The thrust for this XR-5M15 prototype
engine is produced by gas particles
being ejected at a high velocity. The
determination of the forces on the test

stand is based on the analysis of the

motion of a variable system of
particles, i.e., the motion of @  AxpertSoft Trial Version
number of air particles considerea

together rather than separately.
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Chapter 14 Systems of Particles
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Variable Systems of Particles
Steady Stream of Particles
Systems Gaining or Losing Mass

14.1 INTRODUCTION

In this chapter you will study the motion of systems of particles, i.e.,
the motion of a large number of particles considered together. The
first part of the chapter is devoted to systems consisting of well-
defined particles; the second part considers the motion of variable
systems, i.e., systems which are continually gaining or losing parti-
cles, or doing both at the same time.

In Sec. 14.2, Newton’s second law will first be applied to each
particle of the system. Defining the effective force of a particle as
the product mya; of its mass m; and its acceleration a;, we will show
that the external forces acting on the various particles form a system
equipollent to the system of the effective forces, i.e., both systems
have the same resultant and the same moment resultant about any
given point. In Sec. 14.3, it will be further shown that the resultant
and moment resultant of the external forces are equal, respectively,
to the rate of change of the total linear momentum and of the total
angular momentum of the particles of the system.

In Sec. 14.4, the mass center of a system of particles is defined
and the motion of that point is described, while in Sec. 14.5 the
motion of the particles about their mass center is analyzed. The
conditions under which the linear momentum and the angular
momentum of a system of particles are conserved are discussed in
Sec. 14.6, and the results obtained in that section are applied to the

O on_ o 0
h the application of the work-
icles, and Sec. 14.9 with the
principle. These sections also
contain a number o ems o practical interest.

It should be noted that while the derivations given in the first
part of this chapter are carried out for a system of independent par-
ticles, they remain valid when the particles of the system are rigidly
connected, i.e., when they form a rigid body. In fact, the results
obtained here will form the foundation of our discussion of the kinet-
ics of rigid bodies in Chaps. 16 through 18.

The second part of this chapter is devoted to the study of variable
systems of particles. In Sec. 14.11 you will consider steady streams of
particles, such as a stream of water diverted by a fixed vane, or the flow
of air through a jet engine, and learn to determine the force exerted by
the stream on the vane and the thrust developed by the engine. Finally,
in Sec. 14.12, you will learn how to analyze systems which gain mass
by continually absorbing particles or lose mass by continually expelling
particles. Among the various practical applications of this analysis will
be the determination of the thrust developed by a rocket engine.

14.2 APPLICATION OF NEWTON'’S LAWS TO THE
MOTION OF A SYSTEM OF PARTICLES.
EFFECTIVE FORCES

In order to derive the equations of motion for a system of n particles,
let us begin by writing Newton’s second law for each individual par-
ticle of the system. Consider the particle P;, where 1 = i = n. Let
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m; be the mass of P; and a; its acceleration with respect to the new-
tonian frame of reference Oxyz. The force exerted on P; by another
particle P; of the system (Fig. 14.1), called an internal force, will be
denoted by f;;. The resultant of the internal forces exerted on P; by

n
all the other particles of the system is thus 2 f; (where f; has no
j=1
meaning and is assumed to be equal to zero). Denoting, on the other
hand, by F; the resultant of all the external forces acting on P;, we
write Newton’s second law for the particle P; as follows:

F, +> f; = ma, (14.1)
j=1

Denoting by r; the position vector of P; and taking the moments
about O of the various terms in Eq. (14.1), we also write

X F o+ (% £) =1, X ma (14.2)
j=1

Repeating this procedure for each particle P; of the system, we
obtain n equations of the type (14.1) and n equations of the type
(14.2), where i takes successively the values 1, 2, . . ., n. The vectors
mya; are referred to as the effective forces of the particles.t Thus the
equations obtained express the fact that the external forces F; and
the internal forces f; acting on the various particles form a system

equivalent to the system of the ¢ e o wa. (ie_one svstem

may be replaced by the other

AxpertSoft Trial Version

Z Z
Fig. 14.2

Before proceeding further with our derivation, let us examine
the internal forces f;. We note that these forces occur in pairs f;, f;,
where f;; represents the force exerted by the particle P; on the par-
ticle P; and f; represents the force exerted by P; on P; (Fig. 14.2).
Now, according to Newton’s third law (Sec. 6.1), as extended by
Newton’s law of gravitation to particles acting at a distance (Sec. 12.10),
the forces f; and f; are equal and opposite and have the same line of
action. Their sum is therefore f; + f; = 0, and the sum of their
moments about O is

r; X f; + 1, X f;

]lzrix <fz+f> +<I'-

jl ]—rz))(fzo

Jt

tSince these vectors represent the resultants of the forces acting on the various
particles of the system, they can truly be considered as forces.

14.2 Application of Newton's Laws to the

Y4
Fig. 14.1

Motion of a System of Particles.
Effective Forces

869


http://www.axpertsoft.com/pdf-splitter-software/

870 Systems of Particles

since the vectors r; — r; and f; in the last term are collinear. Adding
all the internal forces of the system and summing their moments
about O, we obtain the equations

iifij:o EErxf (14.3)

i=1 j=1

which express the fact that the resultant and the moment resultant
of the internal forces of the system are zero.

Returning now to the n equations (14.1), wherei = 1,2, ..., n,
we sum their left-hand members and sum their right-hand members.
Taking into account the first of Eqgs. (14.3), we obtain

S F, = ma, (144

i=1 i=1

Proceeding similarly with Eq. (14.2) and taking into account the sec-
ond of Egs. (14.3), we have

Z (r; X F;) = (r; X m;a;) (14.5)

ess the fact that the system of
bf the effective forces m;a; have
ent resultant. Referring to the
# equipollent systems of vectors,
we can therefore state that the system of the external forces acting
on the particles and the system of the effective forces of the particles
are equipollentt (Fig. 14.3).

F P
y ' o y ”“3"*3/0 Ps
Py Pro
myay
) / m,a,
7
P, P2
0 X o X
z z
Fig. 14.3

tThe result just obtained is often referred to as d’Alembert’s principle, after the French
mathematician Jean le Rond d’Alembert (1717-1783). However, d’Alembert’s original
statement refers to the motion of a system of connected bodies, with f; representing
constraint forces which if applied by themselves will not cause the system to move. Since,
as it will now be shown, this is in general not the case for the internal forces acting on a
system of free particles, the consideration of d’Alembert’s principle will be postponed
until the motion of rigid bodies is considered (Chap. 16).
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Equations (14.3) express the fact that the system of the internal
forces f;; is equipollent to zero. Note, however, that it does not follow
that the internal forces have no effect on the particles under consid-
eration. Indeed, the gravitational forces that the sun and the planets
exert on one another are internal to the solar system and equipollent
to zero. Yet these forces are alone responsible for the motion of the
planets about the sun.

Similarly, it does not follow from Egs. (14.4) and (14.5) that
two systems of external forces which have the same resultant and the
same moment resultant will have the same effect on a given system
of particles. Clearly, the systems shown in Figs. 14.4a and 14.4b have

i . B
/// B ///
oB B
.
(b)
Fig. 14.4

the same resultant and the same moment resultant; yet the ﬁrst sys-
tem accelerates particle A and leaves particle :
second accelerates B and does

that when we stated in Sec. AXpertSOft Trial Version

forces acting on a rigid bod
noted that this property could not be extended to a system ol lorces
acting on a set of independent particles such as those considered in
this chapter.

In order to avoid any confusion, blue equals signs are used to
connect equipollent systems of vectors, such as those shown in
Figs. 14.3 and 14.4. These signs indicate that the two systems of
vectors have the same resultant and the same moment resultant. Red
equals signs will continue to be used to indicate that two systems of
vectors are equivalent, i.e., that one system can actually be replaced
by the other (Fig. 14.2).

14.3 LINEAR AND ANGULAR MOMENTUM
OF A SYSTEM OF PARTICLES

Equations (14.4) and (14.5), obtained in the preceding section for
the motion of a system of particles, can be expressed in a more
condensed form if we introduce the linear and the angular momen-
tum of the system of particles. Defining the linear momentum L of
the system of particles as the sum of the linear momenta of the vari-
ous particles of the system (Sec. 12.3), we write

L= my (14.6)
i=1

14.3 Linear and Angular Momentum of a
System of Particles

871
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Defining the angular momentum Hy about O of the system of par-
ticles in a similar way (Sec. 12.7), we have

Hy, = z (r; X mv;) (14.7)

Differentiating both members of Egs. (14.6) and (14.7) with
respect to ¢, we write

L= 2 myv; = m,a; (14.8)
=1

1

i

and

M:

I:Io (i'i X myv;) +
1 i

(r; X myv;)

I
R

I
—

1

=

M-

I
—

(vi X myv;) + > (r; X myay)

i

I
—

which reduces to

ﬁo = 2 (r; X m;a;) (14.9)
i=1

ear.
members of Egs. (14.8) and
e right-hand members of Egs.
(14.4) and (14.5). It follows that the left-hand members of these
equations are respectively equal. Recalling that the left-hand mem-
ber of Eq. (14.5) represents the sum of the moments My about O
of the external forces acting on the particles of the system, and omit-
ting the subscript i from the sums, we write

SF =L (14.10)
>M, = H, (14.11)

These equations express that the resultant and the moment resultant
about the fixed point O of the external forces are respectively equal
to the rates of change of the linear momentum and of the angular
momentum about O of the system of particles.

14.4 MOTION OF THE MASS CENTER
OF A SYSTEM OF PARTICLES

Equation (14.10) may be written in an alternative form if the mass
center of the system of particles is considered. The mass center of
the system is the point G defined by the position vector r, which
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satisfies the relation

mr = > m; (14.12)

where m represents the total mass Z m; of the particles. Resolving
-1
the position vectors r and r; into rectangular components, we obtain

the following three scalar equations, which can be used to deter-
mine the coordinates x, y, z of the mass center:

n

mx = 2 mgx; my = 2 my; mz = 2 mgz; (14.12")
i=1 i=1

i=1

Since m;g represents the weight of the particle P;, and mg the
total weight of the particles, G is also the center of gravity of the
system of particles. However, in order to avoid any confusion, G will
be referred to as the mass center of the system of particles when
properties associated with the mass of the particles are being dis-
cussed, and as the center of gravity of the system When propertles
associated with the weight of the particles ¢
ticles located outside the gravi
have a mass but no weight. W¢
center, but obviously not to t

Differentiating both members o
we write

or

(14.13)

Il
1M
E
<

where v represents the velocity of the mass center G of the system of
particles. But the right-hand member of Eq. (14.13) is, by definition,
the linear momentum L of the system (Sec. 14.3). We therefore have

L =mv (14.14)

and, differentiating both members with respect to ¢,

L =ma (14.15)

It may also be pointed out that the mass center and the center of gravity of a system of
particles do not exactly coincide, since the weights of the particles are directed toward
the center of the earth and thus do not truly form a system of parallel forces.

14.4 Motion of the Mass Center of a
System of Particles

873
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where a represents the acceleration of the mass center G. Substitut-
ing for L from (14.15) into (14.10), we write the equation

2F = ma (14.16)

which defines the motion of the mass center G of the system of
particles.

We note that Eq. (14.16) is identical with the equation we
would obtain for a particle of mass m equal to the total mass of
the particles of the system, acted upon by all the external forces. We
therefore state that the mass center of a system of particles moves as
if the entire mass of the system and all the external forces were con-
centrated at that point.

This principle is best illustrated by the motion of an exploding
shell. We know that if air resistance is neglected, it can be assumed
that a shell will travel along a parabolic path. After the shell has
exploded, the mass center G of the fragments of shell will continue
to travel along the same path. Indeed, point G must move as if the
mass and the weight of all fragments were concentrated at G; it must,
therefore, move as if the shell had not exploded.

It should be noted that the preceding derivation does not
involve the moments of the external forces. Therefore, it would be
wrong to assume that the external forces are equlpollent to a vector
his is not in general the case
ion, the sum of the moments

AxpertSoft Trial Version Sy s,

14.5 ANGULAR MOMENTUM OF A SYSTEM OF
PARTICLES ABOUT ITS MASS CENTER

In some applications (for example, in the analysis of the motion of
a rigid body) it is convenient to consider the motion of the particles
of the system with respect to a centroidal frame of reference Ga'y'z’
which translates with respect to the newtonian frame of reference
Oxyz (Fig. 14.5). Although a centroidal frame is not, in general, a
newtonian frame of reference, it will be seen that the fundamental
relation (14.11) holds when the frame Oxyz is replaced by Ga'y'z".

Denoting, respectively, by r; and v; the position vector and the
velocity of the particle P; relatlve to the moving frame of reference
Gx'y'z’, we define the angular momentum Hg of the system of par-
ticles about the mass center G as follows:

H; = 2 (r] X m;vi) (14.17)
=1

We now differentiate both members of Eq. (14.17) with respect to ¢.
This operation is similar to that performed in Sec. 14.3 on Eq. (14.7),
and so we write immediately

n

H; = (r] X ma)) (14.18)

i=1
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where a; denotes the acceleration of P; relative to the moving frame
of reference. Referring to Sec. 11.12, we write

a, = a + aj

where a; and a denote, respectively, the accelerations of P; and G
relative to the frame Oxyz. Solving for aj and substituting into
(14.18), we have

n

H’G = 2 (r; X ma;) — (2 mir{> X a (14.19)
i=1

i=1

But, by (14.12), the second sum in Eq. (14.19) is equal to mr’ and
thus to zero, since the position vector r’ of G relative to the frame
Gx'y'z" is clearly zero. On the other hand, since a; represents the
acceleration of P; relative to a newtonian frame, we can use Eq. (14.1)
and replace m;a; by the sum of the internal forces f; and of the
resultant F; of the external forces acting on P;. But a reasoning
similar to that used in Sec. 14.2 shows that the moment resultant
about G of the internal forces f; of the entire system is zero. The
first sum in Eq. (14.19) therefore reduces to the moment resultant
about G of the external forces acting on the particles of the system,
and we write

SM. = H,, (14.20)

which expresses that the mor AxpertSOft Trial Version

forces is equal to the rate of It
G of the system of particles.

It should be noted that in Eq. (14.17) we defined the angular
momentum H¢; as the sum of the moments about G of the momenta
of the particles mv; in their motion relative to the centroidal frame
of reference Gx'y'z'. We may sometimes want to compute the sum
H, of the moments about G of the momenta of the particles m;v; in
their absolute motion, i.e., in their motion as observed from the new-
tonian frame of reference Oxyz (Fig. 14.6):

n

He = (r] X myv;) (14.21)

i=1

Remarkably, the angular momenta H¢ and Hg; are identically equal.
This can be verified by referring to Sec. 11.12 and writing

vV, =V + V] (14.22)
Substituting for v; from (14.22) into Eq. (14.21), we have

n n
H; = <2 mirlf) X v +2 (r] X myv))
i=1 i=1

But, as observed earlier, the first sum is equal to zero. Thus Hg
reduces to the second sum, which, by definition, is equal to Hg.t

tNote that this property is peculiar to the centroidal frame Gx'y'z" and does not, in
general, hold for other frames of reference (see Prob. 14.29).

14.5 Angular Momentum of a System of @75
Particles About Its Mass Center
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Taking advantage of the property we have just established, we
simplify our notation by dropping the prime (') from Eq. (14.20) and

Writing
SM, = Hg (14.23)

where it is understood that the angular momentum Hg can be com-
puted by forming the moments about G of the momenta of the
particles in their motion with respect to either the newtonian frame

o1

Oxyz or the centroidal frame Gx'y'z":

= (x] X mw,) 2 v/ X mv)) (14.24)
i=1 i=1

14.6 CONSERVATION OF MOMENTUM
FOR A SYSTEM OF PARTICLES
If no external force acts on the particles of a system, the left-hand

members of Egs. (14.10) and (14.11) are equal to zero and these
: = =~ (0. We conclude that

AxpertSoft Trial Version

Photo 14.1 If no external forces are acting on
the two stages of this rocket, the linear and angular
momentum of the system will be conserved.

o = constant (14.25)

The equations obtained express that the linear momentum of the
system of particles and its angular momentum about the fixed point O
are conserved.

In some applications, such as problems involving central forces,
the moment about a fixed point O of each of the external forces can
be zero without any of the forces being zero. In such cases, the sec-
ond of Egs. (14.25) still holds; the angular momentum of the system
of particles about O is conserved.

The concept of conservation of momentum can also be applied
to the analysis of the motion of the mass center G of a system of
particles and to the analysis of the motion of the system about G.
For example, if the sum of the external forces is zero, the first of
Egs. (14.25) applies. Recalling Eq. (14.14), we write

v = constant (14.26)

which expresses that the mass center G of the system moves in a
straight line and at a constant speed. On the other hand, if the sum
of the moments about G of the external forces is zero, it follows from
Eq. (14.23) that the angular momentum of the system about its mass
center is conserved:

H, = constant (14.27)
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Vo = 100 ft/s
—
20 )-—————-

SAMPLE PROBLEM 14.1

A 200-kg space vehicle is observed at ¢ = 0 to pass through the origin of a
newtonian reference frame Oxyz with velocity vy = (150 m/s)i relative to
the frame. Following the detonation of explosive charges, the vehicle sepa-
rates into three parts A, B, and C, of mass 100 kg, 60 kg, and 40 kg, respec-
tively. Knowing that at ¢ = 2.5 s the positions of parts A and B are observed
to be A(555, —180, 240) and B(255, 0, —120), where the coordinates are
expressed in meters, determine the position of part C at that time.

SOLUTION

Since there is no external force, the mass center G of the system moves
with the constant velocity vo = (150 m/s)i. At ¢ = 2.5 s, its position is

r = vit = (150m/s)i(2.5s) = (375m)i
Recalling Eq. (14.12), we write

mr = mur, + mgrg + merg
(200 kg)(375 m)i = (100 kg)[(555 m)i — (180 m)j + (240 m)k]
+ (60 kg)[(255 m)i — (120 m)k] + (40 kg)rc

re = (105 m)i + (450 m)j — (420 m)k

AxpertSoft Trial Version

A 20-Ib projectile is moving with a velocity of 100 ft/s when it explodes into
two fragments A and B, weighing 5 1b and 15 lb, respectively. Knowing that
immediately after the explosion, fragments A and B travel in directions
defined respectively by u, = 45° and uz = 30°, determine the velocity of
each fragment.

SOLUTION

Since there is no external force, the linear momentum of the system is
conserved, and we write

Mmuva + mpvg = mvy
(5/g)VA + (15/g)VB = (20/g)Vo
¥/ x components: 50, cos 45° + 1505 cos 30° = 20(100)
<y components: 5v, sin 45° — 15vp sin 30° = 0

Solving simultaneously the two equations for v, and vg, we have
vy = 207 ft/s vg = 97.6 ft/s
vy = 207 ft/s @ 45° vz = 97.6 ft/s C 30°

877
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SULVINGREEROBLEIVIO
JIN BT OURSOVVIN

his chapter deals with the motion of systems of particles, that is, with the motion
of a large number of particles considered together, rather than separately. In this
first lesson you learned to compute the linear momentum and the angular momentum
of a system of particles. We defined the linear momentum L of a system of particles
as the sum of the linear momenta of the particles and we defined the angular momen-
tum Hj, of the system as the sum of the angular momenta of the particles about O:
n n
L= >myv, Hy= > (r;Xmv,) (14.6, 14.7)
i=1 i=1
In this lesson, you will solve a number of problems of practical interest, either by
observing that the linear momentum of a system of particles is conserved or by
considering the motion of the mass center of a system of particles.

1. Conservation of the linear momentum of a system of particles. This occurs
when the resultant of the external forces acting on the particles of the system is
zero. You may encounter such a situation in the following types of problems.

a. Problems involving the rectilinear motion of objects such as colliding auto-
mobiles and railroad cars. After you have checked that the resultant of the external
forces is zero, equate the algebraic sums of the initial momenta and final momenta
to obtain an equation which can be solved for one unknown.

b. Problems involying the two-dimensiongl or three-dimensional motion of
objects such as explo . . or billiard balls.
After you have chec] AXpertSOft Trial Version zero, add vec-
torially the initial mo momenta, and
equate the two sums to obtain a vector equation expressing that the linear momen-
tum of the system is conserved.

In the case of a two-dimensional motion, this equation can be replaced by
two scalar equations which can be solved for two unknowns, while in the case of
a three-dimensional motion it can be replaced by three scalar equations which can
be solved for three unknowns.

2. Motion of the mass center of a system of particles. You saw in Sec. 14.4
that the mass center of a system of particles moves as if the entire mass of the
system and all of the external forces were concentrated at that point.

a. In the case of a body exploding while in motion, it follows that the mass
center of the resulting fragments moves as the body itself would have moved if the
explosion had not occurred. Problems of this type can be solved by writing the equa-
tion of motion of the mass center of the system in vectorial form and expressing the
position vector of the mass center in terms of the position vectors of the various frag-
ments [Eq. (14.12)]. You can then rewrite the vector equation as two or three scalar
equations and solve the equations for an equivalent number of unknowns.

b. In the case of the collision of several moving bodies, it follows that the
motion of the mass center of the various bodies is unaffected by the collision.
Problems of this type can be solved by writing the equation of motion of the mass
center of the system in vectorial form and expressing its position vector before
and after the collision in terms of the position vectors of the relevant bodies
[Eq. (14.12)]. You can then rewrite the vector equation as two or three scalar
equations and solve these equations for an equivalent number of unknowns.
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14.1

14.2

14.3

PROBLEMS

A 30-g bullet is fired with a horizontal velocity of 450 m/s and
becomes embedded in block B which has a mass of 3 kg. After the
impact, block B slides on 30-kg carrier C until it impacts the end of
the carrier. Knowing the impact between B and C is perfectly plastic
and the coefficient of kinetic friction between B and C is 0.2, deter-
mine () the velocity of the bullet and B after the first impact,
(b) the final velocity of the carrier.

A 30-g bullet is fired with a horizontal velocity of 450 m/s
through 3-kg block B and becomes embedded in carrier C
which has a mass of 30 kg. After the impact, block B slides 0.3 m
on C before coming to rest relative to the carrier. Knowing the
coefficient of kinetic friction between B and C is 0.2, determine
(a) the velocity of the bullet immediately after passing through B,
(b) the final velocity of the carrier.

Car A weighing 4000 1b and car B weighing 3700 Ib are at rest on
a 22-ton flatcar which is also at rest. Cars A and B then accelerate
and quickly reach constant speeds relative to the flatcar of 7 ft/s
and 3.5 ft/s, respectively, before decelerating to a stop at the oppo-
site end of the flatcar. Neglecting friction and rolhng resmtance
determlne the Velocnty of the flatcar 3

Fig. P14.3

14.4

14.5

A bullet is fired with a horizontal velocity of 1500 ft/s through a
6-Ib block A and becomes embedded in a 4.95-1b block B. Know-
ing that blocks A and B start moving with velocities of 5 ft/s and
9 ft/s, respectively, determine (@) the weight of the bullet, (b) its
velocity as it travels from block A to block B.

1500 ft/s
—

Fig. P14.4

Two swimmers A and B, of weight 190 Ib and 125 Ib, respectively,
are at diagonally opposite corners of a floating raft when they real-
ize that the raft has broken away from its anchor. Swimmer A
immediately starts walking toward B at a speed of 2 ft/s relative
to the raft. Knowing that the raft weighs 300 b, determine (@) the
speed of the raft if B does not move, (b) the speed with which B
must walk toward A if the raft is not to move.

o]

Fig. P14.1

Fig. P14.5

879
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Fig. P14.9

14.6

14.7

AxpertSoft Trial Version

A 180-Ib man and a 120-Ib woman stand side by side at the same
end of a 300-Ib boat, ready to dive, each with a 16-ft/s velocity rela-
tive to the boat. Determine the velocity of the boat after they have
both dived, if (@) the woman dives first, (b) the man dives first.

Fig. P14.6

A 40-Mg boxcar A is moving in a railroad switchyard with a velocity
of 9 km/h toward cars B and C, which are both at rest with their
brakes off at a short distance from each other. Car B is a 25-Mg
flatcar supporting a 30-Mg container, and car C is a 35-Mg boxcar.
As the cars hit each other they get automatically and tightly cou-
pled. Determine the velocity of car A immediately after each of the
two couplings, assuming that the container (¢) does not slide on
the flatcar, (b) slides after the first coupling but hits a stop before the
second coupling occurs, (c) slides and hits the stop only after
the second coupling has occurred.

Fig. P14.7

14.8

Packages in an automobile parts supply house are transported to
the loading dock by pushing them along on a roller track with very
little friction. At the instant shown packages B and C are at rest
and package A has a velocity of 2 m/s. Knowing that the coefficient
of restitution between the packages is 0.3, determine (a) the veloc-
ity of package C after A hits B and B hits C, (b) the velocity of A
after it hits B for the second time.

Fig. P14.8

A system consists of three particles A, B, and C. We know that
my = 3 kg, mp = 2 kg, and m¢ = 4 kg and that the velocities of
the particles expressed in m/s are, respectively, vy = 4i + 2j + 2k,
vy = 4i + 3j, and v¢ = —2i + 4j + 2k. Determine the angular
momentum Hy, of the system about O.
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14.10 For the system of particles of Prob. 14.9, determine (a) the position Problems 881
vector r of the mass center G of the system, (b) the linear momentum
mv of the system, (c) the angular momentum H; of the system about
G. Also verify that the answers to this problem and to Prob. 14.9
satisfy the equation given in Prob. 14.27.

14.11 A system consists of three particles A, B, and C. We know that
Wy =51b, Wi = 4 1b, and W, = 3 1b and that the velocities of
the particles expressed in ft/s are, respectively, v, = 2i + 3j — 2k,
vg = ud + v,j + vk, and v¢ = —=3i — 2j + k. Determine
(@) the components v, and v, of the velocity of particle B for which
the angular momentum Hy, of the system about O is parallel to
the x axis, (b) the value of Hp,.

14.12 For the system of particles of Prob. 14.11, determine (a) the com-
ponents v, and v, of the velocity of particle B for which the angular
momentum Hp of the system about O is parallel to the z axis,
(b) the value of H,.

14.13 A system consists of three particles A, B, and C. We know that Fig. P14.11

my = 3 kg, my = 4 kg, and m, = 5 kg and that the velocities of
the particles expressed in m/s are, respectively, vy = —4i + 4j + 6k,
vg = —6i + 8 + 4k, and v¢ = 2i — 6j — 4k. Determine the
angular momentum Hy, of the system about O.

AxpertSoft Trial Version

24 m

Fig. P14.13

14.14 For the system of particles of Prob. 14.13, determine (@) the posi-
tion vector r of the mass center G of the system, (b) the linear
momentum mv of the system, (¢) the angular momentum Hg of
the system about G. Also verify that the answers to this problem
and to Prob. 14.13 satisfy the equation given in Prob. 14.27.
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882 Systems of Particles 14.15 A 13-kg projectile is passing through the origin O with a velocity
vy = (35 m/s)i when it explodes into two fragments A and B, of
mass 5 kg and 8 kg, respectively. Knowing that 3 s later the position
of fragment A is (90 m, 7 m, —14 m), determine the position of
fragment B at the same instant. Assume a, = —g = —9.81 m/s
and neglect air resistance.

14.16 A 300-kg space vehicle traveling with a velocity vy = (360 m/s)i
passes through the origin O at ¢t = 0. Explosive charges then sepa-
rate the vehicle into three parts A, B, and C, with mass, respectively,
150 kg, 100 kg, and 50 kg. Knowing that at ¢t = 4 s, the positions of
parts A and B are observed to be A (1170 m, —290 m, —585 m) and
B (1975 m, 365 m, 800 m), determine the corresponding position of
part C. Neglect the effect of gravity.

14.17 A 2-kg model rocket is launched vertically and reaches an alti-
tude of 70 m with a speed of 30 m/s at the end of powered
flight, time ¢ = 0. As the rocket approaches its maximum alti-
tude it explodes into two parts of masses my = 0.7 kg and
my = 1.3 kg. Part A is observed to strike the ground 80 m west
of the launch point at ¢t = 6 s. Determine the position of part B

at that time.
30 m/s T %

AxpertSoft Trial Version T

A

I 80 m I
Fig. P14.17

14.18 An 18-kg cannonball and a 12-kg cannonball are chained
together and fired horizontally with a velocity of 165 m/s from
the top of a 15-m wall. The chain breaks during the flight of
the cannonballs and the 12-kg cannonball strikes the ground at
t = 1.5 s, at a distance of 240 m from the foot of the wall, and
7 m to the right of the line of fire. Determine the position of
the other cannonball at that instant. Neglect the resistance of
the air.

Fig. P14.18
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14.19 and 14.20 Car A was traveling east at high speed when it col- Problems 8873
lided at point O with car B, which was traveling north at 45 mi/h.
Car C, which was traveling west at 60 mi/h, was 32 ft east and
10 ft north of point O at the time of the collision. Because the
pavement was wet, the driver of car C could not prevent his car
from sliding into the other two cars, and the three cars, stuck
together, kept sliding until they hit the utility pole P. Knowing that
the weights of cars A, B, and C are, respectively, 3000 Ib, 2600 Ib,
and 2400 Ib, and neglecting the forces exerted on the cars by the
wet pavement, solve the problems indicated.
14.19 Knowing that the speed of car A was 75 mi/h and
that the time elapsed from the first collision to the
stop at P was 2.4 s, determine the coordinates of the
utility pole P.
14.20 Knowing that the coordinates of the utility pole
are x, = 46 ft and y, = 59 ft, determine (a) the
time elapsed from the first collision to the stop at P,
(b) the speed of car A.

y

+—=

J,
VA
—
s
|
N

Fig. P14.19 and P14.20

14.21 An expert archer demonstrates his ability by hitting tennis balls
thrown by an assistant. A 2-oz tennis ball has a velocity of
(32 ft/s)i — (7 ft/s)j and is 33 ft above the ground when it is hit by C,
a 1.2-oz arrow traveling with a velocity of (165 ft/s)j + (230 ft/s)k -7
where j is directed upwards. Determine the position P where -7
the ball and arrow will hit the ground, relative to point O located //q
directly under the point of impact. v A BT Xsoo

14.22 Two spheres, each of mass m, can slide freely on a frictionless,
horizontal surface. Sphere A is moving at a speed v, = 16 ft/s when AN
it strikes sphere B which is at rest and the impact causes sphere \@

B to break into two pieces, each of mass m/2. Knowing that 0.7 s N
after the collision one piece reaches point C and 0.9 s after the SN.D
collision the other piece reaches point D, determine (a) the velocity
of sphere A after the collision, (b) the angle u and the speeds of
the two pieces after the collision. Fig. P14.22
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884 Systems of Particles 14.23

14.24

Fig. P14.23

In a game of pool, ball A is moving with a velocity v, when it strikes
balls B and C which are at rest and aligned as shown. Knowing that
after the collision the three balls move in the directions indicated
and that vy, = 12 ft/s and v¢ = 6.29 ft/s, determine the magnitude
of the velocity of () ball A, (b) ball B.

A 6-kg shell moving with a velocity vo = (12 m/s)i — (9 m/s)j —
(360 m/s)k explodes at point D into three fragments A, B,
and C of mass, respectively, 3 kg, 2 kg, and 1 kg. Knowing that
the fragments hit the vertical wall at the points indicated, deter-
mine the speed of each fragment immediately after the explo-
sion. Assume that elevation changes due to gravity may be
neglected.

Fig. P14.24 and P14.25

14.25

A 6-kg shell moving with a velocity vy = (12 m/s)i — (9 m/s)j —
(360 m/s)k explodes at point D into three fragments A, B,
and C of mass, respectively, 2 kg, 1 kg, and 3 kg. Knowing that
the fragments hit the vertical wall at the points indicated, deter-
mine the speed of each fragment immediately after the explo-
sion. Assume that elevation changes due to gravity may be
neglected.
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14.26

14.27

14.28

14.29

14.30

In a scattering experiment, an alpha particle A is projected with
the velocity uy = —(600 m/s)i + (750 m/s)j — (800 m/s)k into a
stream of oxygen nuclei moving with a common velocity vy =
(600 m/s)j. After colliding successively with the nuclei B and C,
particle A is observed to move along the path defined by the
points A; (280, 240, 120) and A, (360, 320, 160), while nuclei B
and C are observed to move along paths defined, respectively, by
B, (147, 220, 130) and B, (114, 290, 120), and by C, (240, 232,
90) and C, (240, 280, 75). All paths are along straight lines and
all coordinates are expressed in millimeters. Knowing that the
mass of an oxygen nucleus is four times that of an alpha particle,
determine the speed of each of the three particles after the
collisions.

Derive the relation
HO = F X mV + H G

between the angular momenta Hy and Hg defined in Egs. (14.7)
and (14.24), respectively. The vectors r and v define, respectively,
the position and velocity of the mass center G of the system of
particles relative to the newtonian frame of reference Oxyz, and
m represents the total mass of the system.

Show that Eq. (14.23) may be derived directly from Eq. (14.11) by
substituting for Hy, the expression given in Prob. 14.27.

Consider the frame of rd

DEVIRINPMN  AxpertSoft Trial Version

momentum H of a systd

n
H) =D r/ X m;v] 8y

i=1

of the moments about A of the momenta m;v; of the particles in their
motion relative to the frame Ax'y'z". Denoting by H, the sum

n
— ’
HA = E r; X m;v;
i=1

of the moments about A of the momenta m;v; of the particles in
their motion relative to the newtonian frame Oxyz, show that H, =
HJ, at a given instant if, and only if, one of the following conditions
is satisfied at that instant: (@) A has zero velocity with respect to
the frame Oxyz, (b) A coincides with the mass center G of the
system, (¢) the velocity v, relative to Oxyz is directed along the
line AG.

Show that the relation XM, = H;, where H, is defined by Eq. (1)
of Prob. 14.29 and where XM} represents the sum of the moments
about A of the external forces acting on the system of particles, is
valid if, and only if, one of the following conditions is satisfied:
(@) the frame Ax'y'z" is itself a newtonian frame of reference,
(b) A coincides with the mass center G, (c) the acceleration a, of
A relative to Oxyz is directed along the line AG.

Problems 885

A

Fig. P14.26

Fig. P14.29
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886 Systems of Particles

Fig. 14.7

AxpertSoft Trial Version

14.7 KINETIC ENERGY OF A SYSTEM OF PARTICLES

The kinetic energy T of a system of particles is defined as the sum
of the kinetic energies of the various particles of the system. Refer-
ring to Sec. 13.3, we therefore write

% 2’ (14.28)

Using a Centroidal Frame of Reference. It is often conve-
nient when computing the kinetic energy of a system comprising
a large number of particles (as in the case of a rigid body) to con-
sider separately the motion of the mass center G of the system
and the motion of the system relative to a moving frame attached
to G.

Let P; be a particle of the system, v; its velocity relative to the
newtonian frame of reference Oxyz, and v; its velocity relative to the
moving frame Gx'y'z" which is in translation with respect to Oxyz
(Fig. 14.7). We recall from the preceding section that

v, =V + V| (14.22)

where v denotes the Velocnty of the mass center G relative to the
1t 0 is equal to the scalar prod-
rgy T of the system relative to

1 n

or, substituting for v; from (14.22),
1 n

T=§Z[m,»<9+v£)-<9+v{)]
i=1
;(2 >U +v- Emv +72mlv,‘

The first sum represents the total mass m of the system. Recalling
Eq. (14.13), we note that the second sum is equal to mv’ and thus
to zero, since v, which represents the velocity of G relative to the
frame Gx'y'z’, is clearly zero. We therefore write

= E myv!? (14.29)

This equation shows that the kinetic energy T of a system of particles
can be obtained by adding the kinetic energy of the mass center G
(assuming the entire mass concentrated at G) and the kinetic energy

of the system in its motion relative to the frame Gx'y'z'.
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14.8 WORK-ENERGY PRINCIPLE. CONSERVATION 14.9 Principle of mpulse and Momentum 887

for a System of Particles

OF ENERGY FOR A SYSTEM OF PARTICLES

The principle of work and energy can be applied to each particle P,
of a system of particles. We write

Ty + Uy =T, (14.30)

for each particle P;, where Uyy, represents the work done by the
internal forces f;; and the resultant external force F; acting on P,
Adding the kinetic energies of the various particles of the system and
considering the work of all the forces involved, we can apply Eq.
(14.30) to the entire system. The quantities T} and Ty now represent
the kinetic energy of the entire system and can be computed from
either Eq. (14.28) or Eq. (14.29). The quantity Uyy, represents the
work of all the forces acting on the particles of the system. Note that
while the internal forces f; and f;; are equal and opposite, the work
of these forces will not, in general, cancel out, since the particles P;
and P; on which they act will, in general, undergo different displace-
ments. Therefore, in computing Uyy,e, we must consider the work of
the internal forces f; as well as the work of the external forces F;.

If all the forces acting on the particles of the system are con-
servative, Eq. (14.30) can be replaced by

AxpertSoft Trial Version
where V represents the potent 7
and external forces acting on the particles of the system. Equation
(14.31) expresses the principle of conservation of energy for the sys-
tem of particles.

14.9 PRINCIPLE OF IMPULSE AND MOMENTUM
FOR A SYSTEM OF PARTICLES

Integrating Eqs. (14.10) and (14.11) in ¢ from ¢ to t,, we write

ty
> J Fdi=L,- L, (14.32)

t

ty
2 f My dt = (Hp), — (Hp), (14.33)
t
Recalling the definition of the linear impulse of a force given in Sec.
13.10, we observe that the integrals in Eq. (14.32) represent the
linear impulses of the external forces acting on the particles of the
system. We shall refer in a similar way to the integrals in Eq. (14.33)
as the angular impulses about O of the external forces. Thus, Eq.
(14.32) expresses that the sum of the linear impulses of the external
forces acting on the system is equal to the change in linear momen-
tum of the system. Similarly, Eq. (14.33) expresses that the sum of

Photo 14.2 When a golf ball is hit out of

- 5 a sand trap, some of the momentum of the club
the angular impulses about O of the external forces is equal to the s transferred to the golf ball and any sand that

change in angular momentum about O of the system. is. hit.


http://www.axpertsoft.com/pdf-splitter-software/

888 Systems of Particles In order to make clear the physical significance of Eqs. (14.32)
and (14.33), we will rearrange the terms in these equations and write

tay
L+, J Fdt =1L, (14.34)

(Hp), + EJ Mo dt = (Hp), (14.35)

In parts @ and ¢ of Fig. 14.8 we have sketched the momenta of the
particles of the system at times ¢; and ¢,, respectively. In part b we have
shown a vector equal to the sum of the linear impulses of the external
forces and a couple of moment equal to the sum of the angular impulses
about O of the external forces. For simplicity, the particles have been

y y y

/ Z /‘tz (;n% (MmgVg),
Fdt
O\ + tl /

(meve

@
Fig. 14.8 AxpertSoft Trial Version

bure, but the present discussion
remains valid in the case of particles moving in space. Recalling from
Eq. (14.6) that L, by definition, is the resultant of the momenta m;v;,
we note that Eq. (14.34) expresses that the resultant of the vectors
shown in parts @ and b of Fig. 14.8 is equal to the resultant of the
vectors shown in part ¢ of the same figure. Recalling from Eq. (14.7)
that Hy, is the moment resultant of the momenta m;v,, we note that
Eq. (14.35) similarly expresses that the moment resultant of the vectors
in parts @ and b of Fig. 14.8 is equal to the moment resultant of the
vectors in part c. Together, Eqgs. (14.34) and (14.35) thus express that
the momenta of the particles at time t, and the impulses of the external
forces from t to ty form a system of vectors equipollent to the system
of the momenta of the particles at time ty. This has been indicated in
Fig. 14.8 by the use of blue plus and equals signs.

If no external force acts on the particles of the system, the inte-
grals in Eqgs. (14.34) and (14.35) are zero, and these equations yield

L =L (14.36)
(Hp), = (Hp)s (14.37)

We thus check the result obtained in Sec. 14.6: If no external force
acts on the particles of a system, the linear momentum and the
angular momentum about O of the system of particles are conserved.
The system of the initial momenta is equipollent to the system of
the final momenta, and it follows that the angular momentum of the
system of particles about any fixed point is conserved.
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SAMPLE PROBLEM 14.3

For the 200-kg space vehicle of Sample Prob. 14.1, it is known that at ¢ =
2.5 s, the velocity of part A is v, = (270 m/s)i — (120 m/s)j + (160 m/s)k
and the velocity of part B is parallel to the xz plane. Determine the velocity
of part C.

SOLUTION

Since there is no external force, the initial momentum mvj is equipollent
to the system of the final momenta. Equating first the sums of the vectors
in both parts of the adjoining sketch, and then the sums of their moments
about O, we write

Ll = Lz mvy = MpVy + mpgvp + meve (1)
(HO)I = (Ho)z 0= Ty X MAVH + rp X MmpVvp + re X meve (2)
Recalling from Sample Prob. 14.1 that v, = (150 m/s)i,

ry = (555 m)i — (180 m)j + (240 m)k
rz = (255 m)i — (120 m)k
re = (105 m)i + (450 m)j — (420 m)k

tatement of this problem, we rewrite

K) + 60[(vp)d + (vp):k]
+ 40[(vc)d + (ve)yj + (ve):kl (1)

i j k i j ok
0=100[555 —180 240| + 60| 255 0 —120
270 —120 160 (vg), O (vp).

i j ok
+ 40| 105 450 —420| (2)
(UC):( <DC>y (UC>Z

Equating to zero the coefficient of j in (1') and the coefficients of i and k
in (2'), we write, after reductions, the three scalar equations

(ve)y — 300 = 0
450(vc). + 420(vc), = 0
105(v¢), — 450(vc), — 45 000 = 0

which yield, respectively,
(ve), = 300 (vg) = —280 (vg)y = —30
The velocity of part C is thus
ve = —(30 m/s)i + (300 m/s)j — (280 m/s)k

889


http://www.axpertsoft.com/pdf-splitter-software/

SAMPLE PROBLEM 14.4

Ball B, of mass my, is suspended from a cord of length [ attached to cart A,
of mass m,, which can roll freely on a frictionless horizontal track. If the ball
is given an initial horizontal velocity v, while the cart is at rest, determine
(a) the velocity of B as it reaches its maximum elevation, (b) the maximum
vertical distance h through which B will rise. (It is assumed that 0} < 20l.)

SOLUTION

Position 1 Position 2 The impulse-momentum principle and the principle of conservation of

A ' I A| r|_>(\,A)2 energy will be applied to the cart-ball system between its initial position 1

V)1 = and position 2, when B reaches its maximum elevation.
A1=
Velocities Position 1: (v,); = 0 (v = v 1)
(Vgja)2 =
Position 2: When ball B reaches its maximum elevation, its velocity (vg4)a
relative to its support A is zero. Thus, at that instant, its absolute velocity is

(ve)1=Vo ezt (Vg)a = (Va)a + (Vgia)e = (Va)e 2)

Impulse-Momentum Principle. Noting that the external impulses consist
of Wyt, Wyt, and R¢, where R is the reaction of the track on the cart, and

A A recalling (1) and (2), we draw the impulse-momentum diagram and write
o = 2mvy
f— (Va)2
of the system is conserved in
MaVo mpg mpg
Wt (La)e = ———y (Vg)e = (Va)e = VoY
my + mp my + mg
Position 1 Position 2 Conservation of Energy
A|_T__|__é+_ I > (V,), Position 1. Potential Energy: Vi = mugl
T Kinetic Energy: T, = éva%
Position 2. Potential Energy:  V, = mAgl + mggh
! Kinetic Energy: T, = 3(my + mB)(vA)Z
B Vo h_B ( ) ( ) Tl + Vl = T2 + VQZ %mB’D% + mAgl = %(mA + mB)(UA> + mAgl + mth
————— VB)2 = (Va)2
Datum Solving for h, we have
h_ﬁ_mA"‘mB (va)3
2g mg 2g
or, substituting for (v,), the expression found above,
o2 my  ve msy  vq
h=——-—"—— h=—""“-+—
20 my + my 22 my + my 2g

Remarks. (1) Recalling that v < 24, it follows from the last equation that
h < I; we thus check that B stays below A as assumed in our solution.

(2) For my =>my, the answers obtained reduce to (vg)y = (v4); = 0 and
h = D%/Qg; B oscillates as a simple pendulum with A fixed. For m, << mg,
they reduce to (vz); = (v4)s = vo and h = 0; A and B move with the same
constant velocity vy.

890
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SAMPLE PROBLEM 14.5

In a game of billiards, ball A is given an initial velocity v, of magnitude
vy = 10 ft/s along line DA parallel to the axis of the table. It hits ball B and
then ball C, which are both at rest. Knowing that A and C hit the sides of
the table squarely at points A" and C’, respectively, that B hits the side
obliquely at B’, and assuming frictionless surfaces and perfectly elastic
impacts, determine the velocities v,, v, and v with which the balls hit the
sides of the table. (Remark: In this sample problem and in several of the
problems which follow, the billiard balls are assumed to be particles moving
freely in a horizontal plane, rather than the rolling and sliding spheres they
actually are.)

SOLUTION

Conservation of Momentum. Since there is no external force, the initial
momentum myv, is equipollent to the system of momenta after the two col-
lisions (and before any of the balls hits the side of the table). Referring to
the adjoining sketch, we write

¥/ x components: m(10 ft/s) = m(vg), + mog (1)
components: = mv, — m(vg), 2)

(8 ft)ymw,

—(7 fym(vg), — (3 fymoe  (3)

¥):. and (vp), in terms of v,

vg = (vp)y = 3v¢c — 20 (vp), = 10 — v )

Conservation of Energy. Since the surfaces are frictionless and the
impacts are perfectly elastic, the initial kinetic energy Fmug is equal to the
final kinetic energy of the system:
19 _ 1. 9 1 9 1 9
gMmvy = 3May + gmpvp + 3Mmcve
v3 + (vg): + (03)5 + vg = (10 fi/s)? (69)
Substituting for vy, (vg)y, and (vp), from (4) into (5), we have

2(3vc — 20> + (10 — ve)* + ve = 100
2002 — 260vc + 800 = 0

Solving for v¢, we find v = 5 ft/s and ve = 8 ft/s. Since only the second
root yields a positive value for v, after substitution into Egs. (4), we con-
clude that v = 8 ft/s and

vy = (vp), = 3(8) — 20 = 4 ft/s (vg), = 10 — 8 = 2 ft/s
vi=4ft/o< vy =447 fs C 634°  vo=8fUsy
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892

SULVINGREROBLEIVIY
IINBIOURSOVVIN

In the preceding lesson we defined the linear momentum and the angular
momentum of a system of particles. In this lesson we defined the kinetic
energy T of a system of particles:

1 n
=2 me? (14.28)
2 i3

The solutions of the problems in the preceding lesson were based on the conserva-
tion of the linear momentum of a system of particles or on the observation of the
motion of the mass center of a system of particles. In this lesson you will solve
problems involving the following:

1. Computation of the kinetic energy lost in collisions. The kinetic energy T,
of the system of particles before the collisions and its kinetic energy T; after the
collisions are computed from Eq. (14.28) and are subtracted from each other. Keep
in mind that, while linear momentum and angular momentum are vector quanti-
ties, kinetic energy is a scalar quantity.

2. Conservation of linear momentum and conservation of energy. As you saw
in the preceding lesson, when the resultant of the external forces acting on a sys-
tem of particles is 6 conserved. In
problems involving - - e initial linear
momentum and the AxpertSOft Trial Version uipollent yields
two algebraic equatio Ystem of particles
(including potential energy as Well as kmetlc energy) to 1ts final total energy yields
an additional equation. Thus, you can write three equations which can be solved
for three unknowns [Sample Prob. 14.5]. Note that if the resultant of the external
forces is not zero but has a fixed direction, the component of the linear momentum
in a direction perpendicular to the resultant is still conserved; the number of equa-
tions which can be used is then reduced to two [Sample Prob. 14.4].

3. Conservation of linear and angular momentum. When no external forces
act on a system of particles, both the linear momentum of the system and its
angular momentum about some arbitrary point are conserved. In the case of three-
dimensional motion, this will enable you to write as many as six equations, although
you may need to solve only some of them to obtain the desired answers [Sample
Prob. 14.3]. In the case of two-dimensional motion, you will be able to write three
equations which can be solved for three unknowns.

4. Conservation of linear and angular momentum and conservation of
energy. In the case of the two-dimensional motion of a system of particles which
are not subjected to any external forces, you will obtain two algebraic equations
by expressing that the linear momentum of the system is conserved, one equation
by writing that the angular momentum of the system about some arbitrary point
is conserved, and a fourth equation by expressing that the total energy of the
system is conserved. These equations can be solved for four unknowns.
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14.31

14.32

14.33

14.34

14.35

PROBLEMS

Determine the energy lost due to friction and the impacts for
Prob. 14.1.

In Prob. 14.4, determine the energy lost as the bullet (a) passes
through block A, (b) becomes embedded in block B.

In Prob. 14.6, determine the work done by the woman and by the
man as each dives from the boat, assuming that the woman dives first.

Determine the energy lost as a result of the series of collisions
described in Prob. 14.8.

Two automobiles A and B, of mass m, and mg, respectively, are trav-
eling in opposite directions when they collide head on. The impact
is assumed perfectly plastic, and it is further assumed that the energy
absorbed by each automobile is equal to its loss of kinetic energy with
respect to a moving frame of reference attached to the mass center
of the two-vehicle system. Denoting by E, and Ej, respectively, the
energy absorbed by automobile A and by automobile B, (@) show that
EA/Ep = mg/my,, that is, the amount of energy absorbed by each
vehicle is inversely proportional to its mass, (b) compute E, and Ej,
knowing that m, = 1600 kg and mpz = 900 kg and that the speeds
of A and B are, respectivg

Fig. P14.35

14.36

14.37

14.38

14.39

It is assumed that each of the two automobiles involved in the
collision described in Prob. 14.35 had been designed to safely with-
stand a test in which it crashed into a solid, immovable wall at the
speed vy. The severity of the collision of Prob. 14.35 may then be
measured for each vehicle by the ratio of the energy it absorbed
in the collision to the energy it absorbed in the test. On that basis,
show that the collision described in Prob. 14.35 is (m,/mg)? times
more severe for automobile B than for automobile A.

Solve Sample Prob. 14.4, assuming that cart A is given an initial
horizontal velocity v, while ball B is at rest.

Two hemispheres are held together by a cord which maintains a spring
under compression (the spring is not attached to the hemispheres).
The potential energy of the compressed spring is 120 ] and the assem-
bly has an initial velocity v, of magnitude vy = 8 m/s. Knowing that
the cord is severed when u = 30°, causing the hemispheres to fly
apart, determine the resulting velocity of each hemisphere.

A 15-Ib block B starts from rest and slides on the 25-Ib wedge A,
which is supported by a horizontal surface. Neglecting friction, deter-
mine (a) the velocity of B relative to A after it has slid 3 ft down the
inclined surface of the wedge, (b) the corresponding velocity of A.

AxpertSoft Trial Version

Fig. P14.38

Fig. P14.39
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894 Systems of Particles 14.40 A 40-Ib block B is suspended from a 6-ft cord attached to a 60-lb
cart A, which may roll freely on a frictionless, horizontal track. If
the system is released from rest in the position shown, determine
the velocities of A and B as B passes directly under A.

14.41 and 14.42 In a game of pool, ball A is moving with a velocity
vo of magnitude v, = 15 ft/s when it strikes balls B and C,
which are at rest and aligned as shown. Knowing that after the
collision the three balls move in the directions indicated and

Fig. P14.40 assuming frictionless surfaces and perfectly elastic impact (i.e.,

conservation of energy), determine the magnitudes of the velocities

vy, vg, and vg.

3 Vo

ig. P14.42

AxpertSoft Trial Version

can slide freely on a frictionless,
horizontal surface. Spheres A and B are attached to an inextensi-
ble, inelastic cord of length [ and are at rest in the position shown
when sphere B is struck squarely by sphere C which is moving to
the right with a velocity vo. Knowing that the cord is slack when
sphere B is struck by sphere C and assuming perfectly elastic
impact between B and C, determine (a) the velocity of each sphere
immediately after the cord becomes taut, (b) the fraction of the
initial kinetic energy of the system which is dissipated when the
cord becomes taut.

Fig. P14.43

14.44 In a game of pool, ball A is moving with the velocity vy = v,i when
it strikes balls B and C, which are at rest side by side. Assuming
frictionless surfaces and perfectly elastic impact (i.e., conservation

. of energy), determine the final velocity of each ball, assuming that

A O > the path of A is (a) perfectly centered and that A strikes B and C

simultaneously, (b) not perfectly centered and that A strikes B

slightly before it strikes C.

Fig. P14.44

0.2m 14.45 Two small spheres A and B, of mass 2.5 kg and 1 kg, respectively,
are connected by a rigid rod of negligible mass. The two spheres
are resting on a horizontal, frictionless surface when A is suddenly
given the velocity vy = (3.5 m/s)i. Determine (a) the linear momen-
B O Y tum of the system and its angular momentum about its mass center

G, (b) the velocities of A and B after the rod AB has rotated
Fig. P14.45 through 180°.
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14.46 A 900-Ib space vehicle traveling with a velocity v, = (1500 ft/s)k Problems 80K
passes through the origin O. Explosive charges then separate the
vehicle into three parts A, B, and C, with masses of 150 Ib, 300 Ib,
and 450 1b, respectively. Knowing that shortly thereafter the
positions of the three parts are, respectively, A(250, 250, 2250),
B(600, 1300, 3200), and C(—475, —950, 1900), where the coordinates
are expressed in feet, that the velocity of B is vz = (500 ft/s)i + (1100 CO ]
ft/s)j + (2100 ft/s)k, and that the x component of the velocity of C
is —400 ft/s, determine the velocity of part A.

14.47 Four small disks A, B, C, and D can slide freely on a frictionless
horizontal surface. Disks B, C, and D are connected by light rods vy A B
and are at rest in the position shown when disk B is struck squarely _>07
by disk A which is moving to the right with a velocity v, =
(38.5 ft/s)i. The weights of the disks are Wy, = W = W = 15 b,
and Wp, = 30 Ib. Knowing that the velocities of the disks immediately
after the impact are vy, = vz = (8.25 ft/s)i, vo = vci, and vp = vpi,
determine (@) the speeds ve and vp, (b) the fraction of the initial DQ*
kinetic energy of the system which is dissipated during the collision.

14.48 In the scattering experiment of Prob. 14.26, it is known that the Fig. P14.47

alpha particle is projected from Ay(300, 0, 300) and that it collides
with the oxygen nucleus C at Q(240, 200, 100), where all coordi-
nates are expressed in millimeters. Determine the coordinates of
point By where the original path of nucleus B intersects the zx plane.
(Hint. Express that the angular momentum of the three particles
about Q is conserved.)

14.49 Three identical small sphi
a horizontal frictionless s
a light rod and are at res%
struck squarely by sphere A which is moving to the right with a
velocity vy = (8 ft/s)i. Knowing that u = 45° and that the velocities
of spheres A and B immediately after the impact are v, = 0 and
vg = (6 ft/s)i + (vp),j, determine (vg), and the velocity of C imme-
diately after impact.

AxpertSoft Trial Version

Fig. P14.49 v
14.50 Three small spheres A, B, and C, each of mass m, are connected
to a small ring D of negligible mass by means of three inextensible,
inelastic cords of length [. The spheres can slide freely on a friction-
less horizontal surface and are rotating initially at a speed v, about
ring D which is at rest. Suddenly the cord CD breaks. After the
other two cords have again become taut, determine (@) the speed
of ring D, (b) the relative speed at which spheres A and B rotate
about D, (c) the fraction of the original energy of spheres A and B
which is dissipated when cords AD and BD again became taut. Fig. P14.50

O
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896 Systems of Particles 14.51
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Fig. P14.51

14.53

In a game of billiards, ball A is given an initial velocity v, along
the longitudinal axis of the table. It hits ball B and then ball C,
which are both at rest. Balls A and C are observed to hit the
sides of the table squarely at A" and C’, respectively, and ball B
is observed to hit the side obliquely at B'. Knowing that v, = 4 m/s,
vy = 1.92 m/s, and @ = 1.65 m, determine (a) the velocities vg
and v¢ of balls B and C, (b) the point C" where ball C hits the
side of the table. Assume frictionless surfaces and perfectly elas-
tic impacts (i.e., conservation of energy).

For the game of billiards of Prob. 14.51, it is now assumed that
vy = 5 m/s, vg = 3.2 m/s, and ¢ = 1.22 m. Determine (a) the
velocities v4 and vg of balls A and B, (b) the point A" where ball
A hits the side of the table.

Two small disks A and B, of mass 3 kg and 1.5 kg, respectively,
may slide on a horizontal, frictionless surface. They are connected
by a cord, 600 mm long, and spin counterclockwise about their
mass center G at the rate of 10 rad/s. At t = 0, the coordinates of G
are xp = 0, yp = 2m, and its velocity v, = (1.2 m/s)i + (0.96 m/)j.
Shortly thereafter the cord breaks; disk A is then observed to move
along a path parallel to the y axis and disk B along a path which
intersects the x axis at a distance b = 7.5 m from O. Determine
(a) the velocities of A and B after the cord breaks, (b) the distance
a from the y axis to the path of A.

AxpertSoft Trial Version
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P14.53 and P14.54

14.54 Two small disks A and B, of mass 2 kg and 1 kg, respectively, may

slide on a horizontal and frictionless surface. They are connected by
a cord of negligible mass and spin about their mass center G. At ¢t =
0, G is moving with the velocity v, and its coordinates are
xo = 0,9 = 1.89 m. Shortly thereafter, the cord breaks and disk A
is observed to move with a velocity v4 = (5 m/s)j in a straight line
and at a distance ¢ = 2.56 m from the y axis, while B moves with a
velocity vg = (7.2 m/s)i — (4.6 m/s)j along a path intersecting the x
axis at a distance b = 748 m from the origin O. Determine (a) the
initial velocity v, of the mass center G of the two disks, (b) the length
of the cord initially connecting the two disks, (¢) the rate in rad/s at
which the disks were spinning about G.
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14.55 Three small identical spheres A, B, and C, which can slide on a
horizontal, frictionless surface, are attached to three 9-in.-long
strings, which are tied to a ring G. Initially the spheres rotate
clockwise about the ring with a relative velocity of 2.6 ft/s and the
ring moves along the x axis with a velocity vo = (1.3 ft/s)i. Suddenly
the ring breaks and the three spheres move freely in the xy plane
with A and B following paths parallel to the y axis at a distance
a = 1.0 ft from each other and C following a path parallel to the x
axis. Determine (a) the velocity of each sphere, (b) the distance d.

c v

|

Fig. P14.55 and P14.56

14.56 Three small identical spheres A, B, and C, which can slide on a
horizontal, frictionless
length [ which are tied
clockwise about the ring
ity vo. Suddenly the ring %
in the xy plane. Knowing that v, = (3.5 ft/)j, v¢ = (6.0 ft/s)i,
a = 16 in, and d = 9 in., determine (a) the initial velocity of the
ring, (b) the length [ of the strings, (¢) the rate in rad/s at which
the spheres were rotating about G.

*14.10 VARIABLE SYSTEMS OF PARTICLES

All the systems of particles considered so far consisted of well-
defined particles. These systems did not gain or lose any particles
during their motion. In a large number of engineering applications,
however, it is necessary to consider variable systems of particles, i.e.,
systems which are continually gaining or losing particles, or doing
both at the same time. Consider, for example, a hydraulic turbine.
Its analysis involves the determination of the forces exerted by a
stream of water on rotating blades, and we note that the particles of
water in contact with the blades form an everchanging system which
continually acquires and loses particles. Rockets furnish another
example of variable systems, since their propulsion depends upon
the continual ejection of fuel particles.

We recall that all the kinetics principles established so far were
derived for constant systems of particles, which neither gain nor lose
particles. We must therefore find a way to reduce the analysis of a

AxpertSoft Trial Version

14.10 Variable Systems of Particles

897



http://www.axpertsoft.com/pdf-splitter-software/

898 Systems of Particles

variable system of particles to that of an auxiliary constant system.
The procedure to follow is indicated in Secs. 14.11 and 14.12 for two
broad categories of applications: a steady stream of particles and a
system that is gaining or losing mass.

*14.11 STEADY STREAM OF PARTICLES

Consider a steady stream of particles, such as a stream of water
diverted by a fixed vane or a flow of air through a duct or through
a blower. In order to determine the resultant of the forces exerted
on the particles in contact with the vane, duct, or blower, we isolate
these particles and denote by S the system thus defined (Fig. 14.9).
We observe that S is a variable system of particles, since it continually
gains particles flowing in and loses an equal number of particles
flowing out. Therefore, the kinetics principles that have been estab-
lished so far cannot be directly applied to S.

However, we can easily define an auxiliary system of particles
which does remain constant for a short interval of time At¢. Consider
at time ¢ the system S plus the particles which will enter S during
the interval at time A¢ (Fig. 14.10a). Next, consider at time ¢ + At
the system S plus the particles which have left S during the interval
At (Fig. 14.10c). Clearly, the same particles are involved in both
cases, and we can apply to those particles the principle of impulse
and momentum. Since the total mass m of the system S remains
stem and those leaving the sys-
me mass Am. Denoting by v,

the particles entering S at A
AT TV O at Dy W e momentum of the particles
entering S by (Am)v, (Fig. 14.10a) and the momentum of the par-
ticles leaving S by (Am)vy (Fig. 14.10¢). We also represent by appro-
priate vectors the momenta m;v; of the particles forming S and the
impulses of the forces exerted on S and indicate by blue plus and
equals signs that the system of the momenta and impulses in parts a
and b of Fig. 14.10 is equipollent to the system of the momenta in
part ¢ of the same figure.

(a) (b) (c)
Fig. 14.10
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The resultant Zm;v; of the momenta of the particles of S is found 14.11 Steady Stream of Particles 800
on both sides of the equals sign and can thus be omitted. We conclude
that the system formed by the momentum (Am)v, of the particles
entering S in the time At and the impulses of the forces exerted on S
during that time is equipollent to the momentum (Am)vy of the par-
ticles leaving S in the same time At. We can therefore write

(Am)vy + ZF At = (Am)vg (14.38)

A similar equation can be obtained by taking the moments of the

vectors involved (see Sample Prob. 14.5). Dividing all terms of Eq.

(14.38) by At and letting At approach zero, we obtain at the limit
dm

2F = 0 —(vg — vy) (14.39)

where vz — v, represents the difference between the vector vy and
the vector v,.

If ST units are used, dm/dt is expressed in kg/s and the veloci-
ties in m/s; we check that both members of Eq. (14.39) are expressed
in the same units (newtons). If U.S. customary units are used, dm/dt
must be expressed in slugs/s and the velocities in ft/s; we check again
that both members of the equation are expressed in the same units
(pounds). f

The principle we have established can be used to analyze a
large number of engineering applications. Some of the more com-
mon of these applications will

Fluid Stream Diverted by AxpertSoft Trial Version

method of analysis given above Corrre s o

F exerted by the vane on the stream. We note that F is the only
force which needs to be considered since the pressure in the stream
is constant (atmospheric pressure). The force exerted by the stream on
the vane will be equal and opposite to F. If the vane moves with
a constant velocity, the stream is not steady. However, it will appear
steady to an observer moving with the vane. We should therefore
choose a system of axes moving with the vane. Since this system of
axes is not accelerated, Eq. (14.38) can still be used, but v, and vy
must be replaced by the relative velocities of the stream with respect
to the vane (see Sample Prob. 14.7).

Fluid Flowing Through a Pipe. The force exerted by the fluid
on a pipe transition such as a bend or a contraction can be deter-
mined by considering the system of particles S in contact with the
transition. Since, in general, the pressure in the flow will vary, the
forces exerted on S by the adjoining portions of the fluid should also
be considered.

It is often convenient to express the mass rate of flow dm/dt as the product rQ,
where r is the density of the stream (mass per unit volume) and Q its volume rate of
flow (volume per unit time). If SI units are used, r is expressed in kg/m® (for instance,
r = 1000 kg/m3 for water) and Q in m*s. However, if U.S. customary units are used, r
will generally have to be computed from the corresponding specific weight g (weight
per unit volume), r = g/g. Since g is expressed in Ib/ft® (for instance, g = 62.4 Ib/ft®
for water), r is obtained in slugs/ftg. The volume rate of flow Q is expressed in £t%s.
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QQQ Systems of Particles

Fig. 14.11

Slipstream

Fig. 14.12
- v _Va
m Cam
E — |
mv (Am)v, |
sl _____
—
u=vy-V
T
_— |
SF At |
Sl__)
m+Am
——

(m+Am)(v + Av)

Fig. 14.13

Jet Engine. In a jet engine, air enters with no velocity through
the front of the engine and leaves through the rear with a high veloc-
ity. The energy required to accelerate the air particles is obtained by
burning fuel. The mass of the burned fuel in the exhaust gases will
usually be small enough compared with the mass of the air flowing
through the engine that it can be neglected. Thus, the analysis of a
jet engine reduces to that of an airstream. This stream can be con-
sidered as a steady stream if all velocities are measured with respect
to the airplane. It will be assumed, therefore, that the airstream
enters the engine with a velocity v of magnitude equal to the speed
of the airplane and leaves with a velocity u equal to the relative
velocity of the exhaust gases (Fig. 14.11). Since the intake and
exhaust pressures are nearly atmospheric, the only external force
which needs to be considered is the force exerted by the engine on
the airstream. This force is equal and opposite to the thrust.t

Fan.  We consider the system of particles S shown in Fig. 14.12.
The velocity v, of the particles entering the system is assumed equal
to zero, and the velocity vg of the particles leaving the system is the
velocity of the slipstream. The rate of flow can be obtained by mul-
tiplying vg by the cross-sectional area of the slipstream. Since the
pressure all around S is atmospheric, the only external force acting
on S is the thrust of the fan.

the thrust created by the rotat-
kimilar to the determination of
e air particles as they approach

— : ¥ the rate of flow is obtained by
multlplymg the magmtude of the velocity vy of the slipstream by its
cross-sectional area.

*14.12 SYSTEMS GAINING OR LOSING MASS

Let us now analyze a different type of variable system of particles,
namely, a system which gains mass by continually absorbing parti-
cles or loses mass by continually expelling particles. Consider the
system S shown in Fig. 14.13. Its mass, equal to m at the instant
t, increases by Am in the interval of time At. In order to apply the
principle of impulse and momentum to the analysis of this system,
we must consider at time ¢ the system S plus the particles of mass
Am which S absorbs during the time interval At. The velocity of S
at time ¢ is denoted by v, the velocity of S at time ¢ + At is denoted
by v + Av, and the absolute velocity of the particles absorbed is
denoted by v,. Applying the principle of impulse and momentum,
we write

mv + (Am)v, + ZF At = (m + Am)(v + Av) (14.40)

tNote that if the airplane is accelerated, it cannot be used as a newtonian frame of
reference. The same result will be obtained for the thrust, however, by using a
reference frame at rest with respect to the atmosphere, since the air particles will
then be observed to enter the engine with no velocity and to leave it with a velocity
of magnitude u — v.
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Solving for the sum 2F At of the impulses of the external forces
acting on S (excluding the forces exerted by the particles being
absorbed), we have

2F At = mAv + Am(v — v,) + (Am)(Av) (14.41)

Introducing the relative velocity u with respect to S of the particles
which are absorbed, we write u = v, — v and note, since v, < v,
that the relative velocity u is directed to the left, as shown in
Fig. 14.13. Neglecting the last term in Eq. (14.41), which is of the
second order, we write

SF At = m Av — (Am)u

Dividing through by At and letting At approach zero, we have at the
limitt
dv dm
SF=m— — —
" @
Rearranging the terms and recalling that dv/dt = a, where a is the
acceleration of the system S, we write
>F + dﬁu = ma
dt
which shows that the action on S of the particles being absorbed is
equivalent to a thrust

(14.42)

(14.43)

AxpertSoft Trial Version

which tends to slow down the motion of S, since the relative velocity
u of the particles is directed to the left. If SI units are used, dm/dt
is expressed in kg/s, the relative velocity u in m/s, and the corre-
sponding thrust in newtons. If U.S. customary units are used, dm/dt
must be expressed in slugs/s, u in ft/s, and the corresponding thrust
in pounds.}

The equations obtained can also be used to determine the
motion of a system S losing mass. In this case, the rate of change of
mass is negative, and the action on S of the particles being expelled
is equivalent to a thrust in the direction of —u, that is, in the direc-
tion opposite to that in which the particles are being expelled. A
rocket represents a typical case of a system continually losing mass
(see Sample Prob. 14.8).

tWhen the absolute velocity v, of the particles absorbed is zero, u = —v, and formula
(14.42) becomes
d

—(mv)

2F = dt

Comparing the formula obtained to Eq. (12.3) of Sec. 12.3, we observe that Newton’s
second law can be applied to a system gaining mass, provided that the particles
absorbed are initially at rest. It may also be applied to a system losing mass, provided
that the velocity of the particles expelled is zero with respect to the frame of reference
selected.

1See footnote on page 899.

14.12 Systems Gaining or Losing Mass

901

14.3 As the shuttle’s booster rockets
ed, the gas particles they eject provide the
equired for liftoff.
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\ ¥/ SAMPLE PROBLEM 14.6

->| 3ft Grain falls from a hopper onto a chute CB at the rate of 240 Ib/s. It hits

l‘vA the chute at A with a velocity of 20 ft/s and leaves at B with a velocity of

15 ft/s, forming an angle of 10° with the horizontal. Knowing that the com-

bined weight of the chute and of the grain it supports is a force W of

magnitude 600 Ib applied at G, determine the reaction at the roller support
B and the components of the reaction at the hinge C.

10°

SOLUTION

We apply the principle of impulse and momentum for the time interval At
to the system consisting of the chute, the grain it supports, and the amount
of grain which hits the chute in the interval A¢. Since the chute does not
move, it has no momentum. We also note that the sum Zm,v; of the momenta
of the particles supported by the chute is the same at ¢ and ¢ + At and can
thus be omitted.

Since the system formed by the momentum (Am)v, and the impulses
is equipollent to the momentum (Am)vg, we write

¥/ x components: C,. At = (Am)vg cos 10° (1)
<y components: —(Am)v, + C, At — WAt + B At

= —(Am)vg sin 10° (2)
+1 moments about C: —3(Am)vy, — T(W At) + 12(B At)

= 6(Am)vg cos 10° — 12(Am)vg sin 10° (3)

Using the given data, W = 600 b, v, = 20 ft/s, vg = 15 ft/s, and Am/At =
240/32.2 = 7.45 slugs/s, and solving Eq. (3) for B and Eq. (1) for C,,

12B = 7(600) + 3(7.45)(20) + 6(7.45)(15)(cos 10° — 2 sin 10°)
12B = 5075 B =423 1b B = 423 Ibx
C, = (7.45)(15) cos 10° = 110.1 Ib C,=11011by
Substituting for B and solving Eq. (2) for C,,
Cy = 600 — 423 + (7.45)(20 — 15 sin 10°) = 307 b
C, = 307 Ibx

902


http://www.axpertsoft.com/pdf-splitter-software/

SAMPLE PROBLEM 14.7

A nozzle discharges a stream of water of cross-sectional area A with a velocity
V4. The stream is deflected by a single blade which moves to the right with a
constant velocity V. Assuming that the water moves along the blade at constant
speed, determine (a) the components of the force F exerted by the blade on
the stream, (b) the velocity V for which maximum power is developed.

SOLUTION

a. Components of Force Exerted on Stream. We choose a coordinate
system which moves with the blade at a constant velocity V. The particles
of water strike the blade with a relative velocity uy = v, — V and leave the
blade with a relative velocity ug. Since the particles move along the blade
at a constant speed, the relative velocities u, and ug have the same magni-
tude u. Denoting the density of water by r, the mass of the particles striking
the blade during the time interval At is Am = Ar(vy, — V) At; an equal
mass of particles leaves the blade during At. We apply the principle of
impulse and momentum to the system formed by the particles in contact
with the blade and the particles striking the blade in the time At.

(Am)up

Recalling that w, and uy have the same magnitude u, and omitting
the momentum >m;v; which appears on both sides, we write

¥/x components: (Am)u — F, At = (Am)u cos u
+>< components: +F, At = (Am)u sin u

Substituting Am = Ar(vy — V) At and u = vy — V, we obtain
F, = Ar(vy — V)1 — cos u) Z F, = Ar(v, — V)* sin X
b. Velocity of Blade for Maximum Power. The power is obtained by

multiplying the velocity V of the blade by the component F, of the force
exerted by the stream on the blade.

Power = EV = Ar(v, — V)1 — cos u)V

Differentiating the power with respect to V and setting the derivative equal
to zero, we obtain

d(power) )
Hpowel’ _ Ar(vi — 40,V + 3V?)(1 — cosu) = 0
A%
V = v, V= %vA For maximum power V = %UA W4

Nofe. These results are valid only when a single blade deflects the stream.
Different results are obtained when a series of blades deflects the stream,
as in a Pelton-wheel turbine. (See Prob. 14.81.)
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SAMPLE PROBLEM 14.8

A rocket of initial mass m, (including shell and fuel) is fired vertically at
time ¢ = 0. The fuel is consumed at a constant rate ¢ = dm/dt and is
expelled at a constant speed u relative to the rocket. Derive an expression
for the magnitude of the velocity of the rocket at time ¢, neglecting the
resistance of the air.

SOLUTION

At time ¢, the mass of the rocket shell and remaining fuel is m = m, — qt,
and the velocity is v. During the time interval A¢, a mass of fuel Am =
q At is expelled with a speed u relative to the rocket. Denoting by v, the
absolute velocity of the expelled fuel, we apply the principle of impulse and

momentum between time ¢ and time t + At.

(mo—qt-gAt)(v+Av)

AxpertSoft Trial Version

[W At=g(m, - qt)A] s
[Amve = gAt(u - V)]

We write

(my — qthv — glmy — qt) At = (my — gt — q At)(v + Av) — g At(u — v)
Dividing through by At and letting At approach zero, we obtain

d N

—g(my — qt) = (my — qt)di; —qu

Separating variables and integrating from ¢t = 0,0 = 0tot = ¢, v = v,

qu ‘ ‘(qu
dv = —g|dt Jdv=J — g |dt
my — qt by by my — qt

my

— ot

v=[~uln(my— qt) — gtly v=uln g

my — qt
Remark. The mass remaining at time ty, after all the fuel has been
expended, is equal to the mass of the rocket shell m; = m, — qty, and the
maximum velocity attained by the rocket is v,, = u In (my/m,) — gt Assum-
ing that the fuel is expelled in a relatively short period of time, the term gtr
is small and we have v,, = u In (my/m;). In order to escape the gravitational
field of the earth, a rocket must reach a velocity of 11.18 km/s. Assuming
u = 2200 m/s and v, = 11.18 km/s, we obtain mg/m, = 161. Thus, to project
each kilogram of the rocket shell into space, it is necessary to consume more
than 161 kg of fuel if a propellant yielding « = 2200 m/s is used.
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This lesson is devoted to the study of the motion of variable systems of particles,
i.e., systems which are continually gaining or losing particles or doing both at
the same time. The problems you will be asked to solve will involve (1) steady
streams of particles and (2) systems gaining or losing mass.

1. To solve problems involving a steady stream of particles, you will consider
a portion S of the stream and express that the system formed by the momentum
of the particles entering S at A in the time At and the impulses of the forces
exerted on S during that time is equipollent to the momentum of the particles
leaving S at B in the same time A¢ (Fig. 14.10). Considering only the resultants
of the vector systems involved, you can write the vector equation

(Am)vy + ZF At = (Am)vg (14.38)

You may want to consider as well the moments about a given point of the vector
systems involved to obtain an additional equation [Sample Prob. 14.6], but many
problems can be solved using Eq. (14.38) or the equation obtained by dividing all
terms by At and letting At approach zero,

2F =

(vg — va) (14.39)

he mass rate of flow
dm/dt can be d of the stream (mass
per unit volumey=a ; per unit time). If U.S.
customary units are used, I is expressed as the ratio g/g, where g is the specific
weight of the stream and g is the acceleration of gravity.

where vz — vy

Typical problems involving a steady stream of particles have been described in
Sec. 14.11. You may be asked to determine the following:

a. Thrust caused by a diverted flow. Equation (14.39) is applicable, but you
will get a better understanding of the problem if you use a solution based on
Eq. (14.38).

b. Reactions at supports of vanes or conveyor belts. First draw a diagram
showing on one side of the equals sign the momentum (Am)v, of the particles
impacting the vane or belt in the time A¢, as well as the impulses of the loads and
reactions at the supports during that time, and showing on the other side the
momentum (Am)vy of the particles leaving the vane or belt in the time At [Sample
Prob. 14.6]. Equating the x components, y components, and moments of the quan-
tities on both sides of the equals sign will yield three scalar equations which can
be solved for three unknowns.

c. Thrust developed by a jet engine, a propeller, or a fan. In most cases,
a single unknown is involved, and that unknown can be obtained by solving the
scalar equation derived from Eq. (14.38) or Eq. (14.39).

(continued)
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2. To solve problems involving systems gaining mass, you will consider the
system S, which has a mass m and is moving with a velocity v at time ¢, and the
particles of mass Am with velocity v, that S will absorb in the time interval At
(Fig. 14.13). You will then express that the total momentum of S and of the par-
ticles that will be absorbed, plus the impulse of the external forces exerted on S,
are equipollent to the momentum of S at time ¢ + At. Noting that the mass of S
and its velocity at that time are, respectively, m + Am and v + Av, you will write
the vector equation

mv + (Am)v, + ZF At = (m + Am)(v + Av) (14.40)

As was shown in Sec. 14.12, if you introduce the relative velocity u = v, — v of
the particles being absorbed, you obtain the following expression for the resultant
of the external forces applied to S:

2F=m— — ——u (14.42)

Furthermore, it was shown that the action on S of the particles being absorbed is
equivalent to a thrust

exerted in the direct® fing absorbed.

Examples of systems gaining mass are conveyor belts and moving railroad cars
being loaded with gravel or sand, and chains being pulled out of a pile.

3. To solve problems involving systems losing mass, such as rockets and rocket
engines, you can use Egs. (14.40) through (14.44), provided that you give negative
values to the increment of mass Am and to the rate of change of mass dm/dt. It
follows that the thrust defined by Eq. (14.44) will be exerted in a direction oppo-
site to the direction of the relative velocity of the particles being ejected.
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PROBLEMS

14.57 A stream of water of cross-section area A; and velocity v; strikes a
circular plate which is held motionless by a force P. A hole in the
circular plate of area A results in a discharge jet having a velocity v;.
Determine the magnitude of P.

U= o—
Vl

Vi

Fig. P14.57

14.58 A jet ski is placed in a channel and is tethered so that it is stationary.
Water enters the jet ski with velocity v, and exits with velocity vs.
Knowing the inlet area is A; and the exit area is A,, determine the
tension in the tether.

Fig. P14.58

14.59 A stream of water of cross-section area A and velocity v; strikes a
plate which is held motionless by a force P. Determine the magni-
tude of P, knowing that A = 0.75 in® v; = 80 ft/s, and V = 0.

P
= =
1

—
\

Fig. P14.59 and P14.60

14.60 A stream of water of cross-section area A and velocity v, strikes a
plate which moves to the right with a ve1001ty V. Determine
the magnitude of V, knowing that A = 1 in% v, = 100 ft/s, and
P =90 Ib.

907
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Q08 Systems of Particles 14.61 A rotary power plow is used to remove snow from a level section
of railroad track. The plow car is placed ahead of an engine
which propels it at a constant speed of 20 km/h. The plow car
clears 160 Mg of snow per minute, projecting it in the direction
shown with a velocity of 12 m/s relative to the plow car. Neglect-
ing friction, determine (a) the force exerted by the engine on
the plow car, (b) the lateral force exerted by the track on the
plow.

14.62 Tree limbs and branches are being fed at A at the rate of 5 kg/s
into a shredder which spews the resulting wood chips at C with a
velocity of 20 m/s. Determine the horizontal component of the
force exerted by the shredder on the truck hitch at D.

Fig. P14.61

AxpertSoft Trial Version

14.63 Sand falls from three hoppers onto a conveyor belt at a rate of
90 Ib/s for each hopper. The sand hits the belt with a vertical
velocity v; = 10 ft/s and is discharged at A with a horizontal veloc-
ity va = 13 ft/s. Knowing that the combined mass of the beam,
belt system, and the sand it supports is 1300 Ib with a mass center
at G, determine the reaction at E.

I 7 ft ! 13 ft |

Fig. P14.63
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14.64 The stream of water shown flows at a rate of 550 L/min and moves Problems  Q(QQ
with a velocity of magnitude 18 m/s at both A and B. The vane is
supported by a pin and bracket at C and by a load cell at D which

40 mm
can exert only a horizontal force. Neglecting the weight of the ~
vane, determine the components of the reactions at C and D. 125 mm

14.65 The nozzle discharges water at the rate of 340 gal/min. Knowing
the velocity of the water at both A and B has a magnitude of 65 ft/s
and neglecting the weight of the vane, determine the components
of the reactions at C and D (1 ft® = 748 gal).

Fig. P14.64

50° A

20 in.

30in.
Fig. P14.65 AxpertSoft Trial Version

14.66 A high-speed jet of air issues from nozzle A with a velocity of v,
and mass flow rate of 0.36 kg/s. The air impinges on a vane causing
it to rotate to the position shown. The vane has a mass of 6 kg.
Knowing that the magnitude of the air velocity is equal at A and
B, determine (a) the magnitude of the velocity at A, (b) the com-
ponents of the reactions at O.

200 mm

500 mm

Fig. P14.66
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Q1Q Systems of Particles 14.67 Coal is being discharged from a first conveyor belt at the rate of
120 kg/s. It is received at A by a second belt which discharges it
again at B. Knowing that v; = 3 m/s and vy = 4.25 m/s and that
the second belt assembly and the coal it supports have a total mass
of 472 kg, determine the components of the reactions at C and D.

0.75m |

2.25m B

Fig. P14.67 ! 18m 12m —’I

14.68 A mass g of sand is discharged per unit time from a conveyor belt

moving with a velocity vo. The sand is deflected by a plate at A so

_’7 that it falls in a vertical stream. After falling a distance h the sand
A

is again deflected by a curved plate at B. Neglecting the friction
between the sand and the plates, determine the force required to

h hold in the position shown (a) plate A, (b) plate B.

a jet airplane traveling at 900 km/h
AxpertSOft Tria| Ve rsion st velocity is 600 m/s relative to the
air which must pass through the
A ST T T e speed of 900 km/h in level flight.

¥ 14.70 While cruising in level flight at a speed of 600 mi/h, a jet plane
Fig. P14.68 scoops in air at the rate of 200 Ib/s and discharges it with a velocity
of 2100 ft/s relative to the airplane. Determine the total drag due
to air friction on the airplane.

14.71 1In order to shorten the distance required for landing, a jet airplane
is equipped with movable vanes which partially reverse the direc-
tion of the air discharged by each of its engines. Each engine
scoops in the air at a rate of 120 kg/s and discharges it with a
velocity of 600 m/s relative to the engine. At an instant when the
speed of the airplane is 270 km/h, determine the reverse thrust

provided by each of the engines.

20°
270 km/h
_>
-
20°

Fig. P14.71
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14.72 The helicopter shown can produce a maximum downward air
speed of 80 ft/s in a 30-ft-diameter slipstream. Knowing that the
weight of the helicopter and its crew is 3500 lb and assuming
g = 0.076 Ib/ft® for air, determine the maximum load that the
helicopter can lift while hovering in midair.

Fig. P14.72

14.73 A floor fan designed to deliver air at a maximum velocity of 6 m/s
in a 400-mm-diameter slipstream is supported by a 200-mm-
diameter circular base plate. Knowing that the total weight of the
assembly is 60 N and that its center of gravity is located directly
above the center of t
height h at which the fa
Assume r = 1.21 kg/m3

of the air.

AxpertSoft Trial Version

14.74 The jet engine shown scoops in air at A at a rate of 200 Ib/s
and discharges it at B with a velocity of 2000 ft/s relative to the
airplane. Determine the magnitude and line of action of the pro-
pulsive thrust developed by the engine when the speed of the

airplane is (¢) 300 mi/h, (b) 600 mi/h.

Fig. P14.74

14.75 A jet airliner is cruising at a speed of 900 km/h with each of its
three engines discharging air with a velocity of 800 m/s relative to
the plane. Determine the speed of the airliner after it has lost the
use of (a) one of its engines, (b) two of its engines. Assume that
the drag due to air friction is proportional to the square of the
speed and that the remaining engines keep operating at the same

rate.

Problems

911

|

N
o
S
3

"WYIYWY
3

L

Fig. P14.75
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Q12 Systems of Particles 14.76 A 16-Mg jet airplane maintains a constant speed of 774 km/h while
climbing at an angle a = 18°. The airplane scoops in air at a rate

ey of 300 kg/s and discharges it with a velocity of 665 m/s relative to
_ o the airplane. If the pilot changes to a horizontal flight while main-
- - b taining the same engine setting, determine (a) the initial accelera-

tion of the plane, (b) the maximum horizontal speed that will be
attained. Assume that the drag due to air friction is proportional
to the square of the speed.

14.77 The propeller of a small airplane has a 2-m-diameter slipstream
and produces a thrust of 3600 N when the airplane is at rest on
the ground. Assuming r = 1.225 kg/m3 for air, determine (a) the
speed of the air in the slipstream, (b) the volume of air passing
through the propeller per second, (c) the kinetic energy imparted
per second to the air in the slipstream.

14.78 The wind turbine—generator shown has an output-power rating of
1.5 MW for a wind speed of 36 km/h. For the given wind speed,
determine (a) the kinetic energy of the air particles entering the
82.5-m-diameter circle per second, (b) the efficiency of this energy
conversion system. Assume r = 1.21 kg/m3 for air.

14.79 A wind turbine-generator system having a diameter of 82.5 m pro-
duces 1.5 MW at a wind speed of 12 m/s. Determine the diameter
B of blade necessary to produce 10 MW of power assuming the effi-

Fig. P14.78 and P14.79 ciency is the same for both designs and r = 1.21 kg/m® for air.

14.80 While cruising

in level flight at a speed of 570 mi/h, a jet airplane
s and discharges it with a velocity
e. Determine (@) the power actu-

(b) the total power developed by

EfTiciency of the airplane.

14.81 In a Pelton-wheel turbine, a stream of water is deflected by a series
of blades so that the rate at which water is deflected by the blades
is equal to the rate at which water issues from the nozzle (Am/At =
Aru,). Using the same notation as in Sample Prob. 14.7, (a) deter-
mine the velocity V of the blades for which maximum power is
developed, (b) derive an expression for the maximum power,
(¢) derive an expression for the mechanical efficiency.

14.82 A circular reentrant orifice (also called Borda’s mouthpiece) of

diameter D is placed at a depth h below the surface of a tank.
Fig. P14.81 Knowing that the speed of the issuing stream is v = 12gh and
assuming that the speed of approach vy is zero, show that the
diameter of the stream is d = D/ 1.2. (Hint: Consider the section
of water indicated, and note that P is equal to the pressure at a

depth h multiplied by the area of the orifice.)

|

Fig. P14.82
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14.83 Gravel falls with practically zero velocity onto a conveyor belt
at the constant rate ¢ = dm/dt. (a) Determine the magnitude
of the force P required to maintain a constant belt speed v.
(b) Show that the kinetic energy acquired by the gravel in a
given time interval is equal to half the work done in that interval
by the force P. Explain what happens to the other half of the
work done by P.

Fig. P14.83

Problems

913

Vi
—
*14.84 The depth of water flowing in a rectangular channel of width b at A ]dl
a speed v; and a depth d; increases to a depth dy at a hydraulic
jump. Express the rate of flow Q in terms of b, d;, and ds. .
Fig. P14.84

*14.85 Determine the rate of flow in the channel of Prob. 14.84, knowing
that b = 12 ft, d; = 4 fj

14.86 A chain of length [ and AxpertSoft Trial Version

end A is raised verticall
of the length y of chain which is off the floor at any given instant
(@) the magnitude of the force P applied to A, (b) the reaction of
the floor.

14.87 Solve Prob. 14.86, assuming that the chain is being lowered to the
floor at a constant speed v.

14.88 The ends of a chain lie in piles at A and C. When released from
rest at time ¢ = 0, the chain moves over the pulley at B, which
has a negligible mass. Denoting by L the length of chain connect- Fig. P14.86
ing the two piles and neglecting friction, determine the speed v
of the chain at time t.

Fig. P14.88
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Q14 Systems of Particles 14.89

14.90

14.91

A toy car is propelled by water that squirts from an internal tank
at a constant 6 ft/s relative to the car. The weight of the empty car
is 0.4 Ib and it holds 2 Ib of water. Neglecting other tangential
forces, determine the top speed of the car.

Fig. P14.89 and P14.90

A toy car is propelled by water that squirts from an internal tank.
The weight of the empty car is 0.4 Ib and it holds 2 Ib of water.
Knowing the top speed of the car is 8 ft/s determine the relative
velocity of the water that is being ejected.

The main propulsion system of a space shuttle consists of three
identical rocket engines which provide a total thrust of 6 MN.
Determine the rate at which the hydrogen-oxygen propellant is
burned by each of the three engines, knowing that it is ejected
with a relative velocity of 3750 m/s.

AxpertSoft Trial Version

14.92
14.93
14.94

it

Fig. P14.94

Fig. P14.91 and P14.92

The main propulsion system of a space shuttle consists of three
identical rocket engines, each of which burns the hydrogen-oxygen
propellant at the rate of 750 Ib/s and ejects it with a relative veloc-
ity of 12,000 ft/s. Determine the total thrust provided by the three
engines.

A rocket weighs 2600 Ib, including 2200 Ib of fuel, which is con-
sumed at a rate of 25 Ib/s and ejected with a relative velocity of
13,000 ft/s. Knowing that the rocket is fired vertically from the
ground, determine its acceleration (a) as it is fired, (b) as the last
particle of fuel is being consumed.

A space vehicle describing a circular orbit about the earth at a
speed of 24 X 10° km/h releases at its front end a capsule which
has a gross mass of 600 kg, including 400 kg of fuel. If the fuel is
consumed at the rate of 18 kg/s and ejected with a relative velocity
of 3000 m/s, determine (a) the tangential acceleration of the cap-
sule as its engine is fired, () the maximum speed attained by the
capsule.
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14.95 A 540-kg spacecraft is mounted on top of a rocket with a mass of Problems Q15
19 Mg, including 17.8 Mg of fuel. Knowing that the fuel is con-
sumed at a rate of 225 kg/s and ejected with a relative velocity of
3600 m/s, determine the maximum speed imparted to the space-
craft if the rocket is fired vertically from the ground.

Fig. P14.95 Fig. P14.96

14.96 The rocket used to launch the 540-kg
is redesigned to include
including 8.9 Mg of fud
of 225 kg/s and ejecte
Knowing that when stag —— — —______
casing is released and ]ettlsoned determme (a) the speed of the
rocket at that instant, (b) the maximum speed imparted to the
spacecraft.

14.97 A communications satellite weighing 10,000 Ib, including fuel,
has been ejected from a space shuttle describing a low circular
orbit around the earth. After the satellite has slowly drifted to a
safe distance from the shuttle, its engine is fired to increase its
velocity by 8000 ft/s as a first step to its transfer to a geosynchro-
nous orbit. Knowing that the fuel is ejected with a relative veloc-
ity of 13,750 ft/s, determine the weight of fuel consumed in this
maneuver. Fig. P14.97

14.98 Determine the increase in velocity of the communications satellite
of Prob. 14.97 after 2500 1b of fuel has been consumed.

14.99 Determine the distance separating the communications satellite of
Prob. 14.97 from the space shuttle 60 s after its engine has been
fired, knowing that the fuel is consumed at a rate of 37.5 Ib/s.

14.100 For the rocket of Prob. 14.93, determine (a) the altitude at which
all of the fuel has been consumed, (b) the velocity of the rocket at
this time.

14.101 Determine the altitude reached by the spacecraft of Prob. 14.95
when all the fuel of its launching rocket has been consumed.
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Q16 Systems of Particles 14.102 For the spacecraft and the two-stage launching rocket of Prob.
14.96, determine the altitude at which (a) stage A of the rocket is
released, (b) the fuel of both stages has been consumed.

14.103 In a jet airplane, the kinetic energy imparted to the exhaust gases
is wasted as far as propelling the airplane is concerned. The useful
power is equal to the product of the force available to propel the
airplane and the speed of the airplane. If v is the speed of the
airplane and wu is the relative speed of the expelled gases, show
that the mechanical efficiency of the airplane is h = 2v/(u + v).
Explain why h = 1 when u = v.

14.104 In a rocket, the kinetic energy imparted to the consumed and
ejected fuel is wasted as far as propelling the rocket is concerned.
The useful power is equal to the product of the force available to
propel the rocket and the speed of the rocket. If v is the speed of
the rocket and u is the relative speed of the expelled fuel, show
that the mechanical efficiency of the rocket is h = 2uv/(u* + ©v°).
Explain why h = 1 when u = v.

AxpertSoft Trial Version
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In this chapter we analyzed the motion of systems of particles, i.e.,
the motion of a large number of particles considered together. In the
first part of the chapter we considered systems consisting of well-
defined particles, while in the second part we analyzed systems
which are continually gaining or losing particles, or doing both at the
same time.

We first defined the effective force of a particle P; of a given system
as the product m;a; of its mass m; and its acceleration a; with respect
to a newtonian frame of reference centered at O [Sec. 14.2]. We
then showed that the system of the external forces acting on the
particles and the system of the effective forces of the particles are
equipollent; i.e., both systems have the same resultant and the same
moment resultant about O:

D F, = > ma,
i=1
S (x, x AxpertSoft Trial Version

(14.4)

Defining the linear momentum L and the angular momentum Hgp
about point O of the system of particles [Sec. 14.3] as

L=>mv, Ho=D (ryxmw) (14.6, 14.7)
i=1 i=1

we showed that Eqgs. (14.4) and (14.5) can be replaced by the
equations

SF=L =M, =H, (14.10, 14.11)

which express that the resultant and the moment resultant about O
of the external forces are, respectively, equal to the rates of change
of the linear momentum and of the angular momentum about O of
the system of particles.

In Sec. 14.4, we defined the mass center of a system of particles as
the point G whose position vector r satisfies the equation

mr = mr, (14.12)
i=1

Effective forces

Linear and angular momentum
of a system of particles

Motion of the mass center
of a system of particles
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Q18 Systems of Particles n
where m represents the total mass >, m; of the particles. Differ-

i=1
entiating both members of Eq. (14.12) twice with respect to t, we
obtained the relations

L=mv L=ma (14.14, 14.15)

where v and a represent, respectively, the velocity and the accelera-
tion of the mass center G. Substituting for L from (14.15) into
(14.10), we obtained the equation

2F = ma (14.16)

from which we concluded that the mass center of a system of par-
ticles moves as if the entire mass of the system and all the external
forces were concentrated at that point [Sample Prob. 14.1].

Angular momentum of a system In Sec. 14.5 we considered the motion of the particles of a system
of particles about its mass center  with respect to a centroidal frame Gx'y'z" attached to the mass cen-
ter G of the system and in translation with respect to the newtonian
frame Oxyz (Fig. 14.14). We defined the angular momentum of the
system about its mass center G as the sum of the moments about G
of the momenta m;v; of the particles in their motion relative to the
frame Gx'y'z". We also noted that the same result can be obtained
by considering the moments about G of the momenta m;v; of the
b therefore wrote

AxpertSoft Trial Version .
> (rf x mv)) (14.24)

i=1

i=1
and derived the relation

Fig. 14.14 Mg = ﬁc (14.23)

which expresses that the moment resultant about G of the external
forces is equal to the rate of change of the angular momentum about
G of the system of particles. As will be seen later, this relation is
fundamental to the study of the motion of rigid bodies.

Conservation of momentum When no external force acts on a system of particles [Sec. 14.6], it
follows from Egs. (14.10) and (14.11) that the linear momentum L
and the angular momentum Hj, of the system are conserved [Sample
Probs. 14.2 and 14.3]. In problems involving central forces, the angu-
lar momentum of the system about the center of force O will also
be conserved.

Kinetic energy of a system  The kinetic energy T of a system of particles was defined as the sum
of particles  of the kinetic energies of the particles [Sec. 14.7]:

18 .
T = 52 m? (14.28)
i=1
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Using the centroidal frame of reference Gx'y'z'" of Fig. 14.14, we Review and Summary Q19
noted that the kinetic energy of the system can also be obtained by add-
ing the kinetic energy ymv? associated with the motion of the mass
center G and the kinetic energy of the system in its motion relative

[ oY

to the frame Gx'y'z":

L, 1Y \
T:%H+§2mﬁz (14.29)
i=1

The principle of work and energy can be applied to a system of Principle of work and energy
particles as well as to individual particles [Sec. 14.8]. We wrote

Tl + U1y2 = TQ (14.30)

and noted that Uy, represents the work of all the forces acting on
the particles of the system, internal as well as external.

If all the forces acting on the particles of the system are conservative, ~Conservation of energy
we can determine the potential energy V of the system and write

T, +V, =T, +V, (14.31)

which expresses the principle of conservation of energy for a system
of particles.

We saw in Sec. 14.9 that the principle of impulse and momentum for Principle of impulse and momentum
a system of particles can be cxre 5 > >

Fig. 14.15. It states that the mo
impulses of the external forces

y y y
(MaVa)y /tz (MAVp), (MgVR)2
J/“\* + 2.J, o = y/i//
(MmgVg)y
(0] Q X (0] X (6] X
\ z / b (Meve);
(Mcve), . Mo dt
(@ (b) ()
Fig. 14.15

If no external force acts on the particles of the system, the
systems of momenta shown in parts @ and ¢ of Fig. 14.15 are equi-
pollent and we have

Ll = L2 (HO)I = (Ho)g (14.36, ].4:.37)

Many problems involving the motion of systems of particles can Use of conservation principles in
be solved by applying simultaneously the principle of impulse and  the solution of problems involving
momentum and the principle of conservation of energy [Sample systems of particles

Prob. 14.4] or by expressing that the linear momentum, angular

momentum, and energy of the system are conserved [Sample
Prob. 14.5].
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Q20 Systems of Particles

Variable systems of particles
Steady stream of particles

Systems gaining or losing mass

In the second part of the chapter, we considered variable systems of
particles. First we considered a steady stream of particles, such as a
stream of water diverted by a fixed vane or the flow of air through a
jet engine [Sec. 14.11]. Applying the principle of impulse and momen-
tum to a system S of particles during a time interval A¢, and including
the particles which enter the system at A during that time interval
and those (of the same mass Am) which leave the system at B, we
concluded that the system formed by the momentum (Am)v, of the
particles entering S in the time At and the impulses of the forces
exerted on S during that time is equipollent to the momentum (Am)vy
of the particles leaving S in the same time At (Fig. 14.16). Equating

(Am)vg

OUIa ODtain as many as three equations,
which could be solved for the desired unknowns [Sample Probs. 14.6
and 14.7]. From this result, we could also derive the following expres-
sion for the resultant =F of the forces exerted on S,

2F = E(VB - VA) (1439)

where v — v, represents the difference between the vectors vy and
v, and where dm/dt is the mass rate of flow of the stream (see foot-
note, page 899).

Considering next a system of particles gaining mass by continually
absorbing particles or losing mass by continually expelling particles
[Sec. 14.12], as in the case of a rocket, we applied the principle of
impulse and momentum to the system during a time interval At, being
careful to include the particles gained or lost during that time interval
[Sample Prob. 14.8]. We also noted that the action on a system S of
the particles being absorbed by S was equivalent to a thrust
dm
P= 7 (14.44)

where dm/dt is the rate at which mass is being absorbed, and w is the
velocity of the particles relative to S. In the case of particles being
expelled by S, the rate dm/dt is negative and the thrust P is exerted in
a direction opposite to that in which the particles are being expelled.
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REVIEW PROBLEMS

14.105 Three identical cars are being unloaded from an automobile car-
rier. Cars B and C have just been unloaded and are at rest with
their brakes off when car A leaves the unloading ramp with a
velocity of 5.76 ft/s and hits car B, which hits car C. Car A then
again hits car B. Knowing that the velocity of car B is 5.04 ft/s
after the first collision, 0.630 ft/s after the second collision, and
0.709 ft/s after the third collision, determine (a) the final velocities
of cars A and C, (b) the coefficient of restitution for each of the
collisions.

Fig. P14.105

14.106 A 30-g bullet is fired with a velocity of 480 m/s into block A, which

has a mass of 5 kg. The coefficient of kinetic friction between block B \—@
A and cart BC is 0.50. Kpausac il Lo I S

and can roll freely, dete

block, (b) the final positi

14.107 An 80-Mg railroad engine A coasting at 6. g
flatcar C carrying a 30-Mg load B which can slide along the floor of
the car (m; = 0.25). Knowing that the car was at rest with its brakes
released and that it automatically coupled with the engine upon
impact, determine the velocity of the car (@) immediately after
impact, (b) after the load has slid to a stop relative to the car.

6.5 km/h
—

m
A

— ] | _

Fig. P14.107

14.108 In a game of pool, ball A is moving with a velocity v, when it strikes
balls B and C which are at rest and aligned as shown. Knowing that  gig, p14.108
after the collision the three balls move in the directions indicated
and that vy = 12 ft/s and vc = 6.29 {t/s, determine the magnitude
of the velocity of () ball A, (b) ball B.

14.109 Mass C, which has a mass of 4 kg, is suspended from a cord
attached to cart A, which has a mass of 5 kg and can roll freely on ?\ Vo
a frictionless horizontal track. A 60-g bullet is fired with a speed 20 \
vg = 500 m/s and gets lodged in block C. Determine (a) the veloc-
ity of C as it reaches its maximum elevation, (b) the maximum
vertical distance h through which C will rise. Fig. P14.109

921
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Q22 Systems of Particles 14.110 A 15-1b block B is at rest and a spring of constant k = 72 Ib/in is
held compressed 3 in. by a cord. After 5-Ib block A is placed
against the end of the spring the cord is cut causing A and B to
move. Neglecting friction, determine the velocities of blocks A and
B immediately after A leaves B.

WA 6in.

Fig. P14.110

14.111 Car A was at rest 9.28 m south of point O when it was struck in the
rear by car B, which was traveling north at a speed vg. Car C, which
was traveling west at a speed v¢, was 40 m east of point O at the
time of the collision. Cars A and B stuck together and, because the
pavement was covered with ice, they slid into the intersection and
were struck by car C which had not changed its speed. Measure-
ments based on a photograph taken from a traffic helicopter shortly
after the second collision indicated that the positions of the cars,
expressed in meters, were r, = —10.1i + 16.9j, rz = —10.1i + 20.4;,
and re = —19.8i — 15.2j. Knowing that the masses of cars A, B,
and C are, respectively, 1400 kg, 1800 kg, and 1600 kg, and that the
time elapsed between the first collision and the time the photograph
e initial speeds of cars B and C.

AxpertSoft Trial Version

3
A [!U
)
40m
g AL
o (©
= X
3in. 6in.  age 7928m
c \/ 4 A
- Ve B 3.52m
15in.
Fig. P14.111
A 'B
Va 14.112 The nozzle shown discharges water at the rate of 200 gal/min.
Knowing that at both B and C the stream of water moves with a
velocity of magnitude 100 ft/s, and neglecting the weight of the

vane, determine the force-couple system which must be applied at
Fig. P14.112 A to hold the vane in place (1 ft> = 7.48 gal).
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14.113 Prior to takeoff, the pilot of a 6000-Ib twin-engine airplane tests

14.114

14.115

14.116

the reversible-pitch propellers with the brakes at point B locked.
Knowing that the velocity of the air in the two 6.6-ft-diameter
slipstreams is 60 ft/s and that point G is the center of gravity of
the airplane, determine the reactions at points A and B. Assume
g = 0.075 Ib/ft> and neglect the approach velocity of the air.

L 8.4 ft— |<—
0.9 ft

Fig. P14.113

A railroad car of length L and mass m, when empty is moving
freely on a horizontal track while being loaded with sand from a
stationary chute at a rate dm/dt = ¢. Knowing that the car was
approaching the chute at a speed v, determine (@) the mass of the
car and its load after the car has cleared the chute, (b) the speed
of the car at that time.

A garden sprinkler has four rotating arms, each of which consists of
two horizontal straight sections of pipe forming an angle of 120° with
each other. Each arm discharges water at a rate of 20 L/min with a
velocity of 18 m/s relative_ta the arm Kunowinog that the friction
between the moving and|
lent to a couple of mag
constant rate at which th

100 mm

Fig. P14.115

A chain of length [ and mass m falls through a small hole in a plate.
Initially, when y is very small, the chain is at rest. In each case
shown, determine (@) the acceleration of the first link A as a func-
tion of y, (b) the velocity of the chain as the last link passes through
the hole. In case I assume that the individual links are at rest until
they fall through the hole; in case 2 assume that at any instant all
links have the same speed. Ignore the effect of friction.

Review Problems 923

Fig. P14.114

-
Aiiv R
(@) @

Fig. P14.116
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COMPUTER PROBLEMS

14.C1 A man and a woman, of weights 180 Ib and 120 Ib, respectively,
stand at opposite ends of a stationary boat of weight 300 b, ready to dive
with velocities v,, and v,,, respectively, relative to the boat. Use computa-
tional software to determine the velocity of the boat after both swimmers
have dived if (a) the woman dives first, (b) the man dives first. Solve that
problem assuming that the velocities of the woman and the man relative
to the boat are, respectively, (i) 14 ft/s and 18 ft/s, (ii) 18 ft/s and 14 ft/s.

14.C2 A system of particles consists of n particles A; of mass m; and coor-
dinates x;, y;, and z;, having velocities of components (v,);, (v,);, and (v.);.

Fig. P14.C1 Derive expressions for the components of the angular momentum of the
system about the origin O of the coordinates. Use computational software
to solve Probs. 14.11 and 14.13.

14.C3 A shell moving with a velocity of known components v,, v,, and v,
explodes into three fragments of weights W, Wa, and Wj at point A, at a
distance d from a vertical wall. Use computational software to determine the
speed of each fragment immediately after the explosion, knowing the coordi-
nates x; and y; of the points A; (i = 1, 2, 3) where the fragments hit the wall.
Use this program to solve (a) Prob. 14.24, (b) Prob. 14.25.

AxpertSoft Trial Version

Fig. P14.C3
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14.C4 As a 6000-kg training plane lands on an aircraft carrier at a speed Computer Problems Q95
of 180 km/h, its tail hooks into the end of an 80-m long chain which lies in

a pile below deck. Knowing that the chain has a mass per unit length of

50 kg/m and assuming no other retarding force, use computational software

to determine the distance traveled by the plane while the chain is being

pulled out and the corresponding values of the time and of the velocity and

deceleration of the plane.

Fig. P14.C4

14.C5 A 16-Mg jet airplane maintains a constant speed of 774 km/h while
climbing at an angle a = 18°. The airplane scoops in air at a rate of 300
kg/s and discharges it with a velocity of 665 m/s relative to the airplane.
Knowing that the pilot changes the angle of climb a while maintaining the
same engine setting, use computational software to calculate and plot values
of a from 0 to 20° (a) the initial acceleration of the plane, (b) the maximum
speed that will be attained. Assume that the drag due to air friction is pro-
portional to the square of the speed.

14.C6 A rocket has a weight of]
is consumed at the rate of 25 Ih AxpertSoft Trial Version
12,000 ft/s. Knowing that the rd
assuming a constant value for the a ] '
intervals, use computational software to determme and plot from the time of
ignition to the time when the last particle of fuel is being consumed (a) the
acceleration a of the rocket in ft/s%, (b) its velocity v in ft/s, (¢) its elevation h
above the ground in miles. (Hint: Use for v the expression derived in Sample
Prob. 14.8, and integrate this expression analytically to obtain 5.)

—

o
== s/ L

=

Fig. P14.C5
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This huge crank belongs to a
Wartsila-Sulzer RTA96-C turbocharged
two-stroke diesel engine. In this chapter
you will learn to perform the kinematic

analysis of rigid bodies that undergo

translation, fixed axis rotation, rnd

general plane motion. AxpertSoft Trial Version
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15.1 INTRODUCTION

In this chapter, the kinematics of rigid bodies will be considered. You

Chapter 15 Kinematics of
Rigid Bodies

15.1  Introduction will investigate the relations existing between the time, the positions,
15.2  Translation the velocities, and the accelerations of the various particles forming
15.3 Rotation About a Fixed Axis a rigid body. As you will see, the various types of rigid-body motion
15.4  Equations Defining the Rotation can be conveniently grouped as follows:

of a Rigid Body About a

Fixed Axis
15.5 General Plane Motion -
15.6  Absolute and Relative Velocity AN

in Plane Motion 4
15.7  Instantaneous Center of Rotation 4 A

in Plane Motion 2
15.8  Absolute and Relative A

Acceleration in Plane Motion 4
15.9  Analysis of Plane Motion in pY

Terms of a Parameter B
15.10 Rate of Change of a Vector with 4

Respect to a Rotfating Frame
15.11 Plane Motion of a Particle Fig. 15.1

Relative to a Rotating Frame.

Coriolis Acceleration 1. Translation. A motion is said to be a translation if any straight
15.12 Motion About a Fixed Point line inside the body keeps the same direction during the motion.
15.13 General Motion It can also be observed that in a translation all the particles

15.14 Three-Dimensional Motion of arning the hodu pave long parallel paths. If these paths are
Particle Relative to a Rotatin . . to be a rectilinear translation
Frame. Coriolis Acceleration [SEWAVASITgecTo) iR N (I MYASTESIToIg B lines, the motion is a curvi-
15.15 Frame of Reference in
General Motion 2. Rotation About a Fixed Axis. In this motion, the particles form-
ing the rigid body move in parallel planes along circles centered
A, on the same fixed axis (Fig. 15.3). If this axis, called the axis of
rotation, intersects the rigid body, the particles located on the
N axis have zero velocity and zero acceleration.

\ Rotation should not be confused with certain types of cur-
B, vilinear translation. For example, the plate shown in Fig. 15.4a
is in curvilinear translation, with all its particles moving along
\ parallel circles, while the plate shown in Fig. 15.4b is in rota-

4 tion, with all its particles moving along concentric circles.

Fig. 15.2

(a) Curvilinear translation (b) Rotation
Fig. 15.4
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In the first case, any given straight line drawn on the plate
will maintain the same direction, whereas in the second case,
point O remains fixed.

Because each particle moves in a given plane, the rotation
of a body about a fixed axis is said to be a plane motion.

3. General Plane Motion. There are many other types of plane
motion, i.e., motions in which all the particles of the body move
in parallel planes. Any plane motion that is neither a rotation
nor a translation is referred to as a general plane motion. Two
examples of general plane motion are given in Fig. 15.5.

(a) Rolling wheel
Fig. 15.5

4. Motion About a Fixed P
a rigid body attached at a Tixed
top on a rough floor (Fig. 15.6), is known as motion about a
fixed point.

5. General Motion. Any motion of a rigid body that does not
fall in any of the categories above is referred to as a general
motion.

After a brief discussion in Sec. 15.2 of the motion of translation,
the rotation of a rigid body about a fixed axis is considered in Sec.
15.3. The angular velocity and the angular acceleration of a rigid
body about a fixed axis will be defined, and you will learn to express
the velocity and the acceleration of a given point of the body in terms
of its position vector and the angular velocity and angular accelera-
tion of the body.

The following sections are devoted to the study of the general
plane motion of a rigid body and to its application to the analysis of
mechanisms such as gears, connecting rods, and pin-connected link-
ages. Resolving the plane motion of a slab into a translation and a
rotation (Secs. 15.5 and 15.6), we will then express the velocity of a
point B of the slab as the sum of the velocity of a reference point A
and of the velocity of B relative to a frame of reference translating
with A (i.e., moving with A but not rotating). The same approach is
used later in Sec. 15.8 to express the acceleration of B in terms of
the acceleration of A and of the acceleration of B relative to a frame
translating with A.

Fig. 15.6

15.1 Introduction
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Q30 Kinematics of Rigid Bodies An alternative method for the analysis of velocities in plane
motion, based on the concept of instantaneous center of rotation, is
given in Sec. 15.7; and still another method of analysis, based on the
use of parametric expressions for the coordinates of a given point, is
presented in Sec. 15.9.

The motion of a particle relative to a rotating frame of refer-
ence and the concept of Coriolis acceleration are discussed in Secs.
15.10 and 15.11, and the results obtained are applied to the analysis
of the plane motion of mechanisms containing parts which slide on
each other.

The remaining part of the chapter is devoted to the analysis of
the three-dimensional motion of a rigid body, namely, the motion of
a rigid body with a fixed point and the general motion of a rigid body.
In Secs. 15.12 and 15.13, a fixed frame of reference or a frame of
reference in translation will be used to carry out this analysis; in Secs.
15.14 and 15.15, the motion of the body relative to a rotating frame
or to a frame in general motion will be considered, and the concept
of Coriolis acceleration will again be used.

15.2 TRANSLATION

Con51der a rigid body in transldtlon (either rectilinear or curvilinear
o of its particles (Fig. 15.7a).
e position vectors of A and B
rence and by ry, the vector

AxpertSoft Trial Version

Irp = Iy + Tp/A (151)

] Let us differentiate this relation with respect to t. We note that from
Photo 15.1 This replica of a battering ram ot the very definition of a translation, the vector ry;, must maintain a

Chéteau des Baux, France undergoes curvilinear  constant direction; its magnitude must also be constant, since A and B
translation.

y y y a
B \(4
B " d B
B/A
B A Y A
a
o) o o]
X X X

(@ (b) (©

Z Z z

Fig. 15.7
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belong to the same rigid body. Thus, the derivative of rp, is zero 15.3 Rotation About a Fixed Axis Q31
and we have

Vg = Vu (152)
Differentiating once more, we write
az = a, (15.3)

Thus, when a rigid body is in translation, all the points of the
body have the same velocity and the same acceleration at any given
instant (Fig. 15.7b and c). In the case of curvilinear translation, the
velocity and acceleration change in direction as well as in magnitude
at every instant. In the case of rectilinear translation, all particles of
the body move along parallel straight lines, and their velocity and
acceleration keep the same direction during the entire motion.

15.3 ROTATION ABOUT A FIXED AXIS

Consider a rigid body which rotates about a fixed axis AA’. Let P be
a point of the body and r its position vector with respect to a ﬁxed
frame of reference. For convenj — .
centered at point O on AA' a . .
(Fig. 15.8). Let B be the projeMAVAol=1gisYe] i M NTEIRVATES (o]l
at a constant distance from B,
of radius r sin ¥, where F denotes the angle formed by r and AA".

The position of P and of the entire body is completely defined
by the angle u the line BP forms with the zx plane. The angle u is
known as the angular coordinate of the body and is defined as posi-
tive when viewed as counterclockwise from A’. The angular coordi-
nate will be expressed in radians (rad) or, occasionally, in degrees (°)
or revolutions (rev). We recall that

1 rev = 2p rad = 360°

We recall from Sec. 11.9 that the velocity v = dr/dt of a particle
P is a vector tangent to the path of P and of magnitude v = ds/dt.
Observing that the length As of the arc described by P when the
body rotates through Au is

As = (BP) Au = (rsin ) Au

and dividing both members by At, we obtain at the limit, as At
approaches zero,

v = % = rusin F (15.4)
where U denotes the time derivative of u. (Note that the angle u
depends on the position of P within the body, but the rate of change

Photo 15.2 For the central gear rotating about

a fixed axis, the angular velocity and angular
uis itself independent of P.) We conclude that the velocity v of P is  gcceleration of thct%ecr are ve>cltors direfted

a vector perpendicular to the plane containing AA’ and r, and of along the vertical axis of rotation.


http://www.axpertsoft.com/pdf-splitter-software/

Q32 Kinematics of Rigid Bodies

Fig. 15.9

magnitude v defined by (15.4). But this is precisely the result we
would obtain if we drew along AA" a vector V = uk and formed the
vector product V' X r (Fig. 15.9). We thus write

V=%=VXP (15.5)
The vector
V = vk = uk (15.6)

which is directed along the axis of rotation, is called the angular
velocity of the body and is equal in magnitude to the rate of change
u of the angular coordinate; its sense may be obtained by the right-
hand rule (Sec. 3.6) from the sense of rotation of the body.t

The acceleration a of the particle P will now be determined.
Differentiating (15.5) and recalling the rule for the differentiation of
a vector product (Sec. 11.10), we write

dv d

a—g—dft(VXr)
dVv dr
EXr-i-an
dV

V Xv (15.7)

is called the angular accelera-
gr v from (15.5), we have

a=AXr+VXxX(VXr (15.8)

Differentiating (15.6) and recalling that k is constant in magnitude
and direction, we have

A = ak = vk = uk (15.9)

Thus, the angular acceleration of a body rotating about a fixed axis
is a vector directed along the axis of rotation, and is equal in magni-
tude to the rate of change V of the angular velocity. Returning to
(15.8), we note that the acceleration of P is the sum of two vectors.
The first vector is equal to the vector product A X r; it is tangent
to the circle described by P and therefore represents the tangential
component of the acceleration. The second vector is equal to the
vector triple product V X (V X r) obtained by forming the vector
product of V and V' X r;since V X ris tangent to the circle described
by P, the vector triple product is directed toward the center B of
the circle and therefore represents the normal component of the
acceleration.

1t will be shown in Sec. 15.12 in the more general case of a rigid body rotating
simultaneously about axes having different directions that angular velocities obey
the parallelogram law of addition and thus are actually vector quantities.
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Rotation of a Representative Slab.  The rotation of a rigid body
about a fixed axis can be defined by the motion of a representative
slab in a reference plane perpendicular to the axis of rotation. Let
us choose the xy plane as the reference plane and assume that it
coincides with the plane of the figure, with the z axis pointing out
of the paper (Fig. 15.10). Recalling from (15.6) that V = vk, we

y

Fig. 15.10

note that a positive value of the scalar v corresponds to a counter-
clockwise rotation of the representative slab, and a negative value to
a clockwise rotation. Substituting vk for V into Eq. (15.5), we express
the velocity of any given point P of the slab as

M AxpertSoft Trial Version

Since the vectors k and r are mutually perpendicular, the magnitude
of the velocity v is

v =rVv (15.10")

and its direction can be obtained by rotating r through 90° in the
sense of rotation of the slab.

Substituting V = vk and A = ak into Eq. (15.8), and observing
that cross-multiplying r twice by k results in a 180° rotation of the
vector r, we express the acceleration of point P as

a=ak xr — Vr (15.11)

Resolving a into tangential and normal components (Fig. 15.11), we
write

a =ak Xr a;, = ra (15.11")
a, = —Vr a, = rv?

The tangential component a, points in the counterclockwise direc-
tion if the scalar a is positive, and in the clockwise direction if a is
negative. The normal component a, always points in the direction
opposite to that of r, that is, toward O.

15.3 Rotation About a Fixed Axis
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934  Kinematics of Rigid Bodies 15.4 EQUATIONS DEFINING THE ROTATION OF A
RIGID BODY ABOUT A FIXED AXIS

The motion of a rigid body rotating about a fixed axis AA” is said to
be known when its angular coordinate u can be expressed as a known
function of t. In practice, however, the rotation of a rigid body is
seldom defined by a relation between u and t. More often, the condi-
tions of motion will be specified by the type of angular acceleration
that the body possesses. For example, @ may be given as a function
of t, as a function of u, or as a function of V. Recalling the relations
(15.6) and (15.9), we write

du
Vv = 7 (15.12)
dv d2
a = E = ? (1513)
or, solving (15.12) for dt and substituting into (15.13),
v (15.14)

Photo 15.3 If the lower roll has a constd AXpertSOft Trlal VerS|On

angular velocity, the speed of the paper be
wound onto it increases as the radius of thée
increases.

ose obtained in Chap. 11 for
the rectilinear motion of a particle, their integration can be per-
formed by following the procedure outlined in Sec. 11.3.

Two particular cases of rotation are frequently encountered:

1. Uniform Rotation. This case is characterized by the fact that
the angular acceleration is zero. The angular velocity is thus
constant, and the angular coordinate is given by the formula

u=uy+ vt (15.15)

2. Uniformly Accelerated Rotation. In this case, the angular accel-
eration is constant. The following formulas relating angular
velocity, angular coordinate, and time can then be derived in a
manner similar to that described in Sec. 11.5. The similarity
between the formulas derived here and those obtained for
the rectilinear uniformly accelerated motion of a particle is

apparent.
VvV =V, + at
u=u, + Vi + jat’ (15.16)
v =v3 + 2alu — up)

It should be emphasized that formula (15.15) can be used only when
a = 0, and formulas (15.16) can be used only when a = constant.
In any other case, the general formulas (15.12) to (15.14) should
be used.
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SAMPLE PROBLEM 15.1

Load B is connected to a double pulley by one of the two inextensible cables
shown. The motion of the pulley is controlled by cable C, which has a con-
stant acceleration of 9 in./s> and an initial velocity of 12 in./s, both directed
to the right. Determine (@) the number of revolutions executed by the pulley
in 2 s, (b) the velocity and change in position of the load B after 2 s, and
(¢) the acceleration of point D on the rim of the inner pulley at ¢ = 0.

SOLUTION

a. Motion of Pulley. Since the cable is inextensible, the velocity of point
D is equal to the velocity of point C and the tangential component of the
acceleration of D is equal to the acceleration of C.

(VD)O = (Vc)o = 12 in./s 4 (aD)t = ac — 9 iI'l./S2 Y

Noting that the distance from D to the center of the pulley is 3 in., we write

( 12 in./s = (3 in.)V, V, =4 rad/s i
Q iy /% — (3 in.)a A = 3 rad/s’i

vply = 'V

rated motion, we obtain, for t = 2 s,

3 rad_/sz)(2 s) = 10 rad/s

0 rad/s i
U= vyt + 3a = (4 rad/s)(2 s) + 3(3 rad/s?)(2 s)* = 14 rad
u=14radi
1
Number of revolutions = (14 rad)( v ) = 2.23 rev
2p rad

b. Motion of Load B. Using the following relations between linear and
angular motion, with r = 5 in., we write

vg = rV = (5 in.)(10 rad/s) = 50 in./s vp = 50 in./s><
Ayp = ru = (5 in.)(14 rad) = 70 in. Ayp = 70 in. upward

c. Acceleration of Point D at + = 0. The tangential component of the
acceleration is
(ap), = ac = 9 in/s>y
Since, at t = 0, V, = 4 rad/s, the normal component of the acceleration is
(ap), = rpVvi = (3 in.)(4 rad/s)® = 48 in./s> (ap), = 48 in./s>w

The magnitude and direction of the total acceleration can be obtained by

ap), = 48 in./s?
(@0 writing

tan £ = (48 in./s>)/(9 in./s?) £ = 79.4°
apsin 79.4° = 48 in./s ap = 48.8 in./s>
ap = 48.8 in/s> © 79.4°
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936

SOULVINGIEROBLEIVIY
WINBNOURSOVVIN

In this lesson we began the study of the motion of rigid bodies by considering
two particular types of motion of rigid bodies: translation and rotation about a
fixed axis.

1. Rigid body in translation. At any given instant, all the points of a rigid body
in translation have the same velocity and the same acceleration (Fig. 15.7).

2. Rigid body rotating about a fixed axis. The position of a rigid body rotating
about a fixed axis was defined at any given instant by the angular coordinate u,
which is usually measured in radians. Selecting the unit vector k along the fixed
axis and in such a way that the rotation of the body appears counterclockwise as
seen from the tip of k, we defined the angular velocity V and the angular accel-
eration A of the body:

V=uk A=uk (15.6, 15.9)

In solving problems, keep in mind that the vectors V and A are both directed
along the fixed axis of rotation and that their sense can be obtained by the right-
hand rule.

a. The velocity of g point P of 2 atino g a_fixed axis was found
to be

AxpertSoft Trial Version (15.5)

where V is the angular velocity of the body and r is the position vector drawn
from any point on the axis of rotation to point P (Fig. 15.9).

b. The acceleration of point P was found to be
a=AXr+Vx(VXr) (15.8)

Since vector products are not commutative, be sure to write the vectors in the
order shown when using either of the above two equations.

3. Rotation of a representative slab. In many problems, you will be able to
reduce the analysis of the rotation of a three-dimensional body about a fixed axis
to the study of the rotation of a representative slab in a plane perpendicular to
the fixed axis. The z axis should be directed along the axis of rotation and point
out of the paper. Thus, the representative slab will be rotating in the xy plane
about the origin O of the coordinate system (Fig. 15.10).

To solve problems of this type you should do the following:

a. Draw a diagram of the representative slab, showing its dimensions, its
angular velocity and angular acceleration, as well as the vectors representing the
velocities and accelerations of the points of the slab for which you have or seek
information.
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b. Relate the rotation of the slab and the motion of points of the slab by
writing the equations

v =rv (15.10")
a, = ra a, = rv* (15.11")

Remember that the velocity v and the component a, of the acceleration of a
point P of the slab are tangent to the circular path described by P. The directions
of v and a, are found by rotating the position vector r through 90° in the sense
indicated by V and A, respectively. The normal component a, of the acceleration
of P is always directed toward the axis of rotation.

4. Equations defining the rotation of a rigid body. You must have been pleased
to note the similarity existing between the equations defining the rotation of a rigid
body about a fixed axis [Eqs. (15.12) through (15.16)] and those in Chap. 11 defin-
ing the rectilinear motion of a particle [Egs. (11.1) through (11.8)]. All you have
to do to obtain the new set of equations is to substitute u, v, and a for x, v, and
a in the equations of Chap. 11.

AxpertSoft Trial Version
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PROBLEMS

CONCEPT QUESTIONS
15.€Q1 A rectangular plate swings from arms of equal length as shown.
What is the magnitude of the angular velocity of the plate?

0 rad/s

1 rad/s

2 rad/s

3 rad/s

Need to know the location of the center of gravity.

I N

1 rad/s>

2 rad/s

Fig. P15.CQ1l

15.€Q2 Knowing that wheel A rotates with a constant angular velocity and
ring C and wheel A and wheel B,
nts concerning the angular speeds

Fig. P15.CQ2

V, >V,
Vv, <V,
vV, =V,
The contact points between A and C have the same acceleration.

e T

END-OF-SECTION PROBLEMS

15.1 The brake drum is attached to a larger flywheel that is not shown.
The motion of the brake drum is defined by the relation
U = 36t — 1.6¢2, where u is expressed in radians and ¢ in seconds.
Determine (a) the angular velocity at ¢ = 2's, (b) the number of
revolutions executed by the brake drum before coming to rest.

15.2 The motion of an oscillating crank is defined by the relation u =
Ug sin (pt/T) — (0.5Up) sin (2 pt/T), where U is expressed in radians
and ¢ in seconds. Knowing that Uy = 6 rad and T = 4 s, determine
the angular coordinate, the angular velocity, and the angular accel-
eration of the crank when (0) t = 0, (b) t = 2 s.

Fig. P15.1 15.3 The motion of a disk rotating in an oil bath is defined by the relation
U= Uyl — e, where u is expressed in radians and ¢ in seconds.
Knowing that uy = 0.40 rad, determine the angular coordinate, veloc-
ity, and acceleration of the disk when (@) t = 0, (b)t =35, () t = =

15.4 The rotor of a gas turbine is rotating at a speed of 6900 rpm when
the turbine is shut down. It is observed that 4 min is required for
the rotor to coast to rest. Assuming uniformly accelerated motion,
determine (a) the angular acceleration, (b) the number of revolu-
tions that the rotor executes before coming to rest.
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15.5 A small grinding wheel is attached to the shaft of an electric motor Problems Q30
which has a rated speed of 3600 rpm. When the power is turned
on, the unit reaches its rated speed in 5 s, and when the power is
turned off, the unit coasts to rest in 70 s. Assuming uniformly accel-
erated motion, determine the number of revolutions that the motor
executes (a) in reaching its rated speed, (b) in coasting to rest.

15.6 A connecting rod is supported by a knife-edge at point A. For small
oscillations the angular acceleration of the connecting rod is
governed by the relation a = —6u where a is expressed in rad/s>
and U in radians. Knowing that the connecting rod is released from
rest when U = 20°, determine (a) the maximum angular velocity,
(b) the angular position when ¢ = 2's.

Vertical

Fig. : = &

15.7 When studying whiplash reSerermeTro - oo o
tion of the head is of primary interest. An impact test was performed
and it was found that the angular acceleration of the head is defined
by the relation a = 700 cosu + 70 sin u, where a is expressed Fig. P15.7
in rad/s® and U in radians. Knowing that the head is initially at rest,
determine the angular velocity of the head when u = 30°.

15.8 The angular acceleration of an oscillating disk is defined by the
relation @ = —ku. Determine (a) the value of k for which v = 8 rad/s
when u = 0 and u = 4 rad when v = 0, (b) the angular velocity
of the disk when u = 3 rad.

200 mm

15.9 The angular acceleration of a shaft is defined by the relation a =
—0.25Vv, where a is expressed in rad/s®> and Vv in rad/s. Knowing
that at ¢ = 0 the angular velocity of the shaft is 20 rad/s, determine
(a) the number of revolutions the shaft will execute before coming
to rest, (b) the time required for the shaft to come to rest, (c) the
time required for the angular velocity of the shaft to be reduced
to 1 percent of its initial value.

15.10 The bent rod ABCDE rotates about a line joining points A and E
with a constant angular velocity of 9 rad/s. Knowing that the rota-
tion is clockwise as viewed from E, determine the velocity and
acceleration of corner C.

15.11 In Prob. 15.10, determine the velocity and acceleration of corner
B, assuming that the angular velocity is 9 rad/s and increases at
the rate of 45 rad/s”. Fig. P15.10
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QA4(Q Kinematics of Rigid Bodies 15.12

15.13

15.14

Fig. P15.12

15.15

15.16

15.17

15.18

15.19

Fig. P15.18 and P15.19

The assembly shown consists of the straight rod ABC which passes
through and is welded to the rectangular plate DEFH. The assem-
bly rotates about the axis AC with a constant angular velocity of
9 rad/s. Knowing that the motion when viewed from C is counter-
clockwise, determine the velocity and acceleration of corner F.

In Prob. 15.12, determine the acceleration of corner H, assuming that
the angular velocity is 9 rad/s and decreases at a rate of 18 rad/s”.

A circular plate of 120-mm radius is supported by two bearings A
and B as shown. The plate rotates about the rod joining A and B
with a constant angular velocity of 26 rad/s. Knowing that, at the
instant considered, the velocity of point C is directed to the right,
determine the velocity and acceleration of point E.

y

In Prob. 15.14, determine the velocity and acceleration of point E,
assuming that the angular velocity is 26 rad/s and increases at the
rate of 65 rad/s>.

The earth makes one complete revolution around the sun in
365.24 days. Assuming that the orbit of the earth is circular and
has a radius of 93,000,000 mi, determine the velocity and accel-
eration of the earth.

The earth makes one complete revolution on its axis in 23 h 56 min.
Knowing that the mean radius of the earth is 3960 mi, determine
the linear velocity and acceleration of a point on the surface of
the earth (¢) at the equator, (b) at Philadelphia, latitude 40° north,
(c) at the North Pole.

A series of small machine components being moved by a con-
veyor belt pass over a 120-mm-radius idler pulley. At the instant
shown, the velocity of point A is 300 mm/s to the left and its accel-
eration is 180 mm/s® to the right. Determine (a) the angular
velocity and angular acceleration of the idler pulley, (b) the total
acceleration of the machine component at B.

A series of small machine components being moved by a conveyor
belt pass over a 120-mm-radius idler pulley. At the instant shown, the
angular velocity of the idler pulley is 4 rad/s clockwise. Determine
the angular acceleration of the pulley for which the magnitude of the
total acceleration of the machine component at B is 2400 mm/s>.
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15.20 The belt sander shown is initially at rest. If the driving drum B Problems Q41
has a constant angular acceleration of 120 rad/s> counterclockwise,
determine the magnitude of the acceleration of the belt at point
C when (@)t = 05s, (b))t = 2s.

Fig. P15.20 and P15.21 A ) j

15.21 The rated speed of drum B of the belt sander shown is 2400 rpm.
When the power is turned off, it is observed that the sander
coasts from its rated speed to rest in 10 s. Assuming uniformly
decelerated motion, determine the velocity and acceleration of

point C of the belt, () immediately before the power is turned off, -Ti—
—

(b) 9 s later.
4in. 3in. 21in. ﬁ
15.22 The two pulleys shown may be operated with the V belt in any of L
15.22

three positions. If the angular acceleration of shaft A is 6 rad/s?
and if the system is initially at rest determlne the tlme requlred R
for shaft B to reach a spgases - 2

the three positions. . .
AxpertSoft Trial Version

15.23 Three belts move over
reduction system shown. At the instant shown, the ve ocity of point
A on the input belt is 2 ft/s to the right, decreasing at the rate of
6 ft/s>. Determine, at this instant, (@) the velocity and acceleration
of point C on the output belt, (b) the acceleration of point B on
the output pulley.

Fig. P15.23

15.24 A gear reduction system consists of three gears A, B, and C. Know-
ing that gear A rotates clockwise with a constant angular velocity
V4 = 600 rpm, determine (a) the angular velocities of gears B and
C, (b) the accelerations of the points on gears B and C which are
in contact.

2in.

2in. 4in. 6in.
Fig. P15.24

15.25 A belt is pulled to the right between cylinders A and B. Knowing
that the speed of the belt is a constant 5 ft/s and no slippage
occurs, determine (a) the angular velocities of A and B, (b) the
accelerations of the points which are in contact with the belt. Fig. P15.25
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Fig. P15.27

AxpertSoft Trial Version

Fig. P15.29 and P15.30

15.26

15.27

15.29

Ring C has an inside radius of 55 mm and an outside radius of
60 mm and is positioned between two wheels A and B, each of
24-mm outside radius. Knowing that wheel A rotates with a constant
angular velocity of 300 rpm and that no slipping occurs, determine
(@) the angular velocity of ring C and of wheel B, (b) the acceleration
of the points A and B which are in contact with C.

Fig. P15.26

Ring B has an inside radius ry and hangs from the horizontal shaft
A as shown. Shaft A rotates with a constant angular velocity of
25 rad/s and no slipping occurs. Knowing that r; = 12 mm, ry =
30 mm, and r3 = 40 mm, determine (¢) the angular velocity of
ring B, (b) the accelerations of the points of shaft A and ring B
which are in contact, (¢) the magnitude of the acceleration of a
point on the outside surface of ring B.

s. During a 4-s interval the speed
y from vy = 2 ft/s to v; = 4 ft/s.
_ Aip on the drums, determine (@) the
angular acceleration of drum B, (b) the number of revolutions exe-
cuted by drum B during the 4-s interval.

Fig. P15.28

A pulley and two loads are connected by inextensible cords as
shown. Load A has a constant acceleration of 300 mm/s® and an
initial velocity of 240 mm/s, both directed upward. Determine
(@) the number of revolutions executed by the pulley in 3 s, (b) the
velocity and position of load B after 3 s, (¢) the acceleration of point
D on the rim of the pulley at ¢ = 0.

A pulley and two loads are connected by inextensible cords as
shown. The pulley starts from rest at ¢ = 0 and is accelerated at
the uniform rate of 2.4 rad/s® clockwise. At t = 4 s, determine the
velocity and position (@) of load A, (b) of load B.
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15.31 A load is to be raised 20 ft by the hoisting system shown. Assuming Problems Q43
gear A is initially at rest, accelerates uniformly to a speed of 120 rpm
in 5 s, and then maintains a constant speed of 120 rpm, determine
(@) the number of revolutions executed by gear A in raising the load,
(b) the time required to raise the load.

15.32 Disk B is at rest when it is brought into contact with disk A which
is rotating freely at 450 rpm clockwise. After 6 s of slippage, during
which each disk has a constant angular acceleration, disk A reaches
a final angular velocity of 140 rpm clockwise. Determine the angu-
lar acceleration of each disk during the period of slippage.

' ‘ Fig. P15.31

Fig. P15.32 and P15.33

15.33 and 15.34 A simple
B. Initially, disk A has a
disk B is at rest. It is known that disk A WIII COast to rest i oU s.
However, rather than waiting until both disks are at rest to bring
them together, disk B is given a constant angular acceleration of
2.5 rad/s? counterclockwise. Determine (@) at what time the disks
can be brought together if they are not to slip, (b) the angular veloc-
ity of each disk as contact is made.

AxpertSoft Trial Version

Fig. P15.34 and P15.35

15.35 Two friction disks A and B are both rotating freely at 240 rpm
counterclockwise when they are brought into contact. After 8 s of
slippage, during which each disk has a constant angular accelera-
tion, disk A reaches a final angular velocity of 60 rpm counter-
clockwise. Determine (a) the angular acceleration of each disk
during the period of slippage, (b) the time at which the angular

velocity of disk B is equal to zero.
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Fig. P15.36

Plane motion
Fig. 15.12

*15.36 Steel tape is being wound onto a spool which rotates with a con-
stant angular velocity V. Denoting by r the radius of the spool
and tape at any given time and by b the thickness of the tape,
derive an expression for the acceleration of the tape as it approaches

the spool.

*15.37 1In a continuous printing process, paper is drawn into the presses
at a constant speed v. Denoting by r the radius of the paper roll
at any given time and by b the thickness of the paper, derive an
expression for the angular acceleration of the paper roll.

and by general plane motion a
lane motlon Wthh is nelther a translation nor a rotation. As you
will presently see, however, a general plane motion can always be
considered as the sum of a translation and a rotation.
Consider, for example, a wheel rolling on a straight track
(Fig. 15.12). Over a certain interval of time, two given points A and B
will have moved, respectively, from A; to A, and from B, to By. The
same result could be obtained through a translation which would
bring A and B into Ay and B] (the line AB remaining vertical), fol-
lowed by a rotation about A bringing B into B,. Although the original
rolling motion differs from the combination of translation and rota-
tion when these motions are taken in succession, the original motion
can be exactly duplicated by a combination of simultaneous transla-
tion and rotation.

B

\Bz

Translation with A + Rotation about A
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15.5 General Plane Motion 945

Ay

Translation with A + Rotation about A

@

Plane motion

Plane motion

Fig. 15.13

Another example of plane motion is given in Fig. 15.13, which
represents a rod whose extremities slide along a horizontal and a verti-
cal track, respectively. This motion can be replaced by a translation in
a horizontal direction and a rotation about A (Fig. 15.13a) or by a
translation in a vertical direction and a rotation about B (Fig. 15.13b).

In the general case of plane motion, we will consider a small
displacement which brings two particles A and B of a representative
slab, respectively, from A; and B, into A, and B, (Fig. 15.14). This
displacement can be divided into two parts: in one, the particles
move into Ay and Bj while the line AB maintains the same direction;
in the other, B moves into B, while A remains fixed. The first part
of the motion is clearly a translation and the second part a rotation
about A.

Recalling from Sec. 11.12 the definition of the relative motion
of a particle with respect to a moving frame of reference—as opposed
to its absolute motion with respect to a fixed frame of reference—we
can restate as follows the result obtained above: Given two particles
A and B of a rigid slab in plane motion, the relative motion of B with
respect to a frame attached to A and of fixed orientation is a rotation.
To an observer moving with A but not rotating, particle B will appear
to describe an arc of circle centered at A.

Fig. 15.14
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Photo 15.4 Planetary gear systems are used
to high reduction ratios with minimum space and
weight. The small gears undergo general plane
motion.

15.6 ABSOLUTE AND RELATIVE VELOCITY
IN PLANE MOTION

We saw in the preceding section that any plane motion of a slab can
be replaced by a translation defined by the motion of an arbitrary
reference point A and a simultaneous rotation about A. The absolute
velocity vi of a particle B of the slab is obtained from the relative-
velocity formula derived in Sec. 11.12,

VB = V4 + VB/A (1517)

where the right-hand member represents a vector sum. The velocity
v, corresponds to the translation of the slab with A, while the relative
velocity vg, is associated with the rotation of the slab about A and
is measured with respect to axes centered at A and of fixed orienta-
tion (Fig. 15.15). Denoting by rp, the position vector of B relative
to A, and by vk the angular velocity of the slab with respect to axes
of fixed orientation, we have from (15.10) and (15.10")

VB/A — vk x Tp/A Uy = rV (15.18)
Va
VB
Q VB/A
j— Va Vg
d
Plane motion = Translation with A + Rotation about A Vg =Va + Vg/a
Fig. 15.15

where r is the distance from A to B. Substituting for vz, from (15.18)
into (15.17), we can also write

Vg = Vu + vk x Ip/A (15.17,)

As an example, let us again consider the rod AB of Fig. 15.13.
Assuming that the velocity v, of end A is known, we propose to find
the velocity v of end B and the angular velocity V of the rod, in terms
of the velocity v,, the length [, and the angle u. Choosing A as a refer-
ence point, we express that the given motion is equivalent to a transla-
tion with A and a simultaneous rotation about A (Fig. 15.16). The
absolute velocity of B must therefore be equal to the vector sum

Vg = V4 + Vp/A (1517)

We note that while the direction of vg, is known, its magnitude v

is unknown. However, this is compensated for by the fact that the

direction of vy is known. We can therefore complete the diagram of

Fig. 15.16. Solving for the magnitudes vz and Vv, we write
Up/a Ua

Vg = Uy tan U V=—=
B A [ [cosu

(15.19)
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15.6 Absolute and Relative Velocity in - Q47

A (fixed)

Plane motion = Translation with A +  Rotation about A

Fig. 15.16

The same result can be obtained by using B as a point of refer-
ence. Resolving the given motion into a translation with B and a
simultaneous rotation about B (Fig. 15.17), we write the equation

Vp = Vp + Va/B (15.20)

which is represented graphically in Fig. 15.17. We note that v, and
vpa have the same magnitude [V but opposite sense. The sense of
the relative velocity depends, therefore, upon the point of reference
which has been selected and should be carefully ascertained from
the appropriate diagram (Fig. 15.16 or 15.17).

B (fixed)

AxpertSoft Trial Version

Plane motion = Translation with B + Rotation about B
Fig. 15.17

Finally, we observe that the angular velocity V of the rod in its
rotation about B is the same as in its rotation about A. It is measured
in both cases by the rate of change of the angle u. This result is quite
general; we should therefore bear in mind that the angular velocity V
of a rigid body in plane motion is independent of the reference point.

Most mechanisms consist not of one but of several moving
parts. When the various parts of a mechanism are pin-connected, the
analysis of the mechanism can be carried out by considering each
part as a rigid body, keeping in mind that the points where two parts
are connected must have the same absolute velocity (see Sample
Prob. 15.3). A similar analysis can be used when gears are involved,
since the teeth in contact must also have the same absolute velocity.
However, when a mechanism contains parts which slide on each
other, the relative velocity of the parts in contact must be taken into
account (see Secs. 15.10 and 15.11).

Plane Motion

Va
o\

VB/A

Vg =VatVg/a

o\

VaB

Vao=Vg+Vap
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SAMPLE PROBLEM 15.2

The double gear shown rolls on the stationary lower rack; the velocity of its
center A is 1.2 m/s directed to the right. Determine (a) the angular velocity
of the gear, (b) the velocities of the upper rack R and of point D of the gear.

SOLUTION

a. Angular Velocity of the Gear. Since the gear rolls on the lower rack, its
center A moves through a distance equal to the outer circumference 2pry
for each full revolution of the gear. Noting that 1 rev = 2p rad, and that when
A moves to the right (x4 > 0) the gear rotates clockwise (U < 0), we write
N
2p1"1 2p
Differentiating with respect to the time ¢ and substituting the known values
vya = 1.2 m/s and r; = 150 mm = 0.150 m, we obtain
vy = —1V 1.2 m/s = —(0.150 m)v Vv = —8 rad/s
V = vk = —(8 rad/s)k

where k is a unit vector pointing out of the paper.

Xy = —ru

into two component motions:

AXpertSOft Trial VerSion bn about the center A. In the

the same velocity v4. In the
rotation, each point P ol the gear moves about A with a relative velocity
vpa = Vk X 1p,, where rp, is the position vector of P relative to A.

VB/A

Veia

Translation + Rotation = Rolling Motion

Velocity of Upper Rack. The velocity of the upper rack is equal to the
velocity of point B; we write
VR:VB:VA+VB/A:VA+karB/A
(1.2 m/s)i — (8 rad/s)k X (0.100 m)j
(1.2 m/s)i + (0.8 m/s)i = (2 m/s)i
Vg = 2 m/syY

Velocity of Point D

Vp = Vyu ar Vpa = Va ar Vk X rp/a
(1.2 m/s)i — (8 rad/s)k X (—0.150 m)i
= (L2 m/s)i + (1.2 m/s)j

vp = 1.697 m/s a 45°
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Vp

Jsor

Vg=628.3in./s

SAMPLE PROBLEM 15.3

In the engine system shown, the crank AB has a constant clockwise angular
velocity of 2000 rpm. For the crank position indicated, determine (a) the
angular velocity of the connecting rod BD, (b) the velocity of the piston P,

SOLUTION

Motion of Crank AB. The crank AB rotates about point A. Expressing Vs
in rad/s and writing vy = rV,p, we obtain

50°
40° 1 mi 2p rad
Ve Vi = (2000ﬂ)< mm)( b ra > — 209.4 rad/s
min 60 s 1 rev
v = (AB)V,5 = (3in.)(209.4 rad/s) = 628.3 in./s
vp = 628.3 in./s C 50°
Motion of Connecting Rod BD. We consider this motion as a general plane
motion. Using the law of sines, we compute the angle b between the con-
necting rod and the horizontal:
in 40° in b
M _ - - 1395
Axpertsoft Trial Version e rod is attached to the piston must
boint B is equal to the velocity vg
y y motion of BD into a translation with B and
a rotation about B, we obtain
(=] o
(flxed) p=13.95
M N o
Plane motion Translation Rotation
Expressing the relation between the velocities vp, vg, and vy, we write
Vp = Vg T Vps
We draw the vector diagram corresponding to this equation. Recalling that
b = 13.95°, we determine the angles of the triangle and write
> Up _ Up/B . 628.3 in./s
76.05\_ I sin53.95°  sin50°  sin 76.05°
(=18 opp = 4959 in/s vy = 495.9 in/s & 76.05°
vp = 523.4 in./s = 43.6 ft/s vp = 43.6 ft/s y
Vo/s vp = vp = 43.6 ft/sy
532-5: Since vpp = IVyp, we have

4959 in/s = (8 in.)VBD VBD = 62.0 I"Eld/S |

949
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SOULVINGIEROBLEIVIY
ON RO URSOVVIN

In this lesson you learned to analyze the velocity of bodies in general plane
motion. You found that a general plane motion can always be considered as the
sum of the two motions you studied in the last lesson, namely, a translation and
a rotation.

To solve a problem involving the velocity of a body in plane motion you should
take the following steps.

1. Whenever possible determine the velocity of the points of the body
where the body is connected to another body whose motion is known. That other

body may be an arm or crank rotating with a given angular velocity [Sample
Prob. 15.3].

2. Next start drawing a ”dlqgrqm equation” to use in your solution (Figs. 15.15
and 15.16). This “equation” will consist of the following diagrams.

a. Plane motion diagram: Draw a diagram of the body including all dimen-
sions and showing those points for which you know or seek the velocity.

b. Translation dlagrum Select a reference pomt A for which you know the
direction and/or the aag L auoa second dmgram
showing the body in

c. Rotation diag
showing the body in = vk of the
body and the relative velocities with respect to A of the other pomts such as
the velocity vg, of B relative to A.

3. Write the relative-velocity formula
Ve = Va T Vi

While you can solve this vector equation analytically by writing the corresponding
scalar equations, you will usually find it easier to solve it by using a vector triangle

(Fig. 15.16).

4. A different reference point can be used to obtain an equivalent solu-
tion. For example, if point B is selected as the reference point, the velocity of
point A is expressed as

Vi = Vg T Vup

Note that the relative velocities v,y and v, have the same magnitude but oppo-
site sense. Relative velocities, therefore, depend upon the reference point that has
been selected. The angular velocity, however, is independent of the choice of
reference point.
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PROBLEMS

CONCEPT QUESTIONS
15.€Q3 The ball rolls without slipping on the fixed surface as shown. What
is the direction of the velocity of point A?
a. y b. 7 c. | d | e. \

15.€Q4 Three uniform rods—ABC, DCE, and FGH—are connected as
shown. Which of the following statements concerning the angular
speed of the three objects is true?

a. Vapc = Vpce = Vicn
Vice = Vage = Vich
Vice < Vape < Vrcu
Vagc = Vpce = VrcH

o e T

Vrcn = Vpce < Vase

N,

Fig. P15.CQ3

Fig. P15.CQ4

END-OF-SECTION PROBLEMS

15.38 An automobile travels to the right at a constant speed of 48 mi/h.
If the diameter of a wheel is 22 in., determine the velocities of
points B, C, D, and E on the rim of the wheel.

221in.

Fig. P15.38

15.39 The motion of rod AB is guided by pins attached at A and B which
slide in the slots shown. At the instant shown, u = 40° and the pin
at B moves upward to the left with a constant velocity of 6 in./s.

Determine (a) the angular velocity of the rod, (b) the velocity of
the pin at end A.

Fig. P15.39
951
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Q52 Kinematics of Rigid Bodies 15.40 Collar B moves upward with a constant velocity of 1.5 m/s. At the
instant when u = 50°, determine (a) the angular velocity of rod
AB, (b) the velocity of end A of the rod.

Fig. P15.40

15.41 Collar B moves downward to the left with a constant velocity of
1.6 m/s. At the instant shown when u = 40°, determine (a) the
angular velocity of rod AB, (b) the velocity of collar A.

15.42 Collar A moves upward with a constant velocity of 1.2 m/s. At the
instant shown when u = 25°, determine (@) the angular velocity of
rod AB, (b) the velocity of collar B.

Fig. P15.41 and P15.42

Loel at C while end A moves to the
f 25 in./s. At the instant shown,
ty of the rod, (b) the velocity of

15.44 The plate shown moves in the xy plane. Knowing that (vy), =
120 mm/s, (vg), = 300 mm/s, and (vc), = —60 mm/s, determine
(@) the angular velocity of the plate, (b) the velocity of point A.

20 in.

y Ve = (V)i + (Vo)y
C
A A
| 180 mm
I 10in. Va = (Va)xi + (Valy ]
Fig. P15.43
. X
180 mm

180 mm | 180 mm

Fig. P15.44

15.45 1In Prob. 15.44, determine (a) the velocity of point B, (b) the point
of the plate with zero velocity.
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15.46 The plate shown moves in the xy plane. Knowing that (v), =
250 mm/s, (UB)y = —450 mm/s, and (v¢), = —500 mm/s, determine
(@) the angular velocity of the plate, (b) the velocity of point A.

Yy
Va = (UA).\'i + <Dz\)!/j
vp = (vp) i+ (vp),j
A B
I
I
I
i
I
150 mm ,
i ve = (eked + (ve)yj
!
I
i
o 1
o | |C x
| 150 mm | l
50 mm

Fig. P15.46

15.47 The plate shown moves in the xy plane. Knowing that (vy), = 12 in./s,
(up)y = —4 in/s, and (v¢), = —24 in/s, determine (a) the angular
velocity of the plate, (b) the velocity of point B.

15.48 1In the planetary gear system shown, the radius of gears A, B, C, and
D is a and the radius of % S i
angular velocity of gear 4
is stationary, determine (
(b) the angular velocity o

Fig. P15.48 and P15.49

15.49 1In the planetary gear system shown, the radius of gears A, B, C, and
D is 30 mm and the radius of the outer gear E is 90 mm. Knowing
that gear E has an angular velocity of 180 rpm clockwise and that
the central gear A has an angular velocity of 240 rpm clockwise,
determine (a) the angular velocity of each planetary gear, (b) the
angular velocity of the spider connecting the planetary gears.

15.50 Arm AB rotates with an angular velocity of 20 rad/s counterclock-
wise. Knowing that the outer gear C is stationary, determine (a) the
angular velocity of gear B, (b) the velocity of the gear tooth located
at point D.

Problems 953

VA= (C:\>.\'i + (Q—'\)g/j
. /-

4in. . .

‘ vp = (Up) i+ (vp),

| ve = (ve)d + (ve), j

L ; _,
2 in. 1

4 W,

o |C x
6 in. |

Fig. P15.50
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954 Kinematics of Rigid Bodies 15.51 In the simplified sketch of a ball bearing shown, the diameter of
the inner race A is 60 mm and the diameter of each ball is 12 mm.
The outer race B is stationary while the inner race has an angular
velocity of 3600 rpm. Determine (a) the speed of the center of
each ball, (b) the angular velocity of each ball, (¢) the number of
times per minute each ball describes a complete circle.

15.52 A simplified gear system for a mechanical watch is shown. Know-
ing that gear A has a constant angular velocity of 1 rev/h and gear
C has a constant angular velocity of 1 rpm, determine (a) the
radius r, (b) the magnitudes of the accelerations of the points on
gear B that are in contact with gears A and C.

Fig. P15.51

AxpertSoft Trial Version

about point C with an angular
velocity of 40 rad/s counterclockwise. Two friction disks A and B
are pinned at their centers to arm ACB as shown. Knowing that
the disks roll without slipping at surfaces of contact, determine the

angular velocity of (a) disk A, (b) disk B.

24in. 24in.
1.2in. [ 0.9in.

0.3in.—=| |~—1.8in.—

B

Fig. P15.53 Fig. P15.54
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15.55 Knowing that at the instant shown the velocity of collar A is 900
mm/s to the left, determine () the angular velocity of rod ADB,
(b) the velocity of point B.

15.56 Knowing that at the instant shown the angular velocity of rod DE
is 2.4 rad/s clockwise, determine (a) the velocity of collar A,
(b) the velocity of point B.

15.57 A straight rack rests on a gear of radius r and is attached to a block
B as shown. Denoting by v, the clockwise angular velocity of gear
D and by u the angle formed by the rack and the horizontal, derive
expressions for the velocity of block B and the angular velocity of
the rack in terms of 7, u, and vy,

15.58

attached to a block B a AT WITTE, tITat g
shown the velocity of block B is 8 in./s to the right and u = 25°,
determine (a) the angular velocity of gear D, (b) the angular
velocity of the rack.

15.59 Knowing that at the instant shown the angular velocity of crank
AB is 2.7 rad/s clockwise, determine (@) the angular velocity of link
BD, (b) the velocity of collar D, (¢) the velocity of the midpoint of
link BD.

15.60 In the eccentric shown, a disk of 2-in. radius revolves about shaft
O that is located 0.5 in. from the center A of the disk. The distance
between the center A of the disk and the pin at B is 8 in. Knowing
that the angular velocity of the disk is 900 rpm clockwise, deter-
mine the velocity of the block when u = 30°.

Fig. P15.60

150 mm

/B

Problems 955

e D)

<—— 120 mm 4‘

Fig. P15.55 and P15.56

Fig. P15.59
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Q56 Kinematics of Rigid Bodies 15.61 In the engine system shown, ! = 160 mm and b = 60 mm. Knowing
that the crank AB rotates with a constant angular velocity of 1000 rpm
clockwise, determine the velocity of the piston P and the angular
velocity of the connecting rod when (@) u = 0, (b) u = 90°.

15.62 1In the engine system shown, [ = 160 mm and b = 60 mm. Knowing
that crank AB rotates with a constant angular velocity of 1000 rpm
clockwise, determine the velocity of the piston P and the angular
velocity of the connecting rod when u = 60°.

15.63 Knowing that at the instant shown the angular velocity of rod AB
is 15 rad/s clockwise, determine (a) the angular velocity of rod BD,
(b) the velocity of the midpoint of rod BD.

Fig. P15.61 and P15.62

AxpertSoft Trial Version

Fig. P15.6

15.64 and 15.65 In the position shown, bar AB has an angular veloc-
ity of 4 rad/s clockwise. Determine the angular velocity of bars BD
and DE.

300 mm
100 mm
" 175 mm 0‘— -
B
—
A
200 mm 500 mm
1 @
75 mm D o —
D
E ~—— 400 mm ——=——400 mm —

Fig. P15.64 Fig. P15.65
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15.66 Roberts linkage is named after Richard Roberts (1789-1864) and Problems Q&7
can be used to draw a close approximation to a straight line by
locating a pen at point F. The distance AB is the same as BF, DF,
and DE. Knowing that the angular velocity of bar AB is 5 rad/s
clockwise in the position shown, determine (a) the angular velocity
of bar DE, (b) the velocity of point F.

15.67 Roberts linkage is named after Richard Roberts (1789-1864) and
can be used to draw a close approximation to a straight line by
locating a pen at point F. The distance AB is the same as BF, DF,
and DE. Knowing that the angular velocity of plate BDF is 2 rad/s
counterclockwise when u = 90°, determine (a) the angular veloci-
ties of bars AB and DE, (b) the velocity of point F. When u = 90°,
point F may be assumed to coincide with point E, with negligible
error in the velocity analysis. S 5]

12 in. |
Fig. P15.66 and P15.67

15.68 1In the position shown, bar DE has a constant angular velocity of
10 rad/s clockwise. Knowing that 1 = 500 mm, determine (a) the
angular velocity of bar FBD, (b) the velocity of point F.

h ! 300 mm — |
100 mm

Fig. P15.68 and P15.69

15.69 1In the position shown, bar DE has a constant angular velocity of
10 rad/s clockwise. Determine (a) the distance h for which the
velocity of point F is vertical, (b) the corresponding velocity of
point F.

15.70 Both 6-in.-radius wheels roll without slipping on the horizontal
surface. Knowing that the distance AD is 5 in., the distance BE is
4 in., and D has a velocity of 6 in./s to the right, determine the
velocity of point E.

Fig. P15.70
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QA58 Kinematics of Rigid Bodies

15.71 The 80-mm-radius wheel shown rolls to the left with a velocity of
900 mm/s. Knowing that the distance AD is 50 mm, determine
the velocity of the collar and the angular velocity of rod AB when
(@) b =0, (b) b = 90°

)
Fig. P15.71

*15.72 For the gearing shown, derive an expression for the angular veloc-
ity V¢ of gear C and show that V¢ is independent of the radius of
gear B. Assume that point A is fixed and denote the angular veloci-
ties of rod ABC and gear A by V,pc and V4, respectively.

Photo 15.5 |If the tires of this car are rolling
without sliding, the instantaneous center of rotation
of a tire is the point of contact between the road
and the fire.

Fig. P15.72

15.7 INSTANTANEOUS CENTER OF ROTATION
IN PLANE MOTION

Consider the general plane motion of a slab. We propose to show
that at any given instant the velocities of the various particles of the
slab are the same as if the slab were rotating about a certain axis
perpendicular to the plane of the slab, called the instantaneous axis
of rotation. This axis intersects the plane of the slab at a point C,
called the instantaneous center of rotation of the slab.

We first recall that the plane motion of a slab can always be
replaced by a translation defined by the motion of an arbitrary refer-
ence point A and by a rotation about A. As far as the velocities are
concerned, the translation is characterized by the velocity v, of the
reference point A and the rotation is characterized by the angular
velocity V of the slab (which is independent of the choice of A). Thus,
the velocity v, of point A and the angular velocity V of the slab define
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A
/
// r=w/o
/
/
/
Q Q
Va Va
@ (b)
Fig. 15.18

completely the velocities of all the other particles of the slab (Fig.
15.18a). Now let us assume that v, and V are known and that they
are both different from zero. (If v, = 0, point A is itself the instan-
taneous center of rotation, and if V = 0, all the particles have the
same velocity v4.) These velocities could be obtained by letting the slab
rotate with the angular velocity V about a point C located on the per-
pendicular to v, at a distance r = v,/V from A as shown in Fig. 15.18b.
We check that the velocity of A would be perpendicular to AC and that
its magnitude would be rv = (vy/V)V = v,. Thus the velocities of all
the other particles of the slab would be the same as origi
Therefore, as far as the velocitie
about the instantaneous center

The position of the instai
other ways. If the directions of tR¢ Velo y
of the slab are known and if they are different, the instantaneous
center C is obtained by drawing the perpendicular to v, through A
and the perpendicular to vz through B and determining the point in
which these two lines intersect (Fig. 15.19a). If the velocities v, and
v of two particles A and B are perpendicular to the line AB and if
their magnitudes are known, the instantaneous center can be found
by intersecting the line AB with the line joining the extremities of the
vectors v, and vy (Fig. 15.19D). Note that if v, and vz were parallel

AxpertSoft Trial Version

\/ |/
é{c ;‘{c
/ /

|
\\
!
|

\

@) (b)
Fig. 15.19

15.7 Instantaneous Center of Rotation in
Plane Motion

959


http://www.axpertsoft.com/pdf-splitter-software/

Q6 Kinematics of Rigid Bodies in Fig. 15.19a or if v, and v had the same magnitude in Fig. 15.195,
the instantaneous center C would be at an infinite distance and V
would be zero; all points of the slab would have the same velocity.

To see how the concept of instantaneous center of rotation can
be put to use, let us consider again the rod of Sec. 15.6. Drawing
the perpendicular to v, through A and the perpendicular to vy
through B (Fig. 15.20), we obtain the instantaneous center C. At the

Fig. 15.20

instant considered, the velocities of all the particles of the rod are
thus the same as if the rod rotated about C. Now, if the magnitude
vy of the velocity of A is known, the magnitude v of the angular
velocity of the rod can be obtained by writing

VA

AxpertSoft Trial Version

Jn then be obtained by writing

vg = (BC)v = lsinu

VA o
lcosu ba tan u
Note that only absolute velocities are involved in the computation.
The instantaneous center of a slab in plane motion can be
located either on the slab or outside the slab. If it is located on the
slab, the particle C coinciding with the instantaneous center at a given
instant ¢ must have zero velocity at that instant. However, it should
be noted that the instantaneous center of rotation is valid only at a
given instant. Thus, the particle C of the slab which coincides with
the instantaneous center at time ¢ will generally not coincide with the
instantaneous center at time ¢ + At; while its velocity is zero at time ¢,
it will probably be different from zero at time ¢ + At. This means
that, in general, the particle C does not have zero acceleration and,
therefore, that the accelerations of the various particles of the slab
cannot be determined as if the slab were rotating about C.
As the motion of the slab proceeds, the instantaneous center
moves in space. But it was just pointed out that the position of the
Space  instantaneous center on the slab keeps changing. Thus, the instanta-
f‘i”t\“fie neous center describes one curve in space, called the space centrode,
~ and another curve on the slab, called the body centrode (Fig. 15.21).
It can be shown that at any instant, these two curves are tangent at C
and that as the slab moves, the body centrode appears to roll on the
space centrode.
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SAMPLE PROBLEM 15.4

Solve Sample Prob. 15.2, using the method of the instantaneous center of
rotation.

SOLUTION

a. Angular Velocity of the Gear. Since the gear rolls on the stationary
lower rack, the point of contact C of the gear with the rack has no velocity;
point C is therefore the instantanecous center of rotation. We write
Uy = TV 1.2 m/s = (0.150 m)v
V = 8 rad/si
b. Velocities. As far as velocities are concerned, all points of the gear seem
i to rotate about the instantaneous center.
\/C Velocity of Upper Rack. Recalling that vz = v, we write
Vg = v = gV vgp = (0.250 m)(8 rad/s) = 2 m/s
VR = 2m/syY
Velocity of Point D. Since rp, = (0.150 m)12 = 0.2121 m, we write

vp = rpV vp = (0.2121 m)(8 rad/s) = 1.697 m/s
vp = 1.697 m/s a 45°

AxpertSoft Trial Version

Solve Sample Prob. 15.3, using the method of the instantaneous center of
rotation.

SOLUTION

Motion of Crank AB. Referring to Sample Prob. 15.3, we obtain the veloc-
ity of point B; vz = 628.3 in./s € 50°.
Motion of the Connecting Rod BD. We first locate the instantaneous cen-

4 C ter C by drawing lines perpendicular to the absolute velocities vz and vy.
40;;/ \ Recalling from Sample Prob. 15.3 that b = 13.95° and that BD = 8 in., we
7" 507 solve the triangle BCD.
gs = 40° + b = 53.95° gp = 90° — b = 76.05°
BC cD  8in

sin 76.05°  sin 53.95°  sin 50°
BC = 10.14in. CD = 8.44 in.

Since the connecting rod BD seems to rotate about point C, we write

vg = (BC)Vgp
628.3 in/s = (10.14 in.)Vyp
Vigp = 62.0 rad/s |
vp = (CD)Vgp = (8.44 in.)(62.0 rad/s)
= 523 in./s = 43.6 ft/s

Vp = Vp = 43.6 ft/sy

961
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962

SOULVINGEEROBLEIVIS
DINBIOURSOVVIN

In this lesson we introduced the instantaneous center of rotation in plane motion.
This provides us with an alternative way for solving problems involving the
velocities of the various points of a body in plane motion.

As its name suggests, the instantaneous center of rotation is the point about which
you can assume a body is rotating at a given instant, as you determine the veloci-
ties of the points of the body at that instant.

A. To determine the instantaneous center of rotation of a body in plane motion,
you should use one of the following procedures.

1. If the velocity v, of a point A and the angular velocity V of the body are
both known (Fig. 15.18):

a. Draw a sketch of the body, showing point A, its velocity v,, and the angu-
lar velocity V of the body.

b. From A draw a line perpendicular to v, on the side of v, from which
this velocity is viewed as having the same sense as V.

c. Locate the instantaneous center C on this line, at a distance r = v /v
from point A.

2. If the directions AXpertSOft Trial Version re known and

are different (Fig. 1

a. Draw a sketch of the body, showing points A and B and their velocities
v, and vg.

b. From A and B draw lines perpendicular to v, and v, respectively. The
instantaneous center C is located at the point where the two lines intersect.

c. If the velocity of one of the two points is known, you can determine
the angular velocity of the body. For example, if you know v,, you can write v =
vA/AC, where AC is the distance from point A to the instantaneous center C.

3. If the velocities of two points A and B are known and are both perpen-
dicular to the line AB (Fig. 15.19b):

a. Draw a sketch of the body, showing points A and B with their velocities
v, and vy drawn to scale.

b. Draw a line through points A and B, and another line through the tips
of the vectors v, and vg. The instantaneous center C is located at the point where
the two lines intersect.
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c. The angular velocity of the body is obtained by either dividing v, by AC
or vz by BC.

d. If the velocities v4 and v; have the same magnitude, the two lines drawn
in part b do not intersect; the instantaneous center C is at an infinite distance.
The angular velocity V is zero and the body is in translation.

B. Once you have determined the instantaneous center and the angular
velocity of a body, you can determine the velocity vp of any point P of the body
in the following way.

1. Draw a sketch of the body, showing point P, the instantaneous center of
rotation C, and the angular velocity V.

2. Draw a line from P to the instantaneous center C and measure or calculate
the distance from P to C.

3. The velocity vy is a vector perpendicular to the line PC, of the same sense
as V, and of magnitude vp = (PC)V.

Finally, keep i jon can be used only

to determine ve¢ AxpertSOft Trial Version erations.
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PROBLEMS

CONCEPT QUESTIONS

15.€Q5 The disk rolls without sliding on the fixed horizontal surface. At
the instant shown, the instantaneous center of zero velocity for rod
AB would be located in which region?

. Region 1
. Region 2
Region 3
Region 4

Region 5
Region 6

=0 o T

150 mm Fig. P15.CQ5

C
~’7 k) 9 |D
15.€Q6 Bar BDE is pinned to two links, AB and CD. At the instant shown,

150 mm the angular velocities of link AB, link CD, and bar BDE are V43,
j Vep, and Vgpp, respectively. Which of the following statements
E concerning the angular speeds of the three objects is true at this

O
— instant?
L 180 mm al

a. Vap = Vep = Vpg

Fig. P15.CQ6 - VgpE > Vag > Vep

Vap = Vep = VDE
Vap = Vep = VpE
Vep = Vag = VpE

6 2o T

4 ft/s
END-OF-SECTION PROBLEMS

12in. 15.73 A juggling club is thrown vertically into the air. The center of
A G B gravity G of the 20-in. club is located 12 in. from the knob. Know-
ing that at the instant shown, G has a velocity of 4 ft/s upwards
and the club has an angular velocity of 30 rad/s counterclockwise,
30 rad/s determine (a) the speeds of points A and B, (b) the location of the
Fig. P15.73 instantaneous center of rotation.

964
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15.74 A 10-ft beam AE is being lowered by means of two overhead Problems Q{4
cranes. At the instant shown, it is known that the velocity of point
D is 24 in./s downward and the velocity of point E is 36 in./s
downward. Determine () the instantaneous center of rotation of
the beam, (b) the velocity of point A.

_

s 41t 3t
Fig. P15.74

A B D E
|
|
|

15.75 A helicopter moves horizontally in the x direction at a speed of
120 mi/h. Knowing that the main blades rotate clockwise with an
angular velocity of 180 rpm, determine the instantaneous axis of
rotation of the main blades. Fig. P15.75

15.76 and 15.77 A 60-mm-radius drum is rigidly attached to a
100-mm-radius drum as shown. One of the drums rolls without
sliding on the surface shown, and a cord is wound around the other
drum. Knowing that end E of the cord is pulled to the left with a
velocity of 120 mm/s, determine (a) the angular velocity of the
drums, (b) the velocity o
of cord wound or unwo

AxpertSoft Trial Version

Fig. P15.76 Fig. P15.77 Va

LA
15.78 The spool of tape shown and its frame assembly are pulled upward Ji FQ
at a speed vy, = 750 mm/s. Knowing that the 80-mm-radius spool i
has an angular velocity of 15 rad/s clockwise and that at the instant
shown the total thickness of the tape on the spool is 20 mm, deter-
mine (@) the instantaneous center of rotation of the spool, (b) the
velocities of points B and D.

15.79 The spool of tape shown and its frame assembly are pulled upward
at a speed v, = 100 mm/s. Knowing that end B of the tape is pulled [ lB

downward with a velocity of 300 mm/s and that at the instant Vg
shown the total thickness of the tape on the spool is 20 mm, deter-

mine () the instantaneous center of rotation of the spool, (b) the

velocity of point D of the spool. Fig. P15.78 and P15.79
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Q66 Kinematics of Rigid Bodies 15.80 The arm ABC rotates with an angular velocity of 4 rad/s counter-
clockwise. Knowing that the angular velocity of the intermediate
gear B is 8 rad/s counterclockwise, determine (¢) the instantaneous
centers of rotation of gears A and C, (b) the angular velocities of
gears A and C.

15.81 The double gear rolls on the stationary left rack R. Knowing that
the rack on the right has a constant velocity of 2 ft/s, determine
(@) the angular velocity of the gear, (b) the velocities of points A
and D.

<~— 300 mm —={=— 300 mm —

Fig. P15.80

vg =2 ft/s

f

Fig. P15.81

i : heels at A and B that roll in hori-
AxpertSOft Trlal Version ng that when u = 40° the velocity

_ e |etermine (a) the angular velocity
of the door, (b) the velocity of end D of the door.

?

A
[QN
5 ft B@

5 ft D

Fig. P15.82

15.83 Rod ABD is guided by wheels at A and B that roll in horizontal
and vertical tracks. Knowing that at the instant b = 60° and
the velocity of wheel B is 40 in./s downward, determine (a) the
angular velocity of the rod, (b) the velocity of point D.
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15.84 Rod BDE is partially guided by a roller at D which moves in a
vertical track. Knowing that at the instant shown the angular veloc-
ity of crank AB is 5 rad/s clockwise and that b = 25° determine
(@) the angular velocity of the rod, (b) the velocity of point E.

15.85 Rod BDE is partially guided by a roller at D which moves in a
vertical track. Knowing that at the instant shown b = 30°, point
E has a velocity of 2 m/s down and to the right, determine the 500 mm
angular velocities of rod BDE and crank AB.

1.6 m/s upward, determine (@) the angular velocity of rod AD,
(b) the velocity of point B, (¢) the velocity of point A. —E%
120 mm
J_[%] A

15.86 Knowing that at the instant shown, the velocity of collar D is \

Ve

/\
200 mm

Problems 967

-

AxpertSoft Trial Version

Fig. P15.86

15.87 Knowing that at the instant shown, the angular velocity of rod BE
is 4 rad/s counterclockwise, determine (a) the angular velocity of
rod AD, (b) the velocity of collar D, (¢) the velocity of point A.

15.88 Rod AB can slide freely along the floor and the inclined plane.
Denoting by v, the velocity of point A, derive an expression for
(a) the angular velocity of the rod, (b) the velocity of end B.

Fig. P15.88 and P15.89

15.89 Rod AB can slide freely along the floor and the inclined plane.
Knowing that u = 20°, b = 50°, [ = 2 ft, and v, = 8 ft/s, determine
(@) the angular velocity of the rod, (b) the velocity of end B.

Fig. P15.84 and P15.85
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Q6H8 Kinematics of Rigid Bodies 15.90 Two slots have been cut in plate FG and the plate has been placed
so that the slots fit two fixed pins A and B. Knowing that at the
instant shown the angular velocity of crank DE is 6 rad/s clockwise,
determine (a) the velocity of point F, (b) the velocity of point G.

120 mm, 160 mm

360 mm —><—>|
7y oG
80 mm

—_—

Fig. P15.90

y 2 15.91 The disk is released from rest and rolls down the incline. Knowing
/ i that the speed of A is 1.2 m/s when u = 0°, determine at that
® A instant (¢) the angular velocity of the rod, (b) the velocity of B.
(Only portions of the two tracks are shown.)

s to a collar at B and to crank
of collar B is 400 mm/s upward,
ty of arm ABD, (b) the velocity of
point A.

Fig. P15.91

90 mm

160 mm

<—>l<—320 mm —|

180 mm
Fig. P15.92 and P15.93

15.93 Arm ABD is connected by pins to a collar at B and to crank DE.
Knowing that the angular velocity of crank DE is 1.2 rad/s
counterclockwise, determine (@) the angular velocity of arm ABD,
(b) the velocity of point A.

15.94 Two links AB and BD, each 25 in. long, are connected at B and
guided by hydraulic cylinders attached at A and D. Knowing that
D is stationary and that the velocity of A is 30 in./s to the right,
determine at the instant shown (¢) the angular velocity of each

24.1in. |
Fig. P15.94 link, (b) the velocity of B.
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15.95 Two 25-in. rods are pin-connected at D as shown. Knowing that B Problems  Q/Q
moves to the left with a constant velocity of 24 in./s, determine at the
instant shown (a) the angular velocity of each rod, (b) the velocity of E.

"75in.  75in. ' 12.5in.
Fig. P15.95

15.96 Two rods ABD and DE are connected to three collars as shown.
Knowing that the angular velocity of ABD is 5 rad/s clockwise,
determine at the instant shown (a) the angular velocity of DE,
(b) the velocity of collar E.

Fig. P15.96

15.97 Two collars C and D move along the vertical rod shown. Knowing
that the velocity of collar C is 660 mm/s downward, determine
(@) the velocity of collar D, (b) the angular velocity of member AB.

15.98 Two rods AB and DE arq
D moves to the left wit

angular velocity of each 320 mm

Fig. P15.97
|<—9 in.—»l<—8 in.—>l<—8 in.—»l

Fig. P15.98

15.99 Describe the space centrode and the body centrode of rod ABD
of Prob. 15.83. (Hint: The body centrode need not lie on a physical
portion of the rod.)

15.100 Describe the space centrode and the body centrode of the gear of
Sample Prob. 15.2 as the gear rolls on the stationary horizontal rack.

15.101 Using the method of Sec. 15.7, solve Prob. 15.60.
15.102 Using the method of Sec. 15.7, solve Prob. 15.64.
15.103 Using the method of Sec. 15.7, solve Prob. 15.65.
15.104 Using the method of Sec. 15.7, solve Prob. 15.38.
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Q70 Kinematics of Rigid Bodies

15.8 ABSOLUTE AND RELATIVE ACCELERATION
IN PLANE MOTION

We saw in Sec. 15.5 that any plane motion can be replaced by a
translation defined by the motion of an arbitrary reference point A
and a simultaneous rotation about A. This property was used in Sec.
15.6 to determine the velocity of the various points of a moving slab.
The same property will now be used to determine the acceleration
of the points of the slab.

We first recall that the absolute acceleration ay of a particle of
the slab can be obtained from the relative-acceleration formula
derived in Sec. 11.12,

Photo 15.6 The central gear rotates about a
fixed axis and is pin-connected to three bars ag = ay T agy (15.21)
which are in general plane motion.

Plane motion
Fig. 15.22

where the right-hand member represents a vector sum. The accel-
eration a, corresponds to the translation of the slab with A, while
the relative acceleration ag,, is associated with the rotation of the
slab about A and is measured with respect to axes centered at A and
of fixed orientation. We recall from Sec. 15.3 that the relative accel-
eration ag, can be resolved into two components, a tangential com-
ponent (aB/A)t perpendlcular to the line AB, and a normal component

it A . Denoting by rp, the position
ely, by vk and ak the angular

e slab with respect to axes of

(ag), = ak X rg), (app); = ra

: g 15.22
(apa), = _VZrB/A (aga), = n? ( )

where r is the distance from A to B. Substituting into (15.21) the
expressions obtained for the tangential and normal components of
ag,,, we can also write

ag = Ay + ak X A — Ver/A (15.21,)
y
Q
an
ag %
+ O/ % (@giadn
ap/a ;\
( s
o an L7 (agat
an
Translation with A + Rotation about A
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15.8 Absolute and Relative Acceleration 97]
in Plane Motion

A (fixed)
Plane motion = Translation with A + Rotation about A

Fig. 15.23

aa

As an example, let us again consider the rod AB whose extremi- \J P /(a )
ties slide, respectively, along a horizontal and a vertical track (Fig. ag B
15.23). Assuming that the velocity v, and the acceleration a, of A
are known, we propose to determine the acceleration ag of B and . 7 (ap/ak
the angular acceleration A of the rod. Choosing A as a reference
point, we express that the given motion is equivalent to a translation @
with A and a rotation about A. The absolute acceleration of B must
be equal to the sum

Sl AxpertSoft Trial Version -

(agak

where (ag,), has the magnitude Iv* and is directed toward A, while
(apa); has the magnitude [a and is perpendicular to AB. Students
should note that there is no way to tell whether the tangential compo-
nent (ag,), is directed to the left or to the right, and therefore both
possible directions for this component are indicated in Fig. 15.23.
Similarly, both possible senses for ag are indicated, since it is not
known whether point B is accelerated upward or downward.
Equation (15.23) has been expressed geometrically in Fig. 15.24. (ag/ak
Four different vector polygons can be obtained, depending upon the (c)
sense of a, and the relative magnitude of a, and (ag,),. If we are to an
determine a and a from one of these diagrams, we must know not
only a, and u but also v. The angular velocity of the rod should there-
fore be separately determined by one of the methods indicated in
Secs. 15.6 and 15.7. The values of a5 and a can then be obtained by
considering successively the x and y components of the vectors shown
in Fig. 15.24. In the case of polygon a, for example, we write

(b)

an

7 (ag/ahn

ag
(ag/adn
¥/ x components: 0 =a, + IV?sinu— lacosu

+<y components: —ag = —Iv*cosu — lasinu

and solve for a and a. The two unknowns can also be obtained by

direct measurement on the vector polygon. In that case, care should (@ !

be taken to draw first the known vectors a, and (ag;,),,. (ag/ak
It is quite evident that the determination of accelerations is

considerably more involved than the determination of velocities. Yet ~ Fig. 15.24
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Q72 Kinematics of Rigid Bodies in the example considered here, the extremities A and B of the rod
were moving along straight tracks, and the diagrams drawn were
relatively simple. If A and B had moved along curved tracks, it would
have been necessary to resolve the accelerations a, and ag into nor-
mal and tangential components and the solution of the problem
would have involved six different vectors.

When a mechanism consists of several moving parts which are
pin-connected, the analysis of the mechanism can be carried out by
considering each part as a rigid body, keeping in mind that the points
at which two parts are connected must have the same absolute accel-
eration (see Sample Prob. 15.7). In the case of meshed gears, the
tangential components of the accelerations of the teeth in contact
are equal, but their normal components are different.

*15.9 ANALYSIS OF PLANE MOTION IN TERMS
OF A PARAMETER

In the case of certain mechanisms, it is possible to express the coor-
dinates x and y of all the significant points of the mechanism by
means of simple analytic expressions containing a single parameter.

.<l It is sometimes advantageous in such a case to determine the abso-

lute ve1001ty and the absolute acceleration of the various points of

since_the_components of the velocity and

y h be obtained by differentiating
B

AB whose extremities slide,

respectively, in a horizontal and a vertical track (Fig. 15.25). The

R -Rof coordinates x, and yp of the extremities of the rod can be expressed

L ‘. 4}| A in terms of the angle u the rod forms with the vertical:
Fig. 15.25 xy = lsinu yp =l cos u (15.24)

Differentiating Eqs. (15.24) twice with respect to ¢, we write

vy = x4 = U cos U

ay = ¥y = —Iu®sin u + U cos U
v = U = —lu sin u
ag = iy = —Ilu® cos u — lu sin u

Recalling that U=vand U = a we obtain

vy = IV cos U vg = —IVv sin u (15.25)
a, = —IV?sinu + la cos U ag = —Iv? cos u — lasin u
(15.26)

We note that a positive sign for v, or a, indicates that the velocity
v, or the acceleration a, is directed to the right; a positive sign for
v or ag indicates that v or ay is directed upward. Equations (15.25)
can be used, for example, to determine vy and V when v, and u are
known. Substituting for v in (15.26), we can then determine ap and
a if a, is known.
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SRy i SAMPLE PROBLEM 15.6

12m/s  The center of the double gear of Sample Prob. 15.2 has a velocity of 1.2 m/s
to the right and an acceleration of 3 m/s> to the right. Recalling that the

ap=3m/s? lower rack is stationary, determine (a) the angular acceleration of the gear,
r, =100 mm (b) the acceleration of points B, C, and D of the gear.

SOLUTION
a. Angular Acceleration of the Gear. In Sample Prob. 15.2, we found
that x4 = —ru and vy, = —nrV. Differentiating the latter with respect to
time, we obtain a, = —ra.

vp = —"V 1.2 m/s = —(0.150 m)v v = —8 rad/s

a, = —nra 3 m/s> = —(0.150 m)a a = —20 radss®

A = ak = —(20 rad/s)k

b. Accelerations. The rolling motion of the gear is resolved into a transla-
tion with A and a rotation about A.

B
ap
ag
— D O
A 2
ac
(ac/nlt c
Translation + Rotation = Rolling motion
an (ag/n); Acceleration of Point B. Adding vectorially the accelerations correspond-
) ing to the translation and to the rotation, we obtain
ag/a)n
a4 ag = ay + agy = a4 + (agu) + (apa),
= ay + a.k X rpa — VQrB/A
= (3 m/s>)i — (20 rad/s)k X (0.100 m)j — (8 rad/s)*(0.100 m)j
= (3 m/s))i + (2 m/sD)i — (6.40 m/sY)j
az = 8.12 m/s> © 52.0°
(ac/an Acceleration of Point C
ac (aC/A)t ac = ay aF Ac/Aa — Ay aF ak X Yo — VQI'C/A
= = (3 m/sY)i — (20 rad/sDk X (—0.150 m)j — (8 rad/s)*(—0.150 m)j
A = B m/s)i — (3 m/isDi + (9.60 m/sz)j
ac = 9.60 m/s>><
ap Acceleration of Point D
(@0 ap = a, +apy = a, + ak X rpu — Vrp,
% (g = (3 m/s?)i — (20 rad/s®)k X (—0.150 m)i — (8 rad/s)*(—0.150 m)i

= @B m/sYi + (3 m/sD)j + (9.60 m/sDi
ap = 12,95 m/s> a 13.4°

973
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SAMPLE PROBLEM 15.7

Crank AB of the engine system of Sample Prob. 15.3 has a constant clock-
wise angular velocity of 2000 rpm. For the crank position shown, determine
the angular acceleration of the connecting rod BD and the acceleration of
point D.

SOLUTION

Motion of Crank AB. Since the crank rotates about A with constant
Vap = 2000 rpm = 209.4 rad/s, we have a,3 = 0. The acceleration of B
is therefore directed toward A and has a magnitude

ag = rVig = (i t)(209.4 rad/s)* = 10,962 ft/s*

ay = 10,962 ft/s> d 40°
Motion of the Connecting Rod BD. The angular velocity Vp, and the value
of b were obtained in Sample Prob. 15.3:

Vgp = 62.0 rad/s | b = 13.95°

The motion of BD is resolved into a translation with B and a rotation about
B. The relative acceleration ap is resolved into normal and tangential
components:

> = 2563 ft/s

= 2563 ft/s”> b 13.95°
667aBD

¥.6667a;, 2 76.05°

While (ap,3), must be perpendicular to BD, its sense is not known.

(@pn

(apsh

Plane motion = Translation + Rotation

Noting that the acceleration a;, must be horizontal, we write

ap = ag + app = ag + (app), + (aps)

[aDG] = [10,962 d 40°] + [2563 b 13.95°] + [0.6667az, & 76.05°]
Equating x and y components, we obtain the following scalar equations:

i/x components:
—ap = —10,962 cos 40° — 2563 cos 13.95° + 0.6667ap, sin 13.95°
Xy components:
0 = —10,962 sin 40° + 2563 sin 13.95° + 0.6667ap, cos 13.95°

Solving the equations simultaneously, we obtain az, = +9940 rad/s”
and a;, = +9290 ft/s>. The positive signs indicate that the senses shown on
the vector polygon are correct; we write

agp = 9940 rad/s’1
ap = 9290 ft/s*> =
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' SAMPLE PROBLEM 15.8

The linkage ABDE moves in the vertical plane. Knowing that in the position
shown crank AB has a constant angular velocity V; of 20 rad/s counterclock-
wise, determine the angular velocities and angular accelerations of the con-
E Y necting rod BD and of the crank DE.

17 in.

<8 in~~—12 in.—>{~—17 in.—>|

SOLUTION

y D This problem could be solved by the method used in Sample Prob. 15.7. In
this case, however, the vector approach will be used. The position vectors

T .
RE r, Tp, and rp are chosen as shown in the sketch.

o)
s Velocities.  Since the motion of each element of the linkage is contained
A E - in the plane of the figure, we have
rB=8i +14J VAB = VABk = (20 rad/s)k VBD = VBDk VDE = VDEk
rp =-17i + 17j . . - .
rop = 121 + 3] where k is a unit vector pointing out of the paper. We now write

Vp = Vg + Vpg
k X rn = Vk X g + VBDk X Tp/B
Si + 14§) + Vgpk X (12i + 3j)

AxpertSoft Trial Version  seadzimits

ctors i and j, we obtain the following

Vp

two scalar equations:

_]-7VDE _280 - 3VBD
—17vpr = +160 + 12vgp
Vip = —(29.33 rad/s)k Vpe = (11.29 rad/s)k

Accelerations. Noting that at the instant considered crank AB has a con-

stant angular velocity, we write

A =0 Agp = agpk App = apgk
ap = ag t app 1)

Each term of Eq. (1) is evaluated separately:

ap = apgk X rp — Vierp

aprk X (—17i + 17j) — (11.29%(—17i + 17j)
—17apsj — 17aDE1 4 21701 = 217OJ

ap = ak X rp — Vigrg = 0 — (20)%(8i + 14j)
—3200i — 5600j

aps = agpk X rpp — Vipros

agpk X (12i + 3j) — (29.33)%(12i + 3j)
12appj — 3agpi — 10,320i — 2580j

Substituting into Eq. (1) and equating the coefficients of i and j, we obtain

_17aDE + 3aBD = _15,690
_17aDE - 12aBD = —6010
Agp = — (645 rad/sHk Ape = (809 rad/sHk

975
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976

SOULVINGIEROBLEIVIY
ON RO URSOVVIN

This lesson was devoted to the determination of the accelerations of the points
of a rigid body in plane motion. As you did previously for velocities, you will
again consider the plane motion of a rigid body as the sum of two motions, namely,
a translation and a rotation.

To solve a problem involving accelerations in plane motion you should use the
following steps:

1. Determine the angular velocity of the body. To find V you can either

a. Consider the motion of the body as the sum of a translation and a rotation
as you did in Sec. 15.6, or

b. Use the instantaneous center of rotation of the body as you did in Sec. 15.7.
However, keep in mind that you cannot use the instantaneous center to determine
accelerations.

2. Start drawing a “diagram equation” to use in your solution. This “equation”
will involve the following diagrams (Fig. 15.22).

a. Plane motion diagram. Draw a sketch of the body, including all dimen-
sions, as well as the 2 : acation A with its
magnitude and sens for which you
know or seek the about these
accelerations.

b. Translation diagram. Select a reference point A for which you know the
direction, the magnitude, or a component of the acceleration a,. Draw a second
diagram showing the body in translation with each point having the same accelera-
tion as point A.

c. Rotation diagram. Considering point A as a fixed reference point, draw a
third diagram showing the body in rotation about A. Indicate the normal and
tangential components of the relative accelerations of other points, such as the
components (ag,), and (ag,); of the acceleration of point B with respect to point A.

AxpertSoft Trial Version

3. Write the relative-acceleration formula
ag = ay + agy or ag = a, + (agy), + (apa);

The sample problems illustrate three different ways to use this vector equation:

a. If A is given or can easily be determined, you can use this equation to
determine the accelerations of various points of the body [Sample Prob. 15.6].
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b. If A cannot easily be determined, select for point B a point for which you
know the direction, the magnitude, or a component of the acceleration az and
draw a vector diagram of the equation. Starting at the same point, draw all known
acceleration components in tip-to-tail fashion for each member of the equation.
Complete the diagram by drawing the two remaining vectors in appropriate direc-
tions and in such a way that the two sums of vectors end at a common point.

The magnitudes of the two remaining vectors can be found either graphically or
analytically. Usually an analytic solution will require the solution of two simultane-
ous equations [Sample Prob. 15.7]. However, by first considering the components
of the various vectors in a direction perpendicular to one of the unknown vectors,
you may be able to obtain an equation in a single unknown.

One of the two vectors obtained by the method just described will be (ag,,);, from
which you can compute a. Once a has been found, the vector equation can be
used to determine the acceleration of any other point of the body.

c. A full vector approach can also be used to solve the vector equation. This
is illustrated in Sample Prob. 15.8.

4. The analysi ) . ompleted this lesson.
This method s AxpertSOft Trial Version he coordinates x and
y of all signific hrameter (Sec. 15.9).
By differentiating twice with respect to ¢ the coordinates x and y of a given point,
you can determine the rectangular components of the absolute velocity and abso-
lute acceleration of that point.

977
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PROBLEMS

CONCEPT QUESTION

15.€CQ7 A rear-wheel-drive car starts from rest and accelerates to the left
so that the tires do not slip on the road. What is the direction of
the acceleration of the point on the tire in contact with the road,
that is, point A?
a.«— bN ¢1 d | eV

—
B A

Fig. P15.cQ7
A B C
END-OF-SECTION PROBLEMS

! ‘ 15.105 A 3.5-m steel beam is lowered by means of two cables unwinding at

| | the same speed from overhead cranes. As the beam approaches the
3m |<—

! ground, the crane operators apply brakes to slow down the unwinding

motlon At the 1nstant considered, the deceleration of the cable attached

: 2 Lo cable at B is 1.5 m/s>. Determine

eam, (b) the acceleration of point C.

0I.5 m
Fig. P15.105 and P15.106

AxpertSoft Trial Version

B m/s”> downward and the angular
ad/s? clockwise. Knowing that the
angular velocity of the beam is zero at the instant considered,
determine the acceleration of each cable.

15.107 A 900-mm rod rests on a horizontal table. A force P apphed as
shown produces the following accelerations: a, = 3.6 m/s” to the
right, a = 6 rad/s> counterclockwise as viewed from above. Deter-
mine the acceleration (a) of point G, (b) of point B.

Fig. P15.107 and P15.108 15.108 In Prob. 15.107, determine the point of the rod that (@) has no
acceleration, (b) has an acceleration of 2.4 m/s® to the right.

D
15.109 Knowing that at the instant shown crank BC has a constant angu-

lar velocity of 45 rpm clockwise, determine the acceleration (a) of
point A, (b) of point D.

15.110 End A of rod AB moves to the right with a constant velocity of

6 ft/s. For the position shown, determine (a) the angular accelera-
tion of rod AB, (b) the acceleration of the midpoint G of rod AB.
C
A
Fig. P15.109 Fig. P15.110

978
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15.111 An automobile travels to the left at a constant speed of 72 km/h. Problems Q70
Knowing that the diameter of the wheel is 560 mm, determine the
acceleration (a) of point B, (b) of point C, (¢) of point D.

15.112 The 18-in.-radius flywheel is rigidly attached to a 1.5-in.-radius
shaft that can roll along parallel rails. Knowing that at the instant
shown the center of the shaft has a velocity of 1.2 in./s and an
acceleration of 0.5 in./s?, both directed down to the left, determine
the acceleration (a) of point A, (b) of point B.

560 mm

A

Fig. P15.111

20°

Fig. P15.112

15.113 and 15.114 A 3-in.-radius drum is rigidly attached to a 5-in.-
radius drum as shown. One of the drums rolls without sliding
on the surface shown, and a cord is wound around the other
drum. Knowing that at tJem =
a velocity of 8 in./s and

PRI RIINN  AxpertSoft Trial Version

the drums.

Fig. P15.113 Fig. P15.114

15.115 A carriage C is supported by a caster A and a cylinder B, each of
50-mm diameter. Knowing that at the instant shown the carriage
has an acceleration of 2.4 m/s®> and a velocity of 1.5 m/s, both
directed to the left, determine (¢) the angular accelerations of the
caster and of the cylinder, (b) the accelerations of the centers of
the caster and of the cylinder.

Fig. P15.115
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Q80 Kinematics of Rigid Bodies 15.116

Fig. P15.116

A wheel rolls without slipping on a fixed cylinder. Knowing that at
the instant shown the angular velocity of the wheel is 10 rad/s
clockwise and its angular acceleration is 30 rad/s? counterclockwise,
determine the acceleration of (a) point A, (b) point B, (¢) point C.

15.117 The 100-mm-radius drum rolls without slipping on a portion of a

belt which moves downward to the left with a constant velocity of
120 mm/s. Knowing that at a given instant the velocity and accel-
eration of the center A of the drum are as shown, determine the
acceleration of point D.

180 mm/s

720 mm/s>
E /

Fig. P15.117

bwn, the radius of gears A, B, C,

AXpertSOft Trial VeI’Sion he outer gear E is 9 in. Knowing

15.119

Fig. P15.118

150 mm

15.120

15.121

Fig. P15.120 and P15.121

ar velocity of 150 rpm clockwise
and that the outer gear E is stationary, determine the magnitude
of the acceleration of the tooth of gear D that is in contact with

(a) gear A, (D) gear E.

The 200-mm-radius disk rolls without sliding on the surface shown.
Knowing that the distance BG is 160 mm and that at the instant
shown the disk has an angular velocity of 8 rad/s counterclockwise
and an angular acceleration of 2 rad/s* clockwise, determine the
acceleration of A.

Fig. P15.119

Knowing that crank AB rotates about point A with a constant
angular velocity of 900 rpm clockwise, determine the acceleration
of the piston P when u = 60°.

Knowing that crank AB rotates about point A with a constant
angular velocity of 900 rpm clockwise, determine the acceleration
of the piston P when u = 120°.
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15.122 In the two-cylinder air compressor shown the connecting rods BD Problems O8]
and BE are each 190 mm long and crank AB rotates about the fixed
point A with a constant angular velocity of 1500 rpm clockwise.
Determine the acceleration of each piston when u = 0.

15.123 The disk shown has a constant angular velocity of 500 rpm coun-
terclockwise. Knowing that rod BD is 10 in. long, determine the
acceleration of collar D when (a) u = 90°, (b) u = 180°.

2 in.

Fig. P15.122

15.124 Arm AB has a consta
clockwise. At the instant

(a) of collar D, (b) of th

Fig. P15.124 and P15.125

15.125 Arm AB has a constant angular velocity of 16 rad/s counter-
clockwise. At the instant when u = 60°, determine the acceleration
of collar D.

15.126 A straight rack rests on a gear of radius r = 3 in. and is attached
to a block B as shown. Knowing that at the instant shown u = 20°,
the angular velocity of gear D is 3 rad/s clockwise, and it is speed-
ing up at a rate of 2 rad/s>, determine (a) the angular acceleration
of AB, (b) the acceleration of block B. Fig. P15.126
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982 Kinematics of Rigid Bodies 15.127 Knowing that at the instant shown rod AB has a constant angu-
lar velocity of 6 rad/s clockwise, determine the acceleration of
point D.

15.128 Knowing that at the instant shown rod AB has a constant angular
velocity of 6 rad/s clockwise, determine (@) the angular acceleration
of member BDE, (b) the acceleration of point E.

15.129 Knowing that at the instant shown bar AB has a constant angular
velocity of 19 rad/s clockwise, determine (a) the angular accelera-
tion of bar BGD, (b) the angular acceleration of bar DE.

! 225 mm ! 225 mm

Fig. P15.127 and P15.128

4in.
ig. P15.129 and P15.130

AxpertSoft Trial Version

n bar DE has a constant angular
determine (@) the acceleration of
point B, (b) the acceleration of point G.

N 15.131 and 15.132 Knowing that at the instant shown bar AB has a
constant angular velocity of 4 rad/s clockwise, determine the angu-
lar acceleration (a) of bar BD, (b) of bar DE.

15 in.
E @
25 in.
200
B o —1 75 mm D
| | b :
| 20 in. | 20 in. |
Fig. P15.131 and P15.133 Fig. P15.132 and P15.134

15.133 and 15.134 Knowing that at the instant shown bar AB has an
angular velocity of 4 rad/s and an angular acceleration of 2 rad/s>,
both clockwise, determine the angular acceleration (@) of bar BD,
(b) of bar DE by using the vector approach as is done in Sample
Prob. 15.8.
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15.135 Roberts linkage is named after Richard Roberts (1789-1864) and Problems Q83
can be used to draw a close approximation to a straight line by
locating a pen at point F. The distance AB is the same as BF, DF, |<— 6 in. —»I
and DE. Knowing that at the instant shown, bar AB has a constant B o D
angular velocity of 4 rad/s clockwise, determine (a) the angular
acceleration of bar DE, (b) the acceleration of point F.

15.136 For the oil pump rig shown, link AB causes the beam BCE to oscil- 12 in.
late as the crank OA revolves. Knowing that OA has a radius of 0.6 m
and a constant clockwise angular velocity of 20 rpm, determine the
velocity and acceleration of point D at the instant shown.
B _‘
3in.'3in.
Fig. P15.135

Fig. P15.136

15.137 Denoting by r, the posit AxpertSOft Trial Version

is in plane motion, show
instantaneous center of rotation is

VXVA
VZ

To = Iy +
where V is the angular velocity of the slab and v, is the velocity
of point A, (b) the acceleration of the instantaneous center of rota-
tion is zero if, and only if,

a
ay,=—vy +VXv
A =, VA A

where A = ak is the angular acceleration of the slab.

Fig. P15.137

*15.138 The drive disk of the Scotch crosshead mechanism shown has an
angular velocity V and an angular acceleration A, both directed
counterclockwise. Using the method of Sec. 15.9, derive expres-
sions for the velocity and acceleration of point B. Fig. P15.138
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Q84 Kinematics of Rigid Bodies *15.139 The wheels attached to the ends of rod AB roll along the surfaces
shown. Using the method of Sec. 15.9, derive an expression for the
angular velocity of the rod in terms of vg, U, [, and b.

. _~

Fig. P15.139 and P15.140

*15.140 The wheels attached to the ends of rod AB roll along the surfaces
shown. Using the method of Sec. 15.9 and knowing that the accel-
eration of wheel B is zero, derive an expression for the angular
acceleration of the rod in terms of vg, U, [, and b.

*15.141 A disk of radius r rolls to the right with a constant velocity v. Denot-
ing by P the point of the rim in contact with the ground at ¢t = 0,
derive expressions for the horizontal and vertical components of the
velocity of P at any time ¢.

el at C while end A moves to the
. Using the method of Sec. 15.9,
ar velocity and angular acceleration

| *15.143 Rod AB moves over a small wheel at C while end A moves to the

I A right with a constant velocity v,. Using the method of Sec. 15.9,

Fig. P15.142 and P15.143 derive expressions for the horizontal and vertical components of the
velocity of point B.

15.144 Crank AB rotates with a constant clockwise angular velocity .
Using the method of Sec. 15.9, derive expressions for the angular
velocity of rod BD and the velocity of the point on the rod coincid-
ing with point E in terms of u, v, b, and [.

Fig. P15.144 and P15.145

15.145 Crank AB rotates with a constant clockwise angular velocity .
Using the method of Sec. 15.9, derive an expression for the angular
acceleration of rod BD in terms of U, v, b, and [.
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15.146 Pin C is attached to rod CD and slides in a slot cut in arm AB. 15.10 Rate Rof Change oEa V_ec'ro; with Q85
Knowing that rod CD moves vertically upward with a constant espect fo a Rofating Frame

velocity vy, derive an expression for (a) the angular velocity of arm
l
\é}\e)l//

AB, (b) the components of the velocity of point A, (c) an expression

for the angular acceleration of arm AB. A
*15.147 The position of rod AB is controlled by a disk of radius r which is
attached to yoke CD. Knowing that the yoke moves vertically B 2
upward with a constant velocity vy, derive expressions for the angu- D
lar velocity and angular acceleration of rod AB.
>

Fig. P15.146
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*15.148 A wheel of radius r rolls Wi S
cylinder of radius R with a constant angular velocity V. Denoting
by P the point of the wheel in contact with the cylinder at ¢ = 0,
derive expressions for the horizontal and vertical components of
the velocity of P at any time ¢. (The curve described by point P is
a hypocycloid.)

*15.149 In Prob. 15.148, show that the path of P is a vertical straight line
when r = R/2. Derive expressions for the corresponding velocity
and acceleration of P at any time ¢. Fig. P15.148

15.10 RATE OF CHANGE OF A VECTOR WITH
RESPECT TO A ROTATING FRAME

We saw in Sec. 11.10 that the rate of change of a vector is the same
with respect to a fixed frame and with respect to a frame in transla-
tion. In this section, the rates of change of a vector Q with respect
to a fixed frame and with respect to a rotating frame of reference
will be considered.t You will learn to determine the rate of change
of Q with respect to one frame of reference when Q is defined by
its components in another frame.

It is recalled that the selection of a fixed frame of reference is arbitrary. Any frame Photo 15.7 A Geneva mechanism is used to
may be designated as “fixed”; all others will then be considered as moving. convert rotary motion into intermittent motion.
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Q86 Kinematics of Rigid Bodies Consider two frames of reference centered at O, a fixed frame

OXYZ and a frame Oxyz which rotates about the fixed axis OA; let

Y € denote the angular velocity of the frame Oxyz at a given instant

A (Fig. 15.26). Consider now a vector function Q(¢) represented by the

\ y vector Q attached at O; as the time ¢ varies, both the direction and

\ the magnitude of Q change. Since the variation of Q is viewed dif-

_ /x ferently by an observer using OXYZ as a frame of reference and by

! an observer using Oxyz, we should expect the rate of change of Q to

depend upon the frame of reference which has been selected. There-

fore, the rate of change of Q with respect to the fixed frame OXYZ

will be denoted by (Q)oxyz, and the rate of change of Q with respect

to the rotating frame Oxyz will be denoted by (Q)o,,-. We propose to
7 determine the relation existing between these two rates of change.

Let us first resolve the vector Q into components along the x, v,

and z axes of the rotating frame. Denoting by i, j, and k the corre-

sponding unit vectors, we write

Q = Qd + Q) + 0k (15.27)

Differentiating (15.27) with respect to ¢ and considering the unit
vectors i, j, k as fixed, we obtain the rate of change of Q with respect
to the rotating fmme Oryz'

Oxu Q A+ Qy_] + Q k (1528)

To obtaln the rate of chdnge of Q with respect 1o the fixed
a unit vectors i, j, k as variable
efore write

Fig. 15.26
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QJ 0 Yoo (d (15.29)

=

Recalling (15.28), we observe that the sum of the first three terms
in the right-hand member of (15.29) represents the rate of change
(Q)ox .=~ We note, on the other hand, that the rate of change (Q)oxyz
would reduce to the last three terms in (15.29) if the vector Q were
fixed within the frame Oxyz, since (Q)OW, would then be zero. But
in that case, (Q)o;o -z would represent the velocity of a particle located
at the tip of Q and belonging to a body rigidly attached to the frame
Oxyz. Thus, the last three terms in (15.29) represent the velocity of
that particle; since the frame Oxyz has an angular velocity  with
respect to OXYZ at the instant considered, we write, by (15.5),

di dj dk
Qx% + an + QZE =0 %xQ (15.30)

Substituting from (15.28) and (15.30) into (15.29), we obtain the
fundamental relation

(Qoxyz = (Q)Oxyz +QX%xQ (15.31)

We conclude that the rate of change of the vector Q with respect to
the fixed frame OXYZ is made of two parts: The first part represents
the rate of change of Q with respect to the rotating frame Oxyz; the
second part, & X Q, is induced by the rotation of the frame Ouxyz.


http://www.axpertsoft.com/pdf-splitter-software/

The use of relation (15.31) simplifies the determination of the
rate of change of a vector Q with respect to a fixed frame of refer-
ence OXYZ when the vector Q is defined by its components along
the axes of a rotating frame Oxyz, since this relation does not require
the separate computation of the derivatives of the unit vectors defin-
ing the orientation of the rotating frame.

15.11 PLANE MOTION OF A PARTICLE RELATIVE TO
A ROTATING FRAME. CORIOLIS ACCELERATION

Consider two frames of reference, both centered at O and both in the
plane of the figure, a fixed frame OXY and a rotating frame Oxy (Fig.
15.27). Let P be a particle moving in the plane of the figure. The
position vector r of P is the same in both frames, but its rate of change
depends upon the frame of reference which has been selected.

The absolute velocity vp of the particle is defined as the velocity
observed from the fixed frame OXY and is equal to the rate of change
(r)oxy of r with respect to that frame. We can, however, express vp in
terms of the rate of change (r)o,, observed from the rotating frame if
we make use of Eq. (15.31). Denoting by € the angular velocity of the
frame Oxy with respect to OXY at the instant considered, we write

Vp = (i.)OXY = Q Xr+ (i.)Oxy (15.32)

But (1)o,, defines the velocity ¢ . .
frame Oxy. Denoting the rotat{WAVAol=TgesTo) 1M N IRMVYACTES{ (o))
the velocity (r)o,, of P relative
imagine that a rigid slab has been attached to the rotating frame.
Then vy represents the velocity of P along the path that it describes
on that slab (Fig. 15.28), and the term £ X r in (15.32) represents
the velocity vy of the point P’ of the slab—or rotating frame—which
coincides with P at the instant considered. Thus, we have

Vp = Vp 4 Vp/5 (15.33)
where vp = absolute velocity of particle P

vp = velocity of point P’ of moving frame & coinciding with P
velocity of P relative to moving frame %

Vpig

The absolute acceleration ap of the particle is defined as the
rate of change of v, with respect to the fixed frame OXY. Computing
the rates of change with respect to OXY of the terms in (15.32),
we write

ap=vw=0Xr+Qxr+ &[(r)Oxy] (15.34)
where all derivatives are defined with respect to OXY, except where
indicated otherwise. Referring to Eq. (15.31), we note that the last
term in (15.34) can be expressed as

d

$[<f>0xy:| = (i.')Oxy + QO X (I.'>Oxy

15.11 Plane Motion of a Particle Relative to a
Rotating Frame. Coriolis Acceleration

Q./ X

Fig. 15.27

Vpig = (r)O Xy

Fig. 15.28

987
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Q88 Kinematics of Rigid Bodies On the other hand, r represents the velocity vy and can be replaced
by the right-hand member of Eq. (15.32). After completing these
two substitutions into (15.34), we write

ap=Q Xr+ Q% (QxXr)+20 X ({o, + (P, (15.35)

Referring to the expression (15.8) obtained in Sec. 15.3 for the accel-
eration of a particle in a rigid body rotating about a fixed axis, we
note that the sum of the first two terms represents the acceleration
ap of the point P’ of the rotating frame which coincides with P at
the instant considered. On the other hand, the last term defines the
acceleration ap¢ of P relative to the rotating frame. If it were not
for the third term, which has not been accounted for, a relation
similar to (15.33) could be written for the accelerations, and a, could
be expressed as the sum of ap and apg. However, it is clear that
such a relation would be incorrect and that we must include the
additional term. This term, which will be denoted by a, is called
the complementary acceleration, or Coriolis acceleration, after the
French mathematician de Coriolis (1792—-1843). We write

ap — ap 4 ap/F = a, (15.36)

where ap = absolute acceleration of particle P
of moving frame & coinciding

AxpertSoft Trial Version

e Oxy VP/F
= complementary, or Coriolis, accelerationt

to moving frame %

We note that since point P’ moves in a circle about the origin

O, its acceleration ap has, in general, two components: a component

(ap), tangent to the circle, and a component (ap), directed toward

O. Similarly, the acceleration apg generally has two components: a

component (apg), tangent to the path that P describes on the rotating

slab, and a component (ap), directed toward the center of curvature

of that path. We further note that since the vector € is perpendicular

to the plane of motion, and thus to vy, the magnitude of the Coriolis

acceleration a, = 2€) X vy is equal to 2Qupg, and its direction can

be obtained by rotating the vector vy through 90° in the sense of

x rotation of the moving frame (Fig. 15.29). The Coriolis acceleration
reduces to zero when either € or vpg is zero.

The following example will help in understanding the physical

Fig. 15.29 meaning of the Coriolis acceleration. Consider a collar P which is

Y

a,=2Q X Vp/g

It is important to note the difference between Eq. (15.36) and Eq. (15.21) of Sec. 15.8.
When we wrote
ag = a, + ag;, (15.21)

in Sec. 15.8, we were expressing the absolute acceleration of point B as the sum of its
acceleration ag, relative to a frame in translation and of the acceleration a, of a point

of that frame. We are now trying to relate the absolute acceleration of point P to its
acceleration ap¢ relative to a rotating frame ¥ and to the acceleration ap: of the point P’
of that frame which coincides with P; Eq. (15.36) shows that because the frame is rotating,
it is necessary to include an additional term representing the Coriolis acceleration a,.
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made to slide at a constant relative speed u along a rod OB rotating 1511 P'°Ee M°”°F" of a Ea”_idl? 'X"C'”l"e toa Q80
at a constant angular velocity V about O (Fig. 15.30a). According to clating Frame. Coriolls Acceleration
formula (15.36), the absolute acceleration of P can be obtained by
adding vectorially the acceleration a, of the point A of the rod coin-
ciding with P, the relative acceleration app of P with respect to the
rod, and the Coriolis acceleration a,. Since the angular velocity V of
the rod is constdnt a, reduces to its normal component (a,), of mag-
nitude rv?; and since u is constant, the relative acceleration ap oy is
Zero. Accordlng to the definition given above, the Coriolis accelera-
tion is a vector perpendicular to OB, of magnitude 2V u, and directed
as shown in the figure. The acceleration of the collar P consists,
therefore, of the two vectors shown in Fig. 15.30a. Note that the
result obtained can be checked by applying the relation (11.44).

To understand better the significance of the Coriolis acceleration,
let us consider the absolute velocity of P at time ¢ and at time ¢ + At
(Fig. 15.30Db). The velocity at time ¢ can be resolved into its compo-
nents u and v,; the velocity at time ¢ + At can be resolved into its
components u’ and v,. Drawing these components from the same
origin (Fig. 15.30c), we note that the change in velocity dunng the

time At can be represented by the sum of three vectors, RR’ TT", TT"
— —
and T"T'". The vector TT" measures the change in direction of the
—
velocity v,, and the quotient TT"/At represents the acceleration a,
when At approaches zero. We check that the direction of TT" is that

of a, when At approaches zerg

. IT” .
lim — = lim
Aty 0 At Aty0

AxpertSoft Trial Version

The vector RR’ measures the change in direction of u due to the
rotation of the rod; the vector T"T" measures the change in_magni-
tude of v, due to the motion of P on the rod. The vectors RR’ and

T"T" result from the combined effect of the relative motion of P and
of the rotation of the rod; they would vanish if either of these two
motions stopped. It is easily verified that the sum of these two vectors
defines the Coriolis acceleration. Their direction is that of a, when
At approaches zero, and since RR" = u Au and T"T" = vy — vy =
(r + Ar)v — rv = V Ar, we check that a, is equal to

li <1~U{’+T"T>_1_ <A+VAT>— V+Vvu =2V
Ao\ At At arvo\" At Ar) e

Formulas (15.33) and (15.36) can be used to analyze the motion
of mechanisms which contain parts sliding on each other. They make
it possible, for example, to relate the absolute and relative motions
of sliding pins and collars (see Sample Probs. 15.9 and 15.10). The
concept of Coriolis acceleration is also very useful in the study of
long-range projectiles and of other bodies whose motions are appre-
ciably affected by the rotation of the earth. As was pointed out in
Sec. 12.2, a system of axes attached to the earth does not truly con-
stitute a newtonian frame of reference; such a system of axes should
actually be considered as rotating. The formulas derived in this sec-
tion will therefore facilitate the study of the motion of bodies with
respect to axes attached to the earth.

Fig. 15.30
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SAMPLE PROBLEM 15.9

The Geneva mechanism shown is used in many counting instruments and
in other applications where an intermittent rotary motion is required. Disk D
rotates with a constant counterclockwise angular velocity V, of 10 rad/s. A
pin P is attached to disk D and slides along one of several slots cut in disk S.
It is desirable that the angular velocity of disk S be zero as the pin enters
and leaves each slot; in the case of four slots, this will occur if the distance
between the centers of the disks is { = 12 R.

At the instant when ¥ = 150°, determine (a) the angular velocity of
disk S, (b) the velocity of pin P relative to disk S.

SOLUTION

We solve triangle OPB, which corresponds to the position ¥ = 150°. Using
the law of cosines, we write

r2=R>+ > — 2Rl cos 30° = 0.551R> r = 0.742R = 37.1 mm
From the law of sines,
sin b _sin 30° sin 30°

R " sinb = 0742 b=424

disk D rotates about point B,

AxpertSoft Trial Version §
500 mm/s
vp = 500 mm/s d 60°

We consider now the motion of pin P along the slot in disk S. Denoting by
P’ the point of disk S which coincides with P at the instant considered and
selecting a rotating frame § attached to disk S, we write

Vp = Vpr t Vpg

Noting that vp is perpendicular to the radius OP and that vp is directed
along the slot, we draw the velocity triangle corresponding to the equation
above. From the triangle, we compute

g = 90° — 42.4° — 30° = 17.6°
vpr = vp sin g = (500 mm/s) sin 17.6°
vp = 151.2 mm/s F 42.4°
vpe = vpcos g = (500 mm/s) cos 17.6°
Vps = Vpe = 477 mm/s d 42.4°

Since vp is perpendicular to the radius OP, we write

vpr = Ve 151.2 mm/s = (37.1 mm)Ve
Vs = Ve = 4.08 rad/s i

990
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SAMPLE PROBLEM 15.10

In the Geneva mechanism of Sample Prob. 15.9, disk D rotates with a
constant counterclockwise angular velocity Vp of 10 rad/s. At the instant
when T = 150°, determine the angular acceleration of disk S.

SOLUTION

Referring to Sample Prob. 15.9, we obtain the angular velocity of the frame
8 attached to disk S and the velocity of the pin relative to S:

Ve = 4.08 rad/s i
b = 42.4° vpie = 477 mm/s d 42.4°

Since pin P moves with respect to the rotating frame &, we write

ap = ap t apg + a, 1)

Each term of this vector equation is investigated separately.

Absolute Acceleration ap. Since disk D rotates with a constant angular
velocity, the absolute acceleration ap is directed toward B. We have

ap = RV} = (500 mm)(10 rad/s)®> = 5000 mm/s>
= 3000 /s 0°

bint P’.  The acceleration ap of the

AXpertSOft Trial Ve rSion bs with P at the instant considered is

'omponents. (We recall from Sample

Prob. 15.9 that r = 37.1 mm.)

(ap), = rve = (37.1 mm)(4.08 rad/s)* = 618 mm/s>
(ap), = 618 mm/s*> d 42.4°
(ap), = rag = 37.1as  (ap), = 37.1a,F 42.4°

Relative Acceleration aps.  Since the pin P moves in a straight slot cut in
disk S, the relative acceleration aps must be parallel to the slot; i.e., its
direction must be /& 42.4°.

Coriolis Acceleration a,. Rotating the relative velocity vy through 90° in
the sense of Ve, we obtain the direction of the Coriolis component of the
acceleration: h 42.4°. We write

a, = 2Vevpe = 2(4.08 rad/s)(477 mm/s) = 3890 mm/s>

(@p), =618 mm/s2
a, = 3890 mm/s2 a, = 3890 mm/s> h 42.4°

We rewrite Eq. (1) and substitute the accelerations found above:

ap = (ap), + (ap), + ape + a,
[5000 C 30°] = [618 d 42.4°] + [37.1a. F 42.4°]
+ [ape #2 42.4°] + [3890 h 42.4°]

ap/s
\ S 42.4°
A 5000 cos 17.6° = 37.1as — 3890
As = Ac = 233 rad/s’i

(@p)e=37.10% Equating components in a direction perpendicular to the slot,

991
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SOULVINGIEROBLEIVIY
WINBNOURSOVVIN

In this lesson you studied the rate of change of a vector with respect to a rotat-
ing frame and then applied your knowledge to the analysis of the plane motion
of a particle relative to a rotating frame.

1. Rate of change of a vector with respect to a fixed frame and with respect
to a rotating frame. Denoting by (Q)oxyz the rate of change of a vector Q with
respect to a fixed frame OXYZ and by (Q)Oxyz its rate of change with respect to a
rotating frame Oxyz, we obtained the fundamental relation

(Qoxyz = Qloy: + @ X Q (15.31)

where € is the angular velocity of the rotating frame.

This fundamental relation will now be applied to the solution of two-dimensional
problems.

2. Plane motion of a particle relative to a rotating frame. Using the above
fundamental relation and designating by % the rotating frame, we obtained the
following expressions for the velocity and the acceleration of a particle P:

(15.33)
(15.36)

AxpertSoft Trial Version

In these equations:

a. The subscript P refers to the absolute motion of the particle P, that is, to its
motion with respect to a fixed frame of reference OXY.

b. The subscript P’ refers to the motion of the point P’ of the rotating frame
% which coincides with P at the instant considered.

c. The subscript P/% refers to the motion of the particle P relative to the rotat-
ing frame %.

d. The term a, represents the Coriolis acceleration of point P. Its magnitude
is 2Qupg, and its direction is found by rotating vps through 90° in the sense of
rotation of the frame F.

You should keep in mind that the Coriolis acceleration should be taken into
account whenever a part of the mechanism you are analyzing is moving with
respect to another part that is rotating. The problems you will encounter in this
lesson involve collars that slide on rotating rods, booms that extend from cranes
rotating in a vertical plane, etc.

When solving a problem involving a rotating frame, you will find it convenient to
draw vector diagrams representing Eqs. (15.33) and (15.36), respectively, and use
these diagrams to obtain either an analytical or a graphical solution.


http://www.axpertsoft.com/pdf-splitter-software/

PROBLEMS

CONCEPT QUESTION

15.€Q8 A person walks radially inward on a platform that is rotating coun-
terclockwise about its center. Knowing that the platform has a
constant angular velocity V and the person walks with a constant
speed u relative to the platform, what is the direction of the ac-
celeration of the person at the instant shown?

a. Negative x

Negative y

Negative x and positive y
Positive x and positive y

e e T

Negative x and negative y

Overhead View

STy AxpertSoft Trial Version

END-OF-SECTION PROBLEMS

15.150 and 15.151 Pin P is attached to the collar shown; the motion
of the pin is guided by a slot cut in rod BD and by the collar that
slides on rod AE. Knowing that at the instant considered the rods
rotate clockwise with constant angular velocities, determine for the
given data the velocity of pin P.

15.150 v,z = 8 rad/s, Vgp = 3 rad/s
15.151 v, = 7 rad/s, vgp = 4.8 rad/s

Fig. P15.150 and P15.151

15.152 and 15.153 Two rotating rods are connected by slider block P.
The rod attached at A rotates with a constant clockwise angular
velocity V4. For the given data, determine for the position shown
(@) the angular velocity of the rod attached at B, (b) the relative
velocity of slider block P with respect to the rod on which it slides.

15.152 b = 8 in,, v4 = 6 rad/s
15.153 b = 300 mm, v, = 10 rad/s

Fig. P15.152 Fig. P15.153
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Q94 Kinematics of Rigid Bodies 15.154 Pin P is attached to the wheel shown and slides in a slot cut in bar
BD. The wheel rolls to the right without slipping with a constant
angular velocity of 20 rad/s. Knowing that x = 480 mm when u = 0,
determine the angular velocity of the bar and the relative velocity of
pin P with respect to the rod when (¢) u = 0, (b) u = 90°.

} 24 in. |

8l
Fig. P15.154

12in. 15.155 Bar AB rotates clockwise with a constant angular velocity of 8 rad/s

and rod EF rotates clockwise with a constant angular velocity of
6 rad/s. Determine at the instant shown (@) the angular velocity of
bar BD, (b) the relative velocity of collar D with respect to rod EF.

15.156 Bar AB rotates clockwise with a constant angular velocity of 4 rad/s.
Knowing that the magnitude of the velocity of collar D is 20 ft/s
and that the angular velocity of bar BD is counterclockwise at the
instant shown, determine (a) the angular velocity of bar EF,

i i D with respect to rod EF.

Fig. P15.155 and P15.156

by slots cut in rods AD and BE.
stant angular velocity of 4 rad/s
- memeangular velocity of 5 rad/s counter-
clockw1se and is slowmg down at a rate of 2 rad/s?, determine the
velocity of P for the position shown.

15.158 Four pins slide in four separate slots cut in a circular plate as shown.
150 mm [ When the plate is at rest, each pin has a velocity directed as shown
150 mm and of the same constant magnitude u. If each pin maintains the

same velocity relative to the plate when the plate rotates about O
with a constant counterclockwise angular velocity V, determine the
acceleration of each pin.

300 mm ‘I

100 mm
Fig. P15.157

Fig. P15.158

15.159 Solve Prob. 15.158, assuming that the plate rotates about O with
a constant clockwise angular velocity V
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15.160

15.161

15.162

15.163

15.164

15.165

15.166

Pin P slides in the circular slot cut in the plate shown at a constant
relative speed © = 500 mm/s. Assuming that at the instant shown
the angular velocity of the plate is 6 rad/s and is increasing at the
rate of 20 rad/s®, determine the acceleration of pin P when u = 90°.

The cage of a mine elevator moves downward at a constant speed
of 40 ft/s. Determine the magnitude and direction of the Coriolis
acceleration of the cage if the elevator is located (@) at the equator,
(b) at latitude 40° north, (¢) at latitude 40° south.

A rocket sled is tested on a straight track that is built along a merid-
ian. Knowing that the track is located at latitude 40° north, deter-
mine the Coriolis acceleration of the sled when it is moving north
at a speed of 900 km/h.

The motion of blade D is controlled by the robot arm ABC. At the
instant shown the arm is rotating clockwise at the constant rate
v = 1.8 rad/s and the length of portion BC of the arm is being
decreased at the constant rate of 250 mm/s. Determine (a) the
velocity of D, (b) the acceleration of D.

At the instant shown the length of the boom AB is being decreased
at the constant rate of 0.2 m/s and the boom is being lowered at the
constant rate of 0.08 rad/s. Determine () the velocity of point B,
(b) the acceleration of point B.

Fig. P15.164 and P15.165

At the instant shown the length of the boom AB is being increased
at the constant rate of 0.2 m/s and the boom is being lowered at the
constant rate of 0.08 rad/s. Determine (a) the velocity of point B,
(b) the acceleration of point B.

and 15.167 The sleeve BC is welded to an arm that rotates
about A with a constant angular velocity V. In the position shown
rod DF is being moved to the left at a constant speed u = 400 mm/s
relative to the sleeve. For the given angular velocity V, determine
the acceleration (@) of point D, (b) of the point of rod DF that coin-
cides with point E.

15.166 V = (3 rad/s) i

15.167 V = (3 radss) j

Problems 995

<— 150 mm

Fig. P15.160

240 mm

Fig. P15.166 and P15.167
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Q04 Kinematics of Rigid Bodies 15.168 and 15.169 A chain is looped around two gears of radius 40 mm
that can rotate freely with respect to the 320-mm arm AB. The chain
u moves about arm AB in a clockwise direction at the constant rate of
80 mm/s relative to the arm. Knowing that in the position shown
arm AB rotates clockwise about A at the constant rate Vv = 0.75 rad/s,
determine the acceleration of each of the chain links indicated.
15.168 Links 1 and 2
15.169 Links 3 and 4

160 mm ——I—— 160 mm

. 15.170 A basketball player shoots a free throw in such a way that his shoul-
Fig. P15.168 and P15.169

der can be considered a pin joint at the moment of release as shown.
Knowing that at the instant shown the upper arm SE has a constant
angular velocity of 2 rad/s counterclockwise and the forearm EW
has a constant clockwise angular velocity of 4 rad/s with respect to
SE, determine the velocity and acceleration of the wrist W.

£

350 mm
AxpertSoft Trial Version \/

Fig. P15.170

15.171 The human leg can be crudely approximated as two rigid bars (the
femur and the tibia) connected with a pin joint. At the instant
shown, the velocity of the ankle A is zero, the tibia AK has an
angular velocity of 1.5 rad/s counterclockwise and an angular
acceleration of 1 rad/s® counterclockwise. Determine the relative
angular velocity and relative angular acceleration of the femur KH
with respect to AK so that the velocity and acceleration of H are
both straight up at this instant.

15.172 The collar P slides outward at a constant relative speed u along
rod AB, which rotates counterclockwise with a constant angular
velocity of 20 rpm. Knowing that » = 250 mm when u = 0 and
that the collar reaches B when u = 90°, determine the magnitude
of the acceleration of the collar P just as it reaches B.

Fig. P15.171

o

Fig. P15.172
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15.173

15.174

15.175

15.176

15.177

15.178

15.179

Pin P slides in a circular slot cut in the plate shown at a constant
relative speed u = 90 mm/s. Knowing that at the instant shown
the plate rotates clockwise about A at the constant rate v = 3 rad/s,
determine the acceleration of the pin if it is located at (@) point A,
(b) point B, (¢) point C.

Pin P slides in a circular slot cut in the plate shown at a constant
relative speed u = 90 mm/s. Knowing that at the instant shown the
angular velocity V of the plate is 3 rad/s clockwise and is decreasing
at the rate of 5 rad/s?, determine the acceleration of the pin if it is
located at (a) point A, (b) point B, (¢) point C.

Pin P is attached to the wheel shown and slides in a slot cut in
bar BD. The wheel rolls to the right without slipping with a con-
stant angular velocity of 20 rad/s. Knowing that x = 480 mm when
u = 0, determine (@) the angular acceleration of the bar, (b) the
relative acceleration of pin P with respect to the bar when u = 0.

Knowing that at the instant shown the rod attached at A has an
angular velocity of 5 rad/s counterclockwise and an angular accel-
eration of 2 rad/s®> clockwise, determine the angular velocity and
the angular acceleration of the rod attached at B.

200 mm

Fig. P15.176

The Geneva mechanism shown is used to provide an intermittent
rotary motion of disk S. Disk D rotates with a constant counter-
clockwise angular velocity Vp, of 8 rad/s. A pin P is attached to disk
D and can slide in one of the six equally spaced slots cut in disk S.
It is desirable that the angular velocity of disk S be zero as the pin
enters and leaves each of the six slots; this will occur if the distance
between the centers of the disks and the radii of the disks are
related as shown. Determine the angular velocity and angular accel-
eration of disk S at the instant when ¥ = 150°.

In Prob. 15.177, determine the angular velocity and angular accel-
eration of disk S at the instant when £ = 135°.

At the instant shown bar BC has an angular velocity of 3 rad/s and
an angular acceleration of 2 rad/s?, both counterclockwise; deter-
mine the angular acceleration of the plate.

15.180 At the instant shown bar BC has an angular velocity of 3 rad/s and

an angular acceleration of 2 rad/s?, both clockwise; determine the
angular acceleration of the plate.

Problems 997

Fig. P15.177

S 6

b
L@D

Rp = 1.25 in.

Disk D
when ¢ = 120°

0) C

6in.

|<—4in.

Fig. P15.179 and P15.180
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Q08 Kinematics of Rigid Bodies

6in.

>

Fig. P15.181

Fig. 15.31

OA2

(@)

(b)

*15.181 Rod AB passes through a collar which is welded to link DE. Know-
ing that at the instant shown block A moves to the right at a con-
stant speed of 75 in./s, determine (a) the angular velocity of rod AB,
(b) the velocity relative to the collar of the point of the rod in con-
tact with the collar, (¢) the acceleration of the point of the rod in
contact with the collar. (Hint: Rod AB and link DE have the same
V and the same A)

*15.182 Solve Prob. 15.181 assuming block A moves to the left at a constant
speed of 75 in./s.

*15.183 In Prob. 15.157, determine the acceleration of pin P.

*15.12 MOTION ABOUT A FIXED POINT

In Sec. 15.3 the motion of a rigid body constrained to rotate about
a fixed axis was considered. The more general case of the motion of
a rigid body which has a fixed point O will now be examined.

First, it will be proved that the most general displacement of a
rigid body with a fixed point O is equivalent to a rotation of the body
about an axis thmugh O.1 Instead of considering the rigid body

3 3 cpter O from the body and analyze
e motion of the sphere com-
given body. Since three points
, the center O and two points
B on the surface of the sphere will define the position of the
sphere and thus the position of the body. Let A; and B, characterize
the position of the sphere at one instant, and let A, and B, character-
ize its position at a later instant (Fig. 15.31a). Since the sphere is
rigid, the lengths of the arcs of great circle A;B; and AyB,; must be
equal, but except for this requirement, the positions of A}, Ay, B,
and B, are arbitrary. We propose to prove that the points A and B
can be brought, respectively, from A; and B, into A, and B; by a
single rotation of the sphere about an axis.

For convenience, and without loss of generality, we select point B
so that its initial position coincides with the final position of A; thus,
By = A, (Fig. 15.31b). We draw the arcs of great circle AjAy, A3B,
and the arcs bisecting, respectively, AjA; and AyB,. Let C be the
point of intersection of these last two arcs; we complete the construc-
tion by drawing A;C, A,C, and B,C. As pointed out above, because
of the rigidity of the sphere, A;B; = A;B,. Since C is by construction
equidistant from A, Ay, and B, we also have A|C = A,C = B,C.
As a result, the spherical triangles A;CAy and B,CB; are congruent
and the angles A;CA, and B,CB; are equal. Denoting by u the com-
mon value of these angles, we conclude that the sphere can be brought
from its initial position into its final position by a single rotation
through u about the axis OC.

1This is known as Euler’s theorem.
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It follows that the motion during a time interval At of a rigid 15.12 Motion About a Fixed Point  QQOQ
body with a fixed point O can be considered as a rotation through
Au about a certain axis. Drawing along that axis a vector of magni-
tude AwAt and letting At approach zero, we obtain at the limit the
instantaneous axis of rotation and the angular velocity V of the body
at the instant considered (Fig. 15.32). The velocity of a particle P of
the body can then be obtained, as in Sec. 15.3, by forming the vector a
product of V and of the position vector r of the particle: P

v=—=VXr (15.37)
Fig. 15.32

The acceleration of the particle is obtained by differentiating (15.37)
with respect to ¢. As in Sec. 15.3 we have

a=AXr+Vx((\VXr) (15.38)

where the angular acceleration A is defined as the derivative

of the angular velocity V.
In the case of the motion o a T1g1d Dody
direction of V and of the instantaneous axis of rotatlon changes from
one instant to the next. The angular acceleration A therefore reflects
the change in direction of V as well as its change in magnitude and,
in general, is not directed along the instantaneous axis of rotation.
While the particles of the body located on the instantaneous axis of
rotation have zero velocity at the instant considered, they do not have
zero acceleration. Also, the accelerations of the various particles of
the body cannot be determined as if the body were rotating perma-
nently about the instantaneous axis.
Recalling the definition of the velocity of a particle with posi-
tion vector r, we note that the angular acceleration A, as expressed
n (15.39), represents the velocity of the tip of the vector V. This S o
) o pace cone
property may be useful in the determination of the angular accelera-
tion of a rigid body. For example, it follows that the vector A is
tangent to the curve described in space by the tip of the vector V.
We should note that the vector V moves within the body, as
well as in space. It thus generates two cones called, respectively, the o
body cone and the space cone (Fig. 15.33).1 It can be shown that at
any given instant, the two cones are tangent along the instantaneous
axis of rotation and that as the body moves, the body cone appears ~ ©
to roll on the space cone. Fig. 15.33

Body cone

1t is recalled that a cone is, by definition, a surface generated by a straight line passing
through a fixed point. In general, the cones considered here will not be circular cones.
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1000 Kinematics of Rigid Bodies Before concluding our analysis of the motion of a rigid body
with a fixed point, we should prove that angular velocities are actually
vectors. As indicated in Sec. 2.3, some quantities, such as the finite
rotations of a rigid body, have magnitude and direction but do not
obey the parallelogram law of addition; these quantities cannot be
considered as vectors. In contrast, angular velocities (and also infini-
tesimal rotations), as will be demonstrated presently, do obey the
parallelogram law and thus are truly vector quantities.

: . = @, /
Photo 15.8 When the ladder rotates about its
fixed base, its angular velocity can be obtained
by adding the angular velocities which correspond
to simultaneous rotations about two different axes.
—B
o @

@ (b)

he axes OA and OB with angu-
e know that this motion must
to a single rotation of angular

velocity V. We propose to show that
V =V, +V, (15.40)

i.e., that the resulting angular velocity can be obtained by adding V,
and V;, by the parallelogram law (Fig. 15.34b).

Consider a particle P of the body, defined by the position vector
r. Denoting, respectively, by v, vy, and v the velocity of P when the
body rotates about OA only, about OB only, and about both axes
simultaneously, we write

v=VXr vi=V, Xr vo =V, Xr (15.41)

But the vectorial character of linear velocities is well established
(since they represent the derivatives of position vectors). We there-
fore have

V=v t vy

where the plus sign indicates vector addition. Substituting from
(15.41), we write

VXI'=V1XI‘+V2XI‘
Vxr=VM +V,)Xr

where the plus sign still indicates vector addition. Since the relation
obtained holds for an arbitrary r, we conclude that (15.40) must be
true.
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*15.13 GENERAL MOTION

The most general motion of a rigid body in space will now be con-
sidered. Let A and B be two particles of the body. We recall from
Sec. 11.12 that the velocity of B with respect to the fixed frame of
reference OXYZ can be expressed as

VB = V4 + VB/A (15.42)

where vy, is the velocity of B relative to a frame AX'Y'Z’ attached
to A and of fixed orientation (Fig. 15.35). Since A is fixed in this
frame, the motion of the body relative to AX'Y'Z’ is the motion of a
body with a fixed point. The relative velocity vy, can therefore be
obtained from (15.37) after r has been replaced by the position vector
rp, of B relative to A. Substituting for v, into (15.42), we write

VB = Vu + v X /A (15.43)

where V is the angular velocity of the body at the instant considered.
The acceleration of B is obtained by a similar reasoning. We
first write

ag = a, + ag,

and, recalling Eq. (15.38),
ag = ay, + A X

where A is the angular acceleration of the body at the instant
considered.

Equations (15.43) and (15.44) show that the most general
motion of a rigid body is equivalent, at any given instant, to the sum
of a translation, in which all the particles of the body have the same
velocity and acceleration as a reference particle A, and of a motion
in which particle A is assumed to be fixed.}

It is easily shown, by solving (15.43) and (15.44) for v, and a,,
that the motion of the body with respect to a frame attached to B
would be characterized by the same vectors V and A as its motion
relative to AX'Y'Z’. The angular velocity and angular acceleration of
a rigid body at a given instant are thus independent of the choice of
reference point. On the other hand, one should keep in mind that
whether the moving frame is attached to A or to B, it should maintain
a fixed orientation; that is, it should remain parallel to the fixed refer-
ence frame OXYZ throughout the motion of the rigid body. In many
problems it will be more convenient to use a moving frame which is
allowed to rotate as well as to translate. The use of such moving
frames will be discussed in Secs. 15.14 and 15.15.

1t is recalled from Sec. 15.12 that, in general, the vectors V and A are not collinear,
and that the accelerations of the particles of the body in their motion relative to the
frame AX'Y'Z’" cannot be determined as if the body were rotating permanently about
the instantaneous axis through A.

AxpertSoft Trial Version

15.13 General Motion

1001

Fig. 15.35
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SAMPLE PROBLEM 15.11

The crane shown rotates with a constant angular velocity V; of 0.30 rad/s.
Simultaneously, the boom is being raised with a constant angular velocity
V, of 0.50 rad/s relative to the cab. Knowing that the length of the boom
OP is | = 12 m, determine (a) the angular velocity V of the boom, (b) the
angular acceleration A of the boom, (c) the velocity v of the tip of the boom,
(d) the acceleration a of the tip of the boom.

SOLUTION

a. Angular Velocity of Boom. Adding the angular velocity V; of the cab
and the angular velocity V, of the boom relative to the cab, we obtain the
angular velocity V of the boom at the instant considered:

V=V, +V, V = (0.30 rad/s)j + (0.50 rad/s)k

b. Angular Acceleration of Boom. The angular acceleration A of the
boom is obtained by differentiating V. Since the vector V| is constant in
magnitude and direction, we have

yuted with respect to the fixed
to use a frame Oxyz attached
or V, also rotates with the cab
_ Espect to that frame. Using Eq.
(15.31) with Q = V, and @ = V,, we write

(Q)OXYZ = (Q)Ory: + Q X Q
Vao)oxrz = (Va)og: + V1 X V,
A = (V3)oxyz = 0 + (0.30 rad/s)j X (0.50 rad/s)k

AxpertSoft Trial Version

A = (0.15 rad/s)i

c. Velocity of Tip of Boom. Noting that the position vector of point P is
r = (10.39 m)i + (6 m)j and using the expression found for V in part a,
we write

i j k
v=VXr= 0 0.30 rad/s  0.50 rad/s
10.39 m 6 m 0

v=—(3m/s)i + (5.20 m/s)j — (3.12 m/s)k

d. Acceleration of Tip of Boom. Recalling that v =V X r, we write

)a)2=0.50k a=AXr+VX\VXr=AXr+VXyv

i j k i k
015 0 O +| 0 030 050
1039 6 0| [-3 520 -3.12

0.90k — 0.94i — 2.60i — 1.50j + 0.90k
a = —(3.54 m/s)i — (1.50 m/s?)j + (1.80 m/s>)k

®
Il
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3in.

SAMPLE PROBLEM 15.12

The rod AB, of length 7 in., is attached to the disk by a ball-and-socket
connection and to the collar B by a clevis. The disk rotates in the yz plane
at a constant rate V; = 12 rad/s, while the collar is free to slide along the
horizontal rod CD. For the position u = 0, determine (a) the velocity of the
collar, (b) the angular velocity of the rod.

SOLUTION

y a. Velocity of Collar.  Since point A is attached to the disk and since collar
Dfir B moves in a direction parallel to the x axis, we have
VA=V1XrA=12i><2k=—24j VB:UBi
Denoting by V the angular velocity of the rod, we write
(e} = VB=VA+VB/A=VA+erB/A
i j k
opi = —24j + |V, V, V.
6 3 -2
z Va
o, =12i (6v. + 2v,)j + (3v, — 6v, )k
e AxpertSoft Trial Version Sy
5=
rgs = 6i +3j — 2k 2v, —3Vv. 1)
24 = 2v, +6V. 2)
0 =3v, -6y, 3)
Multiplying Egs. (1), (2), (3), respectively, by 6, 3, —2 and adding, we write
6vg + 72 =0 vg = —12 vy = —(12 in./s)i

b. Angular Velocity of Rod AB. We note that the angular velocity cannot
be determined from Egs. (1), (2), and (3), since the determinant formed by
the coefficients of v,, v,, and V. is zero. We must therefore obtain an addi-
tional equation by considering the constraint imposed by the clevis at B.
The collar-clevis connection at B permits rotation of AB about the rod

CD and also about an axis perpendicular to the plane containing AB and

reg=-3j + 2K

CD. It prevents rotation of AB about the axis EB, which is perpendicular
to CD and lies in the plane containing AB and CD. Thus the projection of
V on rpp must be zero and we writet

V - TYpp — 0 (Vti + Vyj + Vzk) . (_Sj + 21() =0

—3v, +2v. =0 4)

Solving Eqs. (1) through (4) simultaneously, we obtain

vp=—12 Vv, =369 v, =1846 Vv.=277

V = (3.69 rad/s)i + (1.846 rad/s)j + (2.77 rad/s)k

tWe could also note that the direction of EB is that of the vector triple product rp X
(rge X rp4) and write V - [rgo X (rge X rgu)] = 0. This formulation would be
particularly useful if the rod CD were skew.

1003
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SOULVINGIEROBLEIVIY
WINBNOURSOVVIN

In this lesson you started the study of the kinematics of rigid bodies in three
dimensions. You first studied the motion of a rigid body about a fixed point and
then the general motion of a rigid body.

A. Motion of a rigid body about a fixed point. To analyze the motion of a
oint B of a body rotating about a fixed point O you may have to take some or all
of the following steps.

1. Determine the position vector r connecting the fixed point O to point B.

2. Determine the angular velocity V of the body with respect to a fixed frame
of reference. The angular velocity V will often be obtained by adding two com-
ponent angular velocities V; and V, [Sample Prob. 15.11].
3. Compute the velocity of B by using the equation

v=VXr (15.37)

Your computation will usually be facilitated if you express the vector product as a
determinant.

4. Determine the a AxpertSOft Trial Version lar acceleration
A represents the rat kpect to a fixed

frame of reference OXYZ and rellects both a change tn magnitude and a change
in direction of the angular velocity. However, when computing A you may find it
convenient to first compute the rate of change (V)o,,. of V with respect to a rotat-
ing frame of reference Oxyz of your choice and use Eq. (15.31) of the preceding
lesson to obtain A. You will write

A= NVoxz = V)oy: + @ XV
where € is the angular velocity of the rotating frame Oxyz [Sample Prob. 15.11].

5. Compute the acceleration of B by using the equation
a=AXr+VXxX(VXr (15.38)

Note that the vector product (V X r) represents the velocity of point B and was
computed in step 3. Also, the computation of the first vector product in (15.38)
will be facilitated if you express this product in determinant form. Remember that,
as was the case with the plane motion of a rigid body, the instantaneous axis of
rotation cannot be used to determine accelerations.
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B. General motion of a rigid body. The general motion of a rigid body may be
considered as the sum of a translation and a rotation. Keep the following in mind:
a. In the translation part of the motion, all the points of the body have the
same velocity v, and the same acceleration a, as the point A of the body that has
been selected as the reference point.
b. In the rotation part of the motion, the same reference point A is assumed
to be a fixed point.

1. To determine the velocity of a point B of the rigid body when you know the
velocity v, of the reference point A and the angular velocity V of the body, you
simply add v, to the velocity vz4 = V X rg, of B in its rotation about A:

Vp = Vu +V X Ip/A (15.43)

As indicated earlier, the computation of the vector product will usually be facili-
tated if you express this product in determinant form.

Equation (15.43) can also be used to determine the magnitude of vz when its
direction is known, even if V is not known. While the corresponding three scalar
equations are |ipasisadonsndan padathensanananianal V' are indeterminate,
these compone . . using an appropriate
linear com};aina AXpertSOﬁ Trial Version 112, f))art a%).pAltIo)srna-
tively, you can X nents of V and solve
the equations for v4. However, an additional equation must be sought in order to
determine the true values of the components of V [Sample Prob. 15.12, part b].

2. To determine the acceleration of a point B of the rigid body when you know
the acceleration a, of the reference point A and the angular acceleration A of the
body, you simply add a, to the acceleration of B in its rotation about A, as expressed

by Eq. (15.38):
ag — Ay + A X /A +V X (V X rB/A) (15.44)

Note that the vector product (V X rg,) represents the velocity vz, of B relative
to A and may already have been computed as part of your calculation of vz. We
also remind you that the computation of the other two vector products will be
facilitated if you express these products in determinant form.

The three scalar equations associated with Eq. (15.44) can also be used to deter-
mine the magnitude of ag when its direction is known, even if V and A are not
known. While the components of V and A are indeterminate, you can assign arbi-
trary values to one of the components of V and to one of the components of A
and solve the equations for ag.

1005
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PROBLEMS

y END-OF-SECTION PROBLEMS

15.184 At the instant considered the radar antenna shown rotates about
the origin of coordinates with an angular velocity V = v,i +
v,jt v k. Knowing that (DA)y = 300 mm/s, (UB)y = 180 mm/s,
and (vp), = 360 mm/s, determine (a) the angular velocity of the
antenna, (b) the velocity of point A.

15.185 At the instant considered the radar antenna shown rotates about
the origin of coordinates with an angular velocity V = v,i +
v,j+ v k. Knowing that (vy), = 100 mm/s, (UA)y = —90 mm/s,
and (vg), = 120 mm/s, determine (@) the angular velocity of the

antenna, (b) the velocity of point A.

15.186 Plate ABD and rod OB are rigidly connected and rotate about the
Fig. P15.184 and P15.185 ball-and-socket joint O with an angular velocity V = v,i + v,j +
v.k. Knowing that v4 = (80 mm/s)i + (360 mm/s)j + (vs).k and
V, = 1.5 rad/s, determine (a) the angular velocity of the assembly,
(b) the velocity of point D.

N

Yy

A >’
D
O
120 =
Fig. P15.186 z

15.187 The bowling ball shown rolls without slipping on the horizontal xz
plane with an angular velocity @ = V.i + v,j + v.k. Knowing that
v, = (14.4 ft/s)i — (14.4 ft/s)j + (10.8 ft/s)k and v, = (28.8 ft/s)i +
(21.6 ft/s)k, determine (a) the angular velocity of the bowling ball,
(b) the velocity of its center C.

4

Fig. P15.187

1006
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15.188 The rotor of an electric motor rotates at the constant rate v, = Problems 1007
1800 rpm. Determine the angular acceleration of the rotor as the
motor is rotated about the y axis with a constant angular velocity V,
of 6 rpm counterclockwise when viewed from the positive y axis.

15.189 The disk of a portable sander rotates at the constant rate v, =
4400 rpm as shown. Determine the angular acceleration of the
disk as a worker rotates the sander about the z axis with an angular
velocity of 0.5 rad/s and an angular acceleration of 2.5 rad/s>, both
clockwise when viewed from the positive z axis.

Fig. P15.188

@,

z

Fig. P15.189

15.190 Knowing that the turbi AxpertSOft Tria| Version
Vi = 9000 rpm, determ

the turbine housing has a COtrstart airgara
wise as viewed from (a) the positive y axis,

VO T Idll OCR

the positive z axis.

)

Fig. P15.190

15.191 In the system shown, disk A is free to rotate about the horizontal rod
OA. Assuming that disk B is stationary (v = 0), and that shaft OC
rotates with a constant angular velocity V,, determine () the angular
velocity of disk A, (b) the angular acceleration of disk A.

15.192 In the system shown, disk A is free to rotate about the horizontal
rod OA. Assuming that shaft OC and disk B rotate with constant
angular velocities V| and V,, respectively, both counterclockwise,
determine (@) the angular velocity of disk A, (b) the angular accel-
eration of disk A. Fig. P15.191 and P15.192
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1008 Kinematics of Rigid Bodies

Fig. P15.193

15.193 The L-shaped arm BCD rotates about the z axis with a constant
angular velocity v; = 5 rad/s. Knowing that the 150-mm-radius disk
rotates about BC with a constant angular velocity V, = 4 rad/s, deter-
mine (a) the velocity of point A, (b) the acceleration of point A.

15.194 A gun barrel of length OP = 4 m is mounted on a turret as shown.
To keep the gun aimed at a moving target the azimuth angle b is
being increased at the rate db/dt = 30%s and the elevation angle
g is being increased at the rate dg/d¢ = 10%s. For the position b =
90° and g = 30°, determine (a) the angular velocity of the barrel,
(b) the angular acceleration of the barrel, (¢) the velocity and accel-
eration of point P.

Fig. P15.194

AxpertSoft Trial Version

onstant rate Vo, = 4 rad/s about
- ed to a horizontal rod that rotates
at the constant rate v, = 5 rad/s. For the position shown, deter-
mine (a) the angular acceleration of the disk, (b) the acceleration
of point P on the rim of the disk if u = 0, (¢) the acceleration of
point P on the rim of the disk if u = 90°.

z X
Fig. P15.195 and P15.196

15.196 A 3-in.-radius disk spins at the constant rate Vo = 4 rad/s about
an axis held by a housing attached to a horizontal rod that rotates
at the constant rate v; = 5 rad/s. Knowing that u = 30°, determine
the acceleration of point P on the rim of the disk.
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15.197 A 30-mm-radius wheel is mounted on an axle OB of length Problems 1009
100 mm. The wheel rolls without sliding on the horizontal floor,
and the axle is perpendicular to the plane of the wheel. Knowing y
that the system rotates about the y axis at a constant rate v, =
2.4 rad/s, determine (@) the angular velocity of the wheel, (b) the
angular acceleration of the wheel, (c) the acceleration of point C
located at the highest point on the rim of the wheel.

15.198 At the instant shown, the robotic arm ABC is being rotated simul-
taneously at the constant rate v; = 0.15 rad/s about the y axis, and
at the constant rate v, = 0.25 rad/s about the z axis. Knowing that
the length of arm ABC is 1 m, determine (a) the angular accelera-
tion of the arm, (b) the velocity of point C, (c) the acceleration of
point C.

Yy

Fig. P15.197

35°

z(/sz

Fig. P15.198

AxpertSoft Trial Version
15.199 In the planetary gear sys

nected to each other and Totate as a unit about the mclined shait.
Gears C and D rotate with constant angular velocities of 30 rad/s
and 20 rad/s, respectively (both counterclockwise when viewed from
the right). Choosing the x axis to the right, the y axis upward, and
the z axis pointing out of the plane of the figure, determine (a) the
common angular velocity of gears A and B, (b) the angular velocity
of shaft FH, which is rigidly attached to the inclined shaft.

P

80 mm ' 80 mm
Fig. P15.199
15.200 In Prob. 15.199, determine (a) the common angular acceleration

of gears A and B, (b) the acceleration of the tooth of gear A which
is in contact with gear C at point L.
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1010 Kinematics of Rigid Bodies 15.201 Several rods are brazed together to form the robotic guide arm

shown which is attached to a ball-and-socket joint at O. Rod OA
slides in a straight inclined slot while rod OB slides in a slot parallel
to the z axis. Knowing that at the instant shown vz = (9 in./s)k,
determine (a) the angular velocity of the guide arm, (b) the velocity
of point A, (c) the velocity of point C.

y’\S

in.
;F\
E 12 in.
c

> 2in. 4 in.

[ &
5

>/
./

10 in.

A
-

{

Fig. P15.201

20in 15.202 In Prob. 15.201, the speed of point B is known to be constant. For
== o) the angular acceleration of the

. . bt point C.
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ected by ball-and-socket joints to

collars A and B, which slide along the two rods shown. Knowing

that collar B moves toward point E at a constant speed of 20 in./s,

determine the velocity of collar A as collar B passes through point D.

15.204 Rod AB, of length 11 in., is connected by ball-and-socket joints to
collars A and B, which slide along the two rods shown. Knowing
that collar B moves downward at a constant speed of 54 in./s,
determine the velocity of collar A when ¢ = 2 in.

Fig. P15.203

Fig. P15.204
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15.205 Rod BC and BD are each 840 mm long and are connected by ball-
and-socket joints to collars which may slide on the fixed rods shown.
Knowing that collar B moves toward A at a constant speed of 390 mm/s,
determine the velocity of collar C for the position shown.

Yy

—

320 mm

320 mm

Fig. P15.205

15.206 Rod AB is connected by ball-and-socket joints to collar A
and to the 16-in.-diameter disk C. Knowing that disk C rotates
counterclockwise at the constant rate vV, = 3 rad/s in the zx
plane, determine the velocity of collar A for the position shown.

15.207 Rod AB of length 29 in
the rotating crank BC a
8 in. and rotates in the oot — — -
Vo = 10 rad/s. At the instant shown, when crank BC is parallel
to the z axis, determine the velocity of collar A.

N

Fig. P15.207
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Fig. P15.206

Problems

1011
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1012 Kinematics of Rigid Bodies

y

Fig. P15.208 and P15.209

Fig. P15.212

Fig. P15.213

15.208 Rod AB of length 300 mm is connected by ball-and-socket joints
to collars A and B, which slide along the two rods shown. Know-
ing that collar B moves toward point D at a constant speed of
50 mm/s, determine the velocity of collar A when ¢ = 80 mm.

15.209 Rod AB of length 300 mm is connected by ball-and-socket joints
to collars A and B, which slide along the two rods shown. Know-
ing that collar B moves toward point D at a constant speed of
50 mm/s, determine the velocity of collar A when ¢ = 120 mm.

15.210 Two shafts AC and EG, which lie in the vertical yz plane, are con-
nected by a universal joint at D. Shaft AC rotates with a constant
angular velocity V, as shown. At a time when the arm of the

crosspiece attached to shaft AC is vertical, determine the angular
velocity of shaft EG.

Fig. P15.210

15.211 Solve Prob. 15.210, assuming that the arm of the crosspiece
attached to shaft AC is horizontal.

15.212 In Prob. 15.206, the ball-and-socket joint between the rod and
collar A is replaced by the clevis shown. Determine (a) the angular
velocity of the rod, (b) the velocity of collar A.

15.213 In Prob. 15.205, the ball-and-socket joint between the rod and
collar C is replaced by the clevis connection shown. Determine
(a) the angular velocity of the rod, (b) the velocity of collar C.

15.214 In Prob. 15.204, determine the acceleration of collar A when ¢ = 2 in.

*15.215 In Prob. 15.205, determine the acceleration of collar C.

15.216 In Prob. 15.206, determine the acceleration of collar A.

15.217 In Prob. 15.207, determine the acceleration of collar A.

15.218 In Prob. 15.208, determine the acceleration of collar A.

15.219 In Prob. 15.209, determine the acceleration of collar A.
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* -| 5]4 THREE'D'MENS'ONAL MOT'ON OF A 15.14  ThreeDimensional Motion of a Particle

Relative fo a Rotating Frame. Coriolis

PARTICLE RELATIVE TO A ROTATING FRAME. Acceleration
CORIOLIS ACCELERATION

We saw in Sec. 15.10 that given a vector function Q(¢) and two
frames of reference centered at O—a fixed frame OXYZ and a rotat-
ing frame Oxyz—the rates of change of Q with respect to the two
frames satisfy the relation

Qoxrz = Qloy: + @ X Q (15.31)

We had assumed at the time that the frame Oxyz was constrained
to rotate about a fixed axis OA. However, the derivation given in
Sec. 15.10 remains valid when the frame Oxyz is constrained only to
have a fixed point O. Under this more general assumption, the axis
OA represents the instantaneous axis of rotation of the frame Oxyz
(Sec. 15.12) and the vector £, its angular velocity at the instant
considered (Fig. 15.36).

Let us now consider the three-dimensional motion of a particle P
relative to a rotating frame Oxyz constrained to have a fixed origin O.
Let r be the position vector of P at a given instant and € be the v
angular velocity of the frame Oxyz with respect to the fixed frame
OXYZ at the same instant (Fig. 15.37). The derivations given in Sec.
15.11 for the two-dimensional motion of a particle can be readily

extended to the three-dimensional case, and the absolute veloci Q P X
of P (i.e., its velocity with resy r

expressed as AxpertSoft Trial Version o

Fig. 15.36

Vp = Q Xr+ <I..>Oxyz (15.45)

z

Z
Denoting by & the rotating frame Oxyz, we write this relation in the Fig. 15.37
alternative form

Vp = Vpr + Vp/5 (15.46)
where vy, = absolute velocity of particle P
vp = velocity of point P’ of moving frame & coinciding

with P
vpz = velocity of P relative to moving frame %

The absolute acceleration ap of P can be expressed as

ap=Q X1+ QX(QX1)+20 X oy + Foye  (15.47)

An alternative form is

ap = ap’ A ap/5 F a, (].5.48)

1013
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1014 Kinematics of Rigid Bodies

where ap = absolute acceleration of particle P
ap = acceleration of point P’ of moving frame & coinciding
with P
apg = acceleration of P relative to moving frame &
a. = 200 X (Foy: = 2Q X vpg
= complementary, or Coriolis, accelerationt

We note that the Coriolis acceleration is perpendicular to the vectors
Q and vp5. However, since these vectors are usually not perpendicu-
lar to each other, the magnitude of a, is in general not equal to
2Qwp,5, as was the case for the plane motion of a particle. We further
note that the Coriolis acceleration reduces to zero when the vectors
Q and vpg are parallel, or when either of them is zero.

Rotating frames of reference are particularly useful in the study
of the three-dimensional motion of rigid bodies. If a rigid body has
a fixed point O, as was the case for the crane of Sample Prob. 15.11,
we can use a frame Oxyz which is neither fixed nor rigidly attached
to the rigid body. Denoting by € the angular velocity of the frame
Oxyz, we then resolve the angular velocity V of the body into the
components € and Vg, where the second component represents
the angular velocity of the body relative to the frame Oxyz (see
Sample Prob. 15.14). An appropriate choice of the rotating frame
often leads to a simpler analysis of the motion of the rigid body than
would be possible with axes of fixed orientation. This is especially
true in the case of the general three-dimensional motion of a rigid
onsideration has no fixed point

AxpertSoft Trial Version

*15.15 FRAME OF REFERENCE IN GENERAL MOTION

Consider a fixed frame of reference OXYZ and a frame Axyz which
moves in a known, but arbitrary, fashion with respect to OXYZ (Fig.
15.38). Let P be a particle moving in space. The position of P is
defined at any instant by the vector rp in the fixed frame, and by the
vector rp, in the moving frame. Denoting by r, the position vector
of A in the fixed frame, we have

Tp = Ty + TpA (15.49)
The absolute velocity vy of the particle is obtained by writing
Vp = Tp =1yt Ipy (15.50)

where the derivatives are defined with respect to the fixed frame
OXYZ. The first term in the right-hand member of (15.50) thus rep-
resents the velocity v, of the origin A of the moving axes. On the
other hand, since the rate of change of a vector is the same with
respect to a fixed frame and with respect to a frame in translation
(Sec. 11.10), the second term can be regarded as the velocity vp,, of

It is important to note the difference between Eq. (15.48) and Eq. (15.21) of Sec. 15.8.
See the footnote on page 988.
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P relative to the frame AX'Y'Z’ of the same orientation as OXYZ and 1515 Frame of Reference in General Motion 1015
the same origin as Axyz. We therefore have

Vp = Vyu + Vp/A (1551)

But the velocity vp,4 of P relative to AX'Y'Z’" can be obtained from
(15.45) by substituting rp, for r in that equation. We write

Vp = Vi + O X 1o + Opa)any: (15.52)

where  is the angular velocity of the frame Axyz at the instant
considered.

The absolute acceleration ap of the particle is obtained by dif-
ferentiating (15.51) and writing

ap = ‘./'P = ‘.,A + ‘.7P/A (15.53)

where the derivatives are defined with respect to either of the frames
OXYZ or AX'Y'Z’. Thus, the first term in the right-hand member of
(15.53) represents the acceleration a, of the origin A of the moving
axes and the second term represents the acceleration ap, of P rela-
tive to the frame AX'Y’Z’. This acceleration can be obtained from
(15.47) by substituting rp,, for r. We therefore write

Formulas (15.52) and (15.54) make it possible to determine the
velocity and acceleration of a given particle with respect to a fixed
frame of reference, when the motion of the particle is known with
respect to a moving frame. These formulas become more significant,
and considerably easier to remember, if we note that the sum of the
first two terms in (15.52) represents the velocity of the point P" of
the moving frame which coincides with P at the instant considered,
and that the sum of the first three terms in (15.54) represents the
acceleration of the same point. Thus, the relations (15.46) and (15.48)
of the preceding section are still valid in the case of a reference
frame in general motion, and we can write

Photo 15.9 The motion of air particles in a
hurricane can be considered as motion relative
Vp = Vp + Vpg (15.46) to a frame of reference attached to the Earth and

ap + apg + a, (15.48) rotating with it.

ap

where the various vectors involved have been defined in Sec. 15.14.

It should be noted that if the moving reference frame & (or
Axyz) is in translation, the velocity and acceleration of the point P’
of the frame which coincides with P become, respectively, equal to
the velocity and acceleration of the origin A of the frame. On the
other hand, since the frame maintains a fixed orientation, a, is zero,
and the relations (15.46) and (15.48) reduce, respectively, to the rela-
tions (11.33) and (11.34) derived in Sec. 11.12.
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8in.
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>

‘Q (=20 rad/s);j

lg (=200 rad/s2);j

SAMPLE PROBLEM 15.13

The bent rod OAB rotates about the vertical OB. At the instant considered,
its angular velocity and angular acceleration are, respectively, 20 rad/s and
200 rad/s?, both clockwise when viewed from the positive Y axis. The collar
D moves along the rod, and at the instant considered, OD = 8 in. The
velocity and acceleratlon of the collar relative to the rod are, respectively,
50 in./s and 600 in./s>, both upward. Determine (a) the velocity of the collar,
(b) the acceleration of the collar.

SOLUTION

Frames of Reference. The frame OXYZ is fixed. We attach the rotating
frame Oxyz to the bent rod. Its angular velocity and angular acceleration

=20 rad/s)j and = (—200 rad/s%)j,

AxpertSoft Trial Version — [/eumseus

by D" the point of the rod which coincides with

D and by & the rotating frame Oxyz, we write from Eq. (15.46)

Vp = Vpr + Vg 1)
where

vp = @ X r = (=20 rad/s)j X [(4 in.)i + (6.93 in.)j] = (80 in./s)k
Vo = (50 in./s)(sin 30°i + cos 30%) = (25 in/s)i + (43.3 in./s)j
Substituting the values obtained for vy and vp,g into (1), we find
vp = (25 in/s)i + (43.3 in/s)j + (80 in./s)k
b. Acceleration ap. From Eq. (15.48) we write
ap = ap + apg + a, (2)
where
ap = QXr-I—QX(QXr)
= (=200 rad/s® )Jj X [(4in)i + (6.93 in.)j] — (20 rad/s)j X (80 in/s)k
+(800 in/sHk — (1600 in./s>)i
apg = (600 in./s*)(sin 30° + cos 30%) = (300 in./s”)i + (520 in./s%)j

a, = 20 X vpg
= 9(—20 rad/s)j X [(25 in/s)i + (43.3 in/s)j] = (1000 in/s)k

Substituting the values obtained for ap/, apg, and a, into (2),

ap = —(1300 in/s?)i + (520 in./s>)j + (1800 in./s*)k
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SAMPLE PROBLEM 15.14

The crane shown rotates with a constant angular velocity V; of 0.30 rad/s.
Simultaneously, the boom is being raised with a constant angular velocity
V; of 0.50 rad/s relative to the cab. Knowing that the length of the boom

X OP is | = 12 m, determine (a) the velocity of the tip of the boom, (b) the
acceleration of the tip of the boom.

SOLUTION

Y Frames of Reference. The frame OXYZ is fixed. We attach the rotating
frame Oxyz to the cab. Tts angular velocity with respect to the frame OXYZ

10.39 m | is therefore & = V; = (0.30 rad/s)j. The angular velocity of the boom
| relative to the cab and the rotating frame Oxyz (or &, for short) is Vg5 =

Vy = (0.50 rad/s)k.
a. Velocity vp. From Eq. (15.46) we write

y
Q= @, =0.30j

Vp = vp t Vpg 1)

p——

= X where vp is the velocity of the point P’ of the rotating frame which coincides
a2+ D

/z
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Jtive to the rotating frame Oxyz. But
the angular velocity of the boom relative to Oxyz was found to be Vg5 =
(0.50 rad/s)k. The velocity of its tip P relative to Oxyz is therefore

veg = Vg X r = (0.50 rad/s)k x [(10.39 m)i + (6 m)j]
—(3 m/s)i + (5.20 m/s)j

Substituting the values obtained for vy and vy into (1), we find
vp = —(3 m/s)i + (5.20 m/s)j — (3.12 m/s)k
b. Acceleration ap. From Eq. (15.48) we write
ap = ap t apy t a, (2)
Since Q and Vg4 are both constant, we have
ap = O X (Q xr) = (030 rad/s)j X (—=3.12 m/s)k = —(0.94 m/sz)i
apg = Vg X (Vg X 1)
(0.50 rad/s)k X [—(3 m/s)i + (5.20 m/s)j]
—(1.50 m/s)j — (2.60 m/s2)i

a, = 20 X vpg
= 2(0.30 rad/s)j X [—(3 m/s)i + (5.20 m/s)j] = (1.80 m/s*)k

Substituting for ap, apg, and a, into (2), we find

ap = —(3.54 m/s7)i — (1.50 m/s”)j + (1.80 m/s*)k

1017
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SAMPLE PROBLEM 15.15

Disk D, of radius R, is pinned to end A of the arm OA of length L located
in the plane of the disk. The arm rotates about a vertical axis through O at
the constant rate v,, and the disk rotates about A at the constant rate V.
Determine (a) the velocity of point P located directly above A, (b) the accel-
eration of P, (¢) the angular velocity and angular acceleration of the disk.

SOLUTION

Frames of Reference. The frame OXYZ is fixed. We attach the moving frame
Axyz to the arm OA. Its angular velocity with respect to the frame OXYZ is
therefore = v j. The angular velocity of disk D relative to the moving frame
Axyz (or &, for short) is V5 = Vsk. The position vector of P relative to O is
r = Li + Rj, and its position vector relative to A is rp, = Rj.

a. Velocity vp. Denoting by P’ the point of the moving frame which coin-
cides with P, we write from Eq. (15.46)

Vp = Vo t Vg 1
where vp = @ X r = vj X (Li + Rj) = —v,Lk

— V2Ri

pg into (1), we find

AxpertSoft Trial Version

Vp = _VzRi - VILk

b. Acceleration ap. From Eq. (15.48) we write
ap = ap t+ apg + a, @)
Since © and V|5 are both constant, we have

ap = QX (Q xr)=vjXx(—vLk) = —ViLi
apg = Vpg X (Vpg X 1rpy) = Vok X (—VoRi) = _V%Plj
a, = 20 X Vpi5 = 2V1j X (_VzRi) = 2V1VZRI(

Substituting the values obtained into (2), we find
ap = —ViLi — V3Rj + 2v,V,Rk
c. Angular Velocity and Angular Acceleration of Disk.
v =20+ Vpg V = vj + vk
Using Eq. (15.31) with Q = V, we write

A= Moxyzz= Vay: + @ XV
=0+ Vlj X (Vlj + Vzk)
A= V1V2i
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SOULVINGIEROBLEIVIY
DN RO URSOVVIN

In this lesson you concluded your study of the kinematics of rigid bodies by
learning how to use an auxiliary frame of reference % to analyze the three-
dimensional motion of a rigid body. This auxiliary frame may be a rotating frame
with a fixed origin O, or it may be a frame in general motion.

A. Using a rotating frame of reference. As you approach a problem involving
the use of a rotating frame & you should take the following steps.

1. Select the rotating frame % that you wish to use and draw the correspond-
ing coordinate axes x, y, and z from the fixed point O.

2. Determine the angular velocity © of the frame & with respect to a fixed
frame OXYZ. In most cases, you will have selected a frame which is attached to
some rotating element of the system; € will then be the angular velocity of that
element.

3. Designate as P’ the point of the rotating frame % that coincides with the
point P of interest at the instant you are considering. Determine the velocity vy
and the acceleration ap of point P'. Since P’ is part of & and has the same posi-
tion vector r a

Vpr

where A is the angular acceleration ol ». However, in many of the problems that
you will encounter, the angular velocity of & is constant in both magnitude and
direction, and A = 0.

4. Determine the velocity and acceleration of point P with respect to the
frame F. As you are trying to determine vpg and apg you will find it useful to
visualize the motion of P on frame % when the frame is not rotating. If P is a
point of a rigid body % which has an angular velocity Vg and an angular accelera-
tion Ay relative to % [Sample Prob. 15.14], you will find that

VP/J,ZV%XI' and ap/g=A%Xr+V%X(V%Xr)

In many of the problems that you will encounter, the angular velocity of body %
relative to frame & is constant in both magnitude and direction, and Ag = 0.

5. Determine the Coriolis acceleration. Considering the angular velocity © of
frame & and the velocity vy of point P relative to that frame, which was com-
puted in the previous step, you write

a, = 29 X Vp/5
(continued)
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6. The velocity and the acceleration of P with respect to the fixed frame
OXYZ can now be obtained by adding the expressions you have determined:

Vp = Vp t Vpg (15.46)
ap = ap + apg t+ a, (15.48)

B. Using a frame of reference in general motion. The steps that you will take
differ only slightly from those listed under A. They consist of the following:

1. Select the frame ¥ that you wish to use and a reference point A in that
frame, from which you will draw the coordinate axes, x, y, and z defining that
frame. You will consider the motion of the frame as the sum of a translation with
A and a rotation about A.

2. Determine the velocity v, of point A and the angular velocity Q of the
frame. In most cases, you will have selected a frame which is attached to some
element of the system;  will then be the angular velocity of that element.

3. Designate as P’ the point of frame & that comudes with the point P of
interest at the insta velocity vy and
the acceleration ap: ¢ by visualizing
the motion of P if h respect to F
[Sample Prob. 15.158 e motion of P’
is the sum of a translation with the reference point A and a rotation about A. The
velocity vp and the acceleration ap of P’, therefore, can be obtained by adding
v, and a,, respectively, to the expressions found in paragraph A3 and replacing
the position vector r by the vector rp, drawn from A to P:

AxpertSoft Trial Version

VP’:VA+QXrP/A apf:aA+Aer/A+Qx<erP/A)

Steps 4, 5, and 6 are the same as in Part A, except that the vector r should
again be replaced by rp,4. Thus, Eqgs. (15.46) and (15.48) can still be used to obtain
the velocity and the acceleration of P with respect to the fixed frame of reference
OXYZ.
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PROBLEMS

END-OF-SECTION PROBLEMS Y

15.220 A square plate of side 18 in. is hinged at A and B to a clevis. The
plate rotates at the constant rate Vo = 4 rad/s with respect to the
clevis, which itself rotates at the constant rate v; = 3 rad/s about
the Y axis. For the position shown, determine (a) the velocity of
point C, (b) the acceleration of point C.

15.221 A square plate of side 18 in. is hinged at A and B to a clevis. The
plate rotates at the constant rate Vo, = 4 rad/s with respect to the
clevis, which itself rotates at the constant rate v, = 3 rad/s about
the Y axis. For the position shown, determine (a) the velocity of
corner D, (b) the acceleration of corner D.

15.222 and 15.223 The rectangular plate shown rotates at the con-
stant rate Vo = 12 rad/s with respect to arm AE, which itself
rotates at the constant rate v; = 9 rad/s about the Z axis. For the
position shown, determine the velocity and acceleration of the
point of the plate indicated.

15.222 Corner B
15.223 Corner C

Fig. P15.220 and P15.221

135 mm

135 mm

Fig. P15.222 and P15.223

15.224 Rod AB is welded to the 0.3-m-radius plate which rotates at the
constant rate V; = 6 rad/s. Knowing that collar D moves toward
end B of the rod at a constant speed u = 1.3 m/s, determine, /
for the position shown, (a) the velocity of D, (b) the acceleration
of D. Fig. P15.224

1021
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1022 Kinematics of Rigid Bodies 15.225 The bent rod ABC rotates at the constant rate v, = 4 rad/s. Know-
ing that collar D moves downward along the rod at a constant
y relative speed u = 65 in./s, determine, for the position shown,

(@) the velocity of D, (b) the acceleration of D.

15.226 The bent pipe shown rotates at the constant rate v; = 10 rad/s.
Knowing that a ball bearing D moves in portion BC of the pipe
toward end C at a constant relative speed u = 2 ft/s, determine at
the instant shown (a) the velocity of D, (b) the acceleration of D.

Fig. P15.225
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Y about its vertical diameter at the

_ . owing that in the position shown
the dlsk lles in the XY plane and point D of strap CD moves
upward at a constant relative speed u = 1.5 m/s, determine (a) the
velocity of D, (b) the acceleration of D.

15.228 Manufactured items are spray-painted as they pass through the auto-
mated work station shown. Knowing that the bent pipe ACE rotates
at the constant rate v; = 0.4 rad/s and that at point D the paint
moves through the pipe at a constant relative speed u = 150 mm/s,
determine, for the position shown, (@) the velocity of the paint at D,
(b) the acceleration of the paint at D.

A
Fig. P15.227

Fig. P15.228
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15.229 Solve Prob. 15.227, assuming that at the instant shown the angular
velocity Vl of the plate is 10 rad/s and is decreasing at the rate of
25 rad/s®, while the relative speed u of pomt D of strap CD is
1.5 m/s and is decreasing at the rate of 3 m/s>.

15.230 Solve Prob. 15.226 assuming that at the instant shown the angular
velocity Vl of the pipe is 10 rad/s and is decreasing at the rate of
15 rad/s®, while the relative speed u of the ball bearing is 2 ft/s
and is mcreasmg at the rate of 10 ft/s2.

15.231 Using the method of Sec. 15.14, solve Prob. 15.192.
15.232 Using the method of Sec. 15.14, solve Prob. 15.196.
15.233 Using the method of Sec. 15.14, solve Prob. 15.198.

15.234 A disk of radius 120 mm rotates at the constant rate v, = 5 rad/s
with respect to the arm AB, which itself rotates at the constant
rate V| = 3 rad/s. For the position shown, determine the velocity
and acceleration of point C.

15.235 A disk of radius 120 mm rotates at the constant rate V, = 5 rad/s
with respect to the arm AB, which itself rotates at the constant
rate V; = 3 rad/s. For the position shown, determine the velocity
and acceleration of point D.

15.236 The arm AB of length 16 ft is used to provide an elevated platform
for construction workers. In the position shown arm AB is bemg
raised at the constant ratgediid = =
unit is being rotated ab
0.15 rad/s. Knowing that
eration of point B.

15.237 The remote manipulator system (RMS) shown is used to deploy
payloads from the cargo bay of space shuttles. At the instant shown,
the whole RMS is rotating at the constant rate v; = 0.03 rad/s
about the axis AB. At the same time, portion BCD rotates as a
rigid body at the constant rate v, = db/di = 0.04 rad/s about an
axis through B parallel to the X axis. Knowing that b = 30°, deter-
mine () the angular acceleration of BCD, (b) the velocity of D,
(c) the acceleration of D.

Y

o

Fig. P15.237

Problems

1023

z

Fig. P15.236
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1024 Kinematics of Rigid Bodies 15.238 The body AB and rod BC of the robotic component shown rotate

at the constant rate v; = 0.60 rad/s about the Y axis. Simultane-

ously a wire-and-pulley control causes arm CD to rotate about C

D at the constant rate v = db/dt = 0.45 rad/s. Knowing b = 120°,

@, determine (a) the angular acceleration of arm CD, (b) the velocity
of D, (c) the acceleration of D.

400 mm 15.239 The crane shown rotates at the constant rate v; = 0.25 rad/s; simul-
4 / taneously, the telescoping boom is being lowered at the constant rate

Vy = 0.40 rad/s. Knowing that at the instant shown the length of the
boom is 20 ft and is increasing at the constant rate u = 1.5 ft/s,
determine the velocity and acceleration of point B.

7 500 mm

Fig. P15.238

15.240 The vertical plate shown is welded to arm EFG, and the entire
unit rotates at the constant rate v; = 1.6 rad/s about the Y axis.
At the same time, a continuous link belt moves around the perim-
eter of the plate at a constant speed u = 4.5 in./s. For the position
shown, determine the acceleration of the link of the belt located
(a) at point A, (b) at point B.

15.241 The vertical plate shown is welded to arm EFG, and the entire
unit rotates at the constant rate v, = 1.6 rad/s about the Y axis.
At the same time, a continuous link belt moves around the perim-
eter of the plate at a constant speed u = 4.5 in./s. For the position
shown, determine the acceleration of the link of the belt located
(@) at point C, (b) at point D.

15.242 A disk of 180-mm radius rotates at the constant rate v, = 12 rad/s
with respect to arm CD, which itself rotates at the constant rate
Vv, = 8 rad/s about the Y axis. Determine at the instant shown the
velocity and acceleration of point A on the rim of the disk.

15.243 A disk of 180-mm radius rotates at the constant rate Vo, = 12 rad/s
with respect to arm CD, which itself rotates at the constant
rate V; = 8 rad/s about the Y axis. Determine at the instant
150 mm shown the velocity and acceleration of point B on the rim of

Fig. P15.242 and P15.243 the disk.
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15.244 A square plate of side 2r is welded to a vertical shaft which rotates Problems 1025
with a constant angular velocity V;. At the same time, rod AB of
length r rotates about the center of the plate with a constant angu-
lar velocity Vs, with respect to the plate. For the position of the
plate shown, determine the acceleration of end B of the rod if
(@ u=20, b u=90° () u = 180°

Y

Z

Fig. P15.244

15.245 Two disks, each of 130-mm radius, are welded to the 500-mm rod Y
CD. The rod-and-disks unj ates at the constant rate \vo = 3 rad
with respect to arm AB,
4 rad/s, determine the
(b) point F.

15.246 In Prob. 15.245, determine the velocity and acceleration of
(@) point G, (b) point H.

15.247 The position of the stylus tip A is controlled by the robot shown.
In the position shown, the stylus moves at a constant speed u =
180 mm/s relative to the solenoid BC. At the same time, arm CD
rotates at the constant rate V, = 1.6 rad/s with respect to compo- ~ Fig- P15.245
nent DEG. Knowing that the entire robot rotates about the X axis
at the constant rate v; = 1.2 rad/s, determine (a) the velocity of
A, (b) the acceleration of A.

500 mm

z
Fig. P15.247
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Rigid body in translation

Rigid body in rotation
about a fixed axis

Fig. 15.39

1026

This chapter was devoted to the study of the kinematics of rigid
bodies.

We first considered the translation of a rigid body [Sec. 15.2] and
observed that in such a motion, all points of the body have the same
velocity and the same acceleration at any given instant.

We next considered the rotation of a rigid body about a fixed axis
[Sec. 15.3]. The position of the body is defined by the angle u that
the line BP, drawn from the axis of rotation to a point P of the body,
forms with a fixed plane (Fig. 15.39). We found that the magnitude
of the velocity of P is

ds .
v = a rusin F (15.4)

e then expressed the velocity

v=—=VXr (15.5)

where the vector

V = vk = Uk (15.6)

is directed along the fixed axis of rotation and represents the angular
velocity of the body.

Denoting by A the derivative dV/dt of the angular velocity, we
expressed the acceleration of P as

a=AXr+Vx(VXr (15.8)

Differentiating (15.6), and recalling that k is constant in magnitude
and direction, we found that

A = ak = vk = uk (15.9)

The vector A represents the angular acceleration of the body and is
directed along the fixed axis of rotation.


http://www.axpertsoft.com/pdf-splitter-software/

Fig. 15.40 Fig. 15.41

Next we considered the motion of a representative slab located in a
plane perpendicular to the axis of rotation of the body (Fig. 15.40).
Since the angular velocity is perpendicular to the slab, the velocity of
a point P of the slab was expressed as

v=vk Xr (15.10)

where v is contained in the plane of the slab. Substituting V = vk
and A = ak into (15.8), we found that the acceleration of P could
be resolved into tangential and normal components (Fig. 15.41)
respectively equal to

Recalling Egs. (15.6) and (15.9), we obtained the following expres-
sions for the angular velocity and the angular acceleration of the slab
[Sec. 15.4]:

du
=— 12
\V/ 0 (15.12)
gz dv_du (15.13)
dt  di '
or
dv
a= u (15.14)

We noted that these expressions are similar to those obtained in
Chap. 11 for the rectilinear motion of a particle.

Two particular cases of rotation are frequently encountered:
uniform rotation and uniformly accelerated rotation. Problems
involving either of these motions can be solved by using equations
similar to those used in Secs. 11.4 and 11.5 for the uniform rectilin-
ear motion and the uniformly accelerated rectilinear motion of a
particle, but where x, v, and a are replaced by u, v, and a, respec-
tively [Sample Prob. 15.1].

Review and Summary
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Rotation of a representative slab

Tangential and normal components

Angular velocity and angular
acceleration of rotating slab


http://www.axpertsoft.com/pdf-splitter-software/
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Va

Vg

Plane motion =
Fig. 15.42

Velocities in plane motion

Va y
ok
A \\ Ve/a
O fixed)u X'
A Va
r
+ BIA U Ve
VBIA
B B
Translation with A + Rotation about A Vg =Va + Vga

The most general plane motion of a rigid slab can be considered as
the sum of a translation and a rotation [Sec. 15.5]. For example, the
slab shown in Fig. 15.42 can be assumed to translate with point A,
while simultaneously rotating about A. It follows [Sec. 15.6] that the
velocity of any point B of the slab can be expressed as

Vg = Vu + VB/A (15.17)

where v, is the velocity of A and vg, the relative velocity of B with
respect to A or, more precisely, with respect to axes x'y’ translating
with A. Denoting by ry, the position vector of B relative to A, we

AxpertSoft Trial Version Up = 1V (15.18)

Instantaneous center of rotation

ating the absolute velocities of
points A and B and the relative velocity of B with respect to A was
expressed in the form of a vector diagram and used to solve problems
involving the motion of various types of mechanisms [Sample Probs.
15.2 and 15.3].

Another approach to the solution of problems involving the velocities
of the points of a rigid slab in plane motion was presented in Sec. 15.7
and used in Sample Probs. 15.4 and 15.5. It is based on the determina-
tion of the instantaneous center of rotation C of the slab (Fig. 15.43).
\/ \\//

/éfC /?C

|
\

\\

I

\

@ (b)
Fig. 15.43
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Q
an
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( =7

o an L7 (agpk
an
Plane motion = Translation with A + Rotation about A

Fig. 15.44

The fact that any plane motion of a rigid slab can be considered as Accelerations in plane motion
the sum of a translation of the slab with a reference point A and a

rotation about A was used in Sec. 15.8 to relate the absolute accel-

erations of any two points A and B of the slab and the relative accel-

eration of B with respect to A. We had

apg — Ay + ap/A (15.21)

where ag, consisted of a normal component (ag,), of magnitude rv?
directed toward A, and a tangential component (ag,), of magnitude
ra perpendicular to the line AB (Fig. 15.44). The fundamental rela-
tion (15.21) was expressed in -
equations and used to determi
various mechanisms [Sample
noted that the instantaneous
Sec. 15.7 cannot be used for the determination of accelerations,
since point C, in general, does not have zero acceleration.

AxpertSoft Trial Version

In the case of certain mechanisms, it is possible to express the coor- Coordinates expressed in terms
dinates x and y of all significant points of the mechanism by means of a parameter

of simple analytic expressions containing a single parameter. The

components of the absolute velocity and acceleration of a given point

are then obtained by differentiating twice with respect to the time ¢

the coordinates x and y of that point [Sec. 15.9].

While the rate of change of a vector is the same with respect to a Rate of change of a vector with
fixed frame of reference and with respect to a frame in translation, respect to a rotating frame

the rate of change of a vector with respect to a rotating frame is Y
different. Therefore, in order to study the motion of a particle rela-
tive to a rotating frame we first had to compare the rates of change A\ y

of a general vector Q with respect to a fixed frame OXYZ and with \
respect to a frame Oxyz rotating with an angular velocity  [Sec. @ j
15.10] (Fig. 15.45). We obtained the fundamental relation

<Q)OXYZ = (Q)Oxm + Q x Q (1531)
and we concluded that the rate of change of the vector Q with respect
to the fixed frame OXYZ is made of two parts: The first part represents
the rate of change of Q with respect to the rotating frame Oxyz; the z
second part, £ X Q, is induced by the rotation of the frame Oxyz.  Fig. 15.45
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Plane motion of a particle relative
to a rotating frame

Fig. 15.46

Motion of a rigid body
with a fixed point

Fig. 15.47

The next part of the chapter [Sec. 15.11] was devoted to the two-
dimensional kinematic analysis of a particle P moving with respect
to a frame & rotating with an angular velocity £ about a fixed axis
(Fig. 15.46). We found that the absolute velocity of P could be
expressed as

Vp = Vpr + Vp/% (15.33)

where vp = absolute velocity of particle P
vy = velocity of point P’ of moving frame & coinciding
with P
vpg = velocity of P relative to moving frame %

We noted that the same expression for v, is obtained if the frame is
in translation rather than in rotation. However, when the frame is in
rotation, the expression for the acceleration of P is found to contain
an additional term a, called the complementary acceleration or Cori-
olis acceleration. We wrote

ap = ap’ + ap/5 + a, (1536)

where ap = absolute acceleration of particle P
ap = acceleration of point P’ of moving frame & coinciding
with P
apz = acceleration of P relative to moving frame &
2Q X (F)oy = 20 X vpg
= complementarv. or Coriolis, acceleration

a;

each other in the case of plane
s found to have a magnitude
Cction obtained by rotating the
Vector T through 90° in the sense of rotation of the moving frame.
Formulas (15.33) and (15.36) can be used to analyze the motion of
mechanisms which contain parts sliding on each other [Sample
Probs. 15.9 and 15.10].

The last part of the chapter was devoted to the study of the kine-
matics of rigid bodies in three dimensions. We first considered the
motion of a rigid body with a fixed point [Sec. 15.12]. After proving
that the most general displacement of a rigid body with a fixed
point O is equivalent to a rotation of the body about an axis
through O, we were able to define the angular velocity V and the
instantaneous axis of rotation of the body at a given instant. The
velocity of a point P of the body (Fig. 15.47) could again be
expressed as

dr
=—=VX 15.37
V= r (15.37)
Differentiating this expression, we also wrote
a=AXxXr+Vx(\Vxr (15.38)

However, since the direction of V changes from one instant to the
next, the angular acceleration A is, in general, not directed along the
instantaneous axis of rotation [Sample Prob. 15.11].
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It was shown in Sec. 15.13 that the most general motion of a rigid
body in space is equivalent, at any given instant, to the sum of a
translation and a rotation. Considering two particles A and B of the

body, we found that
Vg = Vu + VB/A (15.42)

where v, is the velocity of B relative to a frame AX'Y'Z’ attached
to A and of fixed orientation (Fig. 15.48). Denoting by rg, the posi-
tion vector of B relative to A, we wrote

Vg = Vyu +V X Tp/A (15.43)

where V is the angular velocity of the body at the instant considered
[Sample Prob. 15.12]. The acceleration of B was obtained by a simi-
lar reasoning. We first wrote

ag = a, t ag;
and, recalling Eq. (15.38),

apg — Ay + A X IpA +V X (V X rB/A) (15.44)

In the final two sections of t
dimensional motion of a partid
with an angular velocity £ with'Tespe :
15.49). In Sec. 15.14 we expressed the absolute velomty vp of P as

Vp = Vpr + Vp/5 (15.46)

where vp = absolute velocity of particle P
vp = velocity of point P’ of moving frame & coinciding
with P
vpg = velocity of P relative to moving frame %

Fig. 15.49

AxpertSoft Trial Version

General motion in space

Review and Summary

TBiA

B
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s

z

Fig. 15.48

e-dimensional motion
particle relative
o a rotating frame
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Frame of reference in general motion

The absolute acceleration ap of P was then expressed as
ap = ap’ + ap/5 + a, (1548)

where ap = absolute acceleration of particle P
ap = acceleration of point P' of moving frame % coinciding
with P
apz = acceleration of P relative to moving frame &
a = 20 x (i'>0xyz = 20 x Vr/F
complementary, or Coriolis, acceleration

It was noted that the magnitude a, of the Coriolis acceleration is not
equal to 2Qupz [Sample Prob. 15.13] except in the special case when
Q and vy are perpendicular to each other.

We also observed [Sec. 15.15] that Eqs. (15.46) and (15.48) remain
valid when the frame Axyz moves in a known, but arbitrary, fashion
with respect to the fixed frame OXYZ (Fig. 15.50), provided that the
motion of A is included in the terms vp and ap representing the
absolute velocity and acceleration of the coinciding point P’.

Fig. 15.50

Rotating frames of reference are particularly useful in the
study of the three-dimensional motion of rigid bodies. Indeed,
there are many cases where an appropriate choice of the rotating
frame will lead to a simpler analysis of the motion of the rigid body

than would be possible with axes of fixed orientation [Sample Probs.
15.14 and 15.15].
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REVIEW PROBLEMS

15.248 The angular acceleration of the 600-mm-radius circular plate
shown is defined by the relation a = aye . Knowing that the plate
is at rest when ¢ = 0 and that a, = 10 rad/s>, determine the mag-
nitude of the total acceleration of point B when (@) t = 0, (b) t =
05s, ()t = o=

Fig. P15.248

15.249 Cylinder A is moving do
brake is suddenly applieg
moves 18 ft downward be
accelerated motion, deter e e
drum, (b) the time required for the cylinder

to come to rest.

15.250 A baseball pitching machine is designed to deliver a baseball with
a ball speed of 70 mph and a ball rotation of 300 rpm clockwise.
Knowing that there is no slipping between the wheels and the
baseball during the ball launch, determine the angular velocities
of wheels A and B.

0.75 ft

Fig. P15.249

Fig. P15.250

1033
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1034 Kinematics of Rigid Bodies

80 mm

Fig. P15.251

5in.

40 mm 80 mm

5}

4in.

|+4 in. 5in.

B G

9 o

Fig. P15.253

15.251 Knowing that inner gear A is stationary and outer gear C starts
from rest and has a constant angular acceleration of 4 rad/s* clock-
wise, determine at ¢ = 5 s (a) the angular velocity of arm AB,
(b) the angular velocity of gear B, (¢) the acceleration of the point
on gear B that is in contact with gear A.

15.252 Knowing that at the instant shown bar AB has an angular velocit

of 10 rad/s clockwise and it is slowing down at a rate of 2 rad/s”,
determine the angular accelerations of bar BD and bar DE.

@) A

N

3

CHE WE

0.2m

D

0.6 m

Fig. P15.252

n rod AB has zero angular accel-
15 rad/s counterclockwise, deter-
of arm DE, (b) the acceleration

AxpertSoft Trial Version

of point D.

15.254 Rod AB is attached to a collar at A and is fitted with a wheel at
B that has a radius » = 15 mm. Knowing that when u = 60° the
collar has a velocity of 250 mm/s upward and it is slowing down
at a rate of 150 mm/s®, determine () the angular acceleration of
rod AB, (b) the angular acceleration of the wheel.

300 mm

200 mm

Fig. P15.254
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15.255 Water flows through a curved pipe AB that rotates with a constant Review Problems 1035
clockwise angular velocity of 90 rpm. If the velocity of the water
relative to the pipe is 8 m/s, determine the total acceleration of a
particle of water at point P,

15.256 A disk of 0.15-m radius rotates at the constant rate V, with respect
to plate BC, which itself rotates at the constant rate v; about the y
axis. Knowing that v; = v, = 3 rad/s, determine, for the position
shown, the velocity and acceleration (a) of point D, (b) of point F.

y

7 Fig. P15.255

AxpertSoft Trial Version

Fig. P15.256

15.257 Two rods AE and BD pass through holes drilled into a hexagonal
block. (The holes are drilled in different planes so that the rods will
not touch each other.) Knowing that rod AE has an angular velocity
of 20 rad/s clockwise and an angular acceleration of 4 rad/s* coun-
terclockwise when u = 90°, determine (@) the relative velocity of
the block with respect to each rod, (b) the relative acceleration
of the block with respect to each rod. y

100 mm

Fig. P15.257

15.258 Rod BC of length 24 in. is connected by ball-and-socket joints to a
rotating arm AB and to a collar C that slides on the fixed rod DE.
Knowing that the length of arm AB is 4 in. and that it rotates at the
constant rate v, = 10 rad/s, determine the velocity of collar C when
u=0. Fig. P15.258
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1036 Kinematics of Rigid Bodies 15.259 In the position shown the thin rod moves at a constant speed u =
3 in./s out of the tube BC. At the same time tube BC rotates at
the constant rate V, = 1.5 rad/s with respect to arm CD. Knowing
that the entire assembly rotates about the X axis at the constant

rate V; = 1.2 rad/s, determine the velocity and acceleration of end
A of the rod.

Fig. P15.259

AxpertSoft Trial Version
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COMPUTER PROBLEMS

15.C1 The disk shown has a constant angular velocity of 500 rpm coun-
terclockwise. Knowing that rod BD is 250 mm long, use computational
software to determine and plot for values of u from 0 to 360° and using 30°
increments, the velocity of collar D and the angular velocity of rod BD.
Determine the two values of u for which the speed of collar D is zero.

AxpertSoft Trial Version

15.€2 Two rotating rods are connected by a slider block P as shown.
Knowing that rod BP rotates with a constant angular velocity of 6 rad/s
counterclockwise, use computational software to determine and plot for val-
ues of U from 0 to 180° the angular velocity and angular acceleration of rod
AE. Determine the value of u for which the angular acceleration a,p of rod
AE is maximum and the corresponding value of a,p.

30in.

Fig. P15.C2

1037
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1038 Kinematics of Rigid Bodies 15.€3 In the engine system shown, [ = 160 mm and b = 60 mm. Know-
ing that crank AB rotates with a constant angular velocity of 1000 rpm
clockwise, use computational software to determine and plot for values of
u from 0 to 180° and using 10° increments, (a) the angular velocity and
angular acceleration of rod BD, (b) the velocity and acceleration of the
piston P.

15.€4 Rod AB moves over a small wheel at C while end A moves to the
right with a constant velocity of 180 mm/s. Use computational software to
determine and plot for values of u from 20° to 90° and using 5° increments,
the velocity of point B and the angular acceleration of the rod. Determine
the value of u for which the angular acceleration a of the rod is maximum
and the corresponding value of a.

Fig. P15.C3 -

mm

Fig. P15.C4

AxpertSoft Trial Version

ected by ball-and-socket joints to

e PECICSRENE slides on the fixed rod DE. Arm
AB of length 4 in. rotates in the XY plane with a constant angular velocity
of 10 rad/s. Use computational software to determine and plot for values of
u from 0 to 360° the velocity of collar C. Determine the two values of u for
which the velocity of collar C is zero.

Fig. P15.C5
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15.€6 Rod AB of length 25 in. is connected by ball-and-socket joints to Computer Problems 1039
collars A and B, which slide along the two rods shown. Collar B moves

toward support E at a constant speed of 20 in./s. Denoting by d the dis-

tance from point C to collar B, use computational software to determine

and plot the velocity of collar A for values of d from 0 to 15 in.

|

Fig. P15.C6

AxpertSoft Trial Version
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Three-bladed wind turbines, similar to
the ones shown in this picture of a wind
farm, are currently the most common
design. In this chapter you will learn to

analyze the motion of a rigid body by

considering the motion of its moce rantar
the motion relative to its mass . AxpertSoft Trial Version

and the external forces acting on m.

N |,

B
B
3

b
E
i
i



http://www.axpertsoft.com/pdf-splitter-software/

€S

Plane Motion of Rigid Bod

Forces and Accelerations

!



http://www.axpertsoft.com/pdf-splitter-software/

Chapter 16 Plane Motion of Rigid
Bodies: Forces and Accelerations

16.1 INTRODUCTION
In this chapter and in Chaps. 17 and 18, you will study the kinetics

16.1  Introduction of rigid bodies, i.e., the relations existing between the forces acting
16.2  Equations of Motion for a on a rigid body, the shape and mass of the body, and the motion
Rigid Body produced. In Chaps. 12 and 13, you studied similar relations, assum-
16.3 Angular Momentum of a Rigid ing then that the body could be considered as a particle, i.e., that its
Body in Plane Motion mass could be concentrated in one point and that all forces acted at

16.4 Pllqne MOﬁ?“ Of a Rigid Body. that point. The shape of the body, as well as the exact location of the
D'Alembert's PrlnC|p|g points of application of the forces, will now be taken into account.
165 A Remar k on the' AX'O",’S of the  you will also be concerned not only with the motion of the body as
Mechonlcs of Rigid Bodles‘ a whole but also with the motion of the body about its mass center.
16.6 Soluhon' of Problem§ Involving Our approach will be to consider rigid bodies as made of large
the Motion of a Rigid Body b farticles and t th Its obtained in Chan. 14 f
167  Systems of Rigid Bodies n};nn ers of particles and to use the results obtained in Chap. or
168 Constrained Plane Mofion the motion (?f systems of particles. SpemﬁcallyL two gquatmns from
Chap. 14 will be used: Eq. (14.16), XF = ma, which relates the
resultant of the external forces and the acceleration of the mass cen-
ter G of the system of particles, and Eq. (14.23), SM¢ = Hg, which
relates the moment resultant of the external forces and the angular
momentum of the system of particles about G.

Except for Sec. 16.2, which applies to the most general case of
the motion of a rigid body, the results derived in this chapter will be
limited in two ways: (1) They will be restricted to the plane motion
of I‘lgld bodles ie., to a motion in which each particle of the body

; : o a fixed reference plane. (2) The

. . ly of plane slabs and of bodies

AxpertSoft Trial Version to the reference plane.t The

btrical three-dimensional bodies

, more generally, the motion of rigid bodies in three-dimensional
space will be postponed until Chap. 18.

In Sec. 16.3, we define the angular momentum of a rigid body in
plane motion and show that the rate of change of the angular momen-
tum H; about the mass center is equal to the product IA of the
centroidal mass moment of inertia I and the angular acceleration A of
the body. D’Alembert’s principle, introduced in Sec. 16.4, is used to
prove that the external forces acting on a rigid body are equivalent to a
vector ma attached at the mass center and a couple of moment IA.

In Sec. 16.5, we derive the principle of transmissibility using
only the parallelogram law and Newton’s laws of motion, allowing us
to remove this principle from the list of axioms (Sec. 1.2) required
for the study of the statics and dynamics of rigid bodies.

Free-body-diagram equations are introduced in Sec. 16.6 and
will be used in the solution of all problems involving the plane motion
of rigid bodies.

After considering the plane motion of connected rigid bodies
in Sec. 16.7, you will be prepared to solve a variety of problems involv-
ing the translation, centroidal rotation, and unconstrained motion of
rigid bodies. In Sec. 16.8 and in the remaining part of the chapter,
the solution of problems involving noncentroidal rotation, rolling
motion, and other partially constrained plane motions of rigid bodies
will be considered.

tOr, more generally, bodies which have a principal centroidal axis of inertia perpendicular

1042 to the reference plane.
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16.2 EQUATIONS OF MOTION FOR A RIGID BODY 162 Equations of Motion for a Rigid Body 1043

Consider a rigid body acted upon by several external forces Fy, Fs, F,
F;, ... (Fig. 16.1). We can assume that the body is made of a large F1 l
number n of particles of mass Am; (i = 1, 2, .. ., n) and apply the Fs
results obtained in Chap. 14 for a system of particles (Fig. 16.2). Go —
Considering first the motion of the mass center G of the body with
respect to the newtonian frame of reference Oxyz, we recall Eq.

(14.16) and write /

2F = ma (16.1)

where m is the mass of the body and a is the acceleration of the mass
center G. Turning now to the motion of the body relative to the cen-
troidal frame of reference Gx'y'z’, we recall Eq. (14.23) and write Fig. 16.1

SM, = H (16.2)

where HG represents the rate of change of Hg, the angular momen-
tum about G of the system of particles forming the rigid body. In
the following, H¢ will simply be referred to as the angular momen-
tum of the rigid body about its mass center G. Together Eqs. (16.1)
and (16.2) express that the system of the external forces is equzpollent
to the system conszstmg of the ve :

Fig. 16.3

Equations (16.1) and (16.2) apply in the most general case of the
motion of a rigid body. In the rest of this chapter, however, our analysis
will be limited to the plane motion of rigid bodies, i.e., to a motion in
which each particle remains at a constant distance from a fixed refer-
ence plane, and it will be assumed that the rigid bodies considered
consist only of plane slabs and of bodies which are symmetrical with
respect to the reference plane. Further study of the plane motion of
nonsymmetrical three-dimensional bodies and of the motion of rigid
bodies in three-dimensional space will be postponed until Chap. 18.

fSince the systems involved act on a rigid body, we could conclude at this point, by
referring to Sec. 3.19, that the two systems are equivalent as well as equipollent and

use red rather than blue equals signs in Fig. 16.3. However, by postponing this Photo 16.1 The system of external forces
conclusion, we will be able to arrive at it independently (Secs. 16.4 and 18.5), thereby acting on the man and wakeboard includes the
eliminating the necessity of including the principle of transmissibility among the weights, the tension in the tow rope, and the

axioms of mechanics (Sec. 16.5). forces exerted by the water and the air.
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1044 Plore Motien o Rigd Bodies 16.3 ANGULAR MOMENTUM OF A RIGID BODY
IN PLANE MOTION

Consider a rigid slab in plane motion. Assuming that the slab is made
of a large number n of particles P; of mass Am; and recalling
Eq. (14.24) of Sec. 14.5, we note that the angular momentum Hg, of

y
the slab about its mass center G can be computed by taking the
moments about G of the momenta of the particles of the slab in their
motion with respect to either of the frames Oxy or Gx'y" (Fig. 16.4).
Choosing the latter course, we write
n
He = D (r] X v] Am,) (16.3)
o : i=1
Fig. 16.4 where r; and v; Am; denote, respectively, the position vector and the

linear momentum of the particle P; relative to the centroidal frame
of reference Gx'y'. But since the particle belongs to the slab, we
have v; = V X r|, where V is the angular velocity of the slab at the
instant considered. We write

n

H, = 2 [r] X (V X r}) Am;]

i=1

Referring to Fig. 16. 4 we easily verify that the expression obtained
ion as V (i.e., perpendicular to
vEr? Am. Recalhng that the
of inertia I of the slab about
e slab we conclude that the

AxpertSoft Trial Version

He = IV (16.4)

Differentiating both members of Eq. (16.4) we obtain

H, = IV=1A (16.5)

Thus the rate of change of the angular momentum of the slab is
represented by a vector of the same direction as A (i.e., perpendicu-
lar to the slab) and of magnitude Ia.

It should be kept in mind that the results obtained in this sec-
tion have been derived for a rigid slab in plane motion. As you will
see in Chap. 18, they remain valid in the case of the plane motion
of rigid bodies which are symmetrical with respect to the reference
plane.t However, they do not apply in the case of nonsymmetrical
bodies or in the case of three-dimensional motion.

Photo 16.2 The hard disk and pick-up arms of ~ $Or, more generally, bodies which have a principal centroidal axis of inertia perpendicular
a hard disk computer undergo centroidal rotation.  to the reference plane.
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16.4 PLANE MOTION OF A RIGID BODY. 16.4 Pona Motn of  Rgid bodv. 1045
D'ALEMBERT’S PRINCIPLE

Consider a rigid slab of mass m moving under the action of several
external forces Fy, Fy, F3, . . ., contained in the plane of the slab
(Fig. 16.5). Substituting for Hg from Eq. (16.5) into Eq. (16.2) and
writing the fundamental equations of motion (16.1) and (16.2) in
scalar form, we have

SM, = Ia (16.6)

2F,. = ma, 2F, = ma,

Equations (16.6) show that the acceleration of the mass center
G of the slab and its angular acceleration A are easily obtained once g
the resultant of the external forces acting on the slab and their
moment resultant about G have been determined. Given appropriate
initial conditions, the coordinates x and y of the mass center and the
angular coordinate U of the slab can then be obtained by integration
at any instant ¢. Thus the motion of the slab is completely defined by
the resultant and moment resultant about G of the external forces
acting on it.

This property, which will be extended in Chap. 18 to the case
of the three-dimensional motion of a rigid body, is characteristic of
the motion of a rigid body. Indeed, as we saw in Chap. 14, the motion
of a system of particles which are not rigidly connected will in gen-
eral depend upon the specific guiamaltorcasas i
particles, as well as upon the

Since the motion of a rigi
and moment resultant of the ex¥ 7
two systems of forces which are equipollent, i.e., which have the same
resultant and the same moment resultant, are also equivalent; that is,
they have exactly the same effect on a given rigid body.t

Consider in particular the system of the external forces acting
on a rigid body (Fig. 16.6a) and the system of the effective forces
associated with the particles forming the rigid body (Fig. 16.6b). It
was shown in Sec. 14.2 that the two systems thus defined are equi-
pollent. But since the particles considered now form a rigid body, it
follows from the discussion above that the two systems are also
equivalent. We can thus state that the external forces acting on a
rigid body are equivalent to the effective forces of the various parti-
cles forming the body. This statement is referred to as d’Alembert’s g, 16.6
principle after the French mathematician Jean le Rond d’Alembert
(1717-1783), even though d’Alembert’s original statement was writ-
ten in a somewhat different form.

The fact that the system of external forces is equivalent to the
system of the effective forces has been emphasized by the use of a
red equals sign in Fig. 16.6 and also in Fig. 16.7, where using results
obtained earlier in this section, we have replaced the effective forces
by a vector ma attached at the mass center G of the slab and a couple
of moment IA.

Fig. 16.5

#This result has already been derived in Sec. 3.19 from the principle of transmissibility
(Sec. 3.3). The present derivation is independent of that principle, however, and will
make possible its elimination from the axioms of mechanics (Sec. 16.5). Fig. 16.7

(b)
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1046  Plane Motion of Rigid Bodies: Translation.  In the case of a body in translation, the angular accel-

Forces and Accelerations
eration of the body is identically equal to zero and its effective forces

reduce to the vector ma attached at G (Fig. 16.8). Thus, the resultant
_of the external forces acting on a rigid body in translation passes

& through the mass center of the body and is equal to ma.
Centroidal Rotation. When a slab, or, more generally, a body
o symmetrical with respect to the reference plane, rotates about a fixed
axis perpendicular to the reference plane and passing through its

mass center G, we say that the body is in centroidal rotation. Since
the acceleration a is identically equal to zero, the effective forces

() of the body reduce to the couple IA (Fig. 16.9). Thus, the external
forces acting on a body in centroidal rotation are equivalent to a
couple of moment IA.

General Plane Motion.  Comparing Fig. 16.7 with Figs. 16.8 and
16.9, we observe that from the point of view of kinetics, the most
general plane motion of a rigid body symmetrical with respect to the
reference plane can be replaced by the sum of a translation and a
centroidal rotation. We should note that this statement is more
restrictive than the similar statement made earlier from the point of
view of kinematics (Sec. 15.5), since we now require that the mass
center of the body be selected as the reference point.

Referring to Eqs. (16.6), we observe that the first two equations
are identical with the equations of motion of a particle of mass m acted
. We thus check that the mass
n moves as if the entire mass of
i, and as if all the external forces

[ at tis 1 as already been obtained in Sec.
14 4 in the general case of a system of particles, the particles being not
necessarily rigidly connected. We also note, as we did in Sec. 14.4, that
the system of the external forces does not, in general, reduce to a single
vector ma attached at G. Therefore, in the general case of the plane
motion of a rigid body, the resultant of the external forces acting on the
body does not pass through the mass center of the body.
Fig. 16.9 Centroidal rotation. Finally, it should be observed that the last of Egs. (16.6) would
still be valid if the rigid body, while subjected to the same applied
forces, were constrained to rotate about a fixed axis through G. Thus,
a rigid body in plane motion rotates about its mass center as if this
point were fixed.

*16.5 A REMARK ON THE AXIOMS OF THE
MECHANICS OF RIGID BODIES

The fact that two equipollent systems of external forces acting on a
rigid body are also equivalent, i.e., have the same effect on that rigid
body, has already been established in Sec. 3.19. But there it was
derived from the principle of transmissibility, one of the axioms used
in our study of the statics of rigid bodies. It should be noted that
this axiom has not been used in the present chapter because Newton’s
second and third laws of motion make its use unnecessary in the
study of the dynamics of rigid bodies.

In fact, the principle of transmissibility may now be derived
from the other axioms used in the study of mechanics. This principle

xpertSoft Trial Version
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stated, without proof (Sec. 3.3), that the conditions of equilibrium or 16.6 Solution O;AP“?IO"*'“FS '“E?'Yé“% *ge 1047
motion of a rigid body remain unchanged if a force F acting at a given ofion of a Kigid Bocy
point of the rigid body is replaced by a force F’ of the same magni-
tude and same direction, but acting at a different point, provided / ,
that the two forces have the same line of action. But since F and F’ / ,
have the same moment about any given point, it is clear that they ,
form two equipollent systems of external forces. Thus, we may now .
prove, as a result of what we established in the preceding section,
that F and F’ have the same effect on the rigid body (Fig. 3.3). / —
The principle of transmissibility can therefore be removed from /
the list of axioms required for the study of the mechanics of rigid /
bodies. These axioms are reduced to the parallelogram law of addi- / /
tion of vectors and to Newton’s laws of motion. / y

16.6 SOLUTION OF PROBLEMS INVOLVING / /
THE MOTION OF A RIGID BODY Fig. 3.3 (repeated)

We saw in Sec. 16.4 that when a rigid body is in plane motion, there
exists a fundamental relation between the forces Fy, Fy, F, . . ., acting
on the body, the acceleration a of its mass center, and the angular
acceleration A of the body. This relation, which is represented in
Fig. 16.7 in the form of a free-body-diagram equation, can be used to
determine the acceleration a and the angular acceleration A produced
by a given system of forces acting on a rigid body or, conversely to
determine the forces which produce a given motion o

The three algebraic equa
lems of plane motion.t Howe AxpertSoft Trial Version
that the solution of many prok
simplified by an appropriate choice ol the pomt about which the
moments of the forces are computed. It is therefore preferable to
remember the relation existing between the forces and the accelera-
tions in the pictorial form shown in Fig. 16.7 and to derive from this
fundamental relation the component or moment equations which fit
best the solution of the problem under consideration.

The fundamental relation shown in Fig. 16.7 can be presented
in an alternative form if we add to the external forces an inertia vec-
tor —ma of sense opposite to that of a, attached at G, and an inertia
couple —IA of moment equal in magnitude to Ia and of sense oppo-
site to that of A (Fig. 16.10). The system obtained is equivalent to
zero, and the rigid body is said to be in dynamic equilibrium.

Whether the principle of equivalence of external and effective
forces is directly applied, as in Fig. 16.7, or whether the concept of
dynamic equilibrium is introduced, as in Fig. 16.10, the use of free-
body-diagram equations showing vectorially the relationship existing
between the forces applied on the rigid body and the resulting linear
and angular accelerations presents considerable advantages over the
blind application of formulas (16.6). These advantages can be sum- Fig. 16.10
marized as follows:

1. The use of a pictorial representation provides a much clearer under-
standing of the effect of the forces on the motion of the body.

tWe recall that the last of Eqgs. (16.6) is valid only in the case of the plane motion of
a rigid body symmetrical with respect to the reference plane. In all other cases, the
methods of Chap. 18 should be used.
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(b)
Fig. 16.7 (repeated)

Fig. 16.10 (repeated)

Photo 16.3 The forklift and moving load can
be analyzed as a system of two connected rigid
bodies in plane motion.

AxpertSoft Trial Version

2. This approach makes it possible to divide the solution of a
dynamics problem into two parts: In the first part, the analysis
of the kinematic and kinetic characteristics of the problem
leads to the free-body diagrams of Fig. 16.7 or 16.10; in the
second part, the diagram obtained is used to analyze the various
forces and vectors involved by the methods of Chap. 3.

3. A unified approach is provided for the analysis of the plane
motion of a rigid body, regardless of the particular type of
motion involved. While the kinematics of the various motions
considered may vary from one case to the other, the approach
to the kinetics of the motion is consistently the same. In every
case a dlagram will be drawn showing the external forces, the
vector ma associated with the motion of G, and the couple IA
associated with the rotation of the body about G.

4. The resolution of the plane motion of a rigid body into a transla-
tion and a centroidal rotation, which is used here, is a basic con-
cept which can be applied effectively throughout the study of
mechanics. It will be used again in Chap. 17 with the method of
work and energy and the method of impulse and momentum.

5. As you will see in Chap. 18, this approach can be extended to
the study of the general three-dimensional motion of a rigid
body. The motion of the body will again be resolved into a
translation and a rotation about the mass center, and free-body-
dldgram equations will be used to indicate the relationship

arces and the rates of change of

m of the body.

16.7 SYSTEMS OF RIGID BODIES

The method described in the preceding section can also be used
in problems involving the plane motion of several connected rigid
bodies. For each part of the system, a diagram similar to Fig. 16.7
or Fig. 16.10 can be drawn. The equations of motion obtained from
these diagrams are solved simultaneously.

In some cases, as in Sample Prob. 16.3, a single diagram can
be drawn for the entire system. This diagram should include all the
external forces, as well as the vectors ma and the couples TA associ-
ated with the various parts of the system. However, internal forces
such as the forces exerted by connecting cables, can be omitted since
they occur in pairs of equal and opposite forces and are thus equipol-
lent to zero. The equations obtained by expressing that the system
of the external forces is equipollent to the system of the effective
forces can be solved for the remaining unknowns.t

It is not possible to use this second approach in problems
involving more than three unknowns, since only three equations of
motion are available when a single diagram is used. We need not
elaborate upon this point, since the discussion involved would be
completely similar to that given in Sec. 6.11 in the case of the equi-
librium of a system of rigid bodies.

tNote that we cannot speak of equivalent systems since we are not dealing with a single

rigid body.
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SAMPLE PROBLEM 16.1

When the forward speed of the truck shown was 30 ft/s, the brakes were
suddenly applied, causing all four wheels to stop rotating. It was observed
that the truck skidded to rest in 20 ft. Determine the magnitude of the
normal reaction and of the friction force at each wheel as the truck skidded
to rest.

SOLUTION

Kinematics of Motion. Choosing the positive sense to the right and using
the equations of uniformly accelerated motion, we write

vy = +30 ft/s o = vp + 2ax 0 = (30)* + 2a(20)
a = —22.5 ft/s> a= 225 f/s>=

Equations of Motion. The external forces consist of the weight W of the
truck and of the normal reactions and friction forces at the wheels. (The
vectors Ny and F, represent the sum of the reactions at the rear wheels,
while N and Fp represent the sum of the reactions at the front wheels.)
Since the truck is in translation, the effective forces reduce to the vector
ma attached at G. Three equations of motion are obtained by expressing
that the system of the external forces is equivalent to the system of the

=0

S . ¥ where my. is the coefficient of kinetic
friction, we find that

FA ar FB = mk(NA arF NB) = mkW

yEFx = E(F:()eff: _<FA + FB) = —ma
W .
—mW = ——————(22.5ft/s%)
32.2ft/s
m; = 0.699
+IZM, = S(M)os: —W(5 ft) + Np(12 ft) = ma(4 ft)
—W(5ft) + Np(12ft) = ———— (22.5ft/s?) (4 ft
(5ft) p(121t) 32.2&/52( s°)(41t)
Ny = 0.650W

Fy = MmNy = (0.699)(0.650W)  Fy = 0.454W
+)6Fy = E(Fy)eff: Ny+ Ng—W=0
N, + 0.650W — W = 0
N, = 0.350W
Fy = mN, = (0.699)(0.350W)  F,

0.245W

Reactions at Each Wheel. Recalling that the values computed above rep-
resent the sum of the reactions at the two front wheels or the two rear
wheels, we obtain the magnitude of the reactions at each wheel by writing

Niont = 3Np = 0.325W Ny, = 3N, = 0.175W
Fomt = 5F5 = 0227TW  F,o = 3Fy = 0.122W

1049
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SAMPLE PROBLEM 16.2

The thin plate ABCD of mass 8 kg is held in the position shown by the wire
B BH and two links AE and DF. Neglecting the mass of the links, determine
_f immediately after wire BH has been cut (a) the acceleration of the plate,
200mm (b) the force in each link.

! 500 mm |

SOLUTION

Kinematics of Motion. After wire BH has been cut, we observe that
corners A and D move along parallel circles of radius 150 mm centered,
respectively, at E and F. The motion of the plate is thus a curvilinear
translation; the particles forming the plate move along parallel circles of
radius 150 mm.

At the instant wire BH is cut, the velocity of the plate is zero. Thus
the acceleration a of the mass center G of the plate is tangent to the circular

e path which will be described by G.

Equations of Motion. The external forces consist of the weight W and the
forces F,p and Fpr exerted by the links. Since the plate is in translation,
the effective forces reduce to the vector ma attached at G and directed
along the ¢ axis. A free-body-diagram equation is drawn to show that the
system of the external forces is equivalent to the system of the effective

Fac AxpertSoft Trial Version
|<—250 mm-»l
30°INJA B
n €
\\\ W cos 30° = ma
For 30°00° 200 mm _
’>\¢1W mg cos 30° = ma
T v 2 @ =g cos 30° = (9.81 m/s?) cos 30° (1)
g a = 850 m/s> d 60°
A|“250 mm"l b. Forces in Links AE and DF.
B
100:mm n._ |G +NZF, = 2(F)er:  Fag + Fpr — Wsin 30° = 0 @)
© 100'mm *%‘30" TIEM = 2 M)
=0 C  (Fyp sin 30°)(250 mm) — (Fap cos 30°)(100 mm)
t,/ + (Fpp sin 30°)(250 mm) + (Fpp cos 30°)(100 mm) = 0

Substituting for Fpy from (3) into (2), we write

Fup — 0.1815F,; — W sin 30° = 0
Fup = 0.6109W
Fpp = —0.1815(0.6109W) = —0.1109W

Noting that W = mg = (8 kg)(9.81 m/s%) = 78.48 N, we have

Fu: = 0.6109(78.48 N) Fup = 479NT
Fpr = —0.1109(7848 N)  Fpp = 870 N C

1050
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SAMPLE PROBLEM 16.3

A pulley weighing 12 1b and having a radius of gyration of 8 in. is connected
to two blocks as shown. Assuming no axle friction, determine the angular
acceleration of the pulley and the acceleration of each block.

SOLUTION

Sense of Motion. Although an arbitrary sense of motion can be assumed
(since no friction forces are involved) and later checked by the sign of the
answer, we may prefer to determine the actual sense of rotation of the pulley
first. The weight of block B required to maintain the equilibrium of the
pulley when it is acted upon by the 5-Ib block A is first determined. We
write

FISM, = 0. Wy6in) — 51b)(10in) =0 Wy = 833 1b

b pulley will rotate counterclockwise.

counterclockwise and noting that

a, = (i3 fax ag = (3 fyaw

Equations of Motion. A single system consisting of the pulley and the two
blocks is considered. Forces external to this system consist of the weights
of the pulley and the two blocks and of the reaction at G. (The forces
exerted by the cables on the pulley and on the blocks are internal to the
system considered and cancel out.) Since the motion of the pulley is a cen-
troidal rotation and the motion of each block is a translation, the effective
forces reduce to the couple IA and the two vectors ma, and may The
centroidal moment of inertia of the pulley is

W _ 121

T=mit= Ve 12b
g 32.2 ft/s

(2 ft)> = 0.16561b - ft - s°
Since the system of the external forces is equipollent to the system of the
effective forces, we write
+1ZM¢ = Z(Mc)eqs:
(10 Ib)( ft) — (5 Ib)(33 ft) = +Ia + mpap(S ft) + maas(s ft)
(1)) — (5)(3) = 0.1656a + 33(132)(13) + 533(132)(12)
a = +2.374 rad/s® A = 2.37 rad/s’ |

ay = raa = (19 ft)(2.374 rad/s?) a, = 1.978 ft/s™><
rga = (3 ft)(2.374 rad/s?) ag 1.187 ft/s>w

ap
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SAMPLE PROBLEM 16.4

A cord is wrapped around a homogeneous disk of radius » = 0.5 m and
mass m = 15 kg. If the cord is pulled upward with a force T of magnitude
180 N, determine (a) the acceleration of the center of the disk, (b) the
angular acceleration of the disk, (c) the acceleration of the cord.

SOLUTION

Equations of Motion. We assume that the components a, and a, of the
acceleration of the center are directed, respectively, to the right and upward
and that the angular acceleration of the disk is counterclockwise. The exter-
nal forces acting on the disk consist of the weight W and the force T exerted
by the cord. This system is equivalent to the system of the effective forces,
which consists of a vector of components ma, and ma, attached at G and a
couple TA. We write

yEFx = E<Fx)eff:
BEF, = S(F,

= ma, a, =0

0
j)eff: T — W =ma

AxpertSoft Trial Version ke)(©.81 m/s?) = 147.1 N, we

_ 180N — 147.1N 5 - 2
- T — 4919m/s a, = 2.19 m/s<

" 15 kg J
+IZMg = S(Mg) o —Tr =1Ia
—Tr = (%mrz)a
2T 2(180 N
a=-——"—-= __2080N) _ —48.0 rad/s”

mr (15 kg)(0.5 m)
A = 48.0 rad/s’ i

Acceleration of Cord. Since the acceleration of the cord is equal to the
tangential component of the acceleration of point A on the disk, we write
A = (ax); = a + (ayg):
= [2.19 m/s™<] + [(0.5 m)(48 rad/s*»<]
a.q = 26.2 m/s™<
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SAMPLE PROBLEM 16.5

A uniform sphere of mass m and radius r is projected along a rough hori-
zontal surface with a linear velocity v, and no angular velocity. Denoting by
m;. the coefficient of kinetic friction between the sphere and the floor, deter-
mine (a) the time ¢; at which the sphere will start rolling without sliding,
(b) the linear velocity and angular velocity of the sphere at time ¢;.

SOLUTION

Equations of Motion. The positive sense is chosen to the right for a and
clockwise for A. The external forces acting on the sphere consist of the
weight W, the normal reaction N, and the friction force F. Since the point
of the sphere in contact with the surface is sliding to the right, the friction
force F is directed to the left. While the sphere is sliding, the magnitude
of the friction force is F = miN. The effective forces consist of the vector
ma attached at G and the couple IA. Expressing that the system of the
external forces is equivalent to the system of the effective forces, we write

+)(2Fy = E(Fy)eff: N-W=0
N=W=mg F = mN = mung
S—/EFr = E(Fx)eff: —F = ma —Mpmg = ma a = —Mg

AXpertSOft Trial VerSion the value obtained for F, we write

. 5 Mg
(mkmg)T = %mrza a= 57

Kinematics of Motion. As long as the sphere both rotates and slides, its
linear and angular motions are uniformly accelerated.

t=0,0=n0 0 =uvyt+ at = vy, — Mgt (1)
5 Mg
t=0,vy=0 v=Vv,t+ta=0+(-—]t (2)
2 r
The sphere will start rolling without sliding when the velocity v¢ of

the point of contact C is zero. At that time, ¢t = ¢;, point C becomes the
instantaneous center of rotation, and we have

v =1V, (3)

Substituting in (3) the values obtained for v; and v; by making ¢ = ¢, in (1)
and (2), respectively, we write

_ 5 Mg 2 v
Uo—mkgt1=r ETtl th = -—

Substituting for ¢, into (2), we have

v =30, Sme(2 ) o BB 5%

12r12r7mkg YT YT
) (550> L -
vy =1V = - U] = 709 Vi =700Y
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SOULVINGIEROBLEIVIY
ON RO URSOVVIN

r I Yhis chapter deals with the plane motion of rigid bodies, and in this first lesson
we considered rigid bodies that are free to move under the action of applied
forces.

1. Effective forces. We first recalled that a rigid body consists of a large number
of particles. The effective forces of the particles forming the body were found to
be equivalent to a vector ma attached at the mass center G of the body and a
couple of moment IA [Fig. 16.7]. Noting that the applied forces are equivalent to
the effective forces, we wrote

SF. = ma, SF,

SM, = Ia (16.5)

where a, and @, are the x and y components of the acceleration of the mass center
G of the body and a is the angular acceleration of the body. It is important to
note that when these equations are used, the moments of the applied forces
must be computed with respect to the mass center of the body. However, you learned
a more efficient method of solution based on the use of a free-body-diagram

equation.

= may

2. Free-body-diagram
should be to draw a

a. A free-body-qEEEVAV(eIsTaSTe) 1M N F-URVY/CT ¢S To] o M- e senting two
equivalent systems d phow the forces
exerted on the body, including the applied forces, the reactions at the supports,
and the weight of the body. In the second diagram you should show the vector
ma and the couple IA representing the effective forces.

b. Using a free-body-diagram equation allows you to sum components in
any direction and to sum moments about any point. When writing the three equa-
tions of motion needed to solve a given problem, you can therefore select one or
more equations involving a single unknown. Solving these equations first and sub-
stituting the values obtained for the unknowns into the remaining equation(s) will
yield a simpler solution.

equation. Your first step in the solution of a problem
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3. Plane motion of a rigid body. The problems that you will be asked to solve
will fall into one of the following categories.

a. Rigid body in translation. For a body in translation, the angular accelera-
tion is zero. The effective forces reduce to the vector ma applied at the mass center
[Sample Probs. 16.1 and 16.2].

b. Rigid body in centroidal rotation. For a body in centroidal rotation, the
acceleration of the mass center is zero. The effective forces reduce to the couple
IA [Sample Prob. 16.3].

c. Rigid body in general plane motion. You can consider the general plane
motion of a rigid body as the sum of a translation and a centroidal rotation. The

effective forces are equivalent to the vector ma and the couple IA [Sample Probs.
16.4 and 16.5].

4. Plane motion of a system of rigid bodies. You first should draw a free-body-
diagram equation that includes all the rigid bodies of the system. A vector ma and
a couple IA are attached to each body. However, the forces exerted on each other
by the various bodies of the system can be omitted, since they occur in pairs of
equal and opposite forces.

a. If no mg ou can use this free-
body—diagram d AxpertSOft Trial Version n and'sum moments
about any poin e desired unknowns
[Sample Prob. I

b. If more than three unknowns are involved, you must draw a separate
free-body-diagram equation for each of the rigid bodies of the system. Both inter-
nal forces and external forces should be included in each of the free-body-diagram
equations, and care should be taken to represent with equal and opposite vectors
the forces that two bodies exert on each other.

1055
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PROBLEMS

CONCEPT QUESTIONS

16.€Q1 Two pendulums, A and B, with the masses and lengths shown are
released from rest. Which system has a larger mass moment of
inertia about its pivot point?
a. A
b. B

c. They are the same.

Fig. P16.€Q1 and P16.CQ2

the masses and lengths shown are
has a larger angular acceleration

AxpertSoft Trial Version

a. A
b. B

c. They are the same.

16.€CQ3 Two solid cylinders, A and B, have the same mass m and the
radii 2r and r; respectively. Each is accelerated from rest with
a force applied as shown. In order to impart identical angular
accelerations to both cylinders, what is the relationship between

F, and F,?
a. F] = 05F2
b. F1:F2
C. F1:2F2
d. F1:4F2
e. F, =SF,
F
A
Fy
B

Fig. P16.CQ3
1056
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FREE BODY PRACTICE PROBLEMS Problems 1057

16.F1 A 6-ft board is placed in a truck with one end resting against a
block secured to the floor and the other leaning against a verti-
cal partition. Draw the FBD and KD necessary to determine the
maximum allowable acceleration of the truck if the board is to
remain in the position shown.

16.F2 A uniform circular plate of mass 3 kg is attached to two links AC
and BD of the same length. Knowing that the plate is released
from rest in the position shown, in which lines joining G to A and Fig. P16.F1
B are, respectively, horizontal and vertical, draw the FBD and KD
for the plate.

16.F3 Two uniform disks and
Disk A weighs 20 1b a
system is released fro

system.
Ta Ts
A B
3.3ft
G
clis 18 5 6.6 ft .
Fig. P16.F3
16.F4 The 400-b crate shown is lowered by means of two overhead
cranes. Knowing the tension in each cable, draw the FBD and KD 18 f; -

that can be used to determine the angular acceleration of the crate
and the acceleration of the center of gravity. Fig. P16.F4
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1058 Plane Motion of Rigid Bodies: END-OF-SECTION PROBLEMS

Forces and Accelerations

16.1 A conveyor system is fitted with vertical panels, and a 15-in. rod
AB weighing 5 Ib is lodged between two panels as shown. If the
rod is to remain in the position shown, determine the maximum
allowable acceleration of the system.

/

B
O=0 =00
—
Fig. P16.1 and P16.2

16.2 A conveyor system is fitted with vertical panels, and a 15-in. rod AB
welghlng 5 lb is lodged between two panels as shown. Knowing

— amematom is 3 ft/s> to the left, determine
t C, (b) the reaction at B.

atic friction between the tires and
opile shown, determine the maximum
p0551ble acceleratlon on a level road, assuming (a) four-wheel
drive, (b) rear-wheel drive, (c¢) front-wheel drive.

60 in. 40 in.
Fig. P16.3

16.4 The motion of the 2.5-kg rod AB is guided by two small wheels

B P which roll freely in horizontal slots. If a force P of magnitude 8 N

LN is applied at B, determine (@) the acceleration of the rod, (b) the
reactions at A and B.

\/ 16.5 A uniform rod BC of mass 4 kg is connected to a collar A by a

250-mm cord AB. Neglecting the mass of the collar and cord,
@ determine (@) the smallest constant acceleration a, for which the
cord and the rod will lie in a straight line, (b) the corresponding
tension in the cord.

Fig. P16.4

Fig. P16.5



http://www.axpertsoft.com/pdf-splitter-software/

16.6 A 2000-kg truck is being used to lift a 400-kg boulder B that is on
a 50-kg pallet A. Knowing the acceleration of the rear-wheel-drive
truck is 1 m/s>, determine (a) the reaction at each of the front
wheels, (b) the force between the boulder and the pallet.

10.6 m .

1.4m 2m 1.2 m

Fig. P16.6

16.7 The support bracket shown is used to transport a cylindrical can
from one elevation to another. Knowing that m; = 0.25 between the
can and the bracket, determine (a) the magnitude of the upward
acceleration a for which the can will slide on the bracket, (b) the
smallest ratio h/d for which i1l ti it sli

/ | h
: i
Fig. P16.7

16.8 Solve Prob. 16.7, assuming that the acceleration a of the bracket
is directed downward.

16.9 A 20-kg cabinet is mounted on casters that allow it to move freely
(m = 0) on the floor. If a 100-N force is applied as shown, deter-
mine (a) the acceleration of the cabinet, (b) the range of values of
h for which the cabinet will not tip.

16.10 Solve Prob. 16.9, assuming that the casters are locked and slide on
the rough floor (m, = 0.25).

Problems

G
() —
100 N g
1 09m
h g
j 1% %)

Fig. P16.9
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1060 Plane Moféon of lRigid Bodies: 16.11 A completely filled barrel and its contents have a combined mass
Forces and Accelerations of 90 kg. A cylinder C is connected to the barrel at a height h =

550 mm as shown. Knowing m; = 0.40 and m; = 0.35, determine
the maximum mass of C so the barrel will not tip.

[<— 500 mm —|

900 mm °

450 mm

Fig. P16.11

16.12 A 40-kg vase has a 200-mm-diameter base and is being moved
using a 100-kg utility cart as shown. The cart moves freely (m =
0) on the ground. Knowing the coefficient of static friction between
the vase and the cart is m; = 0.4, determine the maximum force
F that can be applied if the vase is not to slide or tip.

AxpertSoft Trial Version

Fig. P16.12

16.13 The retractable shelf shown is supported by two identical linkage-
and-spring systems; only one of the systems is shown. A 20-kg
machine is placed on the shelf so that half of its weight is supported
by the system shown. If the springs are removed and the system is
released from rest, determine (a) the acceleration of the machine,
(b) the tension in link AB. Neglect the weight of the shelf and links.

50 mm 100 mm

Fig. P16.13
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16.14

16.15

16.16

16.17

16.18

A uniform rectangular plate has a mass of 5 kg and is held in posi-
tion by three ropes as shown. Knowing that u = 30°, determine,
immediately after rope CF has been cut, (@) the acceleration of the
plate, (b) the tension in ropes AD and BE.

| =l
/ :}%ﬂ\ A ’\

(®

©

240 mm

| 300 mm !
Fig. P16.14 and P16.15

A uniform rectangular plate has a mass of 5 kg and is held in
tion by three ropes as s
which both ropes AD a

CF has been cut.

Three bars, each of mass 3 kg, are welded together and pin-
connected to two links BE and CF. Neglecting the weight of the
links, determine the force in each link immediately after the system
is released from rest.

Members ACE and DCB are each 600 mm long and are connected
by a pin at C. The mass center of the 10-kg member AB is located
at G. Determine (a) the acceleration of AB immediately after the
system has been released from rest in the position shown, (b) the
corresponding force exerted by roller A on member AB. Neglect
the weight of members ACE and DCB.

The 15-1b rod BC connects a disk centered at A to crank CD.
Knowing that the disk is made to rotate at the constant speed of
180 rpm, determine for the position shown the vertical compo-
nents of the forces exerted on rod BC by pins at B and C.

30in. i

Fig. P16.18

AxpertSoft Trial Version

Problems

1061

450 mm

iiSO“
E(@l

Fig. P16.16

Fig. P16.17
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1062 Plane Motion of Rigid Bodies: 16.19 The triangular weldment ABC is guided by two pins that slide

Forces and Accelerations freely in parallel curved slots of radius 6 in. cut in a vertical plate.
The weldment weighs 16 Ib and its mass center is located at point
G. Knowing that at the instant shown the velocity of each pin is
30 in./s downward along the slots, determine (a) the acceleration

|~—6in.—>
A

)C_ of the weldment, (b) the reactions at A and B.
3in.
] I 16.20 The coefficients of friction between the 30-1b block and the 5-lb
T platform BD are m; = 0.50 and m; = 0.40. Determine the accelera-
6in. tions of the block and of the platform immediately after wire AB

has been cut.

le— =

Fig. P16.19

1]

Fig. P16.20

16.21 Draw the shear and bending-moment diagrams for the vertical rod
AB of Prob. 16.16.

ent diagrams for the connecting

- grmmriow that the system of the effective
forces consists of vectors (Am )a attached to the various particles
of the slab, where a is the acceleration of the mass center G of the
slab. Further show, by computing their sum and the sum of their
moments about G, that the effective forces reduce to a single vec-
Fig. P16.23 tor ma attached at G.

(Am)(erx ;) 16.24 For a rigid slab in centroidal rotation, show that the system of the
effective forces consists of vectors —(Am;)V2r] and (Am;)(A X r})
attached to the various particles P; of the slab, where V and A are
the angular velocity and angular acceleration of the slab, and where
r; denotes the position vector of the particle P; relative to the mass
center G of the slab. Further show, by computing their sum and
the sum of their moments about G, that the effective forces reduce
to a couple IA.

16.25 The rotor of an electric motor has an angular velocity of 3600 rpm
Fig. P16.24 when the load and power are cut off. The 50-kg rotor, which has a
centroidal radius of gyration of 180 mm, then coasts to rest. Know-
ing that kinetic friction results in a couple of magnitude 3.5 N - m
exerted on the rotor, determine the number of revolutions that the
rotor executes before coming to rest.

16.26 It takes 10 min for a 6000-Ib flywheel to coast to rest from an
angular velocity of 300 rpm. Knowing that the radius of gyration
of the flywheel is 36 in., determine the average magnitude of the
couple due to kinetic friction in the bearings.
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16.27 The S-in.-radius brake drum is attached to a larger flywheel that

16.28

16.29

16.30

16.31

16.32

16.33

is not shown. The total mass moment of inertia of the drum and
the flywheel is 14 1b - ft - s? and the coefficient of kinetic friction
between the drum and the brake shoe is 0.35. Knowing that the
angular velocity of the flywheel is 360 rpm counterclockwise when
a force P of magnitude 75 Ib is applied to the pedal C, determine
the number of revolutions executed by the flywheel before it
comes to rest.

Solve Prob. 16.27, assuming that the initial angular velocity of the
flywheel is 360 rpm clockwise.

The 100-mm-radius brake drum is attached to a flywheel which is
not shown. The drum and flywheel together have a mass of 300 kg
and a radius of gyration of 600 mm. The coefficient of kinetic fric-
tion between the brake band and the drum is 0.30. Knowing that
a force P of magnitude 50 N is applied at A when the angular
velocity is 180 rpm counterclockwise, determine the time required
to stop the flywheel when ¢ = 200 mm and b = 160 mm.

Fig. P16.29

The 180-mm-radius disk is at rest when it is placed in contact with
a belt moving at a constant speed. Neglecting the weight of the
link AB and knowing that the coefficient of kinetic friction between
the disk and the belt is 0.40, determine the angular acceleration

of the disk while slipping occurs.

Solve Prob. 16.30, assuming that the direction of motion of the
belt is reversed.

In order to determine the mass moment of inertia of a flywheel of
radius 600 mm, a 12-kg block is attached to a wire that is wrapped
around the flywheel. The block is released and is observed to fall
3 m in 4.6 s. To eliminate bearing friction from the computation,
a second block of mass 24 kg is used and is observed to fall 3 m
in 3.1 s. Assuming that the moment of the couple due to friction
remains constant, determine the mass moment of inertia of the

flywheel.

The flywheel shown has a radius of 20 in., a weight of 250 Ib,
and a radius of gyration of 15 in. A 30-Ib block A is attached to
a wire that is wrapped around the flywheel, and the system is
released from rest. Neglecting the effect of friction, determine
(a) the acceleration of block A, (b) the speed of block A after it
has moved 5 ft.

Problems 1 063

C | .
| 15in.

Fig. P16.27

Fig. P16.30

Fig. P16.32 and P16.33
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1064 Plane Motion of Rigid Bodies: 16.34 Each of the double pulleys shown has a mass moment of inertia
Ferces and Accelerafians of 151b - ft - s and is initially at rest. The outside radius is 18 in.,
and the inner radius is 9 in. Determine (@) the angular acceleration
of each pulley, (b) the angular velocity of each pulley after point
A on the cord has moved 10 ft.

(e

Y
160 Ib

@ ) ©)) 4
Fig. P16.34

16.35 Each of the gears A and B has a mass of 9 kg and has a radius of
gyration of 200 mm; gear C has a mass of 3 kg and has a radius of
gyration of 75 mm. If a couple M of constant magnitude 5 N-m is
applied to gear C, determine (@) the angular acceleration of gear A,
(b) the tangential force which gear C exerts on gear A.

AxpertSoft Trial Version

Fig. P16.35

16.36 Solve Prob. 16.35, assuming that the couple M is applied to disk A.

16.37 Gear A weighs 1 1b and has a radius of gyration of 1.3 in; gear B
weighs 6 Ib and has a radius of gyration of 3 in.; gear C weighs 9 Ib
and has a radius of gyration of 4.3 in. Knowing a couple M of
constant magnitude of 40 Ib - in is applied to gear A, determine
(a) the angular acceleration of gear C, (b) the tangential force
which gear B exerts on gear C.

2 in.
<]

2 in. 4 in. 6 in.

Fig. P16.37
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16.38 Disks A and B are bolted together, and cylinders D and E are Problems 1065
attached to separate cords wrapped on the disks. A single cord
passes over disks B and C. Disk A weighs 20 1b and disks B and
C each weigh 12 Ib. Knowing that the system is released from rest
and that no slipping occurs between the cords and the disks, deter-
mine the acceleration (a) of cylinder D, (b) of cylinder E.

Fig. P16.38 :

Yo

16.39 A belt of negligible mass
lled to the right with a . .
R Rl AxpertSoft Trial Version

slot and the coefficients o
cylinders are m; = 0.50 and m; = 0.40. For P = 3.6 Ib, determine

(a) whether slipping occurs between the belt and either cylinder,

(b) the angular acceleration of each cylinder. Fig. P16.39

16.40 Solve Prob. 16.39 for P = 2.00 Ib.

16.41 Disk A has a mass of 6 kg and an initial angular velocity of 360 rpm
clockwise; disk B has a mass of 3 kg and is initially at rest. The disks
are brought together by applying a horizontal force of magnitude
20 N to the axle of disk A. Knowing that m; = 0.15 between the
disks and neglecting bearing friction, determine (a) the angular
acceleration of each disk, (b) the final angular velocity of each disk.

Fig. P16.41

16.42 Solve Prob. 16.41, assuming that initially disk A is at rest and disk
B has an angular velocity of 360 rpm clockwise.
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1066 Plane Motion of Rigid Bodies: 16.43

Forces and Accelerations
)
il

4 16.44

TA
@ @

Cmta

B

Fig. P16.43 and P16.44
16.45

Disk A has a mass my = 4 kg, a radius 74 = 300 mm, and an initial
angular velocity V,, = 300 rpm clockwise. Disk B has a mass mpz =
1.6 kg, a radius r5 = 180 mm, and is at rest when it is brought
into contact with disk A. Knowing that m; = 0.35 between the disks
and neglecting bearing friction, determine (a) the angular accelera-
tion of each disk, (b) the reaction at the support C.

Disk B is at rest when it is brought into contact with disk A, which
has an initial angular velocity V. (a) Show that the final angular
velocities of the disks are independent of the coefficient of friction
m;. between the disks as long as m; # 0. (b) Express the final angular
velocity of disk A in terms of v, and the ratio of the masses of the
two disks my /my.

Cylinder A has an initial angular velocity of 720 rpm clockwise,
and cylinders B and C are initially at rest. Disks A and B each
weigh 5 1b and have radius r = 4 in. Disk C weighs 20 1b and
has a radius of 8 in. The disks are brought together when C is
placed gently onto A and B. Knowing that m; = 0.25 between A
and C and no slipping occurs between B and C, determine
(a) the angular acceleration of each disk, (b) the final angular
velocity of each disk.

AxpertSoft Trial Version

16.46

(Amy)(erx )

Fig. P16.47

Fig. P16.45

Show that the system of the effective forces for a rigid slab in
plane motion reduces to a single vector, and express the distance
from the mass center G of the slab to the line of action of this
vector in terms of the centroidal radius of gyration k of the
slab, the magnitude a of the acceleration of G, and the angular
acceleration a.

For a rigid slab in plane motion, show that the system of the effective
forces consists of vectors (Am;)a, —(Am)V7r], and (Am,)(A X 1))
attached to the various particles P; of the slab, where a is the
acceleration of the mass center G of the slab, V is the angular
velocity of the slab, A is its angular acceleration, and r; denotes the
position vector of the particle P;, relative to G. Further show, by
computing their sum and the sum of their moments about G, that
the effective forces reduce to a vector ma attached at G and a
couple IA.
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16.48 A uniform slender rod AB rests on a frictionless horizontal surface, Problems 1067
and a force P of magnitude 0.25 Ib is applied at A in a direction
perpendicular to the rod. Knowing that the rod weighs 1.75 Ib,
determine (@) the acceleration of point A, (b) the acceleration of
point B, (¢) the location of the point on the bar that has zero
acceleration.

16.49 (a) In Prob. 16.48, determine the point of the rod AB at which the
force P should be applied if the acceleration of point B is to be
zero. (b) Knowing that P = 0.25 Ib, determine the corresponding
acceleration of point A.

16.50 A force P of magnitude 3 N is applied to a tape wrapped around
a thin hoop of mass 2.4 kg. Knowing that the body rests on a friction-
less horizontal surface, determine the acceleration of (a) point A,  Fig. P16.48
(b) point B.

Fig. P16.50

16.51 A force P is applied to a tape wrapped around a uniform disk that
rests on a frictionless horizontal surface. Show that for each 360°
rotation of the disk the center of the disk will move a distance pr.

Fig. P16.51

16.52 A 250-1b satellite has a radius of gyration of 24 in. with respect to
the y axis and is symmetrical with respect to the zx plane. Its ori-
entation is changed by firing four small rockets A, B, C, and D,
each of which produces a 4-1b thrust T directed as shown. Deter-
mine the angular acceleration of the satellite and the acceleration
of its mass center G (¢) when all four rockets are fired, (b) when
all rockets except D are fired. Fig. P16.52
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1068 Plane Motion of Rigid Bodies:

Forces and Accelerations

Fig. P16.53

16.53 A rectangular plate of mass 5 kg is suspended from four vertical
wires, and a force P of magnitude 6 N is applied to corner C as
shown. Immediately after P is applied, determine the acceleration
of (a) the midpoint of edge BC, (b) corner B.

16.54 A uniform slender L-shaped bar ABC is at rest on a horizontal
surface when a force P of magnitude 4 N is applied at point A.
Neglecting friction between the bar and the surface and knowing
that the mass of the bar is 2 kg, determine (a) the initial angular
acceleration of the bar, (b) the initial acceleration of point B.

Fig. P16.54

16.55 By pulling on the string of a yo-yo, a person manages to make the
0 spin, while remaining at the same elevation above the floor.

by m, the radius of the inner drum
y r, and the centroidal radius of
mine the angular acceleration of

0

Fig. P16.55 and P16.56

16.56 The 80-g yo-yo shown has a centroidal radius of gyration of
30 mm. The radius of the inner drum on which a string is wound
is 6 mm. Knowing that at the instant shown the acceleration of
the center of the yo-yo is 1 m/s? upward, determine (a) the
required tension T in the string, (b) the corresponding angular
acceleration of the yo-yo.
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16.57 A 6-lb sprocket wheel has a centroidal radius of gyration of Problems 1069
2.75 in. and is suspended from a chain as shown. Determine the
acceleration of points A and B of the chain, knowing that T, = 3 Ib
and Tz = 4 1b.

16.58 The steel roll shown has a mass of 1200 kg, a centroidal radius of
gyration of 150 mm, and is lifted by two cables looped around its
shaft. Knowing that for each cable T, = 3100 N and T = 3300 N,
determine (@) the angular acceleration of the roll, (b) the accelera-
tion of its mass center.

\“ B

Alle Fig. P16.57

8
100 T

Fig. P16.58 and P16.59

AxpertSoft Trial Version

16.59 The steel roll shown has .
of gyration of 150 mm, and is lifted by two cables looped around
its shaft. Knowing that at the instant shown the acceleration of the
roll is 150 mm/s* downward and that for each cable T, = 3000 N,
determine (@) the corresponding tension T, (b) the angular accel-
eration of the roll.

16.60 and 16.61 A 15-ft beam weighing 500 Ib is lowered by means
of two cables unwinding from overhead cranes. As the beam
approaches the ground, the crane operators apply brakes to slow
the unwinding motion. Knowing that the deceleration of cable A
is 20 ft/s> and the deceleration of cable B is 2 ft/s*, determine the
tension in each cable.

TTA ATe ATA ATe
I
|

A B A 12 ft B

)
C |
15 ft | ! 15 ft |

Fig. P16.60 Fig. P16.61
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1070 Plane Motion of Rigid Bodies: 16.62 Two uniform cylinders, each of weight W = 14 Ib and radius r =

Forces and Accelerations

5 in., are connected by a belt as shown. If the system is released
from rest, determine (@) the angular acceleration of each cylinder,
(b) the tension in the portion of belt connecting the two cylinders,
(c) the velocity of the center of the cylinder A after it has moved
through 3 ft.

Al

1 2
" Fig. P16.62
16.63 through 16.65 A beam AB of mass m and of uniform cross
I L 1 section is suspended from two springs as shown. If spring 2 breaks,

Fig. P16.63

determine at that instant () the angular acceleration of the bar,
(b) the acceleration of point A, (¢) the acceleration of point B.

1 2
Al
a |
| 4 |
Fig. P16.64 Fig. P16.65
16.66 through 16.68 A thin plate of the shape indicated and of mass
m is suspended from two springs as shown. If spring 2 breaks,
determine the acceleration at that instant (a) of point A, (b) of
point B.
16.66 A square plate of side b
16.67 A circular plate of diameter b
16.68 A rectangular plate of height b and width «
1 b 2

’4—1\7\0’—»
>

Fig. P16.66 Fig. P16.67 Fig. P16.68
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16.69 A sphere of radius r and mass m is projected along a rough horizontal Problems 1071
surface with the initial velocities indicated. If the final velocity of the
sphere is to be zero, express, in terms of vy, r, and my, (@) the required
magnitude of V, (b) the time ¢, required for the sphere to come to A
rest, (c) the distance the sphere will move before coming to rest. ‘

(2]
16.70 Solve Prob. 16.69, assuming that the sphere is replaced by a uni-

form thin hoop of radius r and mass m.

16.71 A bowler projects an 8-in.-diameter ball weighing 12 1b along an
alley with a forward velocity v, of 15 ft/s and a backspin V, of
9 rad/s. Knowing that the coefficient of kinetic friction between
the ball and the alley is 0.10, determine (@) the time ¢; at which
the ball will start rolling without sliding, (b) the speed of the ball

at time ¢, (¢) the distance the ball will have traveled at time ¢,.

Fig. P16.69

Vo

Fig. P16.71

16.72 Solve Prob. 16.71, assuming that the bowler projects the ball with
the same forward velocity but with a backspin of 18 rads.

16.73 A uniform sphere of rad

OO ER  AxpertSoft Trial Version
vy. Denoting by m; the ¢
sphere and the belt, determime (a
will start rolling without sliding, (b) the linear and angular veloci-
ties of the sphere at time ¢;.

9

Fig. P16.73

16.74 A sphere of radius r and mass m has a linear velocity v, directed to
the left and no angular velocity as it is placed on a belt moving to
the right with a constant velocity v,. If after first sliding on the belt the
sphere is to have no linear velocity relative to the ground as
it starts rolling on the belt without sliding, determine in terms of
vy and the coefficient of kinetic friction m; between the sphere and
the belt (a) the required value of v, (b) the time ¢, at which the
sphere will start rolling on the belt, (¢) the distance the sphere will
have moved relative to the ground at time ¢,.

Vo E j
D —"

Fig. P16.74
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1072

Plane Motion of Rigid Bodies:

Forces and Accelerations

Fig. 16.11

ax(6.0,0)

16.8 CONSTRAINED PLANE MOTION

Most engineering applications deal with rigid bodies which are mov-
ing under given constraints. For example, cranks must rotate about
a fixed axis, wheels must roll without sliding, and connecting rods
must describe certain prescribed motions. In all such cases, definite
relations exist between the components of the acceleration a of the
mass center G of the body considered and its angular acceleration
A; the corresponding motion is said to be a constrained motion.
The solution of a problem involving a constrained plane motion
calls first for a kinematic analysis of the problem. Consider, for exam-
ple, a slender rod AB of length [ and mass m whose extremities are
connected to blocks of negligible mass which slide along horizontal
and vertical frictionless tracks. The rod is pulled by a force P apphed
at A (Fig. 16.11). We know from Sec. 15.8 that the acceleration a of
the mass center G of the rod can be determined at any given instant
from the position of the rod, its angular velocity, and its angular accel-
eration at that instant. Suppose, for example, that the values of u, v,
and @ are known at a given instant and that we wish to determine
the corresponding value of the force P, as well as the reactions at A
and B. We should first determine the components a, and a, of the
acceleration of the mass center G by the method of Sec. 15.8. We
next apply d’Alembert’s principle (Fig. 16.12), using the expressions
obtained for a, and a,. The unknown forces P, N, and Ny can then
olvino the appropriate equations.

Fig. 16.12

Suppose now that the applied force P, the angle u, and the
angular velocity v of the rod are known at a given instant and that
we wish to find the angular acceleration a of the rod and the com-

onents a, and a, of the acceleration of its mass center at that instant,
as well as the reactions at A and B. The preliminary kinematic study
of the problem will have for its object to express the components a,
and a, of the acceleration of G in terms of the angular acceleration
a of the rod. This will be done by first expressing the acceleration
of a suitable reference point such as A in terms of the angular accel-
eration @. The components a, and a, of the acceleration of G can
then be determined in terms of @, and the expressions obtained car-
ried into Fig. 16.12. Three equations can then be derived in terms
of a, Ny, and Ny and solved for the three unknowns (see Sample
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Prob. 16.10). Note that the method of dynamic equilibrium can also
be used to carry out the solution of the two types of problems we
have considered (Fig. 16.13).

When a mechanism consists of several moving parts, the
approach just described can be used with each part of the mecha-
nism. The procedure required to determine the various unknowns is
then similar to the procedure followed in the case of the equilibrium
of a system of connected rigid bodies (Sec. 6.11).

Earlier, we analyzed two particular cases of constrained plane
motion: the translation of a rigid body, in which the angular accelera-
tion of the body is constrained to be zero, and the centroidal rotation,
in which the acceleration a of the mass center of the body is con-
strained to be zero. Two other particular cases of constrained plane
motion are of special interest: the noncentroidal rotation of a rigid
body and the rolling motion of a disk or wheel. These two cases can
be analyzed by one of the general methods described above. How-
ever, in view of the range of their applications, they deserve a few
special comments.

Noncentroidal Rotation.  The motion of a rigid body constrained
to rotate about a fixed axis which does not pass through its mass
center is called noncentroidal rotation. The mass center G of the
body moves along a circle of radius r centered at the point O, where
the axis of rotation intersects the plane of reference (Flg 16.14).
Denoting, respectively, by V
angular acceleration of the ling
sions for the tangential and ng

of G:

a=ra a,=rnrv (16.7)

Since line OG belongs to the body, its angular velocity V and its
angular acceleration A also represent the angular velocity and the
angular acceleration of the body in its motion relative to G. Equa-
tions (16.7) define, therefore, the kinematic relation existing between
the motion of the mass center G and the motion of the body about
G. They should be used to eliminate @, and @, from the equations
obtained by applying d’Alembert’s principle (Fig. 16.15) or the
method of dynamic equilibrium (Fig. 16.16).

16.8 Constrained Plane Motion 1073

Fig. 16.13

Fig. 16.15

Fig. 16.16
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Plane Motion of Rigid Bodies:
Forces and Accelerations

Fig. 16.16

(repeated)

Fig. 16.15 (repeated)

An interesting relation is obtained by equating the moments
about the fixed point O of the forces and vectors shown, respectively,
in parts @ and b of Fig. 16.15. We write

+1=M, = Ia + (mra)r = (I + mr)a

But according to the parallel-axis theorem, we have T + mr® = I,
where I denotes the moment of inertia of the rigid body about the
fixed axis. We therefore write

EMO = Ioa (16.8)

mportant relation between the

AxpertSoft Trial Version orces about the fixed point O

early understood that this for-
mula does not mean that the system of the external forces is equiva-
lent to a couple of moment Ipa. The system of the effective forces,
and thus the system of the external forces, reduces to a couple only
when O coincides with G—that is, only when the rotation is centroi-
dal (Sec. 16.4). In the more general case of noncentroidal rotation,
the system of the external forces does not reduce to a couple.

A particular case of noncentroidal rotation is of special interest—
the case of uniform rotation, in which the angular velocity V is con-
stant. Since A is zero, the inertia couple in Fig. 16.16 vanishes and
the inertia vector reduces to its normal component. This component
(also called centrifugal force) represents the tendency of the rigid
body to break away from the axis of rotation.

Rolling Motion. Another important case of plane motion is the
motion of a disk or wheel rolling on a plane surface. If the disk is
constrained to roll without sliding, the acceleration a of its mass
center G and its angular acceleration A are not independent. Assum-
ing that the disk is balanced, so that its mass center and its geometric
center coincide, we first write that the distance x traveled by G dur-
ing a rotation U of the disk is x = ru, where r is the radius of the
disk. Differentiating this relation twice, we write

a=ra (16.9)
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Recalling that the system of the effective forces in plane motion
reduces to a vector ma and a couple IA, we find that in the particular
case of the rolling motion of a balanced disk, the effective forces
reduce to a vector of magnitude mra attached at G and to a couple
of magnitude Ia. We may thus express that the external forces are
equivalent to the vector and couple shown in Fig. 16.17.

When a disk rolls without sliding, there is no relative motion
between the point of the disk in contact with the ground and the
ground itself. Thus, as far as the computation of the friction force F
is concerned, a rolling disk can be compared with a block at rest on
a surface. The magnitude F of the friction force can have any value,
as long as this value does not exceed the maximum value F,, = mN,
where m; is the coefficient of static friction and N is the magnitude
of the normal force. In the case of a rolling disk, the magnitude F of
the friction force should therefore be determined independently of N
by solving the equation obtained from Fig. 16.17.

When sliding is impending, the friction force reaches its maxi-
mum value F,, = mN and can be obtained from N.

When the disk rotates and slides at the same time, a relative
motion exists between the point of the disk which is in contact with
the ground and the ground itself, and the force of friction has the
magnitude Fy = m;N, where my is the coefficient of kinetic friction.
In this case, however, the motion of the mass center G of the disk
and the rotation of the disk about G are independent, and a is not
equal to ra.

These three different cas

16.8 Constrained Plane Motion 1075
W
p i
ma(a=ra)
_ ({a
-
E
N
Fig. 16.17
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Rolling, no sliding:
Rolling, sliding impending: a=ra

Rotating and sliding:

F =mN
F =mN

When it is not known whether or not a disk slides, it should first be
assumed that the disk rolls without sliding. If F is found smaller than
or equal to MmN, the assumption is proved correct. If F is found larger
than mN, the assumption is incorrect and the problem should be
started again, assuming rotating and sliding.

When a disk is unbalanced, i.e., when its mass center G does
not coincide with its geometric center O, the relation (16.9) does not
hold between ¢ and a. However, a similar relation holds between
the magnitude ao of the acceleration of the geometric center and
the angular acceleration a of an unbalanced disk which rolls without
sliding. We have

a and a independent

(16.10)

ap = ra

To determine a in terms of the angular acceleration a and the angular
velocity v of the disk, we can use the relative-acceleration formula

¢ = ap 1t agp
=ap + (ago) T (ago)

5:

(16.11)

where the three component accelerations obtained have the direc-
tions indicated in Fig. 16.18 and the magnitudes ap = ra, (ago); =
(0G)a, and (acp), = (OG)V™.

Photo 16.4 As the ball hits the bowling alley,
it first spins and slides, then rolls without sliding.

e @ciohn
G ag

(ag/ok
C

Fig. 16.18


http://www.axpertsoft.com/pdf-splitter-software/

SAMPLE PROBLEM 16.6

o The portion AOB of a mechanism consists of a 400-mm steel rod OB welded
to a gear E of radius 120 mm which can rotate about a horizontal shaft O.
It is actuated by a gear D and, at the instant shown, has a clockwise angular
mm velocity of 8 rad/s and a counterclockwise angular acceleration of 40 rad/s>.
Knowing that rod OB has a mass of 3 kg and gear E a mass of 4 kg and a
radius of gyration of 85 mm, determine (a) the tangential force exerted by
gear D on gear E, (b) the components of the reaction at shaft O.

SOLUTION

In determining the effective forces of the rigid body AOB, gear E and rod
OB will be considered separately. Therefore, the components of the accel-
eration of the mass center Gy of the rod will be determined first:

(apg), = ra = (0.200 m) (40 rad/s>) = 8 m/s>

(aog), = rv> = (0.200 m)(8 rad/s)* = 12.8 m/s>

Equations of Motion. Two sketches of the rigid body AOB have been
gl drawn. The first shows the external forces consisting of the weight Wy of
gear E, the weight Wy of the rod OB, the force F exerted by gear D, and
at O. The magnitudes of the

’;—1 AxpertSoft Trial Version
w $*) = 392N

oB — Mopg = m/s?) = 29.4 N

The second sketch shows the effective forces, which consist of a couple A

4 _E> = T EE Y (since gear E is in centroidal rotation) and of a couple and two vector com-
L/ 0.200 Mo (@og)n ponents at the mass center of OB. Since the accelerations are known, we
Gog LGOB Mog(aop); compute the magnitudes of these components and couples:
P Ira = mgkza = (4kg)(0.085 m)*(40 rad/s*) = 1.156 N - m
WOB IOBa n’LOB(EOB)t = <3 kg)(S m/32) : 24.0 N
sU s mop(aos), = (3kg)(12.8 m/s*) = 38.4 N

Topa = (f5mepL?®)a = 75(3 kg) (0.400 m)*(40 rad/s*) = 1.600 N - m

Expressing that the system of the external forces is equivalent to the system
of the effective forces, we write the following equations:

+IEMO = E(Mo>eff:

F(0.120 m) = Iza + mop(aop),(0.200 m) + I za
F(0.120 m) = 1.156 N - m + (24.0 N)(0.200 m) + 1.600 N - m

F = 630N F = 63.0 Nw
V3F, = Z(F,)es: R, = mog(aop)
R, = 240 N R, = 240Ny
BEF, = Z(F, )i R, — F = Wy — Wog = mop(aop)
Ry —63.0 N — 392 N — 294 N = 384 N
R, = 1700 N R, = 170.0 Nx
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SAMPLE PROBLEM 16.7

A 6 X 8 in. rectangular plate weighing 60 Ib is suspended from two pins A
and B. If pin B is suddenly removed, determine (a) the angular acceleration
of the plate, (b) the components of the reaction at pin A, immediately after
pin B has been removed.

SOLUTION

a. Angular Acceleration. We observe that as the plate rotates about point
A, its mass center G describes a circle of radius r with center at A.

Since the plate is released from rest (v = 0), the normal component
of the acceleration of G is zero. The magnitude of the acceleration a of the
mass center G is thus ¢ = ra. We draw the diagram shown to express that

the external forces are equivalent to the effective forces:
+iZM, = (Mo Wx = (ma)r + Ia

Since a = ra, we have

@)

60 b .

12 O 12(32 2 ft/s?)
=0.10781b - ft - s>

=20+ 1) =

Substituting this value of I together with W = 60 Ib, ¥ = 3 ft, and x = 75 ft
into Eq. (1), we obtain
a = +46.4 rad/s> A = 46.4 rad/s®i

b. Reaction at A.  Using the computed value of &, we determine the mag-
nitude of the vector ma attached at G.

60 Ib
ma = mra = 72(1% ft) (46.4 rad/s?) = 36.01b

32.2 ft/s
Showing this result on the diagram, we write the equations of motion
YV SF, = S(F)r: A, = —36 Ib)

= —-2161b A, =2161b =z
BEF, = 2(F ;. A, — 601b = —5(36 Ib)

A, = +3121b A, =312 1bx

The couple IA is not involved in the last two equations; nevertheless, it should
be indicated on the diagram.

1077
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SAMPLE PROBLEM 16.8

A sphere of radius r and weight W is released with no initial velocity on

the incline and rolls without slipping. Determine () the minimum value of

the coefficient of static friction compatible with the rolling motion, (b) the

velocity of the center G of the sphere after the sphere has rolled 10 ft,

(c) the velocity of G if the sphere were to move 10 ft down a frictionless
6=30° 30° incline.

SOLUTION

a. Minimum M, for Rolling Motion. The external forces W, N, and F form
a system equivalent to the system of effective forces represented by the vector
ma and the couple IA. Since the sphere rolls without sliding, we have a = ra.

+iZMy = Z(Mg)os: (W sin U)r = (ma)r + fg
(W sin Wr = (mra)r + Ia

e
C

Noting that m = W/g and I = 2mr’, we write

w 2 W . 5¢ sin U
(Wsinu)r = (*r&l)r +=—+’a a=+ 5
g 5 g Tr
' %) sin 30°
T 1150 fi/s?
sin U
Wismu — = — 2
g 7
: F = +2W sinu = 2W sin 30° F = 0.143W b 30°
+72F, = 2(F,)eg: N — Wcosu =0
d N = W cos u = 0.866W N = 0.866W a 60°
Ch
N m = F_ 0143w m, = 0.165
~ s N 0.866W

~
Xb. Velocity of Rolling Sphere. We have uniformly accelerated motion:

5,=0 a=1150fs> x=10ft X, =0
ot =105+ 2(x —x) ©0° =0+ 2(11.50 ft/s?)(10 ft)
v=1517fts v = 1517 ft/s C 30°

c. Velocity of Sliding Sphere. Assuming now no friction, we have F = 0

and obtain
+iZM; = S(Me)y: 0= 1Ia a=0
, w
+NIF, = Z(F ) W sin 30° = ma 0.50W = E a
a = +16.1 fus® a = 16.1 fs> c 30°

Substituting @ = 16.1 ft/s> into the equations for uniformly accelerated
motion, we obtain

o = vp + 2a(x — %) o2 =0 + 2(16.1 ft/s3)(10 ft)
v = 17.94 ft/s v = 1794 f's c 30°

1078


http://www.axpertsoft.com/pdf-splitter-software/

100mm 60 mm SAMPLE PROBLEM 16.9

A cord is wrapped around the inner drum of a wheel and pulled horizontally
with a force of 200 N. The wheel has a mass of 50 kg and a radius of gyra-

200 N tion of 70 mm. Knowing that m; = 0.20 and m; = 0.15, determine the
acceleration of G and the angular acceleration of the wheel.

SOLUTION

a. Assume Rolling without Sliding. In this case, we have
a = ra = (0.100 m)a

We can determine whether this assumption is justified by comparing the
friction force obtained with the maximum available friction force. The
moment of inertia of the wheel is

I = mk* = (50 kg)(0.070 m)* = 0.245 kg - m*

Equations of Motion

FiSMe = S(Mo)yr: (200 N)(0.040 m) = ma(0.100 m) + Ia
)

w 800N - m = (50 kg
A

0.100 m)a(0.100 m) + (0.245 kg - m*)a
/2

0.74 rad/s®) = 1.074 m/s>

a
0 kg)(1.074 m/s*)
F = -1463 N F = 1463N =z

y off:
N-W=0 N-W=mg=(50kg)9.81 m/s>) = 490.5 N
N = 490.5 NXx

Maximum Available Friction Force
F,.. = mN = 0.20(490.5 N) = 98.1 N

Since F > F,,, the assumed motion is impossible.

b. Rotating and Sliding. Since the wheel must rotate and slide at the
same time, we draw a new diagram, where a and A are independent and
where

F=F, = mN = 0.15490.5 N) = 73.6 N

From the computation of part a, it appears that F should be directed to the
ma left. We write the following equations of motion:

Oﬁ)myxa = S(F)u: 200N — 736 N = (50 ke)a
' a = +2.53 m/s> a=253msy
+i2Mc = E(Mc)eff:
(73.6 N)(0.100 m) — (200 N)(0.060 m) = (0.245 kg - m*)a
a= —1894rad/s> A = 18.94 rad/s® |
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B/~\ SAMPLE PROBLEM 16.10

friction along two straight tracks as shown. If the rod is released with no
velocity from the position shown, determine (a) the angular acceleration of
the rod, (b) the reactions at A and B.

N The extremities of a 4-ft rod weighing 50 1b can move freely and with no

(DA

SOLUTION

Kinematics of Motion. Since the motion is constrained, the acceleration
of G must be related to the angular acceleration A. To obtain this relation,
we first determine the magnitude of the acceleration a, of point A in terms
of a. Assuming that A is directed counterclockwise and noting that ay,, =
4a, we write

ap = ay T agjy
lag € 45°] = [a, Y] + [4a A 60°]

a Noting that ¥ = 75° and using the law of sines, we obtain

SN 4, = 546a  ay = 4902

a [
° el The acceleration of G is now obtained by writing

2 AxpertSoft Trial Version RS
%L\%ﬁ’\ ag/a S S #Ehtain
TTe a, = 5.46a — 2a cos 60° = 446a  a, = 446ay
a, = —2asin 60° = —1.732a a, = 1.732aw

Kinetics of Motion. We draw a free-body-diagram equation expressing that
the system of the external forces is equivalent to the system of the effective
forces represented by the vector of components ma, and ma, attached at G
and the couple IA. We compute the following magnitudes:

- 1 501b ~
I=imlP=———"""-(4f)>=2071b - ft - > Ia = 2.07a
= o ety O °
50 N 50
= ——(4.46a) = 6.93a = ——(1.732a) = —2.69a
E E may = o5 5 (4:463) may = ~55! )
A AT
7 1 Equations of Motion
/o =
7 A8 S ladstt +1SMy = S(Mp)ey:
, s | (50)(1.732) = (6.93a)(4.46) + (2.69a)(1.732) + 2.07a

a = +2.30 rad/s® A = 2.30 rad/s® |

|
|
I —
s : — <& le |
Rg | may | +
= | S—Y  S/SF, = S(F).: Ry sin 45° = (6.93)(2.30) = 15.94
—_y > Ljift Ry = 2251b R, = 2251b & 45°

Yy
Ra EF, = S(F,)qr: Ry + Ry cos 45° — 50 = —(2.69)(2.30)
1.732 ft 1.732 ft 1.732 ft Ry, = —6.19 — 1594 + 50 = 279 |b R, = 279 Ibx
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SOULVINGIEROBLEIVIY
DN RO URSOVVIN

In this lesson we considered the plane motion of rigid bodies under constraints.
We found that the types of constraints involved in engineering problems vary
widely. For example, a rigid body may be constrained to rotate about a fixed axis or
to roll on a given surface, or it may be pin-connected to collars or to other bodies.

1. Your solution of a problem involving the constrained motion of a rigid
body, will, in general, consist of two steps. First, you will consider the kinematics
of the motion, and then you will solve the kinetics portion of the problem.

2. The kinematic analysis of the motion is done by using the methods you
learned in Chap. 15. Due to the constraints, linear and angular accelerations will
be related. (They will not be independent, as they were in the last lesson.) You
should establish relationships among the accelerations (angular as well as linear),
and your goal should be to express all accelerations in terms of a single unknown
acceleration. This is the first step taken in the solution of each of the sample
problems in this lesson.

a. For a body in noncentroidal rotation, the components of the acceleration
of the mass center are @, = ra and a, = rv>, where v will generally be known
[Sample Probs. '

b. For a ro ) .
BN AxpertSoft Trial Version

c. For a bo¥® . e of action, if neither
a nor a is known or readily obtainable, is to express a in terms of a [Sample Prob.

16.10].

ass center is ¢ = ra

3. The kinetic analysis of the motion is carried out as follows.

a. Start by drawing a free-body-diagram equation. This was done in all
the sample problems of this lesson. In each case the left-hand diagram shows the
external forces, including the applied forces, the reactions, and the weight of the
body. The right-hand diagram shows the vector ma and the couple IA.

b. Next, reduce the number of unknowns in the free-body-diagram equation
by using the relationships among the accelerations that you found in your kine-
matic analysis. You will then be ready to consider equations that can be written
by summing components or moments. Choose first an equation that involves a
single unknown. After solving for that unknown, substitute the value obtained into
the other equations, which you will then solve for the remaining unknowns.

(continued)
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1082

4. When solving problems involving rolling disks or wheels, keep in mind the
following.

a. If sliding is impending, the friction force exerted on the rolling body has
reached its maximum value, F,, = m\N, where N is the normal force exerted on
the body and m; is the coefficient of static friction between the surfaces of
contact.

b. If sliding is not impending, the friction force F can have any value smaller
than F,, and should, therefore, be considered as an independent unknown. After
you have determined F, be sure to check that it is smaller than F,; if it is not, the
body does not roll, but rotates and slides as described in the next paragraph.

c. If the body rotates and slides at the same time, then the body is not
rolling and the acceleration @ of the mass center is independent of the angular
acceleration a of the body: @ # ra. On the other hand, the friction force has a
well-defined value, F = miN, where my is the coefficient of kinetic friction between
the surfaces of contact.

d. For an unbalanced rolling disk or wheel, the relation @ = ra between
the acceleration a of the mass center G and the angular acceleration a of the
disk or wheel does not hold anymore. However, a similar relation holds between
the acceleration ag off ‘celeration a of

the disk or wheel: a . . s = in terms of
a and v (Fig. 16.18 AxpertSoft Trial Version

5. For a system of connected rigid bodies, the goal of your kinematic analysis
should be to determine all the accelerations from the given data, or to express
them all in terms of a single unknown. (For systems with several degrees of free-
dom, you will need to use as many unknowns as there are degrees of freedom.)

Your kinetic analysis will generally be carried out by drawing a free-body-
diagram equation for the entire system, as well as for one or several of the rigid
bodies involved. In the latter case, both internal and external forces should be
included, and care should be taken to represent with equal and opposite vectors
the forces that two bodies exert on each other.


http://www.axpertsoft.com/pdf-splitter-software/

PROBLEMS

CONCEPT QUESTIONS

16.CQ4

A cord is attached to a spool when a force P is applied to the cord
as shown. Assuming the spool rolls without slipping, what direc-
tion does the spool move for each case?

Case 1: a. left b. right ¢. It would not move.

Case 2: a. left b. right c. It would not move.
Case 3: a. left b. right c. It would not move.

Fig. P16.CQ4 and P16.CQ5

16.CQ5

16.CQ6

16.CQ7

Case 1

A cord is attached to a spool when a force P is applied to the cord
as shown. Assuming the spool rolls without slipping, in what direc-
tion does the friction force act for each case?

Case 1: a. left b. right e. The friction force would be zero.
Case 2: a. left b. right ¢. The friction force would be zero.
Case 3: a. left b. right ¢. The friction force would be zero.

A front-wheel-drive car starts from rest and accelerates to the
right. Knowing that the tires do not slip on the road, what is
the direction of the friction force the road applies to the front
tires?

a. left

b. right

c. The friction force is zero.

A front-wheel-drive car starts from rest and accelerates to the
right. Knowing that the tires do not slip on the road, what is
the direction of the friction force the road applies to the rear
tires?

a. left

b. right

c. The friction force is zero.

AxpertSoft Trial Version
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1084 Plane Motion of Rigid Bodies:

Forces and Accelerations

FREE BODY PRACTICE PROBLEMS

16.F5 A uniform 6 X 8-in. rectangular plate of mass m is pinned at A.

= 6 in. . Knowing the angular velocity of the plate at the instant shown is

Fig. P16.F5

V, draw the FBD and KD.

16.F6 Two identical 4-Ib slender rods AB and BC are connected by a pin
at B and by the cord AC. The assembly rotates in a vertical plane
under the combined effect of gravity and a couple M applied to rod
AB. Knowing that in the position shown the angular velocity of the
assembly is V, draw the FBD and KD that can be used to determine

8in.

the angular acceleration of the assembly.
E— _ c
A

o/B
L~ | ™
| 12in. |

Fig. P16.F6

16.F7 The 4-1b uniform rod AB is attached to collars of negligible mass
the fixed rods shown. Rod AB is at
n a horizontal force P is applied to
ng to the left. Draw the FBD and

Fig. P16.F7

16.F8 A uniform disk of mass m = 4 kg and radius » = 150 mm is sup-
ported by a belt ABCD that is bolted to the disk at B and C. If the
belt suddenly breaks at a point located between A and B, draw the
FBD and KD for the disk immediately after the break.

30° /‘

Fig. P16.F8
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END-OF-SECTION PROBLEMS Problems 1085

16.75 Show that the couple IA of Fig 16.15 can be eliminated by attach-
ing the vectors ma, and ma, at a point P called the center of per-
cussion, located on line OG at a distance GP = k% from the mass
center of the body.

Fig. P16.75

L
2
16.76 A uniform slender rod of length L = 900 mm and mass m = 4 kg
is suspended from a hinge at C. A horizontal force P of magnitude o
75 N is applied at end B. Knowing that r = 225 mm, determine <
(a) the angular acceleration of the rod, (b) the components of the B
reaction at C. Fig. P16.76

16.77 In Prob. 16.76, determine (a) the distance r for which the hori-
zontal component of the reaction at C is zero. (b) the correspond-
ing angular acceleration

16.78 A uniform slender rod of AXpertSOft Trlal Version

freely from a hinge at A. T¥= e A
at B horizontally to the left (h = L) determine (a) the angular _’7
h

acceleration of the rod, (b) the components of the reaction at A.

16.79 In Prob. 16.78, determine (a) the distance h for which the hori-
zontal component of the reaction at A is zero, (b) the correspond- L
ing angular acceleration of the rod.

16.80 The uniform slender rod AB is welded to the hub D, and the
system rotates about the vertical axis DE with a constant angular U
velocity V. (a) Denoting by w the mass per unit length of the rod, ——
express the tension in the rod at a distance z from end A in terms ~ Fig. P16.78
of w, [, z, and V, (b) Determine the tension in the rod for w =
0.3 kg/m, [ = 400 mm, z = 250 mm, and vV = 150 rpm.

B

Fig. P16.80
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1086 Plane Moféon of lRigid Bodies: 16.81 The shutter shown was formed by removing one quarter of a disk of
Forces and Accelerations 0.75-in. radius and is used to interrupt a beam of light emanating
from a lens at C. Knowing that the shutter weighs 0.125 Ib and rotates

at the constant rate of 24 cycles per second, determine the magnitude
of the force exerted by the shutter on the shaft at A.
16.82 A 6-in.-diameter hole is cut as shown in a thin disk of 15-in. diameter.
The disk rotates in a horizontal plane about its geometric center A
- at the constant rate of 480 rpm. Knowing that the disk has a mass
of 60 lb after the hole has been cut, determine the horizontal com-
ponent of the force exerted by the shaft on the disk at A.

Fig. P16.81

es at a constant rate of 9600 rpm.

_ the disk coincides with the center

Fig. P16.83 of rotation O, determine the reaction at O immediately after a single
blade at A, of mass 45 g, becomes loose and is thrown off.

16.84 and 16.85 A uniform rod of length L and mass m is supported
_@_ as shown. If the cable attached at end B suddenly breaks, determine
(a) the acceleration of end B, (b) the reaction at the pin support.

A B
E’o‘ _@_
|
I L oL
Fig. P16.84 o= “_:Ip B
A@© o
R S E—
4 in A | L
Fig. P16.85
r B
5in.
4___@i 16.86 A 12-1b uniform plate rotates about A in a vertical plane under the
5 in. combined effect of gravity and of the vertical force P. Knowing
I that at the instant shown the plate has an angular velocity of
| 20 rad/s and an angular acceleration of 30 rad/s> both counterclock-
; 20 in. 1

wise, determine (a) the force P, (b) the components of the reaction
Fig. P16.86 at A.
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16.87

16.88

16.89

16.90

A 1.5-kg slender rod is welded to a 5-kg uniform disk as shown.
The assembly swings freely about C in a vertical plane. Knowing
that in the position shown the assembly has an angular velocity of
10 rad/s clockwise, determine (a) the angular acceleration of the
assembly, (b) the components of the reaction at C.

Two uniform rods, ABC of weight 6 Ib and DCE of weight 8 Ib,
are connected by a pin at C and by two cords BD and BE. The
T-shaped assembly rotates in a vertical plane under the combined
effect of gravity and of a couple M which is applied to rod ABC.
Knowing that at the instant shown the tension in cord BE is 2 1b
and the tension in cord BD is 0.5 lb, determine (a) the angular
acceleration of the assembly, (b) the couple M.

D)
b

\_ / M

9in.

4_,&3

9in.

@«

D
12 in.

Fig. P16.88

The object ABC consists of two slender rods welded together at point B.
Rod AB has a weight of 2 Ib and bar BC has a weight of 4 1b. Know-
ing the magnitude of the angular velocity of ABC is 10 rad/s when
u = 0° determine the components of the reaction at point C when
u=0°

A 3.5-kg slender rod AB and a 2-kg slender rod BC are connected
by a pin at B and by the cord AC. The assembly can rotate in a
vertical plane under the combined effect of gravity and a couple
M applied to rod BC. Knowing that in the position shown the
angular velocity of the assembly is zero and the tension in cord AC
is equal to 25 N, determine (@) the angular acceleration of the
assembly, (b) the magnitude of the couple M.

[<— 400 mm —»I«— 400 mm —|

Fig. P16.90

Problems

A B

Fig. P16.87

2 1t

Fig. P16.89

1087
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1088 Plane Motion of Rigid Bodies: 16.91 A 9-kg uniform disk is attached to the 5-kg slender rod AB by

Forces and Accelerations means of frictionless pins at B and C. The assembly rotates in a
vertical plane under the combined effect of gravity and of a couple
M which is applied to rod AB. Knowing that at the instant shown
the assembly has an angular velocity of 6 rad/s and an angular
acceleration of 25 rad/s%, both counterclockwise, determine (a) the
couple M, (b) the force exerted by pin C on member AB.

16.92 Derive the equation ZM. = Ica for the rolling disk of Fig. 16.17,
where =M represents the sum of the moments of the external
forces about the instantaneous center C, and I is the moment of
inertia of the disk about C.

Fig. P16.91
16.93 Show that in the case of an unbalanced disk, the equation derived
in Prob. 16.92 is valid only when the mass center G, the geometric
center O, and the instantaneous center C happen to lie in a straight
line.

16.94 A wheel of radius r and centroidal radius of gyration k is released
from rest on the incline and rolls without sliding. Derive an expres-
sion for the acceleration of the center of the wheel in terms of r,

k, b, and g.

P N
/

AxpertSoft Trial Version i‘

B
Fig. P16.94

16.95 A homogeneous sphere S, a uniform cylinder C, and a thin pipe P
are in contact when they are released from rest on the incline
shown. Knowing that all three objects roll without slipping, deter-
mine, after 4 s of motion, the clear distance between (a) the pipe

Fig. P16.95 and the cylinder, (b) the cylinder and the sphere.

16.96 A 40-kg flywheel of radius R = 0.5 m is rigidly attached to a shaft
of radius » = 0.05 m that can roll along parallel rails. A cord is
attached as shown and pulled with a force P of magnitude 150 N.
Knowing the centroidal radius of gyration is k = 0.4 m, determine
(a) the angular acceleration of the flywheel, (b) the velocity of the
center of gravity after 5 s.

16.97 A 40-kg flywheel of radius R = 0.5 m is rigidly attached to a shaft
of radius r = 0.05 m that can roll along parallel rails. A cord is
attached as shown and pulled with a force P. Knowing the centroi-
dal radius of gyration is k = 0.4 m and the coefficient of static

15° friction is m; = 0.4, determine the largest magnitude of force P for

Fig. P16.96 and P16.97 which no slipping will occur.
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16.98 through 16.101 A drum of 60-mm radius is attached to a disk Problems 1089
of 120-mm radius. The disk and drum have a total mass of 6 kg and
a combined radius of gyration of 90 mm. A cord is attached as
shown and pulled with a force P of magnitude 20 N. Knowing that
the disk rolls without sliding, determine (a) the angular acceleration
of the disk and the acceleration of G, (b) the minimum value of the
coefficient of static friction compatible with this motion.

16.102 through 16.105 A drum of 4-in. radius is attached to a disk of
8-in. radius. The disk and drum have a combined weight of 10 Ib
and a combined radius of gyration of 6 in. A cord is attached as
shown and pulled with a force P of magnitude 5 Ib. Knowing that
the coefficients of static and kinetic friction are m; = 0.25 and
m;. = 0.20, respectively, determine (a) whether or not the disk slides,
(b) the angular acceleration of the disk and the acceleration of G.

\ &)

Fig. P16.98 and P16.102

Fig. P16.99 and P16.103

Fig. P16.100 and P16.104

16.106 and 16.107 A 12-in.-radius cylinder of weight 16 Ib rests on a
6-1b carriage. The system is at rest when a force P of magnitude
4 1b is applied. Knowing that the cylinder rolls without sliding on
the carriage and neglecting the mass of the wheels of the carriage,
determine (a) the acceleration of the carriage, (b) the acceleration
of point A, (¢) the distance the cylinder has rolled with respect to
the carriage after 0.5 s.

. &

B
R v %] ¥

Fig. P16.106 Fig. P16.107

\ B

@Cﬂ

16.108 Gear C has a mass of 5 kg and a centroidal radius of gyration of
75 mm. The uniform bar AB has a mass of 3 kg and gear D is
stationary. If the system is released from rest in the position shown,
determine (a) the angular acceleration of gear C, (b) the accelera-
tion of point B. Fig. P16.108
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1090 Plane Motion of Rigid Bodies: 16.109 Two uniform disks A and B, each of mass 2 kg, are connected by

Forces and Accelerations

+ A 3
Q ©
50 mm A B
\ 150 mm 150 mm
M

Fig. P16.109

Fig. P16.110

16.112

16.113
Fig. P16.113

B 16.114

16.115

Fig. P16.114 and P16.115

a 1.5-kg rod CD as shown. A counterclockwise couple M of
moment 2.5 N-m is applied to disk A. Knowing that the disks roll
without sliding, determine (@) the acceleration of the center of
each disk, (b) the horizontal component of the force exerted on

disk B by pin D.

16.110 A 10-Ib cylinder of radius r = 4 in. is resting on a conveyor belt

when the belt is suddenly turned on and it experiences an accelera-
tion of magnitude ¢ = 6 ft/s>. The smooth vertical bar holds the
cylinder in place when the belt is not moving. Knowing the cylin-
der rolls without slipping and the friction between the vertical bar
and the cylinder is negligible, determine (a) the angular accelera-
tion of the cylinder, (b) the components of the force the conveyor

belt applies to the cylinder.

A hemisphere of weight W and radius r is released from rest in
the position shown. Determine (a) the minimum value of m for
which the hemisphere starts to roll without sliding, (b) the corre-
sponding acceleration of point B [Hint: Note that OG = gr and that,
by the parallel-axis theorem, I = Zmr® — m(OG)*]

Fig. P16.111

Solve Prob. 16.111, considering a half cylinder instead of a hemi-
sphere. [Hint: Note that OG = 41/3p and that, by the parallel-axis
theorem, I = Jmr* — m(OG)%]

The center of gravity G of a 1.5-kg unbalanced tracking wheel is
located at a distance r = 18 mm from its geometric center B. The
radius of the wheel is R = 60 mm and its centroidal radius of
gyration is 44 mm. At the instant shown the center B of the wheel
has a velocity of 0.35 m/s and an acceleration of 1.2 m/s%, both
directed to the left. Knowing that the wheel rolls without sliding
and neglecting the mass of the driving yoke AB, determine the
horizontal force P applied to the yoke.

A small clamp of mass my is attached at B to a hoop of mass my,
The system is released from rest when u = 90° and rolls without
sliding. Knowing that m;, = 3my, determine (a) the angular accel-
eration of the hoop, (b) the horizontal and vertical components of
the acceleration of B.

A small clamp of mass my is attached at B to a hoop of mass my,
Knowing that the system is released from rest and rolls without
sliding, derive an expression for the angular acceleration of the
hoop in terms of mg, my, r, and u.
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16.116 A 4-1b bar is attached to a 10-lb uniform cylinder by a square pin, P,
as shown. Knowing that r = 16 in., h = 8 in.,, u = 20°, L. = 20 in,,
and v = 2 rad/s at the instant shown, determine the reactions at
P at this instant assuming that the cylinder rolls without sliding
down the incline.

16.117 The ends of the 20-Ib uniform rod AB are attached to collars of
negligible mass that slide without friction along fixed rods. If the
rod is released from rest when u = 25°, determine immediately
after release (a) the angular acceleration of the rod, (b) the reaction
at A, (c) the reaction at B.

)
|l

16.118 The ends of the 20-1b
negligible mass that slidd
cal force P is applied to
to start from rest with a oo .
mine (a) the force P, (b) the reaction at A.

16.119 The motion of the 3-kg uniform rod AB is guided by small wheels
of negligible weight that roll along without friction in the slots
shown. If the rod is released from rest in the position shown, deter-
mine immediately after release (@) the angular acceleration of the
rod, (b) the reaction at B.

16.120 A beam AB of length L and mass m is supported by two cables as
shown. If cable BD breaks, determine at that instant the tension in
the remaining cable as a function of its initial angular orientation u.

Y

y \QL{«
AN 67\
4 7%
Al B

Fig. P16.120

16.121 End A of a uniform 10-kg bar is attached to a horizontal rope and
end B contacts a floor with negligible friction. Knowing that the
bar is released from rest in the position shown, determine imme-
diately after release (a) the angular acceleration of the bar, (b) the
tension in the rope, (c¢) the reaction at B.

Problems 1 09]

Fig. P16.116

0.8 m

Fig. P16.119

Fig. P16.121
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1092 Plane Motion of Rigid Bodies: 16.122 End A of the 8-kg uniform rod AB is attached to a collar that can

Forces and Accelerations

slide without friction on a vertical rod. End B of the rod is attached
to a vertical cable BC. If the rod is released from rest in the posi-
tion shown, determine immediately after release (a) the angular
acceleration of the rod, (b) the reaction at A.

16.123 A uniform thin plate ABCD has a mass of 8 kg and is held in posi-
tion by three inextensible cords AE, BF, and CG. If cord AE is
cut, determine at that instant (@) if the plate is undergoing transla-
tion or general plane motion, (b) the tension in cords BF and CG.

Fig. P16.122

200 mm °

16.124 The 4-kg uniform rod ABD is attached to the crank BC and is
fitted with a small wheel that can roll without friction along a verti-
cal slot. Knowing that at the instant shown crank BC rotates with
an angular velocity of 6 rad/s clockwise and an angular acceleration
of 15 rad/s®> counterclockwise, determine the reaction at A.

16.125 The 7-Ib uniform rod AB is connected to crank BD and to a collar
C of negligible weight, which can slide freely along rod EF. Knowing
that in the position shown crank BD rotates with an angular veloc-
ity of 15 rad/s and an angular acceleration of 60 rad/s®, both clock-
wise, determine the reaction at A.

| 25 in. |

~
5]

=
o)
S

Fig. P16.124 A

s R(©)

30°

Fig. P16.125

16.126 In Prob. 16.125, determine the reaction at A, knowing that in the
position shown crank BD rotates with an angular velocity of 15 rad/s
clockwise and an angular acceleration of 60 rad/s® counterclockwise.
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16.127 The 250-mm uniform rod BD, of mass 5 kg, is connected as shown
to disk A and to a collar of negligible mass, that may slide freely
along a vertical rod. Knowing that disk A rotates counterclockwise
at a constant rate of 500 rpm, determine the reactions at D when
u=0.

e

50 mm

D

N 150 mm —

Fig. P16.127

16.128 Solve Prob. 16.127 when u = 90°.

16.129 The 4-kg uniform slender bar BD is attached to bar AB and a
wheel of negligible mass that rolls on a circular surface. Knowing
that at the instant shown, - g
and no angular accelerat . .
g AxpertSoft Trial Version
16.130 The motion of the unifo\
mass m = 3 kg is guided by pins at A and B that slide freely in
frictionless slots, circular and horizontal, cut into a vertical plate as
shown. Knowing that at the instant shown the rod has an angular
velocity of 3 rad/s counterclockwise and u = 30°, determine the
reactions at points A and B.

16.131 At the instant shown, the 20-ft-long, uniform 100-Ib pole ABC has
an angular velocity of 1 rad/s counterclockwise and point C is slid-
ing to the right. A 120-Ib horizontal force P acts at B. Knowing the
coefficient of kinetic friction between the pole and the ground is
0.3, determine at this instant (a) the acceleration of the center of
gravity, (b) the normal force between the pole and the ground.

A

fi
80°/' 6 ft

Cc

Fig. P16.131

Problems 1 093

15m

0.75m

Fig. P16.130
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1094 Plane Motion of Rigid Bodies: 16.132

Forces and Accelerations

16.133

16.134

Fig. P16.132

*16.135

200 mm

*16.136
Fig. P16.135 and P16.136

16.137

Fig. P16.137 16.138

A driver starts his car with the door on the passenger’s side wide
open (U = 0). The 80-Ib door has a centroidal radius of gyration
k = 12.5 in., and its mass center is located at a distance r = 22 in.
from its vertical axis of rotation. Knowing that the driver maintains
a constant acceleration of 6 ft/s>, determine the angular velocity of
the door as it slams shut (U = 90°).

For the car of Prob. 16.132, determine the smallest constant accel-
eration that the driver can maintain if the door is to close and latch,
knowing that as the door hits the frame its angular velocity must be
at least 2 rad/s for the latching mechanism to operate.

Two 8-1b uniform bars are connected to form the linkage shown.
Neglecting the effect of friction, determine the reaction at D
immediately after the linkage is released from rest in the position
shown.

| 15in. 15in. !
Fig. P16.134

The 6-kg rod BC connects a 10-kg disk centered at A to a 5-kg rod
CD. The motion of the system is controlled by the couple M
applied to disk A. Knowing that at the instant shown disk A has an
angular velocity of 36 rad/s clockwise and no angular acceleration,
determine (a) the couple M, (b) the components of the force
exerted at C on rod BC.

The 6-kg rod BC connects a 10-kg disk centered at A to a 5-kg rod
CD. The motion of the system is controlled by the couple M
applied to disk A. Knowing that at the instant shown disk A has an
angular velocity of 36 rad/s clockwise and an angular acceleration
of 150 rad/s> counterclockwise, determine (a) the couple M,
(b) the components of the force exerted at C on rod BC.

In the engine system shown [ = 250 mm and b = 100 mm. The
connecting rod BD is assumed to be a 1.2-kg uniform slender rod
and is attached to the 1.8-kg piston P. During a test of the system,
crank AB is made to rotate with a constant angular velocity of
600 rpm clockwise with no force applied to the face of the piston.
Determine the forces exerted on the connecting rod at B and D
when u = 180°. (Neglect the effect of the weight of the rod.)

Solve Prob. 16.137 when u = 90°.
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16.139 The 4-1b rod AB and the 6-1b rod BC are connected as shown to
a disk that is made to rotate in a vertical plane at a constant angular
velocity of 6 rad/s clockwise. For the position shown, determine
the forces exerted at A and B on rod AB.

16.140 The 4-1b rod AB and the 6-lb rod BC are connected as shown to
a disk that is made to rotate in a vertical plane. Knowing that at
the instant shown the disk has an angular acceleration of 18 rad/s?
clockwise and no angular velocity, determine the components of
the forces exerted at A and B on rod AB.

16.141 Two rotating rods in the vertical plane are connected by a slider
block P of negligible mass. The rod attached at A has a weight of
1.6 Ib and a length of 8 in. Rod BP weighs 2 Ib and is 10 in. long
and the friction between block P and AE is negligible. The motion
of the system is controlled by a couple M applied to rod BP. Know-
ing that rod BP has a constant angular velocity of 20 rad/s clock-
wise, determine (a) the couple M, (b) the components of the force
exerted on AE by block P.

16.142 Two rotating rods in the vertical plane are connected by a slider
block P of negligible mass. The rod attached at A has a mass of
0.8 kg and a length of 160 mm. Rod BP has a mass of 1 kg and is
200 mm long and the friction between block P and AE is negligible.
The motion of the system is controlled by a couple M applied to bar
BP. Knowing that at the instant shown rod BP has an angular velomty
of 20 rad/s clockwise and ga-and g0 2
wise, determine (a) the

CEPRtEY  AxpertSoft Trial Version

*16.143 Draw the shear and bending-moment diagrams for
16.77 immediately after the cable at B breaks.

*16.144 A uniform slender bar AB of mass m is suspended as shown from
a uniform disk of the same mass m. Neglecting the effect of fric-
tion, determine the accelerations of points A and B immediately
after a horizontal force P has been applied at B.

16.145 A uniform rod AB, of mass 15 kg and length 1 m, is attached to
the 20-kg cart C. Neglecting friction, determine immediately after
the system has been released from rest, (a) the acceleration of the
cart, (b) the angular acceleration of the rod.

B
Fig. P16.145

3in.

6 in. —
Al‘—ln |B

Problems

1095

e

?16.141 and P16.142

Fig. P16.144

A
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1096 Plane Motion of Rigid Bodies:

Forces and Accelerations

*16.146 The 5-kg slender rod AB is pin-connected to an 8-kg uniform disk
as shown. Immediately after the system is released from rest,
determine the acceleration of (a) point A, (b) point B.

| 250 mm

100 mm

INC o) c

Fig. P16.146

*16.147 and *16.148 The 6-1b cylinder B and the 4-1b wedge A are held
at rest in the position shown by cord C. Assuming that the cylinder
rolls without sliding on the wedge and neglecting friction between
the wedge and the ground, determine, immediately after cord C
has been cut, (a) the acceleration of the wedge, (b) the angular
acceleration of the cylinder.

L
Bl
f
b
| L
G
cd—t

Fig. P16.149 and P16.150

Fig. P16.148

*16.149 Each of the 3-kg bars AB and BC is of length L = 500 mm. A
horizontal force P of magnitude 20 N is applied to bar BC as
shown. Knowing that b = L (P is applied at C), determine the
angular acceleration of each bar.

*16.150 Each of the 3-kg bars AB and BC is of length L = 500 mm. A
horizontal force P of magnitude 20 N is applied to bar BC. For
the position shown, determine (a) the distance b for which the bars
move as if they formed a single rigid body, (b) the corresponding

angular acceleration of the bars.

*16.151 (a) Determine the magnitude and the location of the maximum
bending moment in the rod of Prob. 16.78. (b) Show that the
answer to part a is independent of the weight of the rod.

*16.152 Draw the shear and bending-moment diagrams for the rod of Prob.
16.84 immediately after the cable at B breaks.
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In this chapter, we studied the kinetics of rigid bodies, i.e., the rela-
tions existing between the forces acting on a rigid body, the shape
and mass of the body, and the motion produced. Except for the first
two sections, which apply to the most general case of the motion of
a rigid body, our analysis was restricted to the plane motion of rigid
slabs and rigid bodies symmetrical with respect to the reference
plane. The study of the plane motion of nonsymmetrical rigid bodies
and of the motion of rigid bodies in three-dimensional space will be
considered in Chap. 18.

We first recalled [Sec. 16.2] the two fundamental equations derived Fundamental equations of motion
in Chap. 14 for the motion of a system of particles and observed that  for a rigid body

they apply in the most general case of the motion of a rigid body.
The first equation defines the motion of the mass center G of the
body; we have

where m is the mass of the b
second is related to the motio
frame of reference; we wrote

SM. = He (16.2)

. F
where H; is the rate of change of the angular momentum Hy; of the ’
body about its mass center G. Together, Egs. (16.1) and (16.2)
express that the system of the external forces is equipollent to the
system consisting of the vector ma attached at G and the couple of
moment Hg (Fig. 16.19). Fig. 16.19

Restricting our analysis at this point and for the rest of the chapter Angular momentum in plane motion
to the plane motion of rigid slabs and rigid bodies symmetrical with

respect to the reference plane, we showed [Sec. 16.3] that the angu-

lar momentum of the body could be expressed as

He; =1V (16.4)

where I is the moment of inertia of the body about a centroidal
axis perpendicular to the reference plane and V is the angular
velocity of the body. Differentiating both members of Eq. (16.4),
we obtained

H, =1V = IA (16.5)

which shows that in the restricted case considered here, the rate of
change of the angular momentum of the rigid body can be represented

1097


http://www.axpertsoft.com/pdf-splitter-software/

1098 FF’ldne MO'(;OR of lRigi? Bodies: by a vector of the same direction as A (i.e., perpendicular to the
orees an Accelerations plane of reference) and of magnitude Ia.

Equations for the plane motion It follows from [Sec. 16.4] that the plane motion of a rigid slab or
of a rigid body of a rigid body symmetrical with respect to the reference plane is
defined by the three scalar equations

2F. = ma, 2F, = ma,

SM;=1Ia  (16.6)

D’Alembert’s principle Tt further follows that the external forces acting on the rigid body
are actually equivalent to the effective forces of the various particles

F, ma - forming the body. This statement, known as d’Alembert’s principle,
can be expressed in the form of the vector diagram shown in Fig.

16.20, where the effective forces have been represented by a vector

ma attached at G and a couple IA. In the particular case of a slab

— d in translation, the effective forces shown in part b of this figure
reduce to the single vector ma, while in the particular case of a slab

in centroidal rotation, they reduce to the single couple IA; in any

other case of plane motion, both the vector ma and the couple IA

should be included.

Fs

@) (b)

Fig. 16.20 Any problem involving the plane motion of a rigid slab may be solved

by drawing a free-body-diagram equation similar to that of Fig. 16.20

[Sec. 16.6]. Three equations of motion can then be obtained by

nents, and moments about an

betors involved [Sample Probs.

ive solution can be obtained by

T tnertia vector —ma of sense opposite

to that of a, attached at G, and an inertia couple —IA of sense oppo-

site to that of A. The system obtained in this way is equivalent to
zero, and the slab is said to be in dynamic equilibrium.

Free-body-diagram equation

AxpertSoft Trial Version

Connected rigid bodies The method described above can also be used to solve problems
involving the plane motion of several connected rigid bodies [Sec.
16.7]. A free-body-diagram equation is drawn for each part of the
system and the equations of motion obtained are solved simultane-
ously. In some cases, however, a single diagram can be drawn for the
entire system, including all the external forces as well as the vectors
ma and the couples IA associated with the various parts of the sys-
tem [Sample Prob. 16.3].

Constrained plane motion In the second part of the chapter, we were concerned with rigid
bodies moving under given constraints [Sec. 16.8]. While the kinetic
analysis of the constrained plane motion of a rigid slab is the same
as above, it must be supplemented by a kinematic analysis which has
for its object to express the components a, and @, of the acceleration

of the mass center G of the slab in terms of its angular acceleration a.

Problems solved in this way included the noncentroidal rotation of

rods and plates [Sample Probs. 16.6 and 16.7], the rolling motion of

spheres and wheels [Sample Probs. 16.8 and 16.9], and the plane

motion of various types of linkages [Sample Prob. 16.10].
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REVIEW PROBLEMS

16.153 A cyclist is riding a bicycle at a speed of 20 mph on a horizontal
road. The distance between the axles is 42 in., and the mass center
of the cyclist and the bicycle is located 26 in. behind the front axle
and 40 in. above the ground. If the cyclist applies the brakes only
on the front wheel, determine the shortest distance in which he
can stop without being thrown over the front wheel.

16.154 The forklift truck shown weighs 2250 Ib and is used to lift a crate of
weight W = 2500 lb. The truck is moving to the left at a speed of
10 ft/s when the brakes are applied on all four wheels. Knowing that
the coefficient of static friction between the crate and the fork lift is
0.30, determine the smallest distance in which the truck can be
brought to a stop if the crate is not to slide and if the truck is not to

tip forward.
W
— .
[
4 ft

~—3ft ! 4ft
Fig. P16.154

16.155 A 5-kg uniform disk is attached to the 3-kg uniform rod BC by
means of a frictionless pin AB. An elastic cord is wound around
the edge of the disk and is attached to a ring at E. Both ring E
and rod BC can rotate freely about the vertical shaft. Knowing that
the system is released from rest when the tension in the elastic
cord is 15 N, determine (a) the angular acceleration of the disk,
(b) the acceleration of the center of the disk.

y

7

150 mm C

Fig. P16.155
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1100 Plane Motion of Rigid Bodies: 16.156 Identical cylinders of mass m and radius r are pushed by a series
Forces and Accelerations of moving arms. Assuming the coefficient of friction between all
surfaces to be m < 1 and denoting by @ the magnitude of the
acceleration of the arms, derive an expression for (@) the maximum
allowable value of a if each cylinder is to roll without sliding,
(b) the minimum allowable value of a if each cylinder is to move
to the right without rotating.

a
——

N@V@V@W@

16.157 The uniform rod AB of weight W is released from rest when
b = 70°. Assuming that the friction force between end A and the
surface is large enough to prevent sliding, determine immediately
after release (@) the angular acceleration of the rod, (b) the normal
reaction at A, (c) the friction force at A.

B

AxpertSoft Trial Version

Fig. P16.157 and P16.158

16.158 The uniform rod AB of weight W is released from rest when
b = 70°. Assuming that the friction force is zero between end A
and the surface, determine immediately after release (a) the angu-
lar acceleration of the rod, (b) the acceleration of the mass center
of the rod, (¢) the reaction at A.

16.159 A bar of mass m = 5 kg is held as shown between four disks, each
of mass m’ = 2 kg and radius r = 75 mm. Knowing that the normal
forces on the disks are sufficient to prevent any slipping, for each
of the cases shown determine the acceleration of the bar immedi-
ately after it has been released from rest.

4 @ €] A0 @ 4

5 [® € B 1 @® @ B

(a) (b)
Fig. P16.159
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16.160 A uniform plate of mass m is suspended in each of the ways shown. Review Problems 17101
For each case determine immediately after the connection B has
been released (@) the angular acceleration of the plate, (b) the
acceleration of its mass center.

.o

g«—Sprmgs
!B Aé

(o)

0«&@\9)@&&

RS [ W
1) 2 @)
Fig. P16.160

16.161 A cylinder with a circular hole is rolling without slipping on a fixed
curved surface as shown. The cylinder would have a weight of 16 Ib
without the hole, but with the hole it has a weight of 15 Ib. Know-
ing that at the instant shown the disk has an angular Velomty of
5 rad/s clockwise, determi a1
disk, (b) the components
and the ground at this i

|
|
|
|
36in. |
|
|
|
I

Fig. P16.161

16.162 The motion of a square plate of side 150 mm and mass 2.5 kg is
guided by pins at corners A and B that slide in slots cut in a vertical A
wall. Immediately after the plate is released from rest in the posi- C o ) N\
tion shown, determine (@) the angular acceleration of the plate,
(b) the reaction at corner A. Fig. P16.162

30°
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Plane Motion of Rigid Bodies:
Forces and Accelerations

16.163 The motion of a square plate of side 150 mm and mass 2.5 kg is
guided by a pin at corner A that slides in a horizontal slot cut in
a vertical wall. Immediately after the plate is released from rest in
the position shown, determine (a) the angular acceleration of the
plate, (b) the reaction at corner A.

30°
A
C o~ D)

Fig. P16.163

16.164 The Geneva mechanism shown is used to provide an intermittent
rotary motion of disk S. Disk D weighs 2 Ib and has a radius of
gyration of 0.9 in., and disk S weighs 6 1b and has a radius of gyra-
tion of 1.5 in. The motion of the system is controlled by a couple

attached to disk D and can slide

slots cut in disk S. It is desirable

S be zero as the pin enters and

ill occur if the distance between

the centers of the disks and the radii of the disks are related as

shown. Knowing disk D rotates with a constant counterclockwise
angular velocity of 8 rad/s and the friction between the slot and

pin P is negligible, determine when ¥ = 150° (@) the couple M,

(b) the magnitude of the force pin P applies to disk S.

AxpertSoft Trial Version

Rs =V3Rp
Disk S

Rp=1.25in.

Disk D
when ¢ = 120°

Fig. P16.164
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COMPUTER PROBLEMS

16.C1 The 5-1b rod AB is released from rest in the position shown.
(a) Assuming that the friction force between end A and the surface is large
enough to prevent sliding, using software calculate the normal reaction and
the friction force at A immediately after release for values of b from 0
to 85°. (b) Knowing that the coefficient of static friction between the rod
and the floor is actually equal to 0.50, determine the range of values of b
for which the rod will slip immediately after being released from rest.

L
16.C2 End A of the 5-kg rod AB is moved to the left at a constant speed
vy = 1.5 m/s. Using computational software calculate and plot the normal
reactions at ends A and B of the rod for values of u from 0 to 50°. Determine
the value of u at which end B of the rod loses contact with the wall.
A B
16.C3 A 30-1b cylinder of diameter b = 8 in. and height & = 6 in. is placed \'

on a 10-1b platform CD that is held in the position shown by three cables.

It is desired to determine the minimum value of m, between the cylinder = Fig. P16.C1

and the platform for which the cylinder does not slip on the platform, imme-

diately after cable AB is cut. Using computational software calculate and

plot the minimum allowable value of m; for values of u from 0 to 30°. Know- B
ing that the actual value of m, is 0.60, determine the value of u at which

slipping impends.

AxpertSoft Trial Version

L =450 mm

Fig. P16.C3 Fig. P16.C2

16.C4 For the engine system of Prob. 15.C3 of Chap. 15, the masses of
piston P and the connecting rod BD are 2.5 kg and 3 kg, respectively. Know-
ing that during a test of the system no force is applied to the face of the

piston, use computational software to calculate and plot the horizontal and

vertical components of the dynamic reactions exerted on the connecting rod 0 ¢ 0

at B and D for values of u from 0 to 180°. T 7
16.C5 A uniform slender bar AB of mass m is suspended from springs AC o @ vB
and BD as shown. Using computational software calculate and plot the | L |
accelerations of ends A and B, immediately after spring AC has broken, for ! !
values of u from 0 to 90°. Fig. P16.C5
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In this chapter the energy and
momentum methods will be added to
the tools available for your study of
the motion of rigid bodies. For
example, by using the principle of

conservation of energy and dire~t

application of Newton’s secon  AxpertSoft Trial Version
forces exerted on the hands ot s
gymnast can be determined as he
swings from one stationary hold to

another.
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Chapter 17 Plane Motion of Rigid
Bodies: Energy and Momentum
Methods

17.1  Introduction

17.2  Principle of Work and Energy for
a Rigid Body

17.3  Work of Forces Acting on a
Rigid Body

17.4  Kinetic Energy of a Rigid Body in
Plane Motion

17.5  Systems of Rigid Bodies

17.6  Conservation of Energy

17.7  Power

17.8  Principle of Impulse and
Momentum for the Plane Motion
of a Rigid Body

17.9  Systems of Rigid Bodies

17.10 Conservation of Angular
Momentum

17.11 Impulsive Motion

17.12 Eccentric Impact

17.1 INTRODUCTION

In this chapter the method of work and energy and the method of
impulse and momentum will be used to analyze the plane motion of
rigid bodies and of systems of rigid bodies.

The method of work and energy will be considered first. In
Secs. 17.2 through 17.5, the work of a force and of a couple will be
defined, and an expression for the kinetic energy of a rigid body in
plane motion will be obtained. The principle of work and energy will
then be used to solve problems involving displacements and veloci-
ties. In Sec. 17.6, the principle of conservation of energy will be
applied to the solution of a variety of engineering problems.

In the second part of the chapter, the principle of impulse and
momentum will be applied to the solution of problems involving veloc-
ities and time (Secs. 17.8 and 17.9) and the concept of conservation
of angular momentum will be introduced and discussed (Sec. 17.10).

In the last part of the chapter (Secs. 17.11 and 17.12), problems
involving the eccentric impact of rigid bodies will be considered. As
was done in Chap. 13, where we analyzed the impact of particles,
the coefficient of restitution between the colliding bodies will be
used together with the principle of impulse and momentum in the
solution of impact problems. It will also be shown that the method
used is applicable not only when the colliding bodies move freely
after the impact but also when the bodies are partially constrained

AxpertSoft Trial Version D ENERGY

Photo 17.1 The work done by friction reduces
the kinetic energy of the wheel.

1106

The principle of work and energy will now be used to analyze the
plane motion of rigid bodies. As was pointed out in Chap. 13, the
method of work and energy is particularly well adapted to the solu-
tion of problems involving velocities and displacements. Its main
advantage resides in the fact that the work of forces and the kinetic
energy of particles are scalar quantities.

In order to apply the principle of work and energy to the analy-
sis of the motion of a rigid body, it will again be assumed that the
rigid body is made of a large number n of particles of mass Am,.
Recalling Eq. (14.30) of Sec. 14.8, we write

Tl + U1y2 = T2 (171)

where Ty, T, = initial and final values of total kinetic energy of particles
forming the rigid body
Uiye = work of all forces acting on various particles of the body

The total kinetic energy
1 n
T = 5 > Am v} (17.2)
i=1
is obtained by adding positive scalar quantities and is itself a positive

scalar quantity. You will see later how T can be determined for vari-
ous types of motion of a rigid body.
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; ; 17.3 Work of Forces Acting on a
The expression Ujys in (17.1) represents the work of all the Righ Body 1107

forces acting on the various particles of the body, whether these forces
are internal or external. However, as you will see presently, the total
work of the internal forces holding together the particles of a rigid
body is zero. Consider two particles A and B of a rigid body and the
two equal and opposite forces F and —F they exert on each other
(Fig. 17.1). While, in general, small displacements dr and dr’ of the
two particles are different, the components of these displacements
along AB must be equal; otherwise, the particles would not remain at
the same distance from each other and the body would not be rigid.
Therefore, the work of F is equal in magnitude and opposite in sign
to the work of —F, and their sum is zero. Thus, the total work of the
internal forces acting on the particles of a rigid body is zero, and the
expression Uyyys in Eq. (17.1) reduces to the work of the external forces
acting on the body during the displacement considered.

17.3 WORK OF FORCES ACTING ON A RIGID BODY

We saw in Sec. 13.2 that the work of a force F during a displacement
of its point of application from A; to A, is

As
U1y2 ZJ F:dr (].7.3)
Ay
or

AxpertSoft Trial Version

where F is the magnitude of the force, a is the angle it forms with
the direction of motion of its point of application A, and s is the
variable of integration which measures the distance traveled by A
along its path.

In computing the work of the external forces acting on a rigid
body, it is often convenient to determine the work of a couple with-
out considering separately the work of each of the two forces forming
the couple. Consider the two forces F and —F forming a couple of
moment M and acting on a rigid body (Fig. 17.2). Any small displace-
ment of the rigid body bringing A and B, respectively, into A" and B”
can be divided into two parts: in one part points A and B undergo
equal displacements dry; in the other part A" remains fixed while B’
moves into B” through a displacement dry of magnitude ds, = r du.
In the first part of the motion, the work of F is equal in magnitude
and opposite in sign to the work of —F and their sum is zero. In the
second part of the motion, only force F works, and its work is dU =
F dsy = Fr du. But the product Fr is equal to the magnitude M of
the moment of the couple. Thus, the work of a couple of moment M
acting on a rigid body is

dU = M du (17.4)

where du is the small angle expressed in radians through which the
body rotates. We again note that work should be expressed in units
obtained by multiplying units of force by units of length. The work
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of the couple during a finite rotation of the rigid body is obtained
by integrating both members of (17.4) from the initial value u; of
the angle U to its final value uy. We write

U1y2 :j Mdu (175)

Uy

When the moment M of the couple is constant, formula (17.5) reduces
to

U1y2 = M(Uz - Ul) (176)

It was pointed out in Sec. 13.2 that a number of forces encoun-
tered in problems of kinetics do no work. They are forces applied to
fixed points or acting in a direction perpendicular to the displacement
of their point of application. Among the forces which do no work the
following have been listed: the reaction at a frictionless pin when the
body supported rotates about the pin, the reaction at a frictionless
surface when the body in contact moves along the surface, and the
weight of a body when its center of gravity moves horizontally. We
can add now that when a rigid body rolls without sliding on a fixed
surface, the friction force F at the point of contact C does no work.
The velocity v of the point of contact C is zero, and the work of the
friction force F during a small displacement of the rigid body is

Fig. 17.3

IN PLANE MOTION

Consider a rigid body of mass m in plane motion. We recall from Sec.
14.7 that, if the absolute velocity v; of each particle P; of the body is
expressed as the sum of the velocity v of the mass center G of the body
and of the velocity v; of the particle relative to a frame Ga'y" attached
to G and of fixed orientation (Fig. 17.3), the kinetic energy of the
system of particles forming the rigid body can be written in the form

» 1 n
T =jmv> + 5 > Amp)? (17.7)
i=1

But the magnitude v; of the relative velocity of P; is equal to the
product r{V of the distance ] of P; from the axis through G perpen-
dicular to the plane of motion and of the magnitude Vv of the angular
velocity of the body at the instant considered. Substituting into
(17.7), we have

_ 1/ < .
T =imv?+ 2( > Ami> w? (17.8)
i=1

or, since the sum represents the moment of inertia I of the body
about the axis through G,

T = smo® + §IV? (17.9)
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We note that in the particular case of a body in translation
(v = 0), the expression obtained reduces to 7mu while in the case
of a centroidal rotation (v = 0), it reduces to 31v*. We conclude that
the kinetic energy of a rigid body in pldne motion can be separated
into two parts: (1) the kinetic energy 5 L mv? associated with the HlOthIl
of the mass center G of the body, and (2) the kinetic energy 3Iv°
associated with the rotation of the body about G.

Noncentroidal Rotation. The relation (17.9) is valid for any type
of plane motion and can therefore be used to express the kinetic
energy of a rigid body rotating with an angular velocity V about a
fixed axis through O (Fig. 17.4). In that case, however, the kinetic
energy of the body can be expressed more directly by noting that
the speed v; of the particle P; is equal to the product r,v of the dis-
tance r; of P; from the fixed axis and the magnitude Vv of the angular
velocity of the body at the instant considered. Substituting into
(17.2), we write

liAm (rv)? (2 Am)

or, since the last sum represents the moment of inertia I, of the

body about the fixed axis through O,

We note that the results
of plane slabs or to the motion ST Soeres=s ~
respect to the reference plane, and can be apphed to the study of
the plane motion of any rigid body, regardless of its shape. However,
since Eq. (17.9) is applicable to any plane motion while Eq. (17.10)
is applicable only in cases involving noncentroidal rotation, Eq. (17.9)
will be used in the solution of all the sample problems.

17.5 SYSTEMS OF RIGID BODIES

When a problem involves several rigid bodies, each rigid body can be
considered separately and the principle of work and energy can be
applied to each body. Adding the kinetic energies of all the particles
and considering the work of all the forces involved, we can also write
the equation of work and energy for the entire system. We have

T) + Uy = Ts (17.11)

where T represents the arithmetic sum of the kinetic energies of the
rigid bodies forming the system (all terms are positive) and Uyy,o
represents the work of all the forces acting on the various bodies,
whether these forces are internal or external from the point of view
of the system as a whole.

The method of work and energy is particularly useful in solving
problems involving pin-connected members, blocks and pulleys con-
nected by inextensible cords, and meshed gears. In all these cases,

AxpertSoft Trial Version
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Fig. 17.4

17.5 Systems of Rigid Bodies
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1110 'F\’/l\cne MOﬁO,T,\OL Régid Bodies: Energy and the internal forces occur by pairs of equal and opposite forces, and
omentum Mefhods the points of application of the forces in each pair move through
equal distances during a small displacement of the system. As a
result, the work of the internal forces is zero and Uy, reduces to
the work of the forces external to the system.

17.6 CONSERVATION OF ENERGY

We saw in Sec. 13.6 that the work of conservative forces, such as the
weight of a body or the force exerted by a spring, can be expressed
as a change in potential energy. When a rigid body, or a system of rigid
bodies, moves under the action of conservative forces, the principle of
work and energy stated in Sec. 17.2 can be expressed in a modified
form. Substituting for U}y, from (13.19') into (17.1), we write

Tl + Vl = TZ + V2 (1712)

Formula (17.12) indicates that when a rigid body, or a system of rigid
bodies, moves under the action of conservative forces, the sum of the
kinetic energy and of the potential energy of the system remains
constant. It should be noted that in the case of the plane motion of
a rigid body, the kmetlc energy of the body should include both the
tmnslatmnal term 3mo> and the rotational term 3IV*,

: s the principle of conservation
. . d AB, of length [ and mass m,
AXpertSOft Trial Version ocks of negliggible mass sliding
_ ¢ assume that the rod is released
with no initial velocity from a horizontal position (Fig. 17.5a), and we
wish to determine its angular velocity after it has rotated through an
angle u (Fig. 17.5b).

Since the initial velocity is zero, we have T} = 0. Measuring the
potential energy from the level of the horizontal track, we write V; = 0.
After the rod has rotated through u, the center of gravity G of the rod
is at a distance 3/ sin U below the reference level and we have

Vy = —3Wisinu = —ymgl sin u

Datum Datum

Isin@

B G A
——1e o oi T

|

|

@ (b)
Fig. 17.5
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Observing that in this pos1t10n the mstdntdneous center of the rod is
located at C and that CG = 3, we write vy = 3IV and obtain

TQ - vaq 2IV’) —_ 9 ( lV) (12m12>
1 ml2 5
=——V
2 3
Applying the principle of conservation of energy, we write

T+ V=T, +V,

1wl V2 — Lol sin U
=323 ymgl sin

3 12
Vv = (lg sin u>

The advantages of the method of work and energy, as well as
its shortcomings, were indicated in Sec. 13.4. Here we should add
that the method of work and energy must be supplemented by the
application of d’Alembert’s principle when reactions at fixed axles,
rollers, or sliding blocks are to be determined. For example, in order
to compute the reactions at the extremities A and B of the rod of
Fig. 17.5b, a diagram should be drawn to express that the system
of the external forces applied to the rod is equivalent to the vector
ma and the couple IA. The angular velocity V of the rod, however,
is determined by the method of work and energy before the equa-
tions of motion are solved for 4
of the motion of the rod a

requires, therefore, the comb) AXpertSOft Trial Version

energy and of the principle of 8
tive forces.

17.7 POWER

Power was defined in Sec. 13.5 as the time rate at which work is
done. In the case of a body acted upon by a force F, and moving
with a velocity v, the power was expressed as follows:

dU
P =—=F- 13.13
ower 0 v ( )

In the case of a rigid body rotating with an angular velocity V and
acted upon by a couple of moment M parallel to the axis of rotation,
we have, by (17.4),

dU  Mdu
Power = E o = Mv (17.13)

The various units used to measure power, such as the watt and the
horsepower, were defined in Sec. 13.5.

17.7 Power

1111
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M =60 Ib-ft

W =240 Ib

M =60 Ib-ft
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SAMPLE PROBLEM 17.1

A 240-Ib block is suspended from an inextensible cable which is wrapped
around a drum of 1.25-ft radius rigidly attached to a flywheel. The drum and
flywheel have a combined centroidal moment of inertia I = 10.51b - ft - 2.
At the instant shown, the velocity of the block is 6 ft/s directed downward.
Knowing that the bearing at A is poorly lubricated and that the bearing
friction is equivalent to a couple M of magnitude 60 Ib - ft, determine the
velocity of the block after it has moved 4 ft downward.

SOLUTION

We consider the system formed by the flywheel and the block. Since the
cable is inextensible, the work done by the internal forces exerted by the
cable cancels. The initial and final positions of the system and the external
forces acting on the system are as shown.

Kinetic Energy. Position 1.
Block: v, = 6 ft/s
_ v _ 6fs

EY Y v . .2 . 2
T 9329 ft/s2 100 Ib - ft - s7)(4.80 rad/s)

= 2551t - 1b

Position 2. Noting that vV, = 05/1.25, we write
T, = L2 + 12

120 et <é><1o.5>(

(%) 2

== = 7.0903
2322 1.25) e

Work. During the motion, only the weight W of the block and the friction
couple M do work. Noting that W does positive work and that the friction
couple M does negative work, we write

51=0 5o = 4 ft
Sy 4 ft
= =2 — 39
u =0 Uy r T 1EE 3.20 rad

Uys = Wisy — 51) — M(up — uy)
= (240 1b)(4 ft) — (60 Ib - {t)(3.20 rad)
=768 ft - 1b

Principle of Work and Energy

Tl ar U1y2 = Tg
255 ft - Ib + 768 ft - Ib = 7.09v3
vy = 1201 ft/s v, = 1201 ft/sw


http://www.axpertsoft.com/pdf-splitter-software/

SAMPLE PROBLEM 17.2

Gear A has a mass of 10 kg and a radius of gyration of 200 mm; gear B has
a mass of 3 kg and a radius of gyration of 80 mm. The system is at rest
when a couple M of magnitude 6 N - m is applied to gear B. Neglecting
friction, determine (a) the number of revolutions executed by gear B before
its angular velocity reaches 600 rpm, (b) the tangential force which gear B
exerts on gear A.

SOLUTION

Motion of Entire System. Noting that the peripheral speeds of the gears
are equal, we write
g 100 mm

TAVa = TBVp Vi =Vp = Vg
T 250 mm

= 0.40v,

For vi = 600 rpm, we have

Vp = 62.8 rad/s Vv, = 0.40vp = 25.1 rad/s
Iy = maki = (10 kg)(0.200 m)* = 0.400 kg - m*
Iy = mgk3 = (3 kg)(0.080 m)* = 0.0192 kg - m*

is initially at rest, ) = 0. Adding the
vy = 600 rpm, we obtain

+ 3(0.0192 kg - m?)(62.8 rad/s)*

Work. Denoting by ug the angular displacement of gear B, we have
Uiys = Mug = (6N - m)(ug rad) = (6up) J
Principle of Work and Energy
Ty + Uy =Ty

0+ (60) ] = 163.9 |
0p = 27.32 rad 0 = 4.35 rev

Motion of Gear A. Kinetic Energy. Initially, gear A is at rest, so T) =
0. When v = 600 rpm, the kinetic energy of gear A is

Ty = 5 I,vi = 5(0.400 kg - m?)(25.1 rad/s)*> = 126.0 |

Work. The forces acting on gear A are as shown. The tangential force F
does work equal to the product of its magnitude and of the length u,r, of
the arc described by the point of contact. Since Uyry = Ugrp, we have

Uiye = F(Ogrg) = F(27.3 rad)(0.100 m) = F(2.73 m)

Principle of Work and Energy

Tl 4 U1y2 = Tz
0 + F(2.73 m) = 126.0 |
F = +46.2 N F =462 Nv

1113
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SAMPLE PROBLEM 17.3

A sphere, a cylinder, and a hoop, each having the same mass and the same
radius, are released from rest on an incline. Determine the velocity of each
body after it has rolled through a distance corresponding to a change in
elevation h.

SOLUTION

The problem will first be solved in general terms, and then results for each
body will be found. We denote the mass by m, the centroidal moment of
inertia by I, the weight by W, and the radius by .

Kinematics. Since each body rolls, the instantaneous center of rotation is
located at C and we write

Kinetic Energy

. _

I _,

= %(m + *2)02
7

motion does no work,

AxpertSoft Trial Version

Principle of Work and Energy
Tl + Ulyz = T2
I1\_ _ 2Wh
0+Wh=%(m+7>02 02=772
r m + I/r
Noting that W = mg, we rearrange the result and obtain
5 _ 2§h
1+ I/mr?

Velocities of Sphere, Cylinder, and Hoop. Introducing successively the
particular expression for I, we obtain

Sphere: I=_2mr? v = 0.84512gh
Cylinder: I=3mr? v = 0.816 12gh
Hoop: I=mr? v = 0.707 1.2gh

Remark. Let us compare the results with the velocity attained by a fric-
tionless block sliding through the same distance. The solution is identical to
the above solution except that v = 0; we find v = 1@.

Comparing the results, we note that the velocity of the body is inde-
pendent of both its mass and radius. However, the velocity does depend upon
the quotient I/mr? = k*r?, which measures the ratio of the rotational kinetic
energy to the translational kinetic energy. Thus the hoop, which has the largest
k for a given radius r, attains the smallest velocity, while the sliding block,
which does not rotate, attains the largest velocity.
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SAMPLE PROBLEM 17.4

| 5 ft | A 30-Ib slender rod AB is 5 ft long and is pivoted about a point O which is
‘ B’I 1ft "— 1 ft from end B. The other end is pressed against a spring of constant k =
A@B 1800 Ib/in. until the spring is compressed 1 in. The rod is then in a hori-
= zontal position. If the rod is released from this position, determine its angu-

lar velocity and the reaction at the pivot O as the rod passes through a
vertical position.

SOLUTION
Position 2— Position 1. Potential Energy. Since the spring is compressed 1 in., we
have x; = 1 in.
par V, = L ke = $(1800 Ib/in.)(1 in.)*> = 900 in - Ib
Position 1V1= on T k2 Choosing the datum as shown, we have V, = 0; therefore,
w;=0, | 12Tty 301b Vi=V,+V,=900in-1b=75f"1b

Datum
Kinetic Energy. Since the velocity in position I is zero, we have T} = 0.

Position 2. Potential Energy. The elongation of the spring is zero, and

30 1b
we have V, = 0. Since the center of gravity of the rod is now 1.5 ft above
the datum,
5 ft) =45 ft - b
15 ft - 1b
b angular velocity of the rod in posi-
pout O and write vy = V5 = 1.5V,
= 1 301b
152 2 2
=1L = — ft)* =1.9411b - ft -
I =ml 1232.2&/52(5 t) 1.9411b - ft - s
_ = 1 30 ;
T, = tmv3 + 1Iv3 = 2350 (1.5vy)? + £(1.941)v3 = 2.019v3
Conservation of Energy
Tl aF Vl = T2 “F V2
. 0+ 75ft-1b =2019v; + 45ft - Ib
t
y V, = 3.86 rad/si
anp T Reaction in Position 2. Since v, = 3.86 rad/s, the components of the
! acceleration of G as the rod passes through position 2 are
. a, = mv3 = (1.5 t)(3.86 rad/s)® = 223 ft/s>  a, = 22.3 ft/s’w
a, = ra a, =ray

We express that the system of external forces is equivalent to the system of
— — effective forces represented by the vector of components ma, and ma,

attached at G and the couple IA.
_ +iZMp = S(Mp)o: 0 =Ia+ m(ra)r a=0
A R, = m(7a) R, =0
T ;G = $_>G +x3F, = 3(F)q: R, — 301b = —ma,
r 30 1b man, 30 Ib
1.0 h R, —30lb = —————— (22.3 fi/s>
R_rio ° Y 320 f5 | &)
Ry L] R, = +9221b R =9221bx
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SAMPLE PROBLEM 17.5

Each of the two slender rods shown is 0.75 m long and has a mass of 6 kg.
If the system is released from rest with 8 = 60°, determine (@) the angular
velocity of rod AB when B = 20°, (b) the velocity of point D at the same
instant.

SOLUTION

Kinematics of Motion When B = 20°. Since v; is perpendicular to the
rod AB and vy, is horizontal, the instantaneous center of rotation of rod BD
is located at C. Considering the geometry of the figure, we obtain

BC = 0.75 m CD = 2(0.75 m) sin 20° = 0.513 m

Applying the law of cosines to triangle CDE, where E is located at the mass
center of rod BD, we find EC = 0.522 m. Denoting by V the angular veloc-
ity of rod AB, we have

vg = (0.75 m)v vg = 0.75v \u

point C, we write

m)VBD VBD =V I
;BD = 0.522v \\

; gp470 oosty, the datum as shown, and observ-
(6 kg)(9.81 m/s*) = 58.86 N, we have

V, = 2Wy, = 2(58.86 N)(0.325 m) = 38.26 |

ing that W =

Kinetic Energy. Since the system is at rest, T; = 0.
Position 2. Potential Energy
Vy = 2Wy, = 2(58.86 N)(0.1283 m) = 15.10 |
Kinetic Energy
Iyg = Igp = s ml* = $5(6 kg)(0.75 m)* = 0.281 kg - m*
Ty = smuip + 31V + 3mosp + 5 IspVip
= 1(6)(0.375Vv)? + £(0.281)Vv* + 1(6)(0.522v)* + 1(0.281)v*
= 1.520v°
Conservation of Energy

Tl a4 Vl = T2 2l V2
Position 2 0 + 3826 ] = 1.520v> + 15.10 |
Vv 3.90 rad/s VAB = 3.90 rad/s i

Velocity of Point D

vp = (CD)v = (0.513 m)(3.90 rad/s) = 2.00 m/s
vp = 2.00 m/s Y

1116
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SOULVINGEEROBLEIVIY
DINBIOUKSOVVIN

In this lesson we introduced energy methods to determine the velocity of rigid
bodies for various positions during their motion. As you found out previously
in Chap. 13, energy methods should be considered for problems involving dis-
placements and velocities.

1. The method of work and energy, when applied to all of the particles forming
a rigid body, yields the equation

Tl + U1y2 = T2 (171)

where T, and T} are, respectively, the initial and final values of the total kinetic
energy of the particles forming the body and Uy, is the work done by the external
forces exerted on the rigid body.

a. Work of forces and couples. To the expression for the work of a force
(Chap. 13), we added the expression for the work of a couple and wrote

Ay Uy
Uiys = J F - dr Uryo =J Mdu (17.3, 17.5)

A

1 u;

When the momep couple is

AxpertSoft Trial Version a7.6)

where u; and u{ 1 and 17.2].

b. The kinetic energy of a rigid body in plane motion was found by con-
sidering the motion of the body as the sum of a translation with its mass center
and a rotation about the mass center.

T=43imo?+ 11V (17.9)

where v is the velocity of the mass center and V is the angular velocity of the body
[Sample Probs. 17.3 and 17.4].

2. For a system of rigid bodies we again used the equation
Ty + Uy =T, (17.1)

where T is the sum of the kinetic energies of the bodies forming the system and U
is the work done by all the forces acting on the bodies, internal as well as external.
Your computations will be simplified if you keep the following in mind.

a. The forces exerted on each other by pin-connected members or by
meshed gears are equal and opposite, and, since they have the same point of
application, they undergo equal small displacements. Therefore, their total work
is zero and can be omitted from your calculations [Sample Prob. 17.2].

(continued)
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1118

b. The forces exerted by an inextensible cord on the two bodies it connects
have the same magnitude and their points of application move through equal
distances, but the work of one force is positive and the work of the other is nega-
tive. Therefore, their total work is zero and can again be omitted from your cal-
culations [Sample Prob. 17.1].

c. The forces exerted by a spring on the two bodies it connects also have
the same magnitude, but their points of application will generally move through
different distances. Therefore, their total work is usually not zero and should be
taken into account in your calculations.

3. The principle of conservation of energy can be expressed as
Tl + Vl = Tz + V2 (1712)

where V represents the potential energy of the system. This principle can be used
when a body or a system of bodies is acted upon by conservative forces, such as the
force exerted by a spring or the force of gravity [Sample Probs. 17.4 and 17.5].

4. The last section of this lesson was devoted to power, which is the time rate
at which work is dong . moment M, the
power can be expres

where Vv is the angular velocity of the body expressed in rad/s. As you did in
Chap. 13, you should express power either in watts or in horsepower (1 hp =

550 ft - Ib/s).
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PROBLEMS

CONCEPT QUESTIONS

17.€CQ1 A round object of mass m and radius r is released from rest at the
top of a curved surface and rolls without slipping until it leaves the
surface with a horizontal velocity as shown. Will a solid sphere, a
solid cylinder, or a hoop travel the greatest distance x?

a. Solid sphere
b. Solid cylinder
c. Hoop
d.

They will all travel the same distance.

Fig. P17.CQ1 AxpertSoft Trial Version

17.€Q2 A solid steel sphere A of radius r and mass m is released from rest
and rolls without slipping down an incline as shown. After travel-
ing a distance d, the sphere has a speed v. If a solid steel sphere
of radius 2r is released from rest on the same incline, what will its
speed be after rolling a distance d?

a. 0.250v
. 050
v

20

40

6 e T

Fig. P17.CQ2
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1120 Plane Motion of Rigid Bodies: Energy and

Momentum Methods

17.€Q3 Slender bar A is rigidly connected to a massless rod BC in Case 1

and two massless cords in Case 2 as shown. The vertical thickness
of bar A is negligible compared to L. In both cases A is released
from rest at an angle u = uy. When u = 0°, which system will have
the larger kinetic energy?

a. Case 1

b. Case 2

c. The kinetic energy will be the same.

Case 2

Fig. P17.€Q3 and P17.CQ5

b speeds of the centers of gravity

AxpertSoft Trial Version u=0°

b. Case 2 will be larger.

c. The speeds will be the same.

17.€CQ5 Slender bar A is rigidly connected to a massless rod BC in Case 1

and two massless cords in Case 2 as shown. The vertical thick-
ness of bar A is not negligible compared to L. In both cases A is
released from rest at an angle u = u,. When u = 0°, which system
will have the largest kinetic energy?

a. Case 1

b. Case 2

c. The kinetic energy will be the same.

END-OF-SECTION PROBLEMS

17.1

17.2

The rotor of an electric motor has an angular velocity of 3600 rpm
when the load and power are cut off. The 50-kg rotor then coasts
to rest after 5000 revolutions. Knowing that the kinetic friction of
the rotor produces a couple of magnitude 4 N - m, determine the
centroidal radius of gyration of the rotor.

It is known that 1500 revolutions are required for the 6000-Ib
flywheel to coast to rest from an angular velocity of 300 rpm.
Knowing that the centroidal radius of gyration of the flywheel is
36 in., determine the average magnitude of the couple due to
kinetic friction in the bearings.
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17.3 Two disks of the same material are attached to a shaft as shown. Problems 1121
Disk A has a weight of 30 Ib and a radius r = 5 in. Disk B is three
times as thick as disk A. Knowing that a couple M of magnitude
15 1b - ft is to be applied to disk A when the system is at rest,
determine the radius nr of disk B if the angular velocity of the
system is to be 600 rpm after four revolutions.

17.4 Two disks of the same material are attached to a shaft as shown.
Disk A is of radius r and has a thickness b, while disk B is of radius
nr and thickness 3b. A couple M of constant magnitude is applied
when the system is at rest and is removed after the system has
executed two revolutions. Determine the value of n which results
in the largest final speed for a point on the rim of disk B.

17.5 The flywheel of a small punch rotates at 300 rpm. It is known that
1800 ft - Ib of work must be done each time a hole is punched. Tt
is desired that the speed of the flywheel after one punching be
not less than 90 percent of the original speed of 300 rpm. (a)
Determine the required moment of inertia of the flywheel. (b) If
a constant 25-1b - ft couple is applied to the shaft of the flywheel,
determine the number of revolutions which must occur between
each punching, knowing that the initial velocity is to be 300 rpm
at the start of each punching.

17.6 The flywheel of a punching machine has a mass of 300 kg and a
radius of gyration of 600, asnansnclidon e s onaadsi
2500 | of work. (@) Kn
300 rpm just before a
ately after the punchin}
applied to the shaft of the Ily , determine the number o
revolutions executed before the speed is again 300 rpm.

17.7 Disk A, of weight 10 Ib and radius = 6 in., is at rest when it is
placed in contact with belt BC, which moves to the right with a
constant speed v = 40 ft/s. Knowing that m; = 0.20 between the
disk and the belt, determine the number of revolutions executed
by the disk before it attains a constant angular velocity.

17.8 Disk A is of constant thickness and is at rest when it is placed in
contact with belt BC, which moves with a constant velocity v.
Denoting by m; the coefficient of kinetic friction between the disk
and the belt, derive an expression for the number of revolutions
executed by the disk before it attains a constant angular velocity.

17.9 The 10-in.-radius brake drum is attached to a larger flywheel
which is not shown. The total mass moment of inertia of the fly-
wheel and drum is 16 b - ft - s> and the coefficient of kinetic
friction between the drum and the brake shoe is 0.40. Knowing
that the initial angular velocity is 240 rpm clockwise, determine
the force which must be exerted by the hydraulic cylinder if the
system is to stop in 75 revolutions.

17.10 Solve Prob. 17.9, assuming that the initial angular velocity of the
flywheel is 240 rpm counterclockwise.
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Plane Motion of Rigid Bodies: Energy and
Momentum Methods

1122

Fig. P17.13

50 mm
||

50 mm 100 mm
Fig. P17.15

150 mm

Al@ OB
| , |
| |

Fig. P17.16

17.11

17.12

17.13

17.14

17.15

17.16

Each of the gears A and B has a mass of 2.4 kg and a radius of
gyration of 60 mm, while gear C has a mass of 12 kg and a radius
of gyration of 150 mm. A couple M of constant magnitude 10 N - m
is applied to gear C. Determine (¢) the number of revolutions of
gear C required for its angular velocity to increase from 100 to
450 rpm, (b) the corresponding tangential force acting on gear A.

Solve Prob. 17.11, assuming that the 10-N - m couple is applied to
gear B.

The gear train shown consists of four gears of the same thickness
and of the same material; two gears are of radius 7, and the other
two are of radius nr. The system is at rest when the couple M is
applied to shaft C. Denoting by I, the moment of inertia of a gear
of radius r; determine the angular velocity of shaft A if the couple
M, is applied for one revolution of shaft C.

The double pulley shown has a mass of 15 kg and a centroidal
radius of gyration of 160 mm. Cylinder A and block B are attached
to cords that are wrapped on the pulleys as shown. The coefficient
of kinetic friction between block B and the surface is 0.2. Knowing
that the system is at rest in the position shown when a constant
force P = 200 N is applied to cylinder A, determine (@) the velocity
of cylinder A as it strikes the ground, (b) the total distance that

Fig. P17.14

Gear A has a mass of 1 kg and a radius of gyration of 30 mm; gear
B has a mass of 4 kg and a radius of gyration of 75 mm; gear C
has a mass of 9 kg and a radius of gyration of 100 mm. The system
is at rest when a couple M, of constant magnitude 4 N - m is
applied to gear C. Assuming that no slipping occurs between the
gears, determine the number of revolutions required for disk A to
reach an angular velocity of 300 rpm.

A slender rod of length [ and weight W is pivoted at one end as
shown. It is released from rest in a horizontal position and swings
freely. (@) Determine the angular velocity of the rod as it passes
through a vertical position and determine the corresponding reac-
tion at the pivot. (b) Solve part @ for W = 1.8 Ib and [ = 3 ft.
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17.17 A slender rod of length [ is pivoted about a point C located at a Problems 1123
distance b from its center G. It is released from rest in a horizontal

position and swings freely. Determine (a) the distance b for which |<_ b
the angular velocity of the rod as it passes through a vertical posi- “
tion is maximum, (b) the corresponding values of its angular veloc- e e S
A L) B
C

ity and of the reaction at C. | ('5 |

17.18 and 17.19 A slender 9-1b rod can rotate in a vertical plane about
a pivot at B. A spring of constant k = 30 Ib/ft and of unstretched
length 6 in. is attached to the rod as shown. Knowing that the rod
is released from rest in the position shown, determine its angular
velocity after it has rotated through 90°.

Fig. P17.17

A C

M

------ ]
|
r

351t

24 in. 24 i

m.

35ft =

R C@; \
|<—l4in.

Fig. P17.18

D
B
T 0#____~_f§q\§/§
5in. {}Q\W

17.20 A 1601b gymnast s exe AxpertSoft Trial Version

horizontal bar. In the po —
clockwise angular velocity and will maintain his body straight and
rigid as he swings downward. Assuming that during the swing the
centroidal radius of gyration of his body is 1.5 ft, determine his
angular velocity and the force exerted on his hands after he has Fig. P17.20
rotated through (a) 90°, (b) 180°.

—_r

17.21 A collar with a mass of 1 kg is rigidly attached at a distance d =
300 mm from the end of a uniform slender rod AB. The rod has a <
mass of 3 kg and is of length L = 600 mm. Knowing that the rod ¢ _ 9
is released from rest in the position shown, determine the angular A
velocity of the rod after it has rotated through 90°. Fig. P17.21 and P17.22

AB of mass 3 kg and length L = 600 mm. The rod is released
from rest in the position shown. Determine the distance d for
which the angular velocity of the rod is maximum after it has
rotated through 90°.

17.22 A collar with a mass of 1 kg is rigidly attached to a slender rod

8 —r

04 m
17.23 Two identical slender rods AB and BC are welded together to form
an L-shaped assembly. The assembly is pressed against a spring at T — W
D and released from the position shown. Knowing that the maxi-
mum angle of rotation of the assembly in its subsequent motion is Y
90° counterclockwise, determine the magnitude of the angular
velocity of the assembly as it passes through the position where rod
AB forms an angle of 30° with the horizontal. Fig. P17.23

| 0.4m
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1124 Plane Motion of Rigid Bodies: Energy and 17.24 The 30-kg turbine disk has a centroidal radius of gyration of
Momentum Methods . . .

175 mm and is rotating clockwise at a constant rate of 60 rpm

when a small blade of weight 0.5 N at point A becomes loose and

is thrown off. Neglecting friction, determine the change in the

angular velocity of the turbine disk after it has rotated through
(a) 90°, (b) 270°.

17.25 A rope is wrapped around a cylinder of radius  and mass m as
shown. Knowing that the cylinder is released from rest, determine
the velocity of the center of the cylinder after it has moved down-
ward a distance s.

Fig. P17.24

Fig. P17.25

17.26 Solve Prob. 17.25, assuming that the cylinder is replaced by a thin-
walled pipe of radius r and mass m.

er, initially at rest, is acted upon
ing that the body rolls without
~ Ocity of its center G after it has
Fig. P17.27 moved 5 ft, (b) the friction force required to prevent slipping.

AxpertSoft Trial Version

17.28 A small sphere of mass m and radius r is released from rest at A
and rolls without sliding on the curved surface to point B where it
leaves the surface with a horizontal velocity. Knowing that ¢ = 1.5 m
and b = 1.2 m, determine (a) the speed of the sphere as it strikes
the ground at C, (b) the corresponding distance c.

-17 A

Fig. P17.28

@ 17.29 The mass center G of a 3-kg wheel of radius R = 180 mm is
—h located at a distance r = 60 mm from its geometric center C. The
centroidal radius of gyration of the wheel is k = 90 mm. As the

’ wheel rolls without sliding, its angular velocity is observed to vary.
Knowing that v = 8 rad/s in the position shown, determine

(@) the angular velocity of the wheel when the mass center G is
directly above the geometric center C, (b) the reaction at the hori-
Fig. P17.29 zontal surface at the same instant.
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17.30 A half section of pipe of mass m and radius r is released from rest Problems 1125
in the position shown. Knowing that the pipe rolls without sliding,
determine (a) its angular velocity after it has rolled through 90°,
(b) the reaction at the horizontal surface at the same instant. [Hint:
Note that GO = 2r/p and that, by the parallel-axis theorem, I =
mr? — m(GO)%]

Ge Qo

17.31 A sphere of mass m and radius r rolls without slipping inside a
curved surface of radius R. Knowing that the sphere is released
from rest in the position shown, derive an expression for (a) the
linear velocity of the sphere as it passes through B, (b) the magni-
tude of the vertical reaction at that instant.

Fig. P17.30

17.32 Two uniform cylinders, each of weig
5 in., are connected by a
shown the angular velo
determine (a) the distand
the angular velocity of cylf¥e o
sion in the portion of belt connectlng the two cyhnders

17.33 Two uniform cylinders, each of weight W = 14 Ib and radius r =
5 in., are connected by a belt as shown. If the system is released
from rest, determine (a) the velocity of the center of cylinder A
after it has moved through 3 ft, (b) the tension in the portion of
belt connecting the two cylinders. Fig. P17.32 and P17.33

17.34 A bar of mass m = 5 kg is held as shown between four disks each
of mass m’ = 2 kg and radius r = 75 mm. Knowing that the forces
exerted on the disks are sufficient to prevent slipping and that the
bar is released from rest, for each of the cases shown determine
the velocity of the bar after it has moved through the distance h.

—

=]

(a)
Fig. P17.34

—~
S
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1126 Plane Motion of Rigid Bodies: Energy and 17.35 The 5-kg rod BC is attached by pins to two uniform disks as

Momentum Methods

75 mm

shown. The mass of the 150-mm-radius disk is 6 kg and that of
the 75-mm-radius disk is 1.5 kg. Knowing that the system is
released from rest in the position shown, determine the velocity of
the rod after disk A has rotated through 90°.

17.36 The motion of the uniform rod AB is guided by small wheels of
negligible mass that roll on the surface shown. If the rod is released

from rest when u = 0, determine the velocities of A and B when
u = 30°

Fig. P17.35

A

Fig. P17.36

17.37 A 5-m-long ladder has a mass of 15 kg and is placed against a house
at an angle u = 20°. Knowing that the ladder is released from rest,
determine the angular velocity of the ladder and the velocity of
end A when u = 45°. Assume the ladder can slide freely on the

crtical wall.

AxpertSoft Trial Version

, and centroidal mass moment of
. (ise at an angle U = U,. Knowing
that the ladder is released from rest, determine the angular veloc-
ity of the ladder when u = u,. Assume the ladder can slide freely
on the horizontal ground and on the vertical wall.

17.39 The ends of a 9-Ib rod AB are constrained to move along slots cut
in a vertical plate as shown. A spring of constant k = 3 Ib/in. is

Fig. P17.37 and P17.38

attached to end A in such a way that its tension is zero when u = 0.
If the rod is released from rest when u = 50°, determine the angular
velocity of the rod and the velocity of end B when u = 0.

Fig. P17.39 and P17.40

17.40 The ends of a 9-Ib rod AB are constrained to move along slots cut in
a vertical plate as shown. A spring of constant k = 3 Ib/in. is attached
to end A in such a way that its tension is zero when u = 0. If the rod
is released from rest when u = 0, determine the angular velocity of
the rod and the velocity of end B when u = 30°.
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17.41 The motion of a slender rod of length R is guided by pins at A and Problems 1127
B which slide freely in slots cut in a vertical plate as shown. If end
B is moved slightly to the left and then released, determine the
angular velocity of the rod and the velocity of its mass center
(a) at the instant when the velocity of end B is zero, (b) as end B
passes through point D.

Fig. P17.41

17.42 Each of the two rods shown is of length L = 1 m and has a mass y__
of 5 kg. Point D is connected to a spring of constant k = 20 N/m A
and is constrained to move along a vertical slot. Knowing that the
system is released from rest when rod BD is horizontal and the
spring connected to point D is initially unstretched, determine the
velocity of point D when it is directly to the right of point A

—@

Fig. P17.42

17.43 The 4-kg rod AB is attached to a collar of negligible mass at A and
to a flywheel at B. The flywheel has a mass of 16 kg and a radius
of gyration of 180 mm. 4
angular velocity of the

the velocity of the flyw

AxpertSoft Trial Version

17.44 1f in Prob. 17.43 the angular velocity of the flywheel is to be the
same in the position shown and when point B is directly above C,
determine the required value of its angular velocity in the position
shown.

17.45 The uniform rods AB and BC weigh 2.4 kg and 4 kg, respectively,
and the small wheel at C is of negligible weight. If the wheel is
moved slightly to the right and then released, determine the veloc-
ity of pin B after rod AB has rotated through 90°.

B
T @ Fig. P17.43 and P17.44

600 mm
360 mm

——@A 9)) C

Fig. P17.45 and P17.46

17.46 The uniform rods AB and BC weigh 2.4 kg and 4 kg, respectively,
and the small wheel at C is of negligible weight. Knowing that in the
position shown the velocity of wheel C is 2 m/s to the right, deter-
mine the velocity of pin B after rod AB has rotated through 90°.
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1128 Plane Motion of Rigid Bodies: Energy and 17.47 The 80-mm-radius gear shown has a mass of 5 kg and a centroidal

Momentum Methods

radius of gyration of 60 mm. The 4-kg rod AB is attached to the
center of the gear and to a pin at B that slides freely in a vertical
slot. Knowing that the system is released from rest when u = 60°,
determine the velocity of the center of the gear when u = 20°.

/
Fig. P17.47

17.48 Knowing that the maximum allowable couple that can be applied to
a shaft is 15.5 kip - in., determine the maximum horsepower that
can be transmitted by the shaft at (@) 180 rpm, (b) 480 rpm.

sed to form a gear train which will

A to a machine tool at F. (Bearings

he sketch.) Knowing that the fre-

. FOT LT TTTOt0 v ermine the magnitude of the couple
Fig. P17.49 which'is applied to shaft (a) AB, (b) CD, (¢) EF.

17.50 The shaft-disk-belt arrangement shown is used to transmit 2.4 kW

30 mm from point A to point D. Knowing that the maximum allowable

couples that can be applied to shafts AB and CD are 25 N - m

and 80 N - m, respectively, determine the required minimum

speed of shaft AB.

A
17.51 The experimental setup shown is used to measure the power out-
put of a small turbine. When the turbine is operating at 200 rpm,
the readings of the two spring scales are 10 and 22 Ib, respectively.
Determine the power being developed by the turbine.
D 120 mm

Fig. P17.50

Fig. P17.51
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17.8 PRINCIPLE OF IMPULSE AND MOMENTUM FOR
THE PLANE MOTION OF A RIGID BODY

The principle of impulse and momentum will now be applied to the
analysis of the plane motion of rigid bodies and of systems of rigid
bodies. As was pointed out in Chap. 13, the method of impulse and
momentum is particularly well adapted to the solution of problems
involving time and velocities. Moreover, the principle of impulse
and momentum provides the only practicable method for the solu-
tion of problems involving impulsive motion or impact (Secs. 17.11
and 17.12).

Considering again a rigid body as made of a large number of
particles P;, we recall from Sec. 14.9 that the system formed by the
momenta of the particles at time ¢, and the system of the impulses
of the external forces applied from ¢; to t, are together equipollent
to the system formed by the momenta of the particles at time ¢,.
Since the vectors associated with a rigid body can be considered as
sliding vectors, it follows (Sec. 3.19) that the systems of vectors
shown in Fig. 17.6 are not only equipollent but truly equivalent in

17.8 Principle of Impulse and Momentum for ] 129
the Plane Motion of a Rigid Body

(v Amy),

0]

@) (b)

Fig. 17.6

the sense that the vectors on the left-hand side of the equals sign
can be transformed into the vectors on the right-hand side through
the use of the fundamental operations listed in Sec. 3.13. We there-
fore write

Syst Momenta, + Syst Ext Imp,,, = Syst Momenta, (17.14)

But the momenta v; Am; of the particles can be reduced to a
vector attached at G, equal to their sum

n
L= 2 v; Am;
i=1
and a couple of moment equal to the sum of their moments about G
n
H; = 2 r; X v; Am;
i=1
We recall from Sec. 14.3 that L and Hg define, respectively, the
linear momentum and the angular momentum about G of the system

©

Photo 17.2 A Charpy impact test is used to

determine the amount of energy absorbed by a
material during impact by subtracting the final

gravitation potential energy of the arm from its
initial gravitational potential energy.
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1130 'F\’/l\cne Nt\O“OITAOtL R(iigid Bodies: Energy and of particles forming the rigid body. We also note from Eq. (14.14)
omenium faefocs that L = mv. On the other hand, restricting the present analysis to

the plane motion of a rigid slab or of a rigid body symmetrical with

respect to the reference plane, we recall from Eq. (16.4) that

H¢ = IV. We thus conclude that the system of the momenta v; Am;

is equivalent to the linear momentum vector mv attached at G and

to the angular momentum couple IV (Fig. 17.7). Observing that the

L=mv
Vi Am; I i

Fig. 17.7

system of momenta reduces to the vector mv in the particular case
of a translation (V = 0) and to the couple IV in the particular case of
a centroidal rotation (v = 0), we verify once more that the plane
motion of a rigid body symmetrical with respect to the reference
plane can be resolved into a translation with the mass center G and

. . ta in parts ¢ and ¢ of Fig. 17.6
AXpertSOft Trial Version rector and angular momentum

Yshown in Fig. 17.8. This figure

y y y mvy
JEdt
mvy
+ —
(0] X (0] X O X
(a) () (©
Fig. 17.8

expresses as a free-body-diagram equation the fundamental relation
(17.14) in the case of the plane motion of a rigid slab or of a rigid
body symmetrical with respect to the reference plane.

Three equations of motion can be derived from Fig. 17.8. Two
equations are obtained by summing and equating the x and y com-
ponents of the momenta and impulses, and the third equation is
obtained by summing and equating the moments of these vectors
about any given point. The coordinate axes can be chosen fixed in
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space, or allowed to move with the mass center of the body while
maintaining a fixed direction. In either case, the point about which
moments are taken should keep the same position relative to the
coordinate axes during the interval of time considered.

In deriving the three equations of motion for a rigid body, care
should be taken not to add linear and angular momenta indiscrimi-
nately. Confusion can be avoided by remembering that mv, and muv,
represent the components of a vector; namely, the linear momen-
tum vector mv, while IV represents the magnitude of a couple, namely,
the angular momentum couple IV. Thus the quantity IV should be
added only to the moment of the linear momentum mv, never to this
vector itself nor to its components. All quantities involved will then be
expressed in the same units, namely N - m - sor lb - ft - s.

Noncentroidal Rotation. In this particular case of plane motion,
the magnitude of the velocity of the mass center of the body is
v = rV, where 7 represents the distance from the mass center to the
fixed axis of rotation and V represents the angular velocity of the
body at the instant considered; the magnitude of the momentum
vector attached at G is thus mv = mrv. Summing the moments
about O of the momentum vector and momentum couple (Fig. 17.9)

AxpertSoft Trial Version

17.8 Principle of Impulse and Momentum for
the Plane Motion of a Rigid Body

Fig. 17.9

and using the parallel-axis theorem for moments of inertia, we find
that the angular momentum Hp of the body about O has the
magnitude f

Iv+ (mrv)r = I+ mr)v = Ipv (17.15)

Equating the moments about O of the momenta and impulses in
(17.14), we write

ty
Iovl + E j MO dt = 10V2 (17.16)
t

1

In the general case of plane motion of a rigid body symmetrical
with respect to the reference plane, Eq. (17.16) can be used with
respect to the instantaneous axis of rotation under certain conditions.
It is recommended, however, that all problems of plane motion be
solved by the general method described earlier in this section.

tNote that the sum H, of the moments about an arbitrary point A of the momenta of
the particles of a rigid slab is, in general, not equal to I,V. (See Prob. 17.67.)
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Plane Motion of Rigid Bodies: Energy and
1 ]32 Momentum Methods

Photo 17.3 A figure skater at the beginning
and at the end of a spin. By using the principle
of conservation of angular momentum you will
find that her angular velocity is much higher at
the end of the spin.

17.9 SYSTEMS OF RIGID BODIES

The motion of several rigid bodies can be analyzed by applying the
principle of impulse and momentum to each body separately (Sam-
ple Prob. 17.6). However, in solving problems involving no more
than three unknowns (including the impulses of unknown reactions),
it is often convenient to apply the principle of impulse and momen-
tum to the system as a whole. The momentum and impulse diagrams
are drawn for the entire system of bodies. For each moving part of
the system, the diagrams of momenta should include a momentum
vector, a momentum couple, or both. Impulses of forces internal to
the system can be omitted from the impulse diagram, since they
occur in pairs of equal and opposite vectors. Summing and equating
successively the x components, y components, and moments of all
vectors involved, one obtains three relations which express that the
momenta at time ¢; and the impulses of the external forces form a
system equipollent to the system of the momenta at time ¢,.1 Again,
care should be taken not to add linear and angular momenta indis-
criminately; each equation should be checked to make sure that con-
sistent units have been used. This approach has been used in Sample
Prob. 17.8 and, further on, in Sample Probs. 17.9 and 17.10.

17.10 CONSERVATION OF ANGULAR MOMENTUM

igid body or a system of rigid
orces are zero and the system
t to the system of the momenta
ccessively the x components,
y components, and moments of the momenta at times ¢, and ¢;, we
conclude that the total linear momentum of the system is conserved
in any direction and that its total angular momentum is conserved
about any point.

There are many engineering applications, however, in which the
linear momentum is not conserved yet the angular momentum Hg of
the system about a given point O is conserved that is, in which

(Hp), = (Hp)y (17.17)

Such cases occur when the lines of action of all external forces pass
through O or, more generally, when the sum of the angular impulses
of the external forces about O is zero.

Problems involving conservation of angular momentum about a
point O can be solved by the general method of impulse and momen-
tum, i.e., by drawing momentum and impulse diagrams as described
in Secs. 17.8 and 17.9. Equation (17.17) is then obtained by summing
and equating moments about O (Sample Prob. 17.8). As you will see
later in Sample Prob. 17.9, two additional equations can be written
by summing and equating x and y components and these equations
can be used to determine two unknown linear impulses, such as the
impulses of the reaction components at a fixed point.

tNote that as in Sec. 16.7, we cannot speak of equivalent systems since we are not
dealing with a single rigid body.
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SAMPLE PROBLEM 17.6

Gear A has a mass of 10 kg and a radius of gyration of 200 mm, and gear B
has a mass of 3 kg and a radius of gyration of 80 mm. The system is at rest
when a couple M of magnitude 6 N - m is applied to gear B. (These gears
were considered in Sample Prob. 17.2.) Neglecting friction, determine
(a) the time required for the angular velocity of gear B to reach 600 rpm,
(b) the tangential force which gear B exerts on gear A.

SOLUTION

We apply the principle of impulse and momentum to each gear separately.
Since all forces and the couple are constant, their impulses are obtained by
multiplying them by the unknown time ¢. We recall from Sample Prob. 17.2
that the centroidal moments of inertia and the final angular velocities are

I, = 0.400 kg - m* Iz = 0.0192 kg - m*
(VA)Z = 25.1 rad/s (VB)Z = 62.8 rad/s

Principle of Impulse and Momentum for Gear A. The systems of initial
momenta, impulses, and final momenta are shown in three separate
sketches.

TA(WA)Z
AxpertSoft Trial Version _
p : e

Ft

Syst Momenta, + Syst Ext Imp,y,, = Syst Momenta,

+Imoments about A: 0 — Ftry = —L,(V)s
Ft(0.250 m) = (0.400 kg - m?)(25.1 rad/s)
Ft = 402N -5

Principle of Impulse and Momentum for Gear B.

I7&3(“’&3)1 =0 A TB(wB)Z
B,t

Syst Momenta, + Syst Ext Imp,,,, = Syst Momenta,
+lmoments about B: 0 + Mt — Ftrg = I3(Vp)s

+(6 N - m)t — (40.2 N - 5)(0.100 m) = (0.0192 kg - m*)(62.8 rad/s)
t = 0871 s
Recalling that Ft = 40.2 N - s, we write

F(0.871s) = 402 N - s F = +46.2 N
Thus, the force exerted by gear B on gear A is F = 462 N v

1133
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Vi

SAMPLE PROBLEM 17.7

A uniform sphere of mass m and radius r is projected along a rough hori-
zontal surface with a linear velocity v; and no angular velocity. Denoting by
m;. the coefficient of kinetic friction between the sphere and the surface,
determine (a) the time ¢, at which the sphere will start rolling without slid-
ing, (b) the linear and angular velocities of the sphere at time ;.

SOLUTION

While the sphere is sliding relative to the surface, it is acted upon by the
normal force N, the friction force F, and its weight W of magnitude W = mg.

Principle of Impulse and Momentum. We apply the principle of impulse
and momentum to the sphere from the time ¢; = 0 when it is placed on
the surface until the time ¢, = ¢ when it starts rolling without sliding.

Y components: mv, — Ft = mu, (2)
+1moments about G: Ftr = [V, (3)
From (1) we obtain N = W = mg. During the entire time interval consid-
ered, sliding occurs at point C and we have F = miN = mung. Substituting
CS for F into (2), we write

mEI - mkmgt = mEZ 62 = Bl - mkgt (4)
Substituting F = mgmg and I = 2ms? into (3),
_ 5 Mg

mymgtr = 2, Vv, = (5)
2 r

The sphere will start rolling without sliding when the velocity v of the point

of contact is zero. At that time, point C becomes the instantaneous center

of rotation, and we have vy = rV,. Substituting from (4) and (5), we write

R . K " 2 r 7 Mg
Substituting this expression for ¢ into (5),
_5mkg 251 _51.71 _561.
V2_2r(7mkg> VZ_?T VZ_’TTI
_ _ 501 _ 5 —
Vg = 'V Vg =T 7 V=701


http://www.axpertsoft.com/pdf-splitter-software/

SAMPLE PROBLEM 17.8

Two solid spheres of radius 3 in., weighing 2 Ib each, are mounted at
A and B on the horizontal rod A’B’, which rotates freely about the vertical
with a counterclockwise angular velocity of 6 rad/s. The spheres are held in
position by a cord which is suddenly cut. Knowing that the centroidal
moment of inertia of the rod and pivot is I, =0251b - ft - s determine
(a) the angular velocity of the rod after the spheres have moved to positions
A" and B’, (b) the energy lost due to the plastic impact of the spheres and
the stops at A" and B'.

SOLUTION

a. Principle of Impulse and Momentum. In order to determine the final
angular velocity of the rod, we will express that the initial momenta of the
various parts of the system and the impulses of the external forces are
together equipollent to the final momenta of the system.

Syst Momenta, + Syst Ext Imp,,,, = Syst Momenta,

Observing that the external forces consist of the weights and the reac-
tion at the pivot, which have no moment about the y axis, and noting that
vy = U = 1V, we equate moments about the y axis:

2<m51"1V1)1"1 + Q:ISVI + IBV1 = 2<m51"2V2)1”2 + Q:jsVQ + jBVQ
(st?% + 2j5 + iR>V1 = (2ms?§ + QIS + TR>V2 (1)

which expresses that the angular momentum of the system about the y axis
is conserved. We now compute

z5 = Inga® = 22 1b/32.2 fs)(S ft)2 = 0.00155 Ib - ft - s
mgry = (2/32.2)(%)* = 0.0108 mgrs = (2/32.2)(B)* = 0.2696

Substituting these values, and Iz = 0.25 and v, = 6 rad/s into (1):
0.275(6 rad/s) = 0.792v,  V, = 2.08 rad/s |
b. Energy Lost. The kinetic energy of the system at any instant is
T = 2(mgs? + M®) + MoV = Yomg® + o, + Tv?
Recalling the numerical values found above, we have

T, = $0.275)(6)* = 495 ft - Ib T, = $(0.792)(2.08)* = 1.713 ft - b
AT =T, — T, =171 — 495 AT = -324ft-1b
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SOULVINGIEROBLEIVIY
JIN BT O URSOVVIN

In this lesson you learned to use the method of impulse and momentum to solve
problems involving the plane motion of rigid bodies. As you found out previ-
ously in Chap. 13, this method is most effective when used in the solution of
problems involving velocities and time.

1. The principle of impulse and momentum for the plane motion of a rigid
body is expressed by the following vector equation:

Syst Momenta; + Syst Ext Imp,y, = Syst Momenta, (17.14)

where Syst Momenta represents the system of the momenta of the particles
forming the rigid body, and Syst Ext Imp represents the system of all the external
impulses exerted during the motion.

a. The system of the momenta of a rigid body is equivalent to a linear
momentum vector mv attached at the mass center of the body and an angular
momentum couple I'V (Fig. 17.7).

b. You should draw a free-body-diagram equation for the rigid body to
express graphically the above vector equation. Your diagram equation will consist
of three sketches of the body, representlng respectlvely the initial momenta, the
impulses of the externg allehaw that the system
of the initial mome : . brnal forces are
ey AxpertSoft Trial Version

c. By using the components in
any direction and sum moments about any point. When summing moments about
a point, remember to include the angular momentum Iv of the body, as well as
the moments of the components of its linear momentum. In most cases you will
be able to select and solve an equation that involves only one unknown. This was
done in all the sample problems of this lesson.

2. In problems involving a system of rigid bodies, you can apply the principle of
impulse and momentum to the system as a whole. Since internal forces occur in equal
and opposite pairs, they will not be part of your solution [Sample Prob. 17.8].

3. Conservation of angular momentum about a given axis occurs when, for a
system of rigid bodies, the sum of the moments of the external impulses about that
axis is zero. You can indeed easily observe from the free-body-diagram equation
that the initial and final angular momenta of the system about that axis are equal
and, thus, that the angular momentum of the system about the given axis is con-
served. You can then sum the angular momenta of the various bodies of the system
and the moments of their linear momenta about that axis to obtain an equation
which can be solved for one unknown [Sample Prob. 17.8].


http://www.axpertsoft.com/pdf-splitter-software/

PROBLEMS

CONCEPT QUESTIONS

17.€Q6 Slender bar A is rigidly connected to a massless rod BC in Case 1
and two massless cords in Case 2 as shown. The vertical thickness
of bar A is negligible compared to L. If bullet D strikes A with a
speed vy and becomes embedded in it, how will the speeds of the
center of gravity of A immediately after the impact compare for
the two cases?
a. Case 1 will be larger.
b. Case 2 will be larger.

c. The speeds will be the same.

Case 1 Case 2

N B(D\ _

Vo
Fig. P17.CQ6

17.€Q7 A 1-m-long uniform slender bar AB has an angular velocity of
12 rad/s and its center of gravity has a velocity of 2 m/s as shown.

About which point is the angular momentum of A smallest at this
instant?

a. P,
)
P
Py
. Itis the same about all the points.

o o &

A Py OT
0.5m
NE
Pye—
@ 0.5 m
B Pye—
0.5m
Pye

Fig. P17.€Q7
1137
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1138 Plane Motion of Rigid Bodies: Energy and IMPULSE-MOMENTUM PRACTICE PROBLEMS

Momentum Methods

17.F1 The 350-kg flywheel of a small hoisting engine has a radius of gyra-
tion of 600 mm. If the power is cut off when the angular velocity
of the flywheel is 100 rpm clockwise, draw an impulse-momentum
diagram that can be used to determine the time required for the
system to come to rest.

Fig. P17.F1

17.F2 A sphere of radius r and mass m is placed on a horizontal floor with
no linear velocity but with a clockwise angular velocity V. Denot-
ing by m;. the coefficient of kinetic friction between the sphere
-momentum diagram that can be
which the sphere will start rolling

Fig. PI7.F2 AxpertSoft Trial Version

17.F3 Two panels A and B are attached with hinges to a rectangular plate
and held by a wire as shown. The plate and the panels are made
of the same material and have the same thickness. The entire
assembly is rotating with an angular velocity v, when the wire
breaks. Draw the impulse-momentum diagram that is needed to
determine the angular velocity of the assembly after the panels
have come to rest against the plate.

b
1"
b
b/'|/ T
N
——

N ©

N
4

Fig. P17.F3
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END-OF-SECTION PROBLEMS

17.52

17.53

17.54

17.55

17.56

17.57

17.58

The rotor of an electric motor has a mass of 25 kg, and it is
observed that 4.2 min is required for the rotor to coast to rest from
an angular velocity of 3600 rpm. Knowing that kinetic friction
produces a couple of magnitude 1.2 N - m, determine the centroi-
dal radius of gyration for the rotor.

A small grinding wheel is attached to the shaft of an electric motor
which has a rated speed of 3600 rpm. When the power is turned
off, the unit coasts to rest in 70 s. The grinding wheel and rotor
have a combined weight of 6 b and a combined radius of gyration
of 2 in. Determine the average magnitude of the couple due to
kinetic friction in the bearings of the motor.

A bolt located 50 mm from the center of an automobile wheel is
tightened by applying the couple shown for 0.10 s. Assuming that
the wheel is free to rotate and is initially at rest, determine the
resulting angular velocity of the wheel. The wheel has a mass of
19 kg and has a radius of gyration of 250 mm.

100 N

100 N

Fig. P17.54

Two disks of the same thickness and same material are attached
to a shaft as shown. The 8-lb disk A has a radius ry = 3 in., and
disk B has a radius 13 = 4.5 in. Knowing that a couple M of mag-
nitude 20 1b - in. is applied to disk A when the system is at rest,
determine the time required for the angular velocity of the system
to reach 960 rpm.

Two disks of the same thickness and same material are attached
to a shaft as shown. The 3-kg disk A has a radius r, = 100 mm,
and disk B has a radius 5 = 125 mm. Knowing that the angular
velocity of the system is to be increased from 200 rpm to 800 rpm
during a 3-s interval, determine the magnitude of the couple M
that must be applied to disk A.

A disk of constant thickness, initially at rest, is placed in contact
with a belt that moves with a constant velocity v. Denoting by m;
the coefficient of kinetic friction between the disk and the belt,
derive an expression for the time required for the disk to reach a
constant angular velocity.

Disk A, of weight 5 Ib and radius r = 3 in., is at rest when it is
placed in contact with a belt which moves at a constant speed
v = 50 ft/s. Knowing that m; = 0.20 between the disk and the
belt, determine the time required for the disk to reach a constant
angular velocity.

Problems 1 ]39

Fig. P17.53

Fig. P17.55 and P17.56

Fig. P17.57 and P17.58
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1140 Plane Motion of Rigid Bodies: Energy and 17.59 A cylinder of radius r and weight W with an initial counterclock-
Momentum Methods wise angular velocity Vj is placed in the corner formed by the

floor and a vertical wall. Denoting by m;. the coefficient of kinetic

friction between the cylinder and the wall and the floor, derive an

expression for the time required for the cylinder to come to rest.

Fig. P17.59

17.60 and 17.61 Two uniform disks and two cylinders are assembled
as indicated. Disk A has a mass of 10 kg and disk B has a mass of
6 kg. Knowing that the system is released from rest, determine the
time required for cylinder C to have a speed of 0.5 m/s.

17.60 Disks A and B are bolted together and the cylinders

are attached to separate cords wrapped on the disks.

17.61 The cylinders are attached to a single cord that

passes over the disks. Assume that no slipping occurs between

AxpertSoft Trial Version

Fig. P17.60 Fig. P17.61

17.62 Disk B has an initial angular velocity V,, when it is brought into
contact with disk A which is at rest. Show that the final angular
velocity of disk B depends only on v, and the ratio of the masses
m, and my of the two disks.

17.63 The 7.5-Ib disk A has a radius r, = 6 in. and is initially at rest.
The 10-Ib disk B has a radius r; = 8 in. and an angular velocity
V, of 900 rpm when it is brought into contact with disk A. Neglect-
ing friction in the bearings, determine (@) the final angular velocity
of each disk, (b) the total impulse of the friction force exerted on
Fig. P17.62 and P17.63 disk A.
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17.64 A tape moves over the two drums shown. Drum A weighs 1.4 1b Problems 1141
and has a radius of gyration of 0.75 in., while drum B weighs 3.5 Ib
and has a radius of gyration of 1.25 in. In the lower portion of v T
the tape the tension is constant and equal to Ty = 0.75 Ib. Know-
ing that the tape is initially at rest, determine (a) the required
constant tension Ty if the velocity of the tape is to be v = 10 ft/s
after 0.24 s, (b) the corresponding tension in the portion of the
tape between the drums.

=
y

17.65 Show that the system of momenta for a rigid slab in plane motion
reduces to a single vector, and express the distance from the mass
center G to the line of action of this vector in terms of the cen- =
troidal radius of gyration k of the slab, the magnitude v of the  T,=0751b
velocity of G, and the angular velocity V. Fig. P17.64

17.66 Show that, when a rigid slab rotates about a fixed axis through O
perpendicular to the slab, the system of the momenta of its par-
ticles is equivalent to a single vector of magnitude mrv, perpen-
dicular to the line OG, and applied to a point P on this hne called
the center of percussion, at a distance GP = k*7 from the mass
center of the slab.

17.67 Show that the sum H, of the moments about a point A of the
momenta of the particles of a rigid slab in plane motion is equal
to I,V, where V is the angular Velocﬁy of the slab at the 1nstant
considered and I, the mogases bl A b e
only if one of the followi
center of the slab, (b)
(c) the velocity of A is &
the mass center G.

AxpertSoft Trial Version

17.68 Consider a rigid slab initially at rest and subjected to an impulsive
force F contained in the plane of the slab. We define the center
of percussion P as the point of intersection of the line of action of
F with the perpendicular drawn from G. (a) Show that the instan-
taneous center of rotation C of the slab is located on line GP at a
distance GC = k¥GP on the opposite side of G. (b) Show that if
the center of percussion were located at C the instantaneous center Fig. P17.68
of rotation would be located at P.

17.69 A flywheel is rigidly attached to a 1.5-in.-radius shaft that rolls
without sliding along parallel rails. Knowing that after being
released from rest the system attains a speed of 6 in./s in 30 s,
determine the centroidal radius of gyration of the system.

!

15°
Fig. P17.69
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Plane Mofion of Rigid Bodies: Energy and 17.70 A wheel of radius r and centroidal radius of gyration k is released

Momentum Methods

£

mm 17.71

Fig. P17.71

17.72

from rest on the incline shown at time ¢ = 0. Assuming that the wheel
rolls without sliding, determine (a) the velocity of its center at time ¢,
(b) the coefficient of static friction required to prevent slipping,

Bl
Fig. P17.70

The double pulley shown has a mass of 3 kg and a radius of gyration
of 100 mm. Knowing that when the pulley is at rest, a force P of
magnitude 24 N is applied to cord B, determine (a) the velocity of
the center of the pulley after 1.5 s, (b) the tension in cord C.

and 17.73 A 9-in-radius cylinder of weight 18 Ib rests on a 6-Ib
carriage. The system is at rest when a force P of magnitude 2.5 Ib
is applied as shown for 1.2 s. Knowing that the cylinder rolls with-
and neglecting the mass of the wheels
he resulting velocity of (a) the carriage,

17.74

Fig. P17.74 and P17.75

17.75

17.76

Fig. P17.76

Fig. P17.72 Fig. P17.73

Two uniform cylinders, each of mass m = 6 kg and radius r =
125 mm, are connected by a belt as shown. If the system is released
from rest when ¢ = 0, determine (a) the velocity of the center of
cylinder B at¢ = 3 s, (b) the tension in the portion of belt connecting
the two cylinders.

Two uniform cylinders, each of mass m = 6 kg and radius r =
125 mm, are connected by a belt as shown. Knowing that at the
instant shown the angular velocity of cylinder A is 30 rad/s coun-
terclockwise, determine (@) the time required for the angular
velocity of cylinder A to be reduced to 5 rad/s, (b) the tension in
the portion of belt connecting the two cylinders.

In the gear arrangement shown, gears A and C are attached to rod
ABC, which is free to rotate about B, while the inner gear B is
fixed. Knowing that the system is at rest, determine the magnitude
of the couple M which must be applied to rod ABC, if 2.5 s later
the angular velocity of the rod is to be 240 rpm clockwise. Gears
A and C weigh 2.5 Ib each and may be considered as disks of radius
2 in.; rod ABC weighs 4 Ib.
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17.77 A sphere of radius r and mass m is projected along a rough Problems 1143
horizontal surface with the initial velocities shown. If the final
velocity of the sphere is to be zero, express () the required mag-
nitude of V; in terms of vy and r, (b) the time required for the
sphere to come to rest in terms of v and the coefficient of kinetic Vo
friction mj.

17.78 A bowler projects an 8.5-in.-diameter ball weighing 16 1b along an
alley with a forward velocity v, of 25 ft/s and a backspin v, of
9 rad/s. Knowing that the coefficient of kinetic friction between the
ball and the alley is 0.10, determine (a) the time ¢, at which the ball Fig. P17.77
will start rolling without sliding, (b) the speed of the ball at time ¢;.

Fig. P17.78

17.79 Four rectangular panels, each of length b and height ib, are
attached with hinges to a circular plate of diameter 12 b and held
by a wire loop in the position shown. The plate and the panels
are made of the same material and have the same thickness. The
entire assembly is rotatig
wire breaks. Determine
the panels have come to

AxpertSoft Trial Version

17.80 A 2.5-1b disk of radius 4 in. is attached to the yoke BCD by means
of short shafts fitted in bearings at B and D. The 1.5-Ib yoke has a
radius of gyration of 3 in. about the x axis. Initially the assembly is
rotating at 120 rpm with the disk in the plane of the yoke (u = 0).
If the disk is slightly disturbed and rotates with respect to the yoke
until u = 90°, where it is stopped by a small bar at D, determine
the final angular velocity of the assembly.

17.81 Two 10-1b disks and a small motor are mounted on a 15-Ib rec-
tangular platform which is free to rotate about a central vertical
spindle. The normal operating speed of the motor is 180 rpm. If
the motor is started when the system is at rest, determine the

angular velocity of all elements of the system after the motor has Fig. P17.80
attained its normal operating speed. Neglect the mass of the motor
and of the belt.

Fig. P17.81
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1144 Plane Motion of Rigid Bodies: Energy and 17.82

Momentum Methods

120 mm

17.83

Fig. P17.82

17.84

17.85

Fig. P17.86

A 3-kg rod of length 800 mm can slide freely in the 240-mm
cylinder DE, which in turn can rotate freely in a horizontal plane.
In the position shown the assembly is rotating with an angular
velocity of magnitude v = 40 rad/s and end B of the rod is mov-
ing toward the cylinder at a speed of 75 mm/s relative to the
cylinder. Knowing that the centroidal mass moment of inertia of
the cylinder about a vertical axis is 0.025 kg - m? and neglecting
the effect of friction, determine the angular velocity of the assem-
bly as end B of the rod strikes end E of the cylinder.

A 1.6-kg tube AB can slide freely on rod DE which in turn can
rotate freely in a horizontal plane. Initially the assembly is rotating
with an angular velocity V = 5 rad/s and the tube is held in posi-
tion by a cord. The moment of inertia of the rod and bracket about
the vertical axis of rotation is 0.30 kg - m? and the centroidal moment
of inertia of the tube about a vertical axis is 0.0025 kg - m>. If the
cord suddenly breaks, determine (a) the angular velocity of the
assembly after the tube has moved to end E, (b) the energy lost
during the plastic impact at E.
e

125 mm._ 372m
N

Fig. P17.83

In the helicopter shown, a vertical tail propeller is used to prevent
rotation of the cab as the speed of the main blades is changed.
Assuming that the tail propeller is not operating, determine the
final angular velocity of the cab after the speed of the main blades
has been changed from 180 to 240 rpm. (The speed of the main
blades is measured relative to the cab, and the cab has a centroi-
dal moment of inertia of 650 Ib - ft - s>. Each of the four main
blades is assumed to be a slender 14-ft rod weighing 55 1b.)

Assuming that the tail propeller in Prob. 17.84 is operating and
that the angular velocity of the cab remains zero, determine the
final horizontal velocity of the cab when the speed of the main
blades is changed from 180 to 240 rpm. The cab weighs 1250 Ib
and is initially at rest. Also determine the force exerted by the tail
propeller if the change in speed takes place uniformly in 12 s.

The circular platform A is fitted with a rim of 200-mm inner radius
and can rotate freely about the vertical shaft. It is known that the
platform-rim unit has a mass of 5 kg and a radius of gyration of
175 mm with respect to the shaft. At a time when the platform is
rotating with an angular velocity of 50 rpm, a 3-kg disk B of radius
80 mm is placed on the platform with no velocity. Knowing that disk
B then slides until it comes to rest relative to the platform against
the rim, determine the final angular velocity of the platform.


http://www.axpertsoft.com/pdf-splitter-software/

17.87 Two 4-kg disks and a small motor are mounted on a 6-kg rectan- Problems 1145
gular platform which is free to rotate about a central vertical
spindle. The normal operating speed of the motor is 240 rpm. If
the motor is started when the system is at rest, determine the
angular velocity of all elements of the system after the motor has
attained its normal operating speed. Neglect the mass of the motor

and of the belt.

100 mm

i 800 mm |

Fig. P17.87

17.88 The 4-kg rod AB can slide freely inside the 6-kg tube CD. The rod
was entirely within the tube (x = 0) and released with no initial
velocity relative to the tube when the angular veloc1ty of the
assembly was 5 rad/s. Negle
the speed of the rod rel

17.89 A 1.8-kg collar A and a 0
a frame, consisting of the Torizontal rod OF
CD, which is free to rotate about its vertical axis of symmetry. The
two collars are connected by a cord running over a pulley that is
attached to the frame at O. At the instant shown, the velocity v, of
collar A has a magnitude of 2.1 m/s and a stop prevents collar B
from moving. The stop is suddenly removed and collar A moves
toward E. As it reaches a distance of 0.12 m from O, the magnitude
of its velocity is observed to be 2.5 m/s. Determine at that instant
the magnitude of the angular velocity of the frame and the moment
of inertia of the frame and pulley system about CD.

Lo

ﬁo.lm /VA i
%)\ e

dv

C

A

Fig. P17.89
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1146 Plane Motion of Rigid Bodies: Energy and 17.90 A 6-b collar C is attached to a spring and can slide on rod AB,
Momentum Methods hich in turn can rotate in a horizontal plane. The mass moment

which in turn can ro p
of inertia of rod AB with respect to end A is 0.35 Ib - ft - s”. The
. spring has a constant k = 15 Ib/in. and an undeformed length of
\/ 10 in. At the instant shown the velocity of the collar relative to the
rod is zero and the assembly is rotating with an angular velocity of
|‘ 12 rad/s. Neglecting the effect of friction, determine () the angular
velocity of the assembly as the collar passes through a point located
7.5 in. from end A of the rod, (b) the corresponding velocity of the

collar relative to the rod.

17.91 A small 4-1b collar C can slide freely on a thin ring of weight 6 1b
and radius 10 in. The ring is welded to a short vertical shaft, which
can rotate freely in a fixed bearing. Initially the ring has an angular
velocity of 35 rad/s and the collar is at the top of the ring (u = 0)
when it is given a slight nudge. Neglecting the effect of friction,
determine (a) the angular velocity of the ring as the collar passes
through the position u = 90°, (b) the corresponding velocity of the
collar relative to the ring.

Fig. P17.90

AxpertSoft Trial Version

<

S << Fig. P17.91

17.92 A uniform rod AB, of mass 7 kg and length 1.2 m, is attached to
0 the 11-kg cart C. Knowing that the system is released from rest in
B the position shown and neglecting friction, determine (a) the veloc-
. ity of point B as rod AB passes through a vertical position, (b) the
Fig. P17.92 corresponding velocity of cart C.
17.93 1In Prob. 17.82, determine the velocity of rod AB relative to cylinder
DE as end B of the rod strikes end E of the cylinder.

17.94 1In Prob. 17.83, determine the velocity of the tube relative to the
rod as the tube strikes end E of the assembly.

A
O

6in. | ' 17.95 The 6-Ib steel cylinder A and the 10-Ib wooden cart B are at rest
L C ? . . . . . .
N | V0 W W D~ B, in the position shown when the cylinder is given a slight nudge,

causing it to roll without sliding along the top surface of the cart.
R 1Y Neglecting friction between the cart and the ground, determine
the velocity of the cart as the cylinder passes through the lowest

Fig. P17.95 point of the surface at C.
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17.11 IMPULSIVE MOTION

You saw in Chap. 13 that the method of impulse and momentum is
the only practicable method for the solution of problems involving
the impulsive motion of a particle. Now you will find that problems
involving the impulsive motion of a rigid body are particularly well
suited to a solution by the method of impulse and momentum. Since
the time interval considered in the computation of linear impulses
and angular impulses is very short, the bodies involved can be
assumed to occupy the same position during that time interval, mak-
ing the computation quite simple.

17.12 ECCENTRIC IMPACT

In Secs. 13.13 and 13.14, you learned to solve problems of central
impact, i.e., problems in which the mass centers of the two colliding
bodies are located on the line of impact. You will now analyze the
eccentric impact of two rigid bodies. Consider two bodies which col-
lide, and denote by v, and v the velocities before impact of the two
points of contact A and B (Fig. 17.10a). Under the impact, the two

Va

@) (b)

Fig. 17.10

bodies will deform, and at the end of the period of deformation, the
velocities uy and uy of A and B will have equal components along
the line of impact nn (Fig. 17.10b). A period of restitution will then
take place, at the end of which A and B will have velocities v} and
vp (Fig. 17.10c). Assuming that the bodies are frictionless, we find
that the forces they exert on each other are directed along the line
of impact. Denoting the magnitude of the impulse of one of these
forces during the period of deformation by [P dt and the magnitude
of its impulse during the period of restitution by [R dt, we recall
that the coefficient of restitution e is defined as the ratio

_ JRdt
JPdt
We propose to show that the relation established in Sec. 13.13

between the relative velocities of two particles before and after
impact also holds between the components along the line of impact

e (17.18)

17.12 Eccentric Impact

1147
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1148 'F\’/l\ane N'\O”OFAO'L Régid Bodies: Energy and of the relative velocities of the two points of contact A and B. We
omentum ernodas

propose to show, therefore, that

(08)y — (VA)y = el(va)y — (vB)] (17.19)

It will first be assumed that the motion of each of the two col-
liding bodies of Fig. 17.10 is unconstrained. Thus the only impulsive
forces exerted on the bodies during the impact are applied at A and
B, respectively. Consider the body to which point A belongs and
draw the three momentum and impulse diagrams corresponding to
the period of deformation (Fig. 17.11). We denote by v and u,

Photo 17.4 When the rotating bat contacts
the ball it applies an impulsive force to the ball
requiring the method of impulse and momentum
to be used to determine the final velocities

of the ball and bat.

Go \f A =

Fig. 17.11

enter at the beginning and at
AxpertSoft Trial Version  EUEREKIECE AT
e same instants. Summing and
e momenta and impulses along the

equating the components o
line of impact nn, we write

mv, — [Pdt = mu, (17.20)

Summing and equating the moments about G of the momenta and
impulses, we also write

Iv — rfPdt = IV* (17.21)

where r represents the perpendicular distance from G to the line of
impact. Considering now the period of restitution, we obtain in a
similar way

mu, — [Rdt = mv, (17.22)
Iv¢ — rfRdt = IV’ (17.23)

where v’ and V' represent, respectively, the velocity of the mass
center and the angular velocity of the body after impact. Solving
(17.20) and (17.22) for the two impulses and substituting into (17.18),
and then solving (17.21) and (17.23) for the same two impulses and
substituting again into (17.18), we obtain the following two alterna-

tive expressions for the coefficient of restitution:
e="n_""n =V TV (17.24)

v, — U, \VARYA
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Multiplying by r the numerator and denominator of the second
expression obtained for e, and adding respectively to the numerator
and denominator of the first expression, we have
u, +rvE — (v, + V)
v, +rv — (u, + rv¥)

(17.25)

Observing that v, + rV represents the component (v,), along nn of
the velocity of the point of contact A and that, similarly, u, + rv*
and v, + rV' represent, respectively, the components (u4), and (v}),,
we write

o = (ady = (04)y (17.26)

<UA>n - (uA>n

The analysis of the motion of the second body leads to a similar
expression for e in terms of the components along nn of the succes-
sive velocities of point B. Recalling that (u4), = (u3),, and eliminat-
ing these two velocity components by a manipulation similar to the
one used in Sec. 13.13, we obtain relation (17.19).

If one or both of the colliding bodies is constrained to rotate
about a fixed point O, as in the case of a compound pendulum
(Fig. 17.12a), an impulsive reaction will be exerted at O (Fig. 17.12b).

%k

(@
Fig. 17.12
Let us verify that while their derivation must be modified, Egs. (17.26)
and (17.19) remain valid. Applying formula (17.16) to the period of
deformation and to the period of restitution, we write

Iov — rfP dt = IV (17.27)
Iov® — rfR dt = IV’ (17.28)

where r represents the perpendicular distance from the fixed point
O to the line of impact. Solving (17.27) and (17.28) for the two
impulses and substituting into (17.18), and then observing that rv,
rv*, and rv’ represent the components along nn of the successive
velocities of point A, we write

Ve =V rve — v’ _ (uA>n - (1]54)11

VvV — Vv rv — rv® (UA>n - (uA>n,

and check that Eq. (17.26) still holds. Thus Eq. (17.19) remains valid
when one or both of the colliding bodies is constrained to rotate
about a fixed point O.

In order to determine the velocities of the two colliding bodies
after impact, relation (17.19) should be used in conjunction with one
or several other equations obtained by applying the principle of
impulse and momentum (Sample Prob. 17.10).

17.12 Eccentric Impact
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18in.

SAMPLE PROBLEM 17.9

A 0.05-1b bullet B is fired with a horizontal velocity of 1500 ft/s into the
side of a 20-Ib square panel suspended from a hinge at A. Knowing that the
panel is initially at rest, determine (a) the angular velocity of the panel
immediately after the bullet becomes embedded, (b) the impulsive reaction
at A, assuming that the bullet becomes embedded in 0.0006 s.

SOLUTION

Principle of Impulse and Momentum. We consider the bullet and the
panel as a single system and express that the initial momenta of the bullet
and panel and the impulses of the external forces are together equipollent
to the final momenta of the system. Since the time interval At = 0.0006 s
is very short, we neglect all nonimpulsive forces and consider only the exter-
nal impulses A, At and A, At.

A@ ;
9in.
(G _nrv_L
AxpertSoft Trial Version [ b

Syst Momenta, + Syst Ext Imp,y,, = Syst Momenta,

+lmoments about A: myop(l ft) + 0 = mpva(s5 ft) + Ipv, (1)
¥/ x components: mpug + A, At = mpvy (2)
+><y components: 0+ A, At =0 (3)
The centroidal mass moment of inertia of the square panel is

= 1/201b

Ip=¢g b2=—(—>ﬁft2=o.23291b-ft~ 8

p=omb” =\ 5ag Ju 1) °

Substituting this value as well as the given data into (1) and noting that
Uy = (v,
we write

0.05 20
V, = 4.67 rad/s Vo = 4.67 adss

vy = (F ft)Vy = (35 ft)(4.67rad/s) = 3.501t/s

Substituting v, = 3.50 ft/s, At = 0.0006 s, and the given data into Eq. (2),
we have

0.05 20
— + A,(0. =(—)s.
(32'2>(1500) A,(0.0006) (32.2)(3 50)
A, = =259 1b A, =2591b =z
From Eq. (3), we find A, =0 A, =0
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SAMPLE PROBLEM 17.10

A 2-kg sphere moving horizontally to the right with an initial velocity of
5 m/s strikes the lower end of an 8-kg rigid rod AB. The rod is suspended
from a hinge at A and is initially at rest. Knowing that the coefficient of
restitution between the rod and the sphere is 0.80, determine the angular
velocity of the rod and the velocity of the sphere immediately after the
impact.

SOLUTION

Principle of Impulse and Momentum. We consider the rod and sphere as
a single system and express that the initial momenta of the rod and sphere
and the impulses of the external forces are together equipollent to the final
momenta of the system. We note that the only impulsive force external to
the system is the impulsive reaction at A.

A @—f
~ 06m
L. MRV
= ot
G
my's O s
Syst Momenta, + Syst Ext Imp,,,, = Syst Momenta,
+lmoments about A:
mwy(1.2 m) = mw! (1.2 m) + mzog(0.6 m) + Iv’ 1)

Since the rod rotates about A, we have v = rv' = (0.6 m)Vv'. Also,
I=34ml? =358 kg)(1.2 m)? = 0.96 kg - m?
Substituting these values and the given data into Eq. (1), we have
(2 kg)(5 m/s)(1.2 m) = (2 kg)v; (1.2 m) + (8 kg)(0.6 m)v'(0.6 m)
+ (0.96 kg - m*)v'’
12 = 240, + 3.84V’ (2)
Relative Velocities. Choosing positive to the right, we write
vy — v; = e(v, — vp)
Substituting vy = 5 m/s, vy = 0, and e = 0.80, we obtain
v — v = 0.80(5 m/s) 3)
Again noting that the rod rotates about A, we write
vp = (1.2 m)V’ 4)
Solving Egs. (2) to (4) simultaneously, we obtain
v’ = 3.21 rad/s V' = 3.21 rad/s |
vy = —0.143 m/s v, = —0.143 m/s z

s
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Position 2 a/J\
Y/ )
!g*\—r

&/ 45°
? Datum

GB = Exlﬁa =0.707a
h, = GB sin (45° + 15°)
=0.612a

Position 3

hy=GB =0.707a

SAMPLE PROBLEM 17.11

A square package of side ¢ and mass m moves down a conveyor belt A with
a constant velocity v;. At the end of the conveyor belt, the corner of the
package strikes a rigid support at B. Assuming that the impact at B is per-
fectly plastic, derive an expression for the smallest magnitude of the velocity
vy for which the package will rotate about B and reach conveyor belt C.

SOLUTION

Principle of Impulse and Momentum. ~ Since the impact between the pack-
age and the support is perfectly plastic, the package rotates about B during
the impact. We apply the principle of impulse and momentum to the pack-
age and note that the only impulsive force external to the package is the
impulsive reaction at B.

a—\ mv;
2 \ _ 3&\

Since the package rotates about B, we have v, 2= ( GB)V, = $12av,. We
substitute this expression, together vmth I = tma®, into Eq. (1):

(me))(sa) = mE12avo)32%0) + tmaPve B =dave @)

Principle of Conservation of Energy. We apply the principle of conserva-
tion of energy between position 2 and position 3.

Position 2. V, = Wh,. Recalling that v, = $12aV,, we write
Ty = tmv3 + 3Iv3 = 3m(312aV,)* + 3(3ma*)V3 = sma>v3

Position 3. Since the package must reach conveyor belt C, it must pass
through position 3 where G is directly above B. Also, since we wish to
determine the smallest velocity for which the package will reach this posi-
tion, we choose v;3 = V5 = 0. Therefore T3 = 0 and V5 = Wh.
Conservation of Energy

TQ + VZ = T3 a4 V3
ma®v3 + Why = 0 + Why
3W 3g

= — (hy — hy) (3)

V% = T (h hZ) 612
Substituting the computed values of hy and h; into Eq. (3), we obtain

ma

»_ 3¢ 3g S
V, = 07(0.70751 —0.612a) = g(0.0QSa) Vv, = 10.285¢/a

by = favy = %10285g/a v, = 0.7121ga
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his lesson was devoted to the impulsive motion and to the eccentric impact of

rigid bodies.

1. Impulsive motion occurs when a rigid body is subjected to a very large force F
for a very short interval of time At; the resulting impulse F At is both finite and
different from zero. Such forces are referred to as impulsive forces and are encoun-
tered whenever there is an impact between two rigid bodies. Forces for which the
impulse is zero are referred to as nonimpulsive forces. As you saw in Chap. 13,
the following forces can be assumed to be nonimpulsive: the weight of a body, the
force exerted by a spring, and any other force which is known to be small by
comparison with the impulsive forces. Unknown reactions, however, cannot be
assumed to be nonimpulsive.

2. Eccentric impact of rigid bodies. You saw that when two bodies collide, the
velocity components along the line of impact of the points of contact A and B
before and after impact satisfy the following equation:

(Dé)n - (UA>H = e[(UA)n - (DB>n] (17-19)

where the left-hand member is the relative velocity after the impact, and the right-
hand member i ynd the relative veloc-

ity before the i

AxpertSoft Trial Version

This equa velocity components
of the points of contact before and after an impact that you used for particles in
Chap. 13.

3. To solve a problem involving an impact you should use the method of impulse
and momentum and take the following steps.

a. Draw a free-body-diagram equation of the body that will express that
the system consisting of the momenta immediately before impact and of the
impulses of the external forces is equivalent to the system of the momenta imme-
diately after impact.

b. The free-body-diagram equation will relate the velocities before and after
impact and the impulsive forces and reactions. In some cases, you will be able to
determine the unknown velocities and impulsive reactions by solving equations
obtained by summing components and moments [Sample Prob. 17.9].

c. In the case of an impact in which e > 0, the number of unknowns will
be greater than the number of equations that you can write by summing compo-
nents and moments, and you should supplement the equations obtained from the
free-body-diagram equation with Eq. (17.19), which relates the relative velocities
of the points of contact before and after impact [Sample Prob. 17.10].

d. During an impact you must use the method of impulse and momentum.
However, before and after the impact you can, if necessary, use some of the other
methods of solution that you have learned, such as the method of work and energy

[Sample Prob. 17.11].
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PROBLEMS

IMPULSE-MOMENTUM PRACTICE PROBLEMS

17.F4 A uniform slender rod AB of mass m is at rest on a frictionless
horizontal surface when hook C engages a small pin at A. Knowing
that the hook is pulled upward with a constant velocity vo, draw
the impulse-momentum diagram that is needed to determine the
impulse exerted on the rod at A and B. Assume that the velocity
of the hook is unchanged and that the impact is perfectly plastic.

.

-

73

oe]
>

©

\JJ

(@]

Fig. P17.F4

17.F5 A unlform slender rod AB of length L is falling freely with a velocity
becomes taut. Assuming that the impact
pulse-momentum diagram that is
ir velocity of the rod and the veloc-
ly after the cord becomes taut.

Fig. P17.F5

17.F6 A slender rod CDE of length L and mass m is attached to a pin
support at its midpoint D. A second and identical rod AB is rotat-
ing about a pin support at A with an angular velocity V, when its
end B strikes end C of rod CDE. The coefficient of restitution
between the rods is e. Draw the impulse-momentum diagrams
that are needed to determine the angular velocity of each rod im-
mediately after the impact.

@

Fig. P17.F6
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END-OF-SECTION PROBLEMS

17.96

17.97

17.98

17.99

At what height h above its center G should a billiard ball of radius r be
struck horizontally by a cue if the ball is to start rolling without
sliding?

A bullet weighing 0.08 Ib is fired with a horizontal velocity of 1800 ft/s
into the lower end of a slender 15-Ib bar of length L = 30 in. Know-
ing that b = 12 in. and that the bar is initially at rest, determine
(a) the angular velocity of the bar immediately after the bullet
becomes embedded, (b) the impulsive reaction at C, assuming
that the bullet becomes embedded in 0.001 s.

A

—

@@_T

U -
B
Fig. P17.97

In Prob. 17.97, determin
sive reaction at C is to bd
ity of the bar immediate|

An 16-lb wooden panel is suspended from a pin support at A and
is initially at rest. A 4-Ib metal sphere is released from rest at B
and falls into a hemispherical cup C attached to the panel at a
point located on its top edge. Assuming that the impact is perfectly
plastic, determine the velocity of the mass center G of the panel
immediately after the impact.

17.100 A 16-1b wooden panel is suspended from a pin support at A and

17.101

17.102

is initially at rest. A 4-Ib metal sphere is released from rest at B’
and falls into a hemispherical cup C" attached to the panel at the
same level as the mass center G. Assuming that the impact is
perfectly plastic, determine the velocity of the mass center G of
the panel immediately after the impact.

A 45-g bullet is fired with a velocity of 400 m/s at u = 30° into a 9-kg
square panel of side b = 200 mm. Knowing that 4 = 150 mm and
that the panel is initially at rest, determine (@) the velocity of the
center of the panel immediately after the bullet becomes embedded,
(b) the impulsive reaction at A, assuming that the bullet becomes
embedded in 2 ms.

A 45-g bullet is fired with a velocity of 400 m/s at u = 5° into a 9-kg
square panel of side b = 200 mm. Knowing that the panel is initially
at rest, determine (a) the required distance h if the horizontal com-
ponent of the impulsive reaction at A is to be zero, (b) the corre-
sponding velocity of the center of the panel immediately after the
bullet becomes embedded.

Problems

Fig. P17.96

|

|

|
18 in. B

s

Fig. P17.99 and P17.100

[ @A
LHT\ J

Fig. P17.101 and P17.102
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1156 Plane Motion of Rigid Bodies: Energy and 17.103 Two uniform rods, each of mass m, form the L-shaped rigid body

Momentum Methods ABC which is initially at rest on the frictionless horizontal surface

Vo when hook D of the carriage E engages a small pin at C. Knowing

—_— that the carriage is pulled to the right with a constant velocity vy,

determine immediately after the impact (¢) the angular velocity of

the body, (b) the velocity of corner B. Assume that the velocity of the
carriage is unchanged and that the impact is perfectly plastic.

S
9
Q

17.104 The uniform slender rod AB of weight 5 Ib and length 30 in. forms
L an angle b = 30° with the vertical as it strikes the smooth corner
shown with a vertical velocity v, of magnitude 8 ft/s and no angular
velocity. Assuming that the impact is perfectly plastic, determine
B the angular velocity of the rod immediately after the impact.

A
C

. L
Fig. P17.103

A—

ired with a horizontal velocity of
od AB of length L = 30 in. The
spended by a cord of length L =
for which, immediately after the

O
h
<< bullet becomes embedded, the mstantaneous center of rotation of the
rod is point C.

Fig. P17.105 17.106 A uniform sphere of radius r rolls down the incline shown without

slipping. It hits a horizontal surface and, after slipping for a while,
it starts rolling again. Assuming that the sphere does not bounce
as it hits the horizontal surface, determine its angular velocity and
the velocity of its mass center after it has resumed rolling.

B
V1 17.107 A uniformly loaded rectangular crate is released from rest in the
position shown. Assuming that the floor is sufficiently rough to
Fig. P17.106 prevent slipping and that the impact at B is perfectly plastic, deter-
mine the smallest value of the ratio a/b for which corner A will
remain in contact with the floor.

Fig. P17.107


http://www.axpertsoft.com/pdf-splitter-software/

17.108

17.109

17.110

17.111

17.112

A bullet of mass m is fired with a horizontal velocity v, and at a height
h = 3R into a wooden disk of much larger mass M and radius R. The
disk rests on a horizontal plane and the coefficient of friction between
the disk and the plane is finite. (@) Determine the linear velocity v,
and the angular velocity v, of the disk immediately after the bullet
has penetrated the disk. () Describe the ensuing motion of the disk
and determine its linear velocity after the motion has become
uniform.

Determine the height & at which the bullet of Prob. 17.108 should be
fired (a) if the disk is to roll without sliding immediately after impact,
(b) if the disk is to slide without rolling immediately after impact.

A uniform slender bar of length L = 200 mm and mass m =
0.5 kg is supported by a frictionless horizontal table. Initially the
bar is spinning about its mass center G with a constant angular
speed V; = 6 rad/s. Suddenly latch D is moved to the right and is
struck by end A of the bar. Knowing that the coefficient of restitu-
tion between A and D is ¢ = 0.6, determine the angular velocity
of the bar and the velocity of its mass center immediately after the
impact.

A uniform slender rod of length L is dropped onto rigid supports
at A and B. Since support B is slightly lower than support A, the
rod strikes A with a velocity v, before it strikes B. Assuming per-
fectly elastic impact at both A and B, determine the angular velocity
of the rod and the velociggig g

rod (a) strikes support 4
support A.

Fig. P17.111

The slender rod AB of length L forms an angle b with the vertical
as it strikes the frictionless surface shown with a vertical velocity
vy and no angular velocity. Assuming that the impact is perfectly
plastic, derive an expression for the angular velocity of the rod
immediately after the impact.

Fig. P17.112

Problems 1157
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A
Fig. P17.108 and P17.109
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1158 Plane Motion of Rigid Bodies: Energy and 17.113 The slender rod AB of length L = 1 m forms an angle b = 30°

Momentum Methods with the vertical as it strikes the frictionless surface shown with a
vertical velocity v = 2 m/s and no angular velocity. Knowing that
the coefficient of restitution between the rod and the ground is
e = 0.8, determine the angular velocity of the rod immediately
after the impact.

17.114 The trapeze/lanyard air drop (t/LAD) launch is a proposed innova-
tive method for airborne launch of a payload-carrying rocket. The
release sequence involves several steps as shown in (1) where the
payload rocket is shown at various instances during the launch. To
investigate the first step of this process, where the rocket body
drops freely from the carrier aircraft until the 2-m lanyard stops

Fig. P17.113 the vertical motion of B, a trial rocket is tested as shown in (2). The

rocket can be considered a uniform 1 X 7-m rectangle with a mass

of 4000 kg. Knowing that the rocket is released from rest and falls
vertically 2 m before the lanyard becomes taut, determine the
angular velocity of the rocket immediately after the lanyard is taut.

lanyard

2\B

7m 1

Fig. P17.114

17.115 The uniform rectangular block shown is moving along a frictionless
surface with a velocity v; when it strikes a small obstruction at B.
Assuming that the impact between corner A and obstruction B is
perfectly plastic, determine the magnitude of the velocity v, for
which the maximum angle u through which the block will rotate
will be 30°.

1o
S
=}
3

100 mm

of B

Fig. P17.115
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17.116 A slender rod of length L and mass m is released from rest in the Problems 1159
position shown. It is observed that after the rod strikes the vertical
surface it rebounds to form an angle of 30° with the vertical. | L
(a) Determine the coefficient of restitution between knob K and
the surface. (b) Show that the same rebound can be expected for

any position of knob K. AG (c |B

17.117 A slender rod of mass m and length L is released from rest in the
position shown and hits edge D. Assuming perfectly plastic impact
at D, determine for b = 0.6L, (a) the angular velocity of the rod
immediately after the impact, (b) the maximum angle through 30°
which the rod will rotate after the impact.

/ Fig. P17.116
A '} 30°

Fig. P17.117

17.118 A uniformly loaded squay

PR BRI AXxpertSoft Trial Version
oor, and then rotates a

prevent slipping and the T
by V, the angular velocity of the crate immediately before B strikes
the floor, determine (@) the angular velocity of the crate immediately
after B strikes the floor, (b) the fraction of the kinetic energy of the
crate lost during the impact, (¢) the angle u through which the crate
will rotate after B strikes the floor.

@ ) ©)
Fig. P17.118

17.119 A 1-oz bullet is fired with a horizontal velocity of 750 mi/h into the 41t
18-Ib wooden beam AB. The beam is suspended from a collar of
negligible mass that can slide along a horizontal rod. Neglecting
friction between the collar and the rod, determine the maximum
angle of rotation of the beam during its subsequent motion.

17.120 For the beam of Prob. 17.119, determine the velocity of the 1-oz BY &= -
bullet for which the maximum angle of rotation of the beam will Vo
be 90°. Fig. P17.119
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Fig. P17.123

AC o —
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>
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|

Fig. P17.125

17.121

17.122

17.123

17.125

17.126

The plank CDE has a mass of 15 kg and rests on a small pivot at D.
The 55-kg gymnast A is standing on the plank at C when the 70-kg
gymnast B jumps from a height of 2.5 m and strikes the plank at E.
Assuming perfectly plastic impact and that gymnast A is standing
absolutely straight, determine the height to which gymnast A will rise.

Fig. P17.121

Solve Prob. 17.121, assuming that the gymnasts change places so
that gymnast A jumps onto the plank while gymnast B stands at C.

A small plate B is attached to a cord that is wrapped around a
uniform 8-lb disk of radius R = 9 in. A 3-1b collar A is released
from rest and falls through a distance h = 15 in. before hitting
plate B. Assuming that the impact is perfectly plastic and neglect-
ing the weight of the plate, determine immediately after the impact
(a) the velocity of the collar, (b) the angular velocity of the disk.

at the coefficient of restitution

Two identical slender rods may swing freely from the pivots shown.
Rod A is released from rest in a horizontal position and swings to a
vertical position, at which time the small knob K strikes rod B which
was at rest. If b = 3l ande = 3, determine (a) the angle through which
rod B will swing, (b) the angle through which rod A will rebound.

A 2-kg solid sphere of radius r = 40 mm is dropped from a height
h = 200 mm and lands on a uniform slender plank AB of mass
4 kg and length L = 500 mm which is held by two inextensible
cords. Knowing that the impact is perfectly plastic and that the
sphere remains attached to the plank at a distance ¢ = 40 mm
from the left end, determine the velocity of the sphere immediately
after impact. Neglect the thickness of the plank.

\
\

\ 4
\ /
N\ VA

\ V4

[ . |

Fig. P17.126
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17.127 and 17.128 Member ABC has a mass of 2.4 kg and is attached
to a pin support at B. An 800-g sphere D strikes the end of member
ABC with a vertical velocity v; of 3 m/s. Knowing that L = 750 mm
and that the coefficient of restitution between the sphere and
member ABC is 0.5, determine immediately after the impact
(@) the angular velocity of member ABC, (b) the velocity of the
sphere.

L

~— — —>

V11 Q D4

B
AC 3 ) C
‘ [ 1
| ] |
Fig. P17.127 Fig. P17.128

17.129 Sphere A of mass m, = 2 kg and radius r = 40 mm rolls without
slipping with a velocity v; = 2 m/s on a horizontal surface when it
hits squarely a uniform slender bar B of mass is mp = 0.5 kg and
length L = 100 mm that is standing on end and is at rest. Denoting
by my the coefficient of kinetic friction between the sphere and the
horizontal surface, negle

ek AxpertSoft Trial Version

0.1, determine the ang
immediately after the imse

17.130 A large 3-lb sphere with a radius » = 3 in. is thrown into a light
basket at the end of a thin, uniform rod weighing 2 Ib and length
L = 10 in. as shown. Immediately before the impact the angular
velocity of the rod is 3 rad/s counterclockwise and the velocity of
the sphere is 2 ft/s down. Assume the sphere sticks in the basket.
Determine after the impact (@) the angular velocity of the bar and
sphere, (b) the components of the reactions at A.

17.131 A small rubber ball of radius r is thrown against a rough floor with
a velocity v, of magnitude v, and a backspin V, of magnitude Vv,
Tt is observed that the ball bounces from A to B, then from B to
A, then from A to B, etc. Assuming perfectly elastic impact, deter-
mine the required magnitude Vv, of the backspin in terms of v,
and r.

//
_ \
Va Vg o
,
A/V A 60° 60°B ‘\

Fig. P17.131

Problems 1 ]6]
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Fig. P17.129
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Fig. P17.130
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1162 Plane Motion of Rigid Bodies: Energy and 17.132 Sphere A of mass m and radius r rolls without slipping with a
Momentum Methods locity v horizontal surface when it hits squarely an identical
velocity v; on a horizo q y
sphere B that is at rest. Denoting by m; the coefficient of kinetic
friction between the spheres and the surface, neglecting friction
between the spheres, and assuming perfectly elastic impact, deter-
mine (a) the linear and angular velocities of each sphere immedi-
ately after the impact, (b) the velocity of each sphere after it has
started rolling uniformly.

A B

Fig. P17.132

17.133 In a game of pool, ball A is rolling without slipping with a velocity
v as it hits obliquely ball B, which is at rest. Denoting by r the
radius of each ball and by m; the coefficient of kinetic friction
between a ball and the table, and assuming perfectly elastic impact,
determine (@) the linear and angular velocity of each ball immedi-
ately after the impact, (b) the velocity of ball B after it has started
rolling uniformly.

AxpertSoft Trial Version

Fig. P17.133

17.134 Each of the bars AB and BC is of length L = 400 mm and mass
m = 1.2 kg. Determine the angular velocity of each bar immedi-
ately after the impulse QAt = (1.5 N - s)i is applied at C.

Ale)—r

L

B —1

L
QAt
" C

Fig. P17.134
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In this chapter we again considered the method of work and energy
and the method of impulse and momentum. In the first part of the
chapter we studied the method of work and energy and its applica-
tion to the analysis of the motion of rigid bodies and systems of rigid

bodies.

In Sec. 17.2, we first expressed the principle of work and energy for
a rigid body in the form

Tl + U1y2 = T2 (17.1)

where T, and T represent the initial and final values of the kinetic
energy of the rigid body and Uy, represents the work of the external
forces acting on the rigid body.

In Sec. 17.3, we recalled the ¢

k of a force F applied at a ' '
work of a force F applied a AxpertSoft Trial Version

where F was the magnitude of the force, a the angle it formed with
the direction of motion of A, and s the variable of integration mea-
suring the distance traveled by A along its path. We also derived the
expression for the work of a couple of moment M applied to a rigid
body during a rotation in u of the rigid body:

Uiy =J Mdu (17.5)

Uy

We then derived an expression for the kinetic energy of a rigid body
in plane motion [Sec. 17.4]. We wrote

T = imv” + IIV? (17.9)

where v is the velocity of the mass center G of the body, Vv is the
angular velocity of the body, and I is its moment of inertia about an
axis through G perpendicular to the plane of reference (Fig. 17.13)
[Sample Prob. 17.3]. We noted that the kinetic energy of a rigid body
in plane motion can be separated into two parts: (1) the kinetic
energy ymuv” associated with the motion of the mass center G of the
body, and (2) the kinetic energy %I V2 associated with the rotation of
the body about G.

Principle of work and energy
for a rigid body

k of a force or a couple

Kinetic energy in plane motion

Fig. 17.13
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1164 'F\’/l\ane N'\O”OFAO'L Régid Bodies: Energy and For a rigid body rotating about a fixed axis through O with an angular
omentum iethocs velocity V, we had

Kinetic energy in rotation T =31V’ (17.10)

where I, was the moment of inertia of the body about the fixed axis.
We noted that the result obtained is not limited to the rotation of
plane slabs or of bodies symmetrical with respect to the reference
plane, but is valid regardless of the shape of the body or of the loca-
tion of the axis of rotation.

Systems of rigid bodies Equation (17.1) can be applied to the motion of systems of rigid
bodies [Sec. 17.5] as long as all the forces acting on the various bod-
ies involved—internal as well as external to the system—are included
in the computation of U,y,,. However, in the case of systems consist-
ing of pin-connected members, or blocks and pulleys connected by
inextensible cords, or meshed gears, the points of application of the
internal forces move through equal distances and the work of these
forces cancels out [Sample Probs. 17.1 and 17.2].

Conservation of energy When a rigid body, or a system of rigid bodies, moves under the
action of conservative forces, the principle of work and energy can
be expressed in the form

+ V, (17.12)
AxpertSoft Trial Version conservation of energy [Sec.

lve problems involving conser-
vative forces such as the lorce ol gravity or the force exerted by a
spring [Sample Probs. 17.4 and 17.5]. However, when a reaction is
to be determined, the principle of conservation of energy must be
supplemented by the application of d’Alembert’s principle [Sample
Prob. 17.4].

Power In Sec. 17.7, we extended the concept of power to a rotating body
subjected to a couple, writing
dU  Mdu

Power = —

At dt

where M is the magnitude of the couple and V the angular velocity
of the body.

Mv (17.13)

The middle part of the chapter was devoted to the method of
impulse and momentum and its application to the solution of various
types of problems involving the plane motion of rigid slabs and rigid
bodies symmetrical with respect to the reference plane.

Principle of impulse and momentum  We first recalled the principle of impulse and momentum as it was
for a rigid body derived in Sec. 14.9 for a system of particles and applied it to the
motion of a rigid body [Sec. 17.8]. We wrote

Syst Momenta, + Syst Ext Imp,,,; = Syst Momenta, (17.14)
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Next we showed that for a rigid slab or a rigid body symmetrical with
respect to the reference plane, the system of the momenta of the
particles forming the body is equivalent to a vector mv attached at the
mass center G of the body and a couple v (Fig. 17.14). The vector

(Am)v

Fig. 17.14

myv is associated with the translation of the body with G and repre-
sents the linear momentum of the body, while the couple I'V cor-
responds to the rotation of the body about G and represents the
angular momentum of the body about an axis through G.

Equation (17.14) can be expressed graphlcally as shown in F1g
17.15 by drawing three diagranssisasssansasmiasnas -

of the initial momenta of the b

acting on the body, and the syEEAV(EgASTe] i NEEV VAT &S] o]y

JEdt

Review and Summary

mv,

@) (b)
Fig. 17.15

Summing and equating respectively the x components, the y compo-
nents, and the moments about any given point of the vectors shown
in that figure, we obtain three equations of motion which can be
solved for the desired unknowns [Sample Probs. 17.6 and 17.7].

In problems dealing with several connected rigid bodies [Sec.
17.9], each body can be considered separately [Sample Prob. 17.6], or,
if no more than three unknowns are involved, the principle of impulse

©
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