority of the boundary layer growth occurs. Therefore, Lieblein et
al. argued, the momentum thickness of the wake, θ∗, should correlate with a
parameter they termed the diffusion factor, given by (wmax −w2)/wmax, where
wmax is the maximum velocity on the suction surface. One should visualize

Figure 3.4: The performance parameter, ψ0, as a function of solidity, s, for flat
plate cascades with different blade angles, βb. Adapted by Wislicensus (1947)
(see also Sabersky, Acosta and Hauptmann 1989) from the potential flow theory
of König (1922).
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deceleration or diffusion of the flow from wmax to w2, and that this diffusion is
the primary factor in determining the wake thickness. However, since wmax is
not easily determined, Lieblein et al. suggest an approximation to the diffusion
factor that is denoted Df , and given by

Df = 1 − w2

w1
+
vθ2 − vθ1

2sw1

= 1 − sinβ1

sinβ2
+

sinβ1(cot β1 − cotβ2)
2s

(3.20)

Figure 3.6 shows the correlation of the momentum thickness of the wake (nor-
malized by the chord) with this diffusion factor, Df , for three foil profiles. Such
correlations are now commonly used to determine the viscous loss due to blade
boundary layers and wakes. Note that, once θ∗/c has been determined from
such a correlation, the drag coefficient, CD, and the friction or loss coefficient
follow from equations 3.7, 3.9, and 3.10 and the fact that D = ρw2

2θ
∗:

CD =
2 sin2 βM

sin2 β2

θ∗

c
; f =

s sinβM

sin2 β2

θ∗

c
(3.21)

The data shown in figure 3.6 were for a specific Reynolds number, Re, and the
correlations must, therefore, be supplemented by a statement on the variation
of the loss coefficient with Re. A number of correlations of this type exist
(Roudebush and Lieblein 1965), and exhibit the expected decrease in the loss
coefficient with increasing Re. For more detail on viscous losses in a cascade,
the reader should consult the aforementioned papers by Lieblein.

In an actual turbomachine, there are several additional viscous loss mech-
anisms that were not included in the cascade analyses discussed above. Most
obviously, there are additional viscous layers on the inner and outer surfaces
that bound the flow, the hub and the shroud (or casing). These often give rise

Figure 3.5: Sketch of the boundary layers on the surfaces of a cascade and the
resulting blade wakes.
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Figure 3.6: Correlation of the ratio of the momentum thickness of the blade
wakes, θ∗, to the chord, c, with the diffusion factor, Df , for cascades of blades
with three different profiles: NACA 65− (A10)10 series (◦) and two British C.4
parabolic arc profiles (� and �). The maximum thickness of the blades is 0.1c
and the Reynolds number is 2.5× 105. Adapted from Lieblein (1965).

to complex, three-dimensional secondary flows that lead to additional viscous
losses (Horlock and Lakshminarayana 1973). Moreover, the rotation of other,
“non-active” surfaces of the impeller will lead to viscous shear stresses, and
thence to losses known as “disk friction losses” in the terminology of turbo-
machines. Also, leakage flows from the discharge back to the suction, or from
one stage back to a preceding stage in a multistage pump, constitute effective
losses that must be included in any realistic evaluation of the losses in an actual
turbomachine (Balje 1981).

3.5 RADIAL CASCADE ANALYSES

Two-dimensional models for centrifugal or radial turbomachines begin with
analyses of the flow in a radial cascade (section 2.2 and figure 3.7), the coun-
terpart of the linear cascade for axial flow machines. More specifically, the
counterpart of the linear flat plate cascade is the logarithmic spiral cascade, de-
fined in section 2.2, and shown in more detail in figure 3.7. There exist simple
conformal mappings that allow potential flow solutions for the linear cascade
to be converted into solutions for the corresponding radial cascade flow, though
the proper interpretation of these solutions requires special care. The resulting
head/flow characteristic for frictionless flow in a radial cascade of infinitely thin
logarithmic spiral blades is given in a classic paper by Busemann (1928), and
takes the form

ψ = SfB − ψ0φ

(
cotβb +

vθ1

vm1

)
(3.22)

The terms SfB and ψ0 result from quite separate and distinct fluid mechanical
effects. The term involving ψ0 is a consequence of the frictionless, potential flow
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Figure 3.7: Schematic of the radial cascade corresponding to the linear cascade
of figure 3.1.

head rise through any simple, nonrotating cascade whether of axial, radial, or
mixed flow geometry. Therefore, ψ0 is identical to the quantity, ψ0, defined by
equation 3.17 in the context of a linear cascade. The values for ψ0 for a simple
cascade of infinitely thin blades, whether linear, radial or mixed flow, are as
given in figure 3.4. The ψ0 term can be thought of as the “through flow” effect,
and, as demonstrated by figure 3.4, the value of ψ0 rapidly approaches unity
when the solidity increases to a value a little greater than one.

However, it is important to recognize that the ψ0 term is the result of a
frictionless, potential flow solution in which the vorticity is zero. This solution
would be directly applicable to a static or nonrotating radial cascade in which
the flow entering the cacade has no component of the vorticity vector in the
axial direction. This would be the case for a nonswirling axial flow that is
deflected to enter a nonrotating, radial cascade in which the axial velocity is
zero. But, relative to a rotating radial cascade (or centrifugal pump impeller),
such an inlet flow does have vorticity, specifically a vorticity with magnitude 2Ω
and a direction of rotation opposite to the direction of rotation of the impeller.
Consequently, the frictionless flow through the impeller is not irrotational, but
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Figure 3.8: A sketch of the displacement component of the inviscid flow through
a rotating radial cascade.

has a constant and uniform vorticity of −2Ω.
In inviscid fluid mechanics, one frequently obtains solutions for these kinds

of rotational flows in the following way. First, one obtains the solution for the
irrotational flow, which is represented by ψ0 in the current problem. Mathemat-
ically, this is the complementary solution. Then one adds to this a particular
solution that satisfies all the same boundary conditions, but has a uniform vor-
ticity, −2Ω. In the present context, this particular, or rotational, solution leads
to the term, SfB , which, therefore, has a quite different origin from the irrota-
tional term, ψ0. The division into the rotational solution and the irrotational
solution is such that all the net volumetric flow through the impeller is included
in the irrotational (or ψ0) component. The rotational solution has no through
flow, but simply consists of a rotation of the fluid within each blade passage, as
sketched in figure 3.8. Busemann (1928) called this the displacement flow; other
authors refer to its rotating cells as relative eddies (Balje 1980, Dixon 1978).
In his pioneering work on the fluid mechanics of turbomachines, Stodola (1927)
was among the first to recognize the importance of this rotational component
of the solution. Busemann (1928) first calculated its effect upon the head/flow
characteristic for the case of infinitely thin, logarithmic spiral blades, in other
words the simple cascade in the radial configuration. For reasons which will
become clear shortly, the function, SfB , is known as the Busemann slip factor,
and Busemann’s solutions lead to the values presented in figure 3.9 when the
solidity, s > 1.1. Note that the values of SfB are invariably less than or equal
to unity, and, therefore, the effect of the displacement flow is to cause a de-
crease in the head. This deficiency can, however, be minimized by using a large
number of blades. As the number of blades gets larger, SfB tends to unity as
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Figure 3.9: The Busemann slip factor, SfB , plotted against the blade angle, βb,
for various numbers of blades, ZR. The results shown are for radial cascades
of infinitely thin logarithmic spiral blades with solidities, s > 1.1. Adapted
by Sabersky, Acosta and Hauptmann (1989) and Wislicenus (1947) from Buse-
mann’s (1928) theory.

the rotational flow within an individual blade passage increasingly weakens. In
practice, however, the frictional losses will increase with the number of blades.
Consequently, there is an important compromise that must be made in choos-
ing the number of blades. As figure 3.9 shows, this compromise will depend
on the blade angle. Furthermore, the compromise must also take into account
the structural requirements for the blades. Thus, radial machines for use with
liquids usually have a smaller number of blades than those used for gases. The
reason for this is that a liquid turbomachine requires much thicker blades, and,
therefore, each blade creates much more flow blockage than in the case of a gas
turbomachine. Consequently, liquid machines tend to have a smaller number
of blades, typically eight for the range of specific speeds for which radial ma-
chines are designed (ND < 1.5) (Stepanoff 1948, Anderson). Another popular
engineering criterion (Stepanoff 1948) is that ZR should be one third of the
discharge blade angle, βb (in degrees).

The decrease in the head induced by the displacement flow is due to the
nonuniformity in the discharge flow; this nonuniformity results in a mean angle
of discharge (denoted by β2) that is different from the discharge blade angle,
βb2, and, therefore, implies an effective deviation angle or slip, Sf (see section
2.1). In fact, it is clear that the relations 2.16, 2.32, 3.22, and 2.4 imply that
Sf = SfB , and, hence, the terminology used above. Stodola (1927) recognized
that slip would be a consequence of the displacement flow, and estimated the
magnitude of the slip velocity, vθs, in the following approximate way. He argued
that the slip velocity could be roughly estimated as Ωd/2, where d/2 is the
radius of the blade discharge circle shown in figure 3.8. He visualized this as
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representative of the rotating cell of fluid in a blade passage, and that the
rotation of this cell at Ω would lead to the aforementioned vθs. Then, provide
ZR is not too small, d ≈ 2πR2 sinβb2, and it follows that

vθs = πΩR2 sinβb2/ZR (3.23)

and, from equation 2.4, that the estimated slip factor, SfS , is

SfS = 1 − π sinβb2

ZR
(3.24)

Numerical comparisons with the more exact results of Busemann presented in
figure 3.9, show that equation 3.24 gives a reasonable first approximation. For
example, an impeller with four blades, a blade angle of 25◦, and a solidity greater
than unity, has a Stodola slip factor of SfS = 0.668 compared to the value of
SfB = 0.712 from Busemann’s more exact theory.

There is a substantial literature on slip factors for centrifugal pumps. Some
of this focuses on the calculation of slip factors for inviscid flow in radial cascades
with blades that are more complex than the infinitely thin, logarithmic spiral
blades used by Busemann. Useful reviews of some of this work can be found,
for example, in the work of Wislicenus (1947), Stanitz (1952), and Ferguson
(1963). Other researchers attempt to find slip factors that provide the best fit
to experimental data. In doing so, they also attempt to account for viscous
effects in addition to the inviscid effect for which the slip factor was originally
devised. As an example of this approach, the reader may consult Wiesner (1967),
who reviews the existing, empirical slip factors, and suggests one that seems to
yield the best comparison with the experimental measurements.

3.6 VISCOUS EFFECTS IN RADIAL

FLOWS

We now turn to a discussion of the viscous effects in centrifugal pumps. Clearly
a radial cascade will experience viscous boundary layers on the blades that
are similar to those discussed earlier for axial flow machines (see section 3.4).
However, two complicating factors tend to generate loss mechanisms that are
considerably more complicated. These two factors are flow separation and sec-
ondary flow.

Normally, the flow in a centrifugal pump separates from the suction surface
near the leading edge, and produces a substantial wake on the suction surfaces of
each of the blades. Fischer and Thoma (1932) first identified this phenomenon,
and observed that the wake can occur even at design flow. Normally, it extends
all the way to the impeller discharge. Consequently, the discharge flow consists
of a low velocity zone or wake next to the suction surface, and, necessarily, a flow
of increased velocity in the rest of the blade passage. This “jet-wake structure”
of the discharge is sketched in figure 3.10. Note that this viscous effect tends
to counteract the displacement flow of figure 3.8. Since the work of Fischer
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Figure 3.10: A sketch of actual discharge flow from a centrifugal pump or com-
pressor including the alternating pattern of jets and wakes resulting from flow
separation from the suction surfaces.

and Thoma, many others have studied this aspect of flows in centrifugal pumps
and compressors (see, for example, Acosta and Bowerman 1957, Johnston and
Dean 1966, Eckardt 1976), and it is now recognized as essential to take these
features into account in constructing any model of the flow in radial turboma-
chines. Modern analyses of the flow in radial turbomachines usually incorporate
the basic features of the jet-wake structure in the blade passages (for example,
Sturge and Cumpsty 1975, Howard and Osborne 1977). Sturge and Cumpsty
have calculated the shape of the wake in a typical, two-dimensional radial cas-
cade, using numerical methods to solve a free streamline problem similar to
those discussed in chapter 7.

At design flow, the wake or boundary layer on the suction surface may be
quite thin, but as the flow coefficient, φ, is decreased, the increased incidence
leads to larger wakes (Fischer and Thoma 1932, Johnston and Dean 1966).
Clearly, the nonuniformity of the discharge flow implies an “effective” slip due to
these viscous effects. This slip will not only depend on the geometry of the blades
but will also be a function of the flow coefficient and the Reynolds number. The
change with flow coefficient is particularly interesting. As φ is decreased below
the design value and the wake grows in width, an increasing fraction of the
flow is concentrated in the jet. Johnston and Dean (1966) showed that this
results in a flow that more closely follows the geometry of the pressure surface,
and, therefore, to a decrease in the slip. This can be a major effect in radial
compressors. Johnston and Dean made measurements in an 18-bladed radial
compressor impeller with a 90◦ discharge blade angle (for which SfS = 0.825),
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and found that the effective slip factor increased monotonically from a value of
about 0.8 at φ2 = 0.5 to a value of 1.0 at φ2 = 0.15. However, this increase in
the slip factor did not produce an increase in the head rise, because the increase
in the viscous losses was greater than the potential gain from the decrease in
the slip.

Finally, it is important to recognize that secondary flows can also have a
substantial effect on the development of the blade wakes, and, therefore, on
the jet-wake structure. Moreover, the geometric differences between the typical
radial compressor and the typical centrifugal pump can lead to significant differ-
ences in the secondary flows, the loss mechanisms, and the jet-wake structure.
The typical centrifugal pump geometry was illustrated in figure 2.7, to which
we should append the typical number of blades, ZR = 8. A typical example
is the geometry at ND = 0.6, namely RT1/RT2 ≈ 0.5 and B2 ≈ 0.2RT2. As-
suming ZR = 8 and a typical blade angle at discharge of 25◦, it follows that
the blade passage flow at discharge has cross-sectional dimensions normal to the
relative velocity vector of 0.2RT2×0.3RT2, while the length of the blade passage
is approximately 1.2RT2. Thus the blade passage is fairly wide relative to its
length. In contrast, the typical radial compressor has a much smaller value of
B2/RT2, and a much larger number of blades. As a result, not only is the blade
passage much narrower relative to its length, but also the typical cross-section
of the discharge flow is far from square, being significantly narrower in the axial
direction. The viscous boundary layers on the suction and pressure surfaces of
the blades, and on the hub and shroud (or casing), will have a greater effect the
smaller the cross-sectional dimensions of the blade passage are relative to its
length. Moreover, the secondary flows that occur in the corners of this passage
amplify these viscous effects. Consequently, the flow that discharges from a
blade passage of a typical radial compressor is more radically altered by these
viscous effects than the flow discharging from a typical centrifugal pump.
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Chapter 4

OTHER FLOW
FEATURES

4.1 INTRODUCTION

In this chapter we briefly survey some of the other important features of the
flows through turbomachines. We begin with a section on the three-dimensional
characteristics of flows, and a discussion of some of the difficulties encountered
in adapting the cascade analyses of the last chapter to the complex geometry of
most turbomachines.

4.2 THREE-DIMENSIONAL FLOW
EFFECTS

The preceding chapter included a description of some of the characteristics of
two-dimensional cascade flows in both the axial and radial geometries. It was
assumed that the flow in the meridional plane was essentially two-dimensional,
and that the effects of the velocities (and the gradients in the velocity or pres-
sure) normal to the meridional surface were neglible. Moreover, it was tacitly
assumed that the flow in a real turbomachine could be synthesized using a series
of these two-dimensional solutions for each meridional annulus. In doing so it
is implicitly assumed that each annulus corresponds to a streamtube such as
depicted in figure 4.1 and that the geometric relations between the inlet loca-
tion, r1, and thickness, dr1, and the discharge thickness, dn, and location, r2,
are known a priori. In practice this is not the case and quasi-three-dimensional
methods have been developed in order to determine the geometrical relation,
r2(r1). These methods continue to assume that the streamsurfaces are axisym-
metric, and, therefore, neglect the more complicated three-dimensional aspects
of the flow exemplified by the secondary flows discussed below (section 4.6).
Nevertheless, these methods allow the calculation of useful turbomachine per-
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Figure 4.1: Geometry of a meridional streamtube in a pump impeller.

formance characteristics, particularly under circumstances in which the complex
secondary flows are of less importance, such as close to the design condition.
When the turbomachine is operating far from the design condition, the flow
within a blade passage may have streamsurfaces that are far from axisymmet-
ric.

In the context of axial flow machines, several approximate methods have been
employed in order to determine r2(r1) as a part of a quasi-three-dimensional so-
lution to the flow. Most of these are based on some application of the condition
of radial equilibrium. In its simplest form, the radial equilibrium condition
assumes that all of the terms in the equation of motion normal to the axisym-
metric streamsurface are negligible, except for the pressure gradient and the
centrifugal acceleration terms, so that

1
ρ

dp

dr
=
v2

θ

r
(4.1)

(The equivalent assumption in a radial machine would be that the axial pressure
gradient is zero.) This assumption is differently embedded in several approaches
to the solution of the flow. All of these use a condition like equation 4.1 (or some
more accurate version) to relate the pressures in the different streamtubes up-
stream of the rotor (or stator), and a similar condition to connect the pressures
in the streamtubes downstream of the rotor (or stator). When these relations are
combined with the normal continuity and energy equations for each streamtube
(that connect the conditions upstream with those at the downstream location),
a complete set of equations is generated, and a solution to the flow can be ob-
tained. In this class of meridional streamtube methods, the velocities normal
to meridional streamsurfaces are largely neglected, but the cross-sectional areas
of the streamtubes are adjusted to satisfy a condition based on the equation
of motion normal to the meridional surface. Notable examples of this class of
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quasi-three-dimensional solutions are those devised at NASA Lewis by Katsanis
and his co-workers (see Stockman and Kramer 1963, Katsanis 1964, Katsanis
and McNally 1977).

The following example will illustrate one use of the “radial equilibrium”
condition. We shall assume that the inlet flow is in radial equilibrium. This
inlet flow is then divided into axisymmetric streamtubes, each with a specific
radial location, r1. Some initial estimate is made of the radial location of each of
the streamtubes at discharge (in other words an estimate of the function r2(r1)).
Then an iterative numerical method is employed, in which the total pressure
rise through each streamtube is evaluated. Hence, the pressure distribution
at discharge can be obtained. Then the width of each tube at discharge is
adjusted (r2(r1) is adjusted) in order to obtain the required radial pressure
gradient between each pair of adjacent streamtubes. Subsequently, the process
is repeated until a converged solution is reached. In some simple cases, analytical
rather than numerical results can be obtained; an example is given in the next
section.

More generally, it should be noted that quasi-three-dimensional analyses of
this kind are often used for the design of axial turbomachines. A common
objective is to achieve a design in which the total pressure is increasing (or
decreasing) with axial position at the same rate at all radii, and, therefore,
should be invariant with radial position. Combining this with the condition for
radial equilibrium, leads to

d

dr

(
v2

m

)
+

1
r2

d

dr

(
r2v2

θ

)
= 0 (4.2)

If, in addition, we stipulate that the axial velocity, vm, must be constant with
radius, then equation 4.2 implies that the circumferential velocity, vθ, must
vary like 1/r. Such an objective is termed a “free vortex” design. Another basic
approach is the “forced vortex” design in which the circumferential velocity,
vθ, is proportional to the radius, r; then, according to the above equations,
the axial velocity must decrease with r. More general designs in which vθ =
ar+ b/r (a and b being constants) are utilized in practice for the design of axial
compressors and turbines, with the objective of producing relatively uniform
head rise and velocity at different radii (Horlock 1973). However, in the context
of pumps, most of the designs are of the “forced vortex” type; Stepanoff (1948)
lists a number of reasons for this historical development. Note that a forced
vortex design with a uniform axial velocity would imply helical blades satisfying
equation 2.7; thus many pumps have radial distributions of blade angle close to
the form of that equation.

Radial equilibrium of the discharge flow may be an accurate assumption in
some machines but not in others. When the blade passage is narrow (in both
directions) relative to its length, the flow has adequate opportunity to adjust
within the impeller or rotor passage, and the condition of radial equilibrium at
discharge is usually reasonable. This is approximately the case in all pumps
except propeller pumps of low solidity. However, in many compressors and tur-
bines, the blade height is large compared with the chord and a radial equilibrium
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Figure 4.2: Actuator disc model of an axial blade row with a generic meridional
streamtube.

assumption at discharge is not appropriate. Under these circumstances, a very
different approach utilizing an “actuator disc” has been successfully employed.
The flows far upstream and downstream of the blade row are assumed to be
in radial equilibrium, and the focus is on the adjustment of the flow between
these locations and the blade row (see figure 4.2). The flow through the blade
row itself is assumed to be so short that the streamsurfaces emerge at the same
radial locations at which they entered; thus the blade row is modeled by an in-
finitesmally thin “actuator disc”. In some respects, the actuator disc approach
is the opposite of the radial equilibrium method; in the former, all the stream-
line adjustment is assumed to occur external to the blade passages whereas, in
many radial equilibrium applications, the adjustment all occurs internally.

Since actuator disc methods are rarely applied in the context of pumps we
shall not extend the discussion of them further. More detail can be found in
texts such as Horlock (1973). We shall, however, provide an example of a radial
equilibrium analysis since the results will prove useful in a later chapter.

4.3 RADIAL EQUILIBRIUM SOLUTION: AN
EXAMPLE

For the purposes of this example of a radial equilibrium solution, the flow
through the pump impeller is subdivided into streamtubes, as shown in fig-
ure 4.1. We choose to examine one generic streamtube with an inlet radius, r1,
and thickness, dr1. Both the position, n, and the thickness, dn, of the stream-
tube at discharge are not known a priori, and must be determined as a part of
the solution. Conservation of mass requires that

vm1r1dr1 = vm2(n)(RH2 + n cosϑ)dn (4.3)

where n is a coordinate measured normal to the streamlines at discharge and
n = 0 at the hub so that r2 = RH2 + n cos ϑ.

Applying the radial equilibrium assumption, the pressure distribution over
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the exit plane is given by

1
ρ

∂p2

∂n
=

v2
θ2 cos ϑ

(RH2 + n cos ϑ)
(4.4)

It is also necessary to specify the variation of the discharge blade angle, βb2(n),
with position, and, for the reasons described in section 4.2, we choose the helical
distribution given by equation 2.7. Note that this implies helical blades in the
case of an axial flow pump with ϑ = 0, and a constant βb2 in the case of a
centrifugal pump with ϑ = 90◦. Moreover, we shall assume that the flow at
discharge is parallel with the blades so that β2(n) = βb2(n).

The formulation of the problem is now complete, and it is a relatively
straightforward matter to eliminate p2(n) from equations 2.30 and 4.4, and
then use the velocity triangles and the continuity equation 4.3 to develop a sin-
gle differential equation for vm2(n). Assuming that the inlet is free of swirl, and
that vm1 is a constant, this equation for vm2(n) can then be integrated to obtain
the velocity and pressure distributions over the exit. It remains to evaluate the
total energy added to the flow by summing the energies added to each of the
streamtubes according to equation 2.21:

H =
1
Q

∫ TIP

HUB

(pT
2 − pT

1 )
ρg

2πr2vm2dn (4.5)

Nondimensionalizing the result, we finally obtain the following analytical ex-
pression for the performance:

ψ = Σ1 + Σ2φ2 + Σ3/φ2 (4.6)

where Σ1,Σ2, and Σ3 are geometric quantities defined by

Σ2 =
Γ cotβbT2

�nΓ∗

[
1 +

Γ sin2 βbT2 cos2 βbT2

Γ∗�nΓ∗

]

Σ3 = tan3 βbT2

[
1 − Γ2 cos4 βbT2

Γ∗{�nΓ∗}2

]
Σ1 = −Σ3 cotβbT2 − Σ2 tanβbT2 (4.7)

where Γ and Γ∗ are given by

Γ = 1 −
(
RH2

RT2

)2

; Γ∗ = 1 − Γ cos2 βbT2 (4.8)

Thus the geometric quantities, Σ1, Σ2, and Σ3, are functions only of Γ and βbT2.
Examples of these analytical performance curves are given later in figures

7.13 and 7.15. Note that this idealized hydraulic performance is a function only
of the geometric variables, Γ and βbT2, of the discharge. Moreover, it is readily
shown that in the centrifugal limit of Γ → 0 then Σ1 → 1, Σ2 → − cotβbT2,
Σ3 → 0, and the earlier result of equation 2.33 is recovered.
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It is of interest to explore some optimizations based on the hydraulic perfor-
mance, given by equation 4.6. Though the arguments presented here are quite
heuristic, the results are interesting. We begin with the observation that two
particular geometric factors are important in determining the viscous losses in
many internal flows. If the cross-sectional area of the flow increases at more
than a marginal rate, the deceleration-induced boundary layer separation and
turbulence can lead to large viscous losses that might not otherwise occur. Con-
sequently, the mean value of w2/w1 is an important design parameter, as implied
earlier in section 3.4. In the present analysis, the mean value of this parameter
is given by the area ratio, Ar∗, where, from geometric considerations,

Ar∗ =
Γ sinβbT2

cosϑ (RT1/RT2)
2 sin

{
tan−1 (φ2ArRT2/RT1)

} (4.9)

We shall also use the ratio, Ar, of the area of the axisymmetric discharge surface
to the area of the inlet surface given by

Ar = Γ/ cosϑ (RT1/RT2)
2 (4.10)

In this example it is assumed that RH1 = 0; non-zero values can readily be
accommodated, but do not alter the qualitative nature of the results obtained.

Many centrifugal pumps are designed with Ar∗ values somewhat greater
than unity because the flow must subsequently be decelerated in the diffuser and
volute, and smaller values of Ar∗ would imply larger diffusion losses in those
nonrotating components. But, from the point of view of minimizing losses in
the impeller alone, one justifiable optimization would require Ar∗ ≈ 1.

The second geometric factor that can influence the magnitude of the viscous
losses in an internal flow is the amount of turning imposed on the flow. In the
present analysis, we shall make use of an angle, ε, describing the “angle of turn”
of the flow as it proceeds through the turbomachine. It is defined as the angle
of the discharge relative velocity vector to the conical discharge surface minus
the angle of the inlet relative velocity vector to the inlet surface:

ε = βbT2 − tan−1 {φ2ArRT2/RT1} (4.11)

Note that, in purely axial flow, the angle of turn, ε, is zero for the case of a
flow with zero incidence through a set of helical blades of constant pitch. Also
note that, in purely radial flow, the angle of turn, ε, is zero for the case of a
flow with zero incidence through a set of logarithmic spiral blades. Therefore,
using somewhat heuristic interpolation, one might argue that ε may be useful
in the general case to describe the degree of turning applied to the flow by
a combination of a nonzero incidence at inlet and the curvature of the blade
passages.

For the purposes of this example, we now postulate that the major hydraulic
losses encountered in the flow through the pump are minimized when ε is min-
imized. Let us assume that this minimum value of ε can be approximated by
zero. Referring to this maximum efficiency point of operation as the “design
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Figure 4.3: Comparison of the results of equation 4.14 with the conventional
recommendation from figure 2.7 for the optimum ratio of inlet to discharge tip
radius as a function of design specific speed, ND.

point” (where conditions are denoted by the suffix, D), it follows from equation
4.11 that

φ2D =
RT1

RT2

tanβbT2

Ar
(4.12)

and hence that
ψD = Σ1 + Σ2φ2D + Σ3/φ2D (4.13)

Thus the specific speed for which the pump is designed, ND, is given by

ND =




π tanβbT2

(
1 − R2

H1
R2

T1

)
{

Σ1

(
RT2
RT1

)2

+ Σ2 tanβbT2
Ar

(
RT2
RT1

)
+ Σ3Ar

tanβbT2

(
RT2
RT1

)3
} 3

2


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1
2

(4.14)

and is a function only of the geometric quantitiesRT1/RT2, RH1/RT1, RH2/RT2,
ϑ, and βbT2.

Examine now the variation of ND with these geometric variables, as manifest
by equation 4.14, bearing in mind that the practical design problem involves the
reverse procedure of choosing the geometry best suited to a known specific speed.
The number of geometric variables will be reduced to four by assuming RH1 =
0. Note also that, at the design point given by equation 4.12, it follows that
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Figure 4.4: Comparison of the results of equation 4.14 with the conventional rec-
ommendation of figure 2.7 for the head coefficient, ψD, and the flow coefficient,
φD, as functions of the design specific speed, ND.

Ar∗ = Ar and it is more convenient to use this area ratio in place of the variable
RH2/RT2. Thus we consider the variations of ND with ϑ, βbT2, RT1/RT2, and
Ar∗.

Calculations of ND from equation 4.14 show that, for specific speeds less
than unity, for sensible values of Ar∗ of the order of unity, and for blade angles
βbT2 which are less than about 70◦ (which is the case in well-designed pumps),
the results are virtually independent of the angle ϑ, a feature that simplifies the
parametric variations in the results. For convenience, we choose an arbitrary
value of ϑ = 50◦. Then typical results for Ar∗ = 1.0 are presented in figure 4.3,
which shows the “optimum” RT1/RT2 for various design specific speeds, ND, at
various discharge blade angles, βbT2. Considering the heuristic nature of some
of the assumptions that were used in this optimization, the agreement between
the results and the conventional recommendation (reproduced from figure 2.7)
is remarkable. It suggests that the evolution of pump designs has been driven
by processes minimizing the viscous losses, and that this minimization involves
the optimization of some simple geometric variables. The values of ψD and φD,
that correspond to the results of figure 4.3, are plotted in figure 4.4. Again,
the comparison of the traditional expectation and the present analysis is good,
except perhaps at low specific speeds where the discrepancy may be due to the
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large values of Ar∗ which are used in practice. Finally, we observe that one
can construct sets of curves, such as those of figure 4.3, for other values of the
area ratio, Ar∗. However, for reasonable values of βbT2 like 20◦, the curves for
0.8 < Ar∗ < 2.0 do not differ greatly from those for Ar∗ = 1.0.

The foregoing analysis is intended only as an example of the application
of the radial equilibrium methodology, and the postscript is included because
of the interesting results it produces. Clearly some of the assumptions in the
postscript are approximate, and would be inappropriate in any accurate analysis
of the viscous losses.

4.4 DISCHARGE FLOW MANAGEMENT

To this point the entire focus has been on the flow within the impeller or rotor of
the pump. However, the flow that discharges from the impeller requires careful
handling in order to preserve the gains in energy imparted to the fluid. In many
machines this requires the conversion of velocity head to pressure by means of
a diffuser. This inevitably implies hydraulic losses, and considerable care needs
to be taken to minimize these losses. The design of axial and radial diffusers,
with and without vanes to recover the swirl velocity, is a major topic, whose
details are beyond the scope of this book. The reader is referred to the treatise
by Japikse (1984).

Such diffusers are more common in compressors than in pumps. Typical
pump configurations are as follows. Axial flow pumps often employ a set of sta-
tor vanes before (or in) the axial diffuser in order to recover the swirl velocities.
Special care needs to be taken to match the swirl angles of the flow exiting the
impeller with the inlet angles of the stator vanes. It is advisable, where possi-
ble, to measure the impeller discharge flow directly before finalizing a design. In
some designs, the axial diffuser will be followed by a spiral collector or “volute”
in order to recover the energy in the remaining swirl and axial velocities.

In the case of centrifugal pumps, a radial flow diffuser with vanes may or
may not be used. Often it is not, and the flow discharges directly into the volute.
The proper design of this volute is an important component of centrifugal pump
design (Anderson 1955, Worster 1963, Stepanoff 1948). The objective is to
design a volute in which the flow is carefully matched to the flow exiting the
impeller, so that the losses are minimized and so that the pressure is uniform
around the impeller discharge. The basic concept is sketched in figure 4.5. The
flow discharges from the impeller with a velocity, vθ2, in the tangential direction
and a velocity, vr2, in the radial direction, given by

vr2 = Q/2πR2B2 (4.15)

where B2 is the impeller discharge width. For simplicity, it will be assumed that
the discharge from the impeller is circumferentially uniform; in fact, nonuniform
volute flow will lead to a nonuniform flow in the impeller that is unsteady in
the rotating frame. Though this complication is often important, it is omitted
from the present, simple analysis.
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Figure 4.5: Volute flow notation.

If we further assume radially uniform velocity at each angular location in
the volute (also an assumption that needs to be modified in a more accurate
analysis), then it follows from the application of conservation of mass to an
element, dθ, of the volute that the discharge flow will be matched to the flow in
the volute if

vθ2
dAV

dθ
= vr2R2B2 (4.16)

This requires a circumferentially uniform rate of increase of the volute area of
dAV /dθ = vr2R2B2/vθ2 over the entire development of the spiral. If the area
of the clearance between the cutwater and the impeller discharge is denoted by
AV C , and the volute exit area is denoted by AV T , then AV should have the
following linear behavior:

AV = AV C +
θ

2π
AV T (4.17)

It follows that dAV /dθ = AV T /2π and hence

φ−1 tanβ2 − 1 =
2πR2B2 tanβ2

AV T
(4.18)

Consequently, for a given impeller operating at a given design flow coeffi-
cient, φD, there exists a specific area ratio, 2πR2B2 tanβ2/AV T , for the volute
geometry. This parameter is close to the ratio which Anderson (1955) used in
his design methodology (see also Worster 1963), namely the ratio of the cross-
sectional area of the flow leaving the impeller (2πR2B2 sinβ2) to the volute
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throat area (AV T ). For more detailed analyses of the flow in a volute, the
reader is referred to Pfleiderer (1932), Stepanoff (1948), and Lazarkiewicz and
Troskolanski (1965). For example, Pfleiderer explored the radially nonuniform
distributions of velocity within the volute and the consequences for the design
methodology.

One of the other considerations during the design of a volute is the lateral
force on the impeller that can develop due to circumferentially nonuniform flow
and pressure in the volute. These, and other related issues, are discussed in
chapter 10.

4.5 PREROTATION

Perhaps no aspect of turbomachinery flow is more misrepresented and misun-
derstood than the phenomenon of “prerotation”. While this belongs within the
larger category of secondary flows (dealt with in section 4.6), it is appropriate
to address the issue of prerotation seperately, not only because of its impor-
tance for the hydraulic performance, but also because of its interaction with
cavitation.

It is first essential to distinguish between two separate phenomena both of
which lead to a swirling flow entering the pump. These two phenomena have
very different fluid mechanical origins. Here we shall distinguish them by the
separate terms, “backflow-induced swirl” and “inlet prerotation”. Both imply a
swirl component of the flow entering the pump. In fluid mechanical terms, the
flow has axial vorticity (if the axis of rotation is parallel with the axis of the inlet
duct) with a magnitude equal to twice the rate of angular rotation of the swirl
motion. Moreover, there are some basic properties of such swirling flows that
are important to the understanding of prerotation. These are derived from the
vorticity transport theorem (see, for example, Batchelor 1967). In the context
of the steady flow in an inlet duct, this theorem tells us that the vorticity will
only change with axial location for two reasons: (a) because vorticity is diffused
into the flow by the action of viscosity, or (b) because the flow is accelerated
or decelerated as a result of a change in the cross-sectional area of the flow.
The second mechanism results in an increase in the swirl velocity due to the
stretching of the vortex line, and is similar to the increase in rotation experienced
by figure skaters when they draw their arms in closer to their body. When the
moment of inertia is decreased, conservation of angular momentum results in
an increase in the rotation rate. Thus, for example, a nozzle in the inlet line
would increase the magnitude of any preexisting swirl.

For simplicity, however, we shall first consider inlet ducting of uniform and
symmetric cross-sectional area, so that only the first mechanism exists. In
inviscid flow, it follows that, if there is a location far upstream at which the
swirl (or axial vorticity) is zero, then, in the absence of viscous effects, the swirl
will be everywhere zero. This important result, which is a version of Kelvin’s
theorem (Batchelor 1967), is not widely recognized in discussions of prerotation.
Moreover, the result is not altered by the existence of viscous effects, since purely
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Figure 4.6: Lateral view of impeller inlet flow showing tip leakage flow leading
to backflow.

axial motion cannot generate axial vorticity. However, there are two common
circumstances in which prerotation can be generated without violation of the
above theorem, and these give rise to the two phenomena named earlier.

The first of these common circumstances arises because of one of the most
important secondary flows that can occur in pumps, namely the phenomenon
of “backflow”. This is caused by the leakage flow between the tip of the blades
of an impeller (we consider first an unshrouded impeller) and the pump cas-
ing. The circumstances are depicted in figure 4.6. Below a certain critical flow
coefficient, the pressure difference driving the leakage flow becomes sufficiently
large that the tip leakage jet penetrates upstream of the inlet plane of the im-
peller, and thus forms an annular region of “backflow” in the inlet duct. After
penetrating upstream a certain distance, the fluid of this jet is then entrained
back into the main inlet flow. The upstream penetration distance increases with
decreasing flow coefficient, and can reach many diameters upstream of the in-
let plane. In some pump development programs (such as the Rocketdyne J-2
liquid oxygen pump) efforts have been made to insert a “backflow deflector” in
order to improve pump performance (Jakobsen 1971). The intention of such a
device is to prevent the backflow from penetrating too far upstream, to reduce
the distortion of the inlet flow field, and to recover, as far as is possible, the
swirl energy in the backflow. More recently, a similar device was successfully
employed in a centrifugal pump (Sloteman et al. 1984).

Some measurements of the axial and swirl velocities just upstream of an
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Figure 4.7: Axial and swirl velocity profiles in the inlet duct 0.25 diameters (left)
and 0.5 diameters (right) upstream of the inlet plane of an inducer (Impeller
VI) for various flow coefficients as shown (from del Valle, Braisted and Brennen
1992).

axial inducer are presented in figure 4.7. This data is taken from del Valle et
al (1992), though very similar velocity profiles have been reported by Badowski
(1969, 1970) (see also Janigro and Ferrini 1973), and the overall features of
the flow are similar whether the pump is shrouded or unshrouded, axial or
centrifugal (see, for example, Stepanoff 1948, Okamura and Miyashiro 1978,
Breugelmans and Sen 1982, Sloteman et al. 1984). Measurements are shown
in figure 4.7 for two distances upstream of the inlet plane (half a radius and
one radius upstream), and for a number of flow coefficients, φ. Note from the
axial flow velocity profiles that, as the flow coefficient is decreased, the backflow
reaches a half radius upstream at about φ ≈ 0.066, and one radius upstream
at about φ ≈ 0.063. The size of the backflow region grows as φ is decreased.
It is particularly remarkable that at φ ≈ 0.05, nearly 30% of the inlet area is
experiencing reverse flow! We can further observe from the swirl velocity data
that, in the absence of backflow, the inlet flow has zero swirl. Kelvin’s theorem
tells us this must be the case because the flow far upstream has no swirl.

Obviously the backflow has a high swirl velocity imparted to it by the im-
peller blades. But what is also remarkable is that this vorticity is rapidly spread
to the core of the main inlet flow, so that at φ = 0.05, for example, almost the
entire inlet flow has a nonzero swirl velocity. The properties of swirling flows
discussed above are not violated, since the origin of the vorticity is the pump
itself and the vorticity is transmitted to the inflow via the backflow. The ra-
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Figure 4.8: Right: sketch of a typical inlet vortex associated with prerotation.
Left: Photograph of an air-filled inlet vortex from Wijdieks (1965) reproduced
with permission of the Delft Hydraulics Laboratory.

pidity with which the swirl vorticity is diffused to the core of the incoming
flow remains something of a mystery, for it is much too rapid to be caused by
normal viscous diffusion (Braisted 1979). It seems likely that the inherent un-
steadiness of the backflow (with a strong blade passing frequency component)
creates extensive mixing which effects this rapid diffusion. However it arises, it
is clear that this “backflow-induced swirl”, or “pre-rotation”, will clearly affect
the incidence angles and, therefore, the performance of the pump.

Before leaving the subject of backflow, it is important to emphasize that
this phenomenon also occurs at flow rates below design in centrifugal as well as
axial flow pumps, and with shrouded as well as unshrouded impellers (see, for
example, Okamura and Miyashiro 1978, Makay 1980). The detailed explanation
may differ from one device to another, but the fundamental tendency for an
impeller to exhibit this kind of secondary flow at larger angles of incidence
seems to be universal.

But there is another, quite separate origin for prerotation, and this is usually
manifest in practice when the fluid is being drawn into the pump from an “inlet
bay” or reservoir with a free surface (figure 4.8). Under such circumstances, it
is almost inevitable that the large scale flow in the reservoir has some nonuni-
formity that constitutes axial vorticity or circulation in the frame of reference of
the pump inlet. Even though the fluid velocities associated with this nonunifor-
mity may be very small, when the vortex lines are stretched as the flow enters
the inlet duct, the vorticity is greatly amplified, and the inlet flow assumes a
significant preswirl or “inlet prerotation”. The effect is very similar to the bath-
tub vortex. Once the flow has entered an inlet duct of constant cross-sectional
area, the magnitude of the swirl usually remains fairly constant over the short
lengths of inlet ducting commonly used.
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Often, the existence of “inlet prerotation” can have unforeseen consequences
for the suction performance of the pump. Frequently, as in the case of the
bathtub vortex, the core of the vortex runs from the inlet duct to the free
surface of the reservoir, as shown in figure 4.8. Due to the low pressure in
the center of the vortex, air is drawn into the core and may even penetrate
to the depth of the duct inlet, as illustrated by the photograph in figure 4.8
taken from the work of Wijdieks (1965). When this occurs, the pump inlet
suddenly experiences a two-phase air/water flow rather than the single-phase
liquid inlet flow expected. This can lead, not only to a significant reduction
in the performance of the pump, but also to the vibration and unsteadiness
that often accompany two-phase flow. Even without air entrainment, the pump
performance is almost always deteriorated by these suction vortices. Indeed this
is one of the prime suspects when the expected performance is not realized in
a particular installation. These intake vortices are very similar to those which
can occur in aircraft engines (De Siervi et al. 1982).

4.6 OTHER SECONDARY FLOWS

Most pumps operate at high Reynolds numbers, and, in this regime of flow,
most of the hydraulic losses occur as a result of secondary flows and turbulent
mixing. While a detailed analysis of secondary flows is beyond the scope of this
monograph (the reader is referred to Horlock and Lakshminarayana (1973) for a
review of the fundamentals), it is important to outline some of the more common
secondary flows that occur in pumps. To do so, we choose to describe the
secondary flows associated with three typical pump components, the unshrouded

Figure 4.9: Cross-section of a blade passage in an axial flow impeller showing the
tip leakage flow, boundary layer radial flow, and other secondary flows (adapted
from Lakshminarayana 1981).
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Figure 4.10: Photographs of a 10.2 cm, 12◦ helical inducer with a lucite shroud
showing the blade surface flow revealed by the running paint dot technique. On
the left the suction surfaces viewed from the direction of the inlet. On the right
the view of the pressure surfaces and the hub from the discharge. The flow is
for 2000 rpm and φ1 = 0.041. From Bhattacharyya et al. (1993).

axial flow impeller or inducer, the shrouded centrifugal impeller, and the vaneless
volute of a centrifugal pump.

Secondary flows in unshrouded axial flow inducers have been studied in de-
tail by Lakshminarayana (1972, 1981), and figure 4.9, which was adapted from
those publications, provides a summary of the kinds of secondary flows that
occur within the blade passage of such an impeller. Dividing the cross-section
into a core region, boundary layer regions on the pressure and suction surfaces
of the blades, and an interference region next to the static casing, Lakshmi-
narayana identifies the following departures from a simple flow following the
blades. First, and perhaps most important, there will be a strong leakage flow
(called the tip leakage or tip clearance flow) around the blade tips driven by
the pressure difference between the pressure surface and the suction surface.
Clearly this flow will become even more pronounced at flow rates below design
when the blades are more heavily loaded. This leakage flow will entrain sec-
ondary flow on both surfaces of the blades, as shown by the dashed arrows in
figure 4.9. Second, the flow in the boundary layers will tend to generate an
outward radial component on both the suction and pressure surfaces, though
the former may be stronger because of enhancement by the leakage flow. The
photographs of figure 4.10, which are taken from Bhattacharyya et al. (1993),
show a strong outward radial component of the flow on the blade surface of
an inducer. This is particularly pronounced near the leading edge (left-hand
photograph). Incidentally, Bhattacharyya et al. not only observed the backflow
associated with the tip clearance flow, but also a “backflow” at the hub in which
flow reenters the blade passage from downstream of the inducer. Evidence for
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Figure 4.11: Schematic showing secondary flows associated with a typical cen-
trifugal pump operating at off-design conditions (adapted from Makay 1980).

this secondary flow can be seen on the hub surface in the right-hand photograph
of figure 4.10. Finally, we should mention that Lakshminarayana also observed
secondary vortices at both the hub and the casing as sketched in figure 4.9. The
vortex near the hub was larger and more coherent, while a confused interference
region existed near the casing.

Additional examples of secondary flows are given in the descriptions by
Makay (1980) of typical flows through shrouded centrifugal impellers. Figure
4.11, which has been adapted from one of Makay’s sketches, illustrates the kind
of secondary flows that can occur at off-design conditions. Note, in particular,
the backflow in the impeller eye of this shrouded impeller pump. This backflow
may well interact in an important way with the discharge-to-suction leakage flow
that is an important feature of the hydraulics of a centrifugal pump at all flow
rates. As testament to the importance of the backflow, Makay cites a case in
which the inlet guide vanes of a primary coolant pump in a power plant suffered
structural damage due to the repeated unsteady loads caused by this backflow.
Note should also be made of the secondary flows that Makay describes occurring
in the vicinity of the impeller discharge.

It is also important to mention the disturbed and separated flows that can of-
ten occur in the volute of a centrifugal pump when that combination is operated
at off-design flow rates (Binder and Knapp 1936, Worster 1963, Lazarkiewicz
and Troskolanski 1965, Johnston and Dean 1966). As described in the preced-
ing section, and as indicated in figure 4.12, one of the commonest geometries
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Figure 4.12: Schematic of a centrifugal pump with a single, vaneless volute
indicating the disturbed and separated flows which can occur in the volute
below (left) and above (right) the design flow rate.

is the spiral volute, designed to collect the flow discharging from an impeller
in a way that would result in circumferentially uniform pressure and velocity.
However, such a volute design is specific to a particular design flow coefficient.
At flow rates above or below design, disturbed and separated flows can occur
particularly in the vicinity of the cutwater or tongue. Some typical phenom-
ena are sketched in figure 4.12 which shows separation on the inside and out-
side of the tongue at flow coefficients below and above design, respectively. It
also indicates the flow reversal inside the tongue that can occur above design
(Lazarkiewicz and Troskolanski 1965). Moreover, as Chu et al. (1993) have
recently demonstrated, the unsteady shedding of vortices from the cutwater can
be an important source of vibration and noise.
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Chapter 5

CAVITATION
PARAMETERS AND
INCEPTION

5.1 INTRODUCTION

This chapter will deal with the parameters that are used to describe cavitation,
and the circumstances that govern its inception. In subsequent chapters, we
address the deleterious effects of cavitation, namely cavitation damage, noise,
the effect of cavitation on hydraulic performance, and cavitation-induced insta-
bilities.

5.2 CAVITATION PARAMETERS

Cavitation is the process of the formation of vapor bubbles in low pressure re-
gions within a flow. One might imagine that vapor bubbles are formed when
the pressure in the liquid reaches the vapor pressure, pV , of the liquid at the
operating temperature. While many complicating factors discussed later cause
deviations from this hypothesis, nevertheless it is useful to adopt this as a cri-
terion for the purpose of our initial discussion. In practice, it can also provide
a crude initial guideline.

The static pressure, p, in any flow is normally nondimensionalized as a pres-
sure coefficient, Cp, defined as

Cp = (p− p1)
/1

2
ρU2 (5.1)

where p1 is some reference static pressure for which we shall use the pump inlet
pressure and U is some reference velocity for which we shall use the inlet tip
speed, ΩRT1. It is important to note that, for the flow of an incompressible
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liquid within rigid boundaries, Cp is only a function of the geometry of the
boundaries and of the Reynolds number, Re, which, for present purposes, can
be defined as 2ΩR2

T1/ν where ν is the kinematic viscosity of the fluid. It is
equally important to note that, in the absence of cavitation, the fluid velocities
and the pressure coefficient are independent of the level of the pressure. Thus,
for example, a change in the inlet pressure, p1, will simply result in an equal
change in all the other pressures, so that Cp is unaffected. It follows that, in
any flow with prescribed fluid velocities, geometry and Reynolds number, there
will be a particular location at which the pressure, p, is a minimum and that
the difference between this minimum pressure, pmin, and the inlet pressure, p1

is given by

Cpmin = (pmin − p1)
/1

2
ρU2 (5.2)

where Cpmin is some negative number which is a function only of the geometry
of the device (pump) and the Reynolds number. If the value of Cpmin could
be obtained either experimentally or theoretically, then we could establish the
value of the inlet pressure, p1, at which cavitation would first appear (assuming
that this occurs when pmin = pV ) as p1 is decreased, namely

(p1) CAVITATION
APPEARANCE

= pV +
1
2
ρU2 (−Cpmin) (5.3)

which for a given device, given fluid, and given fluid temperature, would be a
function only of the velocity, U .

Traditionally, several special dimensionless parameters are utilized in evalu-
ating the potential for cavitation. Perhaps the most fundamental of these is the
cavitation number, σ, defined as

σ = (p1 − pV )
/1

2
ρU2 (5.4)

Clearly every flow has a value of σ whether or not cavitation occurs. There is,
however, a particular value of σ corresponding to the particular inlet pressure,
p1, at which cavitation first occurs as the pressure is decreased. This is called
the cavitation inception number, and is denoted by σi:

σi =
[
(p1) CAVITATION

APPEARANCE
− pV

]/1
2
ρU2 (5.5)

If cavitation inception occurs when pmin = pV , then, combining equations 5.3
and 5.5, it is clear that this criterion corresponds to a cavitation inception
number of σi = −Cpmin. On the other hand, a departure from this criterion
results in values of σi different from −Cpmin.

Several variations in the definition of cavitation number occur in the litera-
ture. Often the inlet tip velocity, ΩRT1, is employed as the reference velocity,
U , and this version will be used in this monograph unless otherwise stated.
Sometimes, however, the relative velocity at the inlet tip, wT1, is used as the
reference velocity, U . Usually the magnitudes of wT1 and ΩRT1 do not differ
greatly, and so the differences in the two cavitation numbers are small.
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In the context of pumps and turbines, a number of other, surrogate cavitation
parameters are frequently used in addition to some special terminology. The
NPSP (for net positive suction pressure) is an acronym used for (pT

1 − pV ),
where pT

1 is the inlet total pressure given by

pT
1 = p1 +

1
2
ρv2

1 (5.6)

For future purposes, note from equations 5.6, 5.4, and 2.17 that(
pT
1 − pV

)
=

1
2
ρΩ2R2

T1

(
σ + φ2

1

)
(5.7)

Also, the NPSE, or net positive suction energy, is defined as (pT
1 − pV )/ρ,

and the NPSH , or net positive suction head, is (pT
1 − pV )/ρg. Furthermore, a

nondimensional version of these quantities is defined in a manner similar to the
specific speed as

S = ΩQ
1
2 /(NPSE)

3
4 (5.8)

and is called the “suction specific speed”. Like the specific speed, N , the suction
specific speed, is a dimensionless number, and should be computed using a
consistent set of units, such as Ω in rad/s, Q in ft3/s and NPSE in ft2/s2.
Unfortunately, it is traditional U.S. practice to use Ω in rpm, Q in gpm, and
to use the NPSH in ft rather than the NPSE. As in the case of the specific
speed, one may obtain the traditional U.S. evaluation by multiplying the rational
suction specific speed used in this monograph by 2734.6.

The suction specific speed is similar in concept to the cavitation number
in that it represents a nondimensional version of the inlet or suction pressure.
Moreover, there will be a certain critical value of the suction specific speed at
which cavitation first appears. This special value is termed the inception suction
specific speed, Si. The reader should note that frequently, when a value of the
“suction specific speed” is quoted for a pump, the value being given is some
critical value of S that may or may not correspond to Si. More frequently, it
corresponds to Sa, the value at which the degradation in the head rise reaches
a certain percentage value (see section 5.5).

The suction specific speed, S, may be obtained from the cavitation number,
σ, and vice versa, by noting that, from the relations 2.17, 5.4, 5.6, and 5.8, it
follows that

S =
[
πφ1

(
1 − R2

H1/R
2
T1

)] 1
2
/[1

2
(
σ + φ2

1

)] 3
4

(5.9)

We should also make note of a third nondimensional parameter, called Thoma’s
cavitation factor, σTH , which is defined as

σTH =
(
pT
1 − pV

)
/
(
pT
2 − pT

1

)
(5.10)

where (pT
2 − pT

1 ) is the total pressure rise across the pump. Clearly, this is
connected to σ and to S by the relation

σTH =
σ + φ2

1

ψ
=
(
N

S

) 4
3

(5.11)
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Since cavitation usually occurs at the inlet to a pump, σTH is not a particularly
useful parameter since (pT

2 − pT
1 ) is not especially relevant to the phenomenon.

5.3 CAVITATION INCEPTION

For illustrative purposes in the last section, we employed the criterion that
cavitation occurs when the minimum pressure in the flow just reaches the vapor
pressure, σi = −Cpmin. If this were the case, the prediction of cavitation would
be a straightforward matter. Unfortunately, large departures from this criterion
can occur in practice, and, in this section, we shall try to present a brief overview
of the reasons for these discrepancies. There is, of course, an extensive body
of literature on this subject, and we shall not attempt a comprehensive review.
The reader is referred to reviews by Knapp, Daily and Hammit (1970), Acosta
and Parkin (1975), Arakeri (1979) and Brennen (1994) for more detail.

First, it is important to recognize that vapor does not necessarily form when
the pressure, p, in a liquid falls below the vapor pressure, pV . Indeed, a pure
liquid can, theoretically, sustain a tension, ∆p = pV − p, of many atmospheres
before nucleation, or the appearance of vapor bubbles, occurs. Such a process is

Figure 5.1: The inception numbers measured for the same axisymmetric head-
form in a variety of water tunnels around the world. Data collected as part of
a comparative study of cavitation inception by the International Towing Tank
Conference (Lindgren and Johnsson 1966, Johnsson 1969).
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termed homogeneous nucleation, and has been observed in the laboratory with
some pure liquids (not water) under very clean conditions. In real engineering
flows, these large tensions do not occur because vapor bubbles grow from nu-
cleation sites either on the containing surfaces or suspended in the liquid. As
in the case of a solid, the ultimate strength is determined by the weaknesses
(stress concentrations) represented by the nucleation sites or “nuclei.” Research
has shown that suspended nuclei are more important than surface nucleation
sites in determining cavitation inception. These suspended nuclei may take the
form either of microbubbles or of solid particles within which, perhaps, there
are microbubbles. For example, a microbubble of radius, RN , containing only
vapor, is in equilibrium when the liquid pressure

p = pV − 2S/RN (5.12)

where S is the surface tension. It follows that such a microbubble would result
in a critical tension of 2S/RN , and the liquid pressure would have to fall below
pV − 2S/RN before the microbubble would grow to a visible size. For example,
a 10 µm bubble in water at normal temperatures leads to a tension of 0.14 bar.

It is virtually impossible to remove all the particles, microbubbles and dis-
solved air from any substantial body of liquid (the catch-all term “liquid quality”
is used to refer to the degree of contamination). Because of this contamination,
substantial differences in the inception cavitation number (and, indeed, the form
of cavitation) have been observed in experiments in different water tunnels, and
even in a single facility with differently processed water. The ITTC comparative
tests (Lindgren and Johnsson 1966, Johnsson 1969) provided a particularly dra-
matic example of these differences when cavitation on the same axisymmetric
headform was examined in many different water tunnels around the world. An
example of the variation of σi in those experiments, is reproduced as figure 5.1.

Because the cavitation nuclei are crucial to an understanding of cavitation
inception, it is now recognized that the liquid in any cavitation inception study
must be monitored by measuring the number of nuclei present in the liquid. This
information is normally presented in the form of a nuclei number distribution
function, N(RN), defined such that the number of nuclei per unit total volume
with radii between RN and RN + dRN is given by N(RN)dRN . Typical nuclei
number distributions are shown in figure 5.2 where data from water tunnels and
from the ocean are presented.

Most of the methods currently used for making these measurements are
still in the development stage. Devices based on acoustic scattering, and on
light scattering, have been explored. Other instruments, known as cavitation
susceptibility meters, cause samples of the liquid to cavitate, and measure the
number and size of the resulting macroscopic bubbles. Perhaps the most reliable
method has been the use of holography to create a magnified three-dimensional
photographic image of a sample volume of liquid that can then be surveyed for
nuclei. Billet (1985) has recently reviewed the current state of cavitation nuclei
measurements (see also Katz et al 1984).
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Figure 5.2: Several nuclei number distribution functions measured in water
tunnels and in the ocean by various methods (adapted from Gates and Acosta
1978).

It may be interesting to note that cavitation itself is a source of nuclei in
many facilities. This is because air dissolved in the liquid will tend to come
out of solution at low pressures, and contribute a partial pressure of air to the
contents of any macroscopic cavitation bubble. When that bubble is convected
into a region of higher pressure and the vapor condenses, this leaves a small air
bubble that only redissolves very slowly, if at all. This unforeseen phenomenon
caused great difficulty for the first water tunnels which were modeled directly
on wind tunnels. It was discovered that, after a few minutes of operating with a
cavitating body in the working section, the bubbles produced by the cavitation
grew rapidly in number, and began to complete the circuit of the facility so that
they appeared in the incoming flow. Soon the working section was obscured by a
two-phase flow. The solution had two components. First, a water tunnel needs
to be fitted with a long and deep return leg so that the water remains at high
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pressure for sufficient time to redissolve most of the cavitation-produced nuclei.
Such a return leg is termed a “resorber”. Second, most water tunnel facilities
have a “deaerator” for reducing the air content of the water to 20− 50% of the
saturation level at atmospheric pressure. These comments serve to illustrate the
fact that N(RN) in any facility can change according to the operating condition,
and can be altered both by deaeration and by filtration.

Most of the data of figure 5.2 is taken from water tunnel water that has
been somewhat filtered and degassed, or from the ocean which is surprisingly
clean. Thus, there are few nuclei with a size greater than 100 µm. On the other
hand, it is quite possible in many pump applications to have a much larger
number of larger bubbles and, in extreme situations, to have to contend with a
two-phase flow. Gas bubbles in the inflow could grow substantially as they pass
through the low pressure regions within the pump, even though the pressure
is everywhere above the vapor pressure. Such a phenomenon is called pseudo-
cavitation. Though a cavitation inception number is not particularly relevant
to such circumstances, attempts to measure σi under these circumstances would
clearly yield values larger than −Cpmin.

On the other hand, if the liquid is quite clean with only very small nuclei,
the tension that this liquid can sustain means that the minimum pressure has to
fall well below pV for inception to occur. Then σi is much smaller than −Cpmin.
Thus the quality of the water and its nuclei can cause the cavitation inception
number to be either larger or smaller than −Cpmin.

There are, however, at least two other factors that can affect σi, namely
the residence time and turbulence. The residence time effect arises because the
nuclei must remain at a pressure below the critical value for a sufficient length of
time to grow to observable size. This requirement will depend on both the size
of the pump and the speed of the flow. It will also depend on the temperature
of the liquid for, as we shall see later, the rate of bubble growth may depend on
the temperature of the liquid. The residence time effect requires that a finite
region of the flow be below the critical pressure, and, therefore, causes σi to be
lower than might otherwise be expected.

Up to this point we have assumed that the flow and the pressures are laminar
and steady. However, most of the flows with which one must deal in turboma-
chinery are not only turbulent but also unsteady. Vortices occur because they
are inherent in turbulence and because of both free and forced shedding of vor-
tices. This has important consequences for cavitation inception, because the
pressure in the center of a vortex may be significantly lower than the mean
pressure in the flow. The measurement or calculation of −Cpmin would elicit
the value of the lowest mean pressure, while cavitation might first occur in a
transient vortex whose central pressure was lower than the lowest mean pressure.
Unlike the residence time factor, this would cause higher values of σi than would
otherwise be expected. It would also cause σi to change with Reynolds number,
Re. Note that this would be separate from the effect of Reynolds number on
the minimum pressure coefficient, Cpmin. Note also that surface roughness can
promote cavitation by creating localized low pressure perturbations in the same
manner as turbulence.
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5.4 SCALING OF CAVITATION
INCEPTION

The complexity of the issues raised in the last section helps to explain why se-
rious questions remain as to how to scale cavitation inception. This is perhaps
one of the most troublesome issues that the developer of a liquid turbomachine
must face. Model tests of a ship’s propeller or large turbine (to quote two com-
mon examples) may allow the designer to accurately estimate the noncavitating
performance of the device. However, he will not be able to place anything like
the same confidence in his ability to scale the cavitation inception data.

Consider the problem in more detail. Changing the size of the device will
alter not only the residence time effect but also the Reynolds number. Further-
more, the nuclei will now be a different size relative to the impeller. Changing
the speed in an attempt to maintain Reynolds number scaling may only confuse
the issue by also altering the residence time. Moreover, changing the speed will
also change the cavitation number, and, to recover the modeled condition, one
must then change the inlet pressure which may alter the nuclei content. There
is also the issue of what to do about the surface roughness in the model and in
the prototype.

The other issue of scaling that arises is how to anticipate the cavitation
phenomena in one liquid based on data in another. It is clearly the case that
the literature contains a great deal of data on water as the fluid. Data on other
liquids is quite meager. Indeed the author has not located any nuclei number
distributions for a fluid other than water. Since the nuclei play such a key role,
it is not surprising that our current ability to scale from one liquid to another
is quite tentative.

It would not be appropriate to leave this subject without emphasizing that
most of the remarks in the last two sections have focused on the inception of
cavitation. Once cavitation has become established, the phenomena that occur
are much less sensitive to special factors, such as the nuclei content. Hence the
scaling of developed cavitation can be anticipated with much more confidence
than the scaling of cavitation inception. This is not, however, of much solace to
the engineer charged with avoiding cavitation completely.

5.5 PUMP PERFORMANCE

The performance of a pump when presented nondimensionally will take the
generic form sketched in figure 5.3. As discussed earlier, the noncavitating
performance will consist of the head coefficient, ψ, as a function of the flow
coefficient, φ, where the design conditions can be identified as a particular point
on the ψ(φ) curve. The noncavitating characteristic should be independent of
the speed, Ω, though at lower speeds there may be some deviation due to viscous
or Reynolds number effects. The cavitating performance, as illustrated on the
right in figure 5.3, is presented as a family of curves, ψ(φ, σ), each for a specific
flow coefficient, in a graph of the head coefficient against cavitation number,
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Figure 5.3: Schematic of noncavitating performance, ψ(φ), and cavitating per-
formance, ψ(φ, σ), showing the three key cavitation numbers.

σ. Frequently, of course, both performance curves are presented dimensionally;
then, for example, the NPSH is often used instead of the cavitation number as
the abscissa for the cavitation performance graph.

It is valuable to identify three special cavitation numbers in the cavitation
performance graph. Consider a pump operating at a particular flow rate or flow
coefficient, while the inlet pressure, NPSH , or cavitation number is gradually
reduced. As discussed in the previous chapter, the first critical cavitation num-
ber to be reached is that at which cavitation first appears; this is called the
cavitation inception number, σi. Often the occurrence of cavitation is detected
by the typical crackling sound that it makes (see section 6.5). As the pressure
is further reduced, the extent (and noise) of cavitation will increase. However,
it typically requires a further, substantial decrease in σ before any degradation
in performance is encountered. When this occurs, the cavitation number at
which it happens is often defined by a certain percentage loss in the head rise,
H , or head coefficient, ψ, as shown in figure 5.3. Typically a critical cavitation
number, σa, is defined at which the head loss is 2, 3 or 5%. Further reduction
in the cavitation number will lead to major deterioration in the performance;
the cavitation number at which this occurs is termed the breakdown cavitation
number, and is denoted by σb.

It is important to emphasize that these three cavitation numbers may take
quite different values, and to confuse them may lead to serious misunderstand-
ing. For example, the cavitation inception number, σi, can be an order of
magnitude larger than σa or σb. There exists, of course, a corresponding set of
critical suction specific speeds that we denote by Si, Sa, and Sb. Some typical
values of these parameters are presented in table 5.1 which has been adapted
from McNulty and Pearsall (1979). Note the large differences between Si and
Sb.

Perhaps the most common misunderstanding concerns the recommendation
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Table 5.1: Inception and breakdown suction specific speeds for some typical
pumps (from McNulty and Pearsall 1979).

PUMP TYPE ND Q/QD Si Sb Sb/Si

Process pump with 0.31 0.24 0.25 2.0 8.0
volute and diffuser 1.20 0.8 2.5 3.14

Double entry pump 0.96 1.00 <0.6 2.1 >3.64
with volute 1.20 0.8 2.1 2.67

Centrifugal pump w. 0.55 0.75 0.6 2.41 4.02
diffuser and volute 1.00 0.8 2.67 3.34

Cooling water pump 1.35 0.50 0.65 3.40 5.24
(1/5 scale model) 0.75 0.60 3.69 6.16

1.00 0.83 3.38 4.07

Cooling water pump 1.35 0.50 0.55 2.63 4.76
(1/8 scale model) 0.75 0.78 3.44 4.40

1.00 0.99 4.09 4.12
1.25 1.07 2.45 2.28

Cooling water pump 1.35 0.50 0.88 3.81 4.35
(1/12 scale model) 0.75 0.99 4.66 4.71

1.00 0.75 3.25 4.30
1.25 0.72 1.60 2.22

Volute pump 1.00 0.60 0.76 1.74 2.28
1.00 0.83 2.48 2.99
1.20 1.21 2.47 2.28

of the Hydraulic Institute that is reproduced in figure 5.4. This suggests that a
pump should be operated with a Thoma cavitation factor, σTH , in excess of the
value given in the figure for the particular specific speed of the application. The
line, in fact, corresponds to a critical suction specific speed of 3.0. Frequently,
this is erroneously interpreted as the value of Si. In fact, it is more like Sa;
operation above the line in figure 5.4 does not imply the absence of cavitation,
or of cavitation damage.

Data from McNulty and Pearsall (1979) for σi and σa in a typical pump is
presented graphically in figure 5.5 as a function of the fraction of design flow
and the Reynolds number (or velocity). Note the wide scatter in the inception
data, and that no clear trend with Reynolds number seems to be present.

The next section will include a qualitative description of the various forms of
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Figure 5.4: The Hydraulic Institute standards for the operation of pumps and
turbines (Hydraulic Institute 1965).

cavitation that can occur in a pump. Following that, the detailed development of
cavitation in a pump will be described, beginning in section 5.7 with a discussion
of inception.

5.6 TYPES OF IMPELLER CAVITATION

Since cavitation in a pump impeller can take a variety of forms (see, for example,
Wood 1963), it is appropriate at this stage to attempt some description and
classification of these types of cavitation. It should be borne in mind that any
such classification is necessarily somewhat arbitrary, and that types of cavitation
may occur that do not readily fall within the classification system. Figure 5.6
includes sketches of some of the forms of cavitation that can be observed in
an unshrouded axial flow impeller. As the inlet pressure is decreased, inception
almost always occurs in the tip vortex generated by the corner where the leading
edge meets the tip. Figure 5.7 includes a photograph of a typical cavitating tip
vortex from tests of Impeller IV (the scale model of the SSME low pressure
LOX turbopump shown in figure 2.12). Note that the backflow causes the flow
in the vicinity of the vortex to have an upstream velocity component. Careful
smoothing of the transition from the leading edge to the tip can reduce σi, but
it will not eliminate the vortex, or vortex cavitation.
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Figure 5.5: Inception and 3% head loss cavitation numbers plotted against a
Reynolds number (based on wT1 and blade chord length) for four flow rates
(from McNulty and Pearsall 1979).

Usually the cavitation number has to be lowered quite a bit further before
the next development occurs, and often this takes the form of traveling bubble
cavitation on the suction surfaces of the blades. Nuclei in the inflow grow as
they are convected into the regions of low pressure on the suction surfaces of
the blades, and then collapse as they move into regions of higher pressure. For
convenience, this will be termed “bubble cavitation.” It is illustrated in figure
5.8 which shows bubble cavitation on a single hydrofoil.

With further reduction in the cavitation number, the bubbles may combine
to form large attached cavities or vapor-filled wakes on the suction surfaces of
the blades. In a more general context, this is known as “attached cavitation”. In
the context of pumps, it is often called “blade cavitation”. Figure 5.9 presents
an example of blade cavitation in a centrifugal pump.
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When blade cavities (or bubble or vortex cavities) extend to the point on
the suction surface opposite the leading edge of the next blade, the increase in
pressure in the blade passage tends to collapse the cavity. Consequently, the
surface opposite the leading edge of the next blade is a location where cavitation
damage is often encountered.

Blade cavitation that collapses on the suction surface of the blade is also
referred to as “partial cavitation”, in order to distinguish it from the circum-
stances that occur at very low cavitation numbers, when the cavity may extend
into the discharge flow downstream of the trailing edge of the blade. These long
cavities, which are clearly more likely to occur in lower solidity machines, are
termed “supercavities”. Figure 5.10 illustrates the difference between partial
cavitation and supercavitation. Some pumps have even been designed to oper-
ate under supercavitating conditions (Pearsall 1963). The potential advantage
is that bubble collapse will then occur downstream of the blades, and cavitation
damage might thus be minimized.

Finally, it is valuable to create the catch-all term “backflow cavitation” to
refer to the cavitating bubbles and vortices that occur in the annular region of
backflow upstream of the inlet plane when the pump is required to operate in
a loaded condition below the design flow rate (see section 4.5). The increased
pressure rise across the pump under these circumstances may cause the tip
clearance flow to penetrate upstream and generate a backflow that can extend
many diameters upstream of the inlet plane. When the pump also cavitates,
bubbles and vortices are swept up in this backflow and, to the observer, can often

Figure 5.6: Types of cavitation in pumps.
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Figure 5.7: Tip vortex cavitation on Impeller IV, the scale model of the SSME
low pressure LOX turbopump (see figure 2.12) at an inlet flow coefficient, φ1,
of 0.07 and a cavitation number, σ, of 0.42 (from Braisted 1979).

Figure 5.8: Bubble cavitation on the surface of a NACA 4412 hydrofoil at zero
incidence angle, a speed of 13.7 m/s and a cavitation number of 0.3. The flow is
from left to right and the leading edge of the foil is just to the left of the white
glare patch on the surface (Kermeen 1956).
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Figure 5.9: Blade cavitation on the suction surface of a blade in a centrifugal
pump. The relative flow is from left to right and the cavity begins at the leading
edge of the blade which is toward the left of the photograph. From Sloteman,
Cooper, and Graf (1991), courtesy of Ingersoll-Dresser Pump Company.

Figure 5.10: Partially cavitating cascade (left) and supercavitating cascade
(right).
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Figure 5.11: As figure 5.7, but here showing typical backflow cavitation.

represent the most visible form of cavitation. Figure 5.11 includes a photograph
illustrating the typical appearance of backflow cavitation upstream of the inlet
plane of an inducer.

5.7 CAVITATION INCEPTION DATA

In section 5.3 the important role played by cavitation nuclei in determining
cavitation inception was illustrated by reference to the comparitive ITTC tests
(figure 5.1). It is now clear that measurements of cavitation inception are of lit-
tle value unless the nuclei population is documented. Unfortunately, this calls
into question the value of most of the cavitation inception data found in the
literature. And, even more important in the present context, is the fact that
this includes just about all of the observations of cavitation inception in pumps.
To illustrate this point, we reproduce in figure 5.12 data obtained by Keller
(1974) who measured cavitation inception numbers for flows around hemispher-
ical bodies. The water was treated in different ways so that it contained different
populations of nuclei, as shown on the left in figure 5.12. As one might antic-
ipate, the water with the higher nuclei population had a substantially larger
inception cavitation number.

One of the consequences of this dependence on nuclei population is that
it may cause the cavitation number at which cavitation disappears when the
pressure is increased (known as the “desinent” cavitation number, σd) to be
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larger than the value at which the cavitation appeared when the pressure was
decreased, namely σi. This phenomenon is termed “cavitation hysteresis” (Holl
and Treaster 1966), and is often the result of the fact mentioned previously
(section 5.3) that the cavitation itself can increase the nuclei population in a
recirculating facility. An example of cavitation hysteresis in tests on an axial
flow pump in a closed loop is given in figure 7.8.

One of the additional complications is the subjective nature of the judgment
that cavitation has appeared. Visual inspection is not always possible, nor is it
very objective, since the number of “events” (an event is a single bubble growth
and collapse) tends to increase over a range of cavitation numbers. If, there-
fore, one made a judgment based on a certain critical event rate, it is inevitable
that the inception cavitation number would increase with nuclei population, as
in figure 5.12. Experiments have found, however, that the production of noise
is a simpler and more repeatable measure of inception than visual observation.
While still subject to the variations with nuclei population, it has the advantage
of being quantifiable. Figure 5.13, from McNulty and Pearsall (1979), illustrates
the rapid increase in the noise from a centrifugal pump when cavitation incep-
tion occurs (the data on inception in figure 5.5 and table 5.1 was obtained
acoustically).

Though information on the nuclei are missing in most experiments, the total
air content of the water is frequently monitored. One would suppose that the
nuclei population would increase with the air content, and this is usually the

Figure 5.12: Histograms of nuclei populations in treated and untreated tap
water and the corresponding cavitation inception numbers on hemispherical
headforms of three different diameters (Keller 1974).
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Figure 5.13: Head rise and suction line noise as a function of the Thoma cavi-
tation factor, σTH , for a typical centrifugal pump (adapted from McNulty and
Pearsall 1979).

Figure 5.14: The effect of air content on the critical cavitation numbers for a
centrifugal pump (Schoeneberger 1965, Pearsall 1972).

case. Some data on the dependence of the critical cavitation numbers for a
centrifugal pump on the total air content is included in figure 5.14. As expected,
the cavitation inception number, σi, increases with air content. Note, however,
that the breakdown cavitation number, σb, is quite independent of air content,
an illustration of the fact that, once it has been initiated, cavitation is much
less dependent on the nuclei population.

Having begun by questioning the value of much of the cavitation inception
data, we will nevertheless proceed to review some of the important trends in that
data base. In doing so we might take refuge in the thought that each investigator
probably applied a consistent criterion in assessing cavitation inception, and
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Figure 5.15: Cavitation inception characteristics of a NACA 4412 hydrofoil
(Kermeen 1956).

that the nuclei content in a given facility might be fairly constant (though the
latter is very doubtful). Then, though the data from different investigators and
facilties may be widely scattered, one would hope that the trends exhibited in
a particular research project would be qualitatively significant.

Consider first the inception characteristics of a single hydrofoil as the angle
of incidence is varied. Typical data, obtained by Kermeen (1956) for a NACA
4412 hydrofoil, is reproduced in figure 5.15. At positive angles of incidence, the
regions of low pressure and cavitation inception will occur on the suction surface;
at negative angles of incidence, these phenomena will shift to what is normally
the pressure surface. Furthermore, as the angle of incidence is increased in either
direction, the value of −Cpmin will increase, and hence the inception cavitation
number will also increase.

When such hydrofoils are used to construct a cascade, the results will also
depend on the cascade solidity, s. Data on the pressure distributions around a
blade in a cascade (such as that of Herrig et al. 1957) can be used to determine
Cpmin as a function of blade angle, βb1, solidity, s, and angle of incidence, α.
Consequently, one can anticipate the variation in the inception number with
these variables, assuming the first-order approximation, σi = −Cpmin. An
example of such data is presented in figure 5.16; this was derived by Pearsall
(1972) from the cascade data of Herrig et al. (1957). Note that a particular
cascade will have a particular positive angle of incidence of, typically, a few
degrees, at which σi is a minimum. The optimum angle of incidence changes
with different s and βb1; however, it seems to lie within a fairly narrow range
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Figure 5.16: Calculated cavitation inception number, σi (or −Cpmin), as a
function of blade angle, βb1, solidity, s, and incidence angle, α, for a cascade of
NACA-65-010 hydrofoils (Herrig et al. 1957, Pearsall 1972).

Figure 5.17: Variation in the inception number with flow rate for a typical
centrifugal pump (adapted from McNulty and Pearsall 1979).

between 1 and 5 degrees for a wide range of those design variables. In a pump,
the incidence angle is usually small in the vicinity of the design flow rate, but
will increase substantially above or below the design value. Consequently, in a
pump, the cavitation inception number tends to have a minimum at the design
flow rate. This is illustrated in figure 5.17 which includes some data from a
typical centrifugal pump, and by the data in figure 7.7 for an axial flow pump.
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Figure 5.18: The desinent cavitation numbers for three geometrically similar
Joukowski hydrofoils at zero angle of incidence as a function of Reynolds num-
ber, Uc/ν (Holl and Wislicenus 1961). Note the theoretical Cpmin = −0.54.

As we discussed in section 5.4, the scaling of cavitation phenomena with
size and with speed can be an important issue. Typical data for cavitation
inception on a single hydrofoil is that obtained by Holl and Wislicenus (1961);
it is reproduced in figure 5.18. Data for three different sizes of 12% Joukowski
hydrofoil (at zero angle of incidence) were obtained at different speeds. It was
plotted against Reynolds number in the hope that this would reduce the data
to a single curve. The fact that this does not occur demonstrates that there is
a size or speed effect separate from that due to the Reynolds number. It seems
plausible that the missing parameter is the ratio of the nuclei size to chord
length; however, in the absence of information on the nuclei, such a conclusion
is speculative.

To complete the list of those factors that may influence cavitation inception,
it is necessary to mention the effects of surface roughness and of the turbulence
level in the flow. The two effects are connected to some degree, since rough-
ness will affect the level of turbulence. But roughness can also affect the flow
by delaying boundary layer separation and therefore modifying the pressure
and velocity fields in a more global manner. The reader is referred to Arndt
and Ippen (1968) for details of the effects of surface roughness on cavitation
inception.

Turbulence affects cavitation inception since a nucleus may find itself in
the core of a vortex where the pressure level is lower than the mean. It could
therefore cavitate when it might not do so under the influence of the prevailing
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Figure 5.19: The cavitation inception number, σi, as a function of tip clearance,
δ (τmax is the maximum blade thickness), in an unshrouded axial flow pump at
various flow coefficients, φ (adapted from Rains 1954).

mean pressure level. Thus turbulence may promote cavitation, but one must
also allow for the fact that it may alter the global pressure field by altering
the location of flow separation. These complicated viscous effects on cavitation
inception were first examined in detail by Arakeri and Acosta (1974) and Gates
and Acosta (1978) (see also Arakeri 1979). The implications for cavitation
inception in the highly turbulent environment of most pump flows have yet to
be examined in detail.

In unshrouded turbomachinery, cavitation usually begins in the vortices as-
sociated with the tip clearance flows, and so it is important to investigate how
the tip clearance will affect the inception number. In figures 5.19 and 5.20
observed cavitation inception numbers for the tip clearance flows in axial flow
impellers are plotted against nondimensional tip clearance. The typical varia-
tion with incidence angle or flow coefficients is illustrated in figure 5.19 (Rains
1954). Since the pressure difference between the two sides of the blade increases
with incidence angle, the velocities of the tip clearance flow must also increase,
and it follows that σi should increase correspondingly, as is the case in figure
5.19. A second feature that is not clear in Rains’ data, but is manifest in the
data of Acosta (1958) and Henderson and Tucker (1962), is that there appears
to be an optimum tip clearance of about 1% of the blade height. At this opti-
mum, the cavitation inception number is a minimum. This is illustrated in the
figure 5.20.
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Figure 5.20: The cavitation inception number as a function of radial tip clear-
ance in an axial inducer (Janigro and Ferrini 1973 from data of Acosta 1958
and Henderson and Tucker 1962).
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Chapter 6

BUBBLE DYNAMICS,
DAMAGE AND NOISE

6.1 INTRODUCTION

We now turn to the characteristics of cavitation for σ < σi. To place the
material in context, we begin with a discussion of bubble dynamics, so that
reference can be made to some of the classic results of that analysis. This leads
into a discussion of two of the deleterious effects that occur as soon as there
is any cavitation, namely cavitation damage and cavitation noise. In the next
chapter, we address another deleterious consequence of cavitation, namely its
effect upon hydraulic performance.

6.2 CAVITATION BUBBLE DYNAMICS

Two fundamental models for cavitation have been extensively used in the litera-
ture. One of these is the spherical bubble model which is most relevant to those
forms of bubble cavitation in which nuclei grow to visible, macroscopic size when
they encounter a region of low pressure, and collapse when they are convected
into a region of higher pressure. For present purposes, we give only the briefest
outline of these methods, while referring the reader to the extensive literature
for more detail (see, for example, Knapp, Daily and Hammitt 1970, Plesset and
Prosperetti 1977, Brennen 1994). The second fundamental methodology is that
of free streamline theory, which is most pertinent to flows consisting of attached
cavities or vapor-filled wakes; a brief review of this methodology is given in
chapter 7.

Virtually all of the spherical bubble models are based on some version of
the Rayleigh-Plesset equation (Plesset and Prosperetti 1977) that defines the
relation between the radius of a spherical bubble, R(t), and the pressure, p(t),
far from the bubble. In an otherwise quiescent incompressible Newtonian liquid,
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this equation takes the form

pB(t) − p(t)
ρL

= R
d2R

dt2
+

3
2

(
dR

dt

)2

+
4ν
R

dR

dt
+

2S
ρLR

(6.1)

where ν , S, and ρL are respectively the kinematic viscosity, surface tension, and
density of the liquid. This equation (without the viscous and surface tension
terms) was first derived by Rayleigh (1917) and was first applied to the problem
of a traveling cavitation bubble by Plesset (1949).

The pressure far from the bubble, p(t), is an input function that could be
obtained from a determination of the pressure history that a nucleus would
experience as it travels along a streamline. The pressure, pB(t), is the pressure
inside the bubble. It is often assumed that the bubble contains both vapor and
noncondensable gas, so that

pB(t) = pV (TB) +
3mGKGTB

4πR3
= pV (T∞) − ρLΘ +

3mGKGTB

4πR3
(6.2)

where TB is the temperature inside the bubble, pV (TB) is the vapor pressure,
mG is the mass of gas in the bubble, and KG is the gas constant. However, it is
convenient to use the ambient liquid temperature far from the bubble, T∞, to
evaluate pV . When this is done, it is necessary to introduce the term, Θ, into
equation 6.1 in order to correct for the difference between pV (TB) and pV (T∞).
It is this term, Θ, that is the origin of the thermal effect in cavitation. Using
the Clausius-Clapeyron relation,

Θ ∼= ρV L
ρLT∞

(T∞ − TB(t)) (6.3)

where ρV is the vapor density and L is the latent heat.
Note that in using equation 6.2 for pB(t), we have introduced the additional

unknown function, TB(t), into the Rayleigh-Plesset equation 6.1. In order to
determine this function, it is necessary to construct and solve a heat diffusion
equation, and an equation for the balance of heat in the bubble. Approximate
solutions to these equations can be written in the following simple form. If the
heat conducted into the bubble is equated to the rate of use of latent heat at
the interface, then (

∂T

∂r

)
r=R

=
ρV L
kL

dR

dt
(6.4)

where (∂T/∂r)r=R is the temperature gradient in the liquid at the interface and
kL is the thermal conductivity of the liquid. Moreover, an approximate solution
to the thermal diffusion equation in the liquid is(

∂T

∂r

)
r=R

=
(T∞ − TB(t))

(αLt)
1
2

(6.5)

where αL is the thermal diffusivity of the liquid (αL = kL/ρLcPL where cPL is
the specific heat of the liquid) and t is the time from the beginning of bubble
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Figure 6.1: Typical solution, R(t), of the Rayleigh-Plesset equation for a spher-
ical bubble originating from a nucleus of radius, R0. The nucleus enters a low
pressure region at a dimensionless time of 0 and is convected back to the original
pressure at a dimensionless time of 500. The low pressure region is sinusoidal
and symmetric about a dimensionless time of 250.

growth or collapse. Using equations 6.4 and 6.5 in equation 6.3, the thermal
term can be approximated as

Θ = Σ(T∞)t
1
2
dR

dt
(6.6)

where

Σ(T∞) =
ρ2

V L2

ρ2
LcPLT∞α

1
2
L

(6.7)

In section 7.7, we shall utilize these relations to evaluate the thermal suppression
effects in cavitating pumps.

For present purposes, it is useful to illustrate some of the characteristic
features of solutions to the Rayleigh-Plesset equation in the absence of thermal
effects (Θ = 0 and TB(t) = T∞). A typical solution of R(t) for a nucleus
convected through a low pressure region is shown in figure 6.1. Note that the
response of the bubble is quite nonlinear; the growth phase is entirely different
in character from the collapse phase. The growth is steady and controlled; it
rapidly reaches an asymptotic growth rate in which the dominant terms of the
Rayleigh-Plesset equation are the pressure difference, pV − p, and the second
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Figure 6.2: The maximum size to which a cavitation bubble grows (according to
the Rayleigh-Plesset equation), RM , as function of the original nuclei size, R0,
and the cavitation number, σ, in the flow around an axisymmetric headform of
radius, RH , with S/ρLRHU

2 = 0.000036 (from Ceccio and Brennen 1991).

term on the right-hand side so that

dR

dt
⇒

[
2(pV − p)

3ρL

]1
2

(6.8)

Note that this requires the local pressure to be less than the vapor pressure.
For traveling bubble cavitation, the typical tension (pV −p) will be given nondi-
mensionally by (−Cpmin − σ) (see equations 5.2 and 5.4) so the typical growth
rate is given by

dR

dt
∝ (−Cpmin − σ)

1
2 U (6.9)

While this growth rate may appear, superficially, to represent a relatively gentle
process, it should be recognized that it corresponds to a volume that is increasing
like t3. Cavitation growth is therefore an explosive process to be contrasted with
the kind of boiling growth that occurs in a kettle on the stove in which dR/dt

typically behaves like t−
1
2 . The latter is an example of the kind of thermally

inhibited growth discussed in section 7.7.
It follows that we can estimate the typical maximum size of a cavitation

bubble, RM , given the above growth rate and the time available for growth.
Numerical calculations using the full Rayleigh-Plesset equation show that the
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appropriate time for growth is the time for which the bubble experiences a
pressure below the vapor pressure. In traveling bubble cavitation we may esti-
mate this by knowing the shape of the pressure distribution near the minimum
pressure point. We shall represent this shape by

Cp = Cpmin + Cp∗(s/D)2 (6.10)

where s is a coordinate measured along the surface, D is the typical dimension
of the body or flow, and Cp∗ is some known constant of order one. Then, the
time available for growth, tG, is given approximately by

tG ≈ 2D (σ − Cpmin)
1
2

C
1
2
p∗U (1 + Cpmin)

1
2

(6.11)

and therefore
RM

D
≈ 2 (−σ − Cpmin)

C
1
2
p∗ (1 + Cpmin)

1
2

(6.12)

Note that this is independent of the size of the original nucleus.
One other feature of the growth process is important to mention. It tran-

spires that because of the stabilizing influence of the surface tension term, a
particular tension, (pV − p), will cause only bubbles larger than a certain criti-
cal size to grow explosively (Blake 1949). This means that, for a given cavitation
number, only nuclei larger than a certain critical size will achieve the growth
rate necessary to become macroscopic cavitation bubbles. A decrease in the
cavitation number will activate smaller nuclei, thus increasing the volume of
cavitation. This phenomenon is illustrated in figure 6.2 which shows the max-
imum size of a cavitation bubble, RM , as a function of the size of the original
nucleus and the cavitation number for a typical flow around an axisymmetric
headform. The vertical parts of the curves on the left of the figure represent the
values of the critical nuclei size, RC , that are, incidentally, given simply by the
expression

RC ≈ κS/ρLU
2 (−σ −Cpmin) (6.13)

where the factor κ is roughly unity (Ceccio and Brennen 1991). Note also
from figure 6.2 that all the unstable nuclei grow to roughly the same size as
anticipated earlier.

Turning now to the collapse, it is readily seen from figure 6.1 that cavitation
bubble collapse is a catastrophic phenomenon in which the bubble, still assumed
spherical, reaches a size very much smaller than the original nucleus. Very
high accelerations and pressures are generated when the bubble becomes very
small. However, if the bubble contains any noncondensable gas at all, this will
cause a rebound as shown in figure 6.1. Theoretically, the spherical bubble will
undergo many cycles of collapse and rebound. In practice, a collapsing bubble
becomes unstable to nonspherical disturbances, and essentially shatters into
many smaller bubbles in the first collapse and rebound. The resulting cloud of
smaller bubbles rapidly disperses. Whatever the deviations from the spherical
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Figure 6.3: Photograph of localized cavitation damage on the blade of a mixed
flow pump impeller made from an aluminium-based alloy.

Figure 6.4: Cavitation damage on the blades at the discharge from a Francis
turbine.

shape, the fact remains that the collapse is a violent process that produces
noise and the potential for material damage to nearby surfaces. We proceed to
examine both of these consequences in the two sections which follow.

6.3 CAVITATION DAMAGE

Perhaps the most ubiquitous problem caused by cavitation is the material dam-
age that cavitation bubbles can cause when they collapse in the vicinity of a
solid surface. Consequently, this aspect of cavitation has been intensively stud-
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Figure 6.5: Cavitation damage to the concrete wall of the 15.2 m diameter
Arizona spillway at the Hoover Dam. The hole is 35 m long, 9 m wide and
13.7 m deep. Reproduced from Warnock (1945).

ied for many years (see, for example, ASTM 1967, Knapp, Daily, and Hammitt
1970, Thiruvengadam 1967, 1974). The problem is complex because it involves
the details of a complicated unsteady flow combined with the reaction of the
particular material of which the solid surface is made.

As we have seen in the previous section, cavitation bubble collapse is a
violent process that generates highly localized, large amplitude disturbances
and shocks in the fluid at the point of collapse. When this collapse occurs
close to a solid surface, these intense disturbances generate highly localized
and transient surface stresses. Repetition of this loading due a multitude of
bubble collapses can cause local surface fatigue failure, and the detachment of
pieces of material. This is the generally accepted explanation for cavitation
damage. It is consistent with the appearance of cavitation damage in most
circumstances. Unlike the erosion due to solid particles in the flow, for which
the surface appears to be smoothly worn with scratches due to larger particles,
cavitation damage has the crystalline and jagged appearance of fatigue failure.
To illustrate this, a photograph of localized cavitation damage on the blade
of a mixed flow pump, fabricated from an aluminium-based alloy, is included
as figure 6.3. More extensive damage is illustrated in figure 6.4 which shows
the blades at discharge from a Francis turbine; here the cavitation damage has
penetrated the blades. Cavitation damage can also occur in much larger scale
flows. As an example, figure 6.5 shows cavitation damage suffered by a spillway
at the Hoover dam (Warnock 1945, Falvey 1990).
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Figure 6.6: Axial views from the inlet of the cavitation and cavitation damage
on the hub or base plate of a centrifugal pump impeller. The two photographs
are of the same area, the left one showing the typical cavitation pattern during
flow and the right one the typical cavitation damage. Parts of the blades can be
seen in the upper left and lower right corners; relative to these blades the flow
proceeds from the lower left to the upper right. The leading edge of the blade
is just outside the field of view on the upper left. Reproduced from Soyama,
Kato and Oba (1992) with permission of the authors.

In hydraulic devices such as pump impellers or propellers, cavitation dam-
age is often observed to occur in quite localized areas of the surface. This is
frequently the result of the periodic and coherent collapse of a cloud of cavita-
tion bubbles. Such is the case in magnetostrictive cavitation testing equipment
(Knapp, Daily, and Hammitt 1970). In many pumps, the periodicity may oc-
cur naturally as a result of regular shedding of cavitating vortices, or it may
be a response to a periodic disturbance imposed on the flow. Examples of the
kinds of imposed fluctuations are the interaction between a row of rotor vanes
and a row of stator vanes, or the interaction between a ship’s propeller and
the nonuniform wake behind the ship. In almost all such cases, the coherent
collapse of the cloud can cause much more intense noise and more potential for
damage than in a similar nonfluctuating flow. Consequently, the damage is most
severe on the solid surface close to the location of cloud collapse. An example
of this phenomenon is included in figure 6.6 taken from Soyama, Kato and Oba
(1992). In this instance, clouds of cavitation are being shed from the leading
edge of a centrifugal pump blade, and are collapsing in a specific location as
suggested by the pattern of cavitation in the left-hand photograph. This leads
to the localized damage shown in the right-hand photograph.

Currently, several research efforts are focussed on the dynamics of cavitation
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clouds. These studies suggest that the coherent collapse can be more violent
than that of individual bubbles, but the basic explanation for the increase in
the noise and damage potential is not clear.

6.4 MECHANISM OF CAVITATION

DAMAGE

The intense disturbances that are caused by cavitation bubble collapse can have
two separate origins. The first is related to the fact that a collapsing bubble
may be unstable in terms of its shape. When the collapse occurs near a solid
surface, Naude and Ellis (1961) and Benjamin and Ellis (1966) observed that
the developing spherical asymmetry takes the form of a rapidly accelerating jet
of fluid, entering the bubble from the side furthest from the wall (see figure
6.7). Plesset and Chapman (1971) carried out numerical calculations of this
“reentrant jet”, and found good agreement with the experimental observations
of Lauterborn and Bolle (1975). Since then, other analytical methods have
explored the parametric variations in the flow. These methods are reviewed by
Blake and Gibson (1987). The “microjet” achieves very high speeds, so that its
impact on the other side of the bubble generates a shock wave, and a highly
localized shock loading of the surface of the nearby wall.

Parenthetically, we might remark that this is also the principle on which
the depth charge works. The initial explosion creates little damage, but does

Figure 6.7: The collapse of a cavitation bubble close to a solid boundary. The
theoretical shapes of Plesset and Chapman (1971) (solid lines) are compared
with the experimental observations of Lauterborn and Bolle (1975) (points)
(adapted from Plesset and Prosperetti 1977).



112 CHAPTER 6. BUBBLE DYNAMICS, DAMAGE AND NOISE

produce a very large bubble which, when it collapses, generates a reentrant jet
directed toward any nearby solid surface. When this surface is a submarine, the
collapse of the bubble can cause great damage to that vessel. It may also be of
interest to note that a bubble, collapsing close to a very flexible or free surface,
develops a jet on the side closest to this boundary, and, therefore, traveling in
the opposite direction. Some researchers have explored the possibility of mini-
mizing cavitation damage by using surface coatings with a flexibility designed
to minimize the microjet formation.

The second intense disturbance occurs when the remnant cloud of bubbles,
that remains after the microjet disruption, collapses to its minimum gas/vapor
volume, and generates a second shock wave that impinges on the nearby solid
surface. The generation of a shock wave during the rebound phase of bubble
motion was first demonstrated by the calculations of Hickling and Plesset (1964).
More recently, Shima et al. (1981) have made interesting observations of the
spherical shock wave using Schlieren photography, and Fujikawa and Akamatsu
(1980) have used photoelastic solids to examine the stress waves developed in
the solid. Though they only observed stress waves resulting from the remnant
cloud collapse and not from the microjet, Kimoto (1987) has subsequently shown
that both the microjet and the remnant cloud create stress waves in the solid.
His measurements indicate that the surface loading resulting from the remnant
cloud is about two or three times that due to the microjet.

Until very recently, virtually all of these detailed observations of collapsing
cavitation bubbles had been made in a quiescent fluid. However, several recent
observations have raised doubts regarding the relevance of these results for most
flowing systems. Ceccio and Brennen (1991) have made detailed observations of
the collapse of cavitating bubbles in flows around bodies, and have observed that
typical cavitation bubbles are distorted and often broken up by the shear in the
boundary layer or by the turbulence before the collapse takes place. Further-
more, Chahine (personal communication) has performed calculations similar to
those of Plesset and Chapman, but with the addition of rotation due to shear,
and has found that the microjet is substantially modified and reduced by the
flow.

The other important facet of the cavitation damage phenomenon is the re-
action of the material of the solid boundary to the repetitive shock (or “water
hammer”) loading. Various measures of the resistance of particular materials to
cavitation damage have been proposed (see, for example, Thiruvengadam 1967).
These are largely heuristic and empirical, and will not be reviewed here. The
reader is referred to Knapp, Daily, and Hammitt (1970) for a detailed account
of the relative resistance of different materials to cavitation damage. Most of
these comparisons are based, not on tests in flowing systems, but on results
obtained when material samples are vibrated at high frequency (about 20 kHz)
in a bath of quiescent liquid. The samples are weighed at regular intervals to
determine the loss of material, and the results are presented in the form typified
by figure 6.8. Note that the relative erosion rates, according to this data, can
be approximately correlated with the structural strength of the material. Fur-
thermore, the erosion rate is not necessarily constant with time. This may be
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Figure 6.8: Examples of cavitation damage weight loss as a function of time.
Data from vibratory tests with different materials (Hobbs, Laird and Brunton
1967).

due to the differences in the response of a collapsing bubble to a smooth surface
as opposed to a surface already roughened by damage. Finally, note that the
weight loss in many materials only begins after a certain incubation time.

The data on erosion rates in pumps is very limited because of the length of
time necessary to make such measurements. The data that does exist (Mansell
1974) demonstrates that the rate of erosion is a strong function of the operating
point as given by the cavitation number and the flow coefficient. The influence
of the latter is illustrated in figure 6.9. This curve essentially mirrors those of
figures 5.16 and 5.17. At off-design conditions, the increased angle of incidence

Figure 6.9: Cavitation erosion rates in a centrifugal pump as a function of the
flow rate relative to the design flow rate (Pearsall 1978 from Grist 1974).
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Figure 6.10: Bubble natural frequency, ωP , in Hz as a function of the bub-
ble radius and the difference between the equilibrium pressure and the vapor
pressure (in kg/m sec2) for water at 300◦K.

leads to increased cavitation and, therefore, increased weight loss.

6.5 CAVITATION NOISE

The violence of cavitation bubble collapse also produces noise. In many prac-
tical circumstances, the noise is important not only because of the vibration
that it may cause, but also because it advertizes the presence of cavitation and,
therefore, the likelihood of cavitation damage. Indeed, the magnitude of cavita-
tion noise is often used as a crude measure of the rate of cavitation erosion. For
example, Lush and Angell (1984) have shown that, in a given flow at a given
cavitation number, the rate of weight loss due to cavitation damage is correlates
with the noise as the velocity of the flow is changed.

Prior to any discussion of cavitation noise, it is useful to identify the natural
frequency with which individual bubbles will oscillate a quiescent liquid. This
natural frequency can be obtained from the Rayleigh-Plesset equation 6.1 by
substituting an expression for R(t) that consists of a constant, RE, plus a small
sinusoidal perturbation of amplitude, R̃, at a general frequency, ω. Steady state
oscillations like this would only be maintained by an applied pressure, p(t),
consisting of a constant, p̄, plus a sinusoidal perturbation of amplitude, p̃, and
frequency, ω. Obtaining the relation between the linear perturbations, R̃ and
p̃, from the Rayleigh-Plesset equation, it is found that the ratio, R̃/p̃, has a



6.5. CAVITATION NOISE 115

Figure 6.11: Typical acoustic signal from a single collapsing bubble (from Ceccio
and Brennen 1991).

maximum at a resonant frequency, ωP , given by

ωP =
[
3(p̄− pV )
ρLR2

E

+
4S

ρLR3
E

− 8ν2

R4
E

] 1
2

(6.14)

The results of this calculation for bubbles in water at 300◦K are presented in
figure 6.10 for various mean pressure levels, p̄. Note that the bubbles below
about 0.02 µm are supercritically damped, and have no resonant frequency.
Typical cavitation nuclei of size 10 → 100 µm have resonant frequencies in
the range 10 → 100 kHz. Even though the nuclei are excited in a highly
nonlinear way by the cavitation, one might expect that the spectrum of the
noise that this process produces would have a broad maximum at the peak
frequency corresponding to the size of the most numerous nuclei participating
in the cavitation. Typically, this would correspond to the radius of the critical
nucleus given by the expression 6.13. For example, if the critical nuclei size were
of the order of 10− 100 µm, then, according to figure 6.10, one might expect to
see cavitation noise frequencies of the order of 10 − 100 kHz. This is, indeed,
the typical range of frequencies produced by cavitation.

Fitzpatrick and Strasberg (1956) were the first to make extensive use of the
Rayleigh-Plesset equation to predict the noise from individual collapsing bubbles
and the spectra that such a process would produce. More recently, Ceccio and
Brennen (1991) have recorded the noise from individual cavitation bubbles in a
flow. A typical acoustic signal is reproduced in figure 6.11. The large positive
pulse at about 450 µs corresponds to the first collapse of the bubble. Since the
radiated acoustic pressure, pA, in this context is related to the second derivative
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Figure 6.12: The acoustic impulse, I, produced by the collapse of a single
cavitation bubble. Data is shown for two axisymmetric bodies (the ITTC and
Schiebe headforms) as a function of the maximum volume prior to collapse. Also
shown are the equivalent results from solutions of the Rayleigh-Plesset equation
(from Ceccio and Brennen 1991).

Figure 6.13: Typical spectra of noise from bubble cavitation for various cavita-
tion numbers as indicated (Ceccio and Brennen 1991).
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Figure 6.14: Typical spectra showing the increase in noise with increasing cav-
itation in an axial flow pump (Lee 1966).

of the volume of the bubble, V (t), by

pA =
ρL

4π�
d2V

dt2
(6.15)

(where � is the distance of the measurement from the center of the bubble), the
pulse corresponds to the very large and positive values of d2V/dt2 that occur
when the bubble is close to its minimum size in the middle of the collapse. The
first pulse is followed in figure 6.11 by some facility-dependent oscillations, and
by a second pulse at about 1100 µs. This corresponds to the second collapse;
no further collapses were observed in these particular experiments.

A good measure of the magnitude of the collapse pulse in figure 6.11 is the
acoustic impulse, I, defined as the area under the curve or

I =
∫ t2

t1

pAdt (6.16)

where t1, t2 are the times before and after the pulse when pA = 0. The acoustic
impulses for cavitation on two axisymmetric headforms (ITTC and Schiebe
headforms) are compared in figure 6.12 with impulses predicted from integration
of the Rayleigh-Plesset equation. Since these theoretical calculations assume
that the bubble remains spherical, the discrepancy between the theory and the
experiments is not too surprising. Indeed, the optimistic interpretation of figure
6.12 is that the theory can provide an order of magnitude estimate of the noise
produced by a single bubble. This could then be combined with the nuclei
number density distribution to obtain a measure of the amplitude of the noise
(Brennen 1994).
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Figure 6.15: The relation between the cavitation performance, the noise and
vibration produced at three frequency levels in a centrifugal pump, namely the
shaft frequency (�), the blade passage frequency (	) and 40 kHz (◦) (Pearsall
1966-67).

The typical single bubble noise shown in figure 6.11 leads to the spectrum
shown in figure 6.13. If the cavitation events are randomly distributed in time,
this would also correspond to the overall cavitation noise spectrum. It displays a
characteristic frequency content in the range of 1 → 50 kHz (the rapid decline
at about 80 kHz represents the limit of the hydrophone used to make these
measurements). Typical measurements of the noise produced by cavitation in
an axial flow pump are illustrated in figure 6.14, and exhibit the same features
demonstrated in figure 6.13. The signal in figure 6.14 also clearly contains
some shaft or blade passage frequencies that occur in the absence of cavitation,
but may be amplified or attenuated by cavitation. Figure 6.15 contains data
obtained for cavitation noise in a centrifugal pump. Note that the noise at a
frequency of 40 kHz shows a sharp increase with the onset of cavitation; on
the other hand, the noise at the shaft and blade passage frequencies show only
minor changes with cavitation number. The decrease in the 40 kHz cavitation
noise as breakdown is approached is also a common feature in cavitation noise
measurements.
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The level of the sound produced by a cavitating flow is the result of two
factors, namely the impulse, I, produced by each event (equation 6.16) and the
event rate or number of events per second, ṄE . Therefore, the sound pressure
level, pS , will be

pS = IṄE (6.17)

Here, we will briefly discuss the scaling of the two components, I, and ṄE ,
and thus the scaling of the cavitation noise, pS . We emphasize that the follow-
ing equations omit some factors of proportionality necessary for quantitative
calculations.

Both the experimental observations and the calculations based on the Rayleigh-
Plesset equation, show that the nondimensional impulse from a single cavitation
event, defined by

I∗ = 4πI�
/
ρUD2 (6.18)

(where U and D are the reference velocity and length in the flow), is strongly
correlated with the maximum volume of the cavitation bubble (maximum equiv-
alent volumetric radius = RM ), and appears virtually independent of the other
flow parameters. In dimensionless terms,

I∗ ≈ R2
M

/
D2 (6.19)

It follows that
I ≈ ρUR2

M

/
� (6.20)

The evaluation of the impulse from a single event is then completed by some es-
timate of the maximum bubble size, RM . For example, we earlier estimated RM

for traveling bubble cavitation (equation 6.12), and found it to be independent
of U for a given cavitation number. In that case I is linear in U .

Modeling the event rate, ṄE , can be considerably more complicated than
might, at first sight, be visualized. If all the nuclei flowing through a certain
known streamtube (say with a cross-sectional area, AN , in the upstream refer-
ence flow), were to cavitate similarly then, clearly, the result would be

ṄE = N AN U (6.21)

where N is the nuclei concentration (number/unit volume). Then the sound
pressure level resulting from substituting the expressions 6.21, 6.20, and 6.12
into equation 6.17, is

pS ≈ ρU2 (−σ − Cpmin)2 ANND
2
/
� (6.22)

where we have omitted some of the constants of order unity. For the simple
circumstances outlined, equation 6.22 yields a sound pressure level that scales
with U2 and with D4 (because AN ∝ D2). This scaling with velocity does
correspond to that often observed (for example, Blake, Wolpert, and Geib 1977,
Arakeri and Shangumanathan 1985) in simple traveling bubble flows. There
are, however, a number of complicating factors. First, as we have discussed
earlier in section 6.2, only those nuclei larger than a certain critical size, RC ,
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will actually grow to become cavitation bubbles, and, since RC is a function of
both σ and the velocity U , this means that N will be a function of RC and U .
Since RC decreases as U increases, the power law dependence of pS on velocity
will then be Um where m is greater than 2.

Different scaling laws will apply when the cavitation is generated by turbu-
lent fluctuations, such as in a turbulent jet (see, for example, Ooi 1985, Franklin
and McMillan 1984). Then the typical tension and the typical duration of
the tension experienced by a nucleus, as it moves along an approximately La-
grangian path in the turbulent flow, are very much more difficult to estimate.
Consequently, estimates of the sound pressure due to cavitation in turbulent
flows, and the scaling of that sound with velocity, are more poorly understood.
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Chapter 7

CAVITATION AND
PUMP PERFORMANCE

7.1 INTRODUCTION

In this chapter we turn our attention to another of the deleterious consequences
of cavitation, namely its effect upon the steady state hydraulic performance of a
pump. In the next section we present several examples of the effect of cavitation
on conventional pumps. This is followed by a discussion of the performance and
design of cavitating inducers which are devices added to conventional pumps
for the purpose of improving the cavitation performance. Subsequent sections
deal with the analytical methods available for the evaluation of cavitation per-
formance and with the thermodynamic effects of the phase change process on
that performance.

7.2 TYPICAL PUMP PERFORMANCE

DATA

A typical non-cavitating performance characteristic for a centrifugal pump is
shown in figure 7.1 for the Impeller X/Volute A combination (Chamieh 1983)
described in section 2.8. The design flow coefficient for this pump is φ2 = 0.092
but we note that it performs reasonably well down to about 30% of this design
flow. This flexibility is characteristic of centrifugal pumps. Data is presented
for three different shaft speeds, namely 600, 800 and 1200rpm; since these agree
closely we can conclude that there is no perceptible effect of Reynolds number
for this range of speeds. The effect of a different volute is also illustrated by the
data for Volute B which is a circular volute of circumferentially uniform area.
In theory this circular volute is not well matched to the impeller discharge flow
and the result is that, over most of the range of flow coefficient, the hydraulic
performance is inferior to that with Volute A. However, Volute B is superior

123
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Figure 7.1: Typical non-cavitating performance for a centrifugal pump, namely
Impeller X (see section 2.8) with Volute A and a circular volute of uniform
cross-section (from Chamieh 1983).

at high flow coefficients. This suggests that the flow in Volute A may be more
pathological than one would like at these high flow coefficients (see sections 4.4
and 4.6). It further serves to emphasize the importance of a volute (or diffuser)
and the need for an understanding of the flow in a volute at both design and
off-design conditions.

Typical cavitation performance characteristics for a centrifugal pump are
presented in figure 7.2 for the Impeller X/Volute A combination. The breakdown
cavitation numbers in the range σ = 0.1 → 0.4 are consistent with the data in
table 5.1. Note that the cavitation head loss occurs more gradually at high
flow coefficients than at low values. This is a common feature of the cavitation
performance of many pumps, both centrifugal and axial.

Now consider some examples of axial and mixed flow pumps. Typical non-
cavitating performance characteristics are shown in figure 7.3 for a Peerless axial
flow pump. This unshrouded pump has a design flow coefficient φ2 = 0.171. The
maximum efficiency at this design point is about 85%. Axial flow pumps are
more susceptible to flow separation and stall than centrifugal pumps and could
therefore be considered less versatile. The depression in the head curve of figure
7.3 in the range φ2 = 0.08 → 0.12 is indicative of flow separation and this
region of the head/flow curve can therefore be quite sensitive to the details of
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Figure 7.2: Cavitation performance for the Impeller X/Volute A combination
(from Franz et al. 1989, 1990). The flow separation rings of figure 10.17 have
been installed so the non-cavitating performance is slightly better than in figure
7.1.

Figure 7.3: Typical non-cavitating performance characteristics for a 20.3cm di-
ameter, 3-bladed axial flow pump with a hub-tip ratio, RH/RT , of 0.45 running
at about 1500rpm. At the blade tip the chord is 7.3cm, the solidity is 0.344 and
the blade angle, βbT , is 11.9◦. Adapted from Guinard et al. (1953).
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Figure 7.4: Typical non-cavitating performance characteristics for a four-bladed
axial flow pump with tip blade angle, βbT , of about 18◦, a hub-tip ratio, RH/RT ,
of 0.483, a solidity of 0.68 and four different blade profiles (yielding the set of
four performance curves). Adapted from Oshima and Kawaguchi (1963).

the blade profile since small surface irregularities can often have a substantial
effect on separation. This is illustrated by the data of figure 7.4 which presents
the non-cavitating characteristics for four similar axial flow pumps with slightly
different blade profiles. The kinks in the curves are more marked in this case
and differ significantly from one profile to another. Note also that there are
small regions of positive slope in the head characteristics. This often leads to
instability and to fluctuating pressures and flow rates through the excitation of
the surge and stall mechanisms discussed in the following chapters. Sometimes
the region of positive slope in the head characteristic can be even more marked
as in the example presented in figure 7.5 in which the stall occurs at about 80%
of the design flow. As a final example of non-cavitating performance we include
in figure 7.6, the effect of the blade angle in an axial flow pump; note that angles
of the order of 20◦ to 30◦ seem to be optimal for many purposes.

The cavitation characteristics for some of the above axial flow pumps are
presented in figures 7.7 through 7.10. The data of Guinard et al. (1953) provides
a particularly well-documented example of the effect of cavitation on an axial
flow pump. Note first from figure 7.7 that the cavitation inception number is
smallest at the design flow and increases as φ is decreased; the decrease at very
low φ does not, however, have an obvious explanation. Since Guinard et al.
(1953) noticed the hysteretic effect described in section 5.7 we present figure 7.8
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Figure 7.5: Characteristics of a mixed flow pump (Myles 1966).

Figure 7.6: Head and efficiency characteristics for an axial flow pump with
different tip blade angles, βbT (from Peck 1966).
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Figure 7.7: Cavitation performance characteristics of the axial flow pump of
figure 7.3. Adapted from Guinard et al. (1953).

Figure 7.8: Inception and desinent cavitation numbers (based on wT1) as a
function of φ/φD for the axial flow pump of figures 7.3 and 7.7. Adapted from
Guinard et al. (1953).
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Figure 7.9: Effect of cavitation on the head coefficient and efficiency of one of
the axial flow pumps of figure 7.4. The cavitation number is based on wT1.
Adapted from Oshima and Kawaguchi (1963).

Figure 7.10: The critical cavitation number (based on wT1 and 0.5% head loss)
for the axial flow pumps of figure 7.4. Adapted from Oshima and Kawaguchi
(1963).

as an example of that phenomenon.
The cavitation data of figure 7.7 also help to illustrate several other charac-

teristic phenomena. Note the significant increase in the head just prior to the
decrease associated with breakdown. In the case of the pump tested by Guinard
et al., this effect occurs at low flow coefficients. However, other pumps exhibit
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Figure 7.11: Comparison of the suction specific speed at 3% head drop for
process pumps with and without inducer (from Janigro and Ferrini 1973).

this phenomenon at higher flows and not at low flows as illustrated by the data
of Oshima and Kawaguchi (1963) presented in figure 7.9. The effect is probably
caused by an improved flow geometry due to a modest amount of cavitation.

The cavitation data of figure 7.7 also illustrates the fact that breakdown at
low flow coefficients occurs at higher cavitation numbers and is usually more
abrupt than at higher flow coefficients. It is accompanied by a decrease in
efficiency as illustrated by figure 7.9. Finally we include figure 7.10 which shows
that the effect of blade profile changes on the head breakdown cavitation number
is quite small.

7.3 INDUCER DESIGNS

Axial flow inducers are intended to improve the cavitation performance of cen-
trifugal or mixed flow pumps by increasing the inlet pressure to the pump to
a level at which it can operate without excessive loss of performance due to
cavitation. Typically they consist of an axial flow stage placed just upstream of
the inlet to the main impeller. They are designed to operate at small incidence
angles and to have thin blades so that the perturbation to the flow is small in
order to minimize the production of cavitation and its deleterious effect upon
the flow. The objective is to raise the pressure very gradually to the desired
level. The typical advantage gained by the addition of an inducer is illustrated in
figure 7.11 taken from Janigro and Ferrini (1973). This compares the cavitation
performance of a class of process pumps with and without an inducer.

Various types of inducer design are documented in figure 7.12 and in table
7.1, both taken from Jakobsen (1971). Data on the low pressure LOX pump
in the Space Shuttle Main Engine (SSME) has been added to table 7.1. Most
inducers of recent design seem to be of types (a) or (b). They are unshrouded,
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Table 7.1: Typical rocket engine inducer geometry and performance (from
Jakobsen 1971 and other sources). Key: (a) Main + Partial or Main/Tandem
(b) Radial (RAD), Swept Backwards (SWB) or Swept Forward (SWF)

Rocket: THOR J-2 X-8 X-8 J-2 J-2 SSME
Fluid: LOX LOX LOX LOX LH2 LH2 LOX

No. of Blades (a) 4 3 3 2 4+4 4+4 4/12
RH1/RT1 0.31 0.20 0.23 ∼0.19 0.42 0.38 0.29
RT2/RT1 1.0 1.0 ∼0.9 ∼0.8 1.0 ∼0.9 1.0
RH2/RH1 1.0 ∼2 ∼1.5 1.5 ∼2 ∼2 2.6
Leading Edge (b) RAD SWB SWB SWF SWB SWB SWB
βbT1 (deg.) 14.15 9.75 9.8 5.0 7.9 7.35 7.3
φ1D 0.116 0.109 0.106 0.05 0.094 0.074 0.076
ψ1D 0.075 0.11 0.10 0.063 0.21 0.20 0.366
N1D 4.21 3.06 3.25 3.15 1.75 1.61 0.68
αT1 (deg.) 7.5 3.5 3.7 2.1 2.5 3.1 4.3
σD 0.028 0.021 0.025 0.007 0.011 0.011
SD 10.4 12.5 11.4 21.2 15.8 16.2

with a swept leading edge and often with a forward cant to the blades as in the
case of the low pressure LOX pump in the SSME (figure 2.12). This blade cant
has the effect of causing the leading edge to be located at a single axial plane
counteracting the effect of the sweep given to the leading edge. They are also
designed to function at an incidence angle of a few degrees. The reason that
the design incidence angle is not zero is that under these conditions cavitation
could form on either the pressure or suction surfaces or it could oscillate between
the two. It is preferable to use a few degrees of incidence to eliminate this
uncertainity and ensure suction surface cavitation.

7.4 INDUCER PERFORMANCE

Typical inducer performance characteristics are presented in figures 7.13 to 7.16.
The non-cavitating performance of simple 9◦ helical inducers (see figure 2.12) is
presented in figure 7.13. The data for the 5.1 cm and 7.6 cm diameter models
appear to coincide indicating very little Reynolds number effect. Furthermore,
the non-cavitating performance is the same whether the leading edge is swept or
straight. Also included in the figure are the results of the lossless performance
prediction of equation 4.6. The agreement with the experiments is about as
good as one could expect. It is most satisfactory close to the zero incidence flow
coefficient of about 0.09 → 0.10 where one would expect the viscous losses to be
a minimum. The comparison also suggests that the losses increase as one either
increases or decreases the flow from that zero incidence value.
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Figure 7.12: Various geometries of cavitating inducers (from Jakobsen 1971).

The cavitation performance of the 7.58 cm model of the 9◦ helical inducer is
presented in figure 7.14. These curves for different flow coefficients exhibit the
typical pattern of a more gradual head loss at the higher flow coefficients. Notice
that the breakdown cavitation number is smaller for non-zero incidence (for
example, φ = 0.052) than it is for zero incidence (φ = 0.095). One would expect
the breakdown cavitation number to be a minimum at zero incidence. The fact
that the data do not reflect this expectation may be due to the complications
at low flow coefficients caused by backflow and the prerotation which backflow
induces (see section 4.5).

Another example of inducer performance is presented in figures 7.15 and 7.16,
in this case for the SSME low pressure LOX pump model designated Impeller IV
(see figure 2.12). In figure 7.15, non-cavitating performance characteristics are
shown for two models with diameters of 7.58 cm and 10.2 cm. The difference in
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Figure 7.13: Non-cavitating performance of 9◦ helical inducers of two different
sizes and with and without swept leading edges (the 7.58 cm inducers are Im-
pellers III and V). Also shown is the theoretical performance prediction in the
absence of losses (from Ng and Brennen 1978).

Figure 7.14: Cavitation performance for Impeller V at various flow coefficients
and rotating speeds (from Ng and Brennen 1978).
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Figure 7.15: Non-cavitating performance of Impeller IV (7.58 cm, with stator)
and Impeller VI (10.2 cm, without stator) at various rotational speeds. Also
shown are full scale test data from Rocketdyne and a theoretical performance
prediction (solid line) (from Ng and Brennen 1978).

the two characteristics is not related to the size as much as it is to the fact that
the 7.58 cm model was tested with a set of diffuser (stator) vanes in the axial
flow annulus just downstream of the impeller discharge whereas the 10.2 cm
model was tested without such a diffuser. Note the substantial effect that this
has upon the performance. Below the design flow (φ1 ≈ 0.076) the stator vanes
considerably improve the diffusion process. However, above the design flow, the
negative angle of incidence of the flow encountering the stator vanes appears
to cause substantial loss and results in degradation of the performance. Some
full scale test data (with diffuser) obtained by Rocketdyne is included in figure
7.15 and shows quite satisfactory agreement with the 7.58 cm model tests. The
results of the theoretical performance given by equation 4.6 are also shown and
the comparison between the lossless theory and the experimental data is similar
to that of figure 7.13.

The cavitation performance of Impeller IV in water is shown in figure 7.16
along with some data from full scale tests. Note that the head tends to be
somewhat erratic at the lower cavitation numbers. Such behavior is typical of
most axial flow inducer data and is probably due to hydraulic losses caused by
unsteadiness in the flow (see section 8.7).
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Figure 7.16: Cavitation performance of Impeller IV at 9000 rpm and various
flow coefficients. Also shown are full scale test data from Rocketdyne (from Ng
and Brennen 1978).

Figure 7.17: The effect of solidity on the cavitation performance of a 9◦ helical
inducer (from Acosta 1958).

7.5 EFFECTS OF INDUCER GEOMETRY

In this section we comment on several geometric factors for which the data
suggests optimum values. Clearly, the solidity, s, needs to be as small as possible
and yet large enough to achieve the desired discharge flow angle. Data on
the effect of the solidity on the performance of a 3-bladed, 9◦ helical inducer
has been obtained by Acosta (1958) and on a 4-bladed, 8 1

2

◦ helical inducer by
Henderson and Tucker (1962). This data is shown in figures 7.17 and 7.18. The
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Figure 7.18: The effect of solidity on the cavitation performance of a cavitating
inducer (Janigro and Ferrini 1973 from Henderson and Tucker 1962).

effect on the non-cavitating performance (extreme right of the figures) seems
greater for Acosta’s inducer than for that of Henderson and Tucker. The latter
data suggests that, as expected, the non-cavitating performance is little affected
unless the solidity is less than unity. Both sets of data suggest that the cavitating
performance is affected more than the non-cavitating performance by changes
in the solidity when the latter is less than about unity. Consequently, this data
suggests an optimum value of s of about 1.5.

The same two studies also investigated the effect of the tip clearance and the
data of Henderson and Tucker (1962) is reproduced in figure 7.19. As was the
case with the solidity, the non-cavitating performance is less sensitive to changes
in the tip clearance than is the cavitation performance. Note from figure 7.19
that the non-cavitating performance is relatively insensitive to the clearance
unless the latter is increased above 2% of the chord when the performance begins
to decline more rapidly. The cavitating performance shows a similar dependence
though the fractional changes in the performance are larger. Note that the
performance near the knee of the curve indicates an optimum clearance of about
1% of the chord which is in general qualitative agreement with the effect of tip
clearance on cavitation inception discussed earlier (see figure 5.20).

Moore and Meng (1970a,b) have made a study of the effect of the leading
edge geometry on inducer performance and their results are depicted graphically
in figures 7.20 and 7.21. Note that the leading edge geometry has a significant
effect on the non-cavitating performance and on the breakdown cavitation num-
ber. Simply stated, the sharper the leading edge the better the hydraulic perfor-
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Figure 7.19: The effect of tip clearance on the cavitation performance of a
cavitating inducer (from Henderson and Tucker 1962 as given by Janigro and
Ferrini 1973).

Figure 7.20: Non-cavitating performance of three 9.4◦ helical inducers with
different leading edges as shown. Tests performed with liquid hydrogen (from
Moore and Meng 1970b).
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Figure 7.21: The breakdown cavitation numbers, σb (defined in this case by a
30% head drop) as a function of temperature for three shapes of leading edge
(see figure 7.20) on 9.4◦ helical inducers operating in liquid hydrogen (from
Moore and Meng 1970a,b).

mance under both cavitating and non-cavitating conditions. There is, however,
a trade-off to be made here for very thin leading edges may flutter. This phe-
nomenon is discussed in section 8.12. Incidentally, figure 7.21 also demonstrates
the thermal effect on cavitation performance which is discussed in section 7.7.

7.6 ANALYSES OF CAVITATION IN

PUMPS

In this and the sections which follow we shall try to give a brief overview of the
various kinds of models which have been developed for the analysis of developed
cavitation in a pump. Clearly different types of cavitation require different an-
alytical models. We begin in this section with the various attempts which have
been made to model traveling bubble cavitation in a pump and to extract from
such a model information regarding the damage potential, noise or performance
decrement caused by that cavitation. In a later section we shall outline the
methods developed for attached blade cavitation. As for the other types of cav-
itation which are typically associated with the secondary flows (e.g., tip vortex
cavitation, backflow cavitation) there is little that can be added to what has
already been described in the last chapter. Much remains to be understood con-
cerning secondary flow cavitation, perhaps because some of the more important
effects involve highly unsteady and transient cavitation.

To return to a general discussion of traveling bubble cavitation, it is clear
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that, given the pressure and velocity distribution along a particular streamline
in a reference frame fixed in the impeller, one can input that information into
the Rayleigh-Plesset equation 6.1 as discussed in section 6.2. The equation
can then be integrated to find the size of the bubble at each point along its
trajectory (see examples in section 6.2). Such programs are equally applicable
to two-phase flows or to two-component gas/liquid flows.

Since the first applications of the Rayleigh-Plesset equation to traveling bub-
ble cavitation by Plesset (1949) and Parkin (1952) there have been many such
investigations, most of which are reviewed by Holl (1969). A notable example
is the work of Johnson and Hsieh (1966) who included the motion of the bubble
relative to the liquid and demonstrated the possibility of some screening effects
because of the motion of the bubbles across streamlines due to centripetal forces.
While most of the literature discusses single bubble solutions of this type for
flows around simple headforms the same programs can readily be used for the
flow around a pump blade provided the pressure distributions on streamlines
are known either from an analytic or numerical solution or from experimen-
tal measurements of the flow in the absence of cavitation. Such investigations
would allow one to examine both the location and intensity of bubble collapse
in order to learn more about the potential for cavitation damage.

These methods, however, have some serious limitations. First, the Rayleigh-
Plesset equation is only valid for spherical bubbles and collapsing bubbles lose
their spherical symmetry as discussed in section 6.4. Consequently any investi-
gation of damage requires considerations beyond those of the Rayleigh-Plesset
equation. Secondly, the analysis described above assumes that the concentra-
tion of bubbles is sufficiently small so that bubbles do not interact and are not
sufficiently numerous to change the flow field from that for non-cavitating flow.
This means that they are of little value in predicting the effect of cavitation on
pump performance since such an effect implies interactions between the bubbles
and the flow field.

It follows that to model the performance loss due to traveling bubble cavi-
tation one must use a two-phase or two-component flow model which implicitly
includes interaction between the bubbles and the liquid flow field. One of the
first models of this kind was investigated by Cooper (1967) and there have been
a number of similar investigations for two-component flows in pumps, for ex-
ample, that by Rohatgi (1978). While these investigations are useful, they are
subject to serious limitations. In particular, they assume that the two-phase
mixture is in thermodynamic equilibrium. Such is certainly not the case in cav-
itation flows where an expression like the Rayleigh-Plesset equation is needed
to describe the dynamics of disequilibrium. Nevertheless the models of Cooper
and others have value as the first coherent attempts to evaluate the effects of
traveling bubble cavitation on pump performance.

Rather than the assumption of thermodynamic equilibrium, two-phase bub-
ble flow models need to be developed in which the bubble dynamics are included
through appropriate use of the Rayleigh-Plesset equation. In recent years a
number of investigators have employed such models to investigate the dynamics
and acoustics of clouds of cavitation bubbles in which the bubbles and the flow
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Figure 7.22: The bubble diameters observed in the blade passages of centrifugal
and axial flow pumps as a function of Weber number (adapted from Murakami
and Minemura 1978).

interact (see, for example, Chahine 1982, d’Agostino and Brennen 1983, 1989,
d’Agostino et al. 1988, Biesheuval and van Wijngaarden 1984, Omta 1987).
Among other things these investigations demonstrate that a cloud of bubbles
has a set of natural frequencies of its own, separate from (but related to) the
bubble natural frequency and that the bubble and flow interaction effects be-
come important when the order of magnitude of the parameter αA2/R2 exceeds
unity where α is the void fraction and A and R are the dimensions of the cloud
and bubbles respectively. These more appropriate models for travelling bubble
cavitation have not, as yet, been used to investigate cavitation effects in pumps.

Several other concepts should be mentioned before we leave the subject of
bubbly cavitation in pumps. One such concept which has not received the
attention it deserves was put forward by Jakobsen (1964). He attempted to
merge the free streamline models (which are discussed later in section 7.8) with
his observations that attached cavities on the suction surfaces of impeller blades
tend to break up into bubbly mixtures near the closure or reattachment point
of the attached cavity. Jakobsen suggested that condensation shocks occur in
this bubbly mixture and constitute a mechanism for head breakdown.

There are also a number of results and ideas that emerge from studies of the
pumping of bubbly gas/liquid mixtures. One of the most important of these is
found in the measurements of bubble size made by Murakami and Minemura
(1977, 1978). It transpires that, in most practical pumping situations, the
turbulence and shear at inlet tend to break up all the gas bubbles larger than a
certain size during entry to the blade passages. The ratio of the force tending
to cause fission to the surface tension, S, which tends to resist fission will be a
Weber number and Murakami and Minemura (1977, 1978) suggest that the ratio
of the diameter of the largest bubbles to survive the inlet shear, 2RM , to the
blade spacing, h1, will be a function of a Weber number, We = ρΩ2R2

T1h1

/S.
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Figure 7.22 presents some data on 2RM/h1 taken by Murakami and Minemura
for both centrifugal and axial flow pumps.

The size of the bubbles in the blade passages is important because it is the
migration and coalesence of these bubbles that appears to cause degradation in
the performance. Since the velocity of the relative motion between the bubbles
and the liquid is proportional to the bubble size raised to some power which
depends on the Reynolds number regime, it follows that the larger the bubbles
the more likely it is that large voids will form within the blade passage due to
migration of the bubbles toward regions of lower pressure (Furuya 1985, Furuya
and Maekawa 1985). As Patel and Runstadler (1978) observed during experi-
ments on centrifugal pumps and rotating passages, regions of low pressure occur
not only on the suction sides of the blades but also under the shroud of a cen-
trifugal pump. These large voids can cause substantial changes in the deviation
angle of the flow leaving the impeller and hence alter the pump performance in
a significant way. This mechanism of head degradation is probably significant
not only for gas/liquid flows but also for cavitating flows. In gas/liquid flows
the higher the velocity the greater the degree of bubble fission at inlet and the
smaller the bubbles. But the force acting on the bubbles is also greater for
the higher velocity flows and so the net result is not obvious. One can only
conclude that both processes, inlet fission and blade passage migration, may be
important and deserve further study along the lines begun by Murakami and
Minemura.

At the beginning of this section we discussed the application of the Rayleigh-
Plesset equation to study the behavior of individual cavitating bubbles. One
area in which such an analysis has been useful is in evaluating the differences in
the cavitation occurring in different liquids and in the same liquid at different
temperatures. These issues will be addressed in the next section. In the subse-
quent section we turn our attention to the free streamline methods which have
been developed to model the flows which occur when large attached cavities or
gas-filled voids occur on the blades of a turbomachine.

7.7 THERMAL EFFECT ON PUMP

PERFORMANCE

Changes in the temperature of the liquid being pumped will clearly affect the
vapor pressure, pV , and therefore the NPSH or cavitation number. This effect
has, of course, already been incorporated in the analysis or presentation of the
performance by using the difference between the inlet pressure and the vapor
pressure rather than the absolute value of the inlet pressure as a flow parame-
ter. But there is another effect of the liquid temperature which is not so obvious
and requires some discussion and analysis. It is illustrated by figure 7.23 which
includes cavitation performance data for a centrifugal pump (Arndt 1981 from
Chivers 1969) operating with water at different inlet temperatures. Note that
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the cavitation breakdown decreases substantially with increasing temperature.
Somewhat counter-intuitively the performance actually improves as the temper-
ature gets greater! The variation of the breakdown cavitation number, σb, with
the inlet temperature in Chivers’ (1969) experiments is shown in figure 7.24
which includes data for two different speeds and shows a consistent decrease in
σb with increasing temperature. The data for the two speeds deviate somewhat
at the lowest temperatures. To illustrate that the thermal effect occurs in other
liquids and in other kinds of pumps, we include in figure 7.25 data reported by
Gross (1973) from tests of the Saturn J-2 liquid oxygen inducer pump. This
shows the same pattern manifest in figure 7.24. Other data of this kind has
been obtained by Stepanoff (1961), Spraker (1965) and Salemann (1959) for a
variety of other liquids.

The explanation for this effect is most readily given by making reference
to traveling bubble cavitation though it can be extended to other forms of
cavitation. However, for simplicity, consider a single bubble (or nucleus) which
begins to grow when it enters a region of low pressure. Liquid on the surface
of the bubble will vaporize to provide the increase in volume of vapor filling
the bubble. Consider, now, what happens at two different temperatures, one
“high” and one “low.” At “low” temperatures the density of the saturated vapor
is low and, therefore, the mass rate of evaporation of liquid needed is small.
Consequently, the rate at which heat is needed as latent heat to effect this
vaporization is low. Since the heat will be conducted from the bulk of the liquid
and since the rate of heat transfer is small, this means that the amount by

Figure 7.23: Typical cavitation performance characteristics for a centrifugal
pump pumping water at various temperatures as indicated (Arndt 1981 from
Chivers 1969).
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Figure 7.24: Thermodynamic effect on cavitation breakdown for a commercial
centrifugal pump (data from Chivers 1969).

Figure 7.25: Effect of temperature on the cavitation performance of the J-2
liquid oxygen inducer pump (adapted from Gross 1973).
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which the temperature of the interface falls below the bulk liquid temperature
is also small. Consequently the vapor pressure in the cavity only falls slightly
below the value of the vapor pressure at the bulk liquid temperature. Therefore,
the driving force behind the bubble growth, namely the difference between the
internal pressure (vapor pressure) and the pressure far from the bubble, is not
much influenced by thermal effects.

Now, consider the same phenomenon occuring at the “high” temperature.
Since the vapor density can be many orders of magnitude larger than at the
“low” temperature, the mass rate of evaporation for the same volume growth
rate is much larger. Thus the heat which must be conducted to the interface
is much larger which means that a substantial thermal boundary layer builds
up in the liquid at the interface. This causes the temperature in the bubble to
fall well below that of the bulk liquid and this, in turn, means that the vapor
pressure within the bubble is much lower than otherwise might be expected.
Consequently, the driving force behind the bubble growth is reduced. This
reduction in the rate of bubble growth due to thermal effects is the origin of
the thermal effect on the cavitation performance in pumps. Since the cavitation
head loss is primarily due to disruption of the flow by volumes of vapor growing
and collapsing within the pump, any reduction in the rate of bubble growth will
lessen the disruption and result in improved performance.

This thermal effect can be extended to attached or blade cavities with only
minor changes in the details. At the downstream end of a blade cavity, vapor
is entrained by the flow at a certain volume rate which will depend on the flow
velocity and other geometric parameters. At higher temperatures this implies a
larger rate of entrainment of mass of vapor due to the larger vapor density. Since
vaporization to balance this entrainment is occurring over the surface of the
cavity, this implies a larger temperature difference at the higher temperature.
And this implies a lower vapor pressure in the cavity than might otherwise be
expected and hence a larger “effective” cavitation number. Consequently the
cavitation performance is improved at the higher temperature.

Both empirical and theoretical arguments have been put forward in attempts
to quantify these thermal effects. We shall begin with the theoretical arguments
put forward by Ruggeri and Moore (1969) and by Brennen (1973). These ex-
plicitly apply to bubble cavitation and proceed as follows.

At the beginning of bubble growth, the rate of growth rapidly approaches the
value given by equation 6.8 and the important (dR/dt)2 term in the Rayleigh-
Plesset equation 6.1 is roughly constant. On the other hand, the thermal term,
Θ, which is initially zero, will grow like t

1
2 according to equation 6.6. Conse-

quently there will be a critical time, tC , at which the thermal term, Θ, will
approach the magnitude of (pB(T∞) − p)/ρL and begin to reduce the rate of
growth. Using the expression 6.6, this critical time is given by

tC ≈ (pB − p)
/
ρLΣ2 (7.1)

For t � tC , the dominant terms in equation 6.1 are (pB − p)/ρL and (dR/dt)2

and the bubble growth rate is as given by equation 6.8. For t 
 tC , the dominant
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Figure 7.26: Thermodynamic parameter, Σ, as a function of temperature for
various saturated fluids.

terms in equation 6.1 become (pB − p)/ρL and Θ so that, using equations 6.4
and 6.5, the bubble growth rate becomes

dR

dt
=
cPL (T∞ − TB(t))

L
(αL

t

)1
2

(7.2)

which is typical of the expressions for the bubble growth rate in boiling. Now
consider a nucleus or bubble passing through the pump which it will do in a time
of order 1/Ωφ. It follows that if Ωφ 
 1/tC then the bubble growth will not be
inhibited by thermal effects and explosive cavitating bubble growth will occur
with the potential of causing substantial disruption of the flow and degradation
of pump performance. On the other hand, if Ωφ � 1/tC, most of the bubble
growth will be thermally inhibited and the cavitation performance will be much
improved.

To calculate tC we need values of Σ which by its definition (equation 6.7)
is a function only of the liquid temperature. Typical values of Σ for a variety
of liquids are presented in figure 7.26 as a function of temperature (the ratio of
temperature to critical temperature is used in order to show all the fluids on the
same graph). Note that the large changes in the value of Σ are caused primarily
by the change in the vapor density with temperature.

As an example, consider a cavitating flow of water in which the tension,
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(pB − p), is of the order of 104kg/m s2 or 0.1bar. Then, since water at 20◦C
has a value of Σ of about 1m/s

3
2 , the value of tC is of the order of 10s. Thus, in

virtually all pumps, Ωφ will be much greater than 1/tC and no thermal effect will
occur. On the other hand at 100◦C, the value of Σ for water is about 103m/s

3
2

and it follows that tC = 10µs. Thus in virtually all cases Ωφ � 1/tC and a
strong thermal effect can be expected. In fact, in a given application there will
exist a “critical” temperature above which one should expect a thermal effect on
cavitation. For a water pump rotating at 3000rpm this “critical” temperature
is about 70◦C, a value which is consistent with the experimental measurements
of pump performance.

The principal difficulty with the above approach is in finding some way
to evaluate the tension, pB − p, for use in equation 7.1 in order to calculate
tC . Alternatively, the experimental data could be examined for guidance in
establishing a criterion based on the above model. To do so equation 7.1 is
rewritten in terms of dimensionless groups as follows:

ΩφtC =
1
2

{
pB − p

1
2
ρLΩ2R2

T

}{
R2

T Ω3φ

Σ2

}
(7.3)

where the expression in the first curly brackets on the right hand side could be
further approximated by (−Cpmin−σ) where Cpmin is a characteristic minimum
pressure coefficient. It follows that the borderline between a flow which is broken
down due to cavitation in the absence of thermal effects and a flow which is not
broken down due to a beneficial thermal effect occurs when the ratio of times,
ΩφtC , takes some critical value which we will denote by β. Equation 7.3 with
ΩφtC set equal to β would then define a critical breakdown cavitation number,
σx (σa or σb) as follows:

σx = −Cpmin − 2β
Σ2

R2
T Ω3φ

(7.4)

The value of σx in the absence of thermal effects should then be (σx)0 = −Cpmin

and equation 7.4 can be presented in the form

σx

(σx)0
= 1 − 2β

Σ2

R2
TΩ3φ(σx)0

(7.5)

It would then follow that the ratio of critical cavitation numbers, σx/(σx)0,
should be a simple function of the modified thermal effect parameter, Σ∗, defined
by

Σ∗ = Σ
/{

R2
TΩ3φ(σx)0

} 1
2 (7.6)

To test this hypothesis, data from a range of different experiments is presented
in figure 7.27. It can be seen that the data correspond very roughly to some
kind of common curve for all these different pumps and liquids. The solid line
corresponds to equation 7.5 with an arbitrarily chosen value of β = 5 × 10−6.
Consequently this attempt to model the thermal effect has succeeded to a limited
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Figure 7.27: The ratio of the critical cavitation number σx (σa or σb) to (σx)0
(the value of σx in the absence of any thermal effect) as a function of the thermal
effect parameter, Σ∗. Data is shown for a variety of pumps and liquids.

degree. It should however be noted that the horizontal scatter in the data in
figure 7.27 is more than a decade, though such scatter may be inevitable given
the range of impeller geometries. We have also omitted one set of data, namely
that of Chivers (1969), since it lies well to the left of the data included in the
figure.

A number of purely empirical approaches to the same problem have been
suggested in the past. All these empirical methods seek to predict the change in
NPSH , say ∆NPSH , due to the thermal effect. This quantity ∆NPSH is the
increment by which the cavitation performance characteristic would be shifted
to the left as a result of the thermal effect. The method suggested by Stahl and
Stepanoff (1956) and Stepanoff (1961, 1964) is widely used; it is based on the
premise that the cavitation characteristic of a particular pump operating at a
particular speed with two different liquids (or with two different temperatures
in the same liquid) would be horizontally shifted by

∆NPSH = HT1 −HT2 (7.7)

where the quantities HT1 and HT2 only depend on the thermodynamic prop-
erties of the two individual fluids considered separately. This generic property
is denoted by HT . For convenience, Stepanoff also uses the symbol B′ to de-
note the group ρ2

LcPLT∞/ρ2
V L2 which also occurs in Σ and almost all analyses

of the thermal effect. Then, by examining data from a number of single-stage
3500 rpm pumps, Stahl and Stepanoff arrived at an empirical relation between
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Figure 7.28: The parameter, B′ (in m−1), for several liquids and HT (in m) for
centrifugal pumps operating at design flow rate and at a 3% head drop (adapted
from Knapp et al. 1970 and Stepanoff 1964).

HT and the thermodynamic properties of the following form:

HT (in m) = 28.9ρLg/pV (B′)
4
3 (7.8)

where pV /gρL is the vapor pressure head (in m) and B′ is in m−1. This relation
is presented graphically in figure 7.28. Clearly equation 7.8 (or figure 7.28) can
be used to find HT for the desired liquid and operating temperature and for the
reference liquid at the reference operating temperature. Then the cavitation
performance under the desired conditions can be obtained by application of
the shift given by equation 7.7 to the known cavitation performance under the
reference conditions.

7.8 FREE STREAMLINE METHODS

The diversity of types of cavitation in a pump and the complexity of the two-
phase flow which it generates mean that reliable analytical methods for pre-
dicting the cavitating performance characteristics are virtually non-existent.
However if the cavity flow can be approximated by single, fully developed or
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attached cavities on each blade, then this allows recourse to the methods of
free streamline theory for which the reader may wish to consult the reviews by
Tulin (1964) and Wu (1972) or the books by Birkhoff and Zarantonello (1957)
and Brennen (1994). The analytical approaches can be subdivided into linear
theories which are applicable to slender, streamlined flows (Tulin 1964) and
non-linear theories which are more accurate but can be mathematically much
more complex (Wu 1972). Both approaches to free streamline flows have been
used in a wide range of cavity flow problems and it is necessary to restrict the
present discussion to some of the solutions of relevance to attached cavitation
in pumps.

It is instructive to begin by quoting some of the results obtained for single
hydrofoils for which the review by Acosta (1973) provides an excellent back-
ground. In particular we will focus on the results of approximate linear theories
for a partially cavitating or supercavitating flat plate hydrofoil. The partially
cavitating solution (Acosta 1955) yields a lift coefficient

CL = πα
[
1 + (1 − �)−

1
2

]
(7.9)

where � is the ratio of the cavity length to the chord of the foil and is related
to the cavitation number, σ, by

σ

2α
=

2 − �+ 2(1− �)
1
2

�
1
2 (1 − �) 1

2
(7.10)

Thus, for a given cavity length, �, and a given angle of incidence, α, the cavi-
tation number follows from equation 7.10 and the lift coefficient from equation
7.9. Note that as � → 0 the value of CL tends to the theoretical value for a
non-cavitating flat plate, namely 2πα. The corresponding solution for a su-
percavitating flat plate was given by Tulin (1953) in his pioneering paper on
linearized cavity flows. In this case

CL = πα�
[
�

1
2 (�− 1)−

1
2 − 1

]
(7.11)

α

(
2
σ

+ 1
)

= (�− 1)
1
2 (7.12)

where now, of course, � > 1.
The lift coefficient and the cavity length from equations 7.9 to 7.12 are plot-

ted against cavitation number in figure 7.29 for a typical angle of incidence of
α = 4◦. Note that as σ → ∞ the fully wetted lift coefficient, namely 2πα, is
recovered from the partial cavitation solution and that as σ → 0 the lift coef-
ficient tends to πα/2. Notice also that both the solutions become pathological
when the length of the cavity approaches the chord length (�→ 1). However, if
some small portion of each curve close to � = 1 were eliminated, then the char-
acteristic decline in the performance of the hydrofoil as the cavitation number is
decreased is readily observed. It also compares well with the experimental ob-
servations as illustrated by the favorable comparison with the data of Wade and
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Figure 7.29: Typical results from the linearized theories for a cavitating flat
plate at an angle of incidence of 4◦. The lift coefficients, CL (solid lines), and
the ratios of cavity length to chord, � (dashed lines), are from the supercavitation
theory of Tulin (1953) and the partial cavitation theory of Acosta (1955). Also
shown are the experimental results of Wade and Acosta (1966) for � (	) and
for CL (◦ and •) where the open symbols represent points of stable operation
and the solid symbols denote points of unstable cavity operation.

Acosta (1966) included in figure 7.29. Consequently, as the cavitation number
is decreased, a single foil exhibits only a small change in the performance or lift
coefficient until some critical value of σ (about 0.7 in the case of figure 7.29) is
reached. Below this critical value the performance begins to “breakdown” quite
rapidly. Thus, even a single foil mirrors the typical cavitation performance ex-
perienced in a pump. On a more detailed level, note that the small increase
in the supercavitating lift coefficient which occurs as the cavitation number is
decreased toward the critical value of σ is, in fact, observed experimentally with
many single hydrofoils (for example, Wade and Acosta 1966) as well as in some
pumps.

The peculiar behaviour of the analytical solutions close to the critical cav-
itation number is related to an instability which is observed when the cavity
length is of the same order as the chord of the foil. However, we delay further
discussion of this until the appropriate point in the next chapter (see section
8.10). Some additional data on the variation of the lift coefficient with angle of
incidence is included in that later section.

Before leaving the subject of the single cavitating foil we should note that
more exact, non-linear solutions for a flat plate or an arbitrarily shaped pro-
file have been generated by Wu (1956, 1962), Mimura (1958) and others. As
an example of these non-linear results, the lift and drag coefficients at various
cavitation numbers and angles of incidence are presented in figures 7.30 and
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Figure 7.30: Lift coefficients for a flat plate from the non-linear theory of Wu
(1962). The experimental data (Parkin 1958) is for angles of incidence as follows:
8◦ (�), 10◦ (�), 15◦ (	), 20◦ (⊕), 25◦ (⊗), and 30◦ (�). Also shown is some
data of Silberman (1959) in a free jet tunnel: 20◦ (+) and 25◦ (×).

Figure 7.31: Drag coefficients corresponding to the lift coefficients of figure 7.30.
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7.31 where they are compared with the experimental data of Parkin (1958) and
Silberman (1959). Data both for supercavitating and partially cavitating con-
ditions are shown in these figures, the latter occurring at the higher cavitation
numbers and lower incidence angles (the dashed parts of the curves represent a
somewhat arbitrary smoothing through the critical region in which the cavity
lengths are close to the chord length). This comparison demonstrates that the
non-linear theory yields values which are in good agreement with the exper-
imental measurements. In the case of circular-arc hydrofoils, Wu and Wang
(1964) have shown similar agreement with the data of Parkin (1958) for this
type of profile. For a recent treatment of supercavitating single foils the reader
is referred to the work of Furuya and Acosta (1973).

7.9 SUPERCAVITATING CASCADES

We now turn to the free streamline analyses which are most pertinent to tur-
bomachines, namely solutions and data for cavitating cascades. Both partially
cavitating and supercavitating cascades (see figure 5.10) have been analysed us-
ing free streamline methods. Clearly cavities initiated at the leading edge are
more likely to extend beyond the trailing edge when the solidity and the stagger
angle are small. Such cascade geometries are more characteristic of propellers
and, therefore, the supercavitating cascade results are more often applied in
that context. On the other hand, most cavitating pumps have large solidities
(> 1) and large stagger angles. Consequently, partial cavitation is the more
characteristic condition in pumps, particularly since the pressure rise through
the pump is likely to collapse the cavity before it emerges from the blade pas-
sage. In this section we will discuss the supercavitating analyses and data; the
next section will deal with the partially cavitating results.

Free streamline methods were first applied to the problems of a cavitating
cascade by Betz and Petersohn (1931) who used a linearized method to solve
the problem of infinitely long, open cavities produced by a cascade of flat plate
hydrofoils. Extensions to this linear, supercavitating solution were generated
by Sutherland and Cohen (1958) who solved the problem of finite supercavities
behind a flat plate cascade and by Acosta (1960) who generalized this to a
cascade of circular arc hydrofoils. Other early contributions to linear cascade
theory for supercavitating foils include the models of Duller (1966) and Hsu
(1972) and the inclusion of the effect of rounded leading edges by Furuya (1974).
Non-linear solutions were first obtained by Woods and Buxton (1966) for the
case of a cascade of flat plates. Later Furuya (1975) expanded this work to
include foils of arbitrary geometry.

A substantial body of data on the performance of cavitating cascades has
been accumulated through the efforts of Numachi (1961, 1964), Wade and
Acosta (1967) and others. This allows comparison with the analytical models, in
particular the supercavitating theories. Figure 7.32 provides such a comparison
between measured lift and drag coefficients (defined as normal and parallel to
the direction of the incident stream) for a particular cascade and the theoretical
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Figure 7.32: Lift and drag coefficients as functions of the cavitation number for
cascades of solidity, 0.625, and blade angle, βb = 45◦ +α, operating at angles of
incidence, α, of 8◦ (	) and 9◦ (�). The points are from the experiments of Wade
and Acosta (1967) and the analytical results for a supercavitating cascade are
from the linear theory of Duller (1966) (dashed lines) and the non-linear theory
of Furuya (1975) (solid lines).

Figure 7.33: Lift and drag coefficients as functions of the solidity for cascades
of blade angle, βb = 45◦ + α, operating at the indicated angles of incidence, α,
and at a cavitation number, σ = 0.18. The points are from the experiments of
Wade and Acosta (1967) and the lines are from the non-linear theory of Furuya
(1975). Reproduced from Furuya (1975).
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results from the supercavitating theories of Furuya (1975) and Duller (1966).
Note that the measured lift coefficients exhibit a clear decline in cascade perfor-
mance as the cavitation number is reduced and the supercavities grow. However,
it is important to observe that this degradation does not occur until the cavi-
tation is quite extensive. The cavitation inception numbers for the experiments
were σi = 2.35 (for 8◦) and σi = 1.77 (for 9◦). However the cavitation number
must be lowered to about 0.5 before the performance is adversely affected. Con-
sequently there is a significant range of intermediate cavitation numbers within
which partial cavitation is occurring and within which the performance is little
changed.

For the cascades and incidence angles used in the example of figure 7.32,
Furuya (1975) shows that the linear and non-linear supercavitation theories yield
similar results which are close to those of the experiments. This is illustrated
in figure 7.32. However, Furuya also demonstrates that there are circumstances
in which the linear theories can be substantially in error and for which the
non-linear results are clearly needed. The effect of the solidity on the results is
also important because it is a major design factor in determining the number of
blades in a pump or propeller. Figure 7.33 illustrates the effect of solidity when
large supercavities are present (σ = 0.18). Note that the solidity has remarkably
little effect at the smaller angles of incidence.

7.10 PARTIALLY CAVITATING
CASCADES

In the context of pumps, the solutions by Acosta and Hollander (1959) and
Stripling and Acosta (1962) of partial cavitation in a semi-infinite cascade of
infinitely thin blades and the solution by Wade (1967) of a finite cascade of
partially cavitating foils provide a particularly valuable means of analyzing the
performance of two-dimensional cascades with blade cavities. More recently
the three dimensional aspects of these solutions have been explored by Furuya
(1974). As a complement to purely analytical methods, more heuristic ap-
proaches are possible in which the conventional cascade analyses (see sections
3.2, 3.5) are supplemented by lift and drag data for blades operating under
cavitating conditions.

Partly for the purposes of example and partly because the results are useful,
we shall recount here the results of the free-streamline solution of Brennen and
Acosta (1973). This is a slightly modified version of the Acosta and Hollander
solution for partial cavitation in a cascade of infinitely thin, flat blades. The
modification was to add finite thickness to the blades. As we shall see, this can
be important in terms of the relevance of the theory.

A sketch of the cascade geometry is shown in figure 7.34. A single parameter
is introduced to the solution in order to yield finite blade thickness. This pa-
rameter implies a ratio, d, of the blade thickness far downstream to the normal
spacing between the blades. It also implies a radius of curvature of the parabolic
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Figure 7.34: Schematic of partially cavitating cascade of flat blades of thickness
nd (Brennen and Acosta 1973).

leading edge of the blade, κ, given by

1
κ
≈ d2β3

b

πh(1 + σc)
(7.13)

where σc is the choked cavitation number (see below). Equation 7.13 and the
fact that the ultimate thickness is not reached until about half a blade spacing
downstream, both imply very sharp leading edges.

One of the common features of all of these free streamline solutions is that
there exists a certain minimum cavitation number at which the cavity becomes
infinitely long and below which there are no solutions. This minimum cavitation
number is called the choked cavitation number, σc. Were such a flow to occur
in practice, it would permit large deviation angles at discharge and a major
degradation of performance. Consequently the choked cavitation number, σc, is
often considered an approximation to the breakdown cavitation number, σb, for
the pump flow which the cascade solution represents. The Brennen and Acosta
solution yields a choked cavitation number given by

σc =
[
1 + 2 sin

α

2
sec

βb

2
sin

(βb − α)
2

+ 2d sin2 βb

2

]2

− 1 (7.14)

which, since the solution is only valid for small incidence angles, α, and since
βb is normally small, yields

σc ≈ α(βb − α) + β2
bd (7.15)

Furthermore, at a general cavitation number, σ, the maximum thickness, b, of
the cavity is given by

b

n
= 2π

[
d− (1 + σ)

1
2 + sin(βb − α)/ sinβb

]
(7.16)
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or
b

n
≈ 2π

[
d− α

βb
− σ

2

]
(7.17)

As a rough example, consider a 10◦ helical inducer (βb = 10◦) with a frac-
tional blade thickness of d = 0.15 operating at a flow coefficient, φ = 0.08,
so that the incidence angle, α = 4◦ (see figure 7.38). Then, according to the
relation 7.15, the choked cavitation number is σc = 0.0119 which is close to the
observed breakdown cavitation number (see figure 7.40). It is important to note
the role played by the blade thickness in this typical calculation because with
d = 0 the result is σc = 0.0073. Note also that with infinitely thin blades, the
expression 7.15 predicts σc = 0 at zero incidence. Thus, the blade thickness is
important in estimating the choked cavitation number in any pump.

Most pumps or inducer designs incorporate significant variations in α, βb

and d over the inlet plane and hence the above analysis has to be performed as
a function of the inlet radial position as indicated in figure 7.35. Typical input
data for such calculations are shown in figures 7.36, 7.38 and 7.39 for the Saturn
J2 and F1 liquid oxygen turbopumps, for the 9◦ helical inducer, Impeller III,
and for the SSME low pressure liquid oxygen impeller, Impeller IV. To proceed
with an evaluation of the flow, the cascade at each radial annulus must then be
analyzed in terms of the cavitation number, σ(r), pertaining to that particular
radius, namely

σ(r) = (p1 − pV )
/1

2
ρLΩ2r2 (7.18)

Specific values of this cavitation number at which choking occurs in each cascade
can then be obtained from equations 7.14 or 7.15; we denote these by σc(r).
It follows that the overall pump cavitation number at which the flow in each
annulus will be choked is given by σcT (r) where

σcT (r) = σc(r)r2
/
R2

T1 (7.19)

Typical data for σcT (r) for the Saturn J2 and F1 oxidizer pumps are plotted
in figure 7.37; additional examples for Impellers III and IV are shown in figure

Figure 7.35: The subdivision of the flow through an axial inducer into radial
annuli for cascade analysis.
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Figure 7.36: Radial variations of the blade angle, βb, blade thickness to nor-
mal spacing ratio, d, and incidence angle α (for φ = 0.097) for the oxidizer
turbopumps in the Saturn J1 and F1 engines (from Brennen and Acosta 1973).

Figure 7.37: The tip cavitation numbers at which the flow at each radial location
becomes choked. Data is shown for the Saturn J2 and F1 oxidizer turbopumps
(see figure 7.36); experimentally observed breakdown cavitation numbers in wa-
ter and propellant are also shown (from Brennen and Acosta 1973).
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Figure 7.38: Radial variations of the blade angle, βb, blade thickness to normal
spacing ratio, d, and incidence angle, α, for the 9◦ helical inducer, Impeller III
(from Brennen and Acosta 1976).

Figure 7.39: Radial variations of the blade angle, βb, blade thickness to normal
spacing ratio, d, and incidence angle, α, at inlet to the SSME low pressure liquid
oxygen pump, Impeller IV (from Brennen and Acosta 1976).
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Table 7.2: Theoretical predictions of breakdown cavitation numbers compared
with those observed during water tests with various inducer pumps.

Inducer Theory σc Observed σb

Saturn J2 Oxidizer Inducer 0.019 0.020
Saturn F1 Oxidizer Inducer 0.012 0.013
SSME Low Pressure LOX Pump 0.011 0.012
9◦ Helical Impeller III 0.009 0.012

7.40. Note that, in theory, the flow at one particular radial location will become
choked before that at any other radius. The particular location will depend
on the radial distributions of blade angle and blade thickness and may occur
near the hub (as in the cases shown in figure 7.37) or near the tip. However,
one might heuristically argue that once the flow at any radius becomes choked,
the flow through the pump will reach breakdown. On this basis, the data of
figure 7.37 would predict breakdown in the J2-O turbopump at σb ≈ 0.019
and at 0.0125 for the F1-O turbopump. In table 7.2 and figure 7.37 these
predictions are compared with the observed values from tests in which water
is used. The agreement appears quite satisfactory. Some data obtained from
tests with propellant rather than water is also shown in figure 7.37 and exhibits
less satisfactory agreement; this is probably the result of thermal effects in the
propellant which are not present in the water tests. Moreover, as expected, the
predicted results do change with flow coefficient (since this alters the angle of
incidence) as illustrated in figure 7.40.

Perhaps the most exhaustive experimental investigation of breakdown cav-
itation numbers for inducers is the series of experiments reported by Stripling
(1962) in which inducers with blade angles at the tip, βbT1, varying from 5.6◦

to 18◦, various leading edge geometries, blade numbers of 3 and 4 and two hub-
to-tip ratios were investigated. Some of Stripling’s experimental data is pre-
sented in figure 7.41 where the σb values are plotted against the flow coefficient,
φ1. In his paper Stripling argues that the data correlate with the parameter
φ1 sinβbT1/(1 + cos βbT1) but, in fact, the experimental data are much better
correlated with φ1 alone as demonstrated in figure 7.41. There is no satisfactory
explanation for the fact that σb correlates better with φ1.

Stripling correlates his data with the theoretical values of the choked cav-
itation number which one would obtain from the above theory in the case of
infinitely thin blades. (In this limit the expression for σc is more easily obtained
by simultaneous solution of the Bernoulli equation and an equation for the mo-
mentum parallel with the blades as Stripling demonstrates.) More specifically,
Stripling uses the blade angles, βb1, and incidence angles at the rms radius,
RRMS , where

RRMS =
[
1
2
(
R2

T1 +R2
H1

)] 1
2

(7.20)
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Figure 7.40: The tip cavitation numbers at which the flow at each radial location
becomes choked for Impellers III and IV (see figures 7.38 and 7.39) and different
flow coefficients, φ1 (from Brennen and Acosta 1976).

His theoretical results then correspond to the dashed lines in figure 7.41. When
the blade thickness term is added as in equation 7.15 the choked cavitation num-
bers are given by the solid lines in figure 7.41 which are considerably closer to
the experimental values of σb than the dashed lines. The remaining discrepancy
could well be due to the fact that the σc values are larger at some radius other
than RRMS and hence breakdown occurs first at that other radius.

Up to this point we have only discussed the calculation of the choked or
breakdown cavitation number from the analysis of a partially cavitating cascade.
There remains the issue of how to predict the degradation in the head or the
cavitation head losses prior to breakdown. The problem here is that calculation
of the lift from these analyses produces little for, as one could anticipate, a
small partial cavity will not significantly alter the performance of a cascade
of higher solidity since the discharge, with or without the cavity, is essentially
constrained to follow the direction of the blades. The hydraulic losses which
one seeks are additional (or possibly negative) frictional losses generated by the
disruption to the flow caused by the cavitation. A number of authors, including
Stripling and Acosta (1962), have employed modifications to cascade analyses
in order to evaluate the loss of head, ∆H , due to cavitation. One way to view
this loss is to recognize that the presence of a cavity in the blade passage causes
a reduction in the cross-sectional area available to the liquid flow. When the
cavity collapses this area increases creating a “diffuser” which is not otherwise
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Figure 7.41: The breakdown cavitation numbers for a series of inducers by
Stripling (1962) plotted against inlet flow coefficient. The inducers have inlet
blade angles at the tip, βbT1 (in degrees), as indicated. Also shown are the
results of the cascade analysis (equation 7.15) applied at the rms radius, RRMS ,
with blade thickness (solid line) and without blade thickness (dashed line).

present. Hydraulic losses in this “diffuser” flow could be considered responsible
for the cavitation head loss and could be derived from knowledge of the cavity
blockage, b/n.

7.11 CAVITATION PERFORMANCE

CORRELATIONS

Finally we provide brief mention of several of the purely empirical methods
which are used in practice to generate estimates of the cavitation head loss in
pumps. These often consist of an empirical correlation between the cavitation
head loss, ∆H , the net positive suction head, NPSH , and the suction specific
speed, S. Commonly this correlation is written as

∆H = P (S) ×NPSH (7.21)

where the dimensionless parameter, P (S), is established by prior experience. A
typical function, P (S), is presented in figure 7.42. Such methods can only
be considered approximate; there is no fundamental reason to believe that
∆H/NPSH is a function only of the suction specific speed, S, for all pumps
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Figure 7.42: Some data on the cavitation head loss parameter, P = ∆H/NPSH ,
for axial inducer pumps. The two symbols are for two different pumps.

though it will certainly correlate with that parameter for a given pump and
a given liquid at a given Reynolds number and a given temperature. A more
informed approach is to select a value of the cavitation number, σW , which is
most fundamental to the interaction of the flow and the pump blade namely

σW = (p1 − pV )/
1
2
ρLw

2
1 (7.22)

Then, using the definition of NPSH (section 5.2) and the velocity triangle,

NPSH =
(
(1 + σW )v2

m1 + σW Ω2R2
T1

)
/2g (7.23)

It is interesting to observe that the estimate of the cavitation-free NPSH for
mixed flow pumps obtained empirically by Gongwer (1941) namely(

1.8v2
m1 + 0.23Ω2R2

T1

)
/2g (7.24)

and his estimate of the breakdown NPSH namely(
1.49v2

m1 + 0.085Ω2R2
T1

)
/2g (7.25)

correspond quite closely to specific values of σW , namely σW ≈ 0.3 and σW ≈ 0.1
respectively.
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Chapter 8

PUMP VIBRATION

8.1 INTRODUCTION

The trend toward higher speed, high power density liquid turbomachinery has
inevitably increased the potential for fluid/structure interaction problems, and
the severity of those problems. Even in the absence of cavitation and its compli-
cations, these fluid structure interaction phenomena can lead to increased wear
and, under the worst conditions, to structural failure. Exemplifying this trend,
the Electrical Power Research Institute (Makay and Szamody 1978) has recog-
nized that the occurrence of these problems in boiler feed pumps has contributed
significantly to downtime in conventional power plants.

Unlike the cavitation issues, unsteady flow problems in liquid turbomachines
do not have a long history of research. In some ways this is ironic since, as
pointed out by Ek (1957) and Dean (1959), the flow within a turbomachine
must necessarily be unsteady if work is to be done on or by the fluid. Yet many
of the classical texts on pumps or turbines barely make mention of unsteady
flow phenomena or of design considerations that might avoid such problems. In
contrast to liquid turbomachinery, the literature on unsteady flow problems in
gas turbomachinery is considerably more extensive, and there are a number of
review papers that provide a good survey of the subject (for example, McCroskey
1977, Cumpsty 1977, Mikolajczak et al. 1975, Platzer 1978, Greitzer 1981). We
will not attempt a review of this literature but we will try, where appropriate,
to indicate areas of useful cross-reference. It is also clear that this subject
incorporates a variety of problems ranging, for example, from blade flutter to
fluid-induced rotordynamic instability. Because of this variety and the recent
vintage of the fundamental research, no clear classification system for these
problems has yet evolved and there may indeed be some phenomena that have
yet to be properly identified. It follows that the classification system that we will
attempt here will be tentative, and not necessarily comprehensive. Nevertheless,
it seems that three different categories of flow oscillation can occur, and that
there are a number phenomena within each of the three categories. We briefly
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list them here and return to some in the sections that follow.

[A] Global Flow Oscillations. A number of the identified vibration problems
involve large scale oscillations of the flow. Specific examples are:

[A1] Rotating stall or rotating cavitation occurs when a turbomachine is
required to operate at a high incidence angle close to the value at
which the blades may stall. It is often the case that stall will first be
manifest on a small number of adjacent blades and that this “stall
cell” will propagate circumferentially at some fraction of the main
impeller rotation speed. This phenomenon is called rotating stall
and is usually associated with turbomachines having a substantial
number of blades (such as compressors). It has, however, also been
reported in centrifugal pumps. When the turbomachine cavitates the
same phenomenon may still occur, perhaps in some slightly altered
form. Such circumstances will be referred to as “rotating stall with
cavitation.” But there is also a different phenomenon which can occur
in which one or two blades manifest a greater degree of cavitation
and this “cell” propagates around the rotor in a manner superficially
similar to the propagation of rotating stall. This phenomenon is
known as “rotating cavitation.”

[A2] Surge is manifest in a turbomachine that is required to operate under
highly loaded circumstances where the slope of the head rise/flow rate
curve is positive. It is a system instability to which the dynamics
of all the components of the system (reservoirs, valves, inlet and
suction lines and turbomachine) contribute. It results in pressure
and flow rate oscillations throughout the system. When cavitation is
present the phenomenon is termed “auto-oscillation” and can occur
even when the slope of the head rise/flow rate curve is negative.

[A3] Partial cavitation or supercavitation can become unstable when the
length of the cavity approaches the length of the blade so that the
cavity collapses in the region of the trailing edge. Such a circumstance
can lead to violent oscillations in which the cavity length oscillates
dramatically.

[A4] Line resonance occurs when one of the blade passing frequencies in
a turbomachine happens to coincide with one of the acoustic modes
of the inlet or discharge line. The pressure oscillation magnitudes
associated with these resonances can often cause substantial damage.

[A5] It has been speculated that an axial balance resonance could oc-
cur if the turbomachine is fitted with a balance piston (designed to
equalize the axial forces acting on the impeller) and if the resonant
frequency of the balance piston system corresponds with the rotating
speed or some blade passing frequency. Though there exist several
apocryphal accounts of such resonances, the phenomenon has yet to
be documented experimentally.
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[A6] Cavitation noise can sometimes reach a sufficient amplitude to cause
resonance with structural frequencies of vibration.

[A7] The above items all assume that the turbomachine is fixed in a non-
accelerating reference frame. When this is not the case the dynamics
of the turbomachine may play a crucial role in generating an insta-
bility that involves the vibration of that machine as a whole. Such
phenomena, of which the Pogo instabilities are, perhaps, the best
documented examples, are described further in section 8.13.

[B] Local Flow Oscillations. Several other vibration problems involve more
localized flow oscillations and vibration of the blades:

[B1] Blade flutter. As in the case of airfoils, there are circumstances
under which an individual blade may begin to flutter (or diverge)
as a consequence of the particular flow condition (incidence angle,
velocity), the stiffness of the blade, and its method of support.

[B2] Blade excitation due to rotor-stator interaction. While [B1] would
occur in the absence of excitation it is also true that there are a
number of possible mechanisms of excitation in a turbomachine that
can cause significant blade vibration. This is particularly true for a
row of stator blades operating just downstream of a row of impeller
blades or vice versa. The wakes from the upstream blades can cause a
serious vibration problem for the downstream blades at blade passing
frequency or some multiple thereof. Non-axisymmetry in the inlet,
the volute, or housing can also cause excitation of impeller blades at
the impeller rotation frequency.

[B3] Blade excitation due to vortex shedding or cavitation oscillations.
In addition to the excitation of [B2], it is also possible that vortex
shedding or the oscillations of cavitation could provide the excitation
for blade vibrations.

[C] Radial and Rotordynamic Forces. Global forces perpendicular to the
axis of rotation can generate several types of problem:

[C1] Radial forces are forces perpendicular to the axis of rotation caused
by circumferential nonuniformities in the inlet flow, casing, or volute.
While these may be stationary in the frame of the pump housing,
the loads that act on the impeller and, therefore, the bearings can be
sufficient to create wear, vibration, and even failure of the bearings.

[C2] Fluid-induced rotordynamic forces occur as the result of movement
of the axis of rotation of the impeller-shaft system of the turboma-
chine. Contributions to these rotordynamic forces can arise from the
seals, the flow through the impeller, leakage flows, or the flows in the
bearings themselves. Sometimes these forces can cause a reduction
in the critical speeds of the shaft system, and therefore an unforeseen
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limitation to its operating range. One of the common characteristics
of a fluid-induced rotordynamic problem is that it often occurs at
subsynchronous frequency.

Two of the subjects included in this list have a sufficiently voluminous liter-
ature to merit separate chapters. Consequently, chapter 10 is devoted to radial
and rotordynamic forces, and chapter 9 to the subject of system dynamic anal-
ysis and instabilities. The remainder of this chapter will briefly describe some
of the other unsteady problems encountered in liquid turbomachines.

Before leaving the issue of classification, it is important to emphasize that
many of the phenomena that cause serious vibration problems in turbomachines
involve an interaction between two or more of the above mentioned items. Per-
haps the most widely recognized of these resonance problems is that involving
an interaction between blade passage excitation frequencies and acoustic modes
of the suction or discharge lines. But the literature contains other examples. For
instance, Dussourd (1968) describes flow oscillations which involve the interac-
tion of rotating stall and acoustic line frequencies. Another example is given by
Marscher (1988) who investigated a resonance between the rotordynamic mo-
tions of the shaft and the subsynchronous unsteady flows associated with flow
recirculation at the inlet to a centrifugal impeller.

8.2 FREQUENCIES OF OSCILLATION

One of the diagnostics which is often, but not always, useful in addressing a
turbomachine vibration problem is to examine the dominant frequencies and
to investigate how they change with rotating speed. Table 8.1 is intended as a
rough guide to the kinds of frequencies at which the above problems occur. We
have attempted to place the phenomena in rough order of increasing frequency
partly in order to illustrate the fact that the frequencies can range all the way
from a few Hz up to tens of kHz. Some of the phenomena scale with the
impeller rotating speed, Ω. Others, such as surge, may vary somewhat with Ω
but not linearly; still others, like cavitation noise, will be largely independent
of Ω.

Of the frequencies listed in table 8.1, the blade passing frequencies need
some further clarification. We will denote the numbers of blades on an adjacent
rotor and stator by ZR and ZS , respectively. Then the fundamental blade pas-
sage frequency in so far as a single stator blade is concerned is ZRΩ since that
stator blade will experience the passage of ZR rotor blades each revolution of
the rotor. Consequently, this will represent the fundamental frequency of blade
passage excitation insofar as the inlet or discharge lines or the static structure is
concerned. Correspondingly, ZSΩ is the fundamental frequency of blade passage
excitation insofar as the rotor blades (or the impeller structure) are concerned.
However, the excitation is not quite as simple as this for both harmonics and
subharmonics of these fundamental frequencies can often be important. Note
first that, while the phenomenon is periodic, it is not neccessarily sinusoidal,
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Table 8.1: Typical frequency ranges of pump vibration problems.

VIBRATION CATEGORY FREQUENCY RANGE

A2 Surge System dependent,
3 − 10 Hz in compressors

A2 Auto-oscillation System dependent, 0.1 − 0.4Ω
A1 Rotor rotating stall 0.5Ω− 0.7Ω
A1 Vaneless diffuser stall 0.05Ω− 0.25Ω
A1 Rotating cavitation 1.1Ω− 1.2Ω
A3 Partial cavitation oscillation < Ω
C1 Excessive radial force Some fraction of Ω
C2 Rotordynamic vibration Fraction of Ω when critical speed

is approached.
A4 Blade passing excitation ZRΩ/ZCF , ZRΩ, mZRΩ

(or B2) (in stator frame)
ZSΩ/ZCF , ZSΩ, mZSΩ

(in rotor frame)
B1 Blade flutter Natural frequencies of blade in liquid
B3 Vortex shedding Frequency of vortex shedding
A6 Cavitation noise 1 kHz − 20 kHz

and therefore the excitation will contain higher harmonics, mZRΩ and mZSΩ
where m is an integer. But more importantly, when the integers ZR and ZS have
a common factor, say ZCF , then, in the framework of the stator, a particular
pattern of excitation is repeated at the subharmonic, ZRΩ/ZCF , of the funda-
mental, ZRΩ. Correspondingly, in the framework of the rotor, the structure
experiences subharmonic excitation at ZSΩ/ZCF . These subharmonic frequen-
cies can be more of a problem than the fundamental blade passage frequencies
because the fluid and structural damping is smaller for these lower frequencies.
Consequently, turbomachines are frequently designed with values of ZR and ZS

which have no common factors, in order to eliminate subharmonic excitation.
Further discussion of blade passage excitation frequencies is included in section
8.8.

Before proceeding to a discussion of the specific vibrational problems out-
lined above, it may be valuable to illustrate the spectral content of the shaft
vibration of a typical centrifugal pump in normal, nominally steady operation.
Figure 8.1 presents examples of the spectra (for two frequency ranges) taken
from the shaft of the five-bladed centrifugal Impeller X operating in the vane-
less Volute A (no stator blades) at 300 rpm (5 Hz). Clearly the synchronous
vibration at the shaft fundamental of 5 Hz dominates the low frequencies; this
excitation may be caused by mechanical imperfections in the shaft such as an
imbalance or by circumferential nonuniformities in the flow such as might be
generated by the volute. It is also clear that the most dominant harmonic of
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Figure 8.1: Typical spectra of vibration for a centrifugal pump (Impeller
X/Volute A) operating at 300 rpm (Chamieh et al. 1985).

shaft frequency occurs at 5Ω because there are 5 impeller blades. Note, however,
that there are noticeable peaks at 2Ω and 3Ω arising from significantly nonsinu-
soidal excitation at the shaft frequency, Ω. The other dominant peaks labelled
1 → 4 represent structural resonant frequencies unaffected by shaft rotational
speed.

At higher rotational speeds, more coincidence with structural frequencies oc-
curs and the spectra contain more noise. However, interesting features can still
be discerned. Figure 8.2 presents examples, taken from Miskovish and Bren-
nen (1992), of the spectra for all six shaft forces and moments as measured in
the rotating frame of Impeller X by the balance onto which that impeller was
mounted. F1, F2 are the two rotating radial forces, M1,M2 are the correspond-
ing bending moments, F3 is the thrust and M3 is the torque. In this example,
the shaft speed is 3000 rpm (Ω = 100π rad/sec) and the impeller is also being
whirled at a frequency, ω = IΩ/J , where I/J = 3/10. Note that there is a
strong peak in all the forces and moments at the shaft frequency, Ω, because
of the steady radial forces caused by volute asymmetry. Rotordynamic forces
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Figure 8.2: Typical frequency content of F1, F2, F3,M1,M2,M3 for Impeller
X/Volute A for tests at 3000rpm, φ = 0.092, and I/J = 3/10. Note the
harmonics Ω, (J ± I)Ω/J and the blade passing frequency, 5Ω.

would be manifest in this rotating frame at the beat frequencies (J ± I)Ω/J ;
note that the predominant rotordynamic effect occurs at the lower of these beat
frequencies, (J − I)Ω/J . The moments M1 and M2 are noisy because the line
of action of the forces F1 and F2 is close to the chosen axial location of the
origin of the coordinate system, the mid-point of the impeller discharge. Conse-
quently, the magnitudes of the moments are small. One of the more surprising
features in this data is the fact that the unsteady thrust contains a significant
component at the blade passing frequency, 5Ω. Miskovish and Brennen (1992)
indicate that the magnitude of this unsteady thrust is about 0.2 → 0.5% of the
steady thrust and that the peaks occur close to the times when blades pass the
volute cutwater. While this magnitude may not seem large, it could give rise to
significant axial vibration at the blade passing frequency in some applications.

8.3 UNSTEADY FLOWS

Many of the phenomena listed in section 8.1 require some knowledge of the un-
steady flows corresponding to the steady cascade flows discussed in sections 3.2
and 3.5. In the case of non-cavitating axial cascades, a large volume of litera-
ture has been generated in the context of gas turbine engines, and there exist
a number of extensive reviews including those by Woods (1961), McCroskey



176 CHAPTER 8. PUMP VIBRATION

(1977), Mikolajczak et al. (1975) and Platzer (1978). Much of the analytical
work utilizes linear cascade theory, for example, Kemp and Sears (1955), Woods
(1955), Schorr and Reddy (1971), and Kemp and Ohashi (1975). Some of this
has been applied to the analysis of unsteady flows in pumps and extended to
cover the case of radial or mixed flow machines. For example, Tsukamoto and
Ohashi (1982) utilized these methods to model the start-up transients in cen-
tifugal pumps and Tsujimoto et al. (1986) extended the analysis to evaluate
the unsteady torque in mixed flow machines.

However, most of the available methods are restricted to lightly loaded cas-
cades and impellers at low angles of incidence. Other, more complex, theories
(for example, Adamczyk 1975) are needed at larger angles of incidence and for
highly cambered cascades when there is a strong coupling between the steady
and unsteady flow (Platzer 1978). Moreover, most of the early theories were
only applicable to globally uniform unsteady flows in which the blades all move
in unison. Samoylovich (1962) appears to have been the first to consider oscil-
lations with arbitrary interblade phase differences, the kind of analysis needed
for flutter investigations (see below).

When the incidence angles are large so that the blades stall, one must resort
to unsteady free streamline methods in order to model the flows (Woods 1961).
Apart from the work of Sisto (1967), very little analytical work has been done
on this problem which is of considerable importance in the context of turboma-
chinery. One of the fluid mechanical complexities is the unsteady or dynamic
response of a separated flow that may lead to significant departures from the
sucession of events one might construct based on a quasistatic approach. Some
progress has been made in understanding the “dynamic stall” for a single foil
(see, for example, Ham 1968). However, it would appear that more work is
needed to understand the complex dynamic stall phenomena in turbomachines.

Unsteady free streamline analyses can be more confidentally applied to the
analysis of cavitating cascades because the cavity or free streamline pressure is
usually known and constant whereas the corresponding pressure for the wake
flows may be varying with time in a way that is difficult to predict. Thus, for
example, the unsteady response for a single supercavitating foil (Woods 1957,
Martin 1962, Parkin 1962) has been compared with experimental measurements
by Acosta and DeLong (1971). As an example, we present (figure 8.3) some data
from Acosta and DeLong on the unsteady forces on a single foil undergoing heave
oscillations at various reduced frequencies, ω∗ = ωc/2U . The oscillating heave
motion, d, is represented by

d = Re
{
d̃ejωt

}
(8.1)

where the complex quantity, d̃, contains the amplitude and phase of the dis-
placement. The resulting lift coefficient, CL, is decomposed (using the notation
of the next chapter) into

CL = C̄L + Re
{
C̃Lhe

jωt
}

(8.2)



8.3. UNSTEADY FLOWS 177

Figure 8.3: Fluctuating lift coefficient, C̃Lh, for foils undergoing heave oscilla-
tions at a reduced frequency, ω∗ = ωc/U . Real and imaginary parts of C̃Lh/ω

∗

are presented for (a) non-cavitating flow at mean incidence angles of 0◦ and
6◦ (b) cavitating data for a mean incidence of 8◦, for very long choked cavities
(�) and for cavities 3 chords in length (�). Adapted from Acosta and DeLong
(1971).

and the real and imaginary parts of C̃Lh/ω∗ which are plotted in figure 8.3
represent the unsteady lift characteristics of the foil. It is particularly important
to note that substantial departures from quasistatic behaviour occur for reduced
frequencies as low as 0.2, though these departures are more significant in the
noncavitating flow than in the cavitating flow. The lines without points in figure
8.3 present results for the corresponding linear theories and we observe that the
agreement between the theory and the experiments is fairly good. Notice also
that the Re{−C̃Lh} for noncavitating foils is negative at low frequencies but
becomes positive at larger ω whereas the values in the cavitating case are all
positive. Similar data for cavitating cascades would be necessary in order to
analyse the potential for instability in cavitating, axial flow pumps. The author
is not aware of any such data or analysis.
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The information is similarly meagre for all of the corresponding dynamic
characteristics of radial rather than axial cascades and, consequently, our ability
to model dynamic instabilities in centrifugal pumps is very limited indeed.

8.4 ROTATING STALL

Rotating stall is a phenomenon which may occur in a cascade of blades when
these are required to operate at a high angle of incidence close to that at which
the blades will stall. In a pump this usually implies that the flow rate has been
reduced to a point close to or below the maximum in the head characteristic (see,
for example, figures 7.5 and 7.6). Emmons et al. (1955) first provided a coherent
explanation of propagating stall. The cascade in figure 8.4 will represent a set
of blades (a rotor or a stator) operating at a high angle of incidence. Then, if
blade B were stalled, this generates a separated wake and therefore increased
blockage to the flow in the passage between blades B and A. This, in turn,
would tend to deflect the flow away from this blockage in the manner indicated
in the figure. The result would be an increase in the angle of incidence on blade
A and a decrease in the angle of incidence on blade C. Thus, blade A would
tend to stall while any stall on blade C would tend to diminish. Consequently,
the stall “cell” would tend to move upwards in the figure or in a direction away
from the oncoming flow. Of course, the stall cell could consist of a larger number
of blades with more than one exhibiting increased separation or stall. The stall
cell will rotate around the axis and hence the name “rotating stall.” Moreover,
the speed of propagation will clearly be some fraction of the circumferential
component of the relative velocity, either vθ1 in the case of a stator or wθ1 in
the case of a rotor. Consequently, in the case of a rotor, the stall rotates in the
same direction as the rotor but with 50-70% of the rotor angular velocity.

In distinguishing between rotating stall and surge, it is important to note
that the disturbance depicted in figure 8.4 does not necessarily imply any oscil-
lation in the total mass flow rate through the turbomachine. Rather it implies
a redistribution of that flow. On the other hand, it is always possible that the
perturbation caused by rotating stall could resonate with, say, one of the acous-
tic modes in the inlet or discharge lines, in which case significant oscillation of
the mass flow rate could occur.

While rotating stall can occur in any turbomachine, it is most frequently
observed and most widely studied in compressors with large numbers of blades.
Excellent reviews of this literature have been published by Emmons et al. (1959)
and more recently by Greitzer (1981). Both point to a body of work designed to
predict both the onset and consequences of rotating stall. A useful approximate
criterion is that rotating stall in the rotor occurs when one approaches a maxi-
mum in the total head rise as the flow coefficient decreases. This is, however, no
more than a crude approximation and Greitzer (1981) quotes a number of cases
in which rotating stall occurs while the slope of the performance curve is still
negative. A more sophisticated criterion that is widely used is due to Leiblein
(1965), and involves the diffusion factor, Df , defined previously in equation
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Figure 8.4: Schematic of a stall cell in rotating stall or rotating cavitation.

3.20. Experience indicates that rotating stall may begin when Df is increased
to a value of about 0.6.

Though most of the observations of rotating stall have been made for axial
compressors, Murai (1968) observed and investigated the phenomenon in a typ-
ical axial flow pump with 18 blades, a hub/tip radius ratio of 0.7, a tip solidity
of 1.15, and a tip blade angle of 20◦. His data on the rotating speed of the stall
cell are reproduced in figure 8.5. Note that the onset of the rotating stall phe-
nomenon occurs when the flow rate is reduced to a point below the maximum
in the head characteristic. Notice also that the stall cell propagation velocities
have typical values between 0.45 and 0.6 of the rotating speed. Rotating stall
has not, however, been reported in pumps with a small number of blades per-
haps because Df will not approach 0.6 for typical axial pumps or inducers with
a small number of blades. Most of the stability theories (for example, Emmons
et al. 1959) are based on actuator disc models of the rotor in which it is assumed
that the stall cell is much longer than the distance between the blades. Such an
assumption would not be appropriate in an axial flow pump with three or four
blades.

Murai (1968) also examined the effect of limited cavitation on the rotating
stall phenomenon and observed that the cavitation did cause some alteration
in the propagation speed as illustrated by the changes with inlet pressure seen
in figure 8.5. It is, however, important to emphasize the difference between the
phenomenon observed by Murai in which cavitation is secondary to the rotating
stall and the phenomenon to be discussed below, namely rotating cavitation,
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Figure 8.5: The head characteristic for an 18-bladed axial flow pump along with
the measurements of the propagation velocity of the rotating stall cell relative to
the shaft speed. Adapted from Murai (1968). Data is shown for three different
inlet pressures. Flow and head scales are dimensionless.

which occurs at a point on the head-flow characteristic at which the slope is
negative and stable, and at which rotating stall would not occur.

Turning now to centrifugal pumps, there have been a number of studies
in which rotating stall has been observed either in the impeller or in the dif-
fuser/volute. Hergt and Benner (1968) observed rotating stall in a vaned dif-
fuser and conclude that it only occurs with some particular diffuser geometries.
Lenneman and Howard (1970) examined the blade passage flow patterns associ-
ated with rotating stall and present data on the ratio, ΩRS

/
Ω, of the propagation

velocity of the stall cell to the impeller speed, Ω. They observed ratios ranging
from 0.54 to 0.68 with, typically, lower values of the ratio at lower impeller
speeds and at higher flow coefficients.

Perhaps the most detailed study is the recent research of Yoshida et al.
(1991) who made the following observations on a 7-bladed centrifugal impeller
operating with a variety of diffusers, with and without vanes. Rotating stall
with a single cell was observed to occur in the impeller below a certain critical
flow coefficient which depended on the diffuser geometry. In the absence of a
diffuser, the cell speed was about 80− 90% of the impeller rotating speed; with
diffuser vanes, this cell speed was reduced to the range 50−80%. When impeller
rotating stall was present, they also detected the presence of some propagating
disturbances with 2, 3 and 4 cells rather than one. These are probably due
to nonlinearities and an interaction with blade passage excitation. Rotating
stall was also observed to occur in the vaned diffuser with a speed less than



8.5. ROTATING CAVITATION 181

10% of the impeller speed. It was most evident when the clearance between
the impeller and diffuser vanes was large. As this clearance was decreased, the
diffuser rotating stall tended to disappear.

Even in the absence of blades, it is possible for a diffuser or volute to exhibit
a propagating rotating “stall”. Jansen (1964) and van der Braembussche (1982)
first described this flow instability and indicate that the flow pattern propagates
with a speed in the range of 5−25% of the impeller speed. Yoshida et al. (1991)
observed a four-cell rotating stall in their vaneless diffusers over a large range of
flow coefficients and measured its velocity as about 20% of the impeller speed.

Finally, we note that rotating stall may resonate with an acoustic mode of
the inlet or discharging piping to produce a serious pulsation problem. Dussourd
(1968) identified such a problem in a boiler feed system in which the rotating
stall frequency was in the range 0.15Ω → 0.25Ω, much lower than usual. He
also made use of the frequency domain methods of chapter 9 in modelling the
dynamics of this multistage centrifugal pump system. This represents a good
example of one of the many hybrid problems that can arise in systems with
turbomachines.

8.5 ROTATING CAVITATION

Inducers or impellers in pumps that do not show any sign of rotating stall while
operating under noncavitating conditions may exhibit a superficially similar
phenemenon known as “rotating cavitation” when they are required to operate
at low cavitation numbers. However, it is important to emphasize the fun-
damental difference in the two phenomena. Rotating stall occurs at locations
along the head-flow characteristic at which the blades may stall, usually at flow
rates for which the slope of the head/flow characteristic is positive and therefore
unstable in the sense discussed in the next section. On the other hand, rotating
cavitation is observed to occur at locations where the slope is negative. These
would normally be considered stable operating points in the absence of cavi-
tation. Consequently, the dynamics of the cavitation are essential to rotating
cavitation. Another difference between the phenomena is the difference in the
propagating speeds.

Rotating cavitation was first explicitly identified by Kamijo, Shimura and
Watanabe (1977) (see also 1980), though some evidence of it can be seen in the
shaft vibration measurements of Rosemann (1965). When it has been observed,
rotating cavitation generally occurs when the cavitation number, σ, is reduced
to a value at which the head is beginning to be affected by the cavitation as
seen in figure 8.6 taken from Kamijo et al. (1977). Rosenmann (1965) reported
that the vibrations (that we now recognize as rotating cavitation) occurred
for cavitation numbers between 2 and 3 times the breakdown value and were
particularly evident at the lower flow coefficients at which the inducer was more
heavily loaded.

Usually, further reduction of σ below the value at which rotating cavitation
occurs will lead to auto-oscillation or surge (see below and figure 8.6). It is not
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Figure 8.6: Occurrence of rotating cavitation and auto-oscillation in the perfor-
mance of the cavitating inducer tested by Kamijo et al. (1977).

at all clear why some inducers and impellers do not exhibit rotating cavitation
at all but proceed directly to auto-oscillation if that instability is going to occur.

Unlike rotating stall whose rotational velocities are less than that of the ro-
tor, rotating cavitation is characterized by a propagating velocity that is slightly
larger than the impeller speed. Kamijo et al. (1977) (see also Kamijo et al. 1992)
observed propagating velocities ΩRC

/
Ω ≈ 1.15, and this is very similar to one

of the somewhat ambigous propagating disturbance velocities of 1.1Ω reported
by Rosemann (1965).

Recently, Tsujimoto et al. (1992) have utilized the methods of chapter 9 to
model the dynamics of rotating cavitation. They have shown that the cavitation
compliance and mass flow gain factor (see section 9.14) play a crucial role in
determining the instability of rotating cavitation in much the same way as these
parameters influence the stability of an entire system which includes a cavitating
pump (see section 8.7). Also note that the analysis of Tsujimoto et al. (1992)
predicts supersynchronous propagating speeds in the range ΩRC

/
Ω = 1.1 to

1.4, consistent with the experimental observations.

8.6 SURGE

Surge and auto-oscillation (see next section) are system instabilities that involve
not just the characteristics of the pump but those of the rest of the pumping sys-
tem. They result in pressure and flow rate oscillations that can not only generate
excessive vibration and reduce performance but also threaten the structural in-
tegrity of the turbomachine or other components of the system. In chapter 9
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Figure 8.7: Quasistatically stable and unstable operation of pumping systems.

we provide more detail on general analytical approaches to this class of system
instabilities. But for present purposes, it is useful to provide a brief outline of
some of the characteristics of these system instabilities. To do so, consider first
figure 8.7(a) in which the steady-state characteristic of the pump (head rise
versus mass flow rate) is plotted together with the steady-state characteristic of
the rest of the system to which the pump is connected (head drop versus mass
flow rate). In steady-state operation the head rise across the pump must equal
the head drop for the rest of the system, and the flow rates must be the same
so that the combination will operate at the intersection, O. Consider, now, the
response to a small decrease in the flow to a value just below this equilibrium
point, O. Pump A will then produce more head than the head drop in the rest
of the system, and this discrepancy will cause the flow rate to increase, causing
a return to the equilibrium point. Therefore, because the slope of the charac-
teristic of Pump A is less than the slope of the characteristic of the rest of the
system, the point O represents a quasistatically stable operating point. On the
other hand, the system with Pump B is quasistatically unstable. Perhaps the
best known example of this kind of instability occurs in multistage compressors
in which the characteristics generally take the shape shown in figure 8.7(b). It
follows that the operating point A is stable, point B is neutrally stable, and
point C is unstable. The result of the instability at points such as C is the
oscillation in the pressure and flow rate known as “compressor surge.”

While the above description of quasistatic stability may help in visualizing
the phenomenon, it constitutes a rather artificial separation of the total system
into a “pump” and “the rest of the system.” A more general analytical perspec-
tive is obtained by defining a resistance, R∗

i , for each of the series components
of the system (one of which would be the pump) distinguished by the subscript,
i:

R∗
i =

d(∆H)
dm

(8.3)

where ∆H is the quasistatic head drop across that component (inlet head minus
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discharge head) and is a function of the mass flow rate, m. By this definition,
the slope of the pump characteristic in figure 8.7(a) is −R∗

PUMP , and the slope
of the characteristic of the rest of the system is R∗

SY STEM . It follows that the
earlier established criterion for stability is equivalent to∑

i

R∗
i > 0 (8.4)

In other words, the system is quasistatically stable if the total system resistance
is positive.

Perhaps the most satisfactory interpretation of the above formulation is in
terms of the energy balance of the total system. The net flux of energy out of
each of the elements of the system is m(∆H)i. Consequently, the net energy
flux out of the system is

m
∑

i

(∆H)i = 0 (8.5)

which is zero at a steady state operating point.
Suppose the stability of the system is now explored by inserting somewhere

in the system a hypothetical perturbing device which causes an increase in the
flow rate by dm. Then the new net energy flux out of the system, E∗, is given
by

E∗ = dm


∑

i

(∆Hi) +m

d
∑
i

(∆Hi)

dm


 (8.6)

= m dm
∑

i

R∗
i (8.7)

where the relations 8.3 and 8.5 have been used. The quantity E∗ could be
interpreted as the energy flux that would have to be supplied to the system
through the hypothetical device in order to reestablish equilibrium. Clearly,
then, if the required energy flux, E∗, is positive, the original system is stable.
Therefore the criterion 8.4 is the correct condition for stability.

All of the above is predicated on the changes to the system being sufficiently
slow for the pump and the system to follow the steady state operating curves.
Thus the analysis is only applicable to those instabilities whose frequencies are
low enough to lie within some quasistatic range. At higher frequency, it is
necessary to include the inertia and compressibility of the various components
of the flow. Greitzer (1976) (see also 1981) has developed such models for the
prediction of both surge and rotating stall in axial flow compressors.

It is important to observe that, while quasisteady instabilities will certainly
occur when

∑
i

R∗
i < 0, there may be other dynamic instabilities that occur even

when the system is quasistatically stable. One way to view this possibility is to
recognize that the resistance of any flow is frequently a complex function of fre-
quency once a certain quasisteady frequency has been exceeded. Consequently,
the resistances, R∗

i , may be different at frequencies above the quasistatic limit.
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It follows that there may be operating points at which the total dynamic re-
sistance over some range of frequencies is negative. Then the system would be
dynamically unstable even though it may still be quasistatically stable. Such a
description of dynamic instability is instructive but overly simplistic and a more
systematic approach to this issue must await the methodologies of chapter 9.

8.7 AUTO-OSCILLATION

In many installations involving a pump that cavitates, violent oscillations in
the pressure and flow rate in the entire system occur when the cavitation num-
ber is decreased to values at which the head rise across the pump begins to be
affected (Braisted and Brennen 1980, Kamijo et al. 1977, Sack and Nottage
1965, Natanzon et al. 1974, Miller and Gross 1967, Hobson and Marshall 1979).
These oscillations can also cause substantial radial forces on the shaft of the
order of 20% of the axial thrust (Rosenmann 1965). This surge phenomenon
is known as auto-oscillation and can lead to very large flow rate and pressure
fluctuations in the system. In boiler feed systems, discharge pressure oscilla-
tions with amplitudes as high as 14 bar have been reported informally. It is a
genuinely dynamic instability in the sense described in the last section, for it
occurs when the slope of the pump head rise/flow rate curve is still strongly
negative. Another characteristic of auto-oscillation is that it appears to occur

Figure 8.8: Data from Braisted and Brennen (1980) on the ratio of the auto-
oscillation frequency to the shaft frequency as a function of the latter for a 9◦

helical inducer operating at a cavitation number of 0.02 and a flow coefficient
of 0.055.
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Figure 8.9: Data from Braisted and Brennen (1980) on the ratio of the frequency
of auto-oscillation to the frequency of shaft rotation for several inducers: SSME
Low Pressure LOX Pump models: 7.62 cm diameter: × (9000 rpm) and +
(12000 rpm), 10.2 cm diameter: ◦ (4000 rpm) and � (6000 rpm); 9◦ helical
inducers: 7.58 cm diameter: ∗ (9000 rpm): 10.4 cm diameter: � (with suction
line flow straightener) and 	 (without suction line flow straightener). The flow
coefficients, φ1, are as labelled.

more readily when the inducer is more heavily loaded; in other words at lower
flow coefficients. These are also the circumstances under which backflow will
occur. Indeed, Badowski (1969) puts forward the hypothesis that the dynamics
of the backflow are responsible for cavitating inducer instability. Further evi-
dence of this connection is provided by Hartmann and Soltis (1960) but with
an atypical inducer that has 19 blades. It is certainly the case that the limit
cycle associated with a strong auto-oscillation appears to involve large periodic
oscillations in the backflow. Consequently, it would seem that any nonlinear
model purporting to predict the magnitude of auto-oscillation should incorpo-
rate the dynamics of the backflow. While most of the detailed investigations
have focussed on axial pumps and inducers, Yamamoto (1991) has observed
and investigated auto-oscillation occurring in cavitating centrifugal pumps. He
also noted the important role played by the backflow in the dynamics of the
auto-oscillation.

Unlike compressor surge, the frequency of auto-oscillation, ΩA, usually scales
with the shaft speed of the pump. Figure 8.8 demonstrates this by plotting
ΩA/Ω against the shaft rpm (60Ω/2π) for a particular helical inducer. Figure 8.9
(also from Braisted and Brennen 1980) shows how this reduced auto-oscillation
frequency, ΩA/Ω, varies with flow coefficient, φ, cavitation number, σ, and
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Figure 8.10: Data from Yamamoto (1991) on the ratio of the frequency of auto-
oscillation to the frequency of shaft rotation for a centrifugal pump. Data is
shown for three different lengths of suction pipe: ◦ (2.7 m), 	 (4.9 m) and �

(7.1 m). Regions of instability are indicated by the hatched lines.

impeller geometry. While still noting that the frequency, ΩA, will, in general,
be system dependent, nevertheless the expression

ΩA/Ω = (2σ)
1
2 (8.8)

appears to provide a crude estimate of the auto-oscillation frequency.
Some data from Yamamoto (1991) on the frequencies of auto-oscillation of

a cavitating centrifugal pump are presented in figure 8.10. This data exhibits a
dependence on the length of the suction pipe that reinforces the understanding
of auto-oscillation as a system instability. The figure also shows the limits of
instability observed by Yamamoto; these are unusual in that there appear to be
two separate regions or zones of instability. Finally, it is clear that the data of
figures 8.9 and 8.10 show a similar dependence of the auto-oscillation frequency
on the cavitation number, σ, though the magnitudes of σ differ considerably.
However, it is likely that the relative sizes of the cavities are similiar in the two
cases, and therefore that the correlation between the auto-oscillation frequency
and the relative cavity size might be closer than the correlation with cavitation
number.

As previously stated, auto-oscillation occurs when the region of cavitation
head loss is approached as the cavitation number is decreased. Figure 8.11
provides an example of the limits of auto-oscillation taken from the work of
Braisted and Brennen (1980). However, since the onset is even more dependent
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Figure 8.11: Cavitation performance of the SSME low pressure LOX pump
model, Impeller IV, showing the onset and approximate desinence of the auto-
oscillation at 6000 rpm (from Braisted and Brennen 1980).

Figure 8.12: Data from a helical inducer illustrating the decrease in head with
the onset of auto-oscillation (A→ B) and the auto-oscillation hysteresis occur-
ring with subsequent increase in σ (from Braisted and Brennen 1980).

than the auto-oscillation frequency on the detailed dynamic characteristics of
the system, it would not even be wise to quote any approximate guideline for
onset. Our current understanding is that the methodologies of chapter 9 are
essential for any prediction of auto-oscillation.

It should be noted that chapter 9 describes linear perturbation models that
can predict the limits of oscillation but not the amplitude of the oscillation
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once it occurs. There do not appear to be any accepted analytical models that
can make this important prediction. Furthermore, the energy dissipated in the
large amplitude oscillations within the pump can lead to a major change in the
mean (time averaged) performance of the pump. One example of the effect of
auto-oscillation on the head rise across a cavitating inducer is shown in figure
8.12 (from Braisted and Brennen 1980) which contains cavitation performance
curves for three flow coefficients. The sequence of events leading to these results
was as follows. For each flow rate, the cavitation number was decreased until
the onset of auto-oscillation at the point labelled A, when the head immediately
dropped to the point B (an unavoidable change in the pump inlet pressure and
therefore in σ would often occur at the same time). Increasing the cavitation
number again would not immediately eliminate the auto-oscillation. Instead the
oscillations would persist until the cavitation number was raised to the value at
the point C where the disappearance of auto-oscillation would cause recovery to
the pointD. This set of experiments demonstrate (i) that under auto-oscillation
conditions (B,C) the head rise across this particular inducer was about half of
the head rise without auto-oscillation (A,D) and (ii) that a significant auto-
oscillation hysteresis exists in which the auto-oscillation inception and desinence
cavitation numbers can be significantly different. Neither of these nonlinear
effects can be predicted by the frequency domain methods of chapter 9. In other
inducers, the drop in head with the onset of auto-oscillation is not as large as
in figure 8.12 but it is still present; it has also been reported by Rosenmann
(1965). This effect may account for the somewhat jagged form of the cavitation
characteristic as breakdown is approached.

8.8 ROTOR-STATOR INTERACTION:

FLOW PATTERNS

In section 8.2, we described the two basic frequencies of rotor-stator interaction:
the excitation of the stator flow at ZRΩ and the excitation of the rotor flow at
ZSΩ. Apart from the superharmonics mZRΩ and mZSΩ that are generated
by nonlinearities, subharmonics can also occur. When they do they can cause
major problems, since the fluid and structural damping is smaller for these lower
frequencies. To avoid such subharmonics, turbomachines are usually designed
with blade numbers, ZR and ZS , which have small integer common factors.

The various harmonics of blade passage excitation can be visualized by gen-
erating an “encounter” (or interference) diagram that is a function only of the
integers ZR and ZS . In these encounter diagrams, of which figures 8.13 and 8.14
are examples, each of the horizontal lines represents the position of a particu-
lar stator blade. The circular geometry has been unwrapped so that a passing
rotor blade proceeds from top to bottom as it rotates past the stator blades.
Each vertical line represents a moment in time, the period covered being one
complete revolution of the rotor beginning at the far left and returning to that
moment on the far right. Within this framework, the moment and position
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Figure 8.13: Encounter diagram for rotor-stator interaction in a turbomachine
with ZR = 6, ZS = 7. Each row is for a specific stator blade and time runs hor-
izontally covering one revolution as one proceeds from left to right. Encounters
between a rotor blade and a stator blade are marked by an 0.

Figure 8.14: Encounter diagram for rotor-stator interaction in a turbomachine
with ZR = 6, ZS = 16.

of all the rotor-stator blade encounters are shown by an “0.” Such encounter
diagrams allow one to examine the various frequencies and patterns generated
by rotor-stator interactions and this is perhaps best illustrated by referring to
the examples of figure 8.13 for the case of ZR = 6, ZS = 7, and figure 8.14
for the case of ZR = 6, ZS = 16. First, one can always follow the diagonal
progress of individual rotor blades as indicated by lines such as those marked
1Ω in the examples. But other diagonal lines are also evident. For example,
in figure 8.13 the perturbation consisting of a single cell, and propagating in
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the reverse direction at 6Ω is strongly indicated. Parenthetically we note that,
in any machine in which ZS = ZR + 1, a perturbation with a reverse speed of
−ZRΩ is always present. Also in figure 8.14, there are quite strong lines indi-
cating an encounter pattern rotating at 9Ω and consisting of two diametrically
opposite cells. Other propagating disturbance patterns are also suggested by
figure 8.14. For example, the backward propagating disturbance rotating at 3Ω
in the reverse direction and consisting of four equally spaced perturbation cells
is indicated by the lines marked −3Ω. It is, of course, possible to connect up
the encounter points in a very large number of ways, but clearly only those
disturbances with a large number of encounters per cycle (high “density”) will
generate a large enough flow perturbation to be significant. However, among
the top two or three possibilities, it is not necessarily a simple matter to deter-
mine which will manifest itself in the actual flow. That requires more detailed
analysis of the flow.

The flow perturbations caused by blade passage excitation are nicely illus-
trated by Miyagawa et al. (1992) in their observations of the flows in high
head pump turbines. One of the cases they explored was that of figure 8.14,
namely ZR = 6, ZS = 16. Figure 8.15 has been extracted from the videotape of
their unsteady flow observations and shows two diametrically opposite pertur-
bation cells propagating around at 9 times the impeller rotating speed, one of
the “dense” perturbation patterns predicted by the encounter diagram of figure
8.14.

Figure 8.15: The propagation of a low pressure region (hatched) at nine times
the impeller rotational speed in the flow through a high head pump-turbine.
The sketches show six instants in time equally spaced within one sixth of a
revolution. Made from videotape provided by Miyagawa et al. (1992).
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Figure 8.16: Pressure distributions on a diffuser blade at two different instants
during the passage of an impeller blade. Data for an interblade spacing of 1.5%
and φ2 = 0.12 (from Arndt et al. 1989).

8.9 ROTOR-STATOR INTERACTION:
FORCES

When one rotor (or stator) blade passes through the wake of an upstream stator
(or rotor) blade, it will clearly experience a fluctuation in the fluid forces that
act upon it. In this section, the nature and magnitude of these rotor-stator
interaction forces will be explored. Experience has shown that these unsteady
forces are a strong function of the gap between the locus of the trailing edge of
the upstream blade and the locus of the leading edge of the downstream blade.
This distance will be termed the interblade spacing, and will be denoted by cb.

Most axial compressors and turbines operate with fairly large interblade
spacings, greater than 10% of the blade chord. As a result, the unsteady flows
and forces measured under these circumstances (Gallus 1979, Gallus et al. 1980,
Dring et al. 1982, Iino and Kasai 1985) are substantially smaller than those mea-
sured for radial machines (such as centrifugal pumps) in which the interblade
spacing between the impeller and diffuser blades may be only a few percent
of the impeller radius. Indeed, structural failure of the leading edge of cen-
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Figure 8.17: Magnitude of the fluctuation in the coefficient of pressure on a
diffuser blade during the passage of an impeller blade as a function of location
on the diffuser blade surface for two interblade spacings (from Arndt et al.
1989).

trifugal diffuser blades is not uncommon in the industry, and is typically solved
by increasing the interblade spacing, though at the cost of reduced hydraulic
performance.

Several early investigations of rotor-stator interaction forces were carried
out using single foils in a wind tunnel (for example, Lefcort 1965). However,
Gallus et al. (1980) appear to have been the first to measure the unsteady flows
and forces due to rotor-stator interaction in an axial flow compressor. They
attempt to collate their measurements with the theoretical analyses of Kemp
and Sears (1955), Meyer (1958), Horlock (1968) and others. The measurements
were conducted with large interblade spacing to axial chord ratios of about
50%, and involved documentation of the blade wakes. The impingement of these
wakes on the following row of blades causes pressure fluctuations that are largest
on the forward suction surface and small near the trailing edge of those blades.
These pressure fluctuations lead to a fluctuation in the lift coefficient of ±0.06.
Moreover, Gallus et al. (1980) show that the forces vary roughly inversely with
the interblade spacing to axial chord ratio. Extrapolation would suggest that
the unsteady and steady components of the lift might be roughly the same if this
ratio were decreased to 5%. This estimate is confirmed by the measurements of
Arndt et al., described below. Before concluding this discussion of rotor-stator
interaction forces in axial flow machines, we note that Dring et al. (1982) have
examined the flows and forces for an interblade spacing to axial chord ratio of
0.35 and obtained results similar to those of Gallus et al..

Recently, Arndt et al. (1989, 1990) (see also Brennen et al. 1988) have made
measurements of the unsteady pressures and forces that occur in a radial flow
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Figure 8.18: Variation in the instantaneous lift coefficient for a diffuser blade.
The position of the diffuser blade leading edge relative to the impeller blade
trailing edge is also shown. The data is for an interblade spacing of 4.5% (from
Arndt et al. 1989).

machine when an impeller blade passes a diffuser blade. Figure 8.16 presents
instantaneous pressure distributions (ensemble-averaged over many revolutions)
for two particular relative positions of the impeller and diffuser blades. In the
upper graph the trailing edge of the impeller blade has just passed the leading
edge of the diffuser blade, causing a large perturbation in the pressure on the
suction surface of the diffuser blade. Indeed, in this example, the pressure over
a small region has fallen below the impeller inlet pressure (Cp < 0). The lower
graph is the pressure distribution at a later time when the impeller blade is
about half-way to the next diffuser blade. The perturbation in the diffuser
blade pressure distribution has largely dissipated. Closer examination of the
data suggests that the perturbation takes the form of a wave of negative pressure
traveling along the suction surface of the diffuser blade and being attenuated as
it propagates. This and other observations suggest that the cause is a vortex
shed from the leading edge of the diffuser blade by the passage of the trailing
edge of the impeller. This vortex is then convected along the suction surface of
the diffuser blade.

The difference between the maximum and minimum pressure coefficient,
∆Cp, experienced at each position on the surface of a diffuser blade is plot-
ted as a function of position in figure 8.17. Data is shown for two interblade
spacings, cb = 0.015RT2 and 0.045RT2. This figure reiterates the fact that the
pressure perturbations are largest on the suction surface just downstream of
the leading edge. It also demonstrates that the pressure perturbations for the
1.5% interblade spacing are about double those for the 4.5% interblade spacing.
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Figure 8.19: Magnitude of the fluctuations in the pressure coefficient at three
locations near the trailing edge of an impeller blade during the passage of a
diffuser blade (from Arndt et al. 1990).

Figure 8.17 was obtained at a particular flow coefficient of φ2 = 0.12; however,
the same phenomena were encountered in the range 0.05 < φ2 < 0.15, and
the magnitude of the pressure perturbation showed an increase of about 50%
between φ2 = 0.05 and φ2 = 0.15.

Given both the magnitude and phase of the instantaneous pressures on the
surface of a diffuser blade, the result may be integrated to obtain the instan-
taneous lift, L, on the diffuser blade. Here the lift coefficient is defined as
CL = L/ 1

2ρΩ
2R2

T2cb where L is the force on the blade perpendicular to the
mean chord, c is the chord, and b is the span of the diffuser blade. Time histo-
ries of CL are plotted in figure 8.18 for three different flow coefficients and an
interblade spacing of 4.5%. Since the impeller blades consisted of main blades
separated by partial blades, two ensemble-averaged cycles are shown for CL

though the differences between the passage of a full blade and a partial blade
are small. Notice that even for the larger 4.5% interblade spacing, the instanta-
neous lift can be as much as three times the mean lift. Consequently, a structural
design criterion based on the mean lift on the blades would be seriously flawed.
Indeed, in this case it is clear that the principal structural consideration should
be the unsteady lift, not the steady lift.

Arndt et al. (1990) also examined the unsteady pressures on the upstream
impeller blades for a variety of diffusers. Again, large pressure fluctuations were
encountered as a result of rotor-stator interaction. Typical results are shown
in figure 8.19 where the magnitude of the pressure fluctuations is presented as
a function of flow coefficient for three different locations on the surface of an
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impeller blade: (i) on the flat of the trailing edge, (ii) on the suction surface at
r/RT2 = 0.937, and (iii) on the pressure surface at r/RT2 = 0.987. The data are
for a 5% interblade spacing and all data points represent ensemble averages. The
magnitudes of the fluctuations are of the same order as the pressure fluctuations
on the diffuser blades, indicating that the unsteady loads on the upstream blade
in rotor-stator interaction can also be substantial. Note, however, that contrary
to the trend with the diffuser blades, the magnitude of the pressure fluctuations
decrease with increasing flow coefficient. Finally, note that the magnitude of
the pressure fluctuations are as large as the total head rise across the pump.
This raises the possibility of transient cavitation being caused by rotor-stator
interaction.

Considering the magnitude of these rotor-stator interaction effects, it is sur-
prising that there is such a limited quantity of data available on the unsteady
forces.

8.10 DEVELOPED CAVITY

OSCILLATION

There are several circumstances in which developed cavities can exhibit self-
sustained oscillations in the absence of any external excitation. One of these is
the instability associated with a partial cavity whose length is approximately
equal to the chord of the foil. Experimentally, it is observed that when the
cavitation number is decreased to the level at which the attached partial cav-
ity on a single hydrofoil approaches about 0.7 of the chord, c, of the foil, the
cavity will begin to oscillate violently (Wade and Acosta 1966). It will grow to
a length of about 1.5c, at which point the cavity will be pinched off at about
0.5c, and the separated cloud will collapse as it is convected downstream. This
collapsing cloud of bubbles carries with it shed vorticity, so that the lift on the
foil oscillates at the same time. This phenomenon is called “partial cavitation
oscillation.” It persists with further decrease in cavitation number until a point
is reached at which the cavity collapses at some critical distance downstream of
the trailing edge that is usually about 0.3c. For cavitation numbers lower than
this, the flow again becomes quite stable. The frequency of partial cavitation
oscillation on a single foil is usually less than 0.1U/c, where U is the velocity
of the oncoming stream, and c is the chord length of the foil. In cascades or
pumps, supercavitation is usually only approached in machines of low solid-
ity, but, under such circumstances, partial cavitation oscillation can occur, and
can be quite violent. Wade and Acosta (1966) were the first to observe partial
cavitation oscillation in a cascade. During another set of experiments on cavi-
tating cascades, Young, Murphy, and Reddcliff (1972) observed only “random
unsteadiness of the cavities.”

One plausible explanation for this partial cavitation instability can be gleaned
from the free streamline solutions for a cavitating foil that were described in
section 7.8. The results from equations 7.9 to 7.12 can be used to plot the
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Figure 8.20: The lift coefficient for a flat plate from the partial cavitation anal-
ysis of Acosta (1955) (dashed lines) and the supercavitating analysis of Tulin
(1953) (solid lines); CL is shown as a function of angle of attack, α, for sev-
eral cavitation numbers, σ. The dotted lines are the boundaries of the region
in which the cavity length is between 3/4 and 4/3 of a chord, and in which
dCL/dα < 0.

lift coefficient as a function of angle of attack for various cavitation numbers, as
shown in figure 8.20. The results from both the partial cavitation and the super-
cavitation analyses are shown. Moreover, we have marked with a dotted line the
locus of those points at which the supercavitating solution yields dCL/dα = 0;
it is easily shown that this occurs when � = 4c/3. We have also marked with
a dotted line the locus of those points at which the partial cavitation solution
yields dCL/dα = ∞; it can also be shown that this occurs when � = 3c/4. Note
that these dotted lines separate regions for which dCL/dα > 0 from that region
in which dCL/dα < 0. Heuristically, it could be argued that dCL/dα < 0 im-
plies an unstable flow. It would follow that the region between the dotted lines
in figure 8.20 represents a regime of unstable operation. The boundaries of this
regime are 3

4 <
�
c <

4
3 , and do, indeed, seem to correspond quite closely to the

observed regime of unstable cavity oscillation (Wade and Acosta 1966).

A second circumstance in which a fully developed cavity may exhibit natural
oscillations occurs when the cavity is formed by introducing air to the wake of
a foil in order to form a “ventilated cavity.” When the flow rate of air exceeds a
certain critical level, the cavity may begin to oscillate, large pockets of air being
shed at the rear of the main cavity during each cycle of oscillation. This problem
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was studied by Silberman and Song (1961) and by Song (1962). The typical
radian frequency for these oscillations is about 6U/�, based on the length of the
cavity, �. Clearly, this second phenomenon is less relevant to pump applications.

8.11 ACOUSTIC RESONANCES

In the absence of cavitation or flow-induced vibration, flow noise generated
within the turbomachine itself is almost never an issue when the fluid is a liquid.
One reason for this is that the large wavelength of the sound in the liquid leads
to internal acoustic resonances that are too high in frequency and, therefore,
too highly damped to be important. This contrasts with the important role
played by internal resonances in the production of noise in gas turbines and
compressors (Tyler and Sofrin 1962, Cumpsty 1977). In noncavitating liquid
turbomachinery, the higher acoustic velocity and the smaller acoustic damping
mean that pipeline resonances play the same kind of role that the internal
resonances play in the production of noise in gas turbomachinery.

In liquid turbomachines, resonances exterior to the machine or resonances
associated with cavitation do create a number of serious vibration problems. As
mentioned in the introduction, pipeline resonances with the acoustic modes of
the inlet or discharge piping can occur when one of the excitation frequencies
produced by the pump or hydraulic turbine happens to coincide with one of
the acoustic modes of those pipelines. Jaeger (1963) and Strub (1963) docu-
ment a number of cases of resonance in hydropower systems. Many of these
do not involve excitation from the turbine but some do involve excitation at
blade passing frequencies (Strub 1963). One of the striking features of these
phenomena is that very high harmonics of the pipelines can be involved (20th
harmonics have been noted) so that damage occurs at a whole series of nodes
equally spaced along the pipeline. The cases described by Jaeger involve very
large pressure oscillations, some of which led to major failures of the installa-
tion. Sparks and Wachel (1976) have similarly documented a number of cases of
pipeline resonance in pumping systems. They correctly identify some of these
as system instabilities of the kind discussed in section 8.6 and in chapter 9.

Cavitation-induced resonances and vibration problems are dealt with in
other sections of this chapter. But it is appropriate in the context of reso-
nances to mention one other possible cavitation mechanism even though it has
not, as yet, been demonstrated experimentally. One might judge that the natu-
ral frequency, ωP , of bubbles given by equation 6.14 (section 6.5), being of the
order of kHz, would be too high to cause vibration problems. However, it tran-
spires that a finite cloud of bubbles may have much smaller natural frequencies
that could resonant, for example, with a blade passage frequency to produce a
problem. d’Agostino and Brennen (1983) showed that the lowest natural fre-
quency, ωC , of a spherical cloud of bubbles of radius, A, consisting of bubbles
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of radius, R, and with a void fraction of α would be given by

ωC = ωP

[
1 +

4
3π2

A2

R2

α

1 − α

]− 1
2

(8.9)

It follows that, if αA2/R2 
 1, then the cloud frequency will be significantly
smaller than the bubble frequency. This requires that the void fraction be
sufficiently large so that α 
 R2/A2. However, this could be relatively easily
achieved in large clouds of small bubbles. Though the importance of cloud
cavitation in pumps has been clearly demonstrated (see section 6.3), the role
played by the basic dynamic characteristics of clouds has not, as yet, been
elucidated.

8.12 BLADE FLUTTER

Up to this point, all of the instabilities have been essentially hydrodynamic and
would occur with a completely rigid structure. However, it needs to be ob-
served that structural flexibility could modify any of the phenomena described.
Furthermore, if a hydrodynamic instability frequency happens to coincide with
the frequency of a major mode of vibration of the structure, the result will
be a much more dangerous vibration problem. Though the hydroelastic be-
havior of single hydrofoils has been fairly well established (see the review by
Abramson 1969), it would be virtually impossible to classify all of the possi-
ble fluid-structure interactions in a turbomachine given the number of possible
hydrodynamic instabilities and the complexity of the typical pump structure.
Rather, we shall confine attention to one of the simpler interactions and briefly
discuss blade flutter. Though the rotor-stator interaction effects outlined above
are more likely to cause serious blade vibration problems in turbomachines, it is
also true that a blade may flutter and fail even in the absence of such excitation.

It is well known (see, for example, Fung 1955) that the incompressible, un-
stalled flow around a single airfoil will not exhibit flutter when permitted only
one degree of freedom of flutter motion. Thus, classic aircraft wing flutter re-
quires the coupling of two degrees of flutter motion, normally the bending and
torsional modes of the cantilevered wing. Turbomachinery flutter is quite dif-
ferent from classic aircraft wing flutter and usually involves the excitation of a
single structural mode. Several different phenomena can lead to single degree
of freedom flutter when it would not otherwise occur in incompressible, unsep-
arated (unstalled) flow. First, there are the effects of compressibility that can
lead to phenomena such as supersonic flutter and choke flutter. These have
been the subject of much research (see, for example, the reviews of Mikolajczak
et al (1975), Platzer (1978), Sisto (1977), McCroskey (1977)), but are not of
direct concern in the context of liquid turbomachinery, though the compress-
ibility introduced by cavitation might provide some useful analogies. Of greater
importance in the context of liquid turbomachinery is the phenomenon of stall
flutter (see, for example, Sisto 1953, Fung 1955). A blade which is stalled during
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all or part of a cycle of oscillation can exhibit single degree of freedom flutter,
and this type of flutter has been recognized as a problem in turbomachinery
for many years (Platzer 1978, Sisto 1977). Unfortunately, there has been rel-
atively little analytical work on stall flutter and any modern theory must at
least consider the characteristics of dynamic stall (see McCroskey 1977). Like
all single degree of freedom flutter problems, including those in turbomachines,
the critical incident speed for the onset of stall flutter, UC , is normally given by
a particular value of a reduced speed, UCR = 2UC/cωF , where c is the chord
length and ωF is the frequency of flutter or the natural frequency of the partici-
pating structural vibration mode. The inverse of UCR is the reduced frequency,
kCR, or Strouhal number. Fung (1955) points out that the reduced frequency
for stall flutter with a single foil is a function of the difference, θ, between the
mean angle of incidence of the flow and the static angle of stall. A crude guide
would be kCR = 0.3+4.5θ, 0.1 < kCR < 0.8. The second term in the expression
for kCR reflects the decrease in the critical speed with increasing incidence.

Of course, in a turbomachine or cascade, the vibration of one blade will
generate forces on the neighboring blades (see, for example, Whitehead 1960),
and these interactions can cause significant differences in the flutter analyses
and critical speeds; often they have a large unfavorable effect on the flutter
characteristics (McCroskey 1977). One must allow for various phase angles
between neighboring blades, and examine waves which travel both forward and
backward relative to the rotation of the rotor. A complete analysis of the
vibrational modes of the rotor (or stator) must be combined with an unsteady
fluid flow analysis (see, for example, Verdon 1985) in order to accurately predict
the flutter boundaries in a turbomachine. Of course, most of the literature deals
with structures that are typical of compressors and turbines. The lowest modes
of vibration in a pump, on the other hand, can be very different in character
from those in a compressor or turbine. Usually the blades have a much smaller
aspect ratio so that the lowest modes involve localized vibration of the leading
or trailing edges of the blades. Consequently, any potential flutter is likely to
cause failure of portions of these leading or trailing edges.

The other major factor is the effect of cavitation. The changes which de-

Figure 8.21: Sketch of the leading edge flutter of a cavitating hydrofoil or pump
blade.
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Figure 8.22: Dimensionless critical flutter speeds for single supercavitating hy-
drofoils at various angles of incidence, α, and very long cavities (> 5 chord
lengths) (from Brennen, Oey, and Babcock 1980).

veloped cavitation cause in the lift and drag characteristics of a single foil, also
cause a fundamental change in the flutter characteristics with the result that
a single cavitating foil can flutter (Abramson 1969). Thus a cavitating foil is
unlike a noncavitating, nonseparated foil but qualitatively similar to a stalled
foil whose flow it more closely resembles. Abramson (1969) provides a useful re-
view of both the experiments and the analyses of flutter of rigid cavitating foils.
However, as we previously remarked, the most likely form of flutter in a pump
will not involve global blade motion but flexure of the leading or trailing edges.
Since cavitation occurs at the leading edges, and since these are often made thin
in order to optimize the hydraulic performance, leading edge flutter seems the
most likely concern (figure 8.21). Data on this phenomenon was obtained by
Brennen, Oey, and Babcock (1980), and is presented in figure 8.22. The critical
incident fluid velocity, UC , is nondimensionalized using ωF , the lowest natural
frequency of oscillation of the leading edge immersed in water, and a dimension,
cF , that corresponds to the typical chordwise length of the foil from the lead-
ing edge to the first node of the first mode of vibration. The data shows that
UC/cFωF is almost independent of the incidence angle, and is consistent for a
wide range of natural frequencies. Brennen et al. also utilize the unsteady lift
and moment coefficients calculated by Parkin (1962) to generate a theoretical
estimate of UC/cFωF of 0.14. From figure 8.22 this seems to constitute an upper
design limit on the reduced critical speed. Also note that the value of 0.14 is
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much smaller than the values of 1 − 3 quoted earlier for the stall flutter of a
noncavitating foil. This difference emphasizes the enhanced flutter possibilities
caused by cavitation. Brennen et al. also tested their foils under noncavitating
conditions but found no sign of flutter even when the tunnel velocity was much
larger than the cavitating flutter speed.

One footnote on the connection between the flutter characteristics of figure
8.22 and the partial cavitation oscillation of section 8.10 is worth adding. The
data of figure 8.22 was obtained with long attached cavities, covering the en-
tire suction surface of the foil as indicated in figure 8.21. At larger cavitation
numbers, when the cavity length was decreased to about two chord lengths, the
critical speed decreased markedly, and the leading edge flutter phenomenon be-
gan to metamorphose into the partial cavitation oscillation described in section
8.10.

8.13 POGO INSTABILITIES

All of the other discussion in this chapter has assumed that the turbomachine
as a whole remains fixed in a nonaccelerating reference frame or, at least, that a
vibrational degree of freedom of the machine is not necessary for the instability
to occur. However, when a mechanism exists by which the internal flow and
pressure oscillations can lead to vibration of the turbomachine as a whole, then
a new set of possibilities are created. We refer to circumstances in which flow
or pressure oscillations lead to vibration of the turbomachine (or its inlet or
discharge pipelines) which in turn generate pressure oscillations that feed back
to create instability. An example is the class of liquid-propelled rocket vehicle
instabilities known as Pogo instabilities (NASA 1970). Here the longitudinal
vibration of the rocket causes flow and pressure oscillation in the fuel tanks and,
therefore, in the inlet lines. This, in turn, implies that the engines experience
fluctuating inlet conditions, and as a result they produce a fluctuating thrust
that promotes the longitudinal vibration of the vehicle. Rubin (1966) and Vaage
et al. (1972) provide many of the details of these phenomena that are beyond
the scope of this text. It is, however, important to note that the dynamics of
the cavitating inducer pumps are crucial in determining the limits of these Pogo
instabilities, and provide one of the main motivations for the measurements of
the dynamic transfer functions of cavitating inducers described in chapter 9.

In closing, it is important to note that feedback systems involving vibra-
tional motion of the turbomachine are certainly not confined to liquid propelled
rockets. However, detailed examinations of the instabilities are mostly confined
to this context. In section 9.15 of the next chapter, we provide a brief introduc-
tion to the frequency domain methods which can be used to address problems
involving oscillatory, translational or rotational motions of the whole hydraulic
sytem.
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Ek, B. (1957). Technische Strömungslehre. Springer-Verlag.

Emmons, H.W., Pearson, C.E., and Grant, H.P. (1955). Compressor surge and
stall propagation. Trans. ASME, 79, 455–469.

Emmons, H.W., Kronauer, R.E., and Rockett, J.A. (1959). A survey of stall
propagation—experiment and theory. ASME J. Basic Eng., 81, 409–416.

Fung, Y.C. (1955). An introduction to the theory of aeroelasticity. John Wiley
and Sons.

Gallus, H.E. (1979). High speed blade-wake interactions. von Karman Inst.
for Fluid Mech. Lecture Series 1979-3, 2.

Gallus, H.E., Lambertz, J., and Wallmann, T. (1980). Blade-row interaction
in an axial flow subsonic compressor stage. ASME J. Eng. for Power,
102, 169–177.

Greitzer, E.M. (1976). Surge and rotating stall in axial flow compressors. Part
I: Theoretical compression system model. Part II: Experimental results
and comparison with theory. ASME J. Eng. for Power, 98, 190–211.

Greitzer, E.M. (1981). The stability of pumping systems—the 1980 Freeman
Scholar Lecture. ASME J. Fluids Eng., 103, 193–242.

Ham, N.D. (1968). Aerodynamic loading on a two-dimensional airfoil during
dynamic stall. AIAA J., 6, 1927–1934.

Hartmann, M.J. and Soltis, R.F. (1960). Observation of cavitation in a low
hub-tip ratio axial flow pump. Proc. Gas Turbine Power and Hydraulic
Conf., ASME Paper No. 60-HYD-14.

Hergt, P. and Benner, R. (1968). Visuelle Untersuchung der Strömung in
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Chapter 9

UNSTEADY FLOW IN
HYDRAULIC SYSTEMS

9.1 INTRODUCTION

This chapter is devoted to a description of the methods available for the analysis
of unsteady flows in pumps and their associated hydraulic systems. There are
two basic approaches to the solution of unsteady internal flows: solution in
the time domain or in the frequency domain. The traditional time domain
methods for hydraulic systems are treated in depth elsewhere (for example,
Streeter and Wylie 1967, 1974), and will only be touched upon here. They
have the great advantage that they can incorporate the nonlinear convective
inertial terms in the equations of fluid flow, and are best suited to evaluating
the transient response of flows in long pipes in which the equations of the flow
and the structure are fairly well established. However, they encounter great
difficulties when either the geometry is complex (for example inside a pump),
or the fluid is complex (for example in the presence of cavitation). Under
these circumstances, frequency domain methods have distinct advantages, both
analytically and experimentally. On the other hand, the nonlinear convective
inertial terms cannot readily be included in the frequency-domain methodology
and, consequently, these methods are only accurate for small perturbations from
the mean flow. This does permit evaluation of stability limits, but not the
evaluation of the amplitude of large unstable motions.

It should be stressed that many unsteady hydraulic system problems can and
should be treated by the traditional time domain or “water-hammer” methods.
However, since the focus of this monograph is on pumps and cavitation, we
place an emphasis here on frequency domain methods. Sections 9.5 through 9.10
constitute an introduction to these frequency domain methods. This is followed
by a summary of the transfer functions for simple components and for pumps,
both noncavitating and cavitating. Up to the beginning of section 9.15, it is
assumed that the hydraulic system is at rest in some inertial or nonaccelerating
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frame. However, as indicated in section 8.13, there is an important class of
problems in which the hydraulic system itself is oscillating in space. In section
9.15, we present a brief introduction to the treatment of this class of problems.

9.2 TIME DOMAIN METHODS

The application of time domain methods to one-dimensional fluid flow normally
consists of the following three components. First, one establishes conditions
for the conservation of mass and momentum in the fluid. These may be differ-
ential equations (as in the example in the next section) or they may be jump
conditions (as in the analysis of a shock). Second, one must establish appro-
priate thermodynamic constraints governing the changes of state of the fluid.
In almost all practical cases of single-phase flow, it is appropriate to assume
that these changes are adiabatic. However, in multiphase flows the constraints
can be much more complicated. Third, one must determine the response of the
containing structure to the pressure changes in the fluid.

The analysis is made a great deal simpler in those circumstances in which it is
accurate to assume that both the fluid and the structure behave barotropically.
By definition, this implies that the change of state of the fluid is such that some
thermodynamic quantity (such as the entropy) remains constant, and therefore
the fluid density, ρ(p), is a simple algebraic function of just one thermodynamic
variable, for example the pressure. In the case of the structure, the assumption
is that it deforms quasistatically, so that, for example, the cross-sectional area
of a pipe, A(p), is a simple, algebraic function of the fluid pressure, p. Note
that this neglects any inertial or damping effects in the structure.

The importance of the assumption of a barotropic fluid and structure lies in
the fact that it allows the calculation of a single, unambiguous speed of sound
for waves traveling through the piping system. The sonic speed in the fluid
alone is given by c∞ where

c∞ = (dρ/dp)−
1
2 (9.1)

In a liquid, this is usually calculated from the bulk modulus, κ = ρ/(dρ/dp),
since

c∞ = (κ/ρ)−
1
2 (9.2)

However the sonic speed, c, for one-dimensional waves in a fluid-filled duct is
influenced by the compressibility of both the liquid and the structure:

c = ±
[

1
A

d(ρA)
dp

]− 1
2

(9.3)

or, alternatively,
1
ρc2

=
1
ρc2∞

+
1
A

(
dA

dp

)
(9.4)

The left-hand side is the acoustic impedance of the system, and the equation
reveals that this is the sum of the acoustic impedance of the fluid alone, 1/ρc2∞,
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plus an “acoustic impedance” of the structure given by (dA/dp)/A. For example,
for a thin-walled pipe made of an elastic material of Young’s modulus, E, the
acoustic impedance of the structure is 2a/Eδ, where a and δ are the radius and
the wall thickness of the pipe (δ � a). The resulting form of equation 9.4,

c =
[

1
c2∞

+
2ρa
Eδ

]− 1
2

(9.5)

is known as the Joukowsky water hammer equation. It leads, for example, to
values of c of about 1000m/s for water in standard steel pipes compared with
c∞ ≈ 1400m/s. Other common expressions for c are those used for thick-walled
tubes, for concrete tunnels, or for reinforced concrete pipes (Streeter and Wylie
1967).

9.3 WAVE PROPAGATION IN DUCTS

In order to solve unsteady flows in ducts, an expression for the sonic speed is
combined with the differential form of the equation for conservation of mass
(the continuity equation),

∂

∂t
(ρA) +

∂

∂s
(ρAu) = 0 (9.6)

where u(s, t) is the cross-sectionally averaged or volumetric velocity, s is a co-
ordinate measured along the duct, and t is time. The appropriate differential
form of the momentum equation is

ρ

[
∂u

∂t
+ u

∂u

∂s

]
= −∂p

∂s
− ρgs − ρfu|u|

4a
(9.7)

where gs is the component of the acceleration due to gravity in the s direction,
f is the friction factor, and a is the radius of the duct.

Now the barotropic assumption 9.3 allows the terms in equation 9.6 to be
written as

∂

∂t
(ρA) =

A

c2
∂p

∂t
;

∂(ρA)
∂s

=
A

c2
∂p

∂s
+ ρ

∂A

∂s

∣∣∣
p

(9.8)

so the continuity equation becomes

1
c2
∂p

∂t
+
u

c2
∂p

∂s
+ ρ

[
∂u

∂s
+
u

A

∂A

∂s

∣∣∣
p

]
= 0 (9.9)

Equations 9.7 and 9.9 are two simultaneous, first order, differential equations
for the two unknown functions, p(s, t) and u(s, t). They can be solved given
the barotropic relation for the fluid, ρ(p), the friction factor, f , the normal
cross-sectional area of the pipe, A0(s), and boundary conditions which will be
discussed later. Normally the last term in equation 9.9 can be approximated by
ρu(dA0/ds)/A0. Note that c may be a function of s.
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In the time domain methodology, equations 9.7 and 9.9 are normally solved
using the method of characteristics (see, for example, Abbott 1966). This in-
volves finding moving coordinate systems in which the equations may be written
as ordinary rather than partial differential equations. Consider the relation that
results when we multiply equation 9.9 by λ and add it to equation 9.7:

ρ

[
∂u

∂t
+ (u + λ)

∂u

∂s

]
+
λ

c2

[
∂p

∂t
+
(
u+

c2

λ

)
∂p

∂s

]

+
ρuλ

A0

dA0

ds
+ ρgs +

ρf |u|u
4

= 0 (9.10)

If the coefficients of ∂u
∂s and ∂p

∂s inside the square brackets were identical, in other
words if λ = ±c, then the expressions in the square brackets could be written
as

∂u

∂t
+ (u± c)

∂u

∂s
and

∂p

∂t
+ (u± c)

∂p

∂s
(9.11)

and these are the derivatives du
dt

and dp
dt

on ds
dt

= u± c. These lines ds
dt

= u ± c
are the characteristics, and on them we may write:

1. In a frame of reference moving with velocity u+ c or on ds
dt = u+ c:

du

dt
+

1
ρc

dp

dt
+
uc

A0

dA0

ds
+ gs +

fu|u|
4a

= 0 (9.12)

2. In a frame of reference moving with velocity u− c or on ds
dt

= u− c:

du

dt
− 1
ρc

dp

dt
− uc

A0

dA0

ds
+ gs +

fu|u|
4a

= 0 (9.13)

A simpler set of equations result if the piezometric head, h∗, defined as

h∗ =
p

ρg
+
∫
gs

g
ds (9.14)

is used instead of the pressure, p, in equations 9.12 and 9.13. In almost all
hydraulic problems of practical interest p/ρLc

2 � 1 and, therefore, the term
ρ−1dp/dt in equations 9.12 and 9.13 may be approximated by d(p/ρ)/dt. It
follows that on the two characteristics

1
ρc

dp

dt
± gs ≈ g

c

dh∗

dt
− u

c
gs (9.15)

and equations 9.12 and 9.13 become

1. On ds
dt = u+ c

du

dt
+
g

c

dh∗

dt
+ uc

1
A0

dA0

ds
− ugs

c
+

f

4a
u|u| = 0 (9.16)
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Figure 9.1: Method of characteristics.

2. On ds
dt = u− c

du

dt
− g

c

dh∗

dt
− uc

1
A0

dA0

ds
+
ugs

c
+

f

4a
u|u| = 0 (9.17)

These are the forms of the equations conventionally used in unsteady hydraulic
water-hammer problems (Streeter and Wylie 1967). They are typically solved
by relating the values at a time t + δt (for example point C of figure 9.1) to
known values at the points A and B at time t. The lines AC and BC are
characteristics, so the following finite difference forms of equations 9.16 and
9.17 apply:

(uC − uA)
δt

+
g

cA

(h∗C − h∗A)
δt

+ uAcA

(
1
Ao

dA0

ds

)
A

− uA(gs)A

cA
+
fAuA|uA|

4a
= 0

(9.18)
and

(uC − uB)
δt

− g

cB

(h∗C − h∗B)
δt

− uBcB

(
1
Ao

dA0

ds

)
B

+
uB(gs)B

cB
+
fBuB |uB|

4a
= 0

(9.19)
If cA = cB = c, and the pipe is uniform, so that dA0/ds = 0 and fA = fB = f ,
then these reduce to the following expressions for uC and h∗C :

uC =
(uA + uB)

2
+

g

2c
(h∗A − h∗B) +

δt

2c
[uA(gs)A − uB(gs)B]

−fδt
8a

[uA|uA| + uB |uB|] (9.20)

h∗C =
(h∗A + h∗B)

2
+

c

2g
(uA − uB) +

δt

2g
[uA(gs)A + uB(gs)B ]

−fcδt
8ag

[uA|uA| − uB|uB|] (9.21)
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Figure 9.2: Example of numerical solution by method of characteristics.

9.4 METHOD OF CHARACTERISTICS

The typical numerical solution by the method of characteristics is depicted
graphically in figure 9.2. The time interval, δt, and the spatial increment,
δs, are specified. Then, given all values of the two dependent variables (say
u and h∗) at one instant in time, one proceeds as follows to find all the values
at points such as C at a time δt later. The intersection points, A and B, of the
characteristics through C are first determined. Then interpolation between the
known values at points such as R, S and T are used to determine the values of
the dependent variables at A and B. The values at C follow from equations
such as 9.20 and 9.21 or some alternative version. Repeating this for all points
at time t+ δt allows one to march forward in time.

There is, however, a maximum time interval, δt, that will lead to a stable
numerical solution. Typically this requires that δt be less than δx/c. In other
words, it requires that the points A and B of figure 9.2 lie inside of the interval
RST . The reason for this condition can be demonstrated in the following way.
Assume for the sake of simplicity that the slopes of the characteristics are ±c;
then the distances AS = SB = cδt. Using linear interpolation to find uA and
uB from uR, uS and uT leads to

uA + uB

2
=

(uR + uT )
2

+ uS
cδt

δs
(9.22)

But this is also a principal term in the expression 9.20 for uC . Consequently, an
error in uS of, say, δu would lead to an error in uC (at the same location but δt
later) of δucδt/δs. Thus the error would be magnified with each time step unless
cδt/δs < 1 and, therefore, the numerical integration is only stable if δt < δx/c.
In many hydraulic system analyses this places a quite severe restriction on the
time interval δt, and often necessitates a large number of time steps.

A procedure like the above will also require boundary conditions to be spec-
ified at any mesh point which lies either, at the end of a pipe or, at a junction
of the pipe with a pipe of different size (or a pump or any other component).
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If the points S and C in figure 9.2 were end points, then only one characteris-
tic would lie within the pipe and only one relation, 9.18 or 9.19, can be used.
Therefore, the boundary condition must provide a second relation involving uC

or h∗C (or both). An example is an open-ended pipe for which the pressure and,
therefore, h∗ is known. Alternatively, at a junction between two sizes of pipe,
the two required relations will come from one characteristic in each of the two
pipes, plus a continuity equation at the junction ensuring that the values of
uA0 in both pipes are the same at the junction. For this reason it is sometimes
convenient to rewrite equations 9.16 and 9.17 in terms of the volume flow rate
Q = uA0 instead of u so that

1. On ds
dt

= u+ c

dQ

dt
+
A0g

c

dh∗

dt
+
Qc

A0

dA0

ds
− Qgs

c
+
fA0

4a
Q|Q| = 0 (9.23)

2. On ds
dt = u− c

dQ

dt
− A0g

c

dh∗

dt
− Qc

A0

dA0

ds
+
Qgs

c
+
fA0

4a
Q|Q| = 0 (9.24)

Even in simple pipe flow, additional complications arise when the instanta-
neous pressure falls below vapor pressure and cavitation occurs. In the context
of water-hammer analysis, this is known as “water column separation”, and is
of particular concern because the violent collapse of the cavity can cause severe
structural damage (see, for example, Martin 1978). Furthermore, the occur-
rence of water column separation can trigger a series of cavity formations and
collapses, resulting in a series of impulsive loads on the structure. The possi-
bility of water column separation can be tracked by following the instantaneous
pressure. To proceed beyond this point requires a procedure to incorporate a
cavity in the waterhammer calculation using the method of characteristics. A
number of authors (for example, Tanahashi and Kasahara 1969, Weyler et al.
1971, Safwat and van der Polder 1973) have shown that this is possible. How-
ever the calculated results after the first collapse can deviate substantially from
the observations. This is probably due to the fact that the first cavity is often
a single, coherent void. This will shatter into a cloud of smaller bubbles as a
result of the violence of the first collapse. Subsequently, one is dealing with a
bubbly medium whose wave propagation speeds may differ significantly from
the acoustic speed assumed in the analytical model. Other studies have shown
that qualitatively similar changes in the water-hammer behavior occur when
gas bubbles form in the liquid as a result of dissolved gas coming out of solution
(see, for example, Wiggert and Sundquist 1979).

In many time domain analyses, turbomachines are treated by assuming that
the temporal rates of change are sufficiently slow that the turbomachine re-
sponds quasistatically, moving from one steady state operating point to an-
other. Consequently, if points A and B lie at inlet to and discharge from the
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turbomachine then the equations relating the values at A and B would be

QB = QA = Q (9.25)

h∗B = h∗A +H(Q) (9.26)

where H(Q) is the head rise across the machine at the flow rate, Q. Data
presented later will show that the quasistatic assumption is only valid for rates of
change less than about one-tenth the frequency of shaft rotation. For frequencies
greater than this, the pump dynamics become important (see section 9.13).

For more detailed accounts of the methods of characteristics the reader is
referred to Streeter and Wylie (1967), or any modern text on numerical meth-
ods. Furthermore, there are a number of standard codes available for time
domain analysis of transients in hydraulic systems, such as that developed by
Amies, Levek and Struesseld (1977). The methods work well so long as one has
confidence in the differential equations and models which are used. In other
circumstances, such as occur in two-phase flow, in cavitating flow, or in the
complicated geometry of a turbomachine, the time domain methods may be
less useful than the alternative frequency domain methods to which we now
turn.

9.5 FREQUENCY DOMAIN METHODS

When the quasistatic assumption for a device like a pump or turbine becomes
questionable, or when the complexity of the fluid or the geometry makes the
construction of a set of differential equations impractical or uncertain, then it
is clear that experimental information on the dynamic behavior of the device is
necessary. In practice, such experimental information is most readily obtained
by subjecting the device to fluctuations in the flow rate or head for a range of fre-
quencies, and measuring the fluctuating quantities at inlet and discharge. Such
experimental results will be presented later. For present purposes it is sufficient
to recognize that one practical advantage of frequency domain methods is the
capability of incorporation of experimentally obtained dynamic information and
the greater simplicity of the experiments required to obtain the necessary dy-
namic data. Another advantage, of course, is the core of fundamental knowledge
that exists regarding such methodology (see for example, Pipes 1940, Hennyey
1962, Paynter 1961, Brown 1967). As stated earlier, the disadvantage is that
the methods are limited to small linear perturbations in the flow rate. When the
perturbations are linear, Fourier analysis and synthesis can be used to convert
from transient data to individual frequency components and vice versa. All the
dependent variables such as the mean velocity, u, mass flow rate, m, pressure, p,
or total pressure, pT , are expressed as the sum of a mean component (denoted
by an overbar) and a complex fluctuating component (denoted by a tilde) at a
frequency, ω, which incorporates the amplitude and phase of the fluctuation:

p(s, t) = p̄(s) + Re
{
p̃(s, ω)ejωt

}
(9.27)
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pT (s, t) = p̄T (s) + Re
{
p̃T (s, ω)ejωt

}
(9.28)

m(s, t) = m̄(s) +Re
{
m̃(s, ω)ejωt

}
(9.29)

where j is (−1)
1
2 and Re denotes the real part. Since the perturbations are

assumed linear (|ũ| � ū, |m̃| � m̄, etc.), they can be readily superimposed,
so a summation over many frequencies is implied in the above expressions. In
general, the perturbation quantities will be functions of the mean flow charac-
teristics as well as position, s, and frequency, ω.

We should note that there do exist a number of codes designed to examine
the frequency response of hydraulic systems using frequency domain methods
(see, for example, Amies and Greene 1977).

9.6 ORDER OF THE SYSTEM

The first step in any unsteady flow analysis is to subdivide the system into
components; the points separating two (or more) components will be referred
to as system nodes. Typically, there would be nodes at the inlet and discharge
flanges of a pump. Having done this, it is necessary to determine the order of
the system, N , and this can be accomplished in one of several equivalent ways.
The order of the system is the minimum number of independent fluctuating
quantities which must be specified at a system node in order to provide a com-
plete description of the unsteady flow at that location. It is also equal to the
minimum number of independent, simultaneous first order differential equations
needed to describe the fluid motion in, say, a length of pipe. In this summary
we shall confine most of our discussion to systems of order two in which the
dependent variables are the mass flow rate and either the pressure or the total
head. This includes most of the common analyses of hydraulic systems. It is,
however, important to recognize that order two systems are confined to

1. Incompressible flows at the system nodes, definable by pressure (or head),
and flow rate.

2. Barotropic compressible flows in which, ρ(p), so only the pressure (or
head) and flow rate need be specified at system nodes. This category also
includes those flexible structures for water-hammer analysis in which the
local area is a function only of the local pressure. If, on the other hand,
the local area depends on the area and the pressure elsewhere, then the
system is of order 3 or higher.

3. Two-phase flows at the system nodes that can be represented by a homo-
geneous flow model that neglects the relative velocity between the phases.
Any of the more accurate models that allow relative motion produce higher
order systems.

Note that the order of the system can depend on the choice of system nodes.
Consequently, an ideal evaporator or a condenser can be incorporated in an
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order two system provided the flow at the inlet node is single-phase (of type
2) and the flow at the discharge node also single-phase. A cavitating pump or
turbine also falls within this category, provided the flow at both the inlet and
discharge is pure liquid.

9.7 TRANSFER MATRICES

The transfer matrix for any component or device is the matrix which relates
the fluctuating quantities at the discharge node to the fluctuating quantities at
the inlet node. The earliest exploration of such a concept in electrical networks
appears to be due to Strecker and Feldtkeller (1929) while the utilization of the
idea in the context of fluid systems owes much to the pioneering work of Pipes
(1940). The concept is the following. If the quantities at inlet and discharge are
denoted by subscripts i = 1 and i = 2, respectively, and, if {q̃n

i }, n = 1, 2 → N
denotes the vector of independent fluctuating quantities at inlet and discharge
for a system of order N , then the transfer matrix, [T ], is defined as

{q̃n
2 } = [T ] {q̃n

1 } (9.30)

It is a square matrix of order N . For example, for an order two system in which
the independent fluctuating variables are chosen to be the total pressure, p̃T ,
and the mass flow rate, m̃, then a convenient transfer matrix is{

p̃T
2

m̃2

}
=
[
T11

T21

T12

T22

]{
p̃T
1

m̃1

}
(9.31)

The words transfer function and transfer matrix are used interchangeably here
to refer to the matrix [T ]. In general it will be a function of the frequency, ω,
of the perturbations and the mean flow conditions in the device.

The most convenient independent fluctuating quantities for a hydraulic sys-
tem of order two are usually

1. Either the pressure, p̃, or the instantaneous total pressure, p̃T . Note that
these are related by

p̃T = p̃+
ū2

2
ρ̃+ ρ̄ūũ+ gzρ̃ (9.32)

where ρ̄ is the mean density, ρ̃ is the fluctuating density which is barotrop-
ically connected to p̃, and z is the vertical elevation of the system node.
Neglecting the ρ̃ terms as is acceptable for incompressible flows

p̃T = p̃+ ρ̄ūũ (9.33)

2. Either the velocity, ũ, the volume flow rate, Āũ + ūÃ, or the mass flow
rate, m̃ = ρ̄Āũ+ ρ̄ūÃ + ūĀρ̃. Incompressible flow at a system node in a
rigid pipe implies

m̃ = ρ̄Āũ (9.34)
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The most convenient choices are {p̃, m̃} or {p̃T , m̃}, and, for these two vec-
tors, we will respectively use transfer matrices denoted by [T ∗] and [T ], defined
as {

p̃2

m̃2

}
= [T ∗]

{
p̃1

m̃1

}
;

{
p̃T
2

m̃2

}
= [T ]

{
p̃T
1

m̃1

}
(9.35)

If the flow is incompressible and the cross-section at the nodes is rigid, then the
[T ∗] and [T ] matrices are clearly connected by

T11 = T ∗
11 +

ū2

A2
T ∗

21 ; T12 = T ∗
12 − ū1

A1
T ∗

11 + ū2
A2
T ∗

22 − ū1
A1

ū2
A2
T ∗

21

T21 = T ∗
21 ; T22 = T ∗

22 − ū1
A1
T ∗

21 (9.36)

and hence one is readily constructed from the other. Note that the determinants
of the two matrices, [T ] and [T ∗], are identical.

9.8 DISTRIBUTED SYSTEMS

In the case of a distributed system such as a pipe, it is also appropriate to define
a matrix [F ] (see Brown 1967) so that

d

ds
{q̃n} = − [F (s)] {q̃n} (9.37)

Note that, apart from the frictional term, the equations 9.12 and 9.13 for flow
in a pipe will lead to perturbation equations of this form. Furthermore, in many
cases the frictional term is small, and can be approximated by a linear term in
the perturbation equations; under such circumstances the frictional term will
also fit into the form given by equation 9.37.

When the matrix [F ] is independent of location, s, the distributed system is
called a “uniform system” (see section 9.10). For example, in equations 9.12 and
9.13, this would require ρ, c, a, f and A0 to be approximated as constants (in
addition to the linearization of the frictional term). Under such circumstances,
equation 9.37 can be integrated over a finite length, �, and the transfer matrix
[T ] of the form 9.35 becomes

[T ] = e−[F ]� (9.38)

where e[F ]� is known as the “transmission matrix.” For a system of order two,
the explicit relation between [T ] and [F ] is

T11 = jF11

(
e−jλ2� − e−jλ1�

)
/(λ2 − λ1)

+
(
λ2e

−jλ1� − λ1e
−jλ2�

)
/(λ2 − λ1)

T12 = jF12

(
e−jλ2� − e−jλ1�

)
/(λ2 − λ1)

T21 = jF21

(
e−jλ2� − e−jλ1�

)
/(λ2 − λ1)

T22 = jF22

(
e−jλ2� − e−jλ1�

)
/(λ2 − λ1)

+
(
λ2e

−jλ2� − λ1e
−jλ1�

)
/ (λ2 − λ1) (9.39)
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where λ1, λ2 are the solutions of the equation

λ2 + jλ(F11 + F22) − (F11F22 − F12F21) = 0 (9.40)

Some special features and properties of these transfer functions will be explored
in the sections which follow.

9.9 COMBINATIONS OF TRANSFER

MATRICES

When components are connected in series, the transfer matrix for the combina-
tion is clearly obtained by multiplying the transfer matrices of the individual
components in the reverse order in which the flow passes through them. Thus,
for example, the combination of a pump with a transfer matrix, [TA], followed
by a discharge line with a transfer matrix, [TB], would have a system transfer
matrix, [TS], given by

[TS] = [TB] [TA] (9.41)

The parallel combination of two components is more complicated and does
not produce such a simple result. Issues arise concerning the relations between
the pressures of the inlet streams and the relations between the pressures of the
discharge streams. Often it is appropriate to assume that the branching which
creates the two inlet streams results in identical fluctuating total pressures at
inlet to the two components, p̃T

1 . If, in addition, mixing losses at the downstream
junction are neglected, so that the fluctuating total pressure, p̃T

2 , can be equated
with the fluctuating total pressure at discharge from the two components, then
the transfer function, [TS], for the combination of two components (order two
transfer functions denoted by [TA] and [TB]) becomes

TS11 = (TA11TB12 + TB11TA12)/(TA12 + TB12)
TS12 = TA12TB12/(TA12 + TB12)
TS21 = TA21 + TB21

−(TA11 − TB11)(TA22 − TB22)/(TA12 + TB12)
TS22 = (TA22TB12 + TB22TA12)/(TA12 + TB12) (9.42)

On the other hand, the circumstances at the junction of the two discharge
streams may be such that the fluctuating static pressures (rather than the fluc-
tuating total pressures) are equal. Then, if the inlet static pressures are also
equal, the combined transfer matrix, [TS∗], is related to those of the two com-
ponents ([TA∗] and [TB∗]) by the same relations as given in equations 9.42.
Other combinations of choices are possible, but will not be detailed here.

Using the above combination rules, as well as the relations 9.36 between
the [T ] and [T∗] matrices, the transfer functions for very complicated hydraulic
networks can be systematically synthesized.
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9.10 PROPERTIES OF TRANSFER
MATRICES

Transfer matrices (and transmission matrices) have some fundamental proper-
ties that are valuable to recall when constructing or evaluating the dynamic
properties of a component or system.

We first identify a “uniform” distributed component as one in which the
differential equations (for example, equations 9.12 and 9.13 or 9.37) governing
the fluid motion have coefficients which are independent of position, s. Then,
for the class of systems represented by the equation 9.37, the matrix [F ] is
independent of s. For a system of order two, the transfer function [T ] would
take the explicit form given by equations 9.39.

To determine another property of this class of dynamic systems, consider
that the equations 9.37 have been manipulated to eliminate all but one of the
unknown fluctuating quantities, say q̃1. The resulting equation will take the
form

N∑
n=0

an(s)
dnq̃1

dsn
= 0 (9.43)

In general, the coefficients an(s), n = 0 → N , will be complex functions of
the mean flow and of the frequency. It follows that there are N independent
solutions which, for all the independent fluctuating quantities, may be expressed
in the form

{q̃n} = [B(s)] {A} (9.44)

where [B(s)] is a matrix of complex solutions and {A} is a vector of arbitrary
complex constants to be determined from the boundary conditions. Conse-
quently, the inlet and discharge fluctuations denoted by subscripts 1 and 2,
respectively, are given by

{q̃n
1 } = [B(s1)] {A} ; {q̃n

2 } = [B(s2)] {A} (9.45)

and therefore the transfer function

[T ] = [B(s2)] [B(s1)]
−1 (9.46)

Now for a uniform system, the coefficients an and the matrix [B] are independent
of s. Hence the equation 9.43 has a solution of the form

[B(s)] = [C] [E] (9.47)

where [C] is a known matrix of constants, and [E] is a diagonal matrix in which

Enn = ejγns (9.48)

where γn, n = 1 to N , are the solutions of the dispersion relation

N∑
n=0

anγ
n = 0 (9.49)
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Note that γn are the wavenumbers for the N types of wave of frequency, ω,
which can propagate through the uniform system. In general, each of these
waves has a distinct wave speed, cn, given by cn = −ω/γn . It follows from
equations 9.47, 9.48 and 9.46 that the transfer matrix for a uniform distributed
system must take the form

[T ] = [C] [E∗] [C]−1 (9.50)

where [E∗] is a diagonal matrix with

E∗
nn = ejγn� (9.51)

and � = s2 − s1.
An important diagnostic property arises from the form of the transfer matrix,

9.50, for a uniform distributed system. The determinant, DT , of the transfer
matrix [T ] is

DT = exp {j (γ1 + γ2 + · · ·+ γN ) �} (9.52)

Thus the value of the determinant is related to the sum of the wavenumbers
of the N different waves which can propagate through the uniform distributed
system. Furthermore, if all the wavenumbers, γn , are purely real, then

|DT | = 1 (9.53)

The property that the modulus of the determinant of the transfer function is
unity will be termed “quasi-reciprocity” and will be discussed further below.
Note that this will only be the case in the absence of wave damping when γn

and cn are purely real.
Turning now to another property, a system is said to be “reciprocal” if, in

the matrix [Z] defined by {
p̃T
1

p̃T
2

}
= [Z]

{
m̃1

−m̃2

}
(9.54)

the transfer impedances Z12 and Z21 are identical (see Brown 1967 for the
generalization of this property in systems of higher order). This is identical to
the condition that the determinant, DT , of the transfer matrix [T ] be unity:

DT = 1 (9.55)

We shall see that a number of commonly used components have transfer func-
tions which are reciprocal. In order to broaden the perspective we have intro-
duced the property of “quasi-reciprocity” to signify those components in which
the modulus of the determinant is unity or

|DT | = 1 (9.56)

We have already noted that uniform distributed components with purely real
wavenumbers are quasi-reciprocal. Note that a uniform distributed component
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will only be reciprocal when the wavenumbers tend to zero, as, for example, in
incompressible flows in which the wave propagation speeds tend to infinity.

By utilizing the results of section 9.9 we can conclude that any series or par-
allel combination of reciprocal components will yield a reciprocal system. Also
a series combination of quasi-reciprocal components will be quasi-reciprocal.
However it is not necessarily true that a parallel combination of quasi-reciprocal
components is quasi-reciprocal.

An even more restrictive property than reciprocity is the property of “sym-
metry”. A “symmetric” component is one that has identical dynamical prop-
erties when turned around so that the discharge becomes the inlet, and the
directional convention of the flow variables is reversed (Brown 1967). Then, in
contrast to the regular transfer matrix, [T ], the effective transfer matrix under
these reversed circumstances is [TR] where{

p̃T
1

−m̃1

}
= [TR]

{
p̃T
2

−m̃2

}
(9.57)

and, comparing this with the definition 9.31, we observe that

TR11 = T22/DT ; TR12 = T12/DT

TR21 = T21/DT ; TR22 = T11/DT (9.58)

Therefore symmetry, [T ] = [TR], requires

T11 = T22 and DT = 1 (9.59)

Consequently, in addition to the condition, DT = 1, required for reciprocity,
symmetry requires T11 = T22.

As with the properties of reciprocity and quasi-reciprocity, it is useful to
consider the property of a system comprised of symmetric components. Note
that according to the combination rules of section 9.9, a parallel combination
of symmetric components is symmetric, whereas a series combination may not
retain this property. In this regard symmetry is in contrast to quasi-reciprocity
in which the reverse is true.

In the case of uniform distributed systems, Brown (1967) shows that sym-
metry requires

F11 = F22 = 0 (9.60)

so that the solution of the equation 9.40 for λ is λ = ±λ∗ where λ∗ = (F21F12)
1
2

is known as the “propagation operator” and the transfer function 9.39 becomes

T11 = T22 = coshλ∗�
T12 = ZC sinhλ∗�
T21 = Z−1

C sinhλ∗� (9.61)

where ZC = (F12/F21)
1
2 = (T12/T21)

1
2 is known as the “characteristic impedance”.

In addition to the above properties of transfer functions, there are also prop-
erties associated with the net flux of fluctuation energy into the component or
system. These will be elucidated after we have examined some typical transfer
functions for components of hydraulic systems.
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9.11 SOME SIMPLE TRANSFER
MATRICES

The flow of an incompressible fluid in a straight, rigid pipe will be governed by
the following versions of equations 9.6 and 9.7:

∂u

∂s
= 0 (9.62)

∂pT

∂s
= −ρfu|u|

4a
− ρ

∂u

∂t
(9.63)

If the velocity fluctuations are small compared with the mean velocity denoted
by U (positive in direction from inlet to discharge), and the term u|u| is lin-
earized, then the above equations lead to the transfer function

[T ] =
[

1 −(R+ jωL)
0 1

]
(9.64)

where (R + jωL) is the “impedance” made up of a “resistance”, R, and an
“inertance”, L, given by

R =
fU�

2aA
, L =

�

A
(9.65)

where A, a, and � are the cross-sectional area, radius, and length of the pipe.
A number of different pipes in series would then have

R = Q
∑

i

fi�i
2aiA

2
i

; L =
∑

i

�i
Ai

(9.66)

where Q is the mean flow rate. For a duct of non-uniform area

R = Q

∫ �

0

f(s)ds
2a(s)(A(s))2

; L =
∫ �

0

ds

A(s)
(9.67)

Note that all such ducts represent reciprocal and symmetric components.
A second, common hydraulic element is a simple “compliance”, exemplified

by an accumulator or a surge tank. It consists of a device installed in a pipeline
and storing a volume of fluid, VL, which varies with the local pressure, p, in the
pipe. The compliance, C, is defined by

C = ρ
dVL

dp
(9.68)

In the case of a gas accumulator with a mean volume of gas, V̄G, which behaves
according to the polytropic index, k, it follows that

C = ρV̄G/kp̄ (9.69)
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where p̄ is the mean pressure level. In the case of a surge tank in which the free
surface area is AS , it follows that

C = AS/g (9.70)

The relations across such compliances are

m̃2 = m̃1 − jωCp̃T ; p̃T
1 = p̃T

2 = p̃T (9.71)

Therefore, using the definition 9.35, the transfer function [T ] becomes

[T ] =
[

1 0
−jωC 1

]
(9.72)

Again, this component is reciprocal and symmetric, and is equivalent to a ca-
pacitor to ground in an electrical circuit.

Systems made up of lumped resistances, R, inertances, L, and compliances,
C, will be termed LRC systems. Individually, all three of these components are
both reciprocal and symmetric. It follows that any system comprised of these
components will also be reciprocal (see section 9.10); hence all LRC systems are
reciprocal. Note also that, even though individual components are symmetric,
LRC systems are not symmetric since series combinations are not, in general,
symmetric (see section 9.10).

An even more restricted class of systems are those consisting only of iner-
tances, L, and compliances, C. These systems are termed “dissipationless” and
have some special properties (see, for example, Pipes 1963) though these are
rarely applicable in hydraulic systems.

As a more complicated example, consider the frictionless (f = 0) compress-
ible flow in a straight uniform pipe of mean cross-sectional area, A0. This can
readily be shown to have the transfer function

T ∗
11 = (cos θ + jM sin θ) ejθM

T ∗
12 = −jŪ sin θejθM

/
A0M

T ∗
21 = −jA0M(1 −M2) sin θejθM

/
Ū

T ∗
22 = (cos θ − jM sin θ) ejθM (9.73)

where Ū is the mean fluid velocity, M = Ū/c is the Mach number, and θ is a
reduced frequency given by

θ = ω�/c(1 −M2) (9.74)

Note that all the usual acoustic responses can be derived quite simply from this
transfer function. For example, if the pipe opens into reservoirs at both ends,
so that appropriate inlet and discharge conditions are p̃1 = p̃2 = 0, then the
transfer function, equation 9.35, can only be satisfied with m̃1 �= 0 if T ∗

12 = 0.
According to equations 9.73, this can only occur if sinθ = 0, θ = nπ or

ω = nπc(1 −M2)
/
� (9.75)
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which are the natural organ-pipe modes for such a pipe. Note also that the
determinant of the transfer matrix is

DT = DT∗ = e2jθM (9.76)

Since no damping has been included, this component is an undamped distributed
system, and is therefore quasi-reciprocal. At low frequencies and Mach numbers,
the transfer function 9.73 reduces to

T ∗
11 → 1 ; T ∗

12 → − jω�
A0

T ∗
21 → −j (A0�

c2

)
ω ; T ∗

22 → 1 (9.77)

and so consists of an inertance, �/A0, and a compliance, A0�/c
2.

When friction is included (as is necessary in most water-hammer analyses)
the transfer function becomes

T ∗
11 =

(
k1e

k1 − k2e
k2
)
/ (k1 − k2)

T ∗
12 = −Ū(jθ + f∗)

(
ek1 − ek2

) /
A0M (k1 − k2)

T ∗
21 = −jθA0M(1 −M2)

(
ek1 − ek2

) /
Ū (k1 − k2)

T ∗
22 =

(
k1e

k2 − k2e
k1
)
/ (k1 − k2) (9.78)

in which f∗ = f�M/2a(1 −M2) and k1, k2 are the solutions of

k2 − kM(2jθ + f∗) − jθ(1 −M2)(jθ + f∗) = 0 (9.79)

The determinant of this transfer matrix [T ∗] is

DT∗ = ek1+k2 (9.80)

Note that this component is only quasi-reciprocal in the undamped limit, f → 0.

9.12 FLUCTUATION ENERGY FLUX

It is clearly important to be able to establish the net energy flux into or out
of a hydraulic system component (see Brennen and Braisted 1980). If the fluid
is incompressible, and the order two system is characterized by the mass flow
rate, m, and the total pressure, pT , then the instantaneous energy flux through
any system node is given by mpT /ρ where the density is assumed constant.
Substituting the expansions 9.28, 9.29 for pT and m, it is readily seen that the
mean flux of energy due to the fluctuations, E, is given by

E =
1
4ρ

{
m̃¯̃pT + ¯̃mp̃T

}
(9.81)

where the overbar denotes a complex conjugate. Superimposed on E are fluctu-
ations in the energy flux whose time-average value is zero, but we shall not be
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concerned with those fluctuations. The mean fluctuation energy flux, E, is of
more consequence in terms, for example, of evaluating stability. It follows that
the net flux of fluctuation energy into a component from the fluid is given by

E1 −E2 = ∆E =
1
4ρ

[
m̃1

¯̃pT
1 + ¯̃m1p̃

T
1 − m̃2

¯̃pT
2 − ¯̃m2p̃

T
2

]
(9.82)

and when the transfer function form 9.31 is used to write this in terms of the
inlet fluctuating quantities

∆E =
1
4ρ

[
−Γ1p̃

T
1
¯̃pT
1 − Γ2m̃1

¯̃m1 + (1 − Γ3)m̃1
¯̃pT
1 + (1 − Γ̄3) ¯̃m1p̃

T
1

]
(9.83)

where

Γ1 = T11T̄21 + T21T̄11

Γ2 = T22T̄12 + T12T̄22

Γ3 = T̄11T22 + T̄21T12 (9.84)

and
|Γ3|2 = |DT |2 + Γ1Γ2 (9.85)

Using the above relations, we can draw the following conclusions:

1. A component or system which is “conservative” (in the sense that ∆E = 0
under all circumstances, whatever the values of p̃T

1 and m̃1) requires that

Γ1 = Γ2 = 0 , Γ3 = 1 (9.86)

and these in turn require not only that the system or component be “quasi-
reciprocal” (|DT | = 1) but also that

T̄11

T11
= − T̄12

T12
= − T̄21

T21
=
T̄22

T22
=

1
DT

(9.87)

Such conditions virtually never occur in real hydraulic systems, though
any combination of lumped inertances and compliances does constitute a
conservative system. This can be readily demonstrated as follows. An
inertance or compliance has DT = 1, purely real T11 and T22 so that
T11 = T̄11 and T22 = T̄22, and purely imaginery T21 and T12 so that
T21 = −T̄21 and T12 = −T̄12. Hence individual inertances or compliances
satisfy equations 9.86 and 9.87. Furthermore, from the combination rules
of section 9.9, it can readily be seen that all combination of components
with purely real T11 and T22 and purely imaginery T21 and T12 will retain
the same properties. Consequently, any combination of inertance and
compliance satisfies equations 9.86 and 9.87 and is conservative.

2. A component or system will be considered “completely passive” if ∆E
is positive for all possible values of m̃1 and p̃T

1 . This implies that a net
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external supply of energy to the fluid is required to maintain any steady
state oscillation. To find the characteristics of the transfer function which
imply “complete passivity” the expression 9.83 is rewritten in the form

∆E =
|p̃T

1 |2
4ρ

[−Γ1 − Γ2xx̄+ (1 − Γ3)x+ (1 − Γ̄3)x̄
]

(9.88)

where x = p̃T
1 /m̃1. It follows that the sign of ∆E is determined by the

sign of the expression in the square brackets. Moreover, if Γ2 < 0, it is
readily seen that this expression has a minimum and is positive for all x
if

Γ1Γ2 > |1− Γ3|2 (9.89)

which, since Γ2 < 0, implies Γ1 < 0. It follows that necessary and sufficient
conditions for a component or system to be completely passive are

Γ1 < 0 and G < 0 (9.90)

where
G = |1− Γ3|2 − Γ1Γ2 = |DT |2 + 1 − 2Re{Γ3} (9.91)

The conditions 9.90 also imply Γ2 < 0. Conversely a “completely active”
component or system which always has ∆E < 0 occurs if and only if Γ1 > 0
and G < 0 which imply Γ2 > 0. These properties are not, of course,
the only possibilities. A component or system which is not completely
passive or active could be “potentially active.” That is to say, ∆E could
be negative for the right combination of m̃1 and p̃T

1 , which would, in
turn, depend on the rest of the system to which the particular component
or system is attached. Since Γ1 is almost always negative, it transpires
that most components are either completely passive or potentially active,
depending on the sign of the quantity, G, which will therefore be termed
the “dynamic activity”. These circumstances can be presented graphically
as shown in figure 9.3.

In practice, of course, both the transfer function, and properties like the
dynamic activity, G, will be functions not only of frequency but also of the
mean flow conditions. Hence the potential for system instability should be
evaluated by tracking the graph of G against frequency, and establishing the
mean flow conditions for which the quantity G becomes negative within the
range of frequencies for which transfer function information is available.

While the above analysis represents the most general approach to the sta-
bility of systems or components, the results are not readily interpreted in terms
of commonly employed measures of the system or component characteristics. It
is therefore instructive to consider two special subsets of the general case, not
only because of the simplicity of the results, but also because of the ubiquity of
these special cases. Consider first a system or component that discharges into
a large, constant head reservoir, so that p̃T

2 = 0. It follows from the expression
9.82 that

∆E =
|m̃1|2
2ρ

Re{p̃T
1 /m̃1} (9.92)
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Figure 9.3: Schematic of the conditions for completely active, completely passive
and potentially active components or systems.

Note that ∆E is always purely real and that the sign only depends on the real
part of the “input impedance”

p̃T
1 /m̃1 = −T12/T11 (9.93)

Consequently a component or system with a constant head discharge will be
dynamically stable if the “input resistance” is positive or

Re
{−T12

/
T11

}
> 0 (9.94)

This relation between the net fluctuation energy flux, the input resistance, and
the system stability, is valuable because of the simplicity of its physical inter-
pretation. In practice, the graph of input resistance against frequency can be
monitored for changes with mean flow conditions. Instabilities will arise at
frequencies for which the input resistance becomes negative.

The second special case is that in which the component or system begins
with a constant head reservoir rather than discharging into one. Then

∆E =
|m̃2|2
2ρ

Re
{−p̃T

2

/
m̃2

}
(9.95)

and the stability depends on the sign of the real part of the “discharge impedance”

−p̃T
2

/
m̃2 = −T12

/
T22 (9.96)

Thus a constant head inlet component or system will be stable when the “dis-
charge resistance” is positive or

Re
{−T12

/
T22

}
> 0 (9.97)
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In practice, since T11 and T22 are close to unity for many components and
systems, both the condition 9.94 and the condition 9.97 reduce to the approx-
imate condition that the system resistance, Re{−T12}, be positive for system
stability. While not always the case, this approximate condition is frequently
more convenient and more readily evaluated than the more precise conditions
detailed above and given in equations 9.94 and 9.97. Note specifically, that the
system resistance can be obtained from steady state operating characteristics;
for example, in the case of a pump or turbine, it is directly related to the slope
of the head-flow characteristic and instabilities in these devices which result
from operation in a regime where the slope of the characteristic is positive and
Re{−T12} is negative are well known (Greitzer 1981) and have been described
earlier (section 8.6).

It is, however, important to recognize that the approximate stability criterion
Re{−T12} > 0, while it may provide a useful guideline in many circumstances, is
by no means accurate in all cases. One notable and important case in which this
criterion is inaccurate is the auto-oscillation phenomenon described in section
8.7. This is not the result of a positive slope in the head-flow characteristic, but
rather occurs where this slope is negative and is caused by cavitation-induced
changes in the other elements of the transfer function. This circumstance will
be discussed further in section 9.14.

9.13 NON-CAVITATING PUMPS

Consider now the questions associated with transfer functions for pumps or
other turbomachines. In the simple fluid flows of section 9.11 we were able to
utilize the known equations governing the flow in order to construct the transfer
functions for those simple components. In the case of more complex fluids or
geometries, one cannot necessarily construct appropriate one-dimensional flow
equations, and therefore must resort to results derived from more global applica-
tion of conservation laws or to experimental measurements of transfer matrices.
Consider first the transfer matrix, [TP ], for incompressible flow through a pump
(all pump transfer functions will be of the [T ] form defined in equation 9.35)
which will clearly be a function not only of the frequency, ω, but also of the
mean operating point as represented by the flow coefficient, φ, and the cavi-
tation number, σ. At very low frequencies one can argue that the pump will
simply track up and down the performance characteristic, so that, for small
amplitude perturbations and in the absence of cavitation, the transfer function
becomes

[TP ] =


 1 d(∆pT )

dm

0 1


 (9.98)

where d(∆pT )/dm is the slope of the steady state operating characteristic of
total pressure rise versus mass flow rate. Thus we define the pump resistance,
RP = −d(∆pT )/dm, where RP is usually positive under design flow conditions,
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but may be negative at low flow rates as discussed earlier (section 8.6). At fi-
nite frequencies, the elements TP21 and TP22 will continue to be zero and unity
respectively, since the instantaneous flow rate into and out of the pump must
be identical when the fluid and structure are incompressible and no cavitation
occurs. Furthermore, TP11 must continue to be unity since, in an incompress-
ible flow, the total pressure differences must be independent of the level of the
pressure. It follows that the transfer function at higher frequencies will become

[TP ] =
[

1 −IP
0 1

]
(9.99)

where the pump impedence, IP , will, in general, consist of a resistive part,
RP , and a reactive part, jωLP . The resistance, RP , and inertance, LP , could
be functions of both the frequency, ω, and the mean flow conditions. Such
simple impedance models for pumps have been employed, together with trans-
fer functions for the suction and discharge lines (equation 9.73), to model the
dynamics of pumping systems. For example, Dussourd (1968) used frequency
domain methods to analyse pulsation problems in boiler feed pump systems.
More recently, Sano (1983) used transfer functions to obtain natural frequencies
for pumping systems that agree well with those observed experimentally.

The first fundamental investigation of the dynamic response of pumps seems
to have been carried out by Ohashi (1968) who analyzed the oscillating flow
through a cascade, and carried out some preliminary experimental investiga-
tions on a centrifugal pump. These studies enabled him to evaluate the fre-
quency at which the response of the pump would cease to be quasistatic (see
below). Fanelli (1972) appears to have been the first to explore the nature
of the pump transfer function, while the first systematic measurements of the
impedance of a noncavitating centrifugal pump are those of Anderson, Blade and
Stevans (1971). Typical resistive and reactive component measurements from
the work of Anderson, Blade and Stevans are reproduced in figure 9.4. Note
that, though the resistance approaches the quasistatic value at low frequencies,
it also departs significantly from this value at higher frequencies. Moreover, the
reactive part is only roughly linear with frequency. The resistance and inertance
are presented again in figure 9.5, where they are compared with the results of a
dynamic model proposed by Anderson, Blade and Stevans. In this model, each
pump impeller passage is represented by a resistance and an inertance, and the
volute by a series of resistances and inertances. Since each impeller passage
discharges into the volute at different locations relative to the volute discharge,
each impeller passage flow experiences a different impedance on its way to the
discharge. This results in an overall pump resistance and inertance that are
frequency dependent as shown in figure 9.5. Note that the comparison with
the experimental observations (which are also included in figure 9.5) is fair, but
not completely satisfactory. Moreover, it should be noted, that the comparison
shown is for a flow coefficient of 0.442 (above the design flow coefficient), and
that, at higher flow coefficients, the model and experimental results exhibited
poorer agreement.
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Figure 9.4: Impedance measurements made by Anderson, Blade and Stevans
(1971) on a centrifugal pump (impeller diameter of 18.9 cm) operating at a flow
coefficient of 0.442 and a speed of 3000 rpm. The real or resistive part of (−T12)
and the imaginary or reactive part of (T12) are plotted against the frequency of
the perturbation.

Subsequent measurements of the impedance of non-cavitating axial and
mixed flow pumps by Ng and Brennen (1978) exhibit a similar increase in the re-
sistance with frequency (see next section). In both sets of dynamic data, it does
appear that significant departure from the quasistatic values can be expected
when the reduced frequency, (frequency/rotation frequency) exceeds about 0.02
(see figures 9.5 and 9.6). This is roughly consistent with the criterion suggested
by Ohashi (1968) who concluded that non-quasistatic effects would occur above
a reduced frequency of 0.05ZRφ/ cosβ. For the inducers of Ng and Brennen,
Ohashi’s criterion yields values for the critical reduced frequency of about 0.015.



9.14. CAVITATING INDUCERS 233

Figure 9.5: Typical inertance and resistance values from the centrifugal pump
data of figure 9.4. Data do not include the diffuser contribution. The lines
correspond to analytical values obtained as described in the text.

9.14 CAVITATING INDUCERS

In the presence of cavitation, the transfer function for a pump or inducer will
be considerably more complicated than that of equation 9.99. Even at low
frequencies, the values of TP11 will become different from unity, because the
head rise will change with the inlet total pressure, as manifest by the nonzero
value of d(∆pT )/dpT

1 at a given mass flow rate, m1. Furthermore, the volume
of cavitation, VC(pT

1 , m1), will vary with both the inlet total pressure, pT
1 (or

NPSH or cavitation number), and with the mass flow rate, m1 (or with angle
of incidence), so that

[TP ] =


 1 + d(∆pT )

dpT
1

|m1
d∆pT

dm1
|pT

1

jωρL
dVC

dpT
1
|m1 1 + jωρL

dVC

dm1
|pT

1


 (9.100)

Brennen and Acosta (1973, 1975, 1976) identified this quasistatic or low fre-
quency form for the transfer function of a cavitating pump, and calculated
values of the cavitation compliance, −ρL(dVC/dp

T
1 )m1 and the cavitation mass

flow gain factor, −ρL(dVC/dm1)pT
1
, using the cavitating cascade solution dis-

cussed in section 7.10. Both the upper limit of frequency at which this qua-
sistatic approach is valid and the form of the transfer function above this limit
cannot readily be determined except by experiment. Though it was clear that
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Figure 9.6: Typical transfer functions for a cavitating inducer obtained by Bren-
nen et al. (1982) for a 10.2 cm diameter inducer (Impeller VI) operating at
6000 rpm and a flow coefficient of φ1 = 0.07. Data is shown for four different
cavitation numbers, σ = (A) 0.37, (C) 0.10, (D) 0.069, (G) 0.052 and (H) 0.044.
Real and imaginary parts are denoted by the solid and dashed lines respec-
tively. The quasistatic pump resistance is indicated by the arrow (adapted from
Brennen et al. 1982).

experimental measurements of the dynamic transfer functions were required,
these early investigations of Brennen and Acosta did highlight the importance
of both the compliance and the mass flow gain factor in determining the stability
of systems with cavitating pumps.

Ng and Brennen (1978) and Brennen et al. (1982) conducted the first ex-
periments to measure the complete transfer function for cavitating inducers.
Typical transfer functions are those for the 10.2 cm diameter Impeller VI (see
section 2.8), whose noncavitating steady state performance was presented in
figure 7.15. Transfer matrices for that inducer are presented in figure 9.6 as
a function of frequency (up to 32 Hz), for a speed of 6000 rpm, a flow coeffi-
cient φ1 = 0.07 and for five different cavitation numbers ranging from data set A
that was taken under noncavitating conditions, to data set C that showed a little
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Figure 9.7: Determinant, DTP , of the experimental transfer functions of figure
9.6. The real and imaginary parts are shown by the solid and dashed lines
respectively and, as in figure 9.6, the letter code A→H refers to steady state
operating points with increasing cavitation (adapted from Brennen et al. 1982).

cavitation, to data set H that was close to breakdown. The real and imaginary
parts are represented by the solid and dashed lines, respectively. Note, first,
that, in the absence of cavitation (Case A), the transfer function is fairly close
to the anticipated form of equation 9.99 in which TP11 = TP22 = 1, TP21 = 0.
Also, the impedance (TP12) is comprised of an expected inertance (the imagi-
nary part of TP12 is linear in frequency) and a resistance (real part of −TP12)
which is consistent with the quasistatic resistance from the slope of the head rise
characteristic (shown by the arrow in figure 9.6 at TP12RT1/Ω = 1.07). The
resistance appears to increase with increasing frequency, a trend which is consis-
tent with the centrifugal pump measurements of Anderson, Blade and Stevans
(1971) which were presented in figure 9.5.

It is also clear from figure 9.6 that, as the cavitation develops, the transfer
function departs significantly from the form of equation 9.99. One observes that
TP11 and TP22 depart from unity, and develop nonzero imaginary parts that
are fairly linear with frequency. Also TP21 becomes nonzero, and, in particular,
exhibits a compliance which clearly increases with decreasing cavitation number.
All of these changes mean that the determinant, DTP , departs from unity as the
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Figure 9.8: Polynomial curves fitted to the experimental data of figure 9.6
(adapted from Brennen et al. 1982).

cavitation becomes more extensive. This is illustrated in figure 9.7, which shows
the determinant corresponding to the data of figure 9.6. Note that DTP ≈ 1 for
the non-cavitating case A, but that it progressively deviates from unity as the
cavitation increases. We can conclude that the presence of cavitation can cause
a pump to assume potentially active dynamic characteristics when it would
otherwise be dynamically passive.

Polynomials of the form

TPij =
n∗∑

n=0

Anij(jω)n (9.101)

were fitted to the experimental transfer function data using values of n∗ of 3 or 5.
To illustrate the result of such curve fitting we include figure 9.8, which depicts
the result of curve fitting figure 9.6. We now proceed to examine several of
the coefficients Anij that are of particular interest (note that A011 = A022 = 1,
A021 = 0 for reasons described earlier). We begin with the inertance, −A112,
which is presented nondimensionally in figure 9.9. Though there is significant
scatter at the lower cavitation numbers, the two different sizes of inducer pump
appear to yield similar inertances. Moreover, the data suggest some decrease
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Figure 9.9: The inertance, −A112, non-dimensionalized as −A112RT1, as a func-
tion of cavitation number for two axial inducer pumps (Impellers IV and VI)
with the same geometry but different diameters. Data for the 10.2 cm diameter
Impeller VI is circled and was obtained from the data of figure 9.6. The uncir-
cled points are for the 7.58 cm diameter Impeller IV. Adapted from Brennen et
al. (1982).

Figure 9.10: The compliance, −A121, nondimensionalized as −A121Ω2/RT1 for
the same circumstances as described in figure 9.9.
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Figure 9.11: The mass flow gain factor, −A122, nondimensionalized as −A122Ω
for the same circumstances as described in figure 9.9.

Figure 9.12: The characteristic, A111, nondimensionalized as A111Ω for the same
circumstances as described in figure 9.9.

in the inertance with decreasing σ. On the other hand, the corresponding data
for the compliance, −A121, which is presented in figure 9.10 seems roughly
inversely proportional to the cavitation number. And the same is true for both
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Figure 9.13: Schematic of the bubbly flow model for the dynamics of cavitating
pumps (adapted from Brennen 1978).

the mass flow gain factor, −A122, and the coefficient that defines the slope of
the imaginary part of TP11, A111; these are presented in figures 9.11 and 9.12,
respectively. All of these data appear to conform to the physical scaling implicit
in the nondimensionalization of each of the dynamic characteristics.

It is also valuable to consider the results of figures 9.9 to 9.12 in the context of
an analytical model for the dynamics of cavitating pumps (Brennen 1978). We
present here a brief physical description of that model, the essence of which is
depicted schematically in figure 9.13, which shows a developed, cylindrical sur-
face within the inducer. The cavitation is modeled as a bubbly mixture which
extends over a fraction, ε, of the length, c, of each blade passage before collaps-
ing at a point where the pressure has risen to a value which causes collapse. The
mean void fraction of the bubbly mixture is denoted by α0. Thus far we have
described a flow which is nominally steady. We must now consider perturbing
both the pressure and the flow rate at inlet, since the relation between these
perturbations, and those at discharge, determine the transfer function. Pressure
perturbations at inlet will cause pressure waves to travel through the bubbly
mixture and this part of the process is modeled using a mixture compressibility
parameter, K, to determine that wave speed. On the other hand, fluctuations
in the inlet flow rate produce fluctuations in the angle of incidence which cause
fluctuations in the rate of production of cavitation at inlet. These disturbances
would then propagate down the blade passage as kinematic or concentration
waves which travel at the mean mixture velocity. This process is modeled by
a factor of proportionality, M , which relates the fluctuation in the angle of in-
cidence to the fluctuations in the void fraction. Neither of the parameters, K
or M , can be readily estimated analytically; they are, however, the two key
features in the bubbly flow model. Moreover they respectively determine the
cavitation compliance and the mass flow gain factor, two of the most impor-
tant factors in the transfer function insofar as the prediction of instability is
concerned.
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Figure 9.14: Transfer functions for Impellers VI and IV at φ1 = 0.07 calculated
from the bubbly flow model using K = 1.3 and M = 0.8 (adapted from Brennen
et al. 1982).

The theory yields the following expressions for A111, A112, A121 and A122 at
small dimensionless frequencies (Brennen 1978, 1982):

A111Ω � Kζε

4
{
cotβb1 + φ1

/
sin2 βb1

}
A112RT1 � −ζ/4π sin2 βb1

A121Ω2
/
RT1 � −πKζε/4

A122Ω � −ζε
4
{
M
/
φ1 −Kφ1

/
sin2 βb1

}
(9.102)

where ζ = �ZR/RT1 where � is the axial length of the inducer, and ZR is the
number of blades. Evaluation of the transfer function elements can be effected
by noting that the experimental observations suggest ε ≈ 0.02/σ. Consequently,
the Anij characteristics from equations 9.102 can be plotted against cavitation
number. Typical results are shown in figures 9.9 to 9.12 for various choices of
the two undetermined parameters K and M . The inertance, A112, which is
shown in figure 9.9, is independent of K and M . The calculated value of the
inertance for these impellers is about 9.2; the actual value may be somewhat
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larger because of three-dimensional geometric effects that were not included in
the calculation (Brennen et al. 1982). The parameter M only occurs in A122,
and it appears from figure 9.11 as though values of this parameter in the range
0.8 → 0.95 provide the best agreement with the data. Also, a value of K ≈ 1.3
seems to generate a good match with the data of figures 9.10, 9.11 and 9.12.

Finally, since K = 1.3 and M = 0.8 seem appropriate values for these im-
pellers, we reproduce in figure 9.14 the complete theoretical transfer functions
for various cavitation numbers. These should be directly compared with the
transfer functions of figure 9.8. Note that the general features of the transfer
functions, and their variation with cavitation number, are reproduced by the
model. The most notable discrepency is in the real part of TP21; this param-
eter is, however, usually rather unimportant in determining the stability of a
hydraulic system. Most important from the point of view of stability predic-
tions, the cavitation compliance and mass flow gain factor components of the
transfer function are satisfactorily modeled.

9.15 SYSTEM WITH RIGID BODY
VIBRATION

All of the preceding analysis has assumed that the structure of the hydraulic
system is at rest in some inertial coordinate system. However, there are a
number of important problems in which the oscillation of the hydraulic sys-
tem itself may play a central role. For instance, one might seek to evaluate
the unsteady pressures and flow rates in a hydraulic system aboard a vehicle
undergoing translational or rotational oscillations. Examples might be oil or
water pumping systems aboard a ship, or the fuel and hydraulic systems on an
aircraft. In other circumstances, the motion of the vehicle may couple with the
propulsion system dynamics to produce instabilities, as in the simplest of the
Pogo instabilities of liquid propelled rocket engines (see section 8.13).

In this section we give a brief outline of how rigid body oscillations of the
hydraulic system can be included in the frequency domain methodology. For
convenience we shall refer to the structure of the hydraulic system as the “ve-
hicle”. There are, of course, more complex problems in which the deformation
of the vehicle is important. Such problems require further refinement of the
methods presented here.

In order to include the rigid body oscillation of the vehicle in the analysis, it
is first necessary to define a coordinate system, x, which is fixed in the vehicle,
and a separate inertial or nonaccelerating coordinate system, xA. The mean
location of the origin of the x system is chosen to coincide with the origin of the
xA system. The oscillations of the vehicle are then described by stating that
the translational and rotational displacements of the x coordinate system in the
xA system are respectively given by

Re
{
d̃ejωt

}
; Re

{
θ̃ejωt

}
(9.103)
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It follows that the oscillatory displacement of any vector point, x, in the vehicle
is given by

Re
{

(d̃+ θ̃× x)ejωt
}

(9.104)

and the oscillatory velocity of that point will be

Re
{
jω(d̃+ θ̃ × x)ejωt

}
(9.105)

Then, if the steady and oscillatory velocities of the flow in the hydraulic system,
and relative to that system, are given as in the previous sections by ū and ũ
respectively, it follows that the oscillatory velocity of the flow in the nonaccel-
erating frame, ũA, is given by

ũA = ũ+ jω(d̃+ θ̃ × x) (9.106)

Furthermore, the acceleration of the fluid in the nonaccelerating frame, ãA, is
given by

ãA = jωũ− ω2d̃− ω2θ̃ × x+ 2jωθ̃ × ū (9.107)

The last three terms on the right hand side are vehicle-induced accelerations of
the fluid in the hydraulic system. It follows that these accelerations will alter
the difference in the total pressure between two nodes of the hydraulic system
denoted by subscripts 1 and 2. By integration one finds that the total pressure
difference, (p̃T

2 − p̃T
1 ), is related to that which would pertain in the absence of

vehicle oscillation, (p̃T
2 − p̃T

1 )0, by

(p̃T
2 − p̃T

1 ) = (p̃T
2 − p̃T

1 )0 + ρω2
{

(x2 − x1) · d̃+ (x2 × x1) · θ̃
}

(9.108)

where x2 and x1 are the locations of the two nodes in the frame of reference of
the vehicle.

The inclusion of these acceleration-induced total pressure changes is the
first step in the synthesis of models of this class of problems. Their evaluation
requires the input of the location vectors, xi, for each of the system nodes, and
the values of the system displacement frequency, ω, and amplitudes, d̃ and θ̃. In
an analysis of the response of the hydraulic system, the vibration amplitudes,
d̃ and θ̃, would be included as inputs. In a stability analysis, they would be
initially unknown. In the latter case, the system of equations would need to
be supplemented by those of the appropriate feedback mechanism. An example
would be a set of equations giving the unsteady thrust of an engine in terms of
the fluctuating fuel supply rate and pressure and giving the accelerations of the
vehicle resulting from that fluctuating thrust. Clearly a complete treatment of
such problems would be beyond the scope of this book.
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Chapter 10

RADIAL AND
ROTORDYNAMIC
FORCES

10.1 INTRODUCTION

This chapter is devoted to a discussion of the various fluid-induced radial and
rotordynamic forces which can occur in pumps and other turbomachines. It has
become increasingly recognized that the reliability and acceptability of mod-
ern turbomachines depend heavily on the degree of vibration and noise which
those machines produce (Makay and Szamody 1978), and that one of the most
common sources of vibration is associated with the dynamics of the shaft and
its related components, bearings, seals, and impellers (Duncan 1966-67, Doyle
1980, Ehrich and Childs 1984). It is clear that the modern pump designer (see,
for example, Ek 1978, France 1986), or turbine designer (see, for example, Poll-
man et al. 1978), must pay particular attention to the rotordynamics of the
shaft to ensure not only that the critical speeds occur at expected rotational
rates, but also that the vibration levels are minimized. It is, however, important
to note that not all shaft vibrations are caused by rotordynamic instability. For
example, Rosenmann (1965) reports oscillating radial forces on cavitating induc-
ers that are about 20% of the axial thrust, and are caused by flow oscillations,
not rotordynamic oscillations. Also, Marscher (1988) investigated shaft motions
induced by the unsteady flows at inlet to a centrifugal impeller operating below
the design flow rate.

Texts such as Vance (1988) provide background on the methods of rotor-
dynamic analysis. We focus here only on some of the inputs which are needed
for that analysis, namely the forces caused by fluid motion in the bearing, seal,
or impeller. One reason for this emphasis is that these inputs represent, at
present, the area of greatest uncertainty insofar as the rotordynamic analysis is
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concerned.
We shall attempt to present data from many different sources using a com-

mon notation and a common nondimensionalizing procedure. This background
is reviewed in the next section. Subsequently, we shall examine the known
fluid-induced rotordynamic effects in hydrodynamic bearings, seals, and other
devices. Then the forces acting on an impeller, both steady radial and rotor-
dynamic forces, will be reviewed both for centrifugal pumps and for axial flow
inducers.

10.2 NOTATION

The forces that the fluid imparts to the rotor in a plane perpendicular to the axis
of rotation are depicted in figure 10.1, and are decomposed into components in
the directions x and y, where this coordinate system is fixed in the framework of
the pump. The instantaneous forces are denoted by F ∗

x (t), F ∗
y (t), and the time-

averaged values of these forces in the stationary frame are denoted by F ∗
0x, F ∗

0y.
By definition, these are the steady forces commonly referred to as the radial
forces or radial thrust. Sometimes it is important to know the axial position of
the line of action of these forces. Alternatively, one can regard the x, y axes as
fixed at some convenient axial location. Then, in addition to the forces, F ∗

x (t)
and F ∗

y (t), the fluid-induced bending moments, M∗
x (t) and M∗

y (t), would be
required information. The time-averaged moments will be defined by M∗

0x and
M∗

0y.
Even if the location of the center of rotation were stationary at the origin of

Figure 10.1: Schematic showing the relationship between the forces in the pump
frame, F ∗

x , F ∗
y , the rotordynamic forces, F ∗

n , F ∗
t , the impeller center, the whirl

orbit, and the volute geometry.
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the xy plane (figure 10.1) the forces F ∗
x (t), F ∗

y (t) and moments M∗
x (t), M∗

y (t)
could still have significant unsteady components. For example, rotor-stator in-
teraction could lead to significant forces on the impeller at the blade passing
frequencies. Similarly, there could be blade passing frequency components in
the torque, T (t), and the axial thrust, as discussed earlier in section 8.2. For
simplicity, however, they will not be included in the present mathematical for-
mulation.

The other set of forces with which this chapter will be concerned are the fluid-
induced rotordynamic forces that are caused by the displacement and motion
of the axis of rotation. It will be assumed that this displacement is sufficiently
small so that a linear perturbation model is accurate. Then

{
F ∗

x (t)
F ∗

y (t)

}
=

{
F ∗

0x

F ∗
0y

}
+ [A∗]

{
x(t)
y(t)

}
(10.1)

where the displacement is given by x(t) and y(t), and [A∗] is known as the “ro-
tordynamic force matrix,” which, in the linear model, would be independent of
time, t. In virtually all cases that we shall be describing here, the displacements
are sinusoidal. The “whirl” frequency of these motions will be denoted by ω
(rad/s). Then, in general, the matrix [A∗] will not only be a function of the tur-
bomachine geometry and operating condition, but also of the whirl frequency,
ω. In an analogous manner the rotordynamic moment matrix, [B∗], is defined
by {

M∗
x(t)

M∗
y (t)

}
=

{
M∗

0x

M∗
0y

}
+ [B∗]

{
x(t)
y(t)

}
(10.2)

The radial forces will be presented here in nondimensional form (denoted by
the same symbols without the asterisk) by dividing the forces by ρπΩ2R3

T2L,
where the selected length L may vary with the device. In seals and bearings, L
is the axial length of the component. For centrifugal pumps, it is appropriate
to use the width of the discharge so that L = B2. With axial inducers, the axial
extent of the blades is used for L. The displacements are nondimensionalized
by R. In seals and bearings, the radius of the rotor is used; in centrifugal
pump impellers, the discharge radius is used so that R = RT2. It follows that
the matrix [A] is nondimensionalized by ρπΩ2R2L. Correspondingly, the radial
moments and the moment matrix [B] are nondimensionalized by ρπΩ2R4L and
ρπΩ2R3L respectively. Thus{

Fx(t)
Fy(t)

}
=
{
F0x

F0y

}
+ [A]

{
x(t)/R
y(t)/R

}
(10.3)

{
Mx(t)
My(t)

}
=
{
M0x

M0y

}
+ [B]

{
x(t)/R
y(t)/R

}
(10.4)

The magnitude of the dimensionless radial force will be denoted by F0 = (F 2
0x +

F 2
0y)

1
2 , and its direction, θ, will be measured from the tongue or cutwater of the

volute in the direction of rotation.
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One particular feature of the rotordynamic matrices, [A] and [B], deserves
special note. There are many geometries in which the rotordynamic forces
should be invariant to a rotation of the x, y axes. Such will be the case only if

Axx = Ayy ; Axy = −Ayx (10.5)

Bxx = Byy ; Bxy = −Byx (10.6)

This does appear to be the case for virtually all of the experimental measure-
ments that have been made in turbomachines.

The prototypical displacement will clearly consist of a circular whirl mo-
tion of “eccentricity”, ε, and whirl frequency, ω, so that x(t) = ε cosωt and
y(t) = ε sinωt. As indicated in figure 10.1, an alternative notation is to define
“rotordynamic forces”, F ∗

n and F ∗
t , that are normal and tangential to the cir-

cular whirl orbit at the instantaneous position of the center of rotation. Note
that F ∗

n is defined as positive outward and F ∗
t as positive in the direction of

rotation, Ω. It follows that

F ∗
n = ε

(
A∗

xx + A∗
yy

)
/2 (10.7)

F ∗
t = ε

(
A∗

yx − A∗
xy

)
/2 (10.8)

and it is appropriate to define dimensionless normal and tangential forces, Fn

and Ft, by dividing by ρπΩ2R2Lε. Then the conditions of rotational invariance
can be restated as

Axx = Ayy = Fn (10.9)

Ayx = −Axy = Ft (10.10)

Since this condition is met in most of the experimental data, it becomes conve-
nient to display the rotordynamic forces by plotting Fn and Ft as functions of
the geometry, operating condition and frequency ratio, ω/Ω. This presentation
of the rotordynamic forces has a number of advantages from the perspective of
physical interpretation. In many applications the normal force, Fn, is modest
compared with the potential restoring forces which can be generated by the
bearings and the casing. The tangential force has greater significance for the
stability of the rotor system. Clearly a tangential force that is in the same
direction as the whirl velocity (Ft > 0 for ω > 0 or Ft < 0 for ω < 0) will be
rotordynamically destabilizing, and will cause a fluid-induced reduction in the
critical whirl speeds of the machine. On the other hand, an Ft in the opposite
direction to ω will be whirl stabilizing.

Furthermore, it is conventional among rotordynamicists to decompose the
matrix [A] into added mass, damping and stiffness matrices according to

[A]
{
x/R

y/R

}
= −

[
M

−m
m

M

]{
ẍ/RΩ2

ÿ/RΩ2

}
−
[
C

−c
c

C

]{
ẋ/RΩ
ẏ/RΩ

}
−
[
K

−k
k

K

]{
x/R

y/R

}
(10.11)

where the dot denotes differentiation with respect to time, so that the added
mass matrix, [M ], multiplies the acceleration vector, the damping matrix, [C],
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multiplies the velocity vector, and the stiffness matrix, [K], multiplies the dis-
placement vector. Note that the above has assumed rotational invariance of
[A], [M ], [C] and [K]; M and m are respectively termed the direct and cross-
coupled added mass, C and c the direct and cross-coupled damping, and K
and k the direct and cross-coupled stiffness. Note also that the corresponding
dimensional rotordynamic coefficients, M∗, m∗, C∗, c∗, K∗, and k∗ are related
to the dimensionless versions by

M,m =
M∗, m∗

ρπR2L
; C, c =

C∗, c∗

ρπR2LΩ
; K, k =

K∗, k∗

ρπR2LΩ2
(10.12)

The representation of equation 10.11 is equivalent to assuming a quadratic de-
pendence of the elements of [A] (and the forces Fn, Ft) on the whirl frequency,
or frequency ratio, ω/Ω. It should be emphasized that fluid mechanical forces
do not always conform to such a simple frequency dependence. For example,
in section 10.6, we shall encounter a force proportional to ω

3
2 . Nevertheless, it

is of value to the rotordynamicists to fit quadratics to the plots of Fn and Ft

against ω/Ω, since, from the above relations, it follows that

Fn = M (ω/Ω)2 − c (ω/Ω) −K (10.13)

Ft = −m (ω/Ω)2 − C (ω/Ω) + k (10.14)

and, therefore, all six rotordynamic coefficients can be directly evaluated from
quadratic curve fits to the graphs of Fn and Ft against ω/Ω.

Since m is often small and is frequently assumed to be negligible, the sign of
the tangential force is approximately determined by the quantity kΩ

/
ωC. Thus

rotordynamicists often seek to examine the quantity k/C = k∗/ΩC∗, which
is often called the “whirl ratio” (not to be confused with the whirl frequency
ratio, ω/Ω). Clearly larger values of this whirl ratio imply a larger range of
frequencies for which the tangential force is destabilizing and a greater chance
of rotordynamic instability.

In the last few paragraphs we have focused on the forces, but it is clear
that a parallel construct is relevant to the rotordynamic moments. It should
be recognized that each of the components of a turbomachine will manifest its
own rotordynamic coefficients which will all need to be included in order to
effect a complete rotordynamic analysis of the machine. The methods used in
such rotordynamic analyses are beyond the scope of this book. However, we
shall attempt to review the origin of these forces in the bearings, seals, and
other components of the turbomachine. Moreover, both the main flow and
leakage flows associated with the impeller will generate contributions. In order
to permit ease of comparison between the rotordynamic effects contributed by
the various components, we shall use a similar nondimensionalization for all the
components.
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10.3 HYDRODYNAMIC BEARINGS
AND SEALS

Hydrodynamic bearings, seals, and squeeze-film dampers constitute a class of
devices that involve the flow in an annulus between two cylinders; the inner
cylinder is generally the shaft (radius, R) which is rotating at a frequency, Ω,
and may also be whirling with an amplitude or eccentricity, ε, and a frequency,
ω. The outer cylinder is generally static and fixed to the support structure.
The mean clearance (width of the annulus) will be denoted by δ, and the axial
length by L. In both hydrodynamic bearings and seals, the basic fluid motion
is caused by the rotation of the shaft. In a seal, there is an additional axial
flow due to the imposed axial pressure difference. In a squeeze-film damper,
there is no rotational motion, but forces are generated by the whirl motion of
the “rotor”.

The Reynolds number is an important parameter in these flows, and it is
useful to evaluate three different Reynolds numbers based on the rotational
velocity, on the mean axial velocity, V (given by V = Q

/
2πRδ where Q is

the volumetric axial flow rate), and on the velocity associated with the whirl
motion. These are termed the rotational, axial and whirl Reynolds numbers
and are defined, respectively, by

ReΩ = ΩRδ
/
ν, ReV = V δ

/
ν, Reω = ωRδ

/
ν (10.15)

where ν is the kinematic viscosity of the fluid in the annulus. In a hydrodynamic
bearing, the fluid must be of sufficiently high viscosity so that ReΩ � 1. This is
because the bearing depends for its operation on a large fluid restoring force or
stiffness occurring when the shaft or rotor is displaced from a concentric position.
Typically a bearing will run with a mean eccentricity that produces the fluid
forces that counteract the rotor weight or other radial forces. It is important to
recognize that the fluid only yields such a restoring force or stiffness when the
flow in the annulus is dominated by viscous effects. For this to be the case, it
is necessary that ReΩ � 1. If this is not the case, and ReΩ 
 1 then, as we
shall discuss later, the sign of the fluid force is reversed, and, instead of tending
to decrease eccentricity, the fluid force tends to magnify it. This is called the
“Bernoulli effect” or “inertia effect”, and can be simply explained as follows.
When an eccentricity is introduced, the fluid velocities will be increased over
that part of the rotor circumference where the clearance has been reduced. At
Reynolds numbers much larger than unity, the Bernoulli equation is applicable,
and higher velocities imply lower pressure. Therefore the pressure in the fluid
is decreased where the clearance is small and, consequently, there will be a net
force on the rotor in the direction of the displacement. This “negative stiffness”
(K < 0) is important in the rotordynamics of seals and impellers.

Another parameter of importance is the ratio of the axial length to radius,
L/R, of the bearing or seal. For large L/R, the predominant fluid motions
caused by the rotordynamic perturbations occur in the circumferential direction.
On the other hand, in a short seal or bearing, the predominant effect of the
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rotordynamic perturbation is to cause circumferential variation in the axial fluid
velocity. This gives rise to the so-called “Lomakin effect” in short seals operating
at high Reynolds numbers (Lomakin 1958). The circumstances are sketched in
figure 10.2, in which we use a cylindrical coordinate system, (r, θ, z), to depict
a plain annular seal with a clearance, δ. The fluid velocity, uz, is caused by the
pressure difference, ∆p = (p1 − p2). We denote the axial velocity averaged over
the clearance by ūz, and this will be a function of θ when the rotor is displaced
by an eccentricity, ε. The Lomakin effect is caused by circumferential variations
in the entrance losses in this flow. On the side with the smaller clearance,
the entrance losses are smaller because ūz is smaller. Consequently, the mean
pressure is larger on the side with the smaller clearance, and the result is a
restoring force due to this circumferential pressure distribution. This is known
as the Lomakin effect, and gives rise to a positive fluid-induced stiffness, K.
Note that the competing Bernoulli and Lomakin effects can cause the sign of
the fluid-induced stiffness of a seal to change as the geometry changes.

In the following sections we examine more closely some of the fluid-induced
rotordynamic effects in bearings, seals, and impellers.

10.4 BEARINGS AT LOW REYNOLDS

NUMBERS

The rotordynamics of a simple hydrodynamic bearing operating at low Reynolds
number (ReΩ � 1) will be examined first. The conventional approach to this
problem (Pinkus and Sternlicht 1961) is to use Reynolds’ approximate equation

Figure 10.2: Schematic of a short seal demonstrating the Lomakin effect.
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Figure 10.3: Schematic of fluid-filled annulus between a stator and a rotating
and whirling rotor.

for the fluid motions in a thin film. In the present context, in which the fluid is
contained between two circular cylinders (figure 10.3) this equation becomes

1
R2

∂

∂θ

(
H3 ∂p

∂θ

)
+

∂

∂z

(
H3 ∂p

∂z

)
= 6µ

{
2
∂H

∂t
+

1
R

∂

∂θ
(HU)

}
(10.16)

where (θ, z) are the circumferential and axial coordinates. This equation must
be solved to find the pressure, p(θ, z, t), in the fluid (averaged over the radial
extent of the clearance gap) given the clearance, H(θ, t), and the surface velocity,
U , of the inner cylinder (U = ΩR). An eccentricity, ε, at a whirl frequency of
ω leads to a clearance, H , given by δ − ε cos(ωt − θ) and substituting for H
completes the formulation of equation 10.16 for the pressure.

The rotordynamic forces, F ∗
n and F ∗

t , then follow from{
F ∗

n

F ∗
t

}
= R

∫ L

0

∫ 2π

0

p

{− cos(ωt − θ)
sin(ωt − θ)

}
dθdz (10.17)

where L is the axial length of the bearing.
Two simple asymptotic solutions are readily forthcoming for linear pertur-

bations in which ε � δ. The first is termed the “long bearing” solution, and
assumes, as discussed in the last section, that the dominant perturbations to
the velocity occur in the circumferential velocities rather than the axial veloci-
ties. It follows that the second term in equation 10.16 can be neglected as small
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relative to the first term. Neglecting, in addition, all terms quadratic or higher
order in ε, integration of equation 10.16 leads to

p =
6µR2ε

δ3
(Ω − 2ω) sin(ωt− θ) +

12µR2

δ3
dε

dt
cos(ωt − θ) (10.18)

and to the following rotordynamic forces:

F ∗
n = −12πµR3L

δ3
dε

dt
; F ∗

t =
6πµR3Lε

δ3
(Ω − 2ω) (10.19)

In steady whirling motion, dε
/
dt = 0. The expression for F ∗

t implies the follow-
ing rotordynamic coefficients:

C∗ =
2k∗

Ω
=

12πµR3L

δ3
(10.20)

and K∗ = c∗ = M∗ = m∗ = 0.
The second, or “short bearing”, solution assumes that the dominant pertur-

bations to the velocities occur in the axial velocities; this usually requires L/R
to be less than about 0.5. Then, assuming that the pressure is measured relative
to a uniform and common pressure at both ends, z = 0 and z = L, integration
of equation 10.16 leads to

p = z(L − z)
[
6µ
δ3
dε

dt
cos(ωt − θ) − 3µε

δ3
(Ω − 2ω) sin(ωt− θ)

]
(10.21)

and, consequently,

F ∗
n = −πµRL

3

δ3
dε

dt
; F ∗

t =
πµRL3ε

2δ3
(Ω − 2ω) (10.22)

Therefore, in the short bearing case,

C∗ =
2k∗

Ω
=
πµRL3

2δ3
(10.23)

in contrast to the result in equation 10.20. Notice that, for both the long and
short bearing, the value of the whirl ratio, k∗

/
ΩC∗, is 0.5. Later, we will

compare this value with that obtained for other flows and other devices.
It is particularly important to note that the tangential forces in both the long

and short bearing solutions are negative for Ω < 2ω, and become positive for
Ω > 2ω. This explains the phenomenon of “oil whip” in hydrodynamic bearings,
first described by Newkirk and Taylor (1925). They reported that violent shaft
motions occurred when the shaft speed reached a value twice the critical speed
of the shaft. This phenomenon is the response of a dynamic system at its
natural frequency when the exciting tangential force becomes positive, namely
when Ω > 2ω (see Hori 1959). It is of interest to note that a similar critical
condition occurs for high Reynolds number flow in the film (see equations 10.36
and 10.37).
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The simple linear results described above can be augmented in several ways.
First, similar solutions can be generated for the more general case in which the
eccentricity is not necessarily small compared with the clearance. The results
(Vance 1988) for the long bearing become

F ∗
n = −12πµR3L

δ3
1

(1 − ε2
/
δ2) 3

2

dε

dt
(10.24)

F ∗
t =

6πµR3L(Ω − 2ω)
δ3

ε

(1 − ε2
/
δ2)(2 + ε2

/
δ2)

3
2

(10.25)

and, in the short bearing case,

F ∗
n = −πµRL

3

δ3
(1 + 2ε2

/
δ2)

(1 − ε2
/
δ2) 5

2

dε

dt
(10.26)

F ∗
t =

πµRL3(Ω − 2ω)
2δ3

ε

(1 − ε2
/
δ2)

3
2

(10.27)

These represent perhaps the only cases in which rotordynamic forces and coef-
ficients can be evaluated for values of the eccentricity, ε, comparable with the
clearance, δ. The nonlinear analysis leads to rotordynamic coefficients which are
functions of the eccentricity, ε, and the variation with ε

/
δ is presented graph-

ically in figure 10.4. Note that the linear values given by equations 10.20 and
10.23 are satisfactory up to ε

/
δ of the order of 0.5.

Second, it is important to note that cavitation or gas dissolution in liquid-
filled bearings can often result in a substantial fraction of the annulus being
filled by a gas bubble or bubbles. The reader is referred to Dowson and Taylor
(1979) for a review of this complicated subject. Quite crude approximations
are often introduced into lubrication analyses in order to try to account for this
“cavitation”. The most common approximation is to assume that the two quad-
rants in which the pressure falls below the mean are completely filled with gas
(or vapor) rather than liquid. Called a π-film cavitated bearing, this heuristic
assumption leads to the following rotordynamic forces (Vance 1988). For the
cavitated (π-film) long bearing

F ∗
n = −6µR3L

δ2

[
2|Ω− 2ω|ε2

δ2(2 + ε2
/
δ2)(1 − ε2

/
δ2)

+
πdε

/
dt

δ(1 − ε2
/
δ2)

3
2

]
(10.28)

F ∗
t =

6µR3L

δ3

[
(Ω − 2ω)πε

(2 + ε2
/
δ2)(1 − ε2

/
δ2) 3

2
+

4dε
/
dt

(1 + ε
/
δ)(1 − ε2

/
δ2)

]
+ 2RLp0

(10.29)
where p0 is the pressure in the cavity. These expressions are similar to, but not
identical with, the expressions derived by Hori (1959) and used to explain oil
whip. For the cavitated (π-film) short bearing

F ∗
n = −µRL

3

δ2

[
|Ω − 2ω|ε2

δ2(1 − ε2
/
δ2)2

+
π(1 + 2ε2

/
δ2)dε

/
dt

2δ(1 − ε2
/
δ2)

5
2

]
(10.30)
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Figure 10.4: Dimensionless damping and cross-coupled stiffness for noncavitat-
ing long and short bearings as functions of the eccentricity ratio, ε/δ.

F ∗
t =

µRL3

δ2

[
(Ω − 2ω)πε

4δ(1 − ε2
/
δ2)

3
2

+
2εdε

/
dt

δ2(1 − ε2
/
δ2)2

]
+ 2RLp0 (10.31)

It would, however, be appropriate to observe that rotordynamic coefficients un-
der cavitating conditions remain to be measured experimentally, and until such
tests are performed the above results should be regarded with some scepticism.

Finally, we note that all of the fluid inertial effects have been neglected in
the above analyses, and, consequently, the question arises as to how the results
might change when the Reynolds number, ReΩ, is no longer negligibly small.
Such analyses require a return to the full Navier-Stokes equations, and the
author has explored the solutions of these equations in the case of long bearings
(Brennen 1976). In the case of whirl with constant eccentricity (dε

/
dt = 0),

it was shown that there are two separate sets of asymptotic results for Reω �
δ3
/
R3, and for δ3

/
R3 � Reω � δ2

/
R2. For Reω � δ3

/
R3, the rotordynamic

forces are

Fn = −9
4
R5

δ5

(
1 − 2ω

Ω

)
(10.32)

while F ∗
t is the same as given in equation 10.19. Notice that equation 10.32
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implies a direct stiffness, K, and cross-coupled damping, c, given by

K =
c

2
=

9
4
R5

δ5
(10.33)

On the other hand, for the range of Reynolds numbers given by δ3
/
R3 � Reω �

δ2
/
R2, the rotordynamic forces are

Fn =
16δ

R Re2Ω

(
2ω
Ω

− 1
)

; Ft =
128δ4

3R4Re3Ω

(
1 − 2ω

Ω

)
(10.34)

so that

K =
c

2
=

16δ
R Re2Ω

; C = 2k =
256δ4

3R4Re3Ω
(10.35)

In both cases the direct stiffness, K, is positive, implying a positive hydro-
dynamic restoring force caused by the inertial terms in the equations of fluid
motion.

10.5 ANNULUS AT HIGH REYNOLDS

NUMBERS

Consider now the flows of the last section when the Reynolds numbers become
much greater than unity. The name “bearing” must be omitted, since the flow no
longer has the necessary rotordynamic characteristics to act as a hydrodynamic
bearing. Nevertheless, such flows are of interest since there are many instances
in which rotors are surrounded by fluid annuli. Fritz (1970) used an extension
of a lubrication theory in which he included fluid inertia and fluid frictional
effects for several types of flow in the annulus, including Taylor vortex flow and
fully turbulent flow. Though some of his arguments are heuristic, the results are
included here because of their practical value. The rotordynamic forces which
he obtains are

F ∗
n =

πρR3L

δ

[
ε

(
Ω
2
− ω

)2

− d2ε

dt2
− Ωf

dε

dt

]
(10.36)

F ∗
t =

πρR3L

δ

[
Ωεf

(
Ω
2
− ω

)
+ (Ω − 2ω)

dε

dt

]
(10.37)

where f is a fluid friction term that varies according to the type of flow in the
annulus. For laminar flow, f = 12ν

/
δ2Ω and the first term in the square bracket

of F ∗
t and the last term in F ∗

n are identical to the forces for a noncavitating long
bearing as given in equation 10.19. But, Fritz also constructs forms for f for
Taylor vortex flow and for turbulent flow. For example, for turbulent flow

f = 1.14fTR
/
δ (10.38)

where fT is a friction factor that correlates with the Reynolds number, ReΩ.
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The other terms in equations 10.36 and 10.37 that do not involve f are caused
by the fluid inertia and are governed by the added mass, M∗ = πρR3L

/
δ, which

Fritz confirms by experimental measurements. Note that equations 10.36 and
10.37 imply rotordynamic coefficients as follows

M = R
/
δ ; c = R

/
δ ; K = R

/
4δ

m = 0 ; C = fR
/
δ ; k = fR

/
2δ (10.39)

The author also examined these flows using solutions to the Navier-Stokes equa-
tions (Brennen 1976). For annuli in which δ is not necessarily small compared
with R, the added mass becomes

M∗ =
πρLR2(R2

S + R2)
(R2

S − R2)
(10.40)

where RS is the radius of the rigid stator.

10.6 SQUEEZE FILM DAMPERS

A squeeze film damper consists of a nonrotating cylinder surrounded by a fluid
annulus contained by an outer cylinder. A shaft runs within the inner, nonro-
tating cylinder so that the latter may perform whirl motions without rotation.
The fluid annulus is intended to damp any rotordynamic motions of the shaft.
It follows that figure 10.3 can also represent a squeeze film damper as long as
Ω is set to zero. The device is intended to operate at low Reynolds numbers,
Reω, and several of the results already described can be readily adopted for
use in a squeeze-film damper. Clearly analyses can be generated for both long
and short squeeze film dampers. The long squeeze film damper is one flow for
which approximate solutions to the full Navier-Stokes equations can be found
(Brennen 1976). Two sets of asymptotic results emerge, depending on whether
Reω is much less than, or much greater than, 72R

/
δ. In the case of thin films

(δ � R), the rotordynamic forces for Reω � 72R
/
δ are

F ∗
n = 6πρR3Lω2ε

/
5δ (10.41)

F ∗
t = 12πµR3Lωε

/
δ3 (10.42)

where the F ∗
t is the same as that for a noncavitating long bearing. On the other

hand, for Reω 
 72R
/
δ:

F ∗
n =

πρR3Lω2ε

δ

[
1 +

(
2ν
ωδ2

) 1
2
]

(10.43)

F ∗
t = πρR2Lω2ε

(
2ν
ωδ2

) 1
2

(10.44)
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Figure 10.5: Sketch of fluid filled annulus between a rotor and a stator for
turbulent lubrication analysis.

The ω
3
2 dependent terms in these relations are very unfamiliar to rotordynam-

icists. However, such frequency dependence is common in flows that are domi-
nated by the diffusion of vorticity.

The relations 10.41 to 10.44 are limited to small amplitudes, ε � δ, and to
values of ωε2

/
ν � 1. At larger amplitudes and Reynolds numbers, ωε2

/
ν , it is

necessary to resort to lubrication analyses supplemented, where necessary, with
inertial terms in the same manner as described in the last section. Vance (1988)
delineates such an approach to squeeze film dampers.

10.7 TURBULENT ANNULAR SEALS

In an annular seal, the flows are usually turbulent because of the high Reynolds
numbers at which they operate. In this section we describe the approaches
taken to identify the rotordynamic properties of these flows. Black and his
co-workers (Black 1969, Black and Jensen 1970) were the first to attempt to
identify and model the rotordynamics of turbulent annular seals. Bulk flow
models (similar to those of Reynolds lubrication equations) were used. These
employ velocity components, ūz(z, θ) and ūθ(z, θ), that are averaged over the
clearance. Black and Jensen used several heuristic assumptions in their model,
such as the assumption that ūθ = RΩ

/
2. Moreover, their governing equations

do not reduce to recognizable turbulent lubrication equations. These issues
caused Childs (1983b) to publish a revised version of the bulk flow model and
we will focus on Childs’ model here. Childs (1987, 1989) has also employed
a geometric generalization of the same bulk flow model to examine the rotor-
dynamic characteristics of discharge-to-suction leakage flows around shrouded
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centrifugal pump impellers, and it is therefore convenient to include here the
more general form of his analysis. The geometry is sketched in figure 10.5, and
is described by coordinates of the meridian of the gap as given by Z(s) and
R(s), 0 < s < L, where the coordinate, s, is measured along that meridian. The
clearance is denoted by H(s, θ, t) where the unperturbed value of H is δ(s). The
equations governing the bulk flow are averaged over the clearance. This leads
to a continuity equation of the form

∂H

∂t
+

∂

∂s
(Hūs) +

1
R

∂

∂θ
(Hūθ) +

H

R

dR

ds
ūs = 0 (10.45)

where ūs and ūθ are velocities averaged over the local clearance. The meridional
and circumferential momentum equations are

−1
ρ

∂p

∂s
=
τss

ρH
+
τsr

ρH
− ū2

θ

R

dR

ds
+
∂ūs

∂t
+
ūθ

R

∂ūs

∂θ
+ ūs

∂ūs

∂θ
(10.46)

− 1
ρR

∂p

∂θ
=
τθs

ρH
+
τθr

ρH
+
∂ūθ

∂t
+
ūθ

R

∂ūθ

∂θ
+ ūs

∂ūθ

∂s
+
ūθūr

R

∂R

∂s
(10.47)

The approach used by Hirs (1973) is employed to determine the turbulent shear
stresses, τss and τθs, applied to the stator by the fluid in the s and θ directions
respectively:

τss

ρūs
=
τθs

ρūθ
=
Asūs

2
[
1 + (ūθ

/
ūs)2

]ms+1
2 (Res)ms (10.48)

and the stresses, τsr and τθr, applied to the rotor by the fluid in the same
directions:

τsr

ρūs
=

τθr

ρ(ūθ − ΩR)
=
Arūs

2

[
1 +

{
(ūθ − ΩR)

/
ūs

}2
]mθ+1

2
(Res)mθ (10.49)

where the local meridional Reynolds number

Res = Hūs

/
ν (10.50)

and the constants As, Ar , ms and mθ are chosen to fit the available data on
turbulent shear stresses. Childs (1983a) uses typical values of these constants

As = Ar = 0.0664 ; ms = mθ = −1
4

(10.51)

The clearance, pressure, and velocities are divided into mean components (sub-
script 0) that would pertain in the absence of whirl, and small, linear pertur-
bations (subscript 1) due to an eccentricity, ε, rotating at the whirl frequency,
ω:

H(s, θ, t) = H0(s) + εRe
{
H1(s)ei(θ−ωt)

}
p(s, θ, t) = p0(s) + εRe

{
p1(s)ei(θ−ωt)

}
ūs(s, θ, t) = ūs0(s) + εRe

{
ūs1(s)ei(θ−ωt)

}
ūθ(s, θ, t) = ūθ0(s) + εRe

{
ūθ1(s)ei(θ−ωt)

}
(10.52)
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These expressions are substituted into the governing equations listed above to
yield a set of equations for the mean flow quantities (p0, ūs0, and ūθ0), and a
second set of equations for the perturbation quantities (p1, ūs1, and ūθ1); terms
which are of quadratic or higher order in ε are neglected.

With the kind of complex geometry associated, say, with discharge-to-suction
leakage flows in centrifugal pumps, it is necessary to solve both sets of equations
numerically in order to evaluate the pressures, and then the forces, on the rotor.
However, with the simple geometry of a plain, untapered annular seal where

R(s) = R , H0(s) = δ , s = z , H1(s) = 1 (10.53)

and in which
ūs0 =

Q

2πRδ
= V (10.54)

where Q is the volumetric flow rate, Childs (1983a) was able to obtain analytic
solutions to both the mean and perturbation equations. The resulting evaluation
of the rotordynamic forces leads to the following rotordynamic coefficients:

K =
(

2∆pT

ρV 2

)
φ2 R

2λ1L

[
µ0 − µ2(L

/
2φR)2

]
(10.55)

C = 2k =
(

2∆pT

ρV 2

)
φµ1

2λ1
(10.56)

M = c =
(

2∆pT

ρV 2

)
µ2L

2λ1R
(10.57)

where φ is the flow coefficient (φ = V
/
ΩR), and ∆pT is the total pressure drop

across the seal where
2∆pT

ρV 2
= 1 + CEL+ 2λ2 (10.58)

and λ, µ0, µ1, and µ2 are given by

λ1 = 0.0664(ReV )−
1
4
{
1 + 1

/
4φ2

} 3
8 (10.59)

λ2 = λ1L
/
δ (10.60)

µ0 = 5λ2
2µ5

/
2(1 +CEL + 2λ2) (10.61)

µ1 = 2λ2

{
µ5 +

1
2
λ2µ4(µ5 + 1/6)

}/
(1 + CEL + 2λ2) (10.62)

µ2 = λ2(µ5 + 1/6)
/
(1 +CEL + 2λ2) (10.63)

µ4 = (1 + 7φ2)
/
(1 + 4φ2) (10.64)

µ5 = (1 +CEL)
/
2(1 +CEL + µ4λ2) (10.65)

where CEL is an entrance loss coefficient for which the data of Yamada (1962)
was used. Note that there are two terms in K; the first, which contains µ0,
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Figure 10.6: Typical dimensionless rotordynamic coefficients from Childs’
(1983a) analysis of a plain, untapered and smooth annular seal with δ/R = 0.01,
ReV = 5000, and CEL = 0.1.

Figure 10.7: Typical dimensionless rotordynamic coefficients from Childs’
(1983a) analysis of a plain, untapered and smooth annular seal with L/R = 1,
ReV = 5000, and CEL = 0.1.
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Figure 10.8: The measurements by Childs and Dressman (1982) of the rotor-
dynamic forces for a straight, smooth annular seal (L/R = 1.0, δ/R = 0.01) for
a range of Reynolds numbers, 2205 < ReV < 13390, and under synchronous
excitation. Also shown are the predictions of the theory of Childs (1983a) for
ReV = 10000 (solid lines) and 15000 (dashed lines) and two different entrance
loss coefficients, CEL, as shown.

results from the Lomakin effect, while the second, involving µ2, results from the
Bernoulli effect (section 10.3).

The results obtained by Black and Jensen (1970) are similar to the above
except for the expressions for some of the λ and µ quantities. Childs (1983a)
contrasts the two sets of expressions, and observes that one of the primary
discrepancies is that the Black and Jensen expressions yield a significant smaller
added mass, M . We should also note that Childs (1983a) includes the effect of
inlet preswirl which has a significant influence on the rotordynamic coefficients.
Preswirl was not included in the results presented above.

Typical results from the expressions 10.55 to 10.57 are presented in figures
10.6 and 10.7, which show the variations with flow coefficient, φ, and the ge-
ometric ratios, L/R and δ/R. The effects of Reynolds number, ReV , and of
the entrance loss coefficient, are small as demonstrated in figure 10.8. Note the
changes in sign in the direct stiffness, K, that result from the Lomakin effect
becoming larger than the Bernoulli effect, or vice-versa. Note, also, that the
whirl ratio, k

/
C, is 0.5 in all cases.

Childs and Dressman (1982) have published experimental measurements of
the rotordynamic forces in a plain, smooth, annular seal with a length, L, to
radius, R, ratio of 1.0, a clearance, δ, to radius ratio of 0.01 at various flow rates
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Figure 10.9: Dimensionless rotordynamic coefficients measured by Nordmann
and Massmann (1984) for a plain seal with L/R = 1.67, δ/R = 0.0167, and
ReV = 5265. Also shown are the corresponding theoretical results using Childs’
(1983a) theory with CEL = 0.1.

and speeds. The excitation was synchronous (ω
/
Ω = 1) so that

Fn = M − c−K ; Ft = −m− C + k (10.66)

Consequently, if one assumes the theoretical results M = c, m = 0 and C = 2k
to be correct, then

Fn = −K ; Ft = −k = − c
2

(10.67)

The data of Childs and Dressman for Reynolds numbers in the ranges 2205 <
ReV < 13390 and 2700 < ReΩ < 10660 are plotted in figure 10.8. It is readily
seen that, apart from the geometric parameters L/R and δ/R, the rotordynamic
characteristics are primarily a function of the flow coefficient, φ, defined as
φ = V

/
ΩR = ReV

/
ReΩ, and only depend weakly on the Reynolds number

itself. The results from Childs’ (1983a) theory using equations 10.55 to 10.57
are also shown and exhibit quite good agreement with the measurements. As
can be seen, the theoretical results are also only weakly dependent on ReV or
the entrance loss coefficient, CEL.

Nordmann and Massman (1984) conducted experiments on a similar plain
annular seal with L/R = 1.67 and δ/R = 0.0167, and measured the forces
for both synchronous and nonsynchronous excitation. Thus, they were able to
extract the rotordynamic coefficients M , C, c, K, and k. Their results for a
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Reynolds number, ReV = 5265, are presented in figure 10.9, where they are
compared with the corresponding predictions of Childs’ (1983a) theory (using
CEL = 0.1). In comparing theory and experiment, we must remember that the
results are quite insensitive to Reynolds number, and the theoretical data does
not change much with changes in CEL. Some of the Nordmann and Massmann
data exhibits quite a lot of scatter; however, with the notable exception of the
cross-coupled stiffness, k, the theory is in good agreement with the data. The
reason for the discrepancy in the cross-coupled stiffness is unclear. However,
one must bear in mind that the theory uses correlations developed from results
for nominally steady turbulent flows, and must be regarded as tentative until
there exists a greater understanding of unsteady turbulent flows.

In the last decade, a substantial body of data has been accumulated on the
rotordynamic characteristics of annular seals, particularly as regards such geo-
metric effects as taper, various kinds of roughness, and the effects of labyrinths.
We include here only a few examples. Childs and Dressman (1985) conducted
both theoretical and experimental investigations of the effect of taper on the
synchronous rotordynamic forces. They showed that the introduction of a ta-
per increases the leakage and the direct stiffness, K∗, but decreases the other
rotordynamic coefficients. An optimum taper angle exists with respect to both
the direct stiffness and the ratio of direct stiffness to leakage. Childs and Kim
(1985) have examined the effects of directionally homogeneous surface rough-
ness on both the rotor and the stator. Test results for four different surface
roughnesses applied to the stator or casing (so-called “damper seals” that have
smooth rotors) showed that the roughness increases the damping and decreases
the leakage.

10.8 LABYRINTH SEALS

Labyrinth seals with teeth on either the rotor or the stator are frequently used,
because the teeth help to minimize the leakage through the seals. However,
the teeth also have rotordynamic consequences which have been explored by
Wachter and Benckert (1980), Childs and Scharrer (1986), and others. Childs
and Scharrer measured the stiffness and damping coefficients for some labyrinth
seals, and reached the following conclusions. First, in all cases, the rotordynamic
forces were independent of the rotational speed, Ω, and dependent on the axial
pressure drop, ∆p. The appropriate nondimensionalizing velocity is therefore
the typical axial velocity caused by the axial pressure drop, (2∆p

/
ρ)

1
2 . Childs

and Scharrer suggest that the reason for this behavior is that the mean fluid
motions are dominated by throughflow over and between the teeth, and that
the shear caused by the rotation of the rotor has relatively little effect on the
flow at the high Reynolds numbers involved.

Typical dimensionless values of the rotordynamic coefficients K, k, and C are
presented in table 10.1, where we may observe that the cross-coupled stiffness,
k, is smaller for the teeth-on-stator configuration. This means that, since the
damping, C, is similar for the two cases, the teeth-on-stator configuration is
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more stable rotordynamically.
However, Childs and Scharrer also found that the coefficients were very sen-

sitive to the inlet swirl velocity upstream of the seal. In particular, the cross-
coupled stiffness increased markedly with increased swirl in the same direction
as shaft rotation. On the other hand, imposed swirl in a direction opposite to
shaft rotation causes a reversal in the sign of the cross-coupled stiffness, and
thus has a rotordynamically stabilizing effect.

10.9 BLADE TIP ROTORDYNAMIC

EFFECTS

In a seminal paper, Alford (1965) identified several rotordynamic effects arising
from the flow in the clearance region between the tip of an axial flow turboma-
chine blade and the static housing. However, the so-called “Alford effects” are
only some of the members of a class of rotordynamic phenomena that can arise
from the fluid-induced effects of a finite number of blades, and, in this section,
we shall first examine the more general class of phenomena.

Consider the typical geometry of an unshrouded impeller of radius RT and
ZR blades enclosed by a cylindrical housing so that the mean clearance between
the blade tips and the housing is δ (figure 10.10). If the impeller is rotating at
a frequency, Ω, and whirling at a frequency, ω, with an amplitude, ε, then the
vector positions of the blade tips at time, t, will be given by

x+ jy = z = RT e
j(Ωt+2πn/ZR) + εejωt for n = 1 to ZR (10.68)

where the center of the housing is the origin of the (x, y) coordinate system. It
follows that the clearance at each blade tip is RT + δ − |z| which, to first order
in ε, is δ∗ where

δ∗ = δ − ε cos θn , n = 1 to ZR (10.69)

and where, for convenience, θn = Ωt− ωt+ 2πn/ZR.
Next, the most general form of the force, F ∗, acting on the tip of the blade

is
F ∗ = Fej(π

2 +α)ej(Ωt+2πn/ZR) (10.70)

Table 10.1: Rotordynamic characteristics of labyrinth seals with zero inlet swirl
(data from Childs and Scharrer 1986).

Teeth on Rotor Teeth on Stator
Mean Min. Max. Mean Min. Max.

K∗/2π∆pL -1.17 -1.03 -1.25 -0.62 -0.45 -0.74
k∗/2π∆pL 1.15 0.79 1.68 0.86 0.67 1.07
C∗/πRL(2ρ∆p)

1
2 0.0225 0.0168 0.0279 0.0219 0.0182 0.0244
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Figure 10.10: Schematic of the position of an axial flow turbomachine blade tip
relative to a static housing as a result of the combination of rotational and whirl
motion (details shown for only one of the ZR blade tips).

where the functional forms of the force magnitude, F , and its inclination relative
to the blade, α (see figure 10.10), can, for the moment, remain unspecified.
The total rotordynamic forces, F ∗

n and F ∗
t , acting on the impeller are then

obtained by appropriate summation of the individual tip forces, F ∗, followed
by conversion to the rotating frame. Nondimensionalizing the result, one then
finds

Fn + jFt =

[
ZR∑
n=1

jejαejθnF

]
AVERAGE

πρΩ2RTLε
(10.71)

where the quantity in square brackets is averaged over a large time. This general
result may then be used, with various postulated relations for F and α, to
investigate the resulting rotordynamic effects.

One choice of the form of F and α corresponds to the Alford effect. Alford
(1965) surmised that the fluid force acting normal to each blade (α = 0 or π)
would vary according to the instantaneous tip clearance of that blade. Specif-
ically, he argued that an increase in the clearance, ε cos θn, would produce a
proportionate decrease in the normal force, or

F = F0 + Kε cos θn (10.72)

where F0 is the mean, time-averaged force normal to each blade and K is the
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factor of proportionality. Moreover, for a pump α = π, and for a turbine α = 0.
Substituting these values into equation 10.71, one obtains

Fn = 0 ; Ft = ∓KZR

/
2πρΩ2RTL (10.73)

where the upper sign refers to the pump case and the lower to the turbine case.
It follows that the Alford effect in pumps is stabilizing for positive whirl, and
destabilizing for negative whirl. In a turbine the reverse is true, and the desta-
bilizing forces for positive whirl can be quite important in the rotordynamics of
some turbines.

As a second, but more theoretical example, consider the added mass effect
that occurs when a blade tip approaches the casing and squeezes fluid out from
the intervening gap. Such a flow would manifest a force on the blade propor-
tional to the acceleration d2δ∗

/
dt2, so that

α = π
/
2 ; F = −Kd

2δ∗

dt2
(10.74)

where K is some different proportionality factor. It follows from equation 10.71
that, in this case,

Fn =
K

2πρRTL

(
1 − ω

Ω

)2

; Ft = 0 (10.75)

This positive normal force is a Bernoulli effect, and has the same basic form as
the Bernoulli effect for the whirl of a plane cylinder (see section 10.3).

Other tip clearance flow effects, such as those due to viscous or frictional
effects, can be investigated using the general result in equation 10.71, as well as
appropriate choices for α and F .

10.10 STEADY RADIAL FORCES

We now change the focus of attention back to pumps, and, more specifically, to
the kinds of radial and rotordynamic forces which may be caused by the flow
through and around an impeller. Unlike some of the devices discussed in the
preceding sections, the flow through a pump can frequently be nonaxisymmetric
and so can produce a mean radial force that can be of considerable importance.
The bearings must withstand this force, and this can lead to premature bearing
wear and even failure. Bearing deflection can also cause displacement of the
axis of rotation of the impeller, that may, in turn, have deleterious effects upon
hydraulic performance. The existence of radial forces, and attempts to evaluate
them, date back to the 1930s (see Stepanoff’s comment in Biheller 1965) or
earlier.

The nonaxisymmetries and, therefore, the radial forces depend upon the
geometry of the diffuser and/or volute as well as the flow coefficient. Mea-
surements of radial forces have been made with a number of different im-
peller/diffuser/volute combinations by Agostonelli et al. (1960), Iverson et al.
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Figure 10.11: Radial forces for the centrifugal Impeller X/Volute A combination
as a function of shaft speed and flow coefficient (Chamieh et al. 1985).

(1960), Biheller (1965), Grabow (1964), and Chamieh et al. (1985), among oth-
ers. Stepanoff (1957) proposed an empirical formula for the magnitude of the
nondimensional radial force,

|F0| = (F 2
0x + F 2

0y)
1
2 = 0.229ψ

{
1 − (Q/QD)2

}
(10.76)

for centrifugal pumps with spiral volutes, and

|F0| = 0.229ψQ/QD (10.77)

for collectors with uniform cross-sectional area. Both formulae yield radial forces
that have the correct order of magnitude; however, measurements show that the
forces also depend on other geometric features of the impeller and its casing.

Some typical nondimensional radial forces obtained experimentally by Chamieh
et al. (1985) for the Impeller X/Volute A combination (see section 2.8) are
shown in figure 10.11 for a range of speeds and flow coefficients. First note
that, as anticipated in the nondimensionalization, the radial forces do indeed
scale with the square of the impeller speed. This implies that, at least within
the range of rotational speeds used for these experiments, the Reynolds number
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Figure 10.12: Comparison of the radial forces measured by Iverson, Rolling and
Carlson (1960) on a pump with a specific speed, ND, of 0.36, by Agostinelli,
Nobles and Mockeridge (1960), on a pump with ND = 0.61, by Domm and
Hergt (1970), and by Chamieh et al. (1985) on a pump with ND = 0.57.

effects on the radial forces are minimal. Second, focusing on Chamieh’s data, it
should be noted that the “design” objective that Volute A be well matched to
Impeller X appears to be satisfied at a flow coefficient, φ2, of 0.092 where the
magnitude of the radial force appears to vanish.

Other radial force data are presented in figure 10.12. The centrifugal pump
tested by Agostinelli, Nobles and Mockeridge (1960) had a specific speed, ND, of
0.61, and was similar to that of Chamieh et al. (1985). On the other hand, the
pump tested by Iversen, Rolling and Carlson (1960) had a much lower specific
speed of 0.36, and the data of figure 10.12 indicates that their impeller/volute
combination is best matched at a flow coefficient of about 0.06. The data of
Domm and Hergt (1970) is for a volute similar to Volute A and, while qualita-
tively similar to the other data, has a significantly smaller magnitude than the
other three sets of data. The reasons for this are not clear.

The dependence of the radial forces on volute geometry is illustrated in figure
10.13 from Chamieh et al. (1985) which presents a comparison of the magnitude
of the force on ImpellerX due to VoluteA with the magnitude of the force due to
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Figure 10.13: Comparison of the magnitude of the radial force (F0) on Impeller
X caused by Volute A and by the circular Volute B with a circumferentially
uniform area (Chamieh et al. 1985).

Figure 10.14: Variation of the radial force magnitude, F0, divided by the head
coefficient, ψ, as a function of specific speed, ND , and flow for a class of volute
casing pumps (adapted from KSB 1975).
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Figure 10.15: Locus of the zero radial force locations for the Impeller X/Volute
A combination (Chamieh et al. 1985) compared with that from the data of
Domm and Hergt (1970).

a circular volute with a circumferentially uniform cross-sectional area. In theory,
this second volute could only be well-matched at zero flow rate; note that the
results do exhibit a minimum at shut-off. Figure 10.13 also illustrates one of
the compromises that a designer may have to make. If the objective were to
minimize the radial force at a single flow rate, then a well-designed spiral volute
would be appropriate. On the other hand, if the objective were to minimize the
force over a wide range of flow rates, then a quite different design, perhaps even
a constant area volute, might be more effective. Of course, a comparison of the
hydraulic performance would also have to be made in evaluating such design
decisions. Note from figure 7.1 that the spiral volute is hydraulically superior
up to a flow coefficient of 0.10 above which the results are circular volute is
superior.

As further information on the variation of the magnitude of the radial forces
in different types of pump, we include figure 10.14, taken from KSB (1975),
which shows how F0/ψ may vary with specific speed and flow rate for a class
of volute pumps. The magnitudes of the forces shown in this figure are larger
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Figure 10.16: Circumferential pressure distributions in the impeller discharge
for the Impeller X/Volute A combination at three different flow rates. Also
shown are the theoretical pressure distributions of Adkins and Brennen (1988).

than those of figure 10.12. We should also note that the results of Jery and
Franz (1982) indicate that the presence of diffuser vanes (of typical low solidity)
between the impeller discharge and the volute has relatively little effect on the
radial forces.

It is also important to recognize that small changes in the location of the
impeller within the volute can cause large changes in the radial forces. This
gradient of forces is represented by the hydrodynamic stiffness matrix, [K] (see
section 10.2), for which data will be presented in the context of the rotordy-
namic coefficients. The dependence of the radial force on the impeller position
also implies that, for a given impeller/volute combination at a particular flow
coefficient, there exists a particular location of the axis of impeller rotation for
which the radial force is zero. As an example, the locus of zero radial force
positions for the Impeller X/Volute A combination is presented in figure 10.15.
Note that this location traverses a distance of about 10% of the impeller radius
as the flow rate increases from zero to a flow coefficient of 0.14.

Visualizing the centrifugal pump impeller as a control volume, one can rec-
ognize three possible contributions to the radial force. First, circumferential
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Figure 10.17: Schematic of the Impeller X/Volute A arrangement used for the
experiments of Chamieh et al. (1985) and Adkins and Brennen (1988).

variation in the impeller discharge pressure (or volute pressure) will clearly
result in a radial force acting on the impeller discharge area. A second con-
tribution could be caused by the leakage flow from the impeller discharge to
the inlet between the impeller shroud and the pump casing. Circumferential
nonuniformity in the discharge pressure could cause circumferential nonunifor-
mity in the pressure within this shroud-casing gap, and therefore a radial force
acting on the exterior of the pump shroud. For convenience, we shall term
this second contribution the leakage flow contribution. Third, a circumferential
nonuniformity in the flow rate out of the impeller would imply a force due to
the nonuniformity in the momentum flux out of the impeller. This potential
third contribution has not been significant in any of the studies to date. Both
the first two contributions appear to be important.

In order to investigate the origins of the radial forces, Adkins and Brennen
(1988) (see also Brennen et al. 1986) made measurements of the pressure distri-
butions in the volute, and integrated these pressures to evaluate the contribution
of the discharge pressure to the radial force. Typical pressure distributions for
the Impeller X/Volute A combination (with the flow separation rings of figure
10.17 installed) are presented in figure 10.16 for three different flow coefficients.
Minor differences occur in the pressures measured in the front sidewall of the
volute at the impeller discharge (front taps) and those in the opposite wall (back
taps). The experimental measurements in figure 10.18 are compared with the-
oretical predictions based on an analysis that matches a guided impeller flow
model with a one-dimensional treatment of the flow in the volute. This same
theory was used to calculate rotordynamic matrices and coefficients presented
in section 10.12. In the present context, integration of the experimental pres-
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Figure 10.18: Comparison of radial forces from direct balance measurements,
from integration of measured pressures, and from theory for the Impeller
X/Volute A combination (from Adkins and Brennen 1988).

sure distributions yielded radial forces in good agreement with both the overall
radial forces measured using the force balance and the theoretical predictions
of the theory. These results demonstrate that it is primarily the circumferential
nonuniformity in the pressure at the impeller discharge that generates the radial
force. The theory clearly demonstrates that the momentum flux contribution is
negligible.

The leakage flow from the impeller discharge, between the impeller shroud
and the pump casing, and back to the pump inlet does make a significant con-
tribution to the radial force. Figure 10.17 is a schematic of the impeller, volute,
and casing used in the experiments of Chamieh et al. (1985) and Adkins and
Brennen (1988), as well as for the rotordynamic measurements discussed later.
Adkins and Brennen obtained data with and without the obstruction at the en-
trance to the leakage flow labelled “flow separation rings”. The data of figures
10.16 and 10.18 were taken with these rings installed (whereas Chamieh’s data
was taken without the rings). The measurements showed that, in the absence of
the rings, the nonuniformity in the impeller discharge pressure caused significant
nonuniformity in the pressure in the leakage annulus, and, therefore, a signif-
icant contribution from the leakage flow to the radial force. This was not the
case once the rings were installed, for the rings effectively isolated the leakage
annulus from the impeller discharge nonuniformity. However, a compensating
mechanism exists which causes the total radial force in the two cases to be more
or less the same. The increased leakage flow without the rings tends to relieve
some of the pressure nonuniformity in the impeller discharge, thus reducing the
contribution from the impeller discharge pressure distribution.
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A number of other theoretical models exist in the literature. The analysis of
Lorett and Gopalakrishnan (1983) is somewhat similar in spirit to that of Ad-
kins and Brennen (1988). Earlier analyses, such as those of Domm and Hergt
(1970) and Colding-Jorgensen (1979), were based on modeling the impeller by
a source/vortex within the volute and solutions of the resulting potential flow.
They represent too much of a departure from real flows to be of much applica-
bility.

Finally, we note that the principal focus of this section has been on radial
forces caused by circumferential nonuniformity in the discharge conditions. It
must be clear that nonuniformities in the inlet flow due, for example, to bends
in the suction piping are also likely to generate radial forces. As yet, such forces
have not been investigated. Moreover, it seems reasonable to suggest that inlet
distortion forces are more likely to be important in axial inducers or pumps than
in centrifugal pumps.

10.11 EFFECT OF CAVITATION

Franz et al. (1990) (see also Brennen et al. 1988) have made measurements
of the radial forces for the Impeller X/Volute A combination under cavitating
conditions. These studies show that any loss of head can also cause major
changes in the magnitude and direction of the radial force. This is illustrated in
figure 10.19, where the cavitation performance is juxtaposed with the variation
in the radial forces for three different flow coefficients. Note that the radial force
changes when the head rise across the pump is affected by cavitation. Note also
that the changes in the radial forces are large, in some instances switching
direction by 180◦ while the flow rate remains the same. This result may be of
considerable significance since pumps operating near breakdown often exhibit
fluctuations in which the operating point moves back and forth over the knee of
the cavitation performance curve. According to figure 10.19, such performance
fluctuations would result in large fluctuating forces that could well account for
the heavy vibration and rough running that is usually manifest by a pump
operating under cavitating conditions.

10.12 CENTRIFUGAL PUMPS

Rotordynamic forces in a centrifugal pump were first measured by Hergt and
Krieger (1969-70), Ohashi and Shoji (1984b) and Jery et al. (1985). Typical
data for the dimensionless normal and tangential forces, Fn and Ft, as a func-
tion of the frequency ratio, ω/Ω, are presented in figure 10.20 for the Impeller
X/Volute A combination. The curve for Impeller X is typical of a wide range
of results at different speeds, flow coefficients, and with different impellers and
volutes. Perhaps the most significant feature of these results is that there exists
a range of whirl frequencies for which the tangential force is whirl destabilizing.
A positive Ft at negative whirl frequencies opposes the whirl motion, and is,
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Figure 10.19: Variation of the head and radial force (magnitude, F0, and direc-
tion, θ, measured from the cutwater) with cavitation number, σ, for Impeller
X/Volute A at three flow coefficients and at 3000 rpm (from Franz et al. 1990).

therefore, stabilizing, and fairly strongly so since the forces can be quite large
in magnitude. Similarly, at large, positive frequency ratios, the Ft is negative
and is also stabilizing. However, between these two stabilizing regions, one usu-
ally finds a regime at small positive frequency ratios where Ft is positive and
therefore destabilizing.

As is illustrated by figure 10.20, the variation of Fn and Ft with the whirl
frequency ratio, ω/Ω, can be represented quite accurately by the quadratic
expressions of equations 10.13 and 10.14 (this is not true for axial flow pumps,
as will be discussed later). The rotordynamic coefficients, obtained from data
like that of figure 10.20 for a wide variety of speeds, flow rates, and impeller,
diffuser, and volute geometries, are given in table 10.2 (adapted from Jery et al.
1985). Note, first, some of the general characteristics of these coefficients. The
direct stiffness, K, is always negative because of the Bernoulli effect (see section
10.3). The cross-coupled stiffness, k, is always positive, and is directly connected
to the positive values of Ft at low positive whirl frequency ratios; consequently,
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Figure 10.20: Typical rotordynamic forces, Fn and Ft, as a function of whirl
frequency ratio, ω/Ω, for the Impeller X/Volute A combination running at
1000 rpm and a flow coefficient of φ2 = 0.092 (from Jery et al. 1985).

k is a measure of the destabilizing effect of the fluid. The direct damping, C,
is positive, but usually less than half of the value of the cross-coupled damping,
c. Note that the value of k/C is usually a fairly accurate measure of the whirl
frequency ratio corresponding to the upper bound of the destabilizing interval of
whirl frequency ratios. From table 10.2 the values of k/C, for actual impellers
with volutes and with nonzero flow, range from 0.25 to 0.40, so the range of
subsynchronous speeds, for which these fluid forces are destabilizing, can be
quite large. Resuming the summary of the rotordynamic coefficients, note that
the cross-coupled added mass, m, is small in comparison with the direct added
mass, M , and can probably be neglected in many applications. Note that, since
the direct added mass is converted to dimensional form by πρR2

T2B2, it follows
that typical values of the added mass, M , are equivalent to the mass of about
six such cylinders, or about five times the volume of liquid inside the impeller.

Now examine the variations in the values of the rotordynamic coefficients in
table 10.2. The first series of data clearly demonstrates that the nondimensionalization
has satisfactorily accounted for the variation with rotational speed. Any sep-
arate effect of Reynolds number does not appear to occur within the range of
speeds in these experiments. The second series in table 10.2 illustrates the typ-
ical variations with flow coefficient. Note that, apart from the stiffness at zero
flow, the coefficients are fairly independent of the flow coefficient. The third
series utilized diffusers with various numbers and geometries of vanes inside the
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Table 10.2: Rotordynamic coefficients for various centrifugal pump configura-
tions (from Jery et al. 1985). Volute E is a 17-bladed diffuser with a spiral
volute. Volutes D, F, G and H are spiral volutes fitted with zero, 6, 6 and 12
vanes respectively. Impeller Y is a 6-bladed impeller. Impeller S is a solid mass
with the same external profile as Impeller X.

Impeller/Volute rpm φ2 K k C c M m

Imp.X/Volute A 500 0.092 -2.51 1.10 3.14 7.91 6.52 -0.52
1000 0.092 -2.61 1.12 3.28 8.52 6.24 -0.53
1500 0.092 -2.47 0.99 3.00 8.71 6.87 -0.87
2000 0.092 -2.64 1.15 2.91 9.06 7.02 -0.67

Imp.X/Volute E 1000 0 -1.64 0.14 3.40 7.56 6.83 0.68
1000 0.060 -2.76 1.02 3.74 9.53 6.92 -1.01
1000 0.092 -2.65 1.04 3.80 8.96 6.60 -0.90
1000 0.145 -2.44 1.16 4.11 7.93 6.20 -0.55

Imp.X/none 1000 0.060 -0.55 0.67 1.24 3.60 4.38 1.68
Imp.X/Volute D 1000 0.060 -2.86 1.12 2.81 9.34 6.43 -0.15
Imp.X/Volute F 1000 0.060 -3.40 1.36 3.64 9.51 6.24 -0.72
Imp.X/Volute G 1000 0.060 -3.34 1.30 3.42 9.11 5.75 -0.39
Imp.X/Volute H 1000 0.060 -3.42 1.33 3.75 10.34 7.24 -0.65

Imp.Y/Volute E 1000 0.092 -2.81 0.85 3.34 8.53 5.50 -0.74

Imp.S/Volute A 1000 -0.42 0.41 1.87 3.81 6.54 -0.04

same volute. The presence of vanes appears to cause a slight increase in the
stiffness; however, the number and type of vanes do not seem to matter. Note
that, in the absence of any volute or diffuser, all of the coefficients (except m)
are substantially smaller. Ohashi and Shoji (1984b) made rotordynamic mea-
surements within a much larger volute than any in table 10.2; consequently their
results are comparable with those given in table 10.2 for no volute. On the other
hand, Bolleter, Wyss, Welte, and Sturchler (1985, 1987) report rotordynamic
coefficients very similar in magnitude to those of table 10.2.

The origins of the rotordynamic forces in typical centrifugal pumps have been
explored by Jery et al. (1985) and Adkins and Brennen (1988), among others.
In order to explore the effect of the discharge-to-suction leakage flow between
the shroud and the casing, Jery et al. (1985) compared the rotordynamic forces
generated by the Impeller X/Volute A combination with those generated in
the same housing by a dummy impeller (Impeller S) with the same exterior
profile as Impeller X. A pressure difference was externally applied in order to
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Figure 10.21: Comparison of the rotordynamic force contributions due to the
impeller discharge pressure variations as predicted by the theory of Adkins and
Brennen (1988) (solid lines) with experimental measurements using Impeller X
and Volute A (at φ2 = 0.092) but with the casing surrounding the front shroud
removed to mimimize the leakage flow contributions.

simulate the same inlet to discharge static pressure rise, and, therefore, produce
a leakage flow similar to that in the Impeller X experiments. As in the case of
the radial forces, we surmise that unsteady circumferential pressure differences
on the impeller discharge and in the leakage flow can both contribute to the
rotordynamic forces on an impeller. As can be seen from the coefficients listed
in table 10.2, the rotordynamic forces with the dummy impeller represented a
substantial fraction of those with the actual impeller. We conclude that the
contributions to the rotordynamic forces from the unsteady pressures acting on
the impeller discharge and those from the unsteady pressures in the leakage flow
acting on the shroud are both important and must be separately investigated
and evaluated.

We focus first on the impeller discharge contribution. Adkins and Brennen
(1988) used an extension of the theoretical model described briefly in section
10.10 to evaluate the rotordynamic forces acting on the impeller discharge. They
also made measurements of the forces for an Impeller X/Volute A configuration
in which the pump casing structure external to the shroud was removed in order
to minimize any contributions from the leakage flow. The resulting experimental
and theoretical values of Fn and Ft are presented in figure 10.21. First note
that these values are significantly smaller than those of figure 10.20, indicating
that the impeller discharge contributions are actually smaller than those from
the leakage flow. Second note that the theory of Adkins and Brennen (1988)
provides a reasonable estimate of the impeller discharge contribution to the
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rotordynamic forces, at least within the range of whirl frequencies examined.
Using the Impeller X/Volute A configuration, Adkins and Brennen also made

experimental measurements of the pressure distributions in the impeller dis-
charge flow and in the leakage flow. These measurements allowed calculations
of the stiffnesses, K = Fn(0) and k = Ft(0). The results indicated that the
leakage flow contributes about 70% of K and about 40% of k; these fractional
contributions are similar to those expected from a comparison of figures 10.20
and 10.21.

About the same time, Childs (1987) used the bulk-flow model described
in section 10.7 to evaluate the contributions to the rotordynamic forces from
the discharge-to-suction leakage flow. While his results exhibit some peculiar
resonances not yet observed experimentally, the general magnitude and form
of Childs results are consistent with the current conclusions. More recently,
Guinzberg et al. (1990) have made experimental measurements for a simple
leakage flow geometry that clearly confirm the importance of the rotordynamic
effects caused by these flows. They also demonstrate the variations in the leakage
flow contributions with the geometry of the leakage path, the leakage flow rate
and the swirl in the flow at the entrance to the leakage path.

It is important to mention previous theoretical investigations of the rotor-
dynamic forces acting on impellers. A number of the early models (Thompson
1978, Colding-Jorgensen 1979, Chamieh and Acosta 1981) considered only qua-
sistatic perturbations from the mean flow, so that only the stiffness can be
evaluated. Ohashi and Shoji (1984a) (see also Shoji and Ohashi 1980) consid-
ered two-dimensional, inviscid and unseparated flow in the impeller, and solved
the unsteady flow problem by singularity methods. Near the design flow rate,
their results compare well with their experimental data, but at lower flows the
results diverge. More recently, Tsujimoto et al. (1988) have included the ef-
fects of a volute; their two-dimensional analysis yielded good agreement with
the measurements by Jery et al. (1985) on a two-dimensional impeller.

Finally, in view of the significant effect of cavitation on the radial forces
(section 10.10), it is rather surprising to find that the effect of cavitation on the
rotordynamic forces in centrifugal pumps seems to be quite insignificant (Franz
et al. 1990).

10.13 MOMENTS AND LINES OF
ACTION

Some data on the steady bending moments, Mox and Moy , and on the rotordy-
namic moments

Mn = Bxx = Byy ; Mt = Byx = −Bxy (10.78)

have been presented by Franz et al. (1990) and Miskovish and Brennen (1992).
This data allows evaluation of the axial location of the lines of action of the
corresponding radial and rotordynamic forces. Apart from its intrinsic value,
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Figure 10.22: Steady radial forces, Fox and Foy, and moments, Mox and Moy ,
for Impeller X/Volute A at a speed of 1000 rpm and various flow coefficients as
indicated (from Miskovish and Brennen 1992).

Figure 10.23: Normal and tangential rotordynamic forces, Fn and Ft, and mo-
ments, Mn and Mt, for Impeller X/Volute A at 1000 rpm and various flow
coefficients as indicated (from Miskovish and Brennen 1992).
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knowledge of the line of action of these forces provides clues as to the origin of
the forces.

Typical sets of data taken from Miskovish and Brennen (1992) are presented
in figures 10.22 and 10.23. These were obtained for the Impeller X/Volute
A combination operating at a speed of 1000 rpm. For convenience, the axial
location of the origin of the reference coordinate system has been placed at the
center of the impeller discharge. Since the lines of action of the forces are not
too far from this location, the moments presented here are small, and, for this
reason, the data for the moments is somewhat scattered.

Steady forces and moments are presented for many whirl frequency ratios
in figure 10.22. These forces and moments should, of course, be independent
of the whirl frequency ratio, and so the deviation of the data points from the
mean for a given flow coefficient represents a measure of the scatter in the
data. Despite this scatter, the moment data in figure 10.22 does suggest that
a nonzero steady moment is present, and that it changes with flow coefficient.
The typical location for the line of action of Fo, which this data implies, may
be best illustrated by an example. At φ = 0.06, the steady vector force Fo has
a magnitude of 0.067 (Fox ≈ 0.03, Foy ≈ 0.06) and an angle θF = 63◦ from the
x-axis. The corresponding moment vector has a magnitude of 0.02 and an angle
θM ∼ 180◦ from the x-axis. Consequently, the line of action of Fo is an axial
distance upstream of the origin equal to 0.02 sin(180−63)/0.067 = 0.27. In other
words, the line of action is about a quarter of a discharge radius upstream of the
center of the discharge. This is consistent with the previous observation (section
10.10) that the pressures acting on the exterior of the shroud also contribute to
the steady radial forces; this contribution displaces the line of action upstream
of the center of the discharge.

The data of figure 10.23 could be similarly used to evaluate the lines of
action of the rotordynamic forces whose components are Fn and Ft. However,
the moments Mn and Mt are small over most of the range of whirl ratios,
and lead to lines of action that are less than 0.1 of a radius upstream of the
center of the discharge in most cases. This is consistent with other experiments
on this same impeller/volute/casing combination that suggest that the shroud
force contribution to the rotordynamic matrices is smaller than the impeller
discharge contribution in this particular case.

10.14 AXIAL FLOW INDUCERS

The rotordynamic forces in an unshrouded axial flow pump, or those caused
by adding an axial inducer to a centrifugal pump, are less well understood.
One of the reasons for this is that the phenomena will depend on the dynamic
response of the tip clearance flows, an unsteady flow that has not been studied
in any detail. The experimental data that does exist (Franz and Arndt 1986,
Arndt and Franz 1986, Karyeaclis et al. 1989) clearly show that important
and qualitatively different effects are manifest by unshrouded axial flow pumps.
These effects were not encountered with shrouded centrifugal impellers. They



REFERENCES 283

Figure 10.24: Rotordynamic forces for the helical inducer, Impeller VII, for four
different flow coefficients (from Arndt and Franz 1986).

are exemplified by figure 10.24, which presents data on Fn and Ft for the 9◦

helical inducer, Impeller VII, tested alone at a series of flow coefficients (Arndt
and Franz 1986). At the higher flow coefficients, the variation of Fn and Ft with
whirl frequency ratio, ω/Ω, is similar to the centrifugal pump data. However,
as the flow coefficient is decreased, somewhat pathological behavior begins to
appear in the values of Ft (and to a lesser degree Fn) at small and positive
whirl frequency ratios. This culminates in extremely complicated behavior at
shut-off (zero flow) in which Ft changes sign several times for positive whirl
frequency ratios, implying several separate regions of destabilizing fluid-induced
rotordynamic effect. Note that the maximum values of Ft that were recorded,
are large, and could well be responsible for significant vibration in an axial flow
pump or inducer. Similar pathological rotordynamic effects were encountered
with all the axial inducers tested, including the inducer/impeller combination
represented by the high pressure LOX pump in the Space Shuttle Main Engine
(Franz and Arndt 1986). However, the details in the variations of Ft with ω/Ω
differed from one inducer to another.

Finally, we should note that the current codes for rotordynamic investiga-
tions are not well adapted to deal with deviations from the quadratic forms for
F ∗

n and F ∗
t given in equations 10.13 and 10.14. Consequently, more remains

to be done in terms of rotordynamic analysis before the implications of such
complex frequency-dependent behavior of F ∗

n and F ∗
t become clear.
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acoustic impedance, 211
acoustic impulse, 117
acoustic modes, 172
acoustic pressure, 115
acoustic pulse, 115
acoustic resonance, 198–199
actuator disc, 60, 179
added mass

cross-coupled, 249
direct, 249

affinity laws, 17
air content, 93
Alford effects, 265
angle of attack, 22
attached cavitation, 88
auto-oscillation, 170, 181, 185–189

frequency, 186
hysteresis, 189
onset, 187

axial resonance, 170

backflow, 68, 132
cavitation, 89
deflector, 68

balance piston, 170
barotropic fluid, 210
bearings, 171, 245

π-film, 254
hydrodynamic, 250–257
long, 250, 252, 254
short, 250, 253, 254

Bernoulli effect, 250
Bernoulli equation, 34
blade

cavitation, 88
drag, 40

flutter, 138, 169, 171, 199–202
leading edge, 155
lift, 40
momentum thickness, 45
passing frequency, 118, 170, 172,

198, 247
stresses, 16
thickness, 154
vibration, 171
wake, 45

boiler feed pumps, 169
boiling, 15, 106, 145
boundary layer, 45

separation, 97
breakdown, 150

cavitation number, 155
bubble

break up, 140
cavitation, 88, 138
cloud, 107, 139, 198
collapse, 105, 107, 139
concentration, 139
dynamics, 103–108
growth rate, 105, 144
migration, 141
natural frequency, 114
rebound, 107
relative motion, 141
resonant frequency, 115
shape, 139
size, 140

bulk flow model, 258

camber angle, 22
cascade
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drag coefficients, 152
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lift coefficients, 152
partially cavitating, 154–161
supercavitating, 152–154

cavitating jet, 120
cavitation, 15, 77

blockage, 161
breakdown, 16, 85, 142
damage, 15, 89, 108–114
desinent number, 92
effect on radial forces, 275
effect on rotordynamics, 275
effects, 280
erosion rates, 112
event rate, 119
head loss, 85, 160, 161
hysteresis, 93
in bearings, 254
inception, 80–84, 92–98
inception number, 78, 85
instabilities, 16
noise, 93, 108, 114–120, 171
noise scaling, 119
number, 78
parameters, 77–80
performance, 16, 84, 123, 132
performance correlations, 161–

162
scaling, 84
thermal effect, 104
types of, 87–92

characteristic impedance, 223
choked cavitation number, 155, 159
Clausius-Clapeyron equation, 104
cloud

cavitation, 139
natural frequency, 140, 198

completely active system, 228
completely passive system, 227
compliance, 224
condensation shock, 140
conservative system, 227
Constant’s rule, 44
critical cavitation number, 146
critical speed, 171, 200, 245
critical temperature, 146
critical tension, 107

critical time, 144

damping
cross-coupled, 249
direct, 249

deaerator, 83
deflection angle, 22
depth charge, 111
deviation angle, 22, 43–45
diffuser, 65

axial, 65
radial, 65

diffusion factor, 45
discharge impedance, 229
discharge resistance, 229
disk friction loss, 47
displacement flow, 49
dissipationless systems, 225
distributed systems, 219–220
drag coefficient, 41
dynamic activity, 228
dynamic stall, 176

eccentricity, 248
efficiency

hydraulic, 34
shaft, 34

encounter diagram, 189
energy flux, 184, 226–230
erosion, 109

flat plate cascade, 25
flexible coatings, 112
flow coefficient, 27, 84
fluid/structure interaction, 169
forced vortex design, 59
Fourier analysis, 216
Francis turbine, 109
free stream turbulence, 97
free streamline methods, 148–161,

176
free vortex design, 59
frequency

blade passing, 172
domain methods, 216–242
oscillation, 172–175
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structural, 174
subsynchronous, 172

head coefficient, 27, 84
heave oscillations, 176
holography, 81
homogeneous flow model, 217
Hoover dam, 109
hydrofoil, 149

Joukowski, 97
NACA 4412, 95
partially cavitating, 149
supercavitating, 16, 149, 176

impedance, 224
impellers, 35–38, 245

axial, 21
centrifugal, 21
mixed flow, 21

incidence angle, 22
incubation time, 113
inducer, 16

blade angle, 159
blade cant, 131
designs, 130–131
helical, 38, 156
incidence, 131
leading edge, 131, 159
performance, 131–138
rotordynamics, 282–283
SSME, 38, 87, 156, 283

inertance, 224
inertia effect, 250
input impedance, 229
input resistance, 229
interblade spacing, 192
ITTC

headform, 117
tests, 81, 92

jet-wake structure, 51

leading edge, 136
flutter, 201

leakage flow, 47, 73, 171, 258
lift coefficient, 41, 176

fluctuating, 193
line of action, 175, 280–282
line resonance, 170
linear cascade, 25, 39–47
liquid quality, 81
liquid temperature, 141
Lomakin effect, 251
loss coefficient, 41
LRC systems, 225
lumped parameter models, 225

magnetostrictive device, 110
meridional

Reynolds number, 259
surface, 21
velocity, 22

method of characteristics, 214–216
microbubbles, 81
microjet, 111
mixed flow pump, 21, 26, 124

normal force, 248
NPSH, 79, 85, 161
NPSP, 79
nucleation, 80

homogeneous, 81
sites, 81

nuclei, 81, 88
critical size, 107
number distribution, 81
ocean, 81
population, 92
residence time, 83

number of blades, 50

oil whip, 253
organ-pipe modes, 226

partial cavitation, 89, 170
oscillation, 196, 202

Pogo instability, 171, 202, 241
potentially active system, 228
power density, 169
prerotation, 67, 132
pressure coefficient, 77

fluctuating, 194
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mimimum, 78
pressure surface, 45
propagation operator, 223
propellers, 152
pseudo-cavitation, 83
pump

characteristic, 84, 183
supercavitating, 89
vibration, 169–202

radial bending moments, 174
radial cascade, 26, 47–52
radial equilibrium, 58
radial forces, 171, 174, 245–248, 267–

275
Rayleigh-Plesset equation, 103, 117,

139
reentrant jet, 111
relative eddies, 49
remnant cloud, 112
residence time, 84
resistance, 224
resorber, 83
Reynolds number, 30, 78, 84, 97,

250
rotating cavitation, 170, 181–182

propagation speed, 182
rotating stall, 170, 172, 178–181

cavitation, 170
cell, 170
in vaned diffuser, 180
in volute, 181
propagation speed, 178, 181

rotor-stator interaction, 171
flow patterns, 189–191
forces, 192–196

rotordynamic forces, 171, 174, 245–
283

rotordynamic instability, 169
rotordynamic moments, 175, 280–

282

Schiebe headform, 117
screening effects, 139
seals, 171, 245, 250–251

annular, 258–264

damper, 264
labyrinth, 264–265
long, 250
short, 250

secondary flows, 47, 67, 71–74
shock wave, 111, 112
simple cascade, 25
slip factor, 23, 49
slip velocity, 22, 50
solidity, 22, 26, 135
sonic speed, 210
sound pressure level, 119
specific speed, 28–31
speed of sound, 210
spiral collector, 65
squeeze film dampers, 250, 257–258
stall flutter, 199
stator vanes, 65
stiffness

cross-coupled, 249
direct, 249

Strouhal number, 200
structural damping, 189
suction specific speed, 79, 85, 161
suction surface, 45
supercavitation, 89, 170
surface roughness, 84, 97
surge, 170, 181–185
surge tank, 224
susceptibility meter, 81
system instability, 182, 228
system order, 217

tangential force, 248
tension, 80

critical, 81
thermal effects, 141–148
thermal suppression, 105
thermodynamic equilibrium, 139
Thoma cavitation factor, 79, 86
thrust, 174, 247
time domain methods, 209–216
tip clearance, 98
tip clearance effect, 136
tip clearance flow, 72, 89
tip leakage flow, 72



INDEX 293

tip vortex cavitation, 87
torque, 35, 174, 247
total head, 27
total pressure, 27
transfer matrices, 218–242

combinations, 220
determinant, 222
properties, 221–223
pumps, 230–241
quasi-reciprocal, 222
reciprocal, 222
symmetric, 223

transmission matrix, 219

uniform system, 219
unsteady flows, 16–17, 175–178, 209–

242

ventilated cavity, 197
pulsation, 197

volute, 65
circular, 123, 271
matching, 37, 66
spiral, 37, 268
throat, 67

vortex
cavitation, 87
pressures, 83
shedding, 110, 171

water column separation, 215
water-hammer methods, 209
wear, 169
whirl

frequency, 247
frequency ratio, 248
motion, 248
orbit, 248
ratio, 249


