
The thrust for this XR-5M15 prototype 

engine is produced by gas particles 

being ejected at a high velocity. The 

determination of the forces on the test 

stand is based on the analysis of the 

motion of a variable system of 

particles, i.e., the motion of a large 

number of air particles considered 

together rather than separately.
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868

14.1 INTRODUCTION
In this chapter you will study the motion of systems of particles, i.e., 
the motion of a large number of particles considered together. The 
first part of the chapter is devoted to systems consisting of well-
defined particles; the second part considers the motion of variable 
systems, i.e., systems which are continually gaining or losing parti-
cles, or doing both at the same time.
 In Sec. 14.2, Newton’s second law will first be applied to each 
particle of the system. Defining the effective force of a particle as 
the product miai of its mass mi and its acceleration ai, we will show 
that the external forces acting on the various particles form a system 
equipollent to the system of the effective forces, i.e., both systems 
have the same resultant and the same moment resultant about any 
given point. In Sec. 14.3, it will be further shown that the resultant 
and moment resultant of the external forces are equal, respectively, 
to the rate of change of the total linear momentum and of the total 
angular momentum of the particles of the system.
 In Sec. 14.4, the mass center of a system of particles is defined 
and the motion of that point is described, while in Sec. 14.5 the 
motion of the particles about their mass center is analyzed. The 
conditions under which the linear momentum and the angular 
momentum of a system of particles are conserved are discussed in 
Sec. 14.6, and the results obtained in that section are applied to the 
solution of various problems.
 Sections 14.7 and 14.8 deal with the application of the work-
energy principle to a system of particles, and Sec. 14.9 with the 
application of the impulse-momentum principle. These sections also 
contain a number of problems of practical interest.
 It should be noted that while the derivations given in the first 
part of this chapter are carried out for a system of independent par-
ticles, they remain valid when the particles of the system are rigidly 
connected, i.e., when they form a rigid body. In fact, the results 
obtained here will form the foundation of our discussion of the kinet-
ics of rigid bodies in Chaps. 16 through 18.
 The second part of this chapter is devoted to the study of variable 
systems of particles. In Sec. 14.11 you will consider steady streams of 
particles, such as a stream of water diverted by a fixed vane, or the flow 
of air through a jet engine, and learn to determine the force exerted by 
the stream on the vane and the thrust developed by the engine. Finally, 
in Sec. 14.12, you will learn how to analyze systems which gain mass 
by continually absorbing particles or lose mass by continually expelling 
particles. Among the various practical applications of this analysis will 
be the determination of the thrust developed by a rocket engine.

14.2  APPLICATION OF NEWTON’S LAWS TO THE 
MOTION OF A SYSTEM OF PARTICLES. 
EFFECTIVE FORCES

In order to derive the equations of motion for a system of n particles, 
let us begin by writing Newton’s second law for each individual par-
ticle of the system. Consider the particle Pi, where 1 # i # n. Let 
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869mi be the mass of Pi and ai its acceleration with respect to the new-
tonian frame of reference Oxyz. The force exerted on Pi by another 
particle Pj of the system (Fig. 14.1), called an internal force, will be 
denoted by fij. The resultant of the internal forces exerted on Pi by 

all the other particles of the system is thus On

j51
fij (where fii has no

meaning and is assumed to be equal to zero). Denoting, on the other 
hand, by Fi the resultant of all the external forces acting on Pi, we 
write Newton’s second law for the particle Pi as follows:

 Fi 1On

j51
fij 5 miai (14.1)

Denoting by ri the position vector of Pi and taking the moments 
about O of the various terms in Eq. (14.1), we also write

 ri 3 Fi 1On

j51
(ri 3 fij) 5 ri 3 miai (14.2)

 Repeating this procedure for each particle Pi of the system, we 
obtain n equations of the type (14.1) and n equations of the type 
(14.2), where i takes successively the values 1, 2, . . . , n. The vectors 
miai are referred to as the effective forces of the particles.† Thus the 
equations obtained express the fact that the external forces Fi and 
the internal forces fij acting on the various particles form a system 
equivalent to the system of the effective forces miai (i.e., one system 
may be replaced by the other) (Fig. 14.2).
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Fig. 14.1

†Since these vectors represent the resultants of the forces acting on the various 
particles of the system, they can truly be considered as forces.
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Fig. 14.2

 Before proceeding further with our derivation, let us examine 
the internal forces fij. We note that these forces occur in pairs fij, fji, 
where fij represents the force exerted by the particle Pj on the par-
ticle Pi and fji represents the force exerted by Pi on Pj (Fig. 14.2). 
Now, according to Newton’s third law (Sec. 6.1), as extended by 
Newton’s law of gravitation to particles acting at a distance (Sec. 12.10), 
the forces fij and fji are equal and opposite and have the same line of 
action. Their sum is therefore fij 1 fji 5 0, and the sum of their 
moments about O is

ri 3 fij 1 rj 3 fji 5 ri 3 (fij 1 fji) 1 (rj 2 ri) 3 fji 5 0

14.2 Application of Newton’s Laws to the 
Motion of a System of Particles. 

Effective Forces
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870 Systems of Particles since the vectors rj 2 ri and fji in the last term are collinear. Adding 
all the internal forces of the system and summing their moments 
about O, we obtain the equations

 On

i51
On

j51
fij 5 0    On

i51
On

j51
(ri 3 fij) 5 0 (14.3)

which express the fact that the resultant and the moment resultant 
of the internal forces of the system are zero.
 Returning now to the n equations (14.1), where i 5 1, 2, . . . , n, 
we sum their left-hand members and sum their right-hand members. 
Taking into account the first of Eqs. (14.3), we obtain

 On

i51
Fi 5On

i51
miai (14.4)

Proceeding similarly with Eq. (14.2) and taking into account the sec-
ond of Eqs. (14.3), we have

 On

i51
(ri 3 Fi) 5 On

i51
(ri 3 miai) (14.5)

 Equations (14.4) and (14.5) express the fact that the system of 
the external forces Fi and the system of the effective forces miai have 
the same resultant and the same moment resultant. Referring to the 
definition given in Sec. 3.19 for two equipollent systems of vectors, 
we can therefore state that the system of the external forces acting 
on the particles and the system of the effective forces of the particles 
are equipollent† (Fig. 14.3).

†The result just obtained is often referred to as d’Alembert’s principle, after the French 
mathematician Jean le Rond d’Alembert (1717–1783). However, d’Alembert’s original 
 statement refers to the motion of a system of connected bodies, with fij representing 
 constraint forces which if applied by themselves will not cause the system to move. Since, 
as it will now be shown, this is in general not the case for the internal forces acting on a 
system of free particles, the consideration of d’Alembert’s principle will be postponed 
until the motion of rigid bodies is considered (Chap. 16).
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871 Equations (14.3) express the fact that the system of the internal 
forces fij is equipollent to zero. Note, however, that it does not follow 
that the internal forces have no effect on the particles under consid-
eration. Indeed, the gravitational forces that the sun and the planets 
exert on one another are internal to the solar system and equipollent 
to zero. Yet these forces are alone responsible for the motion of the 
planets about the sun.
 Similarly, it does not follow from Eqs. (14.4) and (14.5) that 
two systems of external forces which have the same resultant and the 
same moment resultant will have the same effect on a given system 
of particles. Clearly, the systems shown in Figs. 14.4a and 14.4b have 

=
B B

AA

(a)

(b)

F

F

Fig. 14.4

the same resultant and the same moment resultant; yet the first sys-
tem accelerates particle A and leaves particle B unaffected, while the 
second accelerates B and does not affect A. It is important to recall 
that when we stated in Sec. 3.19 that two equipollent systems of 
forces acting on a rigid body are also equivalent, we specifically 
noted that this property could not be extended to a system of forces 
acting on a set of independent particles such as those considered in 
this chapter.
 In order to avoid any confusion, blue equals signs are used to 
connect equipollent systems of vectors, such as those shown in 
Figs. 14.3 and 14.4. These signs indicate that the two systems of 
vectors have the same resultant and the same moment resultant. Red 
equals signs will continue to be used to indicate that two systems of 
vectors are equivalent, i.e., that one system can actually be replaced 
by the other (Fig. 14.2).

14.3  LINEAR AND ANGULAR MOMENTUM 
OF A SYSTEM OF PARTICLES

Equations (14.4) and (14.5), obtained in the preceding section for 
the motion of a system of particles, can be expressed in a more 
condensed form if we introduce the linear and the angular momen-
tum of the system of particles. Defining the linear momentum L of 
the system of particles as the sum of the linear momenta of the vari-
ous particles of the system (Sec. 12.3), we write

 L 5 On

i51
mivi (14.6)

14.3 Linear and Angular Momentum of a 
System of Particles
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872 Systems of Particles Defining the angular momentum HO about O of the system of par-
ticles in a similar way (Sec. 12.7), we have

 HO 5On

i51
(ri 3 mivi) (14.7)

 Differentiating both members of Eqs. (14.6) and (14.7) with 
respect to t, we write

 L
.

5 On

i51
miv

.
i 5 On

i51
miai (14.8)

and

 H
.

O 5On

i51
(r
.

i 3 mivi) 1On

i51
(ri 3 miv

.
i)

 5On

i51
(vi 3 mivi) 1On

i51
(ri 3 miai)

which reduces to

 H
.

O 5On

i51
(ri 3 miai) (14.9)

since the vectors vi and mivi are collinear.
 We observe that the right-hand members of Eqs. (14.8) and 
(14.9) are respectively identical with the right-hand members of Eqs. 
(14.4) and (14.5). It follows that the left-hand members of these 
equations are respectively equal. Recalling that the left-hand mem-
ber of Eq. (14.5) represents the sum of the moments MO about O 
of the external forces acting on the particles of the system, and omit-
ting the subscript i from the sums, we write

  ©F 5 L
.

 (14.10)
  ©MO 5 H

.
O (14.11)

These equations express that the resultant and the moment resultant 
about the fixed point O of the external forces are respectively equal 
to the rates of change of the linear momentum and of the angular 
momentum about O of the system of particles.

14.4  MOTION OF THE MASS CENTER
OF A SYSTEM OF PARTICLES

Equation (14.10) may be written in an alternative form if the mass 
center of the system of particles is considered. The mass center of 
the system is the point G defined by the position vector r, which 
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873satisfies the relation

 mr 5On

i51
miri (14.12)

where m represents the total mass On

i51
mi of the particles. Resolving

the position vectors r and ri into rectangular components, we obtain 
the following three scalar equations, which can be used to deter-
mine the coordinates x, y, z of the mass center:

 mx 5On

i51
mixi   my 5On

i51
miyi   mz 5On

i51
mizi  (14.129)

 Since mig represents the weight of the particle Pi, and mg the 
total weight of the particles, G is also the center of gravity of the 
system of particles. However, in order to avoid any confusion, G will 
be referred to as the mass center of the system of particles when 
properties associated with the mass of the particles are being dis-
cussed, and as the center of gravity of the system when properties 
associated with the weight of the particles are being considered. Par-
ticles located outside the gravitational field of the earth, for example, 
have a mass but no weight. We can then properly refer to their mass 
center, but obviously not to their center of gravity.†
 Differentiating both members of Eq. (14.12) with respect to t, 
we write

mr
.

5On

i51
mir

.
i

or

 mv 5On

i51
mivi (14.13)

where v represents the velocity of the mass center G of the system of 
particles. But the right-hand member of Eq. (14.13) is, by definition, 
the linear momentum L of the system (Sec. 14.3). We therefore have

 L 5 mv (14.14)

and, differentiating both members with respect to t,

 L
.

5 ma (14.15)

†It may also be pointed out that the mass center and the center of gravity of a system of 
particles do not exactly coincide, since the weights of the particles are directed toward 
the center of the earth and thus do not truly form a system of parallel forces.

14.4 Motion of the Mass Center of a 
System of Particles
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874 Systems of Particles where a represents the acceleration of the mass center G. Substitut-
ing for L

.
 from (14.15) into (14.10), we write the equation

 oF 5 ma (14.16)

which defines the motion of the mass center G of the system of 
particles.
 We note that Eq. (14.16) is identical with the equation we 
would obtain for a particle of mass m equal to the total mass of 
the particles of the system, acted upon by all the external forces. We 
therefore state that the mass center of a system of particles moves as 
if the entire mass of the system and all the external forces were con-
centrated at that point.
 This principle is best illustrated by the motion of an exploding 
shell. We know that if air resistance is neglected, it can be assumed 
that a shell will travel along a parabolic path. After the shell has 
exploded, the mass center G of the fragments of shell will continue 
to travel along the same path. Indeed, point G must move as if the 
mass and the weight of all fragments were concentrated at G; it must, 
therefore, move as if the shell had not exploded.
 It should be noted that the preceding derivation does not 
involve the moments of the external forces. Therefore, it would be 
wrong to assume that the external forces are equipollent to a vector 
ma attached at the mass center G. This is not in general the case 
since, as you will see in the next section, the sum of the moments 
about G of the external forces is not in general equal to zero.

14.5  ANGULAR MOMENTUM OF A SYSTEM OF 
PARTICLES ABOUT ITS MASS CENTER

In some applications (for example, in the analysis of the motion of 
a rigid body) it is convenient to consider the motion of the particles 
of the system with respect to a centroidal frame of reference Gx9y9z9 
which translates with respect to the newtonian frame of reference 
Oxyz (Fig. 14.5). Although a centroidal frame is not, in general, a 
newtonian frame of reference, it will be seen that the fundamental 
relation (14.11) holds when the frame Oxyz is replaced by Gx9y9z9.
 Denoting, respectively, by r9i and v9i the position vector and the 
velocity of the particle Pi relative to the moving frame of reference 
Gx9y9z9, we define the angular momentum H9G of the system of par-
ticles about the mass center G as follows:

 H¿G 5On

i51
(r¿i 3 miv¿i) (14.17) 

We now differentiate both members of Eq. (14.17) with respect to t. 
This operation is similar to that performed in Sec. 14.3 on Eq. (14.7), 
and so we write immediately

 H
.

¿G 5On

i51
(r¿i 3 mia¿i) (14.18)

Fig. 14.5
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875where a9i denotes the acceleration of Pi relative to the moving frame 
of reference. Referring to Sec. 11.12, we write

ai 5 a 1 a9i

where ai and a denote, respectively, the accelerations of Pi and G 
relative to the frame Oxyz. Solving for a9i and substituting into 
(14.18), we have

 H
.

¿G 5On

i51
(r¿i 3 miai) 2 aOn

i51
mir¿ib 3 a (14.19)

But, by (14.12), the second sum in Eq. (14.19) is equal to mr¿ and 
thus to zero, since the position vector r¿ of G relative to the frame 
Gx9y9z9 is clearly zero. On the other hand, since ai represents the 
acceleration of Pi relative to a newtonian frame, we can use Eq. (14.1) 
and replace miai by the sum of the internal forces fij and of the 
resultant Fi of the external forces acting on Pi. But a reasoning 
 similar to that used in Sec. 14.2 shows that the moment resultant 
about G of the internal forces fij of the entire system is zero. The 
first sum in Eq. (14.19) therefore reduces to the moment resultant 
about G of the external forces acting on the particles of the system, 
and we write

 oMG 5 H
.

¿G (14.20)

which expresses that the moment resultant about G of the external 
forces is equal to the rate of change of the angular momentum about 
G of the system of particles.
 It should be noted that in Eq. (14.17) we defined the angular 
momentum H9G as the sum of the moments about G of the momenta 
of the particles miv9i in their motion relative to the centroidal frame 
of reference Gx9y9z9. We may sometimes want to compute the sum 
HG of the moments about G of the momenta of the particles mivi in 
their absolute motion, i.e., in their motion as observed from the new-
tonian frame of reference Oxyz (Fig. 14.6):

 HG 5On

i51
(r¿i 3 mivi) (14.21)

Remarkably, the angular momenta H9G and HG are identically equal. 
This can be verified by referring to Sec. 11.12 and writing

 vi 5 v 1 v¿i (14.22)

Substituting for vi from (14.22) into Eq. (14.21), we have

HG 5 aOn

i51
mir¿ib 3 v 1On

i51
(r¿i 3 miv¿i)

But, as observed earlier, the first sum is equal to zero. Thus HG 
reduces to the second sum, which, by definition, is equal to H9G.†

14.5 Angular Momentum of a System of 
Particles About Its Mass Center

†Note that this property is peculiar to the centroidal frame Gx9y9z9 and does not, in 
general, hold for other frames of reference (see Prob. 14.29).
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Fig. 14.6
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876 Systems of Particles  Taking advantage of the property we have just established, we 
simplify our notation by dropping the prime (9) from Eq. (14.20) and 
writing

 oMG 5 H
.

G (14.23)

where it is understood that the angular momentum HG can be com-
puted by forming the moments about G of the momenta of the 
particles in their motion with respect to either the newtonian frame 
Oxyz or the centroidal frame Gx9y9z9:

 HG 5On

i51
(r¿i 3 mivi) 5On

i51
(r¿i 3 miv¿i) (14.24)

14.6  CONSERVATION OF MOMENTUM
FOR A SYSTEM OF PARTICLES

If no external force acts on the particles of a system, the left-hand 
members of Eqs. (14.10) and (14.11) are equal to zero and these 
equations reduce to L

.
5 0 and H

.
  O 5 0. We conclude that

 L 5 constant HO 5 constant (14.25)

The equations obtained express that the linear momentum of the 
system of particles and its angular momentum about the fixed point O 
are conserved.
 In some applications, such as problems involving central forces, 
the moment about a fixed point O of each of the external forces can 
be zero without any of the forces being zero. In such cases, the sec-
ond of Eqs. (14.25) still holds; the angular momentum of the system 
of particles about O is conserved.
 The concept of conservation of momentum can also be applied 
to the analysis of the motion of the mass center G of a system of 
particles and to the analysis of the motion of the system about G. 
For example, if the sum of the external forces is zero, the first of 
Eqs. (14.25) applies. Recalling Eq. (14.14), we write

 v 5 constant (14.26)

which expresses that the mass center G of the system moves in a 
straight line and at a constant speed. On the other hand, if the sum 
of the moments about G of the external forces is zero, it follows from 
Eq. (14.23) that the angular momentum of the system about its mass 
center is conserved:

 HG 5 constant (14.27)

Photo 14.1 If no external forces are acting on 
the two stages of this rocket, the linear and angular 
momentum of the system will be conserved.
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SAMPLE PROBLEM 14.1

A 200-kg space vehicle is observed at t 5 0 to pass through the origin of a 
newtonian reference frame Oxyz with velocity v0 5 (150 m/s)i relative to 
the frame. Following the detonation of explosive charges, the vehicle sepa-
rates into three parts A, B, and C, of mass 100 kg, 60 kg, and 40 kg, respec-
tively. Knowing that at t 5 2.5 s the positions of parts A and B are observed 
to be A(555, 2180, 240) and B(255, 0, 2120), where the coordinates are 
expressed in meters, determine the position of part C at that time.

877

SAMPLE PROBLEM 14.2

A 20-lb projectile is moving with a velocity of 100 ft/s when it explodes into 
two fragments A and B, weighing 5 lb and 15 lb, respectively. Knowing that 
immediately after the explosion, fragments A and B travel in directions 
defined respectively by uA 5 45° and uB 5 30°, determine the velocity of 
each fragment.

vA

vB

v0 = 100 ft/s
 A

 B
20 lb

5 lb A

B
15 lb

q

q

SOLUTION

Since there is no external force, the mass center G of the system moves 
with the constant velocity v0 5 (150 m/s)i. At t 5 2.5 s, its position is

r 5 v0t 5 (150 m/s)i(2.5 s) 5 (375 m)i

Recalling Eq. (14.12), we write

mr 5 mArA 1 mBrB 1 mCrC 
(200 kg)(375 m)i 5 (100 kg)[(555 m)i 2 (180 m)j 1 (240 m)k]

1 (60 kg)[(255 m)i 2 (120 m)k] 1 (40 kg)rC

rC 5 (105 m)i 1 (450 m)j 2 (420 m)k ◀

SOLUTION

Since there is no external force, the linear momentum of the system is 
conserved, and we write

 mAvA 1 mBvB 5 mv0
 (5yg)vA 1 (15yg)vB 5 (20yg)v0
y
1  x components: 5vA cos 45° 1 15vB cos 30° 5 20(100)
1xy components:  5vA sin 45° 2 15vB sin 30° 5 0 

Solving simultaneously the two equations for vA and vB, we have

vA 5 207 ft/s  vB 5 97.6 ft/s

 vA 5 207 ft/s a 45°  vB 5 97.6 ft/s c 30° ◀

mv0

mAvA

mBvB

45°

30°=
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878

SOLVING PROBLEMS
ON YOUR OWN

This chapter deals with the motion of systems of particles, that is, with the motion 
of a large number of particles considered together, rather than separately. In this 

first lesson you learned to compute the linear momentum and the angular momentum 
of a system of particles. We defined the linear momentum L of a system of particles 
as the sum of the linear momenta of the particles and we defined the angular momen-
tum HO of the system as the sum of the angular momenta of the particles about O:

 L 5 On

i51
mivi  HO 5 On

i51
(ri 3 mivi) (14.6, 14.7)

In this lesson, you will solve a number of problems of practical interest, either by 
observing that the linear momentum of a system of particles is conserved or by 
considering the motion of the mass center of a system of particles.

1. Conservation of the linear momentum of a system of particles. This occurs 
when the resultant of the external forces acting on the particles of the system is 
zero. You may encounter such a situation in the following types of problems.
 a. Problems involving the rectilinear motion of objects such as colliding auto-
mobiles and railroad cars. After you have checked that the resultant of the external 
forces is zero, equate the algebraic sums of the initial momenta and final momenta 
to obtain an equation which can be solved for one unknown.
 b. Problems involving the two-dimensional or three-dimensional motion of 
objects such as exploding shells, or colliding aircraft, automobiles, or billiard balls. 
After you have checked that the resultant of the external forces is zero, add vec-
torially the initial momenta of the objects, add vectorially their final momenta, and 
equate the two sums to obtain a vector equation expressing that the linear momen-
tum of the system is conserved.
  In the case of a two-dimensional motion, this equation can be replaced by 
two scalar equations which can be solved for two unknowns, while in the case of 
a three-dimensional motion it can be replaced by three scalar equations which can 
be solved for three unknowns.

2. Motion of the mass center of a system of particles. You saw in Sec. 14.4 
that the mass center of a system of particles moves as if the entire mass of the 
system and all of the external forces were concentrated at that point.
 a. In the case of a body exploding while in motion, it follows that the mass 
center of the resulting fragments moves as the body itself would have moved if the 
explosion had not occurred. Problems of this type can be solved by writing the equa-
tion of motion of the mass center of the system in vectorial form and expressing the 
position vector of the mass center in terms of the position vectors of the various frag-
ments [Eq. (14.12)]. You can then rewrite the vector equation as two or three scalar 
equations and solve the equations for an equivalent number of unknowns.
 b. In the case of the collision of several moving bodies, it follows that the 
motion of the mass center of the various bodies is unaffected by the collision. 
Problems of this type can be solved by writing the equation of motion of the mass 
center of the system in vectorial form and expressing its position vector before 
and after the collision in terms of the position vectors of the relevant bodies 
[Eq. (14.12)]. You can then rewrite the vector equation as two or three scalar 
equations and solve these equations for an equivalent number of unknowns.
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PROBLEMS

879

 14.1 A 30-g bullet is fired with a horizontal velocity of 450 m/s and 
becomes embedded in block B which has a mass of 3 kg. After the 
impact, block B slides on 30-kg carrier C until it impacts the end of 
the carrier. Knowing the impact between B and C is perfectly plastic 
and the coefficient of kinetic friction between B and C is 0.2, deter-
mine (a) the velocity of the bullet and B after the first impact, 
(b) the final velocity of the carrier.

 14.2 A 30-g bullet is fired with a horizontal velocity of 450 m/s 
through 3-kg block B and becomes embedded in carrier C 
which has a mass of 30 kg. After the impact, block B slides 0.3 m 
on C before coming to rest relative to the carrier. Knowing the 
coefficient of kinetic friction between B and C is 0.2, determine 
(a) the velocity of the bullet immediately after passing through B, 
(b) the final velocity of the carrier.

 14.3 Car A weighing 4000 lb and car B weighing 3700 lb are at rest on 
a 22-ton flatcar which is also at rest. Cars A and B then accelerate 
and quickly reach constant speeds relative to the flatcar of 7 ft/s 
and 3.5 ft/s, respectively, before decelerating to a stop at the oppo-
site end of the flatcar. Neglecting friction and rolling resistance, 
determine the velocity of the flatcar when the cars are moving at 
constant speeds.

 14.4 A bullet is fired with a horizontal velocity of 1500 ft/s through a 
6-lb block A and becomes embedded in a 4.95-lb block B. Know-
ing that blocks A and B start moving with velocities of 5 ft/s and 
9 ft/s, respectively, determine (a) the weight of the bullet, (b) its 
velocity as it travels from block A to block B.

Fig. P14.4

A B1500 ft/s

6 lb 4.95 lb

A

B

Fig. P14.5

Fig. P14.1

v0
BC

0.5 m

A B

Fig. P14.3

 14.5 Two swimmers A and B, of weight 190 lb and 125 lb, respectively, 
are at diagonally opposite corners of a floating raft when they real-
ize that the raft has broken away from its anchor. Swimmer A 
immediately starts walking toward B at a speed of 2 ft/s relative 
to the raft. Knowing that the raft weighs 300 lb, determine (a) the 
speed of the raft if B does not move, (b) the speed with which B 
must walk toward A if the raft is not to move.
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880 Systems of Particles  14.6 A 180-lb man and a 120-lb woman stand side by side at the same 
end of a 300-lb boat, ready to dive, each with a 16-ft/s velocity rela-
tive to the boat. Determine the velocity of the boat after they have 
both dived, if (a) the woman dives first, (b) the man dives first.

9 km/h

A C
B

Fig. P14.7

 14.7 A 40-Mg boxcar A is moving in a railroad switchyard with a velocity 
of 9 km/h toward cars B and C, which are both at rest with their 
brakes off at a short distance from each other. Car B is a 25-Mg 
flatcar supporting a 30-Mg container, and car C is a 35-Mg boxcar. 
As the cars hit each other they get automatically and tightly cou-
pled. Determine the velocity of car A immediately after each of the 
two couplings, assuming that the container (a) does not slide on 
the flatcar, (b) slides after the first coupling but hits a stop before the 
second coupling occurs, (c) slides and hits the stop only after 
the second coupling has occurred.

 14.8 Packages in an automobile parts supply house are transported to 
the loading dock by pushing them along on a roller track with very 
little friction. At the instant shown packages B and C are at rest 
and package A has a velocity of 2 m/s. Knowing that the coefficient 
of restitution between the packages is 0.3, determine (a) the veloc-
ity of package C after A hits B and B hits C, (b) the velocity of A 
after it hits B for the second time.

2 m/s

A B C

8 kg 4 kg 6 kg

Fig. P14.8

Fig. P14.6

 14.9 A system consists of three particles A, B, and C. We know that 
mA 5 3 kg, mB 5 2 kg, and mC 5 4 kg and that the velocities of 
the particles expressed in m/s are, respectively, vA 5 4i 1 2j 1 2k, 
vB 5 4i 1 3j, and vC 5 22i 1 4j 1 2k. Determine the angular 
momentum HO of the system about O.

B

C

O

xz

3 m

3 m

2.4 m

3.6 m

1.2 m

y

A

vA

vC

vB

Fig. P14.9
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881Problems 14.10 For the system of particles of Prob. 14.9, determine (a) the position 
vector rw of the mass center G of the system, (b) the linear momentum 
mvw of the system, (c) the angular momentum HG of the system about 
G. Also verify that the answers to this problem and to Prob. 14.9 
satisfy the equation given in Prob. 14.27.

 14.11 A system consists of three particles A, B, and C. We know that 
WA 5 5 lb, WB 5 4 lb, and WC 5 3 lb and that the velocities of 
the particles expressed in ft/s are, respectively, vA 5 2i 1 3j 2 2k, 
vB 5 vxi 1 vyj 1 vzk, and vC 5 23i 2 2j 1 k. Determine 
(a) the components vx and vy of the velocity of particle B for which 
the angular momentum HO of the system about O is parallel to 
the x axis, (b) the value of HO.

 14.12 For the system of particles of Prob. 14.11, determine (a) the com-
ponents vx and vz of the velocity of particle B for which the angular 
momentum HO of the system about O is parallel to the z axis, 
(b) the value of HO.

 14.13 A system consists of three particles A, B, and C. We know that 
mA 5 3 kg, mB 5 4 kg, and mc 5 5 kg and that the velocities of 
the particles expressed in m/s are, respectively, vA 5 24i 1 4j 1 6k, 
vB 5 26i 1 8j 1 4k, and vC 5 2i 2 6j 2 4k. Determine the 
angular momentum HO of the system about O.

xz

A

B

C

O

vA

vC vB

y

6 ft

3 ft

4 ft

4 ft

5 ft

4 ft
8 ft

Fig. P14.11

Fig. P14.13

A

B

C

O

x

y

z vA

vB

vC

1.8 m

2.4 m

1.2 m

1.2 m

1.2 m

0.9 m

1.5 m

 14.14 For the system of particles of Prob. 14.13, determine (a) the posi-
tion vector r of the mass center G of the system, (b) the linear 
momentum mv of the system, (c) the angular momentum HG of 
the system about G. Also verify that the answers to this problem 
and to Prob. 14.13 satisfy the equation given in Prob. 14.27.
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 14.15 A 13-kg projectile is passing through the origin O with a velocity 
v0 5 (35 m/s)i when it explodes into two fragments A and B, of 
mass 5 kg and 8 kg, respectively. Knowing that 3 s later the position 
of fragment A is (90 m, 7 m, 214 m), determine the position of 
fragment B at the same instant. Assume ay 5 2g 5 29.81 m/s2 
and neglect air resistance.

 14.16 A 300-kg space vehicle traveling with a velocity v0 5 (360 m/s)i 
passes through the origin O at t 5 0. Explosive charges then sepa-
rate the vehicle into three parts A, B, and C, with mass, respectively, 
150 kg, 100 kg, and 50 kg. Knowing that at t 5 4 s, the positions of 
parts A and B are observed to be A (1170 m, 2290 m, –585 m) and 
B (1975 m, 365 m, 800 m), determine the corresponding position of 
part C. Neglect the effect of gravity.

 14.17 A 2-kg model rocket is launched vertically and reaches an alti-
tude of 70 m with a speed of 30 m/s at the end of powered 
flight, time t 5 0. As the rocket approaches its maximum alti-
tude it explodes into two parts of masses mA 5 0.7 kg and 
mB 5 1.3 kg. Part A is observed to strike the ground 80 m west 
of the launch point at t 5 6 s. Determine the position of part B 
at that time.

882 Systems of Particles

30 m/s

70 m

A

80 m

Fig. P14.17

O

165 m/s

15 m
x

y

z
240 m

7 m

Fig. P14.18

 14.18 An 18-kg cannonball and a 12-kg cannonball are chained 
together and fired horizontally with a velocity of 165 m/s from 
the top of a 15-m wall. The chain breaks during the flight of 
the cannonballs and the 12-kg cannonball strikes the ground at 
t 5 1.5 s, at a distance of 240 m from the foot of the wall, and 
7 m to the right of the line of fire. Determine the position of 
the other cannonball at that instant. Neglect the resistance of 
the air.
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883Problems 14.19 and 14.20 Car A was traveling east at high speed when it col-
lided at point O with car B, which was traveling north at 45 mi/h. 
Car C, which was traveling west at 60 mi/h, was 32 ft east and 
10 ft north of point O at the time of the collision. Because the 
pavement was wet, the driver of car C could not prevent his car 
from sliding into the other two cars, and the three cars, stuck 
together, kept sliding until they hit the utility pole P. Knowing that 
the weights of cars A, B, and C are, respectively, 3000 lb, 2600 lb, 
and 2400 lb, and neglecting the forces exerted on the cars by the 
wet pavement, solve the problems indicated.

 14.19  Knowing that the speed of car A was 75 mi/h and 
that the time elapsed from the first collision to the 
stop at P was 2.4 s, determine the coordinates of the 
utility pole P.

 14.20  Knowing that the coordinates of the utility pole 
are  xp 5 46 ft and yp 5 59 ft, determine (a) the 
time elapsed from the first collision to the stop at P, 
(b) the speed of car A.

A

C

O

N

x

y

vA

60 mi/h

xP

B

45 
mi/h

yP

P

Fig. P14.19 and P14.20

 14.21 An expert archer demonstrates his ability by hitting tennis balls 
thrown by an assistant. A 2-oz tennis ball has a velocity of 
(32 ft/s)i 2 (7 ft/s)j and is 33 ft above the ground when it is hit by 
a 1.2-oz arrow traveling with a velocity of (165 ft/s)j 1 (230 ft/s)k 
where j is directed upwards. Determine the position P where 
the ball and arrow will hit the ground, relative to point O located 
directly under the point of impact.

 14.22 Two spheres, each of mass m, can slide freely on a frictionless, 
horizontal surface. Sphere A is moving at a speed v0 5 16 ft/s when 
it strikes sphere B which is at rest and the impact causes sphere 
B to break into two pieces, each of mass my2. Knowing that 0.7 s 
after the collision one piece reaches point C and 0.9 s after the 
collision the other piece reaches point D, determine (a) the velocity 
of sphere A after the collision, (b) the angle u and the speeds of 
the two pieces after the collision.

A B

C

D
6.3 ft

30°v0

q

C

D

Fig. P14.22
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884 Systems of Particles

 14.25 A 6-kg shell moving with a velocity v0 5 (12 m/s)i 2 (9 m/s)j 2 
(360 m/s)k explodes at point D into three fragments A, B, 
and C of mass, respectively, 2 kg, 1 kg, and 3 kg. Knowing that 
the fragments hit the vertical wall at the points indicated, deter-
mine the speed of each fragment immediately after the explo-
sion. Assume that elevation changes due to gravity may be 
neglected.

 14.23 In a game of pool, ball A is moving with a velocity v0 when it strikes 
balls B and C which are at rest and aligned as shown. Knowing that 
after the collision the three balls move in the directions indicated 
and that v0 5 12 ft/s and vC 5 6.29 ft/s, determine the magnitude 
of the velocity of (a) ball A, (b) ball B.

 14.24 A 6-kg shell moving with a velocity v0 5 (12 m/s)i 2 (9 m/s)j 2 
(360 m/s)k explodes at point D into three fragments A, B, 
and C of mass, respectively, 3 kg, 2 kg, and 1 kg. Knowing that 
the fragments hit the vertical wall at the points indicated, deter-
mine the speed of each fragment immediately after the explo-
sion. Assume that elevation changes due to gravity may be 
neglected.

A
B

C

vC

4.3°

vB
37.4°

30°

vA

v0

45°

Fig. P14.23

y

A

B

C

O

D

1.5 m

4 m

4 m

z
x

3 m

2 m

Fig. P14.24 and P14.25
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885Problems 14.26 In a scattering experiment, an alpha particle A is projected with 
the velocity u0 5 2(600 m/s)i 1 (750 m/s)j 2 (800 m/s)k into a 
stream of oxygen nuclei moving with a common velocity v0 5 
(600 m/s)j. After colliding successively with the nuclei B and C, 
particle A is observed to move along the path defined by the 
points A1 (280, 240, 120) and A2 (360, 320, 160), while nuclei B 
and C are observed to move along paths defined, respectively, by 
B1 (147, 220, 130) and B2 (114, 290, 120), and by C1 (240, 232, 
90) and C2 (240, 280, 75). All paths are along straight lines and 
all coordinates are expressed in millimeters. Knowing that the 
mass of an oxygen nucleus is four times that of an alpha particle, 
determine the speed of each of the three particles after the 
collisions.

 14.27 Derive the relation

HO 5 r 3 mv 1 HG

  between the angular momenta HO and HG defined in Eqs. (14.7) 
and (14.24), respectively. The vectors r and v define, respectively, 
the position and velocity of the mass center G of the system of 
particles relative to the newtonian frame of reference Oxyz, and 
m represents the total mass of the system.

 14.28 Show that Eq. (14.23) may be derived directly from Eq. (14.11) by 
substituting for HO the expression given in Prob. 14.27.

 14.29 Consider the frame of reference Ax9y9z9 in translation with respect 
to the newtonian frame of reference Oxyz. We define the angular 
momentum H9A of a system of n particles about A as the sum

 H¿A 5On

i51
r¿i 3 mi v¿i  (1)

  of the moments about A of the momenta mivi9 of the particles in their 
motion relative to the frame Ax9y9z9. Denoting by HA the sum

HA 5On

i51
r¿i 3 mi vi

  of the moments about A of the momenta mivi of the particles in 
their motion relative to the newtonian frame Oxyz, show that HA 5 
H9A at a given instant if, and only if, one of the following conditions 
is satisfied at that instant: (a) A has zero velocity with respect to 
the frame Oxyz, (b) A coincides with the mass center G of the 
system, (c) the velocity vA relative to Oxyz is directed along the 
line AG.

 14.30 Show that the relation oMA 5 H
.

¿A, where H9A is defined by Eq. (1) 
of Prob. 14.29 and where oMA represents the sum of the moments 
about A of the external forces acting on the system of particles, is 
valid if, and only if, one of the following conditions is satisfied: 
(a) the frame Ax9y9z9 is itself a newtonian frame of reference, 
(b) A coincides with the mass center G, (c) the acceleration aA of 
A relative to Oxyz is directed along the line AG.

x

z

O A

Q

C

B

A1

A 0
B0

A2

B1

B2

C1

C2

vB vA

vC

v0

v0

u 0

y

Fig. P14.26

x

z

O

y

x'

z'

A

y'

Pi

miv'i

mivi

r i'

Fig. P14.29 
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14.7 KINETIC ENERGY OF A SYSTEM OF PARTICLES
The kinetic energy T of a system of particles is defined as the sum 
of the kinetic energies of the various particles of the system. Refer-
ring to Sec. 13.3, we therefore write

 T 5
1
2

 On

i51
 mi 

v2
i  (14.28)

Using a Centroidal Frame of Reference. It is often conve-
nient when computing the kinetic energy of a system comprising 
a large number of particles (as in the case of a rigid body) to con-
sider separately the motion of the mass center G of the system 
and the motion of the system relative to a moving frame attached 
to G.
 Let Pi be a particle of the system, vi its velocity relative to the 
newtonian frame of reference Oxyz, and vi9 its velocity relative to the 
moving frame Gx9y9z9 which is in translation with respect to Oxyz 
(Fig. 14.7). We recall from the preceding section that

 vi 5 v 1 v¿i (14.22)

where v denotes the velocity of the mass center G relative to the 
newtonian frame Oxyz. Observing that v2

i is equal to the scalar prod-
uct vi ? vi, we express the kinetic energy T of the system relative to 
the newtonian frame Oxyz as follows:

T 5
1
2

 On

i51
 mi 

v2
i 5

1
2

 On

i51
(mivi ? vi)

or, substituting for vi from (14.22),

 T 5
1
2

 On

i51
[mi(v 1 v¿i) ? (v 1 v¿i) ]

 5
1
2

 aOn

i51
 mib v 

2 1 v ?On

i51
 miv¿i 1

1
2

 On

i51
 miv¿2

i

The first sum represents the total mass m of the system. Recalling 
Eq. (14.13), we note that the second sum is equal to mv¿ and thus 
to zero, since v¿, which represents the velocity of G relative to the 
frame Gx9y9z9, is clearly zero. We therefore write

 T 5 1
2 mv 

2 1
1
2

 On

i51
 mi 

v¿2
i  (14.29)

This equation shows that the kinetic energy T of a system of particles 
can be obtained by adding the kinetic energy of the mass center G 
(assuming the entire mass concentrated at G) and the kinetic energy 
of the system in its motion relative to the frame Gx9y9z9.

v'i

vi

⎯v

⎯v

x

y

z

O

G x'

y'

z'

Pi

Fig. 14.7
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88714.9 Principle of Impulse and Momentum 
for a System of Particles14.8  WORK-ENERGY PRINCIPLE. CONSERVATION 

OF ENERGY FOR A SYSTEM OF PARTICLES
The principle of work and energy can be applied to each particle Pi 
of a system of particles. We write

 T1 1 U1y2 5 T2 (14.30)

for each particle Pi, where U1y2 represents the work done by the 
internal forces fij and the resultant external force Fi acting on Pi. 
Adding the kinetic energies of the various particles of the system and 
considering the work of all the forces involved, we can apply Eq. 
(14.30) to the entire system. The quantities T1 and T2 now represent 
the kinetic energy of the entire system and can be computed from 
either Eq. (14.28) or Eq. (14.29). The quantity U1y2 represents the 
work of all the forces acting on the particles of the system. Note that 
while the internal forces fij and f ji are equal and opposite, the work 
of these forces will not, in general, cancel out, since the particles Pi 
and Pj on which they act will, in general, undergo different displace-
ments. Therefore, in computing U1y2, we must consider the work of 
the internal forces fij as well as the work of the external forces Fi.
 If all the forces acting on the particles of the system are con-
servative, Eq. (14.30) can be replaced by

 T1 1 V1 5 T2 1 V2 (14.31)

where V represents the potential energy associated with the internal 
and external forces acting on the particles of the system. Equation 
(14.31) expresses the principle of conservation of energy for the sys-
tem of particles.

14.9  PRINCIPLE OF IMPULSE AND MOMENTUM
FOR A SYSTEM OF PARTICLES

Integrating Eqs. (14.10) and (14.11) in t from t1 to t2, we write

  O #
t2

t1

 F dt 5 L
2

2 L
1

 (14.32)

  O #
t2

t1

 MO dt 5 (HO)2 2 (HO)1 (14.33)

Recalling the definition of the linear impulse of a force given in Sec. 
13.10, we observe that the integrals in Eq. (14.32) represent the 
linear impulses of the external forces acting on the particles of the 
system. We shall refer in a similar way to the integrals in Eq. (14.33) 
as the angular impulses about O of the external forces. Thus, Eq. 
(14.32) expresses that the sum of the linear impulses of the external 
forces acting on the system is equal to the change in linear momen-
tum of the system. Similarly, Eq. (14.33) expresses that the sum of 
the angular impulses about O of the external forces is equal to the 
change in angular momentum about O of the system.

Photo 14.2 When a golf ball is hit out of 
a sand trap, some of the momentum of the club 
is transferred to the golf ball and any sand that 
is hit.
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888 Systems of Particles  In order to make clear the physical significance of Eqs. (14.32) 
and (14.33), we will rearrange the terms in these equations and write

  L1 1O #
t2

t1

 F dt 5 L2  (14.34)

  (HO)1 1 O #
t2

t1

 MO dt 5 (HO)2 (14.35)

In parts a and c of Fig. 14.8 we have sketched the momenta of the 
particles of the system at times t1 and t2, respectively. In part b we have 
shown a vector equal to the sum of the linear impulses of the external 
forces and a couple of moment equal to the sum of the angular impulses 
about O of the external forces. For simplicity, the particles have been 

x

y

O x

y

O x

y

O

(a)

+ =
(mAvA)1

(mBvB)1

(mCvC)1

(mAvA)2
(mBvB)2

(mCvC)2

(b) (c)

∑     F dt
t2

t1

∑     MO dt
t2

t1

∫

∫
Fig. 14.8

assumed to move in the plane of the figure, but the present discussion 
remains valid in the case of particles moving in space. Recalling from 
Eq. (14.6) that L, by definition, is the resultant of the momenta mivi, 
we note that Eq. (14.34) expresses that the resultant of the vectors 
shown in parts a and b of Fig. 14.8 is equal to the resultant of the 
vectors shown in part c of the same figure. Recalling from Eq. (14.7) 
that HO is the moment resultant of the momenta mivi, we note that 
Eq. (14.35) similarly expresses that the moment resultant of the vectors 
in parts a and b of Fig. 14.8 is equal to the moment resultant of the 
vectors in part c. Together, Eqs. (14.34) and (14.35) thus express that 
the momenta of the particles at time t1 and the impulses of the external 
forces from t1 to t2 form a system of vectors equipollent to the system 
of the momenta of the particles at time t2. This has been indicated in 
Fig. 14.8 by the use of blue plus and equals signs.
 If no external force acts on the particles of the system, the inte-
grals in Eqs. (14.34) and (14.35) are zero, and these equations yield

 L1 5 L2 (14.36)
 (HO)1 5 (HO)2 (14.37)

We thus check the result obtained in Sec. 14.6: If no external force 
acts on the particles of a system, the linear momentum and the 
angular momentum about O of the system of particles are conserved. 
The system of the initial momenta is equipollent to the system of 
the final momenta, and it follows that the angular momentum of the 
system of particles about any fixed point is conserved.
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889

SOLUTION

Since there is no external force, the initial momentum mv0 is equipollent 
to the system of the final momenta. Equating first the sums of the vectors 
in both parts of the adjoining sketch, and then the sums of their moments 
about O, we write

L1 5 L2: mv0 5 mAvA 1 mBvB 1 mCvC (1)
(HO)1 5 (HO)2: 0 5 rA 3 mAvA 1 rB 3 mBvB 1 rC 3 mCvC (2)

Recalling from Sample Prob. 14.1 that v0 5 (150 m/s)i,

mA 5 100 kg  mB 5 60 kg  mC 5 40 kg
 rA 5 (555 m)i 2 (180 m)j 1 (240 m)k
 rB 5 (255 m)i 2 (120 m)k
  rC 5 (105 m)i 1 (450 m)j 2 (420 m)k

and using the information given in the statement of this problem, we rewrite 
Eqs. (1) and (2) as follows:

200(150i) 5 100(270i 2 120j 1 160k) 1 60[(vB)xi 1 (vB)zk]
 1 40[(vC)xi 1 (vC)yj 1 (vC)zk] (19)

0 5 100 †
i

555
270

 
j

2180
2120

  
k

240
160
† 1 60 † i

255
(vB)x

   j
0
0
   k

2120
(vB)z

†

1 40 †
i

105
(vC)x

   j
450

(vC)y

   k
2420
(vC)z

†  (29)

Equating to zero the coefficient of j in (19) and the coefficients of i and k 
in (29), we write, after reductions, the three scalar equations

 (vC)y 2 300 5 0
 450(vC)z 1 420(vC)y 5 0
 105(vC)y 2 450(vC)x 2 45 000 5 0

which yield, respectively,

(vC)y 5 300  (vC)z 5 2280  (vC)x 5 230

The velocity of part C is thus

 vC 5 2(30 m/s)i 1 (300 m/s)j 2 (280 m/s)k ◀

SAMPLE PROBLEM 14.3

For the 200-kg space vehicle of Sample Prob. 14.1, it is known that at t 5 
2.5 s, the velocity of part A is vA 5 (270 m/s)i 2 (120 m/s)j 1 (160 m/s)k 
and the velocity of part B is parallel to the xz plane. Determine the velocity 
of part C.

x

y

z

O

x

y

z

O

A

B C

mAvA

mBvB

mCvC

mv0

=
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890

SAMPLE PROBLEM 14.4

Ball B, of mass mB, is suspended from a cord of length l attached to cart A, 
of mass mA, which can roll freely on a frictionless horizontal track. If the ball 
is given an initial horizontal velocity v0 while the cart is at rest, determine 
(a) the velocity of B as it reaches its maximum elevation, (b) the maximum 
vertical distance h through which B will rise. (It is assumed that v2

0 , 2gl.)

SOLUTION

The impulse-momentum principle and the principle of conservation of 
energy will be applied to the cart-ball system between its initial position 1 
and position 2, when B reaches its maximum elevation.

Velocities Position 1: (vA)1 5 0  (vB)1 5 v0 (1)

Position 2: When ball B reaches its maximum elevation, its velocity (vB/A)2 
relative to its support A is zero. Thus, at that instant, its absolute velocity is

 (vB)2 5 (vA)2 1 (vB/A)2 5 (vA)2 (2)

Impulse-Momentum Principle. Noting that the external impulses consist 
of WAt, WBt, and Rt, where R is the reaction of the track on the cart, and 
recalling (1) and (2), we draw the impulse-momentum diagram and write

omv1 1 o Ext Imp1y2 5 omv2

y
+ x components: mBv0 5 (mA 1 mB)(vA)2

which expresses that the linear momentum of the system is conserved in 
the horizontal direction. Solving for (vA)2:

 (vA)2 5
mB

mA 1 mB
 v0   (vB)2 5 (vA)2 5

mB

mA 1 mB
 v0 y  ◀

Conservation of Energy
Position 1. Potential Energy: V1 5 mAgl
 Kinetic Energy:  T1 5 1

2 mB 
v2

0

Position 2. Potential Energy: V2 5 mAgl 1 mBgh
 Kinetic Energy:   T2 5 1

2(mA 1 mB)(vA)2
2 

T1 1 V1 5 T2 1 V2:   1
2 mBv2

0 1 mAgl 5 1
2(mA 1 mB)(vA)2

2 1 mAgl 1 mBgh

Solving for h, we have

h 5
v2

0

2g
2

mA 1 mB

mB
 
(vA)2

2

2g
or, substituting for (vA)2 the expression found above,

h 5
v2

0

2g
2

mB

mA 1 mB
 
v2

0

2g
  h 5

mA

mA 1 mB
 
v2

0

2g
 ◀

Remarks. (1) Recalling that v2
0 , 2gl, it follows from the last equation that 

h , l; we thus check that B stays below A as assumed in our solution.
 (2) For mA W mB, the answers obtained reduce to (vB)2 5 (vA)2 5 0 and
h 5 v2

0 /2g; B oscillates as a simple pendulum with A fixed. For mA V mB, 
they reduce to (vB)2 5 (vA)2 5 v0 and h 5 0; A and B move with the same 
constant velocity v0.

A

B
v0

Position 1 Position 2

(vA)1 = 0

(vB)1 = v0
(vB)2 = (vA)2

(vB/A)2 = 0

(vA)2A

B

A

B

mA(vA)2

mB(vA)2

mBv0

+ =

WAt

WBt

Rt

AAA

B
BB

A

(vB)2 = (vA)2
v0

(vA)2

Datum
h

Position 1 Position 2

B

A

B

l

bee02324_ch14_866-925.indd Page 890  22/09/11  10:54 AM user-f501bee02324_ch14_866-925.indd Page 890  22/09/11  10:54 AM user-f501 /204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles/204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


891

SOLUTION

Conservation of Momentum. Since there is no external force, the initial 
momentum mv0 is equipollent to the system of momenta after the two col-
lisions (and before any of the balls hits the side of the table). Referring to 
the adjoining sketch, we write

y
+ x components: m(10 ft/s) 5 m(vB)x 1 mvC (1)
 1xy components: 0 5 mvA 2 m(vB)y  (2)
 1l moments about O: 2(2 ft)m(10 ft/s) 5 (8 ft)mvA

 2(7 ft)m(vB)y 2 (3 ft)mvC (3)

Solving the three equations for vA, (vB)x, and (vB)y in terms of vC,

 vA 5 (vB)y 5 3vC 2 20  (vB)x 5 10 2 vC (4)

Conservation of Energy. Since the surfaces are frictionless and the 
impacts are perfectly elastic, the initial kinetic energy 1

2 mv2
0 is equal to the 

final kinetic energy of the system:
1
2 mv2

0 5 1
2 mAv2

A 1 1
2 mBv2

B 1 1
2 mC 

v2
C 

 v2
A 1 (vB)2

x 1 (vB)2
y 1 v2

C 5 (10 ft/s)2 (5)

Substituting for vA, (vB)x, and (vB)y from (4) into (5), we have

2(3vC 2 20)2 1 (10 2 vC)2 1 v2
C 5 100

 20v2
C 2 260vC 1 800 5 0

Solving for vC, we find vC 5 5 ft/s and vC 5 8 ft/s. Since only the second 
root yields a positive value for vA after substitution into Eqs. (4), we con-
clude that vC 5 8 ft/s and

 vA 5 (vB)y 5 3(8) 2 20 5 4 ft/s  (vB)x 5 10 2 8 5 2 ft/s

 vA 5 4 ft/sx  vB 5 4.47 ft/s c 63.4°  vC 5 8 ft/s y ◀

SAMPLE PROBLEM 14.5

In a game of billiards, ball A is given an initial velocity v0 of magnitude 
v0 5 10 ft/s along line DA parallel to the axis of the table. It hits ball B and 
then ball C, which are both at rest. Knowing that A and C hit the sides of 
the table squarely at points A9 and C9, respectively, that B hits the side 
obliquely at B9, and assuming frictionless surfaces and perfectly elastic 
impacts, determine the velocities vA, vB, and vC with which the balls hit the 
sides of the table. (Remark: In this sample problem and in several of the 
problems which follow, the billiard balls are assumed to be particles moving 
freely in a horizontal plane, rather than the rolling and sliding spheres they 
actually are.)

O

8 ft

7 ft

3 ft

mvC

mvA

m (vB)y 
m (vB)x 

B C

A

mv0 = m (10 ft/s) 
A

O

D

2 ft

=

vB

vA

v0

vC

A'

B'

C'
A

B
CD

2 ft8 ft

7 ft

3 ft

3 ft2 ft
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892

SOLVING PROBLEMS
ON YOUR OWN

In the preceding lesson we defined the linear momentum and the angular 
momentum of a system of particles. In this lesson we defined the kinetic 

energy T of a system of particles:

 T 5
1
2

 On

i51
 miv

2
i  (14.28)

The solutions of the problems in the preceding lesson were based on the conserva-
tion of the linear momentum of a system of particles or on the observation of the 
motion of the mass center of a system of particles. In this lesson you will solve 
problems involving the following:

1. Computation of the kinetic energy lost in collisions. The kinetic energy T1 
of the system of particles before the collisions and its kinetic energy T2 after the 
collisions are computed from Eq. (14.28) and are subtracted from each other. Keep 
in mind that, while linear momentum and angular momentum are vector quanti-
ties, kinetic energy is a scalar quantity.

2. Conservation of linear momentum and conservation of energy. As you saw 
in the preceding lesson, when the resultant of the external forces acting on a sys-
tem of particles is zero, the linear momentum of the system is conserved. In 
problems involving two-dimensional motion, expressing that the initial linear 
momentum and the final linear momentum of the system are equipollent yields 
two algebraic equations. Equating the initial total energy of the system of particles 
(including potential energy as well as kinetic energy) to its final total energy yields 
an additional equation. Thus, you can write three equations which can be solved 
for three unknowns [Sample Prob. 14.5]. Note that if the resultant of the external 
forces is not zero but has a fixed direction, the component of the linear momentum 
in a direction perpendicular to the resultant is still conserved; the number of equa-
tions which can be used is then reduced to two [Sample Prob. 14.4].

3. Conservation of linear and angular momentum. When no external forces 
act on a system of particles, both the linear momentum of the system and its 
angular momentum about some arbitrary point are conserved. In the case of three-
dimensional motion, this will enable you to write as many as six equations, although 
you may need to solve only some of them to obtain the desired answers [Sample 
Prob. 14.3]. In the case of two-dimensional motion, you will be able to write three 
equations which can be solved for three unknowns.

4. Conservation of linear and angular momentum and conservation of 
energy. In the case of the two-dimensional motion of a system of particles which 
are not subjected to any external forces, you will obtain two algebraic equations 
by expressing that the linear momentum of the system is conserved, one equation 
by writing that the angular momentum of the system about some arbitrary point 
is conserved, and a fourth equation by expressing that the total energy of the 
system is conserved. These equations can be solved for four unknowns.
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PROBLEMS

 14.31 Determine the energy lost due to friction and the impacts for 
Prob. 14.1.

 14.32 In Prob. 14.4, determine the energy lost as the bullet (a) passes 
through block A, (b) becomes embedded in block B.

 14.33 In Prob. 14.6, determine the work done by the woman and by the 
man as each dives from the boat, assuming that the woman dives first.

 14.34 Determine the energy lost as a result of the series of collisions 
described in Prob. 14.8.

14.35 Two automobiles A and B, of mass mA and mB, respectively, are trav-
eling in opposite directions when they collide head on. The impact 
is assumed perfectly plastic, and it is further assumed that the energy 
absorbed by each automobile is equal to its loss of kinetic energy with 
respect to a moving frame of reference attached to the mass center 
of the two-vehicle system. Denoting by EA and EB, respectively, the 
energy absorbed by automobile A and by automobile B, (a) show that 
EA/EB 5 mB/mA, that is, the amount of energy absorbed by each 
vehicle is inversely proportional to its mass, (b) compute EA and EB, 
knowing that mA 5 1600 kg and mB 5 900 kg and that the speeds 
of A and B are, respectively, 90 km/h and 60 km/h.

A B

vA vB

Fig. P14.35

14.36 It is assumed that each of the two automobiles involved in the 
collision described in Prob. 14.35 had been designed to safely with-
stand a test in which it crashed into a solid, immovable wall at the 
speed v0. The severity of the collision of Prob. 14.35 may then be 
measured for each vehicle by the ratio of the energy it absorbed 
in the collision to the energy it absorbed in the test. On that basis, 
show that the collision described in Prob. 14.35 is (mA/mB)2 times 
more severe for automobile B than for auto mobile A.

 14.37 Solve Sample Prob. 14.4, assuming that cart A is given an initial 
horizontal velocity v0 while ball B is at rest.

 14.38 Two hemispheres are held together by a cord which maintains a spring 
under compression (the spring is not attached to the hemispheres). 
The potential energy of the compressed spring is 120 J and the assem-
bly has an initial velocity v0 of magnitude v0 5 8 m/s. Knowing that 
the cord is severed when u 5 30°, causing the hemispheres to fly 
apart, determine the resulting velocity of each hemisphere.

 14.39 A 15-lb block B starts from rest and slides on the 25-lb wedge A, 
which is supported by a horizontal surface. Neglecting friction, deter-
mine (a) the velocity of B relative to A after it has slid 3 ft down the 
inclined surface of the wedge, (b) the corresponding velocity of A.

A

B

v0

2.5 kg

1.5 kg

q

Fig. P14.38

30°
A

B

Fig. P14.39
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894 Systems of Particles  14.40 A 40-lb block B is suspended from a 6-ft cord attached to a 60-lb 
cart A, which may roll freely on a frictionless, horizontal track. If 
the system is released from rest in the position shown, determine 
the velocities of A and B as B passes directly under A.

 14.41 and 14.42 In a game of pool, ball A is moving with a velocity 
v0 of magnitude v0 5 15 ft/s when it strikes balls B and C, 
which are at rest and aligned as shown. Knowing that after the 
collision the three balls move in the directions indicated and 
assuming frictionless surfaces and perfectly elastic impact (i.e., 
conservation of energy), determine the magnitudes of the velocities 
vA, vB, and vC.

 14.43 Three spheres, each of mass m, can slide freely on a frictionless, 
horizontal surface. Spheres A and B are attached to an inextensi-
ble, inelastic cord of length l and are at rest in the position shown 
when sphere B is struck squarely by sphere C which is moving to 
the right with a velocity v0. Knowing that the cord is slack when 
sphere B is struck by sphere C and assuming perfectly elastic 
impact between B and C, determine (a) the velocity of each sphere 
immediately after the cord becomes taut, (b) the fraction of the 
initial kinetic energy of the system which is dissipated when the 
cord becomes taut.

 14.44 In a game of pool, ball A is moving with the velocity v0 5 v0i when 
it strikes balls B and C, which are at rest side by side. Assuming 
frictionless surfaces and perfectly elastic impact (i.e., conservation 
of energy), determine the final velocity of each ball, assuming that 
the path of A is (a) perfectly centered and that A strikes B and C 
simultaneously, (b) not perfectly centered and that A strikes B 
slightly before it strikes C.

 14.45 Two small spheres A and B, of mass 2.5 kg and 1 kg, respectively, 
are connected by a rigid rod of negligible mass. The two spheres 
are resting on a horizontal, frictionless surface when A is suddenly 
given the velocity v0 5 (3.5 m/s)i. Determine (a) the linear momen-
tum of the system and its angular momentum about its mass center 
G, (b) the velocities of A and B after the rod AB has rotated 
through 180°.

A

C

Bv0

Fig. P14.44

A
B

vA vC

45°

30°

30°
C

vB
v0

Fig. P14.41

C

A
B

vA

v0 vB

vC

30°

45°

45°

Fig. P14.42

B

A

60 lb

40 lb

25°

Fig. P14.40

l

A

B

C

l/2

v0

Fig. P14.43

A

B

v0

0.2 m

Fig. P14.45
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895Problems  14.46 A 900-lb space vehicle traveling with a velocity v0 5 (1500 ft/s)k 
passes through the origin O. Explosive charges then separate the 
vehicle into three parts A, B, and C, with masses of 150 lb, 300 lb, 
and 450 lb, respectively. Knowing that shortly thereafter the 
 positions of the three parts are, respectively, A(250, 250, 2250), 
B(600, 1300, 3200), and C(2475, 2950, 1900), where the coordinates 
are expressed in feet, that the velocity of B is vB 5 (500 ft/s)i 1 (1100 
ft/s)j 1 (2100 ft/s)k, and that the x component of the velocity of C 
is 2400 ft/s, determine the velocity of part A.

 14.47 Four small disks A, B, C, and D can slide freely on a frictionless 
horizontal surface. Disks B, C, and D are connected by light rods 
and are at rest in the position shown when disk B is struck squarely 
by disk A which is moving to the right with a velocity v0 5 
(38.5 ft/s)i. The weights of the disks are WA 5 WB 5 WC 5 15 lb, 
and WD 5 30 lb. Knowing that the velocities of the disks immediately 
after the impact are vA 5 vB 5 (8.25 ft/s)i, vC 5 vCi, and vD 5 vDi, 
determine (a) the speeds vC and vD, (b) the fraction of the initial 
kinetic energy of the system which is dissipated during the  collision.

 14.48 In the scattering experiment of Prob. 14.26, it is known that the 
alpha particle is projected from A0(300, 0, 300) and that it collides 
with the oxygen nucleus C at Q(240, 200, 100), where all coordi-
nates are expressed in millimeters. Determine the coordinates of 
point B0 where the original path of nucleus B intersects the zx plane. 
(Hint. Express that the angular momentum of the three particles 
about Q is conserved.)

 14.49 Three identical small spheres, each of weight 2 lb, can slide freely on 
a horizontal frictionless surface. Spheres B and C are connected by 
a light rod and are at rest in the position shown when sphere B is 
struck squarely by sphere A which is moving to the right with a 
velocity v0 5 (8 ft/s)i. Knowing that u 5 458 and that the velocities 
of spheres A and B immediately after the impact are vA 5 0 and 
vB 5 (6 ft/s)i 1 (vB)y j, determine (vB)y and the velocity of C imme-
diately after impact.

C

BA
x

D

3 ft

v0

3 ft

Fig. P14.47

C

BA
x

y

1.5 ft

v0
q

Fig. P14.49

 14.50 Three small spheres A, B, and C, each of mass m, are connected 
to a small ring D of negligible mass by means of three inextensible, 
inelastic cords of length l. The spheres can slide freely on a friction-
less horizontal surface and are rotating initially at a speed v0 about 
ring D which is at rest. Suddenly the cord CD breaks. After the 
other two cords have again become taut, determine (a) the speed 
of ring D, (b) the relative speed at which spheres A and B rotate 
about D, (c) the fraction of the original energy of spheres A and B 
which is dissipated when cords AD and BD again became taut.

A

D C

O

B

x

y

30°v0

v0

v0

120°

Fig. P14.50
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896 Systems of Particles  14.51 In a game of billiards, ball A is given an initial velocity v0 along 
the longitudinal axis of the table. It hits ball B and then ball C, 
which are both at rest. Balls A and C are observed to hit the 
sides of the table squarely at A9 and C9, respectively, and ball B 
is observed to hit the side obliquely at B9. Knowing that v0 5 4 m/s, 
vA 5 1.92 m/s, and a 5 1.65 m, determine (a) the velocities vB 
and vC of balls B and C, (b) the point C9 where ball C hits the 
side of the table. Assume frictionless surfaces and perfectly elas-
tic impacts (i.e., conservation of energy).

 14.52 For the game of billiards of Prob. 14.51, it is now assumed that 
v0 5 5 m/s, vC 5 3.2 m/s, and c 5 1.22 m. Determine (a) the 
velocities vA and vB of balls A and B, (b) the point A9 where ball 
A hits the side of the table.

 14.53 Two small disks A and B, of mass 3 kg and 1.5 kg, respectively, 
may slide on a horizontal, frictionless surface. They are connected 
by a cord, 600 mm long, and spin counterclockwise about their 
mass center G at the rate of 10 rad/s. At t 5 0, the coordinates of G 
are x0 5 0, y0 5 2 m, and its velocity v0 5 (1.2 m/s)i 1 (0.96 m/s)j. 
Shortly thereafter the cord breaks; disk A is then observed to move 
along a path parallel to the y axis and disk B along a path which 
intersects the x axis at a distance b 5 7.5 m from O. Determine 
(a) the velocities of A and B after the cord breaks, (b) the distance 
a from the y axis to the path of A.

 14.54 Two small disks A and B, of mass 2 kg and 1 kg, respectively, may 
slide on a horizontal and frictionless surface. They are connected by 
a cord of negligible mass and spin about their mass center G. At t 5 
0, G is moving with the velocity v0 and its coordinates are 
x0 5 0, y0 5 1.89 m. Shortly thereafter, the cord breaks and disk A 
is observed to move with a velocity vA 5 (5 m/s)j in a straight line 
and at a distance a 5 2.56 m from the y axis, while B moves with a 
velocity vB 5 (7.2 m/s)i 2 (4.6 m/s)j along a path intersecting the x 
axis at a distance b 5 7.48 m from the origin O. Determine (a) the 
initial velocity v0 of the mass center G of the two disks, (b) the length 
of the cord initially connecting the two disks, (c) the rate in rad/s at 
which the disks were spinning about G.

c

a A'

A

B

C

v0

vA

vB

vC

0.75 m

0.75 m

1.8 m 1.2 m

C'

B'

Fig. P14.51
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y

A
A

G

B

O

B

vB

v0

y0

vA

B'

b
x

Fig. P14.53 and P14.54
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14.10 Variable Systems of Particles 14.55 Three small identical spheres A, B, and C, which can slide on a 
horizontal, frictionless surface, are attached to three 9-in.-long 
strings, which are tied to a ring G. Initially the spheres rotate 
clockwise about the ring with a relative velocity of 2.6 ft/s and the 
ring moves along the x axis with a velocity v0 5 (1.3 ft/s)i. Suddenly 
the ring breaks and the three spheres move freely in the xy plane 
with A and B following paths parallel to the y axis at a distance 
a 5 1.0 ft from each other and C following a path parallel to the x 
axis. Determine (a) the velocity of each sphere, (b) the distance d.

 14.56 Three small identical spheres A, B, and C, which can slide on a 
horizontal, frictionless surface, are attached to three strings of 
length l which are tied to a ring G. Initially the spheres rotate 
clockwise about the ring which moves along the x axis with a veloc-
ity v0. Suddenly the ring breaks and the three spheres move freely 
in the xy plane. Knowing that vA 5 (3.5 ft/s)j, vC 5 (6.0 ft/s)i, 
a 5 16 in., and d 5 9 in., determine (a) the initial velocity of the 
ring, (b) the length l of the strings, (c) the rate in rad/s at which 
the spheres were rotating about G.

vA

vB

vC

v0

y

x

120°

120°

GB

C

A

A

B

C

da

Fig. P14.55 and P14.56

897

*14.10 VARIABLE SYSTEMS OF PARTICLES
All the systems of particles considered so far consisted of well-
defined particles. These systems did not gain or lose any particles 
during their motion. In a large number of engineering applications, 
however, it is necessary to consider variable systems of particles, i.e., 
systems which are continually gaining or losing particles, or doing 
both at the same time. Consider, for example, a hydraulic turbine. 
Its analysis involves the determination of the forces exerted by a 
stream of water on rotating blades, and we note that the particles of 
water in contact with the blades form an everchanging system which 
continually acquires and loses particles. Rockets furnish another 
example of variable systems, since their propulsion depends upon 
the continual ejection of fuel particles.
 We recall that all the kinetics principles established so far were 
derived for constant systems of particles, which neither gain nor lose 
particles. We must therefore find a way to reduce the analysis of a 
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898 Systems of Particles

S

Fig. 14.9

variable system of particles to that of an auxiliary constant system. 
The procedure to follow is indicated in Secs. 14.11 and 14.12 for two 
broad categories of applications: a steady stream of particles and a 
system that is gaining or losing mass.

*14.11 STEADY STREAM OF PARTICLES
Consider a steady stream of particles, such as a stream of water 
diverted by a fixed vane or a flow of air through a duct or through 
a blower. In order to determine the resultant of the forces exerted 
on the particles in contact with the vane, duct, or blower, we isolate 
these particles and denote by S the system thus defined (Fig. 14.9). 
We observe that S is a variable system of particles, since it continually 
gains particles flowing in and loses an equal number of particles 
flowing out. Therefore, the kinetics principles that have been estab-
lished so far cannot be directly applied to S.
 However, we can easily define an auxiliary system of particles 
which does remain constant for a short interval of time Dt. Consider 
at time t the system S plus the particles which will enter S during 
the interval at time Dt (Fig. 14.10a). Next, consider at time t 1 Dt 
the system S plus the particles which have left S during the interval 
Dt (Fig. 14.10c). Clearly, the same particles are involved in both 
cases, and we can apply to those particles the principle of impulse 
and momentum. Since the total mass m of the system S remains 
constant, the particles entering the system and those leaving the sys-
tem in the time Dt must have the same mass Dm. Denoting by vA 
and vB, respectively, the velocities of the particles entering S at A 
and leaving S at B, we represent the momentum of the particles 
entering S by (Dm)vA (Fig. 14.10a) and the momentum of the par-
ticles leaving S by (Dm)vB (Fig. 14.10c). We also represent by appro-
priate vectors the momenta mivi of the particles forming S and the 
impulses of the forces exerted on S and indicate by blue plus and 
equals signs that the system of the momenta and impulses in parts a 
and b of Fig. 14.10 is equipollent to the system of the momenta in 
part c of the same figure.

S SS
A

B

A

B∑mivi ∑mivi

(Δm)vA

(Δm)vB

(a) (b) (c)

∑F Δt

∑M Δt

+ =

Fig. 14.10
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899 The resultant omivi of the momenta of the particles of S is found 
on both sides of the equals sign and can thus be omitted. We conclude 
that the system formed by the momentum (Dm)vA of the particles 
entering S in the time Dt and the impulses of the forces exerted on S 
during that time is equipollent to the momentum (Dm)vB of the par-
ticles leaving S in the same time Dt. We can therefore write

 (Dm)vA 1 oF Dt 5 (Dm)vB (14.38)

A similar equation can be obtained by taking the moments of the 
vectors involved (see Sample Prob. 14.5). Dividing all terms of Eq. 
(14.38) by Dt and letting Dt approach zero, we obtain at the limit

 oF 5
dm
dt

 (vB 2 vA) (14.39)

where vB 2 vA represents the difference between the vector vB and 
the vector vA.
 If SI units are used, dm/dt is expressed in kg/s and the veloci-
ties in m/s; we check that both members of Eq. (14.39) are expressed 
in the same units (newtons). If U.S. customary units are used, dm/dt 
must be expressed in slugs/s and the velocities in ft/s; we check again 
that both members of the equation are expressed in the same units 
(pounds).†
 The principle we have established can be used to analyze a 
large number of engineering applications. Some of the more com-
mon of these applications will be considered next.

Fluid Stream Diverted by a Vane. If the vane is fixed, the 
method of analysis given above can be applied directly to find the force 
F exerted by the vane on the stream. We note that F is the only 
force which needs to be considered since the pressure in the stream 
is constant (atmospheric pressure). The force exerted by the stream on 
the vane will be equal and opposite to F. If the vane moves with 
a constant velocity, the stream is not steady. However, it will appear 
steady to an observer moving with the vane. We should therefore 
choose a system of axes moving with the vane. Since this system of 
axes is not accelerated, Eq. (14.38) can still be used, but vA and vB 
must be replaced by the relative velocities of the stream with respect 
to the vane (see Sample Prob. 14.7).

Fluid Flowing Through a Pipe. The force exerted by the fluid 
on a pipe transition such as a bend or a contraction can be deter-
mined by considering the system of particles S in contact with the 
transition. Since, in general, the pressure in the flow will vary, the 
forces exerted on S by the adjoining portions of the fluid should also 
be considered.

14.11 Steady Stream of Particles

†It is often convenient to express the mass rate of flow dm/dt as the product rQ, 
where r is the density of the stream (mass per unit volume) and Q its volume rate of 
flow (volume per unit time). If SI units are used, r is expressed in kg/m3 (for instance, 
r 5 1000 kg/m3 for water) and Q in m3/s. However, if U.S. customary units are used, r 
will generally have to be computed from the corresponding specific weight g (weight 
per unit volume), r 5 g/g. Since g is expressed in lb/ft3 (for instance, g 5 62.4 lb/ft3 
for water), r is obtained in slugs/ft3. The volume rate of flow Q is expressed in ft3/s.
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900 Systems of Particles Jet Engine. In a jet engine, air enters with no velocity through 
the front of the engine and leaves through the rear with a high veloc-
ity. The energy required to accelerate the air particles is obtained by 
burning fuel. The mass of the burned fuel in the exhaust gases will 
usually be small enough compared with the mass of the air flowing 
through the engine that it can be neglected. Thus, the analysis of a 
jet engine reduces to that of an airstream. This stream can be con-
sidered as a steady stream if all velocities are measured with respect 
to the airplane. It will be assumed, therefore, that the airstream 
enters the engine with a velocity v of magnitude equal to the speed 
of the airplane and leaves with a velocity u equal to the relative 
velocity of the exhaust gases (Fig. 14.11). Since the intake and 
exhaust pressures are nearly atmospheric, the only external force 
which needs to be considered is the force exerted by the engine on 
the airstream. This force is equal and opposite to the thrust.†

Fan. We consider the system of particles S shown in Fig. 14.12. 
The velocity vA of the particles entering the system is assumed equal 
to zero, and the velocity vB of the particles leaving the system is the 
velocity of the slipstream. The rate of flow can be obtained by mul-
tiplying vB by the cross-sectional area of the slipstream. Since the 
pressure all around S is atmospheric, the only external force acting 
on S is the thrust of the fan.

Helicopter. The determination of the thrust created by the rotat-
ing blades of a hovering helicopter is similar to the determination of 
the thrust of a fan. The velocity vA of the air particles as they approach 
the blades is assumed to be zero, and the rate of flow is obtained by 
multiplying the magnitude of the velocity vB of the slipstream by its 
cross-sectional area.

*14.12 SYSTEMS GAINING OR LOSING MASS
Let us now analyze a different type of variable system of particles, 
namely, a system which gains mass by continually absorbing parti-
cles or loses mass by continually expelling particles. Consider the 
system S shown in Fig. 14.13. Its mass, equal to m at the instant 
t, increases by Dm in the interval of time Dt. In order to apply the 
principle of impulse and momentum to the analysis of this system, 
we must consider at time t the system S plus the particles of mass 
Dm which S absorbs during the time interval Dt. The velocity of S 
at time t is denoted by v, the velocity of S at time t 1 Dt is denoted 
by v 1 Dv, and the absolute velocity of the particles absorbed is 
denoted by va. Applying the principle of impulse and momentum, 
we write

 mv 1 (Dm)va 1 oF Dt 5 (m 1 Dm)(v 1 Dv)  (14.40)

†Note that if the airplane is accelerated, it cannot be used as a newtonian frame of 
reference. The same result will be obtained for the thrust, however, by using a 
reference frame at rest with respect to the atmosphere, since the air particles will 
then be observed to enter the engine with no velocity and to leave it with a velocity 
of magnitude u 2 v.

v u

Fig. 14.11

Slipstream

S
S

vBvA    0≈

Fig. 14.12

(Δm)va

Δm

∑F Δt

va

S

S

S

m

mv

v

u = va – v

+

=
m + Δm

(m + Δm)(v + Δv)

Fig. 14.13
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90114.12 Systems Gaining or Losing MassSolving for the sum oF Dt of the impulses of the external forces 
acting on S (excluding the forces exerted by the particles being 
absorbed), we have

 oF Dt 5 mDv 1 Dm(v 2 va) 1 (Dm)(Dv) (14.41)

Introducing the relative velocity u with respect to S of the particles 
which are absorbed, we write u 5 va 2 v and note, since va , v, 
that the relative velocity u is directed to the left, as shown in 
Fig. 14.13. Neglecting the last term in Eq. (14.41), which is of the 
second order, we write

oF Dt 5 m Dv 2 (Dm)u

Dividing through by Dt and letting Dt approach zero, we have at the 
limit†

 oF 5 m 

dv
dt

2
dm
dt

 u (14.42)

Rearranging the terms and recalling that dv/dt 5 a, where a is the 
acceleration of the system S, we write

 oF 1
dm
dt

 u 5 ma (14.43)

which shows that the action on S of the particles being absorbed is 
equivalent to a thrust

 P 5
dm
dt

 u (14.44)

which tends to slow down the motion of S, since the relative velocity 
u of the particles is directed to the left. If SI units are used, dm/dt 
is expressed in kg/s, the relative velocity u in m/s, and the corre-
sponding thrust in newtons. If U.S. customary units are used, dm/dt 
must be expressed in slugs/s, u in ft/s, and the corresponding thrust 
in pounds.‡
 The equations obtained can also be used to determine the 
motion of a system S losing mass. In this case, the rate of change of 
mass is negative, and the action on S of the particles being expelled 
is equivalent to a thrust in the direction of 2u, that is, in the direc-
tion opposite to that in which the particles are being expelled. A 
rocket represents a typical case of a system continually losing mass 
(see Sample Prob. 14.8).

Photo 14.3 As the shuttle’s booster rockets 
are fired, the gas particles they eject provide the 
thrust required for liftoff.

†When the absolute velocity va of the particles absorbed is zero, u 5 2v, and formula 
(14.42) becomes

oF 5
d
dt

 (mv)

Comparing the formula obtained to Eq. (12.3) of Sec. 12.3, we observe that Newton’s 
second law can be applied to a system gaining mass, provided that the particles 
absorbed are initially at rest. It may also be applied to a system losing mass, provided 
that the velocity of the particles expelled is zero with respect to the frame of reference 
selected.
‡See footnote on page 899.
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902

SAMPLE PROBLEM 14.6

Grain falls from a hopper onto a chute CB at the rate of 240 lb/s. It hits 
the chute at A with a velocity of 20 ft/s and leaves at B with a velocity of 
15 ft/s, forming an angle of 10° with the horizontal. Knowing that the com-
bined weight of the chute and of the grain it supports is a force W of 
magnitude 600 lb applied at G, determine the reaction at the roller support 
B and the components of the reaction at the hinge C.

SOLUTION

We apply the principle of impulse and momentum for the time interval Dt 
to the system consisting of the chute, the grain it supports, and the amount 
of grain which hits the chute in the interval Dt. Since the chute does not 
move, it has no momentum. We also note that the sum omivi of the momenta 
of the particles supported by the chute is the same at t and t 1 Dt and can 
thus be omitted.

12 ft
12 ft7 ft

6 ft

(Δm)vA

3 ft

C
C

C

(Δm)vB

+ =Cx Δt

Cy Δt

W Δt B Δt

10°

vB

vA

3 ft

12 ft
7 ft

10°

W

A
B

C

G6 ft

 Since the system formed by the momentum (Dm)vA and the impulses 
is equipollent to the momentum (Dm)vB, we write

y
1   x components: Cx Dt 5 (Dm)vB cos 10° (1)
1xy components: 2(Dm)vA 1 Cy Dt 2 W Dt 1 B Dt
 5 2(Dm)vB sin 10° (2) 
1l moments about C:  23(Dm)vA 2 7(W Dt) 1 12(B Dt)
 5 6(Dm)vB cos 10° 2 12(Dm)vB sin 10° (3)

Using the given data, W 5 600 lb, vA 5 20 ft/s, vB 5 15 ft/s, and Dm/Dt 5 
240/32.2 5 7.45 slugs/s, and solving Eq. (3) for B and Eq. (1) for Cx,

12B 5 7(600) 1 3(7.45)(20) 1 6(7.45)(15)(cos 10° 2 2 sin 10°)
 12B 5 5075  B 5 423 lb B 5 423 lbx ◀ 

 Cx 5 (7.45)(15) cos 10° 5 110.1 lb Cx 5 110.1 lb y ◀

Substituting for B and solving Eq. (2) for Cy,

Cy 5 600 2 423 1 (7.45)(20 2 15 sin 10°) 5 307 lb
Cy 5 307 lbx ◀
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903

SAMPLE PROBLEM 14.7

A nozzle discharges a stream of water of cross-sectional area A with a velocity 
vA. The stream is deflected by a single blade which moves to the right with a 
constant velocity V. Assuming that the water moves along the blade at constant 
speed, determine (a) the components of the force F exerted by the blade on 
the stream, (b) the velocity V for which maximum power is developed.

SOLUTION

a. Components of Force Exerted on Stream. We choose a coordinate 
system which moves with the blade at a constant velocity V. The particles 
of water strike the blade with a relative velocity uA 5 vA 2 V and leave the 
blade with a relative velocity uB. Since the particles move along the blade 
at a constant speed, the relative velocities uA and uB have the same magni-
tude u. Denoting the density of water by r, the mass of the particles striking 
the blade during the time interval Dt is Dm 5 Ar(vA 2 V) Dt; an equal 
mass of particles leaves the blade during Dt. We apply the principle of 
impulse and momentum to the system formed by the particles in contact 
with the blade and the particles striking the blade in the time Dt.

vA

A

B

q

V

uB

uA =  vA –V
q

Fy Δ t

Fx Δ t

+ =
(Δm)uA

(Δm)uA

ΣmiviΣmivi

q

 Recalling that uA and uB have the same magnitude u, and omitting 
the momentum omivi which appears on both sides, we write

y
+ x components:   (Dm)u 2 Fx Dt 5 (Dm)u cos u
1 xy components: 1Fy Dt 5 (Dm)u sin u

Substituting Dm 5 Ar(vA 2 V) Dt and u 5 vA 2 V, we obtain

Fx 5 Ar(vA 2 V)2(1 2 cos u) z  Fy 5 Ar(vA 2 V)2 sin ux ◀

b. Velocity of Blade for Maximum Power. The power is obtained by 
multiplying the velocity V of the blade by the component Fx of the force 
exerted by the stream on the blade.

Power 5 FxV 5 Ar(vA 2 V)2(1 2 cos u)V

Differentiating the power with respect to V and setting the derivative equal 
to zero, we obtain

d(power)

dV
5 Ar(v2

A 2 4vAV 1 3V 

2) (1 2 cos u) 5 0 

V 5 vA  V 5 1
3vA  For maximum power V 5 1

3vA y ◀

Note. These results are valid only when a single blade deflects the stream. 
Different results are obtained when a series of blades deflects the stream, 
as in a Pelton-wheel turbine. (See Prob. 14.81.)
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904

SAMPLE PROBLEM 14.8

A rocket of initial mass m0 (including shell and fuel) is fired vertically at 
time t 5 0. The fuel is consumed at a constant rate q 5 dm/dt and is 
expelled at a constant speed u relative to the rocket. Derive an expression 
for the magnitude of the velocity of the rocket at time t, neglecting the 
resistance of the air.

SOLUTION

At time t, the mass of the rocket shell and remaining fuel is m 5 m0 2 qt, 
and the velocity is v. During the time interval Dt, a mass of fuel Dm 5 
q Dt is expelled with a speed u relative to the rocket. Denoting by ve the 
absolute velocity of the expelled fuel, we apply the principle of impulse and 
momentum between time t and time t 1 Dt.

We write

(m0 2 qt)v 2 g(m0 2 qt) Dt 5 (m0 2 qt 2 q Dt)(v 1 Dv) 2 q Dt(u 2 v)

Dividing through by Dt and letting Dt approach zero, we obtain

2g(m0 2 qt) 5 (m0 2 qt)
dv
dt

2 qu 

Separating variables and integrating from t 5 0, v 5 0 to t 5 t, v 5 v,

 dv 5 a qu

m0 2 qt
2 gb dt   #

v

0
 dv 5 #

t

0
 a qu

m0 2 qt
2 gb dt 

 
 v 5 [2u ln (m0 2 qt) 2 gt]t

0 v 5 u ln 

m0

m0 2 qt
2 gt ◀

Remark. The mass remaining at time tf, after all the fuel has been 
expended, is equal to the mass of the rocket shell ms 5 m0 2 qtf, and the 
maximum velocity attained by the rocket is vm 5 u ln (m0/ms) 2 gtf. Assum-
ing that the fuel is expelled in a relatively short period of time, the term gtf 
is small and we have vm ¯ u ln (m0 /ms). In order to escape the gravitational 
field of the earth, a rocket must reach a velocity of 11.18 km/s. Assuming 
u 5 2200 m/s and vm 5 11.18 km/s, we obtain m0 /ms 5 161. Thus, to project 
each kilogram of the rocket shell into space, it is necessary to consume more 
than 161 kg of fuel if a propellant yielding u 5 2200 m/s is used.

+ =(m0 – qt)v (m0 – qt – qΔ t)(v+Δv)W Δt

Δmve

[Δmve = qΔ t(u – v)]

[W Δt = g(m0 – qt)Δt]

v
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905

SOLVING PROBLEMS
ON YOUR OWN

This lesson is devoted to the study of the motion of variable systems of particles, 
i.e., systems which are continually gaining or losing particles or doing both at 

the same time. The problems you will be asked to solve will involve (1) steady 
streams of particles and (2) systems gaining or losing mass.

1. To solve problems involving a steady stream of particles, you will consider 
a portion S of the stream and express that the system formed by the momentum 
of the particles entering S at A in the time Dt and the impulses of the forces 
exerted on S during that time is equipollent to the momentum of the particles 
leaving S at B in the same time Dt (Fig. 14.10). Considering only the resultants 
of the vector systems involved, you can write the vector equation

 (Dm)vA 1 oF Dt 5 (Dm)vB (14.38)

You may want to consider as well the moments about a given point of the vector 
systems involved to obtain an additional equation [Sample Prob. 14.6], but many 
problems can be solved using Eq. (14.38) or the equation obtained by dividing all 
terms by Dt and letting Dt approach zero,

 oF 5
dm
dt

 (vB 2 vA) (14.39)

where vB 2 vA represents a vector subtraction and where the mass rate of flow 
dm/dt can be expressed as the product rQ of the density r of the stream (mass 
per unit volume) and the volume rate of flow Q (volume per unit time). If U.S. 
customary units are used, r is expressed as the ratio g/g, where g is the specific 
weight of the stream and g is the acceleration of gravity.

Typical problems involving a steady stream of particles have been described in 
Sec. 14.11. You may be asked to determine the following:
 a. Thrust caused by a diverted flow. Equation (14.39) is applicable, but you 
will get a better understanding of the problem if you use a solution based on 
Eq. (14.38).
 b. Reactions at supports of vanes or conveyor belts. First draw a diagram 
showing on one side of the equals sign the momentum (Dm)vA of the particles 
impacting the vane or belt in the time Dt, as well as the impulses of the loads and 
reactions at the supports during that time, and showing on the other side the 
momentum (Dm)vB of the particles leaving the vane or belt in the time Dt [Sample 
Prob. 14.6]. Equating the x components, y components, and moments of the quan-
tities on both sides of the equals sign will yield three scalar equations which can 
be solved for three unknowns.
 c. Thrust developed by a jet engine, a propeller, or a fan. In most cases, 
a single unknown is involved, and that unknown can be obtained by solving the 
scalar equation derived from Eq. (14.38) or Eq. (14.39).

(continued)
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906

2. To solve problems involving systems gaining mass, you will consider the 
system S, which has a mass m and is moving with a velocity v at time t, and the 
particles of mass Dm with velocity va that S will absorb in the time interval Dt 
(Fig. 14.13). You will then express that the total momentum of S and of the par-
ticles that will be absorbed, plus the impulse of the external forces exerted on S, 
are equipollent to the momentum of S at time t 1 Dt. Noting that the mass of S 
and its velocity at that time are, respectively, m 1 Dm and v 1 Dv, you will write 
the vector equation

 mv 1 (Dm)va 1 oF Dt 5 (m 1 Dm)(v 1 Dv) (14.40)

As was shown in Sec. 14.12, if you introduce the relative velocity u 5 va 2 v of 
the particles being absorbed, you obtain the following expression for the resultant 
of the external forces applied to S:

 oF 5 m
dv
dt

2  

dm
dt

 u (14.42)

Furthermore, it was shown that the action on S of the particles being absorbed is 
equivalent to a thrust

 P 5
dm
dt

u (14.44)

exerted in the direction of the relative velocity of the particles being absorbed.

Examples of systems gaining mass are conveyor belts and moving railroad cars 
being loaded with gravel or sand, and chains being pulled out of a pile.

3. To solve problems involving systems losing mass, such as rockets and rocket 
engines, you can use Eqs. (14.40) through (14.44), provided that you give negative 
values to the increment of mass Dm and to the rate of change of mass dm/dt. It 
follows that the thrust defined by Eq. (14.44) will be exerted in a direction oppo-
site to the direction of the relative velocity of the particles being ejected.
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PROBLEMS

907

 14.57 A stream of water of cross-section area A1 and velocity v1 strikes a 
circular plate which is held motionless by a force P. A hole in the 
circular plate of area A2 results in a discharge jet having a velocity v1. 
Determine the magnitude of P.

v1
v1

P

Fig. P14.57

 14.59 A stream of water of cross-section area A and velocity v1 strikes a 
plate which is held motionless by a force P. Determine the magni-
tude of P, knowing that A 5 0.75 in2, v1 5 80 ft/s, and V 5 0.

v2

v1

q

Fig. P14.58

v1

V

P

Fig. P14.59 and P14.60

 14.60 A stream of water of cross-section area A and velocity v1 strikes a 
plate which moves to the right with a velocity V. Determine 
the magnitude of V, knowing that A 5 1 in2, v1 5 100 ft/s, and 
P 5 90 lb.

14.58 A jet ski is placed in a channel and is tethered so that it is stationary.  
Water enters the jet ski with velocity v1 and exits with velocity v2.  
Knowing the inlet area is A1 and the exit area is A2, determine the 
tension in the tether.
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908 Systems of Particles  14.61 A rotary power plow is used to remove snow from a level section 
of railroad track. The plow car is placed ahead of an engine 
which propels it at a constant speed of 20 km/h. The plow car 
clears 160 Mg of snow per minute, projecting it in the direction 
shown with a velocity of 12 m/s relative to the plow car. Neglect-
ing friction, determine (a) the force exerted by the engine on 
the plow car, (b) the lateral force exerted by the track on the 
plow.

 14.62 Tree limbs and branches are being fed at A at the rate of 5 kg/s 
into a shredder which spews the resulting wood chips at C with a 
velocity of 20 m/s. Determine the horizontal component of the 
force exerted by the shredder on the truck hitch at D.

 14.63 Sand falls from three hoppers onto a conveyor belt at a rate of 
90 lb/s for each hopper. The sand hits the belt with a vertical 
velocity v1 5 10 ft/s and is discharged at A with a horizontal veloc-
ity v2 5 13 ft/s. Knowing that the combined mass of the beam, 
belt system, and the sand it supports is 1300 lb with a mass center 
at G, determine the reaction at E.

A

B
D

C

vC

25°

Fig. P14.62

2.5 ft

13 ft7 ft

5 ft5 ft5 ft5 ft

A

E F

G

v2

v1 v1 v1

B C D

Fig. P14.63

y

x

60°

30°

z

Fig. P14.61
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909Problems 14.64 The stream of water shown flows at a rate of 550 L/min and moves 
with a velocity of magnitude 18 m/s at both A and B. The vane is 
supported by a pin and bracket at C and by a load cell at D which 
can exert only a horizontal force. Neglecting the weight of the 
vane, determine the components of the reactions at C and D.

 14.65 The nozzle discharges water at the rate of 340 gal/min. Knowing 
the velocity of the water at both A and B has a magnitude of 65 ft/s 
and neglecting the weight of the vane, determine the components 
of the reactions at C and D (1 ft3 5 7.48 gal).

500 mm

200 mm

250 mm

150 mm

190 mm

vA

vB

50°

A

B

O

G

Fig. P14.66

 14.66 A high-speed jet of air issues from nozzle A with a velocity of vA 
and mass flow rate of 0.36 kg/s. The air impinges on a vane causing 
it to rotate to the position shown. The vane has a mass of 6 kg. 
Knowing that the magnitude of the air velocity is equal at A and 
B, determine (a) the magnitude of the velocity at A, (b) the com-
ponents of the reactions at O.

A

125 mm

150 mm

40 mm

vA

vB

B

C

D 200 mm

40°

Fig. P14.64

30 in.

20 in.

3 in.

A

C

B

D

v

50°

Fig. P14.65
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910 Systems of Particles  14.67 Coal is being discharged from a first conveyor belt at the rate of 
120 kg/s. It is received at A by a second belt which discharges it 
again at B. Knowing that v1 5 3 m/s and v2 5 4.25 m/s and that 
the second belt assembly and the coal it supports have a total mass 
of 472 kg, determine the components of the reactions at C and D.

0.545 m

0.75 m
2.25 m

2.4 m

1.2 m

1.2 m1.8 m

A

v1 v2

B

C

G

D

Fig. P14.67

20°

20°

270 km/h

Fig. P14.71

 14.68 A mass q of sand is discharged per unit time from a conveyor belt 
moving with a velocity v0. The sand is deflected by a plate at A so 
that it falls in a vertical stream. After falling a distance h the sand 
is again deflected by a curved plate at B. Neglecting the friction 
between the sand and the plates, determine the force required to 
hold in the position shown (a) plate A, (b) plate B.

 14.69 The total drag due to air friction on a jet airplane traveling at 900 km/h 
is 35 kN. Knowing that the exhaust velocity is 600 m/s relative to the 
airplane, determine the mass of air which must pass through the 
engine per second to maintain the speed of 900 km/h in level flight.

 14.70 While cruising in level flight at a speed of 600 mi/h, a jet plane 
scoops in air at the rate of 200 lb/s and discharges it with a velocity 
of 2100 ft/s relative to the airplane. Determine the total drag due 
to air friction on the airplane.

 14.71 In order to shorten the distance required for landing, a jet airplane 
is equipped with movable vanes which partially reverse the direc-
tion of the air discharged by each of its engines. Each engine 
scoops in the air at a rate of 120 kg/s and discharges it with a 
velocity of 600 m/s relative to the engine. At an instant when the 
speed of the airplane is 270 km/h, determine the reverse thrust 
provided by each of the engines.

A

h

B

v0

30°

Fig. P14.68
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911Problems 14.72 The helicopter shown can produce a maximum downward air 
speed of 80 ft/s in a 30-ft-diameter slipstream. Knowing that the 
weight of the helicopter and its crew is 3500 lb and assuming 
g 5 0.076 lb/ft3 for air, determine the maximum load that the 
helicopter can lift while hovering in midair.

Fig. P14.75

h

400 mmG

Fig. P14.73

30 ft

Fig. P14.72

 14.73 A floor fan designed to deliver air at a maximum velocity of 6 m/s 
in a 400-mm-diameter slipstream is supported by a 200-mm-
diameter circular base plate. Knowing that the total weight of the 
assembly is 60 N and that its center of gravity is located directly 
above the center of the base plate, determine the maximum 
height h at which the fan may be operated if it is not to tip over. 
Assume r 5 1.21 kg/m3 for air and neglect the approach velocity 
of the air.

 14.74 The jet engine shown scoops in air at A at a rate of 200 lb/s 
and discharges it at B with a velocity of 2000 ft/s relative to the 
airplane. Determine the magnitude and line of action of the pro-
pulsive thrust developed by the engine when the speed of the 
airplane is (a) 300 mi/h, (b) 600 mi/h.

 14.75 A jet airliner is cruising at a speed of 900 km/h with each of its 
three engines discharging air with a velocity of 800 m/s relative to 
the plane. Determine the speed of the airliner after it has lost the 
use of (a) one of its engines, (b) two of its engines. Assume that 
the drag due to air friction is proportional to the square of the 
speed and that the remaining engines keep operating at the same 
rate.

A

B

12 ft

Fig. P14.74
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912 Systems of Particles  14.76 A 16-Mg jet airplane maintains a constant speed of 774 km/h while 
climbing at an angle a 5 18°. The airplane scoops in air at a rate 
of 300 kg/s and discharges it with a velocity of 665 m/s relative to 
the airplane. If the pilot changes to a horizontal flight while main-
taining the same engine setting, determine (a) the initial accelera-
tion of the plane, (b) the maximum horizontal speed that will be 
attained. Assume that the drag due to air friction is proportional 
to the square of the speed.

 14.77 The propeller of a small airplane has a 2-m-diameter slipstream 
and produces a thrust of 3600 N when the airplane is at rest on 
the ground. Assuming r 5 1.225 kg/m3 for air, determine (a) the 
speed of the air in the slipstream, (b) the volume of air passing 
through the propeller per second, (c) the kinetic energy imparted 
per second to the air in the slipstream.

 14.78 The wind turbine–generator shown has an output-power rating of 
1.5 MW for a wind speed of 36 km/h. For the given wind speed, 
determine (a) the kinetic energy of the air particles entering the 
82.5-m-diameter circle per second, (b) the efficiency of this energy 
conversion system. Assume r 5 1.21 kg/m3 for air.

 14.79 A wind turbine-generator system having a diameter of 82.5 m pro-
duces 1.5 MW at a wind speed of 12 m/s. Determine the diameter 
of blade necessary to produce 10 MW of power assuming the effi-
ciency is the same for both designs and r 5 1.21 kg/m3 for air.

 14.80 While cruising in level flight at a speed of 570 mi/h, a jet airplane 
scoops in air at a rate of 240 lb/s and discharges it with a velocity 
of 2200 ft/s relative to the airplane. Determine (a) the power actu-
ally used to propel the airplane, (b) the total power developed by 
the engine, (c) the mechanical efficiency of the airplane.

 14.81 In a Pelton-wheel turbine, a stream of water is deflected by a series 
of blades so that the rate at which water is deflected by the blades 
is equal to the rate at which water issues from the nozzle (Dm/Dt 5 
ArvA). Using the same notation as in Sample Prob. 14.7, (a) deter-
mine the velocity V of the blades for which maximum power is 
developed, (b) derive an expression for the maximum power, 
(c) derive an expression for the mechanical efficiency.

 14.82 A circular reentrant orifice (also called Borda’s mouthpiece) of 
diameter D is placed at a depth h below the surface of a tank. 
Knowing that the speed of the issuing stream is v 5 12gh and 
assuming that the speed of approach v1 is zero, show that the 
diameter of the stream is d 5 D/ 12. (Hint: Consider the section 
of water indicated, and note that P is equal to the pressure at a 
depth h multiplied by the area of the orifice.)

vD

d

h

P
1

2

Fig. P14.82

qvA

V

Fig. P14.81

a

Fig. P14.76

82.5 m

Fig. P14.78 and P14.79
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913Problems 14.83 Gravel falls with practically zero velocity onto a conveyor belt 
at the constant rate q 5 dm/dt. (a) Determine the magnitude 
of the force P required to maintain a constant belt speed v. 
(b) Show that the kinetic energy acquired by the gravel in a 
given time interval is equal to half the work done in that interval 
by the force P. Explain what happens to the other half of the 
work done by P.

A

y

P

Fig. P14.86

v

P

L

Fig. P14.83

 *14.84 The depth of water flowing in a rectangular channel of width b at 
a speed v1 and a depth d1 increases to a depth d2 at a hydraulic 
jump. Express the rate of flow Q in terms of b, d1, and d2.

 *14.85 Determine the rate of flow in the channel of Prob. 14.84, knowing 
that b 5 12 ft, d1 5 4 ft, and d2 5 5 ft.

 14.86 A chain of length l and mass m lies in a pile on the floor. If its 
end A is raised vertically at a constant speed v, express in terms 
of the length y of chain which is off the floor at any given instant 
(a) the magnitude of the force P applied to A, (b) the reaction of 
the floor.

 14.87 Solve Prob. 14.86, assuming that the chain is being lowered to the 
floor at a constant speed v.

 14.88 The ends of a chain lie in piles at A and C. When released from 
rest at time t 5 0, the chain moves over the pulley at B, which 
has a negligible mass. Denoting by L the length of chain connect-
ing the two piles and neglecting friction, determine the speed v 
of the chain at time t.

v1

v2

d1

d 2

Fig. P14.84

A

B

C

v

h

Fig. P14.88
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914 Systems of Particles  14.89 A toy car is propelled by water that squirts from an internal tank 
at a constant 6 ft/s relative to the car. The weight of the empty car 
is 0.4 lb and it holds 2 lb of water. Neglecting other tangential 
forces, determine the top speed of the car.

Fig. P14.91 and P14.92

Fig. P14.94

 14.92 The main propulsion system of a space shuttle consists of three 
identical rocket engines, each of which burns the hydrogen-oxygen 
propellant at the rate of 750 lb/s and ejects it with a relative veloc-
ity of 12,000 ft/s. Determine the total thrust provided by the three 
engines.

 14.93 A rocket weighs 2600 lb, including 2200 lb of fuel, which is con-
sumed at a rate of 25 lb/s and ejected with a relative velocity of 
13,000 ft/s. Knowing that the rocket is fired vertically from the 
ground, determine its acceleration (a) as it is fired, (b) as the last 
particle of fuel is being consumed.

 14.94 A space vehicle describing a circular orbit about the earth at a 
speed of 24 3 103 km/h releases at its front end a capsule which 
has a gross mass of 600 kg, including 400 kg of fuel. If the fuel is 
consumed at the rate of 18 kg/s and ejected with a relative velocity 
of 3000 m/s, determine (a) the tangential acceleration of the cap-
sule as its engine is fired, (b) the maximum speed attained by the 
capsule.

20°

Fig. P14.89 and P14.90

 14.90 A toy car is propelled by water that squirts from an internal tank. 
The weight of the empty car is 0.4 lb and it holds 2 lb of water. 
Knowing the top speed of the car is 8 ft/s determine the relative 
velocity of the water that is being ejected.

 14.91 The main propulsion system of a space shuttle consists of three 
identical rocket engines which provide a total thrust of 6 MN. 
Determine the rate at which the hydrogen-oxygen propellant is 
burned by each of the three engines, knowing that it is ejected 
with a relative velocity of 3750 m/s.
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915Problems 14.95 A 540-kg spacecraft is mounted on top of a rocket with a mass of 
19 Mg, including 17.8 Mg of fuel. Knowing that the fuel is con-
sumed at a rate of 225 kg/s and ejected with a relative velocity of 
3600 m/s, determine the maximum speed imparted to the space-
craft if the rocket is fired vertically from the ground.

Fig. P14.97

Fig. P14.95

A

B

Fig. P14.96

 14.96 The rocket used to launch the 540-kg spacecraft of Prob. 14.95 
is redesigned to include two stages A and B, each of mass 9.5 Mg, 
including 8.9 Mg of fuel. The fuel is again consumed at a rate 
of 225 kg/s and ejected with a relative velocity of 3600 m/s. 
Knowing that when stage A expels its last particle of fuel, its 
casing is released and jettisoned, determine (a) the speed of the 
rocket at that instant, (b) the maximum speed imparted to the 
spacecraft.

 14.97 A communications satellite weighing 10,000 lb, including fuel, 
has been ejected from a space shuttle describing a low circular 
orbit around the earth. After the satellite has slowly drifted to a 
safe distance from the shuttle, its engine is fired to increase its 
velocity by 8000 ft/s as a first step to its transfer to a geosynchro-
nous orbit. Knowing that the fuel is ejected with a relative veloc-
ity of 13,750 ft/s, determine the weight of fuel consumed in this 
maneuver.

 14.98 Determine the increase in velocity of the communications satellite 
of Prob. 14.97 after 2500 lb of fuel has been consumed.

 14.99 Determine the distance separating the communications satellite of 
Prob. 14.97 from the space shuttle 60 s after its engine has been 
fired, knowing that the fuel is consumed at a rate of 37.5 lb/s.

 14.100 For the rocket of Prob. 14.93, determine (a) the altitude at which 
all of the fuel has been consumed, (b) the velocity of the rocket at 
this time.

 14.101 Determine the altitude reached by the spacecraft of Prob. 14.95 
when all the fuel of its launching rocket has been consumed.
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916 Systems of Particles  14.102 For the spacecraft and the two-stage launching rocket of Prob. 
14.96, determine the altitude at which (a) stage A of the rocket is 
released, (b) the fuel of both stages has been consumed.

 14.103 In a jet airplane, the kinetic energy imparted to the exhaust gases 
is wasted as far as propelling the airplane is concerned. The useful 
power is equal to the product of the force available to propel the 
airplane and the speed of the airplane. If v is the speed of the 
airplane and u is the relative speed of the expelled gases, show 
that the mechanical efficiency of the airplane is h 5 2v/(u 1 v). 
Explain why h 5 1 when u 5 v.

 14.104 In a rocket, the kinetic energy imparted to the consumed and 
ejected fuel is wasted as far as propelling the rocket is concerned. 
The useful power is equal to the product of the force available to 
propel the rocket and the speed of the rocket. If v is the speed of 
the rocket and u is the relative speed of the expelled fuel, show 
that the mechanical efficiency of the rocket is h 5 2uv/(u2 1 v2). 
Explain why h 5 1 when u 5 v.
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917

REVIEW AND SUMMARY

In this chapter we analyzed the motion of systems of particles, i.e., 
the motion of a large number of particles considered together. In the 
first part of the chapter we considered systems consisting of well-
defined particles, while in the second part we analyzed systems 
which are continually gaining or losing particles, or doing both at the 
same time.

We first defined the effective force of a particle Pi of a given system 
as the product miai of its mass mi and its acceleration ai with respect 
to a newtonian frame of reference centered at O [Sec. 14.2]. We 
then showed that the system of the external forces acting on the 
particles and the system of the effective forces of the particles are 
equipollent; i.e., both systems have the same resultant and the same 
moment resultant about O:

  On

i51
Fi 5On

i51
miai (14.4)

  On

i51
(ri 3 Fi) 5On

i51
(ri 3 miai) (14.5)

Defining the linear momentum L and the angular momentum HO
 

about point O of the system of particles [Sec. 14.3] as

 L 5On

i51
mivi   HO 5On

i51
(ri 3 mivi)   (14.6, 14.7)

we showed that Eqs. (14.4) and (14.5) can be replaced by the 
equations

 oF 5 L
.   oMO 5 H

.
O (14.10, 14.11)

which express that the resultant and the moment resultant about O 
of the external forces are, respectively, equal to the rates of change 
of the linear momentum and of the angular momentum about O of 
the system of particles.

In Sec. 14.4, we defined the mass center of a system of particles as 
the point G whose position vector r satisfies the equation

 mr 5On

i51
miri (14.12)

Effective forces

Linear and angular momentum 
of a system of particles

Motion of the mass center 
of a system of particles
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918 Systems of Particles
where m represents the total mass On

i51
mi of the particles. Differ-

entiating both members of Eq. (14.12) twice with respect to t, we 
obtained the relations

 L 5 mv  L̇ 5 ma (14.14, 14.15)

where v and a represent, respectively, the velocity and the accelera-
tion of the mass center G. Substituting for L

.
 from (14.15) into 

(14.10), we obtained the equation

 oF 5 ma (14.16)

from which we concluded that the mass center of a system of par-
ticles moves as if the entire mass of the system and all the external 
forces were concentrated at that point [Sample Prob. 14.1].

In Sec. 14.5 we considered the motion of the particles of a system 
with respect to a centroidal frame Gx9y9z9 attached to the mass cen-
ter G of the system and in translation with respect to the newtonian 
frame Oxyz (Fig. 14.14). We defined the angular momentum of the 
system about its mass center G as the sum of the moments about G 
of the momenta mivi9 of the particles in their motion relative to the 
frame Gx9y9z9. We also noted that the same result can be obtained 
by considering the moments about G of the momenta mivi of the 
particles in their absolute motion. We therefore wrote

 HG 5On
i51

(r¿i 3 mivi) 5On

i51
(r¿i 3 miv¿i) (14.24)

and derived the relation

 oMG 5  ḢG (14.23)

which expresses that the moment resultant about G of the external 
forces is equal to the rate of change of the angular momentum about 
G of the system of particles. As will be seen later, this relation is 
fundamental to the study of the motion of rigid bodies.

When no external force acts on a system of particles [Sec. 14.6], it 
follows from Eqs. (14.10) and (14.11) that the linear momentum L 
and the angular momentum HO of the system are conserved [Sample 
Probs. 14.2 and 14.3]. In problems involving central forces, the angu-
lar momentum of the system about the center of force O will also 
be conserved.

The kinetic energy T of a system of particles was defined as the sum 
of the kinetic energies of the particles [Sec. 14.7]:

 T 5
1
2 O

n

i51
miv

2
i  (14.28)

Angular momentum of a system 
of particles about its mass center

Conservation of momentum

Kinetic energy of a system 
of particles

Fig. 14.14

x

y

z

x'

y'

z'

O

G

Pi

miv'i

r'i
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919Using the centroidal frame of reference Gx9y9z9 of Fig. 14.14, we 
noted that the kinetic energy of the system can also be obtained by add-
ing the kinetic energy 1

2mv 
2 associated with the motion of the mass 

center G and the kinetic energy of the system in its motion relative 
to the frame Gx9y9z9:

 T 5 1
2mv 

2 1
1
2 O

n

i51
miv¿2

i  (14.29)

The principle of work and energy can be applied to a system of 
particles as well as to individual particles [Sec. 14.8]. We wrote

 T1 1 U1y2 5 T2 (14.30)

and noted that U1y2 represents the work of all the forces acting on 
the particles of the system, internal as well as external.

If all the forces acting on the particles of the system are conservative, 
we can determine the potential energy V of the system and write

 T1 1 V1 5 T2 1 V2 (14.31) 

which expresses the principle of conservation of energy for a system 
of particles.

We saw in Sec. 14.9 that the principle of impulse and momentum for 
a system of particles can be expressed graphically as shown in 
Fig. 14.15. It states that the momenta of the particles at time t1 and the 
impulses of the external forces from t1 to t2 form a system of vectors 
equipollent to the system of the momenta of the particles at time t2.

Principle of work and energy

Conservation of energy

Principle of impulse and momentum

Fig. 14.15

x

y

O x

y

O x

y

O

(a)

+ =
(mAvA)1

(mBvB)1

(mCvC)1

(mAvA)2
(mBvB)2

(mCvC)2

(b) (c)

∑     F dt
t2

t1

∑     MO dt
t2

t1

∫

∫

 If no external force acts on the particles of the system, the 
systems of momenta shown in parts a and c of Fig. 14.15 are equi-
pollent and we have

 L1 5 L2  (HO)1 5 (HO)2 (14.36, 14.37)

Many problems involving the motion of systems of particles can 
be solved by applying simultaneously the principle of impulse and 
momentum and the principle of conservation of energy [Sample 
Prob. 14.4] or by expressing that the linear momentum, angular 
momentum, and energy of the system are conserved [Sample 
Prob. 14.5].

Use of conservation principles in 
the solution of problems involving 
systems of particles

Review and Summary
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920 Systems of Particles In the second part of the chapter, we considered variable systems of 
particles. First we considered a steady stream of particles, such as a 
stream of water diverted by a fixed vane or the flow of air through a 
jet engine [Sec. 14.11]. Applying the principle of impulse and momen-
tum to a system S of particles during a time interval Dt, and including 
the particles which enter the system at A during that time interval 
and those (of the same mass Dm) which leave the system at B, we 
concluded that the system formed by the momentum (Dm)vA of the 
particles entering S in the time Dt and the impulses of the forces 
exerted on S during that time is equipollent to the momentum (Dm)vB 
of the particles leaving S in the same time Dt (Fig. 14.16). Equating 

Variable systems of particles 
Steady stream of particles

S SS
A

B

A

B∑mivi ∑mivi

(Δm)vA

(Δm)vB

(a) (b) (c)

∑F Δt

∑M Δt

+ =

Fig. 14.16

the x components, y components, and moments about a fixed point 
of the vectors involved, we could obtain as many as three equations, 
which could be solved for the desired unknowns [Sample Probs. 14.6 
and 14.7]. From this result, we could also derive the following expres-
sion for the resultant oF of the forces exerted on S,

 oF 5
dm
dt

(vB 2 vA) (14.39)

where vB 2 vA represents the difference between the vectors vB and 
vA and where dm/dt is the mass rate of flow of the stream (see foot-
note, page 899).

Considering next a system of particles gaining mass by continually 
absorbing particles or losing mass by continually expelling particles 
[Sec. 14.12], as in the case of a rocket, we applied the principle of 
impulse and momentum to the system during a time interval Dt, being 
careful to include the particles gained or lost during that time interval 
[Sample Prob. 14.8]. We also noted that the action on a system S of 
the particles being absorbed by S was equivalent to a thrust

 P 5
dm
dt

 u (14.44)

where dm/dt is the rate at which mass is being absorbed, and u is the 
velocity of the particles relative to S. In the case of particles being 
expelled by S, the rate dm/dt is negative and the thrust P is exerted in 
a direction opposite to that in which the particles are being expelled.

Systems gaining or losing mass
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921

REVIEW PROBLEMS

 14.105 Three identical cars are being unloaded from an automobile car-
rier. Cars B and C have just been unloaded and are at rest with 
their brakes off when car A leaves the unloading ramp with a 
velocity of 5.76 ft/s and hits car B, which hits car C. Car A then 
again hits car B. Knowing that the  velocity of car B is 5.04 ft/s 
after the first collision, 0.630 ft/s after the second collision, and 
0.709 ft/s after the third collision, determine (a) the final velocities 
of cars A and C, (b) the coefficient of restitution for each of the 
collisions.

B C

x

A

480 m/s

Fig. P14.106

A

B

C

20 Mg

30 Mg
6.5 km/h

Fig. P14.107

 14.106 A 30-g bullet is fired with a velocity of 480 m/s into block A, which 
has a mass of 5 kg. The coefficient of kinetic friction between block 
A and cart BC is 0.50. Knowing that the cart has a mass of 4 kg 
and can roll freely, determine (a) the final velocity of the cart and 
block, (b) the final position of the block on the cart.

 14.107 An 80-Mg railroad engine A coasting at 6.5 km/h strikes a 20-Mg 
flatcar C carrying a 30-Mg load B which can slide along the floor of 
the car (mk 5 0.25). Knowing that the car was at rest with its brakes 
released and that it automatically coupled with the engine upon 
impact, determine the velocity of the car (a) immediately after 
impact, (b) after the load has slid to a stop relative to the car.

14.108 In a game of pool, ball A is moving with a velocity v0 when it strikes 
balls B and C which are at rest and aligned as shown. Knowing that 
after the collision the three balls move in the directions indicated 
and that v0 5 12 ft/s and vC 5 6.29 ft/s, determine the magnitude 
of the velocity of (a) ball A, (b) ball B.

 14.109 Mass C, which has a mass of 4 kg, is suspended from a cord 
attached to cart A, which has a mass of 5 kg and can roll freely on 
a frictionless horizontal track. A 60-g bullet is fired with a speed 
v0 5 500 m/s and gets lodged in block C. Determine (a) the veloc-
ity of C as it reaches its maximum elevation, (b) the maximum 
vertical distance h through which C will rise.

A B C

v0

Fig. P14.105

vC

vBv0

A
B

C

49.3°

45°

30°

7.4°

vA

Fig. P14.108

C

20°
v0

B

A

Fig. P14.109
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922 Systems of Particles  14.110 A 15-lb block B is at rest and a spring of constant k 5 72 lb/in is 
held compressed 3 in. by a cord. After 5-lb block A is placed 
against the end of the spring the cord is cut causing A and B to 
move. Neglecting friction, determine the velocities of blocks A and 
B immediately after A leaves B.

k
6 in.

B

A

Fig. P14.110

 14.112 The nozzle shown discharges water at the rate of 200 gal/min. 
Knowing that at both B and C the stream of water moves with a 
velocity of magnitude 100 ft/s, and neglecting the weight of the 
vane, determine the force-couple system which must be applied at 
A to hold the vane in place (1 ft3 5 7.48 gal).

 14.111 Car A was at rest 9.28 m south of point O when it was struck in the 
rear by car B, which was traveling north at a speed vB. Car C, which 
was traveling west at a speed vC, was 40 m east of point O at the 
time of the collision. Cars A and B stuck together and, because the 
pavement was covered with ice, they slid into the intersection and 
were struck by car C which had not changed its speed. Measure-
ments based on a photograph taken from a traffic helicopter shortly 
after the second collision indicated that the positions of the cars, 
expressed in meters, were rA 5 210.1i 1 16.9j, rB 5 210.1i 1 20.4j, 
and rC 5 219.8i  2 15.2j. Knowing that the masses of cars A, B, 
and C are, respectively, 1400 kg, 1800 kg, and 1600 kg, and that the 
time elapsed between the first collision and the time the photograph 
was taken was 3.4 s, determine the initial speeds of cars B and C.

C

C A

B

B

A

O

40 m

3.52 m

9.28 m

x

y

vC

vB

Fig. P14.111

40°6 in.3 in.

15 in.

vA

A B

C
vC

Fig. P14.112
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923Review Problems 14.113 Prior to takeoff, the pilot of a 6000-lb twin-engine airplane tests 
the reversible-pitch propellers with the brakes at point B locked. 
Knowing that the velocity of the air in the two 6.6-ft-diameter 
slipstreams is 60 ft/s and that point G is the center of gravity of 
the airplane, determine the reactions at points A and B. Assume 
g 5 0.075 lb/ft3 and neglect the approach velocity of the air.

100 mm
150 mm

120°

Fig. P14.115

 14.116 A chain of length l and mass m falls through a small hole in a plate. 
Initially, when y is very small, the chain is at rest. In each case 
shown, determine (a) the acceleration of the first link A as a func-
tion of y, (b) the velocity of the chain as the last link passes through 
the hole. In case 1 assume that the individual links are at rest until 
they fall through the hole; in case 2 assume that at any instant all 
links have the same speed. Ignore the effect of friction.

Fig. P14.114

8.4 ft
0.9 ft

6.6 ft

BA
4.8 ft

G

Fig. P14.113

A
y

A
y

(1) (2)

l – y

Fig. P14.116

 14.114 A railroad car of length L and mass m0 when empty is moving 
freely on a horizontal track while being loaded with sand from a 
stationary chute at a rate dm/dt 5 q. Knowing that the car was 
approaching the chute at a speed v0, determine (a) the mass of the 
car and its load after the car has cleared the chute, (b) the speed 
of the car at that time.

 14.115 A garden sprinkler has four rotating arms, each of which consists of 
two horizontal straight sections of pipe forming an angle of 120° with 
each other. Each arm discharges water at a rate of 20 L/min with a 
velocity of 18 m/s relative to the arm. Knowing that the friction 
between the moving and stationary parts of the sprinkler is equiva-
lent to a couple of magnitude M 5 0.375 N ? m, determine the 
constant rate at which the sprinkler rotates.
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924

COMPUTER PROBLEMS

 14.C1 A man and a woman, of weights 180 lb and 120 lb, respectively, 
stand at opposite ends of a stationary boat of weight 300 lb, ready to dive 
with velocities vm and vw, respectively, relative to the boat. Use computa-
tional software to determine the velocity of the boat after both swimmers 
have dived if (a) the woman dives first, (b) the man dives first. Solve that 
problem assuming that the velocities of the woman and the man relative 
to the boat are, respectively, (i) 14 ft/s and 18 ft/s, (ii) 18 ft/s and 14 ft/s.

 14.C2 A system of particles consists of n particles Ai of mass mi and coor-
dinates xi, yi, and zi, having velocities of components (vx)i, (vy)i, and (vz)i. 
Derive expressions for the components of the angular momentum of the 
system about the origin O of the coordinates. Use computational software 
to solve Probs. 14.11 and 14.13.

 14.C3 A shell moving with a velocity of known components vx, vy, and vz 
explodes into three fragments of weights W1, W2, and W3 at point A0 at a 
distance d from a vertical wall. Use computational software to determine the 
speed of each fragment immediately after the explosion, knowing the coordi-
nates xi and yi of the points Ai (i 5 1, 2, 3) where the fragments hit the wall. 
Use this program to solve (a) Prob. 14.24, (b) Prob. 14.25.

Fig. P14.C1

y

AiO

xi

d

z
x

yi

Ao

Fig. P14.C3
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925Computer Problems 14.C4 As a 6000-kg training plane lands on an aircraft carrier at a speed 
of 180 km/h, its tail hooks into the end of an 80-m long chain which lies in 
a pile below deck. Knowing that the chain has a mass per unit length of 
50 kg/m and assuming no other retarding force, use computational software 
to determine the distance traveled by the plane while the chain is being 
pulled out and the corresponding values of the time and of the velocity and 
deceleration of the plane.

Fig. P14.C4

 14.C5 A 16-Mg jet airplane maintains a constant speed of 774 km/h while 
climbing at an angle a 5 18°. The airplane scoops in air at a rate of 300 
kg/s and discharges it with a velocity of 665 m/s relative to the airplane. 
Knowing that the pilot changes the angle of climb a while maintaining the 
same engine setting, use computational software to calculate and plot values 
of a from 0 to 20° (a) the initial acceleration of the plane, (b) the maximum 
speed that will be attained. Assume that the drag due to air friction is pro-
portional to the square of the speed.

 14.C6 A rocket has a weight of 2400 lb, including 2000 lb of fuel, which 
is consumed at the rate of 25 lb/s and ejected with a relative velocity of 
12,000 ft/s. Knowing that the rocket is fired vertically from the ground, 
assuming a constant value for the acceleration of gravity, and using 4-s time 
intervals, use computational software to determine and plot from the time of 
ignition to the time when the last particle of fuel is being consumed (a) the 
acceleration a of the rocket in ft/s2, (b) its velocity v in ft/s, (c) its elevation h
above the ground in miles. (Hint: Use for v the expression derived in Sample 
Prob. 14.8, and integrate this expression analytically to obtain h.)

a

Fig. P14.C5
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926

This huge crank belongs to a 

Wartsila-Sulzer RTA96-C turbocharged 

two-stroke diesel engine. In this chapter 

you will learn to perform the kinematic 

analysis of rigid bodies that undergo 

translation, fixed axis rotation, and 

general plane motion.
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Kinematics of Rigid Bodies

927

15C H A P T E R
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928

15.1 INTRODUCTION
In this chapter, the kinematics of rigid bodies will be considered. You 
will investigate the relations existing between the time, the positions, 
the velocities, and the accelerations of the various particles forming 
a rigid body. As you will see, the various types of rigid-body motion 
can be conveniently grouped as follows:

Chapter 15 Kinematics of 
Rigid Bodies

 15.1 Introduction
 15.2 Translation
 15.3 Rotation About a Fixed Axis
 15.4 Equations Defining the Rotation 

of a Rigid Body About a 
Fixed Axis

 15.5 General Plane Motion
 15.6 Absolute and Relative Velocity 

in Plane Motion
 15.7 Instantaneous Center of Rotation 

in Plane Motion
 15.8 Absolute and Relative 

Acceleration in Plane Motion
 15.9 Analysis of Plane Motion in 

Terms of a Parameter
 15.10 Rate of Change of a Vector with 

Respect to a Rotating Frame
 15.11 Plane Motion of a Particle 

Relative to a Rotating Frame. 
Coriolis Acceleration

 15.12 Motion About a Fixed Point
 15.13 General Motion
 15.14 Three-Dimensional Motion of a 

Particle Relative to a Rotating 
Frame. Coriolis Acceleration

 15.15 Frame of Reference in 
General Motion

A1

B1

A2

B2

Fig. 15.1

A1

B1

A2

B2

Fig. 15.2

Fig. 15.4

A1

A2

C1

C2

B1

B2

D1

D2

A1

A2

C1

C2

B1

B2

D1

D2

(a) Curvilinear translation (b) Rotation

O

Fig. 15.3

A

B

 1. Translation. A motion is said to be a translation if any straight 
line inside the body keeps the same direction during the motion. 
It can also be observed that in a translation all the particles 
forming the body move along parallel paths. If these paths are 
straight lines, the motion is said to be a rectilinear translation 
(Fig. 15.1); if the paths are curved lines, the motion is a curvi-
linear translation (Fig. 15.2).

 2. Rotation About a Fixed Axis. In this motion, the particles form-
ing the rigid body move in parallel planes along circles centered 
on the same fixed axis (Fig. 15.3). If this axis, called the axis of 
rotation, intersects the rigid body, the particles located on the 
axis have zero velocity and zero acceleration.

   Rotation should not be confused with certain types of cur-
vilinear translation. For example, the plate shown in Fig. 15.4a 
is in curvilinear translation, with all its particles moving along 
parallel circles, while the plate shown in Fig. 15.4b is in rota-
tion, with all its particles moving along concentric circles.
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929  In the first case, any given straight line drawn on the plate 
will maintain the same direction, whereas in the second case, 
point O remains fixed.

   Because each particle moves in a given plane, the rotation 
of a body about a fixed axis is said to be a plane motion.

 3. General Plane Motion. There are many other types of plane 
motion, i.e., motions in which all the particles of the body move 
in parallel planes. Any plane motion that is neither a rotation 
nor a translation is referred to as a general plane motion. Two 
examples of general plane motion are given in Fig. 15.5.

(a) Rolling wheel (b) Sliding rod

Fig. 15.5

 4. Motion About a Fixed Point. The three-dimensional motion of 
a rigid body attached at a fixed point O, e.g., the motion of a 
top on a rough floor (Fig. 15.6), is known as motion about a 
fixed point.

 5. General Motion. Any motion of a rigid body that does not 
fall  in any of the categories above is referred to as a general 
motion.

 After a brief discussion in Sec. 15.2 of the motion of translation, 
the rotation of a rigid body about a fixed axis is considered in Sec. 
15.3. The angular velocity and the angular acceleration of a rigid 
body about a fixed axis will be defined, and you will learn to express 
the velocity and the acceleration of a given point of the body in terms 
of its position vector and the angular velocity and angular accelera-
tion of the body.
 The following sections are devoted to the study of the general 
plane motion of a rigid body and to its application to the analysis of 
mechanisms such as gears, connecting rods, and pin-connected link-
ages. Resolving the plane motion of a slab into a translation and a 
rotation (Secs. 15.5 and 15.6), we will then express the velocity of a 
point B of the slab as the sum of the velocity of a reference point A 
and of the velocity of B relative to a frame of reference translating 
with A (i.e., moving with A but not rotating). The same approach is 
used later in Sec. 15.8 to express the acceleration of B in terms of 
the acceleration of A and of the acceleration of B relative to a frame 
translating with A.

Fig. 15.6

O

15.1 Introduction
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930 Kinematics of Rigid Bodies  An alternative method for the analysis of velocities in plane 
motion, based on the concept of instantaneous center of rotation, is 
given in Sec. 15.7; and still another method of analysis, based on the 
use of parametric expressions for the coordinates of a given point, is 
presented in Sec. 15.9.
 The motion of a particle relative to a rotating frame of refer-
ence and the concept of Coriolis acceleration are discussed in Secs. 
15.10 and 15.11, and the results obtained are applied to the analysis 
of the plane motion of mechanisms containing parts which slide on 
each other.
 The remaining part of the chapter is devoted to the analysis of 
the three-dimensional motion of a rigid body, namely, the motion of 
a rigid body with a fixed point and the general motion of a rigid body. 
In Secs. 15.12 and 15.13, a fixed frame of reference or a frame of 
reference in translation will be used to carry out this analysis; in Secs. 
15.14 and 15.15, the motion of the body relative to a rotating frame 
or to a frame in general motion will be considered, and the concept 
of Coriolis acceleration will again be used.

15.2 TRANSLATION
Consider a rigid body in translation (either rectilinear or curvilinear 
translation), and let A and B be any two of its particles (Fig. 15.7a). 
Denoting, respectively, by rA and rB the position vectors of A and B 
with respect to a fixed frame of reference and by rB/A the vector 
joining A and B, we write

 rB 5 rA 1 rB/A (15.1)

Let us differentiate this relation with respect to t. We note that from 
the very definition of a translation, the vector rB/A must maintain a 
constant direction; its magnitude must also be constant, since A and B 

y

x

z

O

A

B

(a)

rB

rB/A

rA

v

v

y

x

z

O

B

(b)

A

ay

x

z

O

B

(c)

a

A

Fig. 15.7

Photo 15.1 This replica of a battering ram at 
Château des Baux, France undergoes curvilinear 
translation.
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931belong to the same rigid body. Thus, the derivative of rB/A is zero 
and we have

 vB 5 vA (15.2)

Differentiating once more, we write

 aB 5 aA (15.3)

 Thus, when a rigid body is in translation, all the points of the 
body have the same velocity and the same acceleration at any given 
instant (Fig. 15.7b and c). In the case of curvilinear translation, the 
velocity and acceleration change in direction as well as in magnitude 
at every instant. In the case of rectilinear translation, all particles of 
the body move along parallel straight lines, and their velocity and 
acceleration keep the same direction during the entire motion.

15.3 ROTATION ABOUT A FIXED AXIS
Consider a rigid body which rotates about a fixed axis AA9. Let P be 
a point of the body and r its position vector with respect to a fixed 
frame of reference. For convenience, let us assume that the frame is 
centered at point O on AA9 and that the z axis coincides with AA9 
(Fig. 15.8). Let B be the projection of P on AA9; since P must remain 
at a constant distance from B, it will describe a circle of center B and 
of radius r sin f, where f denotes the angle formed by r and AA9.
 The position of P and of the entire body is completely defined 
by the angle u the line BP forms with the zx plane. The angle u is 
known as the angular coordinate of the body and is defined as posi-
tive when viewed as counterclockwise from A9. The angular coordi-
nate will be expressed in radians (rad) or, occasionally, in degrees (°) 
or revolutions (rev). We recall that

1 rev 5 2p rad 5 360°

 We recall from Sec. 11.9 that the velocity v 5 dr/dt of a particle 
P is a vector tangent to the path of P and of magnitude v 5 ds/dt. 
Observing that the length Ds of the arc described by P when the 
body rotates through Du is

Ds 5 (BP) Du 5 (r sin f) Du

and dividing both members by Dt, we obtain at the limit, as Dt 
approaches zero,

 v 5
ds
dt

5 ru
.

 sin f (15.4)

where u̇ denotes the time derivative of u. (Note that the angle u 
depends on the position of P within the body, but the rate of change 
u̇ is itself independent of P.) We conclude that the velocity v of P is 
a vector perpendicular to the plane containing AA9 and r, and of 

15.3 Rotation About a Fixed Axis

Fig. 15.8

A

x

z

y

O

A'

B

P
f

r

q

Photo 15.2 For the central gear rotating about 
a fixed axis, the angular velocity and angular 
acceleration of that gear are vectors directed 
along the vertical axis of rotation.
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932 Kinematics of Rigid Bodies magnitude v defined by (15.4). But this is precisely the result we 
would obtain if we drew along AA9 a vector V 5 u̇k and formed the 
vector product V 3 r (Fig. 15.9). We thus write

 v 5
dr
dt

5 V 3 r (15.5)

The vector

 V 5 vk 5 u̇k (15.6)

which is directed along the axis of rotation, is called the angular 
velocity of the body and is equal in magnitude to the rate of change 
u̇  of the angular coordinate; its sense may be obtained by the right-
hand rule (Sec. 3.6) from the sense of rotation of the body.†
 The acceleration a of the particle P will now be determined. 
Differentiating (15.5) and recalling the rule for the differentiation of 
a vector product (Sec. 11.10), we write

 a 5
dv
dt

5
d
dt

 (V 3 r)

 5
dV

dt
3 r 1 V 3

dr
dt

  5
dV

dt
3 r 1 V 3 v  (15.7)

The vector dV/dt is denoted by A and is called the angular accelera-
tion of the body. Substituting also for v from (15.5), we have

 a 5 A 3 r 1 V 3 (V 3 r) (15.8)

Differentiating (15.6) and recalling that k is constant in magnitude 
and direction, we have

 A 5 ak 5 v̇k 5 ük (15.9)

Thus, the angular acceleration of a body rotating about a fixed axis 
is a vector directed along the axis of rotation, and is equal in magni-
tude to the rate of change v̇ of the angular velocity. Returning to 
(15.8), we note that the acceleration of P is the sum of two vectors. 
The first vector is equal to the vector product A 3 r; it is tangent 
to the circle described by P and therefore represents the tangential 
component of the acceleration. The second vector is equal to the 
vector triple product V 3 (V 3 r) obtained by forming the vector 
product of V and V 3 r; since V 3 r is tangent to the circle described 
by P, the vector triple product is directed toward the center B of 
the circle and therefore represents the normal component of the 
acceleration.

†It will be shown in Sec. 15.12 in the more general case of a rigid body rotating 
 simultaneously about axes having different directions that angular velocities obey 
the parallelogram law of addition and thus are actually vector quantities.

Fig. 15.9
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933Rotation of a Representative Slab. The rotation of a rigid body 
about a fixed axis can be defined by the motion of a representative 
slab in a reference plane perpendicular to the axis of rotation. Let 
us choose the xy plane as the reference plane and assume that it 
coincides with the plane of the figure, with the z axis pointing out 
of the paper (Fig. 15.10). Recalling from (15.6) that V 5 vk, we 

Fig. 15.11

x

y

O

P

ww = wk
aa = ak

a t = a k × r

a n = – w2r

Fig. 15.10

x

y

O

r
P

w = wk

v = wk × r

note that a positive value of the scalar v corresponds to a counter-
clockwise rotation of the representative slab, and a negative value to 
a clockwise rotation. Substituting vk for V into Eq. (15.5), we express 
the velocity of any given point P of the slab as

 v 5 vk 3 r (15.10)

Since the vectors k and r are mutually perpendicular, the magnitude 
of the velocity v is

 v 5 rv (15.109)

and its direction can be obtained by rotating r through 90° in the 
sense of rotation of the slab.
 Substituting V 5 vk and A 5 ak into Eq. (15.8), and observing 
that cross-multiplying r twice by k results in a 180° rotation of the 
vector r, we express the acceleration of point P as

 a 5 ak 3 r 2 v2r (15.11)

Resolving a into tangential and normal components (Fig. 15.11), we 
write

 at 5 ak 3 r  at 5 ra (15.119)
 an 5 2v2r an 5 rv2

The tangential component at points in the counterclockwise direc-
tion if the scalar a is positive, and in the clockwise direction if a is 
negative. The normal component an always points in the direction 
opposite to that of r, that is, toward O.

15.3 Rotation About a Fixed Axis
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934 Kinematics of Rigid Bodies 15.4  EQUATIONS DEFINING THE ROTATION OF A 
RIGID BODY ABOUT A FIXED AXIS

The motion of a rigid body rotating about a fixed axis AA9 is said to 
be known when its angular coordinate u can be expressed as a known 
function of t. In practice, however, the rotation of a rigid body is 
seldom defined by a relation between u and t. More often, the condi-
tions of motion will be specified by the type of angular acceleration 
that the body possesses. For example, a may be given as a function 
of t, as a function of u, or as a function of v. Recalling the relations 
(15.6) and (15.9), we write

 v 5
du

dt
 (15.12)

 a 5
dv

dt
5

d2u

dt2  (15.13)

or, solving (15.12) for dt and substituting into (15.13),

 a 5 v 

dv

du
 (15.14)

Since these equations are similar to those obtained in Chap. 11 for 
the rectilinear motion of a particle, their integration can be per-
formed by following the procedure outlined in Sec. 11.3.
 Two particular cases of rotation are frequently encountered:

 1. Uniform Rotation. This case is characterized by the fact that 
the angular acceleration is zero. The angular velocity is thus 
constant, and the angular coordinate is given by the formula

 u 5 u0 1 vt (15.15)

 2. Uniformly Accelerated Rotation. In this case, the angular accel-
eration is constant. The following formulas relating angular 
velocity, angular coordinate, and time can then be derived in a 
manner similar to that described in Sec. 11.5. The similarity 
between the formulas derived here and those obtained for 
the rectilinear uniformly accelerated motion of a particle is 
apparent.

 v 5 v0 1 at
 u 5 u0 1 v0t 1 1

2at2 (15.16)
 v2 5 v2

0 1 2a(u 2 u0)

It should be emphasized that formula (15.15) can be used only when 
a 5 0, and formulas (15.16) can be used only when a 5 constant. 
In any other case, the general formulas (15.12) to (15.14) should 
be used.

Photo 15.3 If the lower roll has a constant 
angular velocity, the speed of the paper being 
wound onto it increases as the radius of the roll 
increases.
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935

SAMPLE PROBLEM 15.1

Load B is connected to a double pulley by one of the two inextensible cables 
shown. The motion of the pulley is controlled by cable C, which has a con-
stant acceleration of 9 in./s2 and an initial velocity of 12 in./s, both directed 
to the right. Determine (a) the number of revolutions executed by the pulley 
in 2 s, (b) the velocity and change in position of the load B after 2 s, and 
(c) the acceleration of point D on the rim of the inner pulley at t 5 0.

SOLUTION

a. Motion of Pulley. Since the cable is inextensible, the velocity of point 
D is equal to the velocity of point C and the tangential component of the 
acceleration of D is equal to the acceleration of C.

(vD)0 5 (vC)0 5 12 in./s  y  (aD)t 5 aC 5 9 in./s2 y

Noting that the distance from D to the center of the pulley is 3 in., we write

 (vD)0 5 rv0  12 in./s 5 (3 in.)v0  V0 5 4 rad/s i

 (aD)t 5 ra   9 in./s2 5 (3 in.)a   A 5 3 rad/s2
i

Using the equations of uniformly accelerated motion, we obtain, for t 5 2 s,

v 5 v0 1 at 5 4 rad/s 1 (3 rad/s2)(2 s) 5 10 rad/s
V 5 10 rad/s i

u 5 v0t 1 
1
2at2 5 (4 rad/s)(2 s) 1 

1
2(3 rad/s2)(2 s)2 5 14 rad

u 5 14 rad i

Number of revolutions 5 (14 rad)a 1 rev
2p rad

b 5 2.23 rev ◀

b. Motion of Load B. Using the following relations between linear and 
angular motion, with r 5 5 in., we write

 vB 5 rv 5 (5 in.)(10 rad/s) 5 50 in./s vB 5 50 in./sx ◀

 DyB 5 ru 5 (5 in.)(14 rad) 5 70 in. DyB 5 70 in. upward ◀

c. Acceleration of Point D at t 5 0. The tangential component of the 
acceleration is

(aD)t 5 aC 5 9 in./s2 
y

Since, at t 5 0, v0 5 4 rad/s, the normal component of the acceleration is

(aD)n 5 rDv2
0 5 (3 in.)(4 rad/s)2 5 48 in./s2  (aD)n 5 48 in./s2

w

The magnitude and direction of the total acceleration can be obtained by 
writing

 tan f 5 (48 in./s2)/(9 in./s2)  f 5 79.4°
 aD sin 79.4° 5 48 in./s2    aD 5 48.8 in./s2

aD 5 48.8 in./s2 c 79.4° ◀

w

vC

vD

vB

A

B

C

D

aD

(aD)t = 9 in./s2

(aD)n = 48 in./s2

D

f

A

B

CD

3 in.

5 in.

w

aB

aC

(aD)t
(aD)n

A

B

C
D

aa
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936

SOLVING PROBLEMS
ON YOUR OWN

In this lesson we began the study of the motion of rigid bodies by considering 
two particular types of motion of rigid bodies: translation and rotation about a 

fixed axis.

1. Rigid body in translation. At any given instant, all the points of a rigid body 
in translation have the same velocity and the same acceleration (Fig. 15.7).

2. Rigid body rotating about a fixed axis. The position of a rigid body rotating 
about a fixed axis was defined at any given instant by the angular coordinate u, 
which is usually measured in radians. Selecting the unit vector k along the fixed 
axis and in such a way that the rotation of the body appears counterclockwise as 
seen from the tip of k, we defined the angular velocity V and the angular accel-
eration A of the body:

 V 5 u̇k  A 5 ük (15.6, 15.9)

In solving problems, keep in mind that the vectors V and A are both directed 
along the fixed axis of rotation and that their sense can be obtained by the right-
hand rule.
 a. The velocity of a point P of a body rotating about a fixed axis was found 
to be

 v 5 V 3 r (15.5)

where V is the angular velocity of the body and r is the position vector drawn 
from any point on the axis of rotation to point P (Fig. 15.9).
 b. The acceleration of point P was found to be

 a 5 A 3 r 1 V 3 (V 3 r) (15.8)

Since vector products are not commutative, be sure to write the vectors in the 
order shown when using either of the above two equations.

3. Rotation of a representative slab. In many problems, you will be able to 
reduce the analysis of the rotation of a three-dimensional body about a fixed axis 
to the study of the rotation of a representative slab in a plane perpendicular to 
the fixed axis. The z axis should be directed along the axis of rotation and point 
out of the paper. Thus, the representative slab will be rotating in the xy plane 
about the origin O of the coordinate system (Fig. 15.10).

To solve problems of this type you should do the following:
 a. Draw a diagram of the representative slab, showing its dimensions, its 
angular velocity and angular acceleration, as well as the vectors representing the 
velocities and accelerations of the points of the slab for which you have or seek 
information.
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937

 b. Relate the rotation of the slab and the motion of points of the slab by 
writing the equations

 v 5 rv (15.109)
 at 5 ra  an 5 rv2 (15.119)

Remember that the velocity v and the component a t of the acceleration of a 
point P of the slab are tangent to the circular path described by P. The directions 
of v and at are found by rotating the position vector r through 90° in the sense 
indicated by V and A, respectively. The normal component an of the acceleration 
of P is always directed toward the axis of rotation.

4. Equations defining the rotation of a rigid body. You must have been pleased 
to note the similarity existing between the equations defining the rotation of a rigid 
body about a fixed axis [Eqs. (15.12) through (15.16)] and those in Chap. 11 defin-
ing the rectilinear motion of a particle [Eqs. (11.1) through (11.8)]. All you have 
to do to obtain the new set of equations is to substitute u, v, and a for x, v, and 
a in the equations of Chap. 11.
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PROBLEMS

938

CONCEPT QUESTIONS

15.CQ1 A rectangular plate swings from arms of equal length as shown. 
What is the magnitude of the angular velocity of the plate? 
a. 0 rad/s
b. 1 rad/s
c. 2 rad/s
d. 3 rad/s
e. Need to know the location of the center of gravity.

15.CQ2 Knowing that wheel A rotates with a constant angular velocity and 
that no slipping occurs between ring C and wheel A and wheel B, 
which of the following statements concerning the angular speeds 
of the three objects is true?

 a. va 5 vb

b. va . vb

 c. va , vb

d. va 5 vc

 e. The contact points between A and C have the same acceleration.

END-OF-SECTION PROBLEMS

 15.1 The brake drum is attached to a larger flywheel that is not shown.  
The motion of the brake drum is defined by the relation 
u 5 36t 2 1.6t2, where u is expressed in radians and t in seconds.  
Determine (a) the angular velocity at t 5 2 s, (b) the number of 
revolutions executed by the brake drum before coming to rest.

 15.2 The motion of an oscillating crank is defined by the relation u 5
u0 sin (pt/T) 2 (0.5u0) sin (2 pt/T), where u is expressed in radians 
and t in seconds. Knowing that u0 5 6 rad and T 5 4 s, determine 
the angular coordinate, the angular velocity, and the angular accel-
eration of the crank when (a) t 5 0, (b) t 5 2 s.

 15.3 The motion of a disk rotating in an oil bath is defined by the relation 
u 5 u0(1 2 e2t /4), where u is expressed in radians and t in seconds. 
Knowing that u0 5 0.40 rad, determine the angular coordinate, veloc-
ity, and acceleration of the disk when (a) t 5 0, (b) t 5 3 s, (c) t 5 .̀

 15.4 The rotor of a gas turbine is rotating at a speed of 6900 rpm when 
the turbine is shut down. It is observed that 4 min is required for 
the rotor to coast to rest. Assuming uniformly  accelerated motion, 
determine (a) the angular acceleration, (b) the number of revolu-
tions that the rotor executes before  coming to rest.

Fig. P15.CQ1

q q

1 rad/s2

2 rad/s
1 ft

A

B

C

5 mm

24 mm

Fig. P15.CQ2

A

B

C

D

Fig. P15.1
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939Problems 15.5 A small grinding wheel is attached to the shaft of an electric motor 
which has a rated speed of 3600 rpm. When the power is turned 
on, the unit reaches its rated speed in 5 s, and when the power is 
turned off, the unit coasts to rest in 70 s. Assuming uniformly accel-
erated motion, determine the number of revolutions that the motor 
executes (a) in reaching its rated speed, (b) in coasting to rest.

 15.6 A connecting rod is supported by a knife-edge at point A. For small 
oscillations the angular acceleration of the connecting rod is 
 governed by the relation a 5 26u where a is expressed in rad/s2 
and u in radians. Knowing that the connecting rod is released from 
rest when u 5 208, determine (a) the maximum angular velocity, 
(b) the angular position when t 5 2 s.

200 mm

250 mm

150 mm

150 mm

400 mm
x

z

y

A

B

C

D

E

Fig. P15.10

 15.7 When studying whiplash resulting from rear-end collisions, the rota-
tion of the head is of primary interest. An impact test was performed, 
and it was found that the angular acceleration of the head is defined 
by the relation a 5 700 cos u 1 70 sin u, where a is expressed 
in rad/s2 and u in radians. Knowing that the head is initially at rest, 
determine the angular velocity of the head when u 5 308. 

 15.8 The angular acceleration of an oscillating disk is defined by the 
relation a 5 2ku. Determine (a) the value of k for which v 5 8 rad/s 
when u 5 0 and u 5 4 rad when v 5 0, (b) the angular velocity 
of the disk when u 5 3 rad.

 15.9 The angular acceleration of a shaft is defined by the relation a 5 
20.25v, where a is expressed in rad/s2 and v in rad/s. Knowing 
that at t 5 0 the angular velocity of the shaft is 20 rad/s, determine 
(a) the number of revolutions the shaft will execute before coming 
to rest, (b) the time required for the shaft to come to rest, (c) the 
time required for the angular velocity of the shaft to be reduced 
to 1 percent of its initial value.

 15.10 The bent rod ABCDE rotates about a line joining points A and E 
with a constant angular velocity of 9 rad/s. Knowing that the rota-
tion is clockwise as viewed from E, determine the velocity and 
acceleration of corner C.

 15.11 In Prob. 15.10, determine the velocity and acceleration of corner 
B, assuming that the angular velocity is 9 rad/s and increases at 
the rate of 45 rad/s2.

Fig. P15.5

B

A

q

Fig. P15.6

Vertical

G

r

θ

O

Fig. P15.7
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940 Kinematics of Rigid Bodies  15.12 The assembly shown consists of the straight rod ABC which passes 
through and is welded to the rectangular plate DEFH. The assem-
bly rotates about the axis AC with a constant angular velocity of 
9 rad/s. Knowing that the motion when viewed from C is counter-
clockwise, determine the velocity and acceleration of corner F.

 15.13 In Prob. 15.12, determine the acceleration of corner H, assuming that 
the angular velocity is 9 rad/s and decreases at a rate of 18 rad/s2.

 15.14 A circular plate of 120-mm radius is supported by two bearings A 
and B as shown. The plate rotates about the rod joining A and B 
with a constant angular velocity of 26 rad/s. Knowing that, at the 
instant considered, the velocity of point C is directed to the right, 
determine the velocity and acceleration of point E.

y

x

z

4 in.

4 in.

4 in.

4 in.

7 in.7 in.

A

E

B
F

C

H

D

Fig. P15.12

A

B

120 mm

Fig. P15.18 and P15.19

 15.15 In Prob. 15.14, determine the velocity and acceleration of point E, 
assuming that the angular velocity is 26 rad/s and increases at the 
rate of 65 rad/s2.

 15.16 The earth makes one complete revolution around the sun in 
365.24 days. Assuming that the orbit of the earth is circular and 
has a radius of 93,000,000 mi, determine the velocity and accel-
eration of the earth.

 15.17 The earth makes one complete revolution on its axis in 23 h 56 min. 
Knowing that the mean radius of the earth is 3960 mi, determine 
the linear velocity and acceleration of a point on the surface of 
the earth (a) at the equator, (b) at Philadelphia, latitude 40° north, 
(c) at the North Pole.

 15.18 A series of small machine components being moved by a con-
veyor belt pass over a 120-mm-radius idler pulley. At the instant 
shown, the velocity of point A is 300 mm/s to the left and its accel-
eration is 180 mm/s2 to the right. Determine (a) the angular 
velocity and angular acceleration of the idler pulley, (b) the total 
acceleration of the machine component at B.

 15.19 A series of small machine components being moved by a conveyor 
belt pass over a 120-mm-radius idler pulley. At the instant shown, the 
angular velocity of the idler pulley is 4 rad/s clockwise. Determine 
the angular acceleration of the pulley for which the magnitude of the 
total acceleration of the machine component at B is 2400 mm/s2.

C

B

A

E

y

z

x80 mm 120 mm

180 mm

D

Fig. P15.14
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941Problems 15.20 The belt sander shown is initially at rest. If the driving drum B 
has a constant angular acceleration of 120 rad/s2 counterclockwise, 
determine the magnitude of the acceleration of the belt at point 
C when (a) t 5 0.5 s, (b) t 5 2 s.

A BC

25 mm

25 mm

Fig. P15.20 and P15.21 A
4 in.

B

3 in.2 in.

4 in. 3 in. 2 in.

Fig. P15.22

C

B

A

4 in. 8 in.

Fig. P15.23

A
B

4 in.2 in.

2 in.

6 in.

C

wwA

Fig. P15.24

 15.21 The rated speed of drum B of the belt sander shown is 2400 rpm. 
When the power is turned off, it is observed that the sander 
coasts from its rated speed to rest in 10 s. Assuming uniformly 
decelerated motion, determine the velocity and acceleration of 
point C of the belt, (a) immediately before the power is turned off, 
(b) 9 s later.

 15.22 The two pulleys shown may be operated with the V belt in any of 
three positions. If the angular acceleration of shaft A is 6 rad/s2 
and if the system is initially at rest, determine the time required 
for shaft B to reach a speed of 400 rpm with the belt in each of 
the three positions.

 15.23 Three belts move over two pulleys without slipping in the speed 
reduction system shown. At the instant shown, the velocity of point 
A on the input belt is 2 ft/s to the right, decreasing at the rate of 
6 ft/s2. Determine, at this instant, (a) the velocity and acceleration 
of point C on the output belt, (b) the acceleration of point B on 
the output pulley.

 15.24 A gear reduction system consists of three gears A, B, and C. Know-
ing that gear A rotates clockwise with a constant angular velocity 
vA 5 600 rpm, determine (a) the angular velocities of gears B and 
C, (b) the accelerations of the points on gears B and C which are 
in contact.

 15.25 A belt is pulled to the right between cylinders A and B. Knowing 
that the speed of the belt is a constant 5 ft/s and no slippage 
occurs, determine (a) the angular velocities of A and B, (b) the 
accelerations of the points which are in contact with the belt.

P

8 in.

4 in.

B

A

Fig. P15.25
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942 Kinematics of Rigid Bodies  15.26 Ring C has an inside radius of 55 mm and an outside radius of 
60 mm and is positioned between two wheels A and B, each of 
24-mm outside radius. Knowing that wheel A rotates with a  constant 
angular velocity of 300 rpm and that no slipping occurs, determine 
(a) the angular velocity of ring C and of wheel B, (b) the acceleration 
of the points A and B which are in contact with C.

B

D

A

C180 mm120 mm
C

Fig. P15.29 and P15.30

x

y

r2

r3

A

z

r1

B

Fig. P15.27

 15.27 Ring B has an inside radius r2 and hangs from the horizontal shaft 
A as shown. Shaft A rotates with a constant angular velocity of 
25 rad/s and no slipping occurs. Knowing that r1 5 12 mm, r2 5 
30 mm, and r3 5 40 mm, determine (a) the angular velocity of 
ring B, (b) the accelerations of the points of shaft A and ring B 
which are in contact, (c) the magnitude of the acceleration of a 
point on the outside surface of ring B.

 15.28 A plastic film moves over two drums. During a 4-s interval the speed 
of the tape is increased uniformly from v0 5 2 ft/s to v1 5 4 ft/s. 
Knowing that the tape does not slip on the drums, determine (a) the 
angular acceleration of drum B, (b) the number of revolutions exe-
cuted by drum B during the 4-s interval.

A

B

C

5 mm

24 mm

Fig. P15.26

v0v0

9 in.

15 in.A
B

Fig. P15.28

 15.29 A pulley and two loads are connected by inextensible cords as 
shown. Load A has a constant acceleration of 300 mm/s2 and an 
initial velocity of 240 mm/s, both directed upward. Determine 
(a) the number of revolutions executed by the pulley in 3 s, (b) the 
velocity and position of load B after 3 s, (c) the acceleration of point 
D on the rim of the pulley at t 5 0.

 15.30 A pulley and two loads are connected by inextensible cords as 
shown. The pulley starts from rest at t 5 0 and is accelerated at 
the uniform rate of 2.4 rad/s2 clockwise. At t 5 4 s, determine the 
velocity and position (a) of load A, (b) of load B.
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943Problems 15.31 A load is to be raised 20 ft by the hoisting system shown. Assuming 
gear A is initially at rest, accelerates uniformly to a speed of 120 rpm 
in 5 s, and then maintains a constant speed of 120 rpm, determine 
(a) the number of revolutions executed by gear A in raising the load, 
(b) the time required to raise the load.

 15.32 Disk B is at rest when it is brought into contact with disk A which 
is rotating freely at 450 rpm clockwise. After 6 s of  slippage, during 
which each disk has a constant angular acceleration, disk A reaches 
a final angular velocity of 140 rpm clockwise. Determine the angu-
lar acceleration of each disk during the period of slippage.

A

B

80 mm 60 mm

Fig. P15.34 and P15.35

A

B3 in.

5 in.

Fig. P15.32 and P15.33

3 in.

Load

A

18 in. 15 in.

B

Fig. P15.31

 15.33 and 15.34 A simple friction drive consists of two disks A and 
B. Initially, disk A has a clockwise angular velocity of 500 rpm and 
disk B is at rest. It is known that disk A will coast to rest in 60 s. 
However, rather than waiting until both disks are at rest to bring 
them together, disk B is given a  constant angular acceleration of 
2.5 rad/s2 counterclockwise. Determine (a) at what time the disks 
can be brought together if they are not to slip, (b) the angular veloc-
ity of each disk as contact is made.

 15.35 Two friction disks A and B are both rotating freely at 240 rpm 
counterclockwise when they are brought into contact. After 8 s of 
slippage, during which each disk has a constant angular accelera-
tion, disk A reaches a final angular velocity of 60 rpm counter-
clockwise. Determine (a) the angular acceleration of each disk 
during the period of slippage, (b) the time at which the angular 
velocity of disk B is equal to zero.
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 *15.36 Steel tape is being wound onto a spool which rotates with a con-
stant angular velocity V0. Denoting by r the radius of the spool 
and tape at any given time and by b the thickness of the tape, 
derive an expression for the acceleration of the tape as it approaches 
the spool.

 *15.37 In a continuous printing process, paper is drawn into the presses 
at a constant speed v. Denoting by r the radius of the paper roll 
at any given time and by b the thickness of the paper, derive an 
expression for the angular acceleration of the paper roll.

944 Kinematics of Rigid Bodies

15.5 GENERAL PLANE MOTION
As indicated in Sec. 15.1, we understand by general plane motion a 
plane motion which is neither a translation nor a rotation. As you 
will presently see, however, a general plane motion can always be 
considered as the sum of a translation and a rotation.
 Consider, for example, a wheel rolling on a straight track 
(Fig. 15.12). Over a certain interval of time, two given points A and B 
will have moved, respectively, from A1 to A2 and from B1 to B2. The 
same result could be obtained through a translation which would 
bring A and B into A2 and B91 (the line AB remaining vertical), fol-
lowed by a rotation about A bringing B into B2. Although the original 
rolling motion differs from the combination of translation and rota-
tion when these motions are taken in succession, the original motion 
can be exactly duplicated by a combination of simultaneous transla-
tion and rotation.

Fig. 15.12

= +

Plane motion = +Translation with A Rotation about A

A1 A1 A2
A2

A2

B1 B1
B'1

B'1

B2 B2

ba

w

Fig. P15.36
b

r

v

w

a

Fig. P15.37
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945

 Another example of plane motion is given in Fig. 15.13, which 
represents a rod whose extremities slide along a horizontal and a verti-
cal track, respectively. This motion can be replaced by a translation in 
a horizontal direction and a rotation about A (Fig. 15.13a) or by a 
translation in a vertical direction and a rotation about B (Fig. 15.13b).
 In the general case of plane motion, we will consider a small 
displacement which brings two particles A and B of a representative 
slab, respectively, from A1 and B1 into A2 and B2 (Fig. 15.14). This 
displacement can be divided into two parts: in one, the particles 
move into A2 and B91 while the line AB maintains the same direction; 
in the other, B moves into B2 while A remains fixed. The first part 
of the motion is clearly a translation and the second part a rotation 
about A.
 Recalling from Sec. 11.12 the definition of the relative motion 
of a particle with respect to a moving frame of reference—as opposed 
to its absolute motion with respect to a fixed frame of reference—we 
can restate as follows the result obtained above: Given two particles 
A and B of a rigid slab in plane motion, the relative motion of B with 
respect to a frame attached to A and of fixed orientation is a rotation. 
To an observer moving with A but not rotating, particle B will appear 
to describe an arc of circle centered at A.

15.5 General Plane Motion

Fig. 15.13

A2A1
A2 A2A1

B1 B1

B2

B'1 B'1

B2

A2A1

A2A1

A'1

B1

B2

A'1

B2

B1

B2

= +

= +

Plane motion

Plane motion

=

=

Translation with A +

+

Rotation about A

Translation with B Rotation about B

(a)

(b)

Fig. 15.14

B'1

A1

A2

B1

B2
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946 Kinematics of Rigid Bodies 15.6  ABSOLUTE AND RELATIVE VELOCITY 
IN PLANE MOTION

We saw in the preceding section that any plane motion of a slab can 
be replaced by a translation defined by the motion of an arbitrary 
reference point A and a simultaneous rotation about A. The absolute 
velocity vB of a particle B of the slab is obtained from the relative-
velocity formula derived in Sec. 11.12,

 vB 5 vA 1 vB/A (15.17)

where the right-hand member represents a vector sum. The velocity 
vA corresponds to the translation of the slab with A, while the relative 
velocity vB/A is associated with the rotation of the slab about A and 
is measured with respect to axes centered at A and of fixed orienta-
tion (Fig. 15.15). Denoting by rB/A the position vector of B relative 
to A, and by vk the angular velocity of the slab with respect to axes 
of fixed orientation, we have from (15.10) and (15.109)

 vB/A 5 vk 3 rB/A  vB/A 5 rv (15.18)

Fig. 15.15

= +

Plane motion = Translation with A + Rotation about A

A

B

A

B B

vA

vA

vA

vB

vA
vB

x'

y'

wk

rB/A

vB/A

vB/A

vB = vA + vB/A

A
(fixed)

where r is the distance from A to B. Substituting for vB/A from (15.18) 
into (15.17), we can also write

 vB 5 vA 1 vk 3 rB/A (15.179)

 As an example, let us again consider the rod AB of Fig. 15.13. 
Assuming that the velocity vA of end A is known, we propose to find 
the velocity vB of end B and the angular velocity V of the rod, in terms 
of the velocity vA, the length l, and the angle u. Choosing A as a refer-
ence point, we express that the given motion is equivalent to a transla-
tion with A and a simultaneous rotation about A (Fig. 15.16). The 
absolute velocity of B must therefore be equal to the vector sum

 vB 5 vA 1 vB/A (15.17)

We note that while the direction of vB/A is known, its magnitude lv 
is unknown. However, this is compensated for by the fact that the 
direction of vB is known. We can therefore complete the diagram of 
Fig. 15.16. Solving for the magnitudes vB and v, we write

 vB 5 vA tan u   v 5
vB/A

l
5

vA

l cos u
 (15.19)

Photo 15.4 Planetary gear systems are used 
to high reduction ratios with minimum space and 
weight. The small gears undergo general plane 
motion.
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947

 The same result can be obtained by using B as a point of refer-
ence. Resolving the given motion into a translation with B and a 
simultaneous rotation about B (Fig. 15.17), we write the equation

 vA 5 vB 1 vA/B (15.20)

which is represented graphically in Fig. 15.17. We note that vA/B and 
vB/A have the same magnitude lv but opposite sense. The sense of 
the relative velocity depends, therefore, upon the point of reference 
which has been selected and should be carefully ascertained from 
the appropriate diagram (Fig. 15.16 or 15.17).

Plane motion = Translation with A + Rotation about A

= +

A
A

BBB

vA

vA

vAvA

vB

vB

vB/A

vB/A

vB = vA + vB/A

A (fixed)

lll
q

q

w

q
q

Fig. 15.16

Fig. 15.17

Plane motion

A

B

vA

vB

vA

vA/B

l
q=

= Translation with B

A

B

l

+ Rotation about B

+
vA/B

A

B (fixed)

l

w

vA = vB + vA/B

vB

q vB

q

vB

 Finally, we observe that the angular velocity V of the rod in its 
rotation about B is the same as in its rotation about A. It is measured 
in both cases by the rate of change of the angle u. This result is quite 
general; we should therefore bear in mind that the angular velocity V 
of a rigid body in plane motion is independent of the reference point.
 Most mechanisms consist not of one but of several moving 
parts. When the various parts of a mechanism are pin-connected, the 
analysis of the mechanism can be carried out by considering each 
part as a rigid body, keeping in mind that the points where two parts 
are connected must have the same absolute velocity (see Sample 
Prob. 15.3). A similar analysis can be used when gears are involved, 
since the teeth in contact must also have the same absolute velocity. 
However, when a mechanism contains parts which slide on each 
other, the relative velocity of the parts in contact must be taken into 
account (see Secs. 15.10 and 15.11).

15.6 Absolute and Relative Velocity in 
Plane Motion
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948

SAMPLE PROBLEM 15.2

The double gear shown rolls on the stationary lower rack; the velocity of its 
center A is 1.2 m/s directed to the right. Determine (a) the angular velocity 
of the gear, (b) the velocities of the upper rack R and of point D of the gear.

D

C

R

r2 = 100 mm

vA = 1.2 m/s

r1 = 150 mm

A

B

SOLUTION

a. Angular Velocity of the Gear. Since the gear rolls on the lower rack, its 
center A moves through a distance equal to the outer circumference 2pr1 
for each full revolution of the gear. Noting that 1 rev 5 2p rad, and that when 
A moves to the right (xA . 0) the gear rotates clockwise (u , 0), we write

xA

2pr1
5 2

u

2p
      xA 5 2r1u

Differentiating with respect to the time t and substituting the known values 
vA 5 1.2 m/s and r1 5 150 mm 5 0.150 m, we obtain

vA 5 2r1v  1.2 m/s 5 2(0.150 m)v  v 5 28 rad/s
V 5 vk 5 2(8 rad/s)k ◀

where k is a unit vector pointing out of the paper.

b. Velocities. The rolling motion is resolved into two component motions: 
a translation with the center A and a rotation about the center A. In the 
translation, all points of the gear move with the same velocity vA. In the 
rotation, each point P of the gear moves about A with a relative velocity 
vP/A 5 vk 3 rP/A, where rP/A is the position vector of P relative to A.

vA

vB

vC = 0

vD/A

vC/A

vAvA

vA

D

C

B

A =+ D

C

B

A
D

C

B

A

vB/A

(fixed)

ww = –8k

vA

vD

Translation + Rotation = Rolling Motion

Velocity of Upper Rack. The velocity of the upper rack is equal to the 
velocity of point B; we write

 vR 5 vB 5 vA 1 vB/A 5 vA 1 vk 3 rB/A
 5 (1.2 m/s)i 2 (8 rad/s)k 3 (0.100 m)j
 5 (1.2 m/s)i 1 (0.8 m/s)i 5 (2 m/s)i

vR 5 2 m/s y ◀

Velocity of Point D
 vD 5 vA 1 vD/A 5 vA 1 vk 3 rD/A
 5 (1.2 m/s)i 2 (8 rad/s)k 3 (20.150 m)i
 5 (1.2 m/s)i 1 (1.2 m/s)j

vD 5 1.697 m/s a 45° ◀

vD/A

vA

vD
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949

SAMPLE PROBLEM 15.3

In the engine system shown, the crank AB has a constant clockwise angular 
velocity of 2000 rpm. For the crank position indicated, determine (a) the 
angular velocity of the connecting rod BD, (b) the velocity of the piston P.

r = 3 in.
l = 8 in.

40° b
P

D

A

G
B

SOLUTION

Motion of Crank AB. The crank AB rotates about point A. Expressing vAB 
in rad/s and writing vB 5 rvAB, we obtain

vAB 5 a2000
rev
min
b a1 min

60 s
b a2p rad

1 rev
b 5 209.4 rad/s

 vB 5 (AB)vAB 5 (3 in.)(209.4 rad/s) 5 628.3 in./s
 vB 5 628.3 in./s c 50°

Motion of Connecting Rod BD. We consider this motion as a general plane 
motion. Using the law of sines, we compute the angle b between the con-
necting rod and the horizontal:

sin 40°
8 in.

5
sin b
3 in.

    b 5 13.95°

The velocity vD of the point D where the rod is attached to the piston must 
be horizontal, while the velocity of point B is equal to the velocity vB 
obtained above. Resolving the motion of BD into a translation with B and 
a rotation about B, we obtain

wwAB

vB

3 in.

40°
50°

A

B

vB vD

vD/B
b = 13.95°wBD

76.05°

b

B

D
50° vB

B

D
50°

Plane motion = Translation + Rotation

B

l

(fixed)

D

vB

50°
+=

Expressing the relation between the velocities vD, vB, and vD/B, we write

vD 5 vB 1 vD/B

We draw the vector diagram corresponding to this equation. Recalling that 
b 5 13.95°, we determine the angles of the triangle and write

vD

sin 53.95°
5

vD/B

sin 50°
5

628.3 in./s
sin 76.05°

vD/B 5 495.9 in./s  vD/B 5 495.9 in./s a 76.05°
 vD 5 523.4 in./s 5 43.6 ft/s  vD 5 43.6 ft/s y

vP 5 vD 5 43.6 ft/s y ◀

Since vD/B 5 lvBD, we have

495.9 in./s 5 (8 in.)vBD  VBD 5 62.0 rad/s l ◀

vD

vD/BvB = 628.3 in./s

50° 76.05°

53.95°

b = 13.95°
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950

In this lesson you learned to analyze the velocity of bodies in general plane 
motion. You found that a general plane motion can always be considered as the 

sum of the two motions you studied in the last lesson, namely, a translation and 
a rotation.

To solve a problem involving the velocity of a body in plane motion you should 
take the following steps.

1. Whenever possible determine the velocity of the points of the body
where the body is connected to another body whose motion is known. That other 
body may be an arm or crank rotating with a given angular velocity [Sample 
Prob. 15.3].

2. Next start drawing a “diagram equation” to use in your solution (Figs. 15.15 
and 15.16). This “equation” will consist of the following diagrams.
 a. Plane motion diagram: Draw a diagram of the body including all dimen-
sions and showing those points for which you know or seek the velocity.
 b. Translation diagram: Select a reference point A for which you know the 
direction and/or the magnitude of the velocity vA, and draw a second diagram 
showing the body in translation with all of its points having the same velocity vA.
 c. Rotation diagram: Consider point A as a fixed point and draw a diagram 
showing the body in rotation about A. Show the angular velocity V 5 vk of the 
body and the relative velocities with respect to A of the other points, such as 
the velocity vB/A of B relative to A.

3. Write the relative-velocity formula

vB 5 vA 1 vB/A

While you can solve this vector equation analytically by writing the corresponding 
scalar equations, you will usually find it easier to solve it by using a vector triangle 
(Fig. 15.16).

4. A different reference point can be used to obtain an equivalent solu-
tion. For example, if point B is selected as the reference point, the velocity of 
point A is expressed as

vA 5 vB 1 vA/B

Note that the relative velocities vB/A and vA/B have the same magnitude but oppo-
site sense. Relative velocities, therefore, depend upon the reference point that has 
been selected. The angular velocity, however, is independent of the choice of 
reference point.

SOLVING PROBLEMS
ON YOUR OWN
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PROBLEMS

951

CONCEPT QUESTIONS

 15.CQ3 The ball rolls without slipping on the fixed surface as shown.  What 
is the direction of the velocity of point A?
a. y  b. p  c. h  d. g  e. q

 15.CQ4 Three uniform rods—ABC, DCE, and FGH—are connected as 
shown. Which of the following statements concerning the angular 
speed of the three objects is true?

 a. vABC 5 vDCE 5 vFGH

 b. vDCE . vABC . vFGH

 c. vDCE , vABC , vFGH

 d. vABC . vDCE . vFGH

 e. vFGH 5 vDCE , vABC

A

B

q 20 in.

15°

Fig. P15.39 

END-OF-SECTION PROBLEMS

15.38 An automobile travels to the right at a constant speed of 48 mi/h. 
If the diameter of a wheel is 22 in., determine the velocities of 
points B, C, D, and E on the rim of the wheel.

A

w

Fig. P15.CQ3

A

B

D EC

F G H

Fig. P15.CQ4

C

B
D

A E

30

22 in.

90

Fig. P15.38

15.39 The motion of rod AB is guided by pins attached at A and B which 
slide in the slots shown. At the instant shown, u 5 40° and the pin 
at B moves upward to the left with a constant velocity of 6 in./s. 
Determine (a) the angular velocity of the rod, (b) the velocity of 
the pin at end A.
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952 Kinematics of Rigid Bodies  15.40 Collar B moves upward with a constant velocity of 1.5 m/s. At the 
instant when u 5 508, determine (a) the angular velocity of rod 
AB, (b) the velocity of end A of the rod.

 15.41 Collar B moves downward to the left with a constant velocity of 
1.6 m/s. At the instant shown when u 5 40°, determine (a) the 
angular velocity of rod AB, (b) the velocity of collar A.

 15.42 Collar A moves upward with a constant velocity of 1.2 m/s. At the 
instant shown when u 5 25°, determine (a) the angular velocity of 
rod AB, (b) the velocity of collar B.

 15.43 Rod AB moves over a small wheel at C while end A moves to the 
right with a constant velocity of 25 in./s. At the instant shown, 
determine (a) the angular velocity of the rod, (b) the velocity of 
end B of the rod.

 15.44 The plate shown moves in the xy plane. Knowing that (vA)x 5 
120 mm/s, (vB)y 5 300 mm/s, and (vC)y 5 260 mm/s, determine 
(a) the angular velocity of the plate, (b) the velocity of point A.

vA = (vA)x i + (vA)y j

vC = (vC)x i + (vC)y j

vB = (vB)x i + (vB)y j

x

y

180 mm

180 mm

180 mm 180 mm

C

O
A

B

Fig. P15.44

A

B

C

7 in.

20 in.

10 in.

Fig. P15.43

1.2 m

A

B

25°

q

Fig. P15.40

q

A

B

500 mm

60°

Fig. P15.41 and P15.42

 15.45 In Prob. 15.44, determine (a) the velocity of point B, (b) the point 
of the plate with zero velocity.
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953Problems 15.46 The plate shown moves in the xy plane. Knowing that (vA)x 5 
250 mm/s, (vB)y 5 2450 mm/s, and (vC)x 5 2500 mm/s, determine 
(a) the angular velocity of the plate, (b) the velocity of point A.

 15.49 In the planetary gear system shown, the radius of gears A, B, C, and 
D is 30 mm and the radius of the outer gear E is 90 mm. Knowing 
that gear E has an angular velocity of 180 rpm clockwise and that 
the central gear A has an angular velocity of 240 rpm clockwise, 
determine (a) the angular velocity of each planetary gear, (b) the 
angular velocity of the spider connecting the planetary gears.

 15.50 Arm AB rotates with an angular velocity of 20 rad/s counterclock-
wise. Knowing that the outer gear C is stationary, determine (a) the 
angular velocity of gear B, (b) the velocity of the gear tooth located 
at point D.

 15.47 The plate shown moves in the xy plane. Knowing that (vA)x 5 12 in./s, 
(vB)x 5 24 in./s, and (vC)y 5 224 in./s, determine (a) the angular 
velocity of the plate, (b) the velocity of point B.

 15.48 In the planetary gear system shown, the radius of gears A, B, C, and 
D is a and the radius of the outer gear E is 3a. Knowing that the 
angular velocity of gear A is vA clockwise and that the outer gear E 
is stationary, determine (a) the angular velocity of each planetary gear, 
(b) the angular velocity of the spider connecting the planetary gears.

150 mm
50 mm

150 mm

vB = (vB)x i + (vB)y j

vC = (vC)x i + (vC)y j

vA = (vA)x i + (vA)y j

A B

O C x

y

Fig. P15.46 4 in.

2 in.

2 in.
6 in.

vA = (vA)x i + (vA)y j

vB = (vB)x i + (vB)y j

vC = (vC)x i + (vC)y j

A

B

O C x

y

Fig. P15.47

A

B

C

D

E

Fig. P15.48 and P15.49
120 mm

50 mm

C

B

D

A

Fig. P15.50
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954 Kinematics of Rigid Bodies  15.51 In the simplified sketch of a ball bearing shown, the diameter of 
the inner race A is 60 mm and the diameter of each ball is 12 mm. 
The outer race B is stationary while the inner race has an angular 
velocity of 3600 rpm. Determine (a) the speed of the center of 
each ball, (b) the angular velocity of each ball, (c) the number of 
times per minute each ball describes a complete circle.

 15.52 A simplified gear system for a mechanical watch is shown. Know-
ing that gear A has a constant angular velocity of 1 rev/h and gear 
C has a constant angular velocity of 1 rpm, determine (a) the 
radius r, (b) the magnitudes of the accelerations of the points on 
gear B that are in contact with gears A and C.

BA
C

D

1.2 in. 0.9 in.

0.6 in. 1.5 in.

2.4 in.

Fig. P15.53

D

C
BA

0.6 in.

1.5 in.

2.4 in.

1.8 in.0.3 in.

Fig. P15.54

 15.53 and 15.54 Arm ACB rotates about point C with an angular 
velocity of 40 rad/s counterclockwise. Two friction disks A and B 
are pinned at their centers to arm ACB as shown. Knowing that 
the disks roll without slipping at surfaces of contact, determine the 
angular velocity of (a) disk A, (b) disk B.

AB

Fig. P15.51
0.36 in.r

r

A

B

C

0.6 in.

Fig. P15.52
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955Problems 15.55 Knowing that at the instant shown the velocity of collar A is 900 
mm/s to the left, determine (a) the angular velocity of rod ADB, 
(b) the velocity of point B.

 15.56 Knowing that at the instant shown the angular velocity of rod DE 
is 2.4 rad/s clockwise, determine (a) the velocity of collar A, 
(b) the velocity of point B.

 15.57 A straight rack rests on a gear of radius r and is attached to a block 
B as shown. Denoting by vD the clockwise angular velocity of gear 
D and by u the angle formed by the rack and the  horizontal, derive 
expressions for the velocity of block B and the angular velocity of 
the rack in terms of r, u, and vD.

A

D
B

q

r

Fig. P15.57 and P15.58

2 in.

O
A

B
q

8 in.in.1
2

Fig. P15.60

 15.58 A straight rack rests on a gear of radius r 5 2.5 in. and is 
attached to a block B as shown. Knowing that at the instant 
shown the velocity of block B is 8 in./s to the right and u 5 25°, 
determine (a) the angular velocity of gear D, (b) the angular 
velocity of the rack.

 15.59 Knowing that at the instant shown the angular velocity of crank 
AB is 2.7 rad/s clockwise, determine (a) the angular velocity of link 
BD, (b) the velocity of collar D, (c) the velocity of the midpoint of 
link BD.

 15.60 In the eccentric shown, a disk of 2-in. radius revolves about shaft 
O that is located 0.5 in. from the center A of the disk. The distance 
between the center A of the disk and the pin at B is 8 in. Knowing 
that the angular velocity of the disk is 900 rpm clockwise, deter-
mine the velocity of the block when u 5 30°.

A

D

B

E

150 mm

80 mm

60 mm
120 mm

Fig. P15.55 and P15.56

A

B

D

12 in.

9 in.

5 in.

Fig. P15.59
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956 Kinematics of Rigid Bodies  15.61 In the engine system shown, l 5 160 mm and b 5 60 mm. Knowing 
that the crank AB rotates with a constant angular velocity of 1000 rpm 
clockwise, determine the velocity of the piston P and the angular 
velocity of the connecting rod when (a) u 5 0, (b) u 5 90°.

 15.62 In the engine system shown, l 5 160 mm and b 5 60 mm. Knowing 
that crank AB rotates with a constant angular velocity of 1000 rpm 
clockwise, determine the velocity of the piston P and the angular 
velocity of the connecting rod when u 5 60°.

 15.63 Knowing that at the instant shown the angular velocity of rod AB 
is 15 rad/s clockwise, determine (a) the angular velocity of rod BD, 
(b) the velocity of the midpoint of rod BD.

 15.64 and 15.65 In the position shown, bar AB has an angular veloc-
ity of 4 rad/s clockwise. Determine the angular velocity of bars BD 
and DE.

200 mm

175 mm
100 mm

75 mm

A

B

D

E

Fig. P15.64

400 mm400 mm

A

B
D

E

300 mm

500 mm

Fig. P15.65

P

D

A
B

l

q

b

Fig. P15.61 and P15.62

A

B

D
E

0.2 m

0.2 m

0.25 m

0.6 m

Fig. P15.63
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957Problems 15.66 Roberts linkage is named after Richard Roberts (1789–1864) and 
can be used to draw a close approximation to a straight line by 
locating a pen at point F. The distance AB is the same as BF, DF, 
and DE. Knowing that the angular velocity of bar AB is 5 rad/s 
clockwise in the position shown, determine (a) the angular velocity 
of bar DE, (b) the velocity of point F. 

 15.67 Roberts linkage is named after Richard Roberts (1789–1864) and 
can be used to draw a close approximation to a straight line by 
locating a pen at point F. The distance AB is the same as BF, DF, 
and DE. Knowing that the angular velocity of plate BDF is 2 rad/s 
counterclockwise when u 5 908, determine (a) the angular veloci-
ties of bars AB and DE, (b) the velocity of point F. When u 5 908, 
point F may be assumed to coincide with point E, with negligible 
error in the velocity analysis.

 15.68 In the position shown, bar DE has a constant angular velocity of 
10 rad/s clockwise. Knowing that h 5 500 mm, determine (a) the 
angular velocity of bar FBD, (b) the velocity of point F.

 15.69 In the position shown, bar DE has a constant angular velocity of 
10 rad/s clockwise. Determine (a) the distance h for which the 
velocity of point F is vertical, (b) the corresponding velocity of 
point F.

 15.70 Both 6-in.-radius wheels roll without slipping on the horizontal 
surface. Knowing that the distance AD is 5 in., the distance BE is 
4 in., and D has a velocity of 6 in./s to the right, determine the 
velocity of point E.

A

B D

EF

q

12 in.

3 in.

12 in.

3 in.

6 in.

12 in.

Fig. P15.66 and P15.67

A

B

D

E

100 mm

F

300 mm
100 mm

200 mm

120 mm

h 

Fig. P15.68 and P15.69

6 in. 6 in.

14 in.

D
B

A

E

Fig. P15.70
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 15.71 The 80-mm-radius wheel shown rolls to the left with a velocity of 
900 mm/s. Knowing that the distance AD is 50 mm, determine 
the velocity of the collar and the angular velocity of rod AB when 
(a) b 5 0, (b) b 5 90°.

 *15.72 For the gearing shown, derive an expression for the angular veloc-
ity vC of gear C and show that vC is independent of the radius of 
gear B. Assume that point A is fixed and denote the angular veloci-
ties of rod ABC and gear A by vABC and vA, respectively.

A

B

250 mm
D80 mm

b

160 mm

Fig. P15.71

A

B

C

rA

rB

rC

Fig. P15.72

15.7  INSTANTANEOUS CENTER OF ROTATION 
IN PLANE MOTION

Consider the general plane motion of a slab. We propose to show 
that at any given instant the velocities of the various particles of the 
slab are the same as if the slab were rotating about a certain axis 
perpendicular to the plane of the slab, called the instantaneous axis 
of rotation. This axis intersects the plane of the slab at a point C, 
called the instantaneous center of rotation of the slab.
 We first recall that the plane motion of a slab can always be 
replaced by a translation defined by the motion of an arbitrary refer-
ence point A and by a rotation about A. As far as the velocities are 
concerned, the translation is characterized by the velocity vA of the 
reference point A and the rotation is characterized by the angular 
velocity V of the slab (which is independent of the choice of A). Thus, 
the velocity vA of point A and the angular velocity V of the slab define 

958 Kinematics of Rigid Bodies

Photo 15.5 If the tires of this car are rolling 
without sliding, the instantaneous center of rotation 
of a tire is the point of contact between the road 
and the tire.
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959

completely the velocities of all the other particles of the slab (Fig. 
15.18a). Now let us assume that vA and V are known and that they 
are both different from zero. (If vA 5 0, point A is itself the instan-
taneous center of rotation, and if V 5 0, all the particles have the 
same velocity vA.) These velocities could be obtained by letting the slab 
rotate with the angular velocity V about a point C located on the per-
pendicular to vA at a distance r 5 vA/v from A as shown in Fig. 15.18b. 
We check that the velocity of A would be perpendicular to AC and that 
its magnitude would be rv 5 (vA/v)v 5 vA. Thus the velocities of all 
the other particles of the slab would be the same as originally defined. 
Therefore, as far as the velocities are concerned, the slab seems to rotate 
about the instantaneous center C at the instant considered.
 The position of the instantaneous center can be defined in two 
other ways. If the directions of the velocities of two particles A and B 
of the slab are known and if they are different, the instantaneous 
center C is obtained by drawing the perpendicular to vA through A 
and the perpendicular to vB through B and determining the point in 
which these two lines intersect (Fig. 15.19a). If the velocities vA and 
vB of two particles A and B are perpendicular to the line AB and if 
their magnitudes are known, the instantaneous center can be found 
by intersecting the line AB with the line joining the extremities of the 
vectors vA and vB (Fig. 15.19b). Note that if vA and vB were parallel 

vA vA

A A

C

(a) (b)

r = vA/w

w

w

Fig. 15.18

C C

A

(a) (b)

A

B B

vAvA

vB
vB

Fig. 15.19

15.7 Instantaneous Center of Rotation in 
Plane Motion
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960 Kinematics of Rigid Bodies in Fig. 15.19a or if vA and vB had the same magnitude in Fig. 15.19b, 
the instantaneous center C would be at an infinite distance and V 
would be zero; all points of the slab would have the same velocity.
 To see how the concept of instantaneous center of rotation can 
be put to use, let us consider again the rod of Sec. 15.6. Drawing 
the perpendicular to vA through A and the perpendicular to vB 
through B (Fig. 15.20), we obtain the instantaneous center C. At the 

q

w

A

B
C

l
vB

vA

Fig. 15.20

instant considered, the velocities of all the particles of the rod are 
thus the same as if the rod rotated about C. Now, if the magnitude 
vA of the velocity of A is known, the magnitude v of the angular 
velocity of the rod can be obtained by writing

v 5
vA

AC
5

vA

l cos u

The magnitude of the velocity of B can then be obtained by writing

vB 5 (BC)v 5 l sin u 

vA

l cos u
5 vA tan u

Note that only absolute velocities are involved in the computation.
 The instantaneous center of a slab in plane motion can be 
located either on the slab or outside the slab. If it is located on the 
slab, the particle C coinciding with the instantaneous center at a given 
instant t must have zero velocity at that instant. However, it should 
be noted that the instantaneous center of rotation is valid only at a 
given instant. Thus, the particle C of the slab which coincides with 
the instantaneous center at time t will generally not coincide with the 
instantaneous center at time t 1 Dt; while its velocity is zero at time t, 
it will probably be different from zero at time t 1 Dt. This means 
that, in general, the particle C does not have zero acceleration and, 
therefore, that the accelerations of the various particles of the slab 
cannot be determined as if the slab were rotating about C.
 As the motion of the slab proceeds, the instantaneous center 
moves in space. But it was just pointed out that the position of the 
instantaneous center on the slab keeps changing. Thus, the instanta-
neous center describes one curve in space, called the space centrode, 
and another curve on the slab, called the body centrode (Fig. 15.21). 
It can be shown that at any instant, these two curves are tangent at C 
and that as the slab moves, the body centrode appears to roll on the 
space centrode.Fig. 15.21

C

Body
centrode

Space
centrode
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961

SAMPLE PROBLEM 15.4

Solve Sample Prob. 15.2, using the method of the instantaneous center of 
rotation.

SOLUTION

a. Angular Velocity of the Gear. Since the gear rolls on the stationary 
lower rack, the point of contact C of the gear with the rack has no velocity; 
point C is therefore the instantaneous center of rotation. We write

vA 5 rAv  1.2 m/s 5 (0.150 m)v
V 5 8 rad/s i ◀

b. Velocities. As far as velocities are concerned, all points of the gear seem 
to rotate about the instantaneous center.
Velocity of Upper Rack. Recalling that vR 5 vB, we write

vR 5 vB 5 rBv  vR 5 (0.250 m)(8 rad/s) 5 2 m/s
vR 5 2 m/s y ◀

Velocity of Point D. Since rD 5 (0.150 m)12 5 0.2121 m, we write

vD 5 rDv  vD 5 (0.2121 m)(8 rad/s) 5 1.697 m/s
vD 5 1.697 m/s a 45° ◀

D A

vB

C

vA

rD

45°

B
vD

45°
rA = 150 mm

rB = 250 mm

SAMPLE PROBLEM 15.5

Solve Sample Prob. 15.3, using the method of the instantaneous center of 
rotation.

SOLUTION

Motion of Crank AB. Referring to Sample Prob. 15.3, we obtain the veloc-
ity of point B; vB 5 628.3 in./s c 50°.
Motion of the Connecting Rod BD. We first locate the instantaneous cen-
ter C by drawing lines perpendicular to the absolute velocities vB and vD. 
Recalling from Sample Prob. 15.3 that b 5 13.95° and that BD 5 8 in., we 
solve the triangle BCD.

gB 5 40° 1 b 5 53.95°   gD 5 90° 2 b 5 76.05°
BC

sin 76.05°
5

CD
sin 53.95°

5
8 in.

sin 50°
BC 5 10.14 in.  CD 5 8.44 in.

Since the connecting rod BD seems to rotate about point C, we write

 vB 5 (BC)vBD

628.3 in./s 5 (10.14 in.)vBD

VBD 5 62.0 rad/s l ◀

vD 5 (CD)vBD 5 (8.44 in.)(62.0 rad/s)
 5 523 in./s 5 43.6 ft/s

vP 5 vD 5 43.6 ft/s y ◀ 

vB vDb

B

D
A

C

b

40°

40°

40°

50°

90°
90°

�B
�D
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962

In this lesson we introduced the instantaneous center of rotation in plane motion. 
This provides us with an alternative way for solving problems involving the 

velocities of the various points of a body in plane motion.

As its name suggests, the instantaneous center of rotation is the point about which 
you can assume a body is rotating at a given instant, as you determine the veloci-
ties of the points of the body at that instant.

A. To determine the instantaneous center of rotation of a body in plane motion, 
you should use one of the following procedures.

1. If the velocity vA of a point A and the angular velocity V of the body are 
both known (Fig. 15.18):
 a. Draw a sketch of the body, showing point A, its velocity vA, and the angu-
lar velocity V of the body.
 b. From A draw a line perpendicular to vA on the side of vA from which 
this velocity is viewed as having the same sense as V.
 c. Locate the instantaneous center C on this line, at a distance r 5 vA/v
from point A.

2. If the directions of the velocities of two points A and B are known and 
are different (Fig. 15.19a):
 a. Draw a sketch of the body, showing points A and B and their velocities 
vA and vB.
 b. From A and B draw lines perpendicular to vA and vB, respectively. The 
instantaneous center C is located at the point where the two lines intersect.
 c. If the velocity of one of the two points is known, you can determine 
the angular velocity of the body. For example, if you know vA, you can write v 5 
vA/AC, where AC is the distance from point A to the instantaneous center C.

3. If the velocities of two points A and B are known and are both perpen-
dicular to the line AB (Fig. 15.19b):
 a. Draw a sketch of the body, showing points A and B with their velocities 
vA and vB drawn to scale.
 b. Draw a line through points A and B, and another line through the tips 
of the vectors vA and vB. The instantaneous center C is located at the point where 
the two lines intersect.

SOLVING PROBLEMS
ON YOUR OWN
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963

 c. The angular velocity of the body is obtained by either dividing vA by AC 
or vB by BC.
 d. If the velocities vA and vB have the same magnitude, the two lines drawn 
in part b do not intersect; the instantaneous center C is at an infinite distance. 
The angular velocity V is zero and the body is in translation.

B. Once you have determined the instantaneous center and the angular 
velocity of a body, you can determine the velocity vP of any point P of the body 
in the following way.

1. Draw a sketch of the body, showing point P, the instantaneous center of 
rotation C, and the angular velocity V.

2. Draw a line from P to the instantaneous center C and measure or calculate 
the distance from P to C.

3. The velocity vP is a vector perpendicular to the line PC, of the same sense 
as V, and of magnitude vP 5 (PC)v.

Finally, keep in mind that the instantaneous center of rotation can be used only 
to determine velocities. It cannot be used to determine accelerations.

bee02324_ch15_926-1039.indd Page 963  23/09/11  8:35 AM user-f501bee02324_ch15_926-1039.indd Page 963  23/09/11  8:35 AM user-f501 /204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles/204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


PROBLEMS

964

CONCEPT QUESTIONS

 15.CQ5 The disk rolls without sliding on the fixed horizontal surface. At 
the instant shown, the instantaneous center of zero velocity for rod 
AB would be located in which region?  
a. Region 1
b. Region 2
c. Region 3
d. Region 4
e. Region 5
f. Region 6

15.CQ6 Bar BDE is pinned to two links, AB and CD. At the instant shown, 
the angular velocities of link AB, link CD, and bar BDE are vAB, 
vCD, and vBDE, respectively. Which of the following statements 
concerning the angular speeds of the three objects is true at this 
instant? 
a. vAB 5 vCD 5 vBDE

 b. vBDE . vAB . vCD

 c. vAB 5 vCD . vBDE

 d. vAB . vCD . vBDE

 e. vCD . vAB . vBDE

END-OF-SECTION PROBLEMS

 15.73 A juggling club is thrown vertically into the air. The center of 
gravity G of the 20-in. club is located 12 in. from the knob. Know-
ing that at the instant shown, G has a velocity of 4 ft/s upwards 
and the club has an angular velocity of 30 rad/s counterclockwise, 
determine (a) the speeds of points A and B, (b) the location of the 
instantaneous center of rotation.

A

B

C

3

4

2

1

65

Fig. P15.CQ5

A
B

C

E

D

240 mm

180 mm

150 mm

150 mm

Fig. P15.CQ6

GA B

12 in.

30 rad/s

4 ft/s

Fig. P15.73
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965Problems 15.74 A 10-ft beam AE is being lowered by means of two overhead 
cranes. At the instant shown, it is known that the velocity of point 
D is 24 in./s downward and the velocity of point E is 36 in./s 
downward. Determine (a) the instantaneous center of rotation of 
the beam, (b) the velocity of point A.

A

BE

D

60 mm
100 mm

Fig. P15.76

A

B

E D

60 mm
100 mm

Fig. P15.77

 15.75 A helicopter moves horizontally in the x direction at a speed of 
120 mi/h. Knowing that the main blades rotate clockwise with an 
angular velocity of 180 rpm, determine the instantaneous axis of 
rotation of the main blades.

 15.76 and 15.77 A 60-mm-radius drum is rigidly attached to a 
100-mm-radius drum as shown. One of the drums rolls without 
sliding on the surface shown, and a cord is wound around the other 
drum. Knowing that end E of the cord is pulled to the left with a 
velocity of 120 mm/s, determine (a) the angular velocity of the 
drums, (b) the velocity of the center of the drums, (c) the length 
of cord wound or unwound per second.

A B D E

3 ft 4 ft 3 ft

Fig. P15.74

y

x

z

w

Fig. P15.75

A

B

D

80 mm

vB

vA

Fig. P15.78 and P15.79

 15.78 The spool of tape shown and its frame assembly are pulled upward 
at a speed vA 5 750 mm/s. Knowing that the 80-mm-radius spool 
has an angular velocity of 15 rad/s clockwise and that at the instant 
shown the total thickness of the tape on the spool is 20 mm, deter-
mine (a) the instantaneous center of rotation of the spool, (b) the 
velocities of points B and D.

 15.79 The spool of tape shown and its frame assembly are pulled upward 
at a speed vA 5 100 mm/s. Knowing that end B of the tape is pulled 
downward with a velocity of 300 mm/s and that at the instant 
shown the total thickness of the tape on the spool is 20 mm, deter-
mine (a) the instantaneous center of rotation of the spool, (b) the 
velocity of point D of the spool.
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966 Kinematics of Rigid Bodies  15.80 The arm ABC rotates with an angular velocity of 4 rad/s counter-
clockwise. Knowing that the angular velocity of the intermediate 
gear B is 8 rad/s counterclockwise, determine (a) the instantaneous 
centers of rotation of gears A and C, (b) the angular velocities of 
gears A and C.

 15.81 The double gear rolls on the stationary left rack R. Knowing that 
the rack on the right has a constant velocity of 2 ft/s, determine 
(a) the angular velocity of the gear, (b) the velocities of points A 
and D.

A

B

D

15 in.

15 in.

b

Fig. P15.83

 15.82 An overhead door is guided by wheels at A and B that roll in hori-
zontal and vertical tracks. Knowing that when u 5 40° the velocity 
of wheel B is 1.5 ft/s upward, determine (a) the angular velocity 
of the door, (b) the velocity of end D of the door.

 15.83 Rod ABD is guided by wheels at A and B that roll in horizontal 
and vertical tracks. Knowing that at the instant b 5 60° and 
the velocity of wheel B is 40 in./s downward, determine (a) the 
angular velocity of the rod, (b) the velocity of point D.

200 mm
100 mm

300 mm 300 mm

BA C

Fig. P15.80

4 in.

6 in.

vB = 2 ft/s

D

B

R

A
C

Fig. P15.81

A

B

D

q

5 ft

5 ft

Fig. P15.82
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967Problems 15.84 Rod BDE is partially guided by a roller at D which moves in a 
vertical track. Knowing that at the instant shown the angular veloc-
ity of crank AB is 5 rad/s clockwise and that b 5 258, determine 
(a) the angular velocity of the rod, (b) the velocity of point E.

 15.85 Rod BDE is partially guided by a roller at D which moves in a 
vertical track. Knowing that at the instant shown b 5 308, point 
E has a velocity of 2 m/s down and to the right, determine the 
angular velocities of rod BDE and crank AB.

 15.86 Knowing that at the instant shown, the velocity of collar D is 
1.6 m/s upward, determine (a) the angular velocity of rod AD, 
(b) the velocity of point B, (c) the velocity of point A.

 15.87 Knowing that at the instant shown, the angular velocity of rod BE 
is 4 rad/s counterclockwise, determine (a) the angular velocity of 
rod AD, (b) the velocity of collar D, (c) the velocity of point A.

 15.88 Rod AB can slide freely along the floor and the inclined plane. 
Denoting by vA the velocity of point A, derive an expression for 
(a) the angular velocity of the rod, (b) the velocity of end B.

A

D

B

E

192 mm

360 mm

240 mm
30°

Fig. P15.86 and P15.87

vA q
bA

B

l

Fig. P15.88 and P15.89

 15.89 Rod AB can slide freely along the floor and the inclined plane. 
Knowing that u 5 20°, b 5 50°, l 5 2 ft, and vA 5 8 ft/s, determine 
(a) the angular velocity of the rod, (b) the velocity of end B.

b

500 mm

200 mm

120 mm
A

E

B

D

Fig. P15.84 and P15.85
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968 Kinematics of Rigid Bodies  15.90 Two slots have been cut in plate FG and the plate has been placed 
so that the slots fit two fixed pins A and B. Knowing that at the 
instant shown the angular velocity of crank DE is 6 rad/s clockwise, 
determine (a) the velocity of point F, (b) the velocity of point G.

 15.91 The disk is released from rest and rolls down the incline. Knowing 
that the speed of A is 1.2 m/s when u 5 08, determine at that 
instant (a) the angular velocity of the rod, (b) the velocity of B.  
(Only portions of the two tracks are shown.)

 15.92 Arm ABD is connected by pins to a collar at B and to crank 
DE. Knowing that the velocity of collar B is 400 mm/s upward, 
determine (a) the angular velocity of arm ABD, (b) the velocity of 
point A.

E

B

A

D

160 mm

90 mm

180 mm
320 mm

300 mm

125 mm

Fig. P15.92 and P15.93A

D

B

15 in.

20 in.

24 in.

7 in.

Fig. P15.94

A

B

G

DE

F

80 mm

140 mm

120 mm

160 mm

120 mm
360 mm

160 mm

72 mm

608

Fig. P15.90

B

A

q

0.6 m

0.2 m

308

Fig. P15.91

 15.93 Arm ABD is connected by pins to a collar at B and to crank DE. 
Knowing that the angular velocity of crank DE is 1.2 rad/s 
 counterclockwise, determine (a) the angular velocity of arm ABD, 
(b) the velocity of point A.

 15.94 Two links AB and BD, each 25 in. long, are connected at B and 
guided by hydraulic cylinders attached at A and D. Knowing that 
D is stationary and that the velocity of A is 30 in./s to the right, 
determine at the instant shown (a) the angular velocity of each 
link, (b) the velocity of B.
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Problems 15.95 Two 25-in. rods are pin-connected at D as shown. Knowing that B 
moves to the left with a constant velocity of 24 in./s, determine at the 
instant shown (a) the angular velocity of each rod, (b) the velocity of E.

A

B

D

E

8 in.

8 in.

9 in. 8 in. 8 in.

Fig. P15.98

320 mm

100 mm

100 mm

240 mm

D

C

B

A

Fig. P15.97

 15.96 Two rods ABD and DE are connected to three collars as shown. 
Knowing that the angular velocity of ABD is 5 rad/s clockwise, 
determine at the instant shown (a) the angular velocity of DE, 
(b) the velocity of collar E.

 15.97 Two collars C and D move along the vertical rod shown. Knowing 
that the velocity of collar C is 660 mm/s downward, determine 
(a) the velocity of collar D, (b) the angular velocity of member AB.

 15.98 Two rods AB and DE are connected as shown. Knowing that point 
D moves to the left with a velocity of 40 in./s, determine (a) the 
angular velocity of each rod, (b) the velocity of point A.

A

D

B

E

10 in.

10 in.

7.5 in.7.5 in. 12.5 in.

25 in.

Fig. P15.95

 15.99 Describe the space centrode and the body centrode of rod ABD 
of Prob. 15.83. (Hint: The body centrode need not lie on a physical 
portion of the rod.)

 15.100 Describe the space centrode and the body centrode of the gear of 
Sample Prob. 15.2 as the gear rolls on the stationary horizontal rack.

 15.101 Using the method of Sec. 15.7, solve Prob. 15.60.

 15.102 Using the method of Sec. 15.7, solve Prob. 15.64.

 15.103 Using the method of Sec. 15.7, solve Prob. 15.65.

 15.104 Using the method of Sec. 15.7, solve Prob. 15.38.

969

A

B

E

D
200 mm

200 mm

200 mm

200 mm200 mm

Fig. P15.96
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970 Kinematics of Rigid Bodies

Plane motion = Translation with A + Rotation about A

A (fixed)A

B
aB

aB/A

aB/A
(aB/A)n

(aB/A)n

(aB/A)t (aB/A)t

aA

A

B
B

x'

y'

aA

aB

aA

aA

ak
wk

rB/A= +

Fig. 15.22

15.8  ABSOLUTE AND RELATIVE ACCELERATION 
IN PLANE MOTION

We saw in Sec. 15.5 that any plane motion can be replaced by a 
translation defined by the motion of an arbitrary reference point A 
and a simultaneous rotation about A. This property was used in Sec. 
15.6 to determine the velocity of the various points of a moving slab. 
The same property will now be used to determine the acceleration 
of the points of the slab.
 We first recall that the absolute acceleration aB of a particle of 
the slab can be obtained from the relative-acceleration formula 
derived in Sec. 11.12,

 aB 5 aA 1 aB/A (15.21)

where the right-hand member represents a vector sum. The accel-
eration aA corresponds to the translation of the slab with A, while 
the relative acceleration aB/A is associated with the rotation of the 
slab about A and is measured with respect to axes centered at A and 
of fixed orientation. We recall from Sec. 15.3 that the relative accel-
eration aB/A can be resolved into two components, a tangential com-
ponent (aB/A)t perpendicular to the line AB, and a normal component 
(aB/A)n directed toward A (Fig. 15.22). Denoting by rB/A the position 
vector of B relative to A and, respectively, by vk and ak the angular 
velocity and angular acceleration of the slab with respect to axes of 
fixed orientation, we have

 (aB/A)t 5 ak 3 rB/A  (aB/A)t 5 ra
 (aB/A)n 5 2v2rB/A   (aB/A)n 5 rv2 (15.22)

where r is the distance from A to B. Substituting into (15.21) the 
expressions obtained for the tangential and normal components of 
aB/A, we can also write

 aB 5 aA 1 ak 3 rB/A 2 v2rB/A (15.219)

Photo 15.6 The central gear rotates about a 
fixed axis and is pin-connected to three bars 
which are in general plane motion.
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97115.8 Absolute and Relative Acceleration 
in Plane Motion

 As an example, let us again consider the rod AB whose extremi-
ties slide, respectively, along a horizontal and a vertical track (Fig. 
15.23). Assuming that the velocity vA and the acceleration aA of A 
are known, we propose to determine the acceleration aB of B and 
the angular acceleration A of the rod. Choosing A as a reference 
point, we express that the given motion is equivalent to a translation 
with A and a rotation about A. The absolute acceleration of B must 
be equal to the sum

 aB 5 aA 1 aB/A

 5 aA 1 (aB/A)n 1 (aB/A)t 
(15.23)

where (aB/A)n has the magnitude lv2 and is directed toward A, while 
(aB/A)t has the magnitude la and is perpendicular to AB. Students 
should note that there is no way to tell whether the tangential compo-
nent (aB/A)t is directed to the left or to the right, and therefore both 
possible directions for this component are indicated in Fig. 15.23. 
Similarly, both possible senses for aB are indicated, since it is not 
known whether point B is accelerated upward or downward.
 Equation (15.23) has been expressed geometrically in Fig. 15.24. 
Four different vector polygons can be obtained, depending upon the 
sense of aA and the relative magnitude of aA and (aB/A)n. If we are to 
determine aB and a from one of these diagrams, we must know not 
only aA and u but also v. The angular velocity of the rod should there-
fore be separately determined by one of the methods indicated in 
Secs. 15.6 and 15.7. The values of aB and a can then be obtained by 
considering successively the x and y components of the vectors shown 
in Fig. 15.24. In the case of polygon a, for example, we write

y
1 x components: 0 5 aA 1 lv2 sin u 2 la cos u
1xy components: 2aB 5 2lv2 cos u 2 la sin u

and solve for aB and a. The two unknowns can also be obtained by 
direct measurement on the vector polygon. In that case, care should 
be taken to draw first the known vectors aA and (aB/A)n.
 It is quite evident that the determination of accelerations is 
considerably more involved than the determination of velocities. Yet 

θ

A A

B B
B

l l
(aB/A)n

(a B/A
) t

aB
aA

aA aA

= +

Plane motion = Translation with A + Rotation about A
A (fixed)

a
w

Fig. 15.23

q

q

q

q

(aB/A)n

(aB/A)n

(aB/A)n

(aB/A)n

(aB/A)t

(aB/A)t

(aB/A)t

(aB/A)t

aB

aB

aB

aB

aA

aA

aA

aA

(a)

(b)

(c)

(d)

Fig. 15.24
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972 Kinematics of Rigid Bodies in the example considered here, the extremities A and B of the rod 
were moving along straight tracks, and the diagrams drawn were 
relatively simple. If A and B had moved along curved tracks, it would 
have been necessary to resolve the accelerations aA and aB into nor-
mal and tangential components and the solution of the problem 
would have involved six different vectors.
 When a mechanism consists of several moving parts which are 
pin-connected, the analysis of the mechanism can be carried out by 
considering each part as a rigid body, keeping in mind that the points 
at which two parts are connected must have the same absolute accel-
eration (see Sample Prob. 15.7). In the case of meshed gears, the 
tangential components of the accelerations of the teeth in contact 
are equal, but their normal components are different.

*15.9  ANALYSIS OF PLANE MOTION IN TERMS 
OF A PARAMETER

In the case of certain mechanisms, it is possible to express the coor-
dinates x and y of all the significant points of the mechanism by 
means of simple analytic expressions containing a single parameter. 
It is sometimes advantageous in such a case to determine the abso-
lute velocity and the absolute acceleration of the various points of 
the mechanism directly, since the components of the velocity and 
of the acceleration of a given point can be obtained by differentiating 
the coordinates x and y of that point.
 Let us consider again the rod AB whose extremities slide, 
respectively, in a horizontal and a vertical track (Fig. 15.25). The 
coordinates xA and yB of the extremities of the rod can be expressed 
in terms of the angle u the rod forms with the vertical:

 xA 5 l sin u  yB 5 l cos u (15.24)

Differentiating Eqs. (15.24) twice with respect to t, we write

 vA 5 ẋA 5 lu̇ cos u
 aA 5 ẍA 5 2lu̇2 sin u 1 lü cos u

 vB 5 ẏB 5 2lu̇ sin u
 aB 5 ÿB 5 2lu̇2 cos u 2 lü sin u

Recalling that u̇ 5 v and ü 5 a, we obtain

 vA 5 lv cos u vB 5 2lv sin u (15.25)

aA 5 2lv2 sin u 1 la cos u  aB 5 2lv2 cos u 2 la sin u
(15.26)

We note that a positive sign for vA or aA indicates that the velocity 
vA or the acceleration aA is directed to the right; a positive sign for 
vB or aB indicates that vB or aB is directed upward. Equations (15.25) 
can be used, for example, to determine vB and v when vA and u are 
known. Substituting for v in (15.26), we can then determine aB and 
a if aA is known.

q

A

B

lyB

xA

Fig. 15.25
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973

SAMPLE PROBLEM 15.6

The center of the double gear of Sample Prob. 15.2 has a velocity of 1.2 m/s 
to the right and an acceleration of 3 m/s2 to the right. Recalling that the 
lower rack is stationary, determine (a) the angular acceleration of the gear, 
(b) the acceleration of points B, C, and D of the gear.

D

C

R

r2 = 100 mm

vA = 1.2 m/s

aA = 3 m/s2

r1 = 150 mm

A

B

SOLUTION

a. Angular Acceleration of the Gear. In Sample Prob. 15.2, we found 
that xA 5 2r1u and vA 5 2r1v. Differentiating the latter with respect to 
time, we obtain aA 5 2r1a.

vA 5 2r1v 1.2 m/s 5 2(0.150 m)v v 5 28 rad/s
aA 5 2r1a 3 m/s2 5 2(0.150 m)a a 5 220 rad/s2

A 5 ak 5 2(20 rad/s2)k ◀

b. Accelerations. The rolling motion of the gear is resolved into a transla-
tion with A and a rotation about A.

Translation + Rotation = Rolling motion

aA

(aC/A)t

aAaA

aA

D

C

B

A =+ A
D

C

B

A(fixed)
wa

aA

aB

aD

aC(aC/A)n

(aB/A)t(aD/A)t

(aD/A)n

(aB/A)n

Acceleration of Point B. Adding vectorially the accelerations correspond-
ing to the translation and to the rotation, we obtain

 aB 5 aA 1 aB/A 5 aA 1 (aB/A)t 1 (aB/A)n

 5 aA 1 ak 3 rB/A 2 v2rB/A

 5 (3 m/s2)i 2 (20 rad/s2)k 3 (0.100 m)j 2 (8 rad/s)2(0.100 m)j
 5 (3 m/s2)i 1 (2 m/s2)i 2 (6.40 m/s2)j

aB 5 8.12 m/s2 c 52.0° ◀

Acceleration of Point C

 aC 5 aA 1 aC/A 5 aA 1 ak 3 rC/A 2 v2rC/A

 5 (3 m/s2)i 2 (20 rad/s2)k 3 (20.150 m)j 2 (8 rad/s)2(20.150 m)j
 5 (3 m/s2)i 2 (3 m/s2)i 1 (9.60 m/s2)j

aC 5 9.60 m/s2
x ◀

Acceleration of Point D

 aD 5 aA 1 aD/A 5 aA 1 ak 3 rD/A 2 v2rD/A

 5 (3 m/s2)i 2 (20 rad/s2)k 3 (20.150 m)i 2 (8 rad/s)2(20.150 m)i
 5 (3 m/s2)i 1 (3 m/s2)j 1 (9.60 m/s2)i

aD 5 12.95 m/s2 a 13.4° ◀

aA

aB

(aB/A)t

(aB/A)n

aA

aC

(aC/A)n

(aC/A)t

aA

aD
(aD/A)t

(aD/A)n
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974

SAMPLE PROBLEM 15.7

Crank AB of the engine system of Sample Prob. 15.3 has a constant clock-
wise angular velocity of 2000 rpm. For the crank position shown, determine 
the angular acceleration of the connecting rod BD and the acceleration of 
point D.

r = 3 in.
l = 8 in.

A

B
G

b P

D

40°

SOLUTION

Motion of Crank AB. Since the crank rotates about A with constant 
vAB 5 2000 rpm 5 209.4 rad/s, we have aAB 5 0. The acceleration of B 
is therefore directed toward A and has a magnitude

 aB 5 rv2
AB 5 ( 3

12 ft)(209.4 rad/s)2 5 10,962 ft/s2

 aB 5 10,962 ft/s2 d 40°

Motion of the Connecting Rod BD. The angular velocity VBD and the value 
of b were obtained in Sample Prob. 15.3:

VBD 5 62.0 rad/s l  b 5 13.95°

The motion of BD is resolved into a translation with B and a rotation about 
B. The relative acceleration aD/B is resolved into normal and tangential 
components:

(aD/B)n 5 (BD)v2
BD 5 ( 8

12 ft)(62.0 rad/s)2 5 2563 ft/s2

 (aD/B)n 5 2563 ft/s2 b 13.95°
(aD/B)t 5 (BD)aBD 5 ( 8

12)aBD 5 0.6667aBD

  (aD/B)t 5 0.6667aBD za 76.05°

While (aD/B)t must be perpendicular to BD, its sense is not known.

r = 3 in.

A

B

40°
aB

B
G

D
aB

B

D
G

B

DaB
aB

aB

aD

(aD/B)n

(aD/B)t

aBD wBD

13.95°

Plane motion Translation Rotation= +

= +

 Noting that the acceleration aD must be horizontal, we write

aD 5 aB 1 aD/B 5 aB 1 (aD/B)n 1 (aD/B)t

[aD
G

] 5 [10,962 d 40°] 1 [2563 b 13.95°] 1 [0.6667aBD za 76.05°]

Equating x and y components, we obtain the following scalar equations:

y
1  x components:

2aD 5 210,962 cos 40° 2 2563 cos 13.95° 1 0.6667aBD sin 13.95°
1xy components:

0 5 210,962 sin 40° 1 2563 sin 13.95° 1 0.6667aBD cos 13.95°

 Solving the equations simultaneously, we obtain aBD 5 19940 rad/s2 
and aD 5 19290 ft/s2. The positive signs indicate that the senses shown on 
the vector polygon are correct; we write

aBD 5 9940 rad/s2
l ◀

aD 5 9290 ft/s2
z ◀

40°

aB

aD

(aD/B)n

(aD/B)t

aD/B

13.95°

13.95°
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975

SAMPLE PROBLEM 15.8

The linkage ABDE moves in the vertical plane. Knowing that in the position 
shown crank AB has a constant angular velocity V1 of 20 rad/s counterclock-
wise, determine the angular velocities and angular accelerations of the con-
necting rod BD and of the crank DE.A ww1

B
D

E

3 in.

14 in.

17 in.

17 in.

12 in.8 in.

SOLUTION

This problem could be solved by the method used in Sample Prob. 15.7. In 
this case, however, the vector approach will be used. The position vectors 
rB, rD, and rD/B are chosen as shown in the sketch.

Velocities. Since the motion of each element of the linkage is contained 
in the plane of the figure, we have

VAB 5 vABk 5 (20 rad/s)k  VBD 5 vBDk  VDE 5 vDEk

where k is a unit vector pointing out of the paper. We now write

 vD 5 vB 1 vD/B

 vDEk 3 rD 5 vABk 3 rB 1 vBDk 3 rD/B

vDEk 3 (217i 1 17j) 5 20k 3 (8i 1 14j) 1 vBDk 3 (12i 1 3j)
 217vDEj 2 17vDEi 5 160j 2 280i 1 12vBDj 2 3vBDi

Equating the coefficients of the unit vectors i and j, we obtain the following 
two scalar equations:

 217vDE 5 2280 2 3vBD

 217vDE 5 1160 1 12vBD

 VBD 5 2(29.33 rad/s)k  VDE 5 (11.29 rad/s)k ◀

Accelerations. Noting that at the instant considered crank AB has a con-
stant angular velocity, we write

 AAB 5 0  ABD 5 aBDk  ADE 5 aDEk 
 aD 5 aB 1 aD/B (1)

Each term of Eq. (1) is evaluated separately:

 aD 5 aDEk 3 rD 2 v2
DErD

 5 aDEk 3 (217i 1 17j) 2 (11.29)2(217i 1 17j)
 5 217aDEj 2 17aDEi 1 2170i 2 2170j
 aB 5 aABk 3 rB 2 v2

ABrB 5 0 2 (20)2(8i 1 14j)
 5 23200i 2 5600j
 aD/B 5 aBDk 3 rD/B 2 v2

BDrD/B

 5 aBDk 3 (12i 1 3j) 2 (29.33)2(12i 1 3j)
 5 12aBDj 2 3aBDi 2 10,320i 2 2580j

Substituting into Eq. (1) and equating the coefficients of i and j, we obtain

 217aDE 1 3aBD 5 215,690
 217aDE 2 12aBD 5 26010
 ABD 5 2(645 rad/s2)k  ADE 5 (809 rad/s2)k ◀

A

B
D

E
rB

rD

rB = 8i + 14j
rD = –17i + 17j

rD/B = 12i + 3j

rD/B

y

x
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976

SOLVING PROBLEMS
ON YOUR OWN

This lesson was devoted to the determination of the accelerations of the points 
of a rigid body in plane motion. As you did previously for velocities, you will 

again consider the plane motion of a rigid body as the sum of two motions, namely, 
a translation and a rotation.

To solve a problem involving accelerations in plane motion you should use the 
following steps:

1. Determine the angular velocity of the body. To find V you can either
a. Consider the motion of the body as the sum of a translation and a rotation 

as you did in Sec. 15.6, or
b. Use the instantaneous center of rotation of the body as you did in Sec. 15.7. 

However, keep in mind that you cannot use the instantaneous center to determine 
accelerations.

2. Start drawing a “diagram equation” to use in your solution. This “equation” 
will involve the following diagrams (Fig. 15.22).

a. Plane motion diagram. Draw a sketch of the body, including all dimen-
sions, as well as the angular velocity V. Show the angular acceleration A with its 
magnitude and sense if you know them. Also show those points for which you 
know or seek the accelerations, indicating all that you know about these 
accelerations.
 b. Translation diagram. Select a reference point A for which you know the 
direction, the magnitude, or a component of the acceleration aA. Draw a second 
diagram showing the body in translation with each point having the same accelera-
tion as point A.
 c. Rotation diagram. Considering point A as a fixed reference point, draw a 
third diagram showing the body in rotation about A. Indicate the normal and 
tangential components of the relative accelerations of other points, such as the 
components (aB/A)n and (aB/A)t of the acceleration of point B with respect to point A.

3. Write the relative-acceleration formula

aB 5 aA 1 aB/A  or  aB 5 aA 1 (aB/A)n 1 (aB/A)t

The sample problems illustrate three different ways to use this vector equation:
 a. If A is given or can easily be determined, you can use this equation to 
determine the accelerations of various points of the body [Sample Prob. 15.6].
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977

 b. If A cannot easily be determined, select for point B a point for which you 
know the direction, the magnitude, or a component of the acceleration aB and 
draw a vector diagram of the equation. Starting at the same point, draw all known 
acceleration components in tip-to-tail fashion for each member of the equation. 
Complete the diagram by drawing the two remaining vectors in appropriate direc-
tions and in such a way that the two sums of vectors end at a common point.

The magnitudes of the two remaining vectors can be found either graphically or 
analytically. Usually an analytic solution will require the solution of two simultane-
ous equations [Sample Prob. 15.7]. However, by first considering the components 
of the various vectors in a direction perpendicular to one of the unknown vectors, 
you may be able to obtain an equation in a single unknown.

One of the two vectors obtained by the method just described will be (aB/A)t, from 
which you can compute a. Once a has been found, the vector equation can be 
used to determine the acceleration of any other point of the body.
 c. A full vector approach can also be used to solve the vector equation. This 
is illustrated in Sample Prob. 15.8.

4. The analysis of plane motion in terms of a parameter completed this lesson. 
This method should be used only if it is possible to express the coordinates x and 
y of all significant points of the body in terms of a single parameter (Sec. 15.9). 
By differentiating twice with respect to t the coordinates x and y of a given point, 
you can determine the rectangular components of the absolute velocity and abso-
lute acceleration of that point.
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978

PROBLEMS

CONCEPT QUESTION

 15.CQ7 A rear-wheel-drive car starts from rest and accelerates to the left 
so that the tires do not slip on the road. What is the direction of 
the acceleration of the point on the tire in contact with the road, 
that is, point A?
a. m b. r c. h d. g e. o

A B C

3 m
0.5 m

Fig. P15.105 and P15.106

B

G

A
0.45 m

0.45 m

P

Fig. P15.107 and P15.108

D

8 in.

8 in.

4 in.

B

A

C

Fig. P15.109

4 ft

10 ft
B

308

D

A

G

Fig. P15.110

AB

a

Fig. P15.CQ7

END-OF-SECTION PROBLEMS

15.105 A 3.5-m steel beam is lowered by means of two cables unwinding at 
the same speed from overhead cranes. As the beam approaches the 
ground, the crane operators apply brakes to slow down the unwinding 
motion. At the instant considered, the deceleration of the cable attached 
at A is 4 m/s2, while that of the cable at B is 1.5 m/s2. Determine 
(a) the angular acceleration of the beam, (b) the acceleration of point C.

 15.106 The acceleration of point C is 0.3 m/s2 downward and the angular 
acceleration of the beam is 0.8 rad/s2 clockwise. Knowing that the 
angular velocity of the beam is zero at the instant considered, 
determine the acceleration of each cable.

 15.107 A 900-mm rod rests on a horizontal table. A force P applied as 
shown produces the following accelerations: aA 5 3.6 m/s2 to the 
right, a 5 6 rad/s2 counterclockwise as viewed from above. Deter-
mine the acceleration (a) of point G, (b) of point B.

 15.108 In Prob. 15.107, determine the point of the rod that (a) has no 
acceleration, (b) has an acceleration of 2.4 m/s2 to the right.

 15.109 Knowing that at the instant shown crank BC has a constant angu-
lar velocity of 45 rpm clockwise, determine the acceleration (a) of 
point A, (b) of point D.

 15.110 End A of rod AB moves to the right with a constant velocity of 
6 ft/s. For the position shown, determine (a) the angular accelera-
tion of rod AB, (b) the acceleration of the midpoint G of rod AB.
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979Problems 15.111 An automobile travels to the left at a constant speed of 72 km/h. 
Knowing that the diameter of the wheel is 560 mm, determine the 
acceleration (a) of point B, (b) of point C, (c) of point D.

 15.112 The 18-in.-radius flywheel is rigidly attached to a 1.5-in.-radius 
shaft that can roll along parallel rails. Knowing that at the instant 
shown the center of the shaft has a velocity of 1.2 in./s and an 
acceleration of 0.5 in./s2, both directed down to the left, determine 
the acceleration (a) of point A, (b) of point B.

 15.113 and 15.114 A 3-in.-radius drum is rigidly attached to a 5-in.-
radius drum as shown. One of the drums rolls without sliding 
on the surface shown, and a cord is wound around the other 
drum. Knowing that at the instant shown end D of the cord has 
a velocity of 8 in./s and an acceleration of 30 in./s2, both directed 
to the left, determine the accelerations of points A, B, and C of 
the drums.

A

B
D

C

560 mm

308

Fig. P15.111

A

B

18 in.

20�

Fig. P15.112

3 in.
5 in.

G

AD

B

C

Fig. P15.113

3 in.
5 in.

G

A

D B

C

Fig. P15.114

 15.115 A carriage C is supported by a caster A and a cylinder B, each of 
50-mm diameter. Knowing that at the instant shown the carriage 
has an acceleration of 2.4 m/s2 and a velocity of 1.5 m/s, both 
directed to the left, determine (a) the angular accelerations of the 
caster and of the cylinder, (b) the accelerations of the centers of 
the caster and of the cylinder.

A B

C

Fig. P15.115
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980 Kinematics of Rigid Bodies  15.116 A wheel rolls without slipping on a fixed cylinder. Knowing that at 
the instant shown the angular velocity of the wheel is 10 rad/s 
clockwise and its angular acceleration is 30 rad/s2 counter clockwise, 
determine the  acceleration of (a) point A, (b) point B, (c) point C.

 15.117 The 100-mm-radius drum rolls without slipping on a portion of a 
belt which moves downward to the left with a constant velocity of 
120 mm/s. Knowing that at a given instant the velocity and accel-
eration of the center A of the drum are as shown, determine the 
acceleration of point D.

 15.118 In the planetary gear system shown, the radius of gears A, B, C, 
and D is 3 in. and the radius of the outer gear E is 9 in. Knowing 
that gear A has a constant angular velocity of 150 rpm clockwise 
and that the outer gear E is stationary, determine the magnitude 
of the acceleration of the tooth of gear D that is in contact with 
(a) gear A, (b) gear E.

 15.119 The 200-mm-radius disk rolls without sliding on the surface shown. 
Knowing that the distance BG is 160 mm and that at the instant 
shown the disk has an angular velocity of 8 rad/s counterclockwise 
and an angular acceleration of 2 rad/s2 clockwise, determine the 
acceleration of A.

A

B

C

D

E

Fig. P15.118

80 mm
B

160 mm

C

A

Fig. P15.116

A
B

E
720 mm/s2

120 mm/s

180 mm/s

 30°

100 mm

D

Fig. P15.117

800 mm
200 mm

B

G

A

Fig. P15.119

 15.120 Knowing that crank AB rotates about point A with a constant 
angular velocity of 900 rpm clockwise, determine the acceleration 
of the piston P when u 5 60°.

 15.121 Knowing that crank AB rotates about point A with a constant 
angular velocity of 900 rpm clockwise, determine the acceleration 
of the piston P when u 5 120°.

A
B

P

D

150 mm

50 mm

q

Fig. P15.120 and P15.121
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981Problems 15.122 In the two-cylinder air compressor shown the connecting rods BD 
and BE are each 190 mm long and crank AB rotates about the fixed 
point A with a constant angular velocity of 1500 rpm clockwise. 
Determine the acceleration of each piston when u 5 0.

 15.123 The disk shown has a constant angular velocity of 500 rpm coun-
terclockwise. Knowing that rod BD is 10 in. long, determine the 
acceleration of collar D when (a) u 5 90°, (b) u 5 180°.

 15.124 Arm AB has a constant angular velocity of 16 rad/s counter-
clockwise. At the instant when u 5 90°, determine the acceleration 
(a) of collar D, (b) of the midpoint G of bar BD.

6 in.

2 in.

q

A

B

D

Fig. P15.123

E

D

B

q

50 mm

90°

45°

A

Fig. P15.122

 15.125 Arm AB has a constant angular velocity of 16 rad/s counter-
clockwise. At the instant when u 5 60°, determine the acceleration 
of collar D.

 15.126 A straight rack rests on a gear of radius r 5 3 in. and is attached 
to a block B as shown. Knowing that at the instant shown u 5 208, 
the angular velocity of gear D is 3 rad/s clockwise, and it is speed-
ing up at a rate of 2 rad/s2, determine (a) the angular acceleration 
of AB, (b) the acceleration of block B.

q

6 in.

3 in.

A

B

D

G

10 in.

Fig. P15.124 and P15.125

A

D
B

q

r

Fig. P15.126
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982 Kinematics of Rigid Bodies  15.127 Knowing that at the instant shown rod AB has a constant angu-
lar velocity of 6 rad/s clockwise, determine the acceleration of 
point D.

 15.128 Knowing that at the instant shown rod AB has a constant angular 
velocity of 6 rad/s clockwise, determine (a) the angular acceleration 
of member BDE, (b) the acceleration of point E.

 15.129 Knowing that at the instant shown bar AB has a constant angular 
velocity of 19 rad/s clockwise, determine (a) the angular accelera-
tion of bar BGD, (b) the angular acceleration of bar DE.

 15.130 Knowing that at the instant shown bar DE has a constant angular 
velocity of 18 rad/s clockwise, determine (a) the acceleration of 
point B, (b) the acceleration of point G.

 15.131 and 15.132 Knowing that at the instant shown bar AB has a 
constant angular velocity of 4 rad/s clockwise, determine the angu-
lar acceleration (a) of bar BD, (b) of bar DE.

 15.133 and 15.134 Knowing that at the instant shown bar AB has an 
angular velocity of 4 rad/s and an angular acceleration of 2 rad/s2, 
both clockwise, determine the angular acceleration (a) of bar BD, 
(b) of bar DE by using the vector approach as is done in Sample 
Prob. 15.8.

A

B

D

E

C

225 mm 225 mm

90 mm

90 mm

90 mm

Fig. P15.127 and P15.128

20 in. 20 in.

25 in.

15 in.

D
B

A

E

Fig. P15.131 and P15.133

200 mm

175 mm
100 mm

75 mm

A

B

D

E
Fig. P15.132 and P15.134

15.2 in.
4 in.

4 in.

4 in.

8 in.

A

B

G

D E

Fig. P15.129 and P15.130
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983Problems 15.135 Roberts linkage is named after Richard Roberts (1789–1864) and 
can be used to draw a close approximation to a straight line by 
locating a pen at point F. The distance AB is the same as BF, DF, 
and DE. Knowing that at the instant shown, bar AB has a constant 
angular velocity of 4 rad/s clockwise, determine (a) the angular 
acceleration of bar DE, (b) the acceleration of point F.

 15.136 For the oil pump rig shown, link AB causes the beam BCE to oscil-
late as the crank OA revolves. Knowing that OA has a radius of 0.6 m 
and a constant clockwise angular velocity of 20 rpm, determine the 
velocity and acceleration of point D at the instant shown.

 15.137 Denoting by rA the position vector of a point A of a rigid slab that 
is in plane motion, show that (a) the position vector rC of the 
instantaneous center of rotation is

rC 5 rA 1
V 3 vA

v2

  where V is the angular velocity of the slab and vA is the velocity 
of point A, (b) the acceleration of the instantaneous center of rota-
tion is zero if, and only if,

aA 5
a

v
 vA 1 V 3 vA

  where A 5 ak is the angular acceleration of the slab.

A

C
O

w

a

rA

vA

rC

Fig. P15.137

A

B D

EF

q

12 in.

3 in.

12 in.

3 in.

6 in.

Fig. P15.135

B

A O

E

D

3 m

2 m

0.6 m

3.3 m

C

Fig. P15.136

A

B

b

q

Fig. P15.138

  *15.138 The drive disk of the Scotch crosshead mechanism shown has an 
angular velocity V and an angular acceleration A, both directed 
counterclockwise. Using the method of Sec. 15.9, derive expres-
sions for the velocity and acceleration of point B.
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984 Kinematics of Rigid Bodies   *15.139 The wheels attached to the ends of rod AB roll along the surfaces 
shown. Using the method of Sec. 15.9, derive an expression for the 
angular velocity of the rod in terms of vB, u, l, and b.

A

B

q

b dB

l

vB

Fig. P15.139 and P15.140

l

D

E
Bq

A
b

Fig. P15.144 and P15.145

  *15.140 The wheels attached to the ends of rod AB roll along the surfaces 
shown. Using the method of Sec. 15.9 and knowing that the accel-
eration of wheel B is zero, derive an expression for the angular 
acceleration of the rod in terms of vB, u, l, and b.

  *15.141 A disk of radius r rolls to the right with a constant velocity v. Denot-
ing by P the point of the rim in contact with the ground at t 5 0, 
derive expressions for the horizontal and vertical components of the 
velocity of P at any time t.

  *15.142 Rod AB moves over a small wheel at C while end A moves to the 
right with a constant velocity vA. Using the method of Sec. 15.9, 
derive expressions for the angular velocity and angular acceleration 
of the rod.

  *15.143 Rod AB moves over a small wheel at C while end A moves to the 
right with a constant velocity vA. Using the method of Sec. 15.9, 
derive expressions for the horizontal and vertical components of the 
velocity of point B.

  15.144 Crank AB rotates with a constant clockwise angular velocity v. 
Using the method of Sec. 15.9, derive expressions for the angular 
velocity of rod BD and the velocity of the point on the rod coincid-
ing with point E in terms of u, v, b, and l.

C

A

B

q

b

xA

l

Fig. P15.142 and P15.143

 15.145 Crank AB rotates with a constant clockwise angular velocity v. 
Using the method of Sec. 15.9, derive an expression for the angular 
acceleration of rod BD in terms of u, v, b, and l.
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 15.146 Pin C is attached to rod CD and slides in a slot cut in arm AB. 
Knowing that rod CD moves vertically upward with a constant 
velocity v0, derive an expression for (a) the angular velocity of arm 
AB, (b) the components of the velocity of point A, (c) an expression 
for the angular acceleration of arm AB.

  *15.147 The position of rod AB is controlled by a disk of radius r which is 
attached to yoke CD. Knowing that the yoke moves vertically 
upward with a constant velocity v0, derive expressions for the angu-
lar velocity and angular acceleration of rod AB.

  *15.148 A wheel of radius r rolls without slipping along the inside of a fixed 
cylinder of radius R with a constant angular velocity V. Denoting 
by P the point of the wheel in contact with the cylinder at t 5 0, 
derive expressions for the horizontal and vertical components of 
the velocity of P at any time t. (The curve described by point P is 
a hypocycloid.)

  *15.149 In Prob. 15.148, show that the path of P is a vertical straight line 
when r 5 R /2. Derive expressions for the corresponding velocity 
and acceleration of P at any time t.

ww

y

r

P
x

R

Fig. P15.148

15.10  RATE OF CHANGE OF A VECTOR WITH 
RESPECT TO A ROTATING FRAME

We saw in Sec. 11.10 that the rate of change of a vector is the same 
with respect to a fixed frame and with respect to a frame in transla-
tion. In this section, the rates of change of a vector Q with respect 
to a fixed frame and with respect to a rotating frame of reference 
will be considered.† You will learn to determine the rate of change 
of Q with respect to one frame of reference when Q is defined by 
its components in another frame.

†It is recalled that the selection of a fixed frame of reference is arbitrary. Any frame 
may be designated as “fixed”; all others will then be considered as moving.

15.10 Rate of Change of a Vector with 
Respect to a Rotating Frame 985

Photo 15.7 A Geneva mechanism is used to 
convert rotary motion into intermittent motion.

A

B
D

b

C

l

�

Fig. P15.146

B

C

D

A

r

q

Fig. P15.147
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986 Kinematics of Rigid Bodies  Consider two frames of reference centered at O, a fixed frame 
OXYZ and a frame Oxyz which rotates about the fixed axis OA; let 
V denote the angular velocity of the frame Oxyz at a given instant 
(Fig. 15.26). Consider now a vector function Q(t) represented by the 
vector Q attached at O; as the time t varies, both the direction and 
the magnitude of Q change. Since the variation of Q is viewed dif-
ferently by an observer using OXYZ as a frame of reference and by 
an observer using Oxyz, we should expect the rate of change of Q to 
depend upon the frame of reference which has been selected. There-
fore, the rate of change of Q with respect to the fixed frame OXYZ 
will be denoted by (Q̇)OXYZ, and the rate of change of Q with respect 
to the rotating frame Oxyz will be denoted by (Q̇)Oxyz. We propose to 
determine the relation existing between these two rates of change.
 Let us first resolve the vector Q into components along the x, y, 
and z axes of the rotating frame. Denoting by i, j, and k the corre-
sponding unit vectors, we write

 Q 5 Qxi 1 Qyj 1 Qzk (15.27)

Differentiating (15.27) with respect to t and considering the unit 
vectors i, j, k as fixed, we obtain the rate of change of Q with respect 
to the rotating frame Oxyz:

 (Q̇)Oxyz 5  Q̇xi 1  Q̇yj 1  Q̇zk (15.28)

 To obtain the rate of change of Q with respect to the fixed 
frame OXYZ, we must consider the unit vectors i, j, k as variable 
when differentiating (15.27). We therefore write

(Q
.

)OXYZ 5 Q
.

xi 1 Q
.

yj 1 Q
.

zk 1 Qx 

di
dt

1 Qy 

dj

dt
1 Qz 

dk
dt

  (15.29)

Recalling (15.28), we observe that the sum of the first three terms 
in the right-hand member of (15.29) represents the rate of change 
(Q̇)Oxyz. We note, on the other hand, that the rate of change (Q̇)OXYZ 
would reduce to the last three terms in (15.29) if the vector Q were 
fixed within the frame Oxyz, since (Q̇)Oxyz would then be zero. But 
in that case, (Q̇)OXYZ would represent the velocity of a particle located 
at the tip of Q and belonging to a body rigidly attached to the frame 
Oxyz. Thus, the last three terms in (15.29) represent the velocity of 
that particle; since the frame Oxyz has an angular velocity V with 
respect to OXYZ at the instant considered, we write, by (15.5),

 Qx 

di
dt

1 Qy 

dj

dt
1 Qz 

dk
dt

5 V 3 Q (15.30)

Substituting from (15.28) and (15.30) into (15.29), we obtain the 
fundamental relation

 (Q̇)OXYZ 5 (Q̇)Oxyz 1 V 3 Q (15.31)

We conclude that the rate of change of the vector Q with respect to 
the fixed frame OXYZ is made of two parts: The first part represents 
the rate of change of Q with respect to the rotating frame Oxyz; the 
second part, V 3 Q, is induced by the rotation of the frame Oxyz.

A

O

x

z

y

Z

X

Y

Q

j
i

k

ΩΩ

Fig. 15.26
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987 The use of relation (15.31) simplifies the determination of the 
rate of change of a vector Q with respect to a fixed frame of refer-
ence OXYZ when the vector Q is defined by its components along 
the axes of a rotating frame Oxyz, since this relation does not require 
the separate computation of the derivatives of the unit vectors defin-
ing the orientation of the rotating frame.

15.11  PLANE MOTION OF A PARTICLE RELATIVE TO 
A ROTATING FRAME. CORIOLIS ACCELERATION

Consider two frames of reference, both centered at O and both in the 
plane of the figure, a fixed frame OXY and a rotating frame Oxy (Fig. 
15.27). Let P be a particle moving in the plane of the figure. The 
position vector r of P is the same in both frames, but its rate of change 
depends upon the frame of reference which has been selected.
 The absolute velocity vP of the particle is defined as the velocity 
observed from the fixed frame OXY and is equal to the rate of change 
(ṙ)OXY of r with respect to that frame. We can, however, express vP in 
terms of the rate of change (ṙ)Oxy observed from the rotating frame if 
we make use of Eq. (15.31). Denoting by V the angular velocity of the 
frame Oxy with respect to OXY at the instant considered, we write

 vP 5 (ṙ)OXY 5 V 3 r 1 (ṙ)Oxy (15.32)

But (ṙ)Oxy defines the velocity of the particle P relative to the rotating 
frame Oxy. Denoting the rotating frame by ^ for short, we represent 
the velocity (ṙ)Oxy of P relative to the rotating frame by vP/^. Let us 
imagine that a rigid slab has been attached to the rotating frame. 
Then vP/^ represents the velocity of P along the path that it describes 
on that slab (Fig. 15.28), and the term V 3 r in (15.32) represents 
the velocity vP9 of the point P9 of the slab—or rotating frame—which 
coincides with P at the instant considered. Thus, we have

 vP 5 vP9 1 vP/^ (15.33)

where vP 5 absolute velocity of particle P
 vP9 5 velocity of point P9 of moving frame ^ coinciding with P
 vP/^ 5 velocity of P relative to moving frame ^

 The absolute acceleration aP of the particle is defined as the 
rate of change of vP with respect to the fixed frame OXY. Computing 
the rates of change with respect to OXY of the terms in (15.32), 
we write

 aP 5 v̇P 5 V
.

3 r 1 V 3 ṙ 1
d
dt

[(ṙ)Oxy] (15.34)

where all derivatives are defined with respect to OXY, except where 
indicated otherwise. Referring to Eq. (15.31), we note that the last 
term in (15.34) can be expressed as

d
dt

[(ṙ)Oxy] 5 (r̈)Oxy 1 V 3 (ṙ)Oxy

x

y

X

Y

r

ΩΩ

P

O

Fig. 15.27

x

y

X

Y

r

ΩΩ

P

O

P'

vP' = ΩΩ × r
vP/    = (r)O xy

.

Fig. 15.28

15.11 Plane Motion of a Particle Relative to a 
Rotating Frame. Coriolis Acceleration
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988 Kinematics of Rigid Bodies On the other hand, ṙ represents the velocity vP and can be replaced 
by the right-hand member of Eq. (15.32). After completing these 
two substitutions into (15.34), we write

aP 5   ̇V 3 r 1 V 3 (V 3 r) 1 2V 3 (ṙ)Oxy 1 (  ̈r)Oxy   (15.35)

Referring to the expression (15.8) obtained in Sec. 15.3 for the accel-
eration of a particle in a rigid body rotating about a fixed axis, we 
note that the sum of the first two terms represents the acceleration 
aP9 of the point P9 of the rotating frame which coincides with P at 
the instant considered. On the other hand, the last term defines the 
acceleration aP/f of P relative to the rotating frame. If it were not 
for the third term, which has not been accounted for, a relation 
similar to (15.33) could be written for the accelerations, and aP could 
be expressed as the sum of aP9 and aP/f. However, it is clear that 
such a relation would be incorrect and that we must include the 
additional term. This term, which will be denoted by ac, is called 
the complementary acceleration, or Coriolis acceleration, after the 
French mathematician de Coriolis (1792–1843). We write

 aP 5 aP9 1 aP/^ 1 ac (15.36)

where aP 5 absolute acceleration of particle P
 aP9 5  acceleration of point P9 of moving frame ^ coinciding 

with P
 aP/^ 5 acceleration of P relative to moving frame ^
 ac 5 2V 3 ( ˙ r)Oxy 5 2V 3 vP/^
 5 complementary, or Coriolis, acceleration†

 We note that since point P9 moves in a circle about the origin 
O, its acceleration aP9 has, in general, two components: a component 
(aP9)t tangent to the circle, and a component (aP9)n directed toward 
O. Similarly, the acceleration aP/^ generally has two components: a 
component (aP/^)t tangent to the path that P describes on the rotating 
slab, and a component (aP/^)n directed toward the center of curvature 
of that path. We further note that since the vector V is perpendicular 
to the plane of motion, and thus to vP/^, the magnitude of the Coriolis 
acceleration ac 5 2V 3 vP/^ is equal to 2VvP/^, and its direction can 
be obtained by rotating the vector vP/^ through 90° in the sense of 
rotation of the moving frame (Fig. 15.29). The Coriolis acceleration 
reduces to zero when either V or vP/^ is zero.
 The following example will help in understanding the physical 
meaning of the Coriolis acceleration. Consider a collar P which is 

†It is important to note the difference between Eq. (15.36) and Eq. (15.21) of Sec. 15.8. 
When we wrote
 aB 5 aA 1 aB/A (15.21)

in Sec. 15.8, we were expressing the absolute acceleration of point B as the sum of its 
acceleration aB/A relative to a frame in translation and of the acceleration aA of a point 
of that frame. We are now trying to relate the absolute acceleration of point P to its 
 acceleration aP/f relative to a rotating frame f and to the acceleration aP9 of the point P9 
of that frame which coincides with P; Eq. (15.36) shows that because the frame is rotating, 
it is necessary to include an additional term representing the Coriolis acceleration ac.

x

y

X

Y

r

ΩΩ

P

O

a c = 2 ΩΩ × vP/

vP/

Fig. 15.29

bee02324_ch15_926-1039.indd Page 988  23/09/11  8:36 AM user-f501bee02324_ch15_926-1039.indd Page 988  23/09/11  8:36 AM user-f501 /204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles/204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


989made to slide at a constant relative speed u along a rod OB rotating 
at a constant angular velocity V about O (Fig. 15.30a). According to 
formula (15.36), the absolute acceleration of P can be obtained by 
adding vectorially the acceleration aA of the point A of the rod coin-
ciding with P, the relative acceleration aP/OB of P with respect to the 
rod, and the Coriolis acceleration ac. Since the angular velocity V of 
the rod is constant, aA reduces to its normal component (aA)n of mag-
nitude rv2; and since u is constant, the relative acceleration aP/OB is 
zero. According to the definition given above, the Coriolis accelera-
tion is a vector perpendicular to OB, of magnitude 2v u, and directed 
as shown in the figure. The acceleration of the collar P consists, 
therefore, of the two vectors shown in Fig. 15.30a. Note that the 
result obtained can be checked by applying the relation (11.44).
 To understand better the significance of the Coriolis acceleration, 
let us consider the absolute velocity of P at time t and at time t 1 Dt 
(Fig. 15.30b). The velocity at time t can be resolved into its compo-
nents u and vA; the velocity at time t 1 Dt can be resolved into its 
components u9 and vA9. Drawing these components from the same 
origin (Fig. 15.30c), we note that the change in velocity during the
time Dt can be represented by the sum of three vectors, RR¿

¡
, TT–

¡
,

and T–T¿
¡

. The vector TT–
¡

 measures the change in direction of the
velocity vA, and the quotient TT–

¡
/¢t represents the acceleration aA

when Dt approaches zero. We check that the direction of TT–
¡

 is that 
of aA when Dt approaches zero and that

lim
¢ty0

 
TT–
¢t

5 lim
¢ty0

 vA 
¢u

¢t
5 rvv 5 rv2 5 aA

The vector RR¿
¡

 measures the change in direction of u due to the
rotation of the rod; the vector T–T¿

¡
 measures the change in magni-

tude of vA due to the motion of P on the rod. The vectors RR¿
¡

 and 
T–T¿
¡

 result from the combined effect of the relative motion of P and 
of the rotation of the rod; they would vanish if either of these two 
motions stopped. It is easily verified that the sum of these two vectors 
defines the Coriolis acceleration. Their direction is that of ac when 
Dt approaches zero, and since RR9 5 u Du and T 0T9 5 vA9 2 vA 5 
(r 1 Dr)v 2 rv 5 v Dr, we check that ac is equal to

lim
¢ty0 aRR¿

¢t
1

T–T¿
¢t
b 5 lim

¢ty0
 au 

¢u

¢t
1 v 

¢r
¢t
b 5 uv 1 v u 5 2v u

 Formulas (15.33) and (15.36) can be used to analyze the motion 
of mechanisms which contain parts sliding on each other. They make 
it possible, for example, to relate the absolute and relative motions 
of sliding pins and collars (see Sample Probs. 15.9 and 15.10). The 
concept of Coriolis acceleration is also very useful in the study of 
long-range projectiles and of other bodies whose motions are appre-
ciably affected by the rotation of the earth. As was pointed out in 
Sec. 12.2, a system of axes attached to the earth does not truly con-
stitute a newtonian frame of reference; such a system of axes should 
actually be considered as rotating. The formulas derived in this sec-
tion will therefore facilitate the study of the motion of bodies with 
respect to axes attached to the earth.

15.11 Plane Motion of a Particle Relative to a 
Rotating Frame. Coriolis Acceleration

a c = 2wu

aA = rw2

u

P

P

B

A

A

O

w

(a)

(b)

(c)

vA' = (r + Δr)w

vA

vA = rw

Δq

u'

u

u'
u

A'

R'
R

T' T

T"

r

Δr

r

Δq
Δq O'

vA'

Fig. 15.30
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990

SAMPLE PROBLEM 15.9

The Geneva mechanism shown is used in many counting instruments and 
in other applications where an intermittent rotary motion is required. Disk D 
rotates with a constant counterclockwise angular velocity VD of 10 rad/s. A 
pin P is attached to disk D and slides along one of several slots cut in disk S. 
It is desirable that the angular velocity of disk S be zero as the pin enters 
and leaves each slot; in the case of four slots, this will occur if the distance 
between the centers of the disks is l 5 12 R.
 At the instant when f 5 150°, determine (a) the angular velocity of 
disk S, (b) the velocity of pin P relative to disk S.

Disk S

Disk D

R = 50 mm

O

f = 135°R

P

B

l =    2R

SOLUTION

We solve triangle OPB, which corresponds to the position f 5 150°. Using 
the law of cosines, we write

r 2 5 R2 1 l2 2 2Rl cos 30° 5 0.551R2  r 5 0.742R 5 37.1 mm

From the law of sines,

 sin b
R

5
 sin 30°

r
    sin b 5

 sin 30°
0.742

    b 5 42.4°

Since pin P is attached to disk D, and since disk D rotates about point B, 
the magnitude of the absolute velocity of P is

vP 5 RvD 5 (50 mm)(10 rad/s) 5 500 mm/s
 vP 5 500 mm/s d 60°

We consider now the motion of pin P along the slot in disk S. Denoting by 
P9 the point of disk S which coincides with P at the instant considered and 
selecting a rotating frame S attached to disk S, we write

vP 5 vP9 1 vP/S

Noting that vP9 is perpendicular to the radius OP and that vP/S is directed 
along the slot, we draw the velocity triangle corresponding to the equation 
above. From the triangle, we compute

 g 5 90° 2 42.4° 2 30° 5 17.6°
 vP9 5 vP sin g 5 (500 mm/s) sin 17.6°
 vP9 5 151.2 mm/s f 42.4°
 vP/S 5 vP cos g 5 (500 mm/s) cos 17.6°
 vP/S 5 vP/S 5 477 mm/s d 42.4° ◀

Since vP9 is perpendicular to the radius OP, we write

vP9 5 rvS   151.2 mm/s 5 (37.1 mm)vS
 VS 5 VS 5 4.08 rad/s i ◀

Disk S Disk DP

O B

f = 150°
b P'

R

r

l =    2R

b = 42.4°

30°
�

vP'

vP

vP/
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SAMPLE PROBLEM 15.10

In the Geneva mechanism of Sample Prob. 15.9, disk D rotates with a 
constant counterclockwise angular velocity VD of 10 rad/s. At the instant 
when f 5 150°, determine the angular acceleration of disk S.

SOLUTION

Referring to Sample Prob. 15.9, we obtain the angular velocity of the frame 
S attached to disk S and the velocity of the pin relative to S:

vS 5 4.08 rad/s i

b 5 42.4°  vP/S 5 477 mm/s d 42.4°

Since pin P moves with respect to the rotating frame S, we write

 aP 5 aP9 1 aP/S 1 ac (1)

Each term of this vector equation is investigated separately.

Absolute Acceleration aP. Since disk D rotates with a constant angular 
velocity, the absolute acceleration aP is directed toward B. We have

 aP 5 Rv2
D 5 (500 mm)(10 rad/s)2 5 5000 mm/s2

 aP 5 5000 mm/s2 c 30°

Acceleration aP9 of the Coinciding Point P9. The acceleration aP9 of the 
point P9 of the frame S which coincides with P at the instant considered is 
resolved into normal and tangential components. (We recall from Sample 
Prob. 15.9 that r 5 37.1 mm.)

(aP9)n 5 rv2
S 5 (37.1 mm)(4.08 rad/s)2 5 618 mm/s2

 (aP9)n 5 618 mm/s2 d 42.4°
 (aP9)t 5 raS 5 37.1aS  (aP9)t 5 37.1aS f 42.4°

Relative Acceleration aPyS. Since the pin P moves in a straight slot cut in 
disk S, the relative acceleration aP/S must be parallel to the slot; i.e., its 
direction must be a 42.4°.

Coriolis Acceleration ac. Rotating the relative velocity vP/S through 90° in 
the sense of VS , we obtain the direction of the Coriolis component of the 
acceleration: h  42.4°. We write 

ac 5 2vSvP/S  5 2(4.08 rad/s)(477 mm/s) 5 3890 mm/s2

ac 5 3890 mm/s2 h 42.4°

We rewrite Eq. (1) and substitute the accelerations found above:

aP 5 (aP9)n 1 (aP9)t 1 aP/S  1 ac

[5000 c 30°] 5 [618 d 42.4°] 1 [37.1aS  f 42.4°]
1 [aP/S  a 42.4°] 1 [3890 h 42.4°]

Equating components in a direction perpendicular to the slot,

5000 cos 17.6° 5 37.1aS  2 3890
AS 5 AS 5 233 rad/s2

i ◀

Disk S Disk DP

P'

O
B

f = 150�
b

r

R

l =    2R

30°

42.4°

42.4°

42.4°

42.4°

(aP')n = 618 mm/s2

(aP')t = 37.1a
aP/

ac = 3890 mm/s2

aP = 5000 mm/s2

z

x

x

z
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SOLVING PROBLEMS
ON YOUR OWN

In this lesson you studied the rate of change of a vector with respect to a rotat-
ing frame and then applied your knowledge to the analysis of the plane motion 

of a particle relative to a rotating frame.

1. Rate of change of a vector with respect to a fixed frame and with respect 
to a rotating frame. Denoting by ( ˙ Q)OXYZ the rate of change of a vector Q with
respect to a fixed frame OXYZ and by (Q̇)Oxyz its rate of change with respect to a 
rotating frame Oxyz, we obtained the fundamental relation

 (Q̇)OXYZ 5 (Q̇)Oxyz 1 V 3 Q (15.31)

where V is the angular velocity of the rotating frame.

This fundamental relation will now be applied to the solution of two-dimensional 
problems.

2. Plane motion of a particle relative to a rotating frame. Using the above 
fundamental relation and designating by ^ the rotating frame, we obtained the 
following expressions for the velocity and the acceleration of a particle P:

 vP 5 vP9 1 vP/^ (15.33)
 aP 5 aP9 1 aP/^ 1 ac (15.36)

In these equations:
 a. The subscript P refers to the absolute motion of the particle P, that is, to its 
motion with respect to a fixed frame of reference OXY.
 b. The subscript P9 refers to the motion of the point P9 of the rotating frame 
^ which coincides with P at the instant considered.
 c. The subscript P/^ refers to the motion of the particle P relative to the rotat-
ing frame ^.
 d. The term ac represents the Coriolis acceleration of point P. Its magnitude 
is 2VvP/^, and its direction is found by rotating vP/^ through 90° in the sense of 
rotation of the frame ^.

You should keep in mind that the Coriolis acceleration should be taken into 
account whenever a part of the mechanism you are analyzing is moving with 
respect to another part that is rotating. The problems you will encounter in this 
lesson involve collars that slide on rotating rods, booms that extend from cranes 
rotating in a vertical plane, etc.

When solving a problem involving a rotating frame, you will find it convenient to 
draw vector diagrams representing Eqs. (15.33) and (15.36), respectively, and use 
these diagrams to obtain either an analytical or a graphical solution.
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PROBLEMS
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CONCEPT QUESTION

15.CQ8 A person walks radially inward on a platform that is rotating coun-
terclockwise about its center. Knowing that the platform has a 
constant angular velocity V and the person walks with a constant 
speed u relative to the platform, what is the direction of the ac-
celeration of the person at the instant shown?
a. Negative x
b. Negative y
c. Negative x and positive y
d. Positive x and positive y 
e. Negative x and negative y

60° 20°
BA

P
E

b

Fig. P15.152

A

P

B

b

D

60° 20°

Fig. P15.153

y
x

ω

u

Person

Overhead View

Fig. P15.CQ8

A P

B

E

D

500 mm
308

Fig. P15.150 and P15.151

END-OF-SECTION PROBLEMS

 15.150 and 15.151 Pin P is attached to the collar shown; the motion 
of the pin is guided by a slot cut in rod BD and by the collar that 
slides on rod AE. Knowing that at the instant considered the rods 
rotate clockwise with constant angular velocities, determine for the 
given data the velocity of pin P.

 15.150 vAE 5 8 rad/s, vBD 5 3 rad/s
 15.151 vAE 5 7 rad/s, vBD 5 4.8 rad/s

 15.152 and 15.153 Two rotating rods are connected by slider block P. 
The rod attached at A rotates with a constant clockwise angular 
velocity vA. For the given data, determine for the position shown 
(a) the angular velocity of the rod attached at B, (b) the relative 
velocity of slider block P with respect to the rod on which it slides.

 15.152 b 5 8 in., vA 5 6 rad/s
 15.153 b 5 300 mm, vA 5 10 rad/s
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994 Kinematics of Rigid Bodies  15.154 Pin P is attached to the wheel shown and slides in a slot cut in bar 
BD. The wheel rolls to the right without slipping with a constant 
angular velocity of 20 rad/s. Knowing that x 5 480 mm when u 5 0, 
determine the angular velocity of the bar and the relative velocity of 
pin P with respect to the rod when (a) u 5 0, (b) u 5 90°.

u

u

u

uOP1

P2

P3

P4

r

r
r

r

Fig. P15.158

 15.155 Bar AB rotates clockwise with a constant angular velocity of 8 rad/s 
and rod EF rotates clockwise with a constant angular velocity of 
6 rad/s. Determine at the instant shown (a) the angular velocity of 
bar BD, (b) the relative velocity of collar D with respect to rod EF.

 15.156 Bar AB rotates clockwise with a constant angular velocity of 4 rad/s. 
Knowing that the magnitude of the velocity of collar D is 20 ft/s 
and that the angular velocity of bar BD is counterclockwise at the 
instant shown, determine (a) the angular velocity of bar EF, 
(b) the relative velocity of collar D with respect to rod EF.

 15.157 The motion of pin P is guided by slots cut in rods AD and BE.  
Knowing that bar AD has a constant angular velocity of 4 rad/s 
clockwise and bar BE has an angular velocity of 5 rad/s counter-
clockwise and is slowing down at a rate of 2 rad/s2, determine the 
velocity of P for the position shown.

 15.158 Four pins slide in four separate slots cut in a circular plate as shown. 
When the plate is at rest, each pin has a velocity directed as shown 
and of the same constant magnitude u. If each pin maintains the 
same velocity relative to the plate when the plate rotates about O 
with a constant counterclockwise angular velocity V, determine the 
acceleration of each pin.

B

x q

P

A

D

200 mm
140 mm

Fig. P15.154
E

F

A

B

D

24 in.

12 in.

Fig. P15.155 and P15.156

A B

E

D

P

100 mm
300 mm

150 mm
150 mm

Fig. P15.157

 15.159 Solve Prob. 15.158, assuming that the plate rotates about O with 
a constant clockwise angular velocity V.
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995Problems

300 mm

120 mm

z

B
E

CA
F

x

y

300 mm
D

u

Fig. P15.166 and P15.167

 15.160 Pin P slides in the circular slot cut in the plate shown at a constant 
relative speed u 5 500 mm/s. Assuming that at the instant shown 
the angular velocity of the plate is 6 rad/s and is increasing at the 
rate of 20 rad/s2, determine the acceleration of pin P when u 5 908.

 15.161 The cage of a mine elevator moves downward at a constant speed 
of 40 ft/s. Determine the magnitude and direction of the Coriolis 
acceleration of the cage if the elevator is located (a) at the equator, 
(b) at latitude 40° north, (c) at latitude 40° south.

 15.162 A rocket sled is tested on a straight track that is built along a merid-
ian. Knowing that the track is located at latitude 40° north, deter-
mine the Coriolis acceleration of the sled when it is moving north 
at a speed of 900 km/h.

 15.163 The motion of blade D is controlled by the robot arm ABC. At the 
instant shown the arm is rotating clockwise at the constant rate 
v 5 1.8 rad/s and the length of portion BC of the arm is being 
decreased at the constant rate of 250 mm/s. Determine (a) the 
velocity of D, (b) the acceleration of D.

 15.164 At the instant shown the length of the boom AB is being decreased 
at the constant rate of 0.2 m/s and the boom is being lowered at the 
constant rate of 0.08 rad/s. Determine (a) the velocity of point B, 
(b) the acceleration of point B.

100 mm

150 mm

P

C

q

A

u

ww

Fig. P15.160

ww
240 mm

320 mm

25°
A

B

C

D

Fig. P15.163

A

B

q = 30�

6 m

Fig. P15.164 and P15.165

 15.165 At the instant shown the length of the boom AB is being increased 
at the constant rate of 0.2 m/s and the boom is being lowered at the 
constant rate of 0.08 rad/s. Determine (a) the velocity of point B, 
(b) the acceleration of point B.

 15.166 and 15.167 The sleeve BC is welded to an arm that rotates 
about A with a constant angular velocity V. In the position shown 
rod DF is being moved to the left at a constant speed u 5 400 mm/s 
relative to the sleeve. For the given angular velocity V, determine 
the acceleration (a) of point D, (b) of the point of rod DF that coin-
cides with point E.

 15.166 V 5 (3 rad/s) i
 15.167 V 5 (3 rad/s) j
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996 Kinematics of Rigid Bodies  15.168 and 15.169 A chain is looped around two gears of radius 40 mm 
that can rotate freely with respect to the 320-mm arm AB. The chain 
moves about arm AB in a clockwise direction at the constant rate of 
80 mm/s relative to the arm. Knowing that in the position shown 
arm AB rotates clockwise about A at the constant rate v 5 0.75 rad/s, 
determine the acceleration of each of the chain links indicated.

 15.168 Links 1 and 2
 15.169 Links 3 and 4

 15.170 A basketball player shoots a free throw in such a way that his shoul-
der can be considered a pin joint at the moment of release as shown. 
Knowing that at the instant shown the upper arm SE has a constant 
angular velocity of 2 rad/s counterclockwise and the forearm EW 
has a constant clockwise angular velocity of 4 rad/s with respect to 
SE, determine the velocity and acceleration of the wrist W.

A

B

P

u

ww

q

500 mmr

Fig. P15.172

 15.171 The human leg can be crudely approximated as two rigid bars (the 
femur and the tibia) connected with a pin joint. At the instant 
shown, the velocity of the ankle A is zero, the tibia AK has an 
angular velocity of 1.5 rad/s counterclockwise and an angular 
acceleration of 1 rad/s2 counterclockwise. Determine the relative 
angular velocity and relative angular acceleration of the femur KH 
with respect to AK so that the velocity and acceleration of H are 
both straight up at this instant. 

 15.172 The collar P slides outward at a constant relative speed u along 
rod AB, which rotates counterclockwise with a constant angular 
velocity of 20 rpm. Knowing that r 5 250 mm when u 5 0 and 
that the collar reaches B when u 5 90°, determine the magnitude 
of the acceleration of the collar P just as it reaches B.

1

2

4

A

160 mm 160 mm

3A B

u

Fig. P15.168 and P15.169

W

S

E
808

308
Model

300 mm

350 mm

Fig. P15.170

H

K

A

458

458

14 in.

12 in.

hip

Fig. P15.171
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997Problems 15.173 Pin P slides in a circular slot cut in the plate shown at a constant 
relative speed u 5 90 mm/s. Knowing that at the instant shown 
the plate rotates clockwise about A at the constant rate v 5 3 rad/s, 
determine the acceleration of the pin if it is located at (a) point A, 
(b) point B, (c) point C.

 15.174 Pin P slides in a circular slot cut in the plate shown at a constant 
relative speed u 5 90 mm/s. Knowing that at the instant shown the 
angular velocity V of the plate is 3 rad/s clockwise and is decreasing 
at the rate of 5 rad/s2, determine the acceleration of the pin if it is 
located at (a) point A, (b) point B, (c) point C.

 15.175 Pin P is attached to the wheel shown and slides in a slot cut in 
bar BD. The wheel rolls to the right without slipping with a con-
stant angular velocity of 20 rad/s. Knowing that x 5 480 mm when 
u 5 0, determine (a) the angular acceleration of the bar, (b) the 
relative acceleration of pin P with respect to the bar when u 5 0.

 15.176 Knowing that at the instant shown the rod attached at A has an 
angular velocity of 5 rad/s counterclockwise and an angular accel-
eration of 2 rad/s2 clockwise, determine the angular velocity and 
the angular acceleration of the rod attached at B.

A

B

C

P
u

100 mm

ww

Fig. P15.173 and P15.174

B

x q

P

A

D

200 mm
140 mm

Fig. P15.175

A

P

B

D

258

708

200 mm

Fig. P15.176

 15.177 The Geneva mechanism shown is used to provide an intermittent 
rotary motion of disk S. Disk D rotates with a constant counter-
clockwise angular velocity VD of 8 rad/s. A pin P is attached to disk 
D and can slide in one of the six equally spaced slots cut in disk S. 
It is desirable that the angular velocity of disk S be zero as the pin 
enters and leaves each of the six slots; this will occur if the distance 
between the centers of the disks and the radii of the disks are 
related as shown. Determine the angular velocity and angular accel-
eration of disk S at the instant when f 5 150°.

 15.178 In Prob. 15.177, determine the angular velocity and angular accel-
eration of disk S at the instant when f 5 135°.

 15.179 At the instant shown bar BC has an angular velocity of 3 rad/s and 
an angular acceleration of 2 rad/s2, both counterclockwise; deter-
mine the angular acceleration of the plate.

 15.180 At the instant shown bar BC has an angular velocity of 3 rad/s and 
an angular acceleration of 2 rad/s2, both clockwise; determine the 
angular acceleration of the plate.

RS = √3RD

O

P

B

f

RD = 1.25 in.

l = 2RD

Disk D
when f = 120°

Disk S

Fig. P15.177

3 in.

4 in.A

D

B

C

4 in. 6 in.

Fig. P15.179 and P15.180
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  *15.181 Rod AB passes through a collar which is welded to link DE. Know-
ing that at the instant shown block A moves to the right at a con-
stant speed of 75 in./s, determine (a) the angular velocity of rod AB, 
(b) the velocity relative to the collar of the point of the rod in con-
tact with the collar, (c) the acceleration of the point of the rod in 
contact with the collar. (Hint: Rod AB and link DE have the same 
V and the same A.)

  *15.182 Solve Prob. 15.181 assuming block A moves to the left at a constant 
speed of 75 in./s.

  *15.183 In Prob. 15.157, determine the acceleration of pin P.

A 30�

6 in.
D

E

B

Fig. P15.181

†This is known as Euler’s theorem.

B2

B1 = A2

B1

A1

(a)

(b)

A1

A2

B2

O

C

Fig. 15.31

998 Kinematics of Rigid Bodies

*15.12 MOTION ABOUT A FIXED POINT
In Sec. 15.3 the motion of a rigid body constrained to rotate about 
a fixed axis was considered. The more general case of the motion of 
a rigid body which has a fixed point O will now be examined.
 First, it will be proved that the most general displacement of a 
rigid body with a fixed point O is equivalent to a rotation of the body 
about an axis through O.† Instead of considering the rigid body 
itself, we can detach a sphere of center O from the body and analyze 
the motion of that sphere. Clearly, the motion of the sphere com-
pletely characterizes the motion of the given body. Since three points 
define the position of a solid in space, the center O and two points 
A and B on the surface of the sphere will define the position of the 
sphere and thus the position of the body. Let A1 and B1 characterize 
the position of the sphere at one instant, and let A2 and B2 character-
ize its position at a later instant (Fig. 15.31a). Since the sphere is 
rigid, the lengths of the arcs of great circle A1B1 and A2B2 must be 
equal, but except for this requirement, the positions of A1, A2, B1, 
and B2 are arbitrary. We propose to prove that the points A and B 
can be brought, respectively, from A1 and B1 into A2 and B2 by a 
single rotation of the sphere about an axis.
 For convenience, and without loss of generality, we select point B 
so that its initial position coincides with the final position of A; thus, 
B1 5 A2 (Fig. 15.31b). We draw the arcs of great circle A1A2, A2B2 
and the arcs bisecting, respectively, A1A2 and A2B2. Let C be the 
point of intersection of these last two arcs; we complete the construc-
tion by drawing A1C, A2C, and B2C. As pointed out above, because 
of the rigidity of the sphere, A1B1 5 A2B2. Since C is by construction 
equidistant from A1, A2, and B2, we also have A1C 5 A2C 5 B2C. 
As a result, the spherical triangles A1CA2 and B1CB2 are congruent 
and the angles A1CA2 and B1CB2 are equal. Denoting by u the com-
mon value of these angles, we conclude that the sphere can be brought 
from its initial position into its final position by a single rotation 
through u about the axis OC.
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999 It follows that the motion during a time interval Dt of a rigid 
body with a fixed point O can be considered as a rotation through 
Du about a certain axis. Drawing along that axis a vector of magni-
tude Du/Dt and letting Dt approach zero, we obtain at the limit the 
instantaneous axis of rotation and the angular velocity V of the body 
at the instant considered (Fig. 15.32). The velocity of a particle P of 
the body can then be obtained, as in Sec. 15.3, by forming the vector 
product of V and of the position vector r of the particle:

 v 5
dr
dt

5 V 3 r (15.37)

The acceleration of the particle is obtained by differentiating (15.37) 
with respect to t. As in Sec. 15.3 we have

 a 5 A 3 r 1 V 3 (V 3 r) (15.38)

where the angular acceleration A is defined as the derivative

 A 5
dV

dt
 (15.39)

of the angular velocity V.
 In the case of the motion of a rigid body with a fixed point, the 
direction of V and of the instantaneous axis of rotation changes from 
one instant to the next. The angular acceleration A therefore reflects 
the change in direction of V as well as its change in magnitude and, 
in general, is not directed along the instantaneous axis of rotation. 
While the particles of the body located on the instantaneous axis of 
rotation have zero velocity at the instant considered, they do not have 
zero acceleration. Also, the accelerations of the various particles of 
the body cannot be determined as if the body were rotating perma-
nently about the instantaneous axis.
 Recalling the definition of the velocity of a particle with posi-
tion vector r, we note that the angular acceleration A, as expressed 
in (15.39), represents the velocity of the tip of the vector V. This 
property may be useful in the determination of the angular accelera-
tion of a rigid body. For example, it follows that the vector A is 
tangent to the curve described in space by the tip of the vector V.
 We should note that the vector V moves within the body, as 
well as in space. It thus generates two cones called, respectively, the 
body cone and the space cone (Fig. 15.33).† It can be shown that at 
any given instant, the two cones are tangent along the instantaneous 
axis of rotation and that as the body moves, the body cone appears 
to roll on the space cone.

15.12 Motion About a Fixed Point

O

P

r

ww

aa

Fig. 15.32

†It is recalled that a cone is, by definition, a surface generated by a straight line passing 
through a fixed point. In general, the cones considered here will not be circular cones.

Fig. 15.33

Space cone

O

aa

Body cone

w
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1000 Kinematics of Rigid Bodies  Before concluding our analysis of the motion of a rigid body 
with a fixed point, we should prove that angular velocities are actually 
vectors. As indicated in Sec. 2.3, some quantities, such as the finite 
rotations of a rigid body, have magnitude and direction but do not 
obey the parallelogram law of addition; these quantities cannot be 
considered as vectors. In contrast, angular velocities (and also infini-
tesimal rotations), as will be demonstrated presently, do obey the 
parallelogram law and thus are truly vector quantities.

 Consider a rigid body with a fixed point O which at a given 
instant rotates simultaneously about the axes OA and OB with angu-
lar velocities V1 and V2 (Fig. 15.34a). We know that this motion must 
be equivalent at the instant considered to a single rotation of angular 
velocity V. We propose to show that

 V 5 V1 1 V2 (15.40)

i.e., that the resulting angular velocity can be obtained by adding V1 
and V2 by the parallelogram law (Fig. 15.34b).
 Consider a particle P of the body, defined by the position vector 
r. Denoting, respectively, by v1, v2, and v the velocity of P when the 
body rotates about OA only, about OB only, and about both axes 
simultaneously, we write

 v 5 V 3 r  v1 5 V1 3 r  v2 5 V2 3 r  (15.41)

But the vectorial character of linear velocities is well established 
(since they represent the derivatives of position vectors). We there-
fore have

v 5 v1 1 v2

where the plus sign indicates vector addition. Substituting from 
(15.41), we write

V 3 r 5 V1 3 r 1 V2 3 r
 V 3 r 5 (V1 1 V2) 3 r

where the plus sign still indicates vector addition. Since the relation 
obtained holds for an arbitrary r, we conclude that (15.40) must be 
true.

O
B

A

w
ww1

ww2

w

w

(a)

Fig. 15.34 

O

C

ww
w

w

ww1

ww2

(b)

Photo 15.8 When the ladder rotates about its 
fixed base, its angular velocity can be obtained 
by adding the angular velocities which correspond 
to simultaneous rotations about two different axes.
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1001*15.13 GENERAL MOTION
The most general motion of a rigid body in space will now be con-
sidered. Let A and B be two particles of the body. We recall from 
Sec. 11.12 that the velocity of B with respect to the fixed frame of 
reference OXYZ can be expressed as

 vB 5 vA 1 vB/A (15.42)

where vB/A is the velocity of B relative to a frame AX9Y9Z9 attached 
to A and of fixed orientation (Fig. 15.35). Since A is fixed in this 
frame, the motion of the body relative to AX9Y9Z9 is the motion of a 
body with a fixed point. The relative velocity vB/A can therefore be 
obtained from (15.37) after r has been replaced by the position vector 
rB/A of B relative to A. Substituting for vB/A into (15.42), we write

 vB 5 vA 1 v 3 rB/A (15.43)

where V is the angular velocity of the body at the instant considered.
 The acceleration of B is obtained by a similar reasoning. We 
first write

aB 5 aA 1 aB/A

and, recalling Eq. (15.38),

 aB 5 aA 1 A 3 rB/A 1 V 3 (V 3 rB/A) (15.44)

where A is the angular acceleration of the body at the instant 
considered.
 Equations (15.43) and (15.44) show that the most general 
motion of a rigid body is equivalent, at any given instant, to the sum 
of a translation, in which all the particles of the body have the same 
velocity and acceleration as a reference particle A, and of a motion 
in which particle A is assumed to be fixed.†
 It is easily shown, by solving (15.43) and (15.44) for vA and aA, 
that the motion of the body with respect to a frame attached to B 
would be characterized by the same vectors V and A as its motion 
relative to AX9Y9Z9. The angular velocity and angular acceleration of 
a rigid body at a given instant are thus independent of the choice of 
reference point. On the other hand, one should keep in mind that 
whether the moving frame is attached to A or to B, it should maintain 
a fixed orientation; that is, it should remain parallel to the fixed refer-
ence frame OXYZ throughout the motion of the rigid body. In many 
problems it will be more convenient to use a moving frame which is 
allowed to rotate as well as to translate. The use of such moving 
frames will be discussed in Secs. 15.14 and 15.15.

15.13 General Motion

X
O

A
B

w

aa

Y

Z

X'

Y'

Z'

rA

rB/A

Fig. 15.35

†It is recalled from Sec. 15.12 that, in general, the vectors V and A are not collinear, 
and that the accelerations of the particles of the body in their motion relative to the 
frame AX9Y9Z9 cannot be determined as if the body were rotating permanently about 
the instantaneous axis through A.
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1002

SAMPLE PROBLEM 15.11

The crane shown rotates with a constant angular velocity V1 of 0.30 rad/s. 
Simultaneously, the boom is being raised with a constant angular velocity 
V2 of 0.50 rad/s relative to the cab. Knowing that the length of the boom 
OP is l 5 12 m, determine (a) the angular velocity V of the boom, (b) the 
angular acceleration A of the boom, (c) the velocity v of the tip of the boom, 
(d) the acceleration a of the tip of the boom.

X

Y

Z

O

P

q = 30°

w1

w2

SOLUTION

a. Angular Velocity of Boom. Adding the angular velocity V1 of the cab 
and the angular velocity V2 of the boom relative to the cab, we obtain the 
angular velocity V of the boom at the instant considered:

V 5 V1 1 V2  V 5 (0.30 rad/s)j 1 (0.50 rad/s)k ◀

b. Angular Acceleration of Boom. The angular acceleration A of the 
boom is obtained by differentiating V. Since the vector V1 is constant in 
magnitude and direction, we have

A 5 V̇ 5 V̇1 1 V̇2 5 0 1 V̇2

where the rate of change V̇2 is to be computed with respect to the fixed 
frame OXYZ. However, it is more convenient to use a frame Oxyz attached 
to the cab and rotating with it, since the vector V2 also rotates with the cab 
and therefore has zero rate of change with respect to that frame. Using Eq. 
(15.31) with Q 5 V2 and V 5 V1, we write

 (Q̇)OXYZ 5 (Q̇)Oxyz 1 V 3 Q
 (V̇2)OXYZ 5 (V̇2)Oxyz 1 V1 3 V2

A 5 (V̇2)OXYZ 5 0 1 (0.30 rad/s)j 3 (0.50 rad/s)k

 A 5 (0.15 rad/s2)i ◀

c. Velocity of Tip of Boom. Noting that the position vector of point P is 
r 5 (10.39 m)i 1 (6 m)j and using the expression found for V in part a, 
we write

v 5 V 3 r 5 † i j k
0 0.30 rad/s 0.50 rad/s

10.39 m 6 m 0
†

v 5 2(3 m/s)i 1 (5.20 m/s)j 2 (3.12 m/s)k ◀

d. Acceleration of Tip of Boom. Recalling that v 5 V 3 r, we write

 a 5 A 3 r 1 V 3 (V 3 r) 5 A 3 r 1 V 3 v

 a 5 † i j k
0.15 0 0
10.39 6 0

† 1 † i j k
0 0.30 0.50

23 5.20 23.12
†

 5 0.90k 2 0.94i 2 2.60i 2 1.50j 1 0.90k

 a 5 2(3.54 m/s2)i 2 (1.50 m/s2)j 1 (1.80 m/s2)k ◀

Xx

Y

Z

O

P

w1 = 0.30j

w2 = 0.50k

y

z

10.39 m

6 m

P

a = 0.15i
X

Y

Z

O

w1 = 0.30j

w2 = 0.50k

10.39 m

6 m
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1003

SAMPLE PROBLEM 15.12

The rod AB, of length 7 in., is attached to the disk by a ball-and-socket 
connection and to the collar B by a clevis. The disk rotates in the yz plane 
at a constant rate v1 5 12 rad/s, while the collar is free to slide along the 
horizontal rod CD. For the position u 5 0, determine (a) the velocity of the 
collar, (b) the angular velocity of the rod.

A

B DC

w1

x

y

z

2 in. 3 in.

q

w1 = w1i

6 in.

vB

vA

w1 = 12 i
rA = 2k
rB = 6i + 3j

rB/A = 6i + 3j – 2k

A

B

x

y

z

2 in.

3 in.

O

rE/B = –3j + 2k

A

B

E

DC

x

y

z

2 in.

3 in.

O

SOLUTION

a. Velocity of Collar. Since point A is attached to the disk and since collar 
B moves in a direction parallel to the x axis, we have

vA 5 V1 3 rA 5 12i 3 2k 5 224j   vB 5 vBi

Denoting by V the angular velocity of the rod, we write

vB 5 vA 1 vB/A 5 vA 1 V 3 rB/A

vBi 5 224j 1 † i j k
vx vy vz

6 3 22
†

vBi 5 224j 1 (22vy 2 3vz)i 1 (6vz 1 2vx)j 1 (3vx 2 6vy)k

Equating the coefficients of the unit vectors, we obtain

 vB 5 22vy 23vz (1)
 24 5 2vx  16vz (2)
 0 5 3vx 26vy  (3)

Multiplying Eqs. (1), (2), (3), respectively, by 6, 3, 22 and adding, we write

6vB 1 72 5 0   vB 5 212   vB 5 2(12 in./s)i ◀

b. Angular Velocity of Rod AB. We note that the angular velocity cannot 
be determined from Eqs. (1), (2), and (3), since the determinant formed by 
the coefficients of vx, vy, and vz is zero. We must therefore obtain an addi-
tional equation by considering the constraint imposed by the clevis at B.
 The collar-clevis connection at B permits rotation of AB about the rod 
CD and also about an axis perpendicular to the plane containing AB and 
CD. It prevents rotation of AB about the axis EB, which is perpendicular 
to CD and lies in the plane containing AB and CD. Thus the projection of 
V on rE/B must be zero and we write†

V ? rE/B 5 0  (vxi 1 vyj 1 vzk) ? (23j 1 2k) 5 0
 23vy 1 2vz 5 0 (4)

Solving Eqs. (1) through (4) simultaneously, we obtain

vB 5 212  vx 5 3.69  vy 5 1.846  vz 5 2.77
V 5 (3.69 rad/s)i 1 (1.846 rad/s)j 1 (2.77 rad/s)k ◀

†We could also note that the direction of EB is that of the vector triple product rB/C 3 
(rB/C 3 rB/A) and write V ? [rB/C 3 (rB/C 3 rB/A)] 5 0. This formulation would be 
 particularly useful if the rod CD were skew.
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1004

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you started the study of the kinematics of rigid bodies in three 
dimensions. You first studied the motion of a rigid body about a fixed point and 

then the general motion of a rigid body.

A. Motion of a rigid body about a fixed point. To analyze the motion of a 
point B of a body rotating about a fixed point O you may have to take some or all 
of the following steps.

1. Determine the position vector r connecting the fixed point O to point B.

2. Determine the angular velocity V of the body with respect to a fixed frame 
of reference. The angular velocity V will often be obtained by adding two com-
ponent angular velocities V1 and V2 [Sample Prob. 15.11].

3. Compute the velocity of B by using the equation

 v 5 V 3 r  (15.37)

Your computation will usually be facilitated if you express the vector product as a 
determinant.

4. Determine the angular acceleration A of the body. The angular acceleration 
A represents the rate of change (V̇)OXYZ of the vector V with respect to a fixed 
frame of reference OXYZ and reflects both a change in magnitude and a change 
in direction of the angular velocity. However, when computing A you may find it 
convenient to first compute the rate of change (V̇)Oxyz of V with respect to a rotat-
ing frame of reference Oxyz of your choice and use Eq. (15.31) of the preceding 
lesson to obtain A. You will write

A 5 (V̇)OXYZ 5 (V̇)Oxyz 1 V 3 V

where V is the angular velocity of the rotating frame Oxyz [Sample Prob. 15.11].

5. Compute the acceleration of B by using the equation

 a 5 A 3 r 1 V 3 (V 3 r) (15.38)

Note that the vector product (V 3 r) represents the velocity of point B and was 
computed in step 3. Also, the computation of the first vector product in (15.38) 
will be facilitated if you express this product in determinant form. Remember that, 
as was the case with the plane motion of a rigid body, the instantaneous axis of 
rotation cannot be used to determine accelerations.
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1005

B. General motion of a rigid body. The general motion of a rigid body may be 
considered as the sum of a translation and a rotation. Keep the following in mind:
 a. In the translation part of the motion, all the points of the body have the 
same velocity vA and the same acceleration aA as the point A of the body that has 
been selected as the reference point.
 b. In the rotation part of the motion, the same reference point A is assumed 
to be a fixed point.

1. To determine the velocity of a point B of the rigid body when you know the 
velocity vA of the reference point A and the angular velocity V of the body, you 
simply add vA to the velocity vB/A 5 V 3 rB/A of B in its rotation about A:

 vB 5 vA 1 V 3 rB/A (15.43)

As indicated earlier, the computation of the vector product will usually be facili-
tated if you express this product in determinant form.

Equation (15.43) can also be used to determine the magnitude of vB when its 
direction is known, even if V is not known. While the corresponding three scalar 
equations are linearly dependent and the components of V are indeterminate, 
these components can be eliminated and vA can be found by using an appropriate 
linear combination of the three equations [Sample Prob. 15.12, part a]. Alterna-
tively, you can assign an arbitrary value to one of the components of V and solve 
the equations for vA. However, an additional equation must be sought in order to 
determine the true values of the components of V [Sample Prob. 15.12, part b].

2. To determine the acceleration of a point B of the rigid body when you know 
the acceleration aA of the reference point A and the angular acceleration A of the 
body, you simply add aA to the acceleration of B in its rotation about A, as expressed 
by Eq. (15.38):

 aB 5 aA 1 A 3 rB/A 1 V 3 (V 3 rB/A) (15.44)

Note that the vector product (V 3 rB/A) represents the velocity vB/A of B relative 
to A and may already have been computed as part of your calculation of vB. We 
also remind you that the computation of the other two vector products will be 
facilitated if you express these products in determinant form.

The three scalar equations associated with Eq. (15.44) can also be used to deter-
mine the magnitude of aB when its direction is known, even if V and A are not 
known. While the components of V and A are indeterminate, you can assign arbi-
trary values to one of the components of V and to one of the components of A 
and solve the equations for aB.
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PROBLEMS

1006

END-OF-SECTION PROBLEMS

 15.184 At the instant considered the radar antenna shown rotates about 
the origin of coordinates with an angular velocity V 5 vxi 1
vy j 1 vzk. Knowing that (vA)y 5 300 mm/s, (vB)y 5 180 mm/s, 
and (vB)z 5 360 mm/s, determine (a) the angular velocity of the 
antenna, (b) the velocity of point A.

 15.185 At the instant considered the radar antenna shown rotates about 
the origin of coordinates with an angular velocity V 5 vxi 1
vy j 1 vzk. Knowing that (vA)x 5 100 mm/s, (vA)y 5 290 mm/s, 
and (vB)z 5 120 mm/s, determine (a) the angular velocity of the 
antenna, (b) the velocity of point A.

 15.186 Plate ABD and rod OB are rigidly connected and rotate about the 
ball-and-socket joint O with an angular velocity V 5 vxi 1 vy j 1 
vzk. Knowing that vA 5 (80 mm/s)i 1 (360 mm/s)j 1 (vA)zk and 
vx 5 1.5 rad/s, determine (a) the angular velocity of the assembly, 
(b) the velocity of point D.

O

y

A

B

D

160 mm
160 mm

120 mm
80 mm

80 mm

z

xFig. P15.186

 15.187 The bowling ball shown rolls without slipping on the horizontal xz
plane with an angular velocity v 5 vxi 1 vyj 1 vzk. Knowing that 
vA 5 (14.4 ft/s)i 2 (14.4 ft/s)j 1 (10.8 ft/s)k and vD 5 (28.8 ft/s)i 1 
(21.6 ft/s)k, determine (a) the angular velocity of the bowling ball, 
(b) the velocity of its  center C.

x

y

z

A

B

O

0.3 m

0.25 m

0.25 m

Fig. P15.184 and P15.185
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B A

4.3 in.

O
z x

Fig. P15.187
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1007Problems 15.188 The rotor of an electric motor rotates at the constant rate v1 5 
1800 rpm. Determine the angular acceleration of the rotor as the 
motor is rotated about the y axis with a constant angular velocity V2 
of 6 rpm counterclockwise when viewed from the positive y axis.

 15.189 The disk of a portable sander rotates at the constant rate v1 5 
4400 rpm as shown. Determine the angular acceleration of the 
disk as a worker rotates the sander about the z axis with an angular 
velocity of 0.5 rad/s and an angular acceleration of 2.5 rad/s2, both 
clockwise when viewed from the positive z axis.

y

z

x

ww2

w1

Fig. P15.188

 15.190 Knowing that the turbine rotor shown rotates at a constant rate 
v1 5 9000 rpm, determine the angular acceleration of the rotor if 
the turbine housing has a constant angular velocity of 2.4 rad/s clock-
wise as viewed from (a) the positive y axis, (b) the positive z axis.

w2

y

C

R
z x

w1

B

O

r

A

Fig. P15.191 and P15.192

 15.191 In the system shown, disk A is free to rotate about the horizontal rod 
OA. Assuming that disk B is stationary (v2 5 0), and that shaft OC 
rotates with a constant angular velocity V1, determine (a) the angular 
velocity of disk A, (b) the angular acceleration of disk A.

 15.192 In the system shown, disk A is free to rotate about the horizontal 
rod OA. Assuming that shaft OC and disk B rotate with constant 
angular velocities V1 and V2, respectively, both counterclockwise, 
determine (a) the angular velocity of disk A, (b) the angular accel-
eration of disk A.

w1

z

x

y

Fig. P15.189

w1

y

z
x

Fig. P15.190
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1008 Kinematics of Rigid Bodies  15.193 The L-shaped arm BCD rotates about the z axis with a constant 
angular velocity v1 5 5 rad/s. Knowing that the 150-mm-radius disk 
rotates about BC with a constant angular velocity v2 5 4 rad/s, deter-
mine (a) the velocity of point A, (b) the acceleration of point A.

 15.194 A gun barrel of length OP 5 4 m is mounted on a turret as shown. 
To keep the gun aimed at a moving target the azimuth angle b is 
being increased at the rate db/dt 5 308/s and the elevation angle 
g is being increased at the rate dg/dt 5 108/s. For the position b 5 
908 and g 5 308, determine (a) the angular velocity of the barrel, 
(b) the angular acceleration of the barrel, (c) the velocity and accel-
eration of point P.

3 in.

q

x

y

z

Pww1

ww2

Fig. P15.195 and P15.196

 15.195 A 3-in.-radius disk spins at the constant rate v2 5 4 rad/s about 
an axis held by a housing attached to a horizontal rod that rotates 
at the constant rate v1 5 5 rad/s. For the position shown, deter-
mine (a) the angular acceleration of the disk, (b) the acceleration 
of point P on the rim of the disk if u 5 0, (c) the acceleration of 
point P on the rim of the disk if u 5 90°.

120 mm

150 mm

A

D

C

x

B

y

z

ww2

ww1

Fig. P15.193
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O

b

z

Fig. P15.194

 15.196 A 3-in.-radius disk spins at the constant rate v2 5 4 rad/s about 
an axis held by a housing attached to a horizontal rod that rotates 
at the constant rate v1 5 5 rad/s. Knowing that u 5 30°, determine 
the acceleration of point P on the rim of the disk.
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1009Problems 15.197 A 30-mm-radius wheel is mounted on an axle OB of length 
100 mm. The wheel rolls without sliding on the horizontal floor, 
and the axle is perpendicular to the plane of the wheel. Knowing 
that the system rotates about the y axis at a constant rate v1 5 
2.4 rad/s, determine (a) the angular velocity of the wheel, (b) the 
angular acceleration of the wheel, (c) the acceleration of point C 
located at the highest point on the rim of the wheel.

 15.198 At the instant shown, the robotic arm ABC is being rotated simul-
taneously at the constant rate v1 5 0.15 rad/s about the y axis, and 
at the constant rate v2 5 0.25 rad/s about the z axis. Knowing that 
the length of arm ABC is 1 m, determine (a) the angular accelera-
tion of the arm, (b) the velocity of point C, (c) the acceleration of 
point C.

x
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z

O

w1

A

C

B

Fig. P15.197

 15.199 In the planetary gear system shown, gears A and B are rigidly con-
nected to each other and rotate as a unit about the inclined shaft. 
Gears C and D rotate with constant angular velocities of 30 rad/s 
and 20 rad/s, respectively (both counterclockwise when viewed from 
the right). Choosing the x axis to the right, the y axis upward, and 
the z axis pointing out of the plane of the figure, determine (a) the 
common angular velocity of gears A and B, (b) the angular velocity 
of shaft FH, which is rigidly attached to the inclined shaft.

35°

y

z
x

B

C

w1

w2

A

Fig. P15.198
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B

F D G H

A

1

1
2

2

260 mm

80 mm

E

80 mm

50 mm

Fig. P15.199

 15.200 In Prob. 15.199, determine (a) the common angular acceleration 
of gears A and B, (b) the acceleration of the tooth of gear A which 
is in contact with gear C at point l.
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1010 Kinematics of Rigid Bodies  15.201 Several rods are brazed together to form the robotic guide arm 
shown which is attached to a ball-and-socket joint at O. Rod OA 
slides in a straight inclined slot while rod OB slides in a slot parallel 
to the z axis. Knowing that at the instant shown vB 5 (9 in./s)k, 
determine (a) the angular velocity of the guide arm, (b) the velocity 
of point A, (c) the velocity of point C.

 15.202 In Prob. 15.201, the speed of point B is known to be constant. For 
the position shown, determine (a) the angular acceleration of the 
guide arm, (b) the acceleration of point C.

 15.203 Rod AB of length 25 in. is connected by ball-and-socket joints to 
collars A and B, which slide along the two rods shown. Knowing 
that collar B moves toward point E at a constant speed of 20 in./s, 
determine the velocity of collar A as collar B passes through point D.

 15.204 Rod AB, of length 11 in., is connected by ball-and-socket joints to 
collars A and B, which slide along the two rods shown. Knowing 
that collar B moves downward at a constant speed of 54 in./s, 
determine the velocity of collar A when c 5 2 in.
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D

E

A
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9 in.

12 in. 20 in.

20 in.

Fig. P15.203
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Fig. P15.201
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Fig. P15.204
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1011Problems 15.205 Rod BC and BD are each 840 mm long and are connected by ball-
and-socket joints to collars which may slide on the fixed rods shown. 
Knowing that collar B moves toward A at a constant speed of 390 mm/s, 
determine the velocity of collar C for the position shown.

 15.206 Rod AB is connected by ball-and-socket joints to collar A 
and to the 16-in.-diameter disk C. Knowing that disk C rotates 
counterclockwise at the constant rate v0 5 3 rad/s in the zx 
plane, determine the velocity of collar A for the position shown.

 15.207 Rod AB of length 29 in. is connected by ball-and-socket joints to 
the rotating crank BC and to the collar A. Crank BC is of length 
8 in. and rotates in the horizontal xy plane at the constant rate 
v0 5 10 rad/s. At the instant shown, when crank BC is parallel 
to the z axis, determine the velocity of collar A.

C

B
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D 320 mm

200 mm

x

y

z

480 mm
320 mm

Fig. P15.205
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Fig. P15.207
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1012 Kinematics of Rigid Bodies  15.208 Rod AB of length 300 mm is connected by ball-and-socket joints 
to collars A and B, which slide along the two rods shown. Know-
ing that collar B moves toward point D at a constant speed of 
50 mm/s, determine the velocity of collar A when c 5 80 mm.

 15.209 Rod AB of length 300 mm is connected by ball-and-socket joints 
to collars A and B, which slide along the two rods shown. Know-
ing that collar B moves toward point D at a constant speed of 
50 mm/s, determine the velocity of collar A when c 5 120 mm.

 15.210 Two shafts AC and EG, which lie in the vertical yz plane, are con-
nected by a universal joint at D. Shaft AC rotates with a constant 
angular velocity V1 as shown. At a time when the arm of the 
crosspiece attached to shaft AC is vertical, determine the angular 
velocity of shaft EG.

O

c
C

D

B

A

y

z

x

90 mm

180 mm

Fig. P15.208 and P15.209
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x
25�

5 in.

w2

4 in.

3 in.

B

C

E

G

A

z

w1

Fig. P15.210

 15.211 Solve Prob. 15.210, assuming that the arm of the crosspiece 
attached to shaft AC is horizontal.

 15.212 In Prob. 15.206, the ball-and-socket joint between the rod and 
collar A is replaced by the clevis shown. Determine (a) the angular 
velocity of the rod, (b) the velocity of collar A.

 15.213 In Prob. 15.205, the ball-and-socket joint between the rod and 
collar C is replaced by the clevis connection shown. Determine 
(a) the angular velocity of the rod, (b) the velocity of collar C.

 15.214 In Prob. 15.204, determine the acceleration of collar A when c 5 2 in.

  *15.215 In Prob. 15.205, determine the acceleration of collar C.

 15.216 In Prob. 15.206, determine the acceleration of collar A.

 15.217 In Prob. 15.207, determine the acceleration of collar A.

 15.218 In Prob. 15.208, determine the acceleration of collar A.

 15.219 In Prob. 15.209, determine the acceleration of collar A.

Fig. P15.212

C

Fig. P15.213
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101315.14 Three-Dimensional Motion of a Particle 
Relative to a Rotating Frame. Coriolis 

Acceleration

*15.14  THREE-DIMENSIONAL MOTION OF A 
PARTICLE RELATIVE TO A ROTATING FRAME. 
CORIOLIS ACCELERATION

We saw in Sec. 15.10 that given a vector function Q(t) and two 
frames of reference centered at O—a fixed frame OXYZ and a rotat-
ing frame Oxyz—the rates of change of Q with respect to the two 
frames satisfy the relation

 (Q̇)OXYZ 5 (Q̇)Oxyz 1 V 3 Q (15.31)

We had assumed at the time that the frame Oxyz was constrained 
to rotate about a fixed axis OA. However, the derivation given in 
Sec. 15.10 remains valid when the frame Oxyz is constrained only to 
have a fixed point O. Under this more general assumption, the axis 
OA represents the instantaneous axis of rotation of the frame Oxyz 
(Sec. 15.12) and the vector V, its angular velocity at the instant 
considered (Fig. 15.36).
 Let us now consider the three-dimensional motion of a particle P 
relative to a rotating frame Oxyz constrained to have a fixed origin O. 
Let r be the position vector of P at a given instant and V be the 
angular velocity of the frame Oxyz with respect to the fixed frame 
OXYZ at the same instant (Fig. 15.37). The derivations given in Sec. 
15.11 for the two-dimensional motion of a particle can be readily 
extended to the three-dimensional case, and the absolute velocity vP 
of P (i.e., its velocity with respect to the fixed frame OXYZ) can be 
expressed as

 vP 5 V 3 r 1 (ṙ)Oxyz (15.45)

Denoting by ^ the rotating frame Oxyz, we write this relation in the 
alternative form

 vP 5 vP9 1 vP/^ (15.46)

 where vP 5 absolute velocity of particle P
 vP9 5  velocity of point P9 of moving frame ^ coinciding
 with P
 vP/^ 5 velocity of P relative to moving frame ^

 The absolute acceleration aP of P can be expressed as

 aP 5 V̇ 3 r 1 V 3 (V 3 r) 1 2V 3 (ṙ)Oxyz 1 (r̈)Oxyz (15.47)

An alternative form is

 aP 5 aP9 1 aP/^ 1 ac (15.48)

A
Y

Z

O

ΩΩ
Q

j
i

k

X

z

x

y

Fig. 15.36

Y

Z

O

ΩΩ P

r

X

z

x

y

Fig. 15.37

bee02324_ch15_926-1039.indd Page 1013  23/09/11  8:36 AM user-f501bee02324_ch15_926-1039.indd Page 1013  23/09/11  8:36 AM user-f501 /204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles/204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


1014 Kinematics of Rigid Bodies  where aP 5 absolute acceleration of particle P
 aP9 5  acceleration of point P9 of moving frame ^ coinciding

 with P
 aP/^ 5 acceleration of P relative to moving frame ^
 ac 5 2V 3 (ṙ)Oxyz 5 2V 3 vP/^
 5 complementary, or Coriolis, acceleration†

We note that the Coriolis acceleration is perpendicular to the vectors 
V and vP/^. However, since these vectors are usually not perpendicu-
lar to each other, the magnitude of ac is in general not equal to 
2VvP/^, as was the case for the plane motion of a particle. We further 
note that the Coriolis acceleration reduces to zero when the vectors 
V and vP/^ are parallel, or when either of them is zero.
 Rotating frames of reference are particularly useful in the study 
of the three-dimensional motion of rigid bodies. If a rigid body has 
a fixed point O, as was the case for the crane of Sample Prob. 15.11, 
we can use a frame Oxyz which is neither fixed nor rigidly attached 
to the rigid body. Denoting by V the angular velocity of the frame 
Oxyz, we then resolve the angular velocity V of the body into the 
components V and VB/^, where the second component represents 
the angular velocity of the body relative to the frame Oxyz (see 
Sample Prob. 15.14). An appropriate choice of the rotating frame 
often leads to a simpler analysis of the motion of the rigid body than 
would be possible with axes of fixed orientation. This is especially 
true in the case of the general three-dimensional motion of a rigid 
body, i.e., when the rigid body under consideration has no fixed point 
(see Sample Prob. 15.15).

*15.15 FRAME OF REFERENCE IN GENERAL MOTION
Consider a fixed frame of reference OXYZ and a frame Axyz which 
moves in a known, but arbitrary, fashion with respect to OXYZ (Fig. 
15.38). Let P be a particle moving in space. The position of P is 
defined at any instant by the vector rP in the fixed frame, and by the 
vector rP/A in the moving frame. Denoting by rA the position vector 
of A in the fixed frame, we have

 rP 5 rA 1 rP/A (15.49)

The absolute velocity vP of the particle is obtained by writing

 vP 5  ṙP 5 ṙA 1 ṙP/A (15.50)

where the derivatives are defined with respect to the fixed frame 
OXYZ. The first term in the right-hand member of (15.50) thus rep-
resents the velocity vA of the origin A of the moving axes. On the 
other hand, since the rate of change of a vector is the same with 
respect to a fixed frame and with respect to a frame in translation 
(Sec. 11.10), the second term can be regarded as the velocity vP/A of 

†It is important to note the difference between Eq. (15.48) and Eq. (15.21) of Sec. 15.8. 
See the footnote on page 988.

Fig. 15.38
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1015P relative to the frame AX9Y9Z9 of the same orientation as OXYZ and 
the same origin as Axyz. We therefore have

 vP 5 vA 1 vP/A (15.51)

But the velocity vP/A of P relative to AX9Y9Z9 can be obtained from 
(15.45) by substituting rP/A for r in that equation. We write

 vP 5 vA 1 V 3 rP/A 1 (ṙP/A)Axyz (15.52)

where V is the angular velocity of the frame Axyz at the instant 
considered.
 The absolute acceleration aP of the particle is obtained by dif-
ferentiating (15.51) and writing

 aP 5  v̇P 5  v̇A 1  v̇P/A (15.53)

where the derivatives are defined with respect to either of the frames 
OXYZ or AX9Y9Z9. Thus, the first term in the right-hand member of 
(15.53) represents the acceleration aA of the origin A of the moving 
axes and the second term represents the acceleration aP/A of P rela-
tive to the frame AX9Y9Z9. This acceleration can be obtained from 
(15.47) by substituting rP/A for r. We therefore write

aP 5 aA 1  V̇ 3 rP/A 1 V 3 (V 3 rP/A)
 1 2V 3 ( ṙP/A)Axyz 1 ( r̈P/A)Axyz (15.54)

Formulas (15.52) and (15.54) make it possible to determine the 
velocity and acceleration of a given particle with respect to a fixed 
frame of reference, when the motion of the particle is known with 
respect to a moving frame. These formulas become more significant, 
and considerably easier to remember, if we note that the sum of the 
first two terms in (15.52) represents the velocity of the point P9 of 
the moving frame which coincides with P at the instant considered, 
and that the sum of the first three terms in (15.54) represents the 
acceleration of the same point. Thus, the relations (15.46) and (15.48) 
of the preceding section are still valid in the case of a reference 
frame in general motion, and we can write

 vP 5 vP9 1 vP/^ (15.46)
 aP 5 aP9 1 aP/^ 1 ac (15.48)

where the various vectors involved have been defined in Sec. 15.14.
 It should be noted that if the moving reference frame ^ (or 
Axyz) is in translation, the velocity and acceleration of the point P9 
of the frame which coincides with P become, respectively, equal to 
the velocity and acceleration of the origin A of the frame. On the 
other hand, since the frame maintains a fixed orientation, ac is zero, 
and the relations (15.46) and (15.48) reduce, respectively, to the rela-
tions (11.33) and (11.34) derived in Sec. 11.12.

15.15 Frame of Reference in General Motion

Photo 15.9 The motion of air particles in a 
hurricane can be considered as motion relative 
to a frame of reference attached to the Earth and 
rotating with it.
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1016

SOLUTION

Frames of Reference. The frame OXYZ is fixed. We attach the rotating 
frame Oxyz to the bent rod. Its angular velocity and angular acceleration 
relative to OXYZ are therefore V 5 (220 rad/s)j and  V̇ 5 (2200 rad/s2)j, 
respectively. The position vector of D is

r 5 (8 in.)(sin 30°i 1 cos 30°j) 5 (4 in.)i 1 (6.93 in.)j

a. Velocity vD. Denoting by D9 the point of the rod which coincides with 
D and by ^ the rotating frame Oxyz, we write from Eq. (15.46)

 vD 5 vD9 1 vD/^ (1)

where

 vD9 5 V 3 r 5 (220 rad/s)j 3 [(4 in.)i 1 (6.93 in.)j] 5 (80 in./s)k
 vD/^ 5 (50 in./s)(sin 30°i 1 cos 30°j) 5 (25 in./s)i 1 (43.3 in./s)j

Substituting the values obtained for vD9 and vD/^ into (1), we find

vD 5 (25 in./s)i 1 (43.3 in./s)j 1 (80 in./s)k ◀

b. Acceleration aD. From Eq. (15.48) we write

 aD 5 aD9 1 aD/^ 1 ac (2)

where

 aD9 5  V̇ 3 r 1 V 3 (V 3 r)
 5 (2200 rad/s2)j 3 [(4 in.)i 1 (6.93 in.)j] 2 (20 rad/s)j 3 (80 in./s)k
 5 1(800 in./s2)k 2 (1600 in./s2)i
 aD/^ 5 (600 in./s2)(sin 30°i 1 cos 30°j) 5 (300 in./s2)i 1 (520 in./s2)j
 ac 5 2V 3 vD/^
 5 2(220 rad/s)j 3 [(25 in./s)i 1 (43.3 in./s)j] 5 (1000 in./s2)k

Substituting the values obtained for aD9, aD/^, and ac into (2),

aD 5 2(1300 in./s2)i 1 (520 in./s2)j 1 (1800 in./s2)k ◀

SAMPLE PROBLEM 15.13

The bent rod OAB rotates about the vertical OB. At the instant considered, 
its angular velocity and angular acceleration are, respectively, 20 rad/s and 
200 rad/s2, both clockwise when viewed from the positive Y axis. The collar 
D moves along the rod, and at the instant considered, OD 5 8 in. The 
velocity and acceleration of the collar relative to the rod are, respectively, 
50 in./s and 600 in./s2, both upward. Determine (a) the velocity of the collar, 
(b) the acceleration of the collar.
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1017

SOLUTION

Frames of Reference. The frame OXYZ is fixed. We attach the rotating 
frame Oxyz to the cab. Its angular velocity with respect to the frame OXYZ 
is therefore V 5 V1 5 (0.30 rad/s)j. The angular velocity of the boom 
 relative to the cab and the rotating frame Oxyz (or ^, for short) is VB/^ 5 
V2 5 (0.50 rad/s)k.

a. Velocity vP. From Eq. (15.46) we write

 vP 5 vP9 1 vP/^ (1)

where vP9 is the velocity of the point P9 of the rotating frame which coincides 
with P:

vP9 5 V 3 r 5 (0.30 rad/s)j 3 [(10.39 m)i 1 (6 m)j] 5 2(3.12 m/s)k

and where vP/^ is the velocity of P relative to the rotating frame Oxyz. But 
the angular velocity of the boom relative to Oxyz was found to be VB/^ 5 
(0.50 rad/s)k. The velocity of its tip P relative to Oxyz is therefore

vP/^ 5 VB/^ 3 r 5 (0.50 rad/s)k 3 [(10.39 m)i 1 (6 m)j]
 5 2(3 m/s)i 1 (5.20 m/s)j

Substituting the values obtained for vP9 and vP/^ into (1), we find

vP 5 2(3 m/s)i 1 (5.20 m/s)j 2 (3.12 m/s)k ◀

b. Acceleration aP. From Eq. (15.48) we write

 aP 5 aP9 1 aP/^ 1 ac (2)

Since V and VB/^ are both constant, we have

 aP9 5 V 3 (V 3 r) 5 (0.30 rad/s)j 3 (23.12 m/s)k 5 2(0.94 m/s2)i
 aP/^ 5 VB/^ 3 (VB/^ 3 r)
 5 (0.50 rad/s)k 3 [2(3 m/s)i 1 (5.20 m/s)j]
 5 2(1.50 m/s2)j 2 (2.60 m/s2)i
 ac 5 2V 3 vP/^
 5 2(0.30 rad/s)j 3 [2(3 m/s)i 1 (5.20 m/s)j] 5 (1.80 m/s2)k

Substituting for aP9, aP/^, and ac into (2), we find

aP 5 2(3.54 m/s2)i 2 (1.50 m/s2)j 1 (1.80 m/s2)k ◀

SAMPLE PROBLEM 15.14

The crane shown rotates with a constant angular velocity V1 of 0.30 rad/s. 
Simultaneously, the boom is being raised with a constant angular velocity 
V2 of 0.50 rad/s relative to the cab. Knowing that the length of the boom 
OP is l 5 12 m, determine (a) the velocity of the tip of the boom, (b) the 
acceleration of the tip of the boom.

Xx

Y

Z

O

Py

z

10.39 m

6 m

Ω = w1 = 0.30j

wB/     = w2 = 0.50k

X

Y

Z

O

P

q = 30°

w1

w2
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1018

SOLUTION

Frames of Reference. The frame OXYZ is fixed. We attach the moving frame 
Axyz to the arm OA. Its angular velocity with respect to the frame OXYZ is 
therefore V 5 v1 j. The angular velocity of disk D relative to the moving frame 
Axyz (or ^, for short) is VD/^ 5 v2k. The position vector of P relative to O is 
r 5 Li + Rj, and its position vector relative to A is rP/A 5 Rj.

a. Velocity vP. Denoting by P9 the point of the moving frame which coin-
cides with P, we write from Eq. (15.46)

 vP 5 vP9 1 vP/^ (1)

where vP9 5 V 3 r 5 v1 j 3 (Li 1 Rj) 5 2v1Lk

 vP/^ 5 VD/^ 3 rP/A 5 v2k 3 Rj 5 2v2Ri

Substituting the values obtained for vP9 and vP/^ into (1), we find

vP 5 2v2Ri 2 v1Lk ◀

b. Acceleration aP. From Eq. (15.48) we write

 aP 5 aP9 1 aP/^ 1 ac (2)

Since V and VD/^ are both constant, we have

 aP9 5 V 3 (V 3 r) 5 v1 j 3 (2v1Lk) 5 2v2
1Li

 aP/^ 5 VD/^ 3 (VD/^ 3 rP/A) 5 v2k 3 (2v2Ri) 5 2v2
2Rj

 ac 5 2V 3 vP/^ 5 2v1 j 3 (2v2Ri) 5 2v1v2Rk

Substituting the values obtained into (2), we find

aP 5 2v2
1Li 2 v2

2Rj 1 2v1v2Rk ◀

c. Angular Velocity and Angular Acceleration of Disk.

 v 5 V 1 vD/^ V 5 v1j 1 v2k ◀

Using Eq. (15.31) with Q 5 V, we write

 A 5 (V̇)OXYZ 5 (V̇)Axyz 1 V 3 V
  5 0 1 v1 j 3 (v1 j 1 v2k)

A 5 v1v2i ◀

SAMPLE PROBLEM 15.15

Disk D, of radius R, is pinned to end A of the arm OA of length L located 
in the plane of the disk. The arm rotates about a vertical axis through O at 
the constant rate v1, and the disk rotates about A at the constant rate v2. 
Determine (a) the velocity of point P located directly above A, (b) the accel-
eration of P, (c) the angular velocity and angular acceleration of the disk.

y

z

Y

Z

P'
Ω = w1j
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1019

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you concluded your study of the kinematics of rigid bodies by 
learning how to use an auxiliary frame of reference ^ to analyze the three-

dimensional motion of a rigid body. This auxiliary frame may be a rotating frame 
with a fixed origin O, or it may be a frame in general motion.

A. Using a rotating frame of reference. As you approach a problem involving 
the use of a rotating frame ^ you should take the following steps.

1. Select the rotating frame ^ that you wish to use and draw the correspond-
ing coordinate axes x, y, and z from the fixed point O.

2. Determine the angular velocity V of the frame ^ with respect to a fixed 
frame OXYZ. In most cases, you will have selected a frame which is attached to 
some rotating element of the system; V will then be the angular velocity of that 
element.

3. Designate as P9 the point of the rotating frame ^ that coincides with the 
point P of interest at the instant you are considering. Determine the velocity vP9 
and the acceleration aP9 of point P9. Since P9 is part of ^ and has the same posi-
tion vector r as P, you will find that

vP9 5 V 3 r  and  aP9 5 A 3 r 1 V 3 (V 3 r)

where A is the angular acceleration of ^. However, in many of the problems that 
you will encounter, the angular velocity of ^ is constant in both magnitude and 
direction, and A 5 0.

4. Determine the velocity and acceleration of point P with respect to the 
frame ^. As you are trying to determine vP/^ and aP/^ you will find it useful to 
visualize the motion of P on frame ^ when the frame is not rotating. If P is a 
point of a rigid body @ which has an angular velocity V@ and an angular accelera-
tion A@ relative to ^ [Sample Prob. 15.14], you will find that

vP/^ 5 V@ 3 r  and  aP/^ 5 A@ 3 r 1 V@ 3 (V@ 3 r)

In many of the problems that you will encounter, the angular velocity of body @ 
relative to frame ^ is constant in both magnitude and direction, and A@ 5 0.

5. Determine the Coriolis acceleration. Considering the angular velocity V of 
frame ^ and the velocity vP/^ of point P relative to that frame, which was com-
puted in the previous step, you write

ac 5 2V 3 vP/^
(continued)
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1020

6. The velocity and the acceleration of P with respect to the fixed frame 
OXYZ can now be obtained by adding the expressions you have determined:

 vP 5 vP9 1 vP/^ (15.46)
 aP 5 aP9 1 aP/^ 1 ac (15.48)

B. Using a frame of reference in general motion. The steps that you will take 
differ only slightly from those listed under A. They consist of the following:

1. Select the frame ^ that you wish to use and a reference point A in that 
frame, from which you will draw the coordinate axes, x, y, and z defining that 
frame. You will consider the motion of the frame as the sum of a translation with 
A and a rotation about A.

2. Determine the velocity vA of point A and the angular velocity V of the 
frame. In most cases, you will have selected a frame which is attached to some 
element of the system; V will then be the angular velocity of that element.

3. Designate as P9 the point of frame ^ that coincides with the point P of 
interest at the instant you are considering, and determine the velocity vP9 and 
the acceleration aP9 of that point. In some cases, this can be done by visualizing 
the motion of P if that point were prevented from moving with respect to ^ 
[Sample Prob. 15.15]. A more general approach is to recall that the motion of P9 
is the sum of a translation with the reference point A and a rotation about A. The 
velocity vP9 and the acceleration aP9 of P9, therefore, can be obtained by adding 
vA and aA, respectively, to the expressions found in paragraph A3 and replacing 
the position vector r by the vector rP/A drawn from A to P:

vP9 5 vA 1 V 3 rP/A    aP9 5 aA 1 A 3 rP/A 1 V 3 (V 3 rP/A)

Steps 4, 5, and 6 are the same as in Part A, except that the vector r should 
again be replaced by rP/A. Thus, Eqs. (15.46) and (15.48) can still be used to obtain 
the velocity and the acceleration of P with respect to the fixed frame of reference 
OXYZ.
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PROBLEMS

1021

END-OF-SECTION PROBLEMS

15.220 A square plate of side 18 in. is hinged at A and B to a clevis. The 
plate rotates at the constant rate v2 5 4 rad/s with respect to the 
clevis, which itself rotates at the constant rate v1 5 3 rad/s about 
the Y axis. For the position shown, determine (a) the velocity of 
point C, (b) the acceleration of point C.

 15.221 A square plate of side 18 in. is hinged at A and B to a clevis. The 
plate rotates at the constant rate v2 5 4 rad/s with respect to the 
clevis, which itself rotates at the constant rate v1 5 3 rad/s about 
the Y axis. For the position shown, determine (a) the velocity of 
corner D, (b) the acceleration of corner D.

 15.222 and 15.223 The rectangular plate shown rotates at the con-
stant rate v2 5 12 rad/s with respect to arm AE, which itself 
rotates at the constant rate v1 5 9 rad/s about the Z axis. For the 
position shown, determine the velocity and acceleration of the 
point of the plate indicated.
 15.222 Corner B
 15.223 Corner C

w1

w2
A

C

B

D

X

Z

O

9 in.

9 in.
18 in.

20�

Y

Fig. P15.220 and P15.221

A

C

D

B

E

X

Y

Z

90 mm

135 mm

135 mm

ww1

ww2

Fig. P15.222 and P15.223

C

B
u

A

Y

X

0.2 m

0.25 m
0.3 m

D

w1
Z

Fig. P15.224

15.224 Rod AB is welded to the 0.3-m-radius plate which rotates at the 
constant rate v1 5 6 rad/s. Knowing that collar D moves toward 
end B of the rod at a constant speed u 5 1.3 m/s, determine, 
for the position shown, (a) the velocity of D, (b) the acceleration 
of D.
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1022 Kinematics of Rigid Bodies  15.225 The bent rod ABC rotates at the constant rate v1 5 4 rad/s. Know-
ing that collar D moves downward along the rod at a constant 
relative speed u 5 65 in./s, determine, for the position shown, 
(a) the velocity of D, (b) the acceleration of D.

 15.226 The bent pipe shown rotates at the constant rate v1 5 10 rad/s. 
Knowing that a ball bearing D moves in portion BC of the pipe 
toward end C at a constant relative speed u 5 2 ft/s, determine at 
the instant shown (a) the velocity of D, (b) the acceleration of D.

30°

w1

B

A

C

D

Y

Z

200 mm
uu

X

Fig. P15.227

 15.227 The circular plate shown rotates about its vertical diameter at the 
constant rate v1 5 10 rad/s. Knowing that in the position shown 
the disk lies in the XY plane and point D of strap CD moves 
upward at a constant relative speed u 5 1.5 m/s, determine (a) the 
velocity of D, (b) the acceleration of D.

 15.228 Manufactured items are spray-painted as they pass through the auto-
mated work station shown. Knowing that the bent pipe ACE rotates 
at the constant rate v1 5 0.4 rad/s and that at point D the paint 
moves through the pipe at a constant relative speed u 5 150 mm/s, 
determine, for the position shown, (a) the velocity of the paint at D, 
(b) the acceleration of the paint at D.

Y

E

F

X

A

Z

D

C

450 mm

250 mm

w1 

u

608B

Fig. P15.228
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D
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y

w 1

6 in.
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3 in.

4 in.

6 in.

Fig. P15.225

Fig. P15.226

Y

B

X

A

Z

D

u
C

8 in.

6 in.

12 in.w1 
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1023 15.229 Solve Prob. 15.227, assuming that at the instant shown the angular 
velocity v1 of the plate is 10 rad/s and is decreasing at the rate of 
25 rad/s2, while the relative speed u of point D of strap CD is 
1.5 m/s and is decreasing at the rate of 3 m/s2. 

 15.230 Solve Prob. 15.226 assuming that at the instant shown the  angular 
velocity v1 of the pipe is 10 rad/s and is decreasing at the rate of 
15  rad/s2, while the relative speed u of the ball bearing is 2 ft/s 
and is  increasing at the rate of 10 ft/s2.

 15.231 Using the method of Sec. 15.14, solve Prob. 15.192.

 15.232 Using the method of Sec. 15.14, solve Prob. 15.196.

 15.233 Using the method of Sec. 15.14, solve Prob. 15.198.

 15.234 A disk of radius 120 mm rotates at the constant rate v2 5 5 rad/s 
with respect to the arm AB, which itself rotates at the constant 
rate v1 5 3 rad/s. For the position shown, determine the velocity 
and acceleration of point C.

 15.235 A disk of radius 120 mm rotates at the constant rate v2 5 5 rad/s 
with respect to the arm AB, which itself rotates at the constant 
rate v1 5 3 rad/s. For the position shown, determine the velocity 
and acceleration of point D.

 15.236 The arm AB of length 16 ft is used to provide an elevated platform 
for construction workers. In the position shown, arm AB is being 
raised at the constant rate du/dt 5 0.25 rad/s; simultaneously, the 
unit is being rotated about the Y axis at the constant rate v1 5 
0.15 rad/s. Knowing that u 5 20°, determine the velocity and accel-
eration of point B.

 15.237 The remote manipulator system (RMS) shown is used to deploy 
payloads from the cargo bay of space shuttles. At the instant shown, 
the whole RMS is rotating at the constant rate v1 5 0.03 rad/s 
about the axis AB. At the same time, portion BCD rotates as a 
rigid body at the constant rate v2 5 db/dt 5 0.04 rad/s about an 
axis through B parallel to the X axis. Knowing that b 5 308, deter-
mine (a) the angular acceleration of BCD, (b) the velocity of D, 
(c) the acceleration of D.

Problems

A

C
B

D

X

Y

Z 140 mm

120 mm75 mm

ωω1

ωω2

Fig. P15.234 and P15.235

A

C

B

O

2.5 ft

q

X

Y

Z

w1

Fig. P15.236

C

B

D

A

Y

Z
X

6.5 m

6.5 m

2.5 m

w1

b

Fig. P15.237
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 15.238 The body AB and rod BC of the robotic component shown rotate 
at the constant rate v1 5 0.60 rad/s about the Y axis. Simultane-
ously a wire-and-pulley control causes arm CD to rotate about C 
at the constant rate v 5 db/dt 5 0.45 rad/s. Knowing b 5 120°, 
determine (a) the angular acceleration of arm CD, (b) the velocity 
of D, (c) the acceleration of D.

 15.239 The crane shown rotates at the constant rate v1 5 0.25 rad/s; simul-
taneously, the telescoping boom is being lowered at the constant rate 
v2 5 0.40 rad/s. Knowing that at the instant shown the length of the 
boom is 20 ft and is increasing at the constant rate u 5 1.5 ft/s, 
determine the velocity and acceleration of point B.

A

X

Y

Z

30°

B

u

w1

w2

Fig. P15.239

500 mm

A

B

w1

Z

Y
D

400 mm�

C

X

Fig. P15.238
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A

B
D

C

XZ

Y 180 mm

360 mm

150 mm

ww1

ww2

Fig. P15.242 and P15.243

 15.240 The vertical plate shown is welded to arm EFG, and the entire 
unit rotates at the constant rate v1 5 1.6 rad/s about the Y axis. 
At the same time, a continuous link belt moves around the perim-
eter of the plate at a constant speed u 5 4.5 in./s. For the position 
shown, determine the acceleration of the link of the belt located 
(a) at point A, (b) at point B.

 15.241 The vertical plate shown is welded to arm EFG, and the entire 
unit rotates at the constant rate v1 5 1.6 rad/s about the Y axis. 
At the same time, a continuous link belt moves around the perim-
eter of the plate at a constant speed u 5 4.5 in./s. For the position 
shown, determine the acceleration of the link of the belt located 
(a) at point C, (b) at point D.

 15.242 A disk of 180-mm radius rotates at the constant rate v2 5 12 rad/s 
with respect to arm CD, which itself rotates at the constant rate 
v1 5 8 rad/s about the Y axis. Determine at the instant shown the 
velocity and acceleration of point A on the rim of the disk.

 15.243 A disk of 180-mm radius rotates at the constant rate v2 5 12 rad/s 
with respect to arm CD, which itself rotates at the constant 
rate v1 5 8 rad/s about the Y axis. Determine at the instant 
shown the velocity and acceleration of point B on the rim of 
the disk.

A

B

C

DE

F

XZ

Y

3 in.

3 in.
G

5 in.

10 in.

6 in.

6 in.

u

w1

Fig. P15.240 and P15.241
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1025 15.244 A square plate of side 2r is welded to a vertical shaft which rotates 
with a constant angular velocity V1. At the same time, rod AB of 
length r rotates about the center of the plate with a constant angu-
lar velocity V2 with respect to the plate. For the position of the 
plate shown, determine the acceleration of end B of the rod if 
(a) u 5 0, (b) u 5 908, (c) u 5 1808.

 15.245 Two disks, each of 130-mm radius, are welded to the 500-mm rod 
CD. The rod-and-disks unit rotates at the constant rate v2 5 3 rad/s 
with respect to arm AB. Knowing that at the instant shown v1 5 
4 rad/s, determine the velocity and acceleration of (a) point E, 
(b) point F.

 15.246 In Prob. 15.245, determine the velocity and acceleration of
(a) point G, (b) point H.

 15.247 The position of the stylus tip A is controlled by the robot shown. 
In the position shown, the stylus moves at a constant speed u 5 
180 mm/s relative to the solenoid BC. At the same time, arm CD 
rotates at the constant rate v2 5 1.6 rad/s with respect to compo-
nent DEG. Knowing that the entire robot rotates about the X axis 
at the constant rate v1 5 1.2 rad/s, determine (a) the velocity of 
A, (b) the acceleration of A.

Problems

2r

2r

Z

X

Y

O

A

B 308

w1

w2

q

Fig. P15.244
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Fig. P15.247
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Fig. P15.245
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1026

REVIEW AND SUMMARY

This chapter was devoted to the study of the kinematics of rigid 
bodies.

We first considered the translation of a rigid body [Sec. 15.2] and 
observed that in such a motion, all points of the body have the same 
velocity and the same acceleration at any given instant.

We next considered the rotation of a rigid body about a fixed axis 
[Sec. 15.3]. The position of the body is defined by the angle u that 
the line BP, drawn from the axis of rotation to a point P of the body, 
forms with a fixed plane (Fig. 15.39). We found that the magnitude 
of the velocity of P is

 v 5
ds
dt

5 ru
.
 sin f (15.4)

where u̇ is the time derivative of u. We then expressed the velocity 
of P as

 v 5
dr
dt

5 V 3 r (15.5)

where the vector

 V 5 vk 5 u̇k (15.6)

is directed along the fixed axis of rotation and represents the angular 
velocity of the body.
 Denoting by A the derivative dV/dt of the angular velocity, we 
expressed the acceleration of P as

 a 5 A 3 r 1 V 3 (V 3 r) (15.8)

Differentiating (15.6), and recalling that k is constant in magnitude 
and direction, we found that

 A 5 ak 5 v
. k 5  ük (15.9)

The vector A represents the angular acceleration of the body and is 
directed along the fixed axis of rotation.

Rigid body in translation

Rigid body in rotation 
about a fixed axis

x

z

y

O

A'

A

B

P
f

r

q

Fig. 15.39
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1027

Next we considered the motion of a representative slab located in a 
plane perpendicular to the axis of rotation of the body (Fig. 15.40). 
Since the angular velocity is perpendicular to the slab, the velocity of 
a point P of the slab was expressed as

 v 5 vk 3 r (15.10)

where v is contained in the plane of the slab. Substituting V 5 vk 
and A 5 ak into (15.8), we found that the acceleration of P could 
be resolved into tangential and normal components (Fig. 15.41) 
respectively equal to

 at 5 ak 3 r at 5 ra
 an 5 2v2r an 5 rv2 (15.119)

Recalling Eqs. (15.6) and (15.9), we obtained the following expres-
sions for the angular velocity and the angular acceleration of the slab 
[Sec. 15.4]:

 v 5
du

dt
 (15.12)

 a 5
dv

dt
5

d2u

dt2  (15.13)

or

 a 5 v 

dv

du
 (15.14)

We noted that these expressions are similar to those obtained in 
Chap. 11 for the rectilinear motion of a particle.

 Two particular cases of rotation are frequently encountered: 
uniform rotation and uniformly accelerated rotation. Problems 
involving either of these motions can be solved by using equations 
similar to those used in Secs. 11.4 and 11.5 for the uniform rectilin-
ear motion and the uniformly accelerated rectilinear motion of a 
particle, but where x, v, and a are replaced by u, v, and a, respec-
tively [Sample Prob. 15.1].

Rotation of a representative slab

Tangential and normal components

Angular velocity and angular 
acceleration of rotating slab

Review and Summary

x

y

O

r
P

wk

v = wk × r

Fig. 15.40

x

y

O
ww = wk

aa = ak

a t = a k × r

a n = – w2r

P

Fig. 15.41
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The most general plane motion of a rigid slab can be considered as 
the sum of a translation and a rotation [Sec. 15.5]. For example, the 
slab shown in Fig. 15.42 can be assumed to translate with point A, 
while simultaneously rotating about A. It follows [Sec. 15.6] that the 
velocity of any point B of the slab can be expressed as

 vB 5 vA 1 vB/A (15.17)

where vA is the velocity of A and vB/A the relative velocity of B with 
respect to A or, more precisely, with respect to axes x9y9 translating 
with A. Denoting by rB/A the position vector of B relative to A, we 
found that

 vB/A 5 vk 3 rB/A  vB/A 5 rv (15.18)

The fundamental equation (15.17) relating the absolute velocities of 
points A and B and the relative velocity of B with respect to A was 
expressed in the form of a vector diagram and used to solve problems 
involving the motion of various types of mechanisms [Sample Probs. 
15.2 and 15.3].

Another approach to the solution of problems involving the velocities 
of the points of a rigid slab in plane motion was presented in Sec. 15.7 
and used in Sample Probs. 15.4 and 15.5. It is based on the determina-
tion of the instantaneous center of rotation C of the slab (Fig. 15.43).

Velocities in plane motion

Instantaneous center of rotation

1028 Kinematics of Rigid Bodies

= +

Plane motion = Translation with A + Rotation about A

A

B

A

B B

vA

vA

vA

vB

vA
vB

x'

y'

wk

rB/A

vB/A

vB/A

vB = vA + vB/A

A
(fixed)

Fig. 15.42

C C

A

(a) (b)

A

B B

vAvA

vB
vB

Fig. 15.43
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1029Review and Summary

Plane motion = Translation with A + Rotation about A

A (fixed)A

B
aB

aB/A

aB/A
(aB/A)n

(aB/A)n

(aB/A)t (aB/A)t

aA

A

B
B

x'

y'

aA

aB

aA

aA

ak
wk

rB/A= +

Fig. 15.44

The fact that any plane motion of a rigid slab can be considered as 
the sum of a translation of the slab with a reference point A and a 
rotation about A was used in Sec. 15.8 to relate the absolute accel-
erations of any two points A and B of the slab and the relative accel-
eration of B with respect to A. We had

 aB 5 aA 1 aB/A (15.21)

where aB/A consisted of a normal component (aB/A)n of magnitude rv2 
directed toward A, and a tangential component (aB/A)t of magnitude 
ra perpendicular to the line AB (Fig. 15.44). The fundamental rela-
tion (15.21) was expressed in terms of vector diagrams or vector 
equations and used to determine the accelerations of given points of 
various mechanisms [Sample Probs. 15.6 through 15.8]. It should be 
noted that the instantaneous center of rotation C considered in 
Sec. 15.7 cannot be used for the determination of accelerations, 
since point C, in general, does not have zero acceleration.

In the case of certain mechanisms, it is possible to express the coor-
dinates x and y of all significant points of the mechanism by means 
of simple analytic expressions containing a single parameter. The 
components of the absolute velocity and acceleration of a given point 
are then obtained by differentiating twice with respect to the time t 
the coordinates x and y of that point [Sec. 15.9].

While the rate of change of a vector is the same with respect to a 
fixed frame of reference and with respect to a frame in translation, 
the rate of change of a vector with respect to a rotating frame is 
different. Therefore, in order to study the motion of a particle rela-
tive to a rotating frame we first had to compare the rates of change 
of a general vector Q with respect to a fixed frame OXYZ and with 
respect to a frame Oxyz rotating with an angular velocity V [Sec. 
15.10] (Fig. 15.45). We obtained the fundamental relation

 (Q̇)OXYZ 5 (Q̇)Oxyz 1 V 3 Q (15.31)

and we concluded that the rate of change of the vector Q with respect 
to the fixed frame OXYZ is made of two parts: The first part represents 
the rate of change of Q with respect to the rotating frame Oxyz; the 
second part, V 3 Q, is induced by the rotation of the frame Oxyz.

Accelerations in plane motion

Coordinates expressed in terms 
of a parameter

Rate of change of a vector with 
respect to a rotating frame

A

O

x

z

y

Z

X

Y

Q

j
i

k

ΩΩ

Fig. 15.45
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1030 Kinematics of Rigid Bodies The next part of the chapter [Sec. 15.11] was devoted to the two-
dimensional kinematic analysis of a particle P moving with respect 
to a frame ^ rotating with an angular velocity V about a fixed axis 
(Fig. 15.46). We found that the absolute velocity of P could be 
expressed as

 vP 5 vP9 1 vP/^ (15.33)

where vP 5 absolute velocity of particle P
 vP9 5  velocity of point P9 of moving frame ^ coinciding 

 with P
 vP/^ 5 velocity of P relative to moving frame ^

We noted that the same expression for vP is obtained if the frame is 
in translation rather than in rotation. However, when the frame is in 
rotation, the expression for the acceleration of P is found to contain 
an additional term ac called the complementary acceleration or Cori-
olis acceleration. We wrote

 aP 5 aP9 1 aP/^ 1 ac (15.36)

where aP 5 absolute acceleration of particle P
 aP9 5  acceleration of point P9 of moving frame ^ coinciding

 with P
 aP/^ 5 acceleration of P relative to moving frame ^
 ac 5 2V 3 (ṙ)Oxy 5 2V 3 vP/^
 5 complementary, or Coriolis, acceleration

Since V and vP/^ are perpendicular to each other in the case of plane 
motion, the Coriolis acceleration was found to have a magnitude 
ac 5 2VvP/^ and to point in the direction obtained by rotating the 
vector vP/^ through 90° in the sense of rotation of the moving frame. 
Formulas (15.33) and (15.36) can be used to analyze the motion of 
mechanisms which contain parts sliding on each other [Sample 
Probs. 15.9 and 15.10].

The last part of the chapter was devoted to the study of the kine-
matics of rigid bodies in three dimensions. We first considered the 
motion of a rigid body with a fixed point [Sec. 15.12]. After proving 
that the most general displacement of a rigid body with a fixed 
point O is equivalent to a rotation of the body about an axis 
through O, we were able to define the angular velocity V and the 
instantaneous axis of rotation of the body at a given instant. The 
velocity of a point P of the body (Fig. 15.47) could again be 
expressed as

 v 5
dr
dt

5 V 3 r (15.37)

Differentiating this expression, we also wrote

 a 5 A 3 r 1 V 3 (V 3 r) (15.38)

However, since the direction of V changes from one instant to the 
next, the angular acceleration A is, in general, not directed along the 
instantaneous axis of rotation [Sample Prob. 15.11].

Plane motion of a particle relative 
to a rotating frame

Motion of a rigid body 
with a fixed point

x

y

X

Y

r

ΩΩ

P

O

P'

vP' = Ω × r
vP/    = (r)O xy

.

Fig. 15.46

O

P

r

ww

aa

Fig. 15.47
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1031Review and SummaryIt was shown in Sec. 15.13 that the most general motion of a rigid 
body in space is equivalent, at any given instant, to the sum of a 
translation and a rotation. Considering two particles A and B of the 
body, we found that

 vB 5 vA 1 vB/A (15.42)

where vB/A is the velocity of B relative to a frame AX9Y9Z9 attached 
to A and of fixed orientation (Fig. 15.48). Denoting by rB/A the posi-
tion vector of B relative to A, we wrote

 vB 5 vA 1 V 3 rB/A (15.43)

where V is the angular velocity of the body at the instant considered 
[Sample Prob. 15.12]. The acceleration of B was obtained by a simi-
lar reasoning. We first wrote

aB 5 aA 1 aB/A

and, recalling Eq. (15.38),

 aB 5 aA 1 A 3 rB/A 1 V 3 (V 3 rB/A) (15.44)

In the final two sections of the chapter we considered the three-
dimensional motion of a particle P relative to a frame Oxyz rotating 
with an angular velocity V with respect to a fixed frame OXYZ (Fig. 
15.49). In Sec. 15.14 we expressed the absolute velocity vP of P as

 vP 5 vP9 1 vP/^ (15.46)

where vP 5 absolute velocity of particle P
 vP9 5  velocity of point P9 of moving frame ^ coinciding

 with P
 vP/^ 5 velocity of P relative to moving frame ^

General motion in space

Three-dimensional motion 
of a particle relative 
to a rotating frame

X
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B

w
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Fig. 15.48

Fig. 15.49
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1032 Kinematics of Rigid Bodies  The absolute acceleration aP of P was then expressed as

 aP 5 aP9 1 aP/^ 1 ac (15.48)

where aP 5 absolute acceleration of particle P
 aP9 5  acceleration of point P9 of moving frame ^ coinciding

 with P
 aP/^ 5 acceleration of P relative to moving frame ^
 ac 5 2V 3 (ṙ)Oxyz 5 2V 3 vP/^
 5 complementary, or Coriolis, acceleration

It was noted that the magnitude ac of the Coriolis acceleration is not 
equal to 2VvP/^ [Sample Prob. 15.13] except in the special case when 
V and vP/^ are perpendicular to each other.

We also observed [Sec. 15.15] that Eqs. (15.46) and (15.48) remain 
valid when the frame Axyz moves in a known, but arbitrary, fashion 
with respect to the fixed frame OXYZ (Fig. 15.50), provided that the 
motion of A is included in the terms vP9 and aP9 representing the 
absolute velocity and acceleration of the coinciding point P9.

Frame of reference in general motion

X

Y

Z

A

y

x

Z'

P

X'

Y'

z
O

rA

rP/A

rP

Fig. 15.50

 Rotating frames of reference are particularly useful in the 
study of the three-dimensional motion of rigid bodies. Indeed, 
there are many cases where an appropriate choice of the rotating 
frame will lead to a simpler analysis of the motion of the rigid body 
than would be possible with axes of fixed orientation [Sample Probs. 
15.14 and 15.15].
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1033

REVIEW PROBLEMS

15.248 The angular acceleration of the 600-mm-radius circular plate 
shown is defined by the relation a 5 a0e2t. Knowing that the plate 
is at rest when t 5 0 and that a0 5 10 rad/s2, determine the mag-
nitude of the total acceleration of point B when (a) t 5 0, (b) t 5 
0.5 s, (c) t 5 .̀

A

C

B
q

r

a
w

Fig. P15.248

0.75 ft

A

Fig. P15.249

 15.249 Cylinder A is moving downward with a velocity of 9 ft/s when the 
brake is suddenly applied to the drum. Knowing that the cylinder 
moves 18 ft downward before coming to rest and assuming uniformly 
accelerated motion, determine (a) the angular acceleration of the 
drum, (b) the time required for the cylinder to come to rest.

15.250 A baseball pitching machine is designed to deliver a baseball with 
a ball speed of 70 mph and a ball rotation of 300 rpm clockwise. 
Knowing that there is no slipping between the wheels and the 
baseball during the ball launch, determine the angular velocities 
of wheels A and B.

7 in.

3 in.

B

7 in.
A

Fig. P15.250
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1034 Kinematics of Rigid Bodies  15.251 Knowing that inner gear A is stationary and outer gear C starts 
from rest and has a constant angular acceleration of 4 rad/s2 clock-
wise, determine at t 5 5 s (a) the angular velocity of arm AB, 
(b) the angular velocity of gear B, (c) the acceleration of the point 
on gear B that is in contact with gear A.

 15.252 Knowing that at the instant shown bar AB has an angular velocity 
of 10 rad/s clockwise and it is slowing down at a rate of 2 rad/s2, 
determine the angular accelerations of bar BD and bar DE.

80 mm

C

40 mm 80 mm

B
A

Fig. P15.251

A

B

D
E

0.2 m

0.2 m

0.25 m

0.6 m

Fig. P15.252

 15.253 Knowing that at the instant shown rod AB has zero angular accel-
eration and an angular velocity of 15 rad/s counterclockwise, deter-
mine (a) the angular acceleration of arm DE, (b) the acceleration 
of point D.

 15.254 Rod AB is attached to a collar at A and is fitted with a wheel at 
B that has a radius r 5 15 mm. Knowing that when u 5 608 the 
collar has a velocity of 250 mm/s upward and it is slowing down 
at a rate of 150 mm/s2, determine (a) the angular acceleration of 
rod AB, (b) the angular acceleration of the wheel.

A

DGB
E

3 in.

4 in. 5 in. 5 in. 4 in.

Fig. P15.253

200 mm

C

A

300 mm

q

B

r

Fig. P15.254
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1035 15.255 Water flows through a curved pipe AB that rotates with a constant 
clockwise angular velocity of 90 rpm. If the velocity of the water 
relative to the pipe is 8 m/s, determine the total acceleration of a 
particle of water at point P.

 15.256 A disk of 0.15-m radius rotates at the constant rate v2 with respect 
to plate BC, which itself rotates at the constant rate v1 about the y 
axis. Knowing that v1 5 v2 5 3 rad/s, determine, for the position 
shown, the velocity and acceleration (a) of point D, (b) of point F.

B

P

A

0.5 m
ww

Fig. P15.255

y

q
AB

C

E

D

x

z

4 in.

16 in.

4 in.

w1

Fig. P15.258

 15.257 Two rods AE and BD pass through holes drilled into a hexagonal 
block. (The holes are drilled in different planes so that the rods will 
not touch each other.) Knowing that rod AE has an angular velocity 
of 20 rad/s clockwise and an angular acceleration of 4 rad/s2 coun-
terclockwise when u 5 908, determine (a) the relative velocity of 
the block with respect to each rod, (b) the relative acceleration 
of the block with respect to each rod. 

Review Problems

0.15 m

ω2
D F

ω1B C

y

z

x

0.15 m

A

Fig. P15.256

A

B

E

D

H

100 mm

q
60°

Fig. P15.257

 15.258 Rod BC of length 24 in. is connected by ball-and-socket joints to a 
rotating arm AB and to a collar C that slides on the fixed rod DE. 
Knowing that the length of arm AB is 4 in. and that it rotates at the 
constant rate v1 5 10 rad/s, determine the velocity of collar C when 
u 5 0.

bee02324_ch15_926-1039.indd Page 1035  23/09/11  8:36 AM user-f501bee02324_ch15_926-1039.indd Page 1035  23/09/11  8:36 AM user-f501 /204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles/204/MHBR250/mca25006_disk1of1/0073525006/mca25006_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


 15.259 In the position shown the thin rod moves at a constant speed u 5 
3 in./s out of the tube BC. At the same time tube BC rotates at 
the constant rate v2 5 1.5 rad/s with respect to arm CD. Knowing 
that the entire assembly rotates about the X axis at the constant 
rate v1 5 1.2 rad/s, determine the velocity and acceleration of end 
A of the rod.

1036 Kinematics of Rigid Bodies

9 in.

6 in.
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B

C

D
u

X

Y

Z
w2

w1

Fig. P15.259
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1037

COMPUTER PROBLEMS

 15.C1 The disk shown has a constant angular velocity of 500 rpm coun-
terclockwise. Knowing that rod BD is 250 mm long, use computational 
 software to determine and plot for values of u from 0 to 360° and using 30° 
increments, the velocity of collar D and the angular velocity of rod BD.
Determine the two values of u for which the speed of collar D is zero.

Fig. P15.C1

50 mm

150 mm

A

B

D

q

 15.C2 Two rotating rods are connected by a slider block P as shown. 
Knowing that rod BP rotates with a constant angular velocity of 6 rad/s 
counterclockwise, use computational software to determine and plot for val-
ues of u from 0 to 180° the angular velocity and angular acceleration of rod 
AE. Determine the value of u for which the angular acceleration aAE of rod 
AE is maximum and the corresponding value of aAE.

A

P

B

E
15 in.

30 in.

q

Fig. P15.C2
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 15.C3 In the engine system shown, l 5 160 mm and b 5 60 mm. Know-
ing that crank AB rotates with a constant angular velocity of 1000 rpm 
clockwise, use computational software to determine and plot for values of 
u from 0 to 180° and using 10° increments, (a) the angular velocity and 
angular acceleration of rod BD, (b) the velocity and acceleration of the 
 piston P.

 15.C4 Rod AB moves over a small wheel at C while end A moves to the 
right with a constant velocity of 180 mm/s. Use computational software to 
determine and plot for values of u from 20° to 90° and using 5° increments, 
the velocity of point B and the angular acceleration of the rod. Determine 
the value of u for which the angular acceleration a of the rod is maximum 
and the corresponding value of a.

Fig. P15.C3

P

D

A
B

l

q

b

 15.C5 Rod BC of length 24 in. is connected by ball-and-socket joints to 
the rotating arm AB and to collar C that slides on the fixed rod DE. Arm 
AB of length 4 in. rotates in the XY plane with a constant angular velocity 
of 10 rad/s. Use computational software to determine and plot for values of 
u from 0 to 360° the velocity of collar C. Determine the two values of u for 
which the velocity of collar C is zero.

C

A

B

q

400 mm

140 mm

Fig. P15.C4

y

q
AB

C

E

D

x

z

4 in.

16 in.

4 in.

w1

Fig. P15.C5
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1039 15.C6 Rod AB of length 25 in. is connected by ball-and-socket joints to 
collars A and B, which slide along the two rods shown. Collar B moves 
toward support E at a constant speed of 20 in./s. Denoting by d the dis-
tance from point C to collar B, use computational software to determine 
and plot the velocity of collar A for values of d from 0 to 15 in.

Fig. P15.C6

C

B

O

D

E

A

y

z

x

9 in.

12 in. 20 in.

20 in.

Computer Problems
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Three-bladed wind turbines, similar to 

the ones shown in this picture of a wind 

farm, are currently the most common 

design. In this chapter you will learn to 

analyze the motion of a rigid body by 

considering the motion of its mass center, 

the motion relative to its mass center, 

and the external forces acting on it.
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Plane Motion of Rigid Bodies: 
Forces and Accelerations

1041

 16C H A P T E R
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1042

16.1 INTRODUCTION
In this chapter and in Chaps. 17 and 18, you will study the kinetics 
of rigid bodies, i.e., the relations existing between the forces acting 
on a rigid body, the shape and mass of the body, and the motion 
produced. In Chaps. 12 and 13, you studied similar relations, assum-
ing then that the body could be considered as a particle, i.e., that its 
mass could be concentrated in one point and that all forces acted at 
that point. The shape of the body, as well as the exact location of the 
points of application of the forces, will now be taken into account. 
You will also be concerned not only with the motion of the body as 
a whole but also with the motion of the body about its mass center.
 Our approach will be to consider rigid bodies as made of large 
numbers of particles and to use the results obtained in Chap. 14 for 
the motion of systems of particles. Specifically, two equations from 
Chap. 14 will be used: Eq. (14.16), oF 5 ma, which relates the 
resultant of the external forces and the acceleration of the mass cen-
ter G of the system of particles, and Eq. (14.23), oMG 5 H

.
G, which 

relates the moment resultant of the external forces and the angular 
momentum of the system of particles about G.
 Except for Sec. 16.2, which applies to the most general case of 
the motion of a rigid body, the results derived in this chapter will be 
limited in two ways: (1) They will be restricted to the plane motion 
of rigid bodies, i.e., to a motion in which each particle of the body 
remains at a constant distance from a fixed reference plane. (2) The 
rigid bodies considered will consist only of plane slabs and of bodies 
which are symmetrical with respect to the reference plane.† The 
study of the plane motion of nonsymmetrical three-dimensional bodies 
and, more generally, the motion of rigid bodies in three-dimensional 
space will be postponed until Chap. 18.
 In Sec. 16.3, we define the angular momentum of a rigid body in 
plane motion and show that the rate of change of the angular momen-
tum H

.
G about the mass center is equal to the product IA of the 

centroidal mass moment of inertia I and the angular acceleration A of 
the body. D’Alembert’s principle, introduced in Sec. 16.4, is used to 
prove that the external forces acting on a rigid body are equivalent to a 
vector ma attached at the mass center and a couple of moment IA.
 In Sec. 16.5, we derive the principle of transmissibility using 
only the parallelogram law and Newton’s laws of motion, allowing us 
to remove this principle from the list of axioms (Sec. 1.2) required 
for the study of the statics and dynamics of rigid bodies.
 Free-body-diagram equations are introduced in Sec. 16.6 and 
will be used in the solution of all problems involving the plane motion 
of rigid bodies.
 After considering the plane motion of connected rigid bodies 
in Sec. 16.7, you will be prepared to solve a variety of problems involv-
ing the translation, centroidal rotation, and unconstrained motion of 
rigid bodies. In Sec. 16.8 and in the remaining part of the chapter, 
the solution of problems involving noncentroidal rotation, rolling 
motion, and other partially constrained plane motions of rigid bodies 
will be considered.

†Or, more generally, bodies which have a principal centroidal axis of inertia perpendicular 
to the reference plane.

Chapter 16 Plane Motion of Rigid 
Bodies: Forces and Accelerations

 16.1 Introduction
 16.2 Equations of Motion for a 

Rigid Body
 16.3 Angular Momentum of a Rigid 

Body in Plane Motion
 16.4 Plane Motion of a Rigid Body. 

D’Alembert’s Principle
 16.5 A Remark on the Axioms of the 

Mechanics of Rigid Bodies
 16.6 Solution of Problems Involving 

the Motion of a Rigid Body
 16.7 Systems of Rigid Bodies
 16.8 Constrained Plane Motion

bee02324_ch16_1040-1103.indd Page 1042  17/10/11  4:26 PM user-f494bee02324_ch16_1040-1103.indd Page 1042  17/10/11  4:26 PM user-f494 /203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles/203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


104316.2 EQUATIONS OF MOTION FOR A RIGID BODY
Consider a rigid body acted upon by several external forces F1, F2, 
F3, . . . (Fig. 16.1). We can assume that the body is made of a large 
number n of particles of mass ¢mi (i 5 1, 2, . . . , n) and apply the 
results obtained in Chap. 14 for a system of particles (Fig. 16.2). 
Considering first the motion of the mass center G of the body with 
respect to the newtonian frame of reference Oxyz, we recall Eq. 
(14.16) and write

 oF 5 ma (16.1)

where m is the mass of the body and a is the acceleration of the mass 
center G. Turning now to the motion of the body relative to the cen-
troidal frame of reference Gx9y9z9, we recall Eq. (14.23) and write

 oMG 5 H
.

G (16.2)

where H
.

G represents the rate of change of HG, the angular momen-
tum about G of the system of particles forming the rigid body. In 
the following, HG will simply be referred to as the angular momen-
tum of the rigid body about its mass center G. Together Eqs. (16.1) 
and (16.2) express that the system of the external forces is equipollent 
to the system consisting of the vector ma attached at G and the couple 
of moment H

.
G (Fig. 16.3).†

16.2 Equations of Motion for a Rigid Body

†Since the systems involved act on a rigid body, we could conclude at this point, by 
referring to Sec. 3.19, that the two systems are equivalent as well as equipollent and 
use red rather than blue equals signs in Fig. 16.3. However, by postponing this 
conclusion, we will be able to arrive at it independently (Secs. 16.4 and 18.5), thereby 
eliminating the necessity of including the principle of transmissibility among the 
axioms of mechanics (Sec. 16.5).

O
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y

z

F1

F2

F3

F4

G

Fig. 16.1

O

G

x

y

z

x'

y'

z'

Δmi

r'i

Fig. 16.2

F1

F2

F3

F4

HG
.

⎯am

=G G

Fig. 16.3

 Equations (16.1) and (16.2) apply in the most general case of the 
motion of a rigid body. In the rest of this chapter, however, our analysis 
will be limited to the plane motion of rigid bodies, i.e., to a motion in 
which each particle remains at a constant distance from a fixed refer-
ence plane, and it will be assumed that the rigid bodies considered 
consist only of plane slabs and of bodies which are symmetrical with 
respect to the reference plane. Further study of the plane motion of 
nonsymmetrical three-dimensional bodies and of the motion of rigid 
bodies in three-dimensional space will be postponed until Chap. 18.

Photo 16.1 The system of external forces 
acting on the man and wakeboard includes the 
weights, the tension in the tow rope, and the 
forces exerted by the water and the air.
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1044 Plane Motion of Rigid Bodies: 
Forces and Accelerations 16.3  ANGULAR MOMENTUM OF A RIGID BODY 

IN PLANE MOTION
Consider a rigid slab in plane motion. Assuming that the slab is made 
of a large number n of particles Pi of mass ¢mi and recalling 
Eq. (14.24) of Sec. 14.5, we note that the angular momentum HG of 
the slab about its mass center G can be computed by taking the 
moments about G of the momenta of the particles of the slab in their 
motion with respect to either of the frames Oxy or Gx9y9 (Fig. 16.4). 
Choosing the latter course, we write

 HG 5 On

i51
(r¿i 3 v¿i  ¢mi) (16.3)

where r9i and v9i ¢mi denote, respectively, the position vector and the 
linear momentum of the particle Pi relative to the centroidal frame 
of reference Gx9y9. But since the particle belongs to the slab, we 
have v9i 5 V 3 r9i, where V is the angular velocity of the slab at the 
instant considered. We write

HG 5 On

i51
[r¿i 3 (V 3 r¿i) ¢mi]

Referring to Fig. 16.4, we easily verify that the expression obtained 
represents a vector of the same direction as V (i.e., perpendicular to 
the slab) and of magnitude equal to vor9i

2 Dmi. Recalling that the 
sum or9i

2 Dmi represents the moment of inertia I of the slab about 
a centroidal axis perpendicular to the slab, we conclude that the 
angular momentum HG of the slab about its mass center is

 HG 5 IV (16.4)

 Differentiating both members of Eq. (16.4) we obtain

 H
.

G 5 IV̇ 5 IA (16.5)

Thus the rate of change of the angular momentum of the slab is 
represented by a vector of the same direction as A (i.e., perpendicu-
lar to the slab) and of magnitude Ia.
 It should be kept in mind that the results obtained in this sec-
tion have been derived for a rigid slab in plane motion. As you will 
see in Chap. 18, they remain valid in the case of the plane motion 
of rigid bodies which are symmetrical with respect to the reference 
plane.† However, they do not apply in the case of nonsymmetrical 
bodies or in the case of three-dimensional motion.

O

G

x

y

x'

y'

r'i

Pi

v'i Δmi

w

Fig. 16.4

†Or, more generally, bodies which have a principal centroidal axis of inertia perpendicular 
to the reference plane. 

Photo 16.2 The hard disk and pick-up arms of 
a hard disk computer undergo centroidal rotation.
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104516.4  PLANE MOTION OF A RIGID BODY. 
D’ALEMBERT’S PRINCIPLE

Consider a rigid slab of mass m moving under the action of several 
external forces F1, F2, F3, . . . , contained in the plane of the slab 
(Fig. 16.5). Substituting for H

.
G from Eq. (16.5) into Eq. (16.2) and 

writing the fundamental equations of motion (16.1) and (16.2) in 
scalar form, we have

 oFx 5 max   oFy 5 may   oMG 5 Ia (16.6)

 Equations (16.6) show that the acceleration of the mass center 
G of the slab and its angular acceleration A are easily obtained once 
the resultant of the external forces acting on the slab and their 
moment resultant about G have been determined. Given appropriate 
initial conditions, the coordinates x and y of the mass center and the 
angular coordinate u of the slab can then be obtained by integration 
at any instant t. Thus the motion of the slab is completely defined by 
the resultant and moment resultant about G of the external forces 
acting on it.
 This property, which will be extended in Chap. 18 to the case 
of the three-dimensional motion of a rigid body, is characteristic of 
the motion of a rigid body. Indeed, as we saw in Chap. 14, the motion 
of a system of particles which are not rigidly connected will in gen-
eral depend upon the specific external forces acting on the various 
particles, as well as upon the internal forces.
 Since the motion of a rigid body depends only upon the resultant 
and moment resultant of the external forces acting on it, it follows that 
two systems of forces which are equipollent, i.e., which have the same 
resultant and the same moment resultant, are also equivalent; that is, 
they have exactly the same effect on a given rigid body.†
 Consider in particular the system of the external forces acting 
on a rigid body (Fig. 16.6a) and the system of the effective forces 
associated with the particles forming the rigid body (Fig. 16.6b). It 
was shown in Sec. 14.2 that the two systems thus defined are equi-
pollent. But since the particles considered now form a rigid body, it 
follows from the discussion above that the two systems are also 
equivalent. We can thus state that the external forces acting on a 
rigid body are equivalent to the effective forces of the various parti-
cles forming the body. This statement is referred to as d’Alembert’s 
principle after the French mathematician Jean le Rond d’Alembert 
(1717–1783), even though d’Alembert’s original statement was writ-
ten in a somewhat different form.
 The fact that the system of external forces is equivalent to the 
system of the effective forces has been emphasized by the use of a 
red equals sign in Fig. 16.6 and also in Fig. 16.7, where using results 
obtained earlier in this section, we have replaced the effective forces 
by a vector ma attached at the mass center G of the slab and a couple 
of moment IA.

16.4 Plane Motion of a Rigid Body. 
D’Alembert’s Principle

O

G

x

y

F1

F2

F3
F4

Fig. 16.5

P

F1

F2

F3

F4

=

(a) (b)

(Δmi)a i

G G

Fig. 16.6

†This result has already been derived in Sec. 3.19 from the principle of transmissibility 
(Sec. 3.3). The present derivation is independent of that principle, however, and will 
make possible its elimination from the axioms of mechanics (Sec. 16.5).

G G

F1

F2

F3
F4

=

(a) (b)

⎯am

a⎯I

Fig. 16.7
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1046 Plane Motion of Rigid Bodies: 
Forces and Accelerations

Translation. In the case of a body in translation, the angular accel-
eration of the body is identically equal to zero and its effective forces 
reduce to the vector ma attached at G (Fig. 16.8). Thus, the resultant 
of the external forces acting on a rigid body in translation passes 
through the mass center of the body and is equal to ma.

Centroidal Rotation. When a slab, or, more generally, a body 
symmetrical with respect to the reference plane, rotates about a fixed 
axis perpendicular to the reference plane and passing through its 
mass center G, we say that the body is in centroidal rotation. Since 
the acceleration a is identically equal to zero, the effective forces 
of the body reduce to the couple IA (Fig. 16.9). Thus, the external 
forces acting on a body in centroidal rotation are equivalent to a 
couple of moment IA.

General Plane Motion. Comparing Fig. 16.7 with Figs. 16.8 and 
16.9, we observe that from the point of view of kinetics, the most 
general plane motion of a rigid body symmetrical with respect to the 
reference plane can be replaced by the sum of a translation and a 
centroidal rotation. We should note that this statement is more 
restrictive than the similar statement made earlier from the point of 
view of kinematics (Sec. 15.5), since we now require that the mass 
center of the body be selected as the reference point.
 Referring to Eqs. (16.6), we observe that the first two equations 
are identical with the equations of motion of a particle of mass m acted 
upon by the given forces F1, F2, F3, . . . We thus check that the mass 
center G of a rigid body in plane motion moves as if the entire mass of 
the body were concentrated at that point, and as if all the external forces 
acted on it. We recall that this result has already been obtained in Sec. 
14.4 in the general case of a system of particles, the particles being not 
necessarily rigidly connected. We also note, as we did in Sec. 14.4, that 
the system of the external forces does not, in general, reduce to a single 
vector ma attached at G. Therefore, in the general case of the plane 
motion of a rigid body, the resultant of the external forces acting on the 
body does not pass through the mass center of the body.
 Finally, it should be observed that the last of Eqs. (16.6) would 
still be valid if the rigid body, while subjected to the same applied 
forces, were constrained to rotate about a fixed axis through G. Thus, 
a rigid body in plane motion rotates about its mass center as if this 
point were fixed.

*16.5  A REMARK ON THE AXIOMS OF THE 
MECHANICS OF RIGID BODIES

The fact that two equipollent systems of external forces acting on a 
rigid body are also equivalent, i.e., have the same effect on that rigid 
body, has already been established in Sec. 3.19. But there it was 
derived from the principle of transmissibility, one of the axioms used 
in our study of the statics of rigid bodies. It should be noted that 
this axiom has not been used in the present chapter because  Newton’s 
second and third laws of motion make its use unnecessary in the 
study of the dynamics of rigid bodies.
 In fact, the principle of transmissibility may now be derived 
from the other axioms used in the study of mechanics. This principle 

F1

F2

F3
F4

G =

(a) (b)

⎯am

G

Fig. 16.8 Translation.

F1

F2

F3

F4

G =

(a) (b)

a⎯I

G

Fig. 16.9 Centroidal rotation.

G G
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F2

F3
F4

=

(a) (b)

⎯am

a⎯I

Fig. 16.7 (repeated)

bee02324_ch16_1040-1103.indd Page 1046  17/10/11  4:26 PM user-f494bee02324_ch16_1040-1103.indd Page 1046  17/10/11  4:26 PM user-f494 /203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles/203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


1047stated, without proof (Sec. 3.3), that the conditions of equilibrium or 
motion of a rigid body remain unchanged if a force F acting at a given 
point of the rigid body is replaced by a force F9 of the same magni-
tude and same direction, but acting at a different point, provided 
that the two forces have the same line of action. But since F and F9 
have the same moment about any given point, it is clear that they 
form two equipollent systems of external forces. Thus, we may now 
prove, as a result of what we established in the preceding section, 
that F and F9 have the same effect on the rigid body (Fig. 3.3).
 The principle of transmissibility can therefore be removed from 
the list of axioms required for the study of the mechanics of rigid 
bodies. These axioms are reduced to the parallelogram law of addi-
tion of vectors and to Newton’s laws of motion.

16.6  SOLUTION OF PROBLEMS INVOLVING 
THE MOTION OF A RIGID BODY

We saw in Sec. 16.4 that when a rigid body is in plane motion, there 
exists a fundamental relation between the forces F1, F2, F3, . . . , acting 
on the body, the acceleration a of its mass center, and the angular 
acceleration A of the body. This relation, which is represented in 
Fig. 16.7 in the form of a free-body-diagram equation, can be used to 
determine the acceleration a and the angular acceleration A produced 
by a given system of forces acting on a rigid body or, conversely, to 
determine the forces which produce a given motion of the rigid body.
 The three algebraic equations (16.6) can be used to solve prob-
lems of plane motion.† However, our experience in statics suggests 
that the solution of many problems involving rigid bodies could be 
simplified by an appropriate choice of the point about which the 
moments of the forces are computed. It is therefore preferable to 
remember the relation existing between the forces and the accelera-
tions in the pictorial form shown in Fig. 16.7 and to derive from this 
fundamental relation the component or moment equations which fit 
best the solution of the problem under consideration.
 The fundamental relation shown in Fig. 16.7 can be presented 
in an alternative form if we add to the external forces an inertia vec-
tor 2ma of sense opposite to that of a, attached at G, and an inertia 
couple 2IA of moment equal in magnitude to Ia and of sense oppo-
site to that of A (Fig. 16.10). The system obtained is equivalent to 
zero, and the rigid body is said to be in dynamic equilibrium.
 Whether the principle of equivalence of external and effective 
forces is directly applied, as in Fig. 16.7, or whether the concept of 
dynamic equilibrium is introduced, as in Fig. 16.10, the use of free-
body-diagram equations showing vectorially the relationship existing 
between the forces applied on the rigid body and the resulting linear 
and angular accelerations presents considerable advantages over the 
blind  application of formulas (16.6). These advantages can be sum-
marized as follows:

 1. The use of a pictorial representation provides a much clearer under-
standing of the effect of the forces on the motion of the body.

†We recall that the last of Eqs. (16.6) is valid only in the case of the plane motion of 
a rigid body symmetrical with respect to the reference plane. In all other cases, the 
methods of Chap. 18 should be used.

Fig. 16.10
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16.6 Solution of Problems Involving the 
Motion of a Rigid Body

Fig. 3.3 (repeated)
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1048 Plane Motion of Rigid Bodies: 
Forces and Accelerations

 2. This approach makes it possible to divide the solution of a 
dynamics problem into two parts: In the first part, the analysis 
of the kinematic and kinetic characteristics of the problem 
leads to the free-body diagrams of Fig. 16.7 or 16.10; in the 
second part, the diagram obtained is used to analyze the various 
forces and vectors involved by the methods of Chap. 3.

 3. A unified approach is provided for the analysis of the plane 
motion of a rigid body, regardless of the particular type of 
motion involved. While the kinematics of the various motions 
considered may vary from one case to the other, the approach 
to the kinetics of the motion is consistently the same. In every 
case a diagram will be drawn showing the external forces, the 
vector ma associated with the motion of G, and the couple IA 
associated with the rotation of the body about G.

 4. The resolution of the plane motion of a rigid body into a transla-
tion and a centroidal rotation, which is used here, is a basic con-
cept which can be applied effectively throughout the study of 
mechanics. It will be used again in Chap. 17 with the method of 
work and energy and the method of impulse and momentum.

 5. As you will see in Chap. 18, this approach can be extended to 
the study of the general three-dimensional motion of a rigid 
body. The motion of the body will again be resolved into a 
translation and a rotation about the mass center, and free-body-
diagram equations will be used to indicate the relationship 
existing between the external forces and the rates of change of 
the linear and angular momentum of the body.

16.7 SYSTEMS OF RIGID BODIES
The method described in the preceding section can also be used 
in problems involving the plane motion of several connected rigid 
bodies. For each part of the system, a diagram similar to Fig. 16.7 
or Fig. 16.10 can be drawn. The equations of motion obtained from 
these diagrams are solved simultaneously.
 In some cases, as in Sample Prob. 16.3, a single diagram can 
be drawn for the entire system. This diagram should include all the 
external forces, as well as the vectors ma and the couples IA associ-
ated with the various parts of the system. However, internal forces 
such as the forces exerted by connecting cables, can be omitted since 
they occur in pairs of equal and opposite forces and are thus equipol-
lent to zero. The equations obtained by expressing that the system 
of the external forces is equipollent to the system of the effective 
forces can be solved for the remaining unknowns.†
 It is not possible to use this second approach in problems 
involving more than three unknowns, since only three equations of 
motion are available when a single diagram is used. We need not 
elaborate upon this point, since the discussion involved would be 
completely similar to that given in Sec. 6.11 in the case of the equi-
librium of a system of rigid bodies.

†Note that we cannot speak of equivalent systems since we are not dealing with a single 
rigid body.

Photo 16.3 The forklift and moving load can 
be analyzed as a system of two connected rigid 
bodies in plane motion.
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1049

SAMPLE PROBLEM 16.1

When the forward speed of the truck shown was 30 ft/s, the brakes were 
suddenly applied, causing all four wheels to stop rotating. It was observed 
that the truck skidded to rest in 20 ft. Determine the magnitude of the 
normal reaction and of the friction force at each wheel as the truck skidded 
to rest.

SOLUTION

Kinematics of Motion. Choosing the positive sense to the right and using 
the equations of uniformly accelerated motion, we write

v0 5 130 ft/s   v2 5 v2
0 1 2a x   0 5 (30)2 1 2a(20)

a 5 222.5 ft/s2   a 5 22.5 ft/s2
z

Equations of Motion. The external forces consist of the weight W of the 
truck and of the normal reactions and friction forces at the wheels. (The 
vectors NA and FA represent the sum of the reactions at the rear wheels, 
while NB and FB represent the sum of the reactions at the front wheels.) 
Since the truck is in translation, the effective forces reduce to the vector 
ma attached at G. Three equations of motion are obtained by expressing 
that the system of the external forces is equivalent to the system of the 
effective forces.

1xoFy 5 o(Fy)eff :  NA 1 NB 2 W 5 0

 Since FA 5 mkNA and FB 5 mkNB, where mk is the coefficient of kinetic 
friction, we find that

FA 1 FB 5 mk(NA 1 NB) 5 mkW
y
1 oFx 5 o(Fx)eff :  2(FA 1 FB) 5 2maw

 2mkW 5 2
W

32.2 ft/s2 (22.5 ft/s2)

 mk 5 0.699
1loMA 5 o(MA)eff :  2W(5 ft) 1 NB(12 ft) 5 maa(4 ft)

 2W(5 ft) 1 NB(12 ft) 5
W

32.2 ft/s2 (22.5 ft/s2)(4 ft)

NB 5 0.650W
FB 5 mkNB 5 (0.699)(0.650W)  FB 5 0.454W

1xoFy 5 o(Fy)eff :  NA 1 NB 2 W 5 0
NA 1 0.650W 2 W 5 0

NA 5 0.350W
FA 5 mkNA 5 (0.699)(0.350W)    FA 5 0.245W

Reactions at Each Wheel. Recalling that the values computed above rep-
resent the sum of the reactions at the two front wheels or the two rear 
wheels, we obtain the magnitude of the reactions at each wheel by writing

Nfront 5 1
2NB 5 0.325W    Nrear 5 1

2NA 5 0.175W ◀

 Ffront 5 1
2FB 5 0.227W  Frear 5  1

2FA 5 0.122W ◀

a

B

G

A

⎯v0

A B

4 ft

5 ft 7 ft

G

=
A

A

W

FA FB
NA NB

4 ft

5 ft 7 ft

⎯am

G

G
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1050

SAMPLE PROBLEM 16.2

The thin plate ABCD of mass 8 kg is held in the position shown by the wire 
BH and two links AE and DF. Neglecting the mass of the links, determine 
immediately after wire BH has been cut (a) the acceleration of the plate, 
(b) the force in each link.

SOLUTION

Kinematics of Motion. After wire BH has been cut, we observe that 
 corners A and D move along parallel circles of radius 150 mm centered, 
respectively, at E and F. The motion of the plate is thus a curvilinear 
 translation; the particles forming the plate move along parallel circles of 
radius 150 mm.
 At the instant wire BH is cut, the velocity of the plate is zero. Thus 
the acceleration a of the mass center G of the plate is tangent to the circular 
path which will be described by G.

Equations of Motion. The external forces consist of the weight W and the 
forces FAE and FDF exerted by the links. Since the plate is in translation, 
the effective forces reduce to the vector ma attached at G and directed 
along the t axis. A free-body-diagram equation is drawn to show that the 
system of the external forces is equivalent to the system of the effective 
forces.

a. Acceleration of the Plate.

 1ooFt 5 o(Ft)eff :
 W cos 30° 5 ma
 mg cos 30° 5 ma
 a 5 g cos 30° 5 (9.81 m/s2) cos 30° (1)

a 5 8.50 m/s2 d 60° ◀

b. Forces in Links AE and DF.

 1roFn 5 o(Fn)eff :  FAE 1 FDF 2 W sin 30° 5 0 (2)
 1ioMG 5 o(MG)eff :

(FAE sin 30°)(250 mm) 2 (FAE cos 30°)(100 mm)
1 (FDF sin 30°)(250 mm) 1 (FDF cos 30°)(100 mm) 5 0

38.4FAE 1 211.6FDF 5 0
 FDF 5 20.1815FAE (3)

Substituting for FDF from (3) into (2), we write

FAE 2 0.1815FAE 2 W sin 30° 5 0
 FAE 5 0.6109W

FDF 5 20.1815(0.6109W) 5 20.1109W

Noting that W 5 mg 5 (8 kg)(9.81 m/s2) 5 78.48 N, we have

 FAE 5 0.6109(78.48 N) FAE 5 47.9 N T ◀

FDF 5 20.1109(78.48 N)  FDF 5 8.70 N C ◀

n

n
A

A

B

CD

B

C
D

FAE

FDF

=
⎯am

30°

30°
30°

30°

G

G

W

t

t

250 mm

200 mm

250 mm

100 mm

100 mm

A B

CD

30°

150 mmE

F

H

200 mm

500 mm

30°

A B

C
D

⎯a

30°

60°

E

F

150 mm

30°
G
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1051

SAMPLE PROBLEM 16.3

A pulley weighing 12 lb and having a radius of gyration of 8 in. is connected 
to two blocks as shown. Assuming no axle friction, determine the angular 
acceleration of the pulley and the acceleration of each block.

SOLUTION

Sense of Motion. Although an arbitrary sense of motion can be assumed 
(since no friction forces are involved) and later checked by the sign of the 
answer, we may prefer to determine the actual sense of rotation of the pulley 
first. The weight of block B required to maintain the equilibrium of the 
pulley when it is acted upon by the 5-lb block A is first determined. We 
write

 1loMG 5 0:  WB(6 in.) 2 (5 lb)(10 in.) 5 0  WB 5 8.33 lb

Since block B actually weighs 10 lb, the pulley will rotate counterclockwise.

Kinematics of Motion. Assuming A counterclockwise and noting that
aA 5 rAa and aB 5 rBa, we obtain

aA 5 (10
12 ft)ax  aB 5 ( 6

12 ft)aw

Equations of Motion. A single system consisting of the pulley and the two 
blocks is considered. Forces external to this system consist of the weights 
of the pulley and the two blocks and of the reaction at G. (The forces 
exerted by the cables on the pulley and on the blocks are internal to the 
system considered and cancel out.) Since the motion of the pulley is a cen-
troidal rotation and the motion of each block is a translation, the effective 
forces reduce to the couple IA and the two vectors maA and maB. The 
centroidal moment of inertia of the pulley is

I 5 mk2 5
W
g

 k2 5
12 lb

32.2 ft/s2 ( 8
12 ft)

2 5 0.1656 lb ? ft ? s2

Since the system of the external forces is equipollent to the system of the 
effective forces, we write

 1loMG 5 o(MG)eff :

 (10 lb)( 6
12 ft) 2 (5 lb)(10

12 ft) 5 1Ia 1 mBaB( 6
12 ft) 1 mAaA(10

12 ft)

 (10)( 6
12) 2 (5)(10

12) 5 0.1656a 1 10
32.2(

6
12a)( 6

12) 1 5
32.2(

10
12a)(10

12)

  a 5 12.374 rad/s2 A 5 2.37 rad/s2
l  ◀

aA 5 rAa 5 (10
12 ft)(2.374 rad/s2)  aA 5  1.978 ft/s2

x ◀

aB 5 rBa 5 ( 6
12 ft)(2.374 rad/s2)  aB 5  1.187 ft/s2

w ◀

B
A

G

6 in.

10 in.

10 lb

5 lb

B

aB

aA

A

G

a
rB rA

10 lb

12 lb

5 lb

mBaB

mAaA

B
A

G

B
A

G

R

a⎯I
=
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SAMPLE PROBLEM 16.4

A cord is wrapped around a homogeneous disk of radius r 5 0.5 m and 
mass m 5 15 kg. If the cord is pulled upward with a force T of magnitude 
180 N, determine (a) the acceleration of the center of the disk, (b) the 
angular acceleration of the disk, (c) the acceleration of the cord.

SOLUTION

Equations of Motion. We assume that the components ax and ay of the 
acceleration of the center are directed, respectively, to the right and upward 
and that the angular acceleration of the disk is counterclockwise. The exter-
nal forces acting on the disk consist of the weight W and the force T exerted 
by the cord. This system is equivalent to the system of the effective forces, 
which consists of a vector of components max and may attached at G and a 
couple IA. We write

y
1 oFx 5 o(Fx)eff :  0 5 max  ax 5 0 ◀

 1xoFy 5 o(Fy)eff :  T 2 W 5 may

  ay 5
T 2 W

m

Since T 5 180 N, m 5 15 kg, and W 5 (15 kg)(9.81 m/s2) 5 147.1 N, we 
have

 ay 5
180 N 2 147.1 N

15 kg
5 12.19 m/s2  ay 5 2.19 m/s2

x ◀

1loMG 5 o(MG)eff :  2Tr 5 Ia
  2Tr 5 (1

2 mr2)a

 a 5 2
2T
mr

5 2
2(180 N)

(15 kg)(0.5 m)
5 248.0 rad/s2

A 5 48.0 rad/s2 
i ◀

Acceleration of Cord. Since the acceleration of the cord is equal to the 
tangential component of the acceleration of point A on the disk, we write

 acord 5 (aA)t 5 a 1 (aA/G)t

 5 [2.19 m/s2 
x] 1 [(0.5 m)(48 rad/s2)x]

 acord 5 26.2 m/s2 
x ◀

A
0.5 m

G

T

⎯ay

⎯a xa
G

T

⎯aym

⎯a xm

r

W

=
a⎯I

G
G

A

⎯a

acord

ar G
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SAMPLE PROBLEM 16.5

A uniform sphere of mass m and radius r is projected along a rough hori-
zontal surface with a linear velocity v0 and no angular velocity. Denoting by 
mk the coefficient of kinetic friction between the sphere and the floor, deter-
mine (a) the time t1 at which the sphere will start rolling without sliding, 
(b) the linear velocity and angular velocity of the sphere at time t1.

SOLUTION

Equations of Motion. The positive sense is chosen to the right for a and 
clockwise for A. The external forces acting on the sphere consist of the 
weight W, the normal reaction N, and the friction force F. Since the point 
of the sphere in contact with the surface is sliding to the right, the friction 
force F is directed to the left. While the sphere is sliding, the magnitude 
of the friction force is F 5 mkN. The effective forces consist of the vector 
ma attached at G and the couple IA. Expressing that the system of the 
external forces is equivalent to the system of the effective forces, we write

 1xoFy 5 o(Fy)eff : N 2 W 5 0
  N 5 W 5 mg   F 5 mkN 5 mkmg

y
1 oFx 5 o(Fx)eff : 2F 5 ma     2mkmg 5 ma     a 5 2mkg

 1ioMG 5 o(MG)eff :  Fr 5 Ia

Noting that I 5 2
5 mr2 and substituting the value obtained for F, we write

(mkmg)r 5 2
5 mr2a      a 5

5
2

 
mkg

r

Kinematics of Motion. As long as the sphere both rotates and slides, its 
linear and angular motions are uniformly accelerated.

 t 5 0, v 5 v0      
  v 5 v0 1 at 5 v0 2 mk 

gt (1)

 t 5 0, v0 5 0     v 5 v0 1 at 5 0 1 a5
2

 
mk 

g

r
b t (2)

 The sphere will start rolling without sliding when the velocity vC of 
the point of contact C is zero. At that time, t 5 t1, point C becomes the 
instantaneous center of rotation, and we have

 v1 5 rv1 (3)

Substituting in (3) the values obtained for v1 and v1 by making t 5 t1 in (1) 
and (2), respectively, we write

 
v0 2 mk 

gt1 5 r a5
2

 
mk 

g

r
 t1b t1 5

2
7

 
v0

mk 
g

 ◀

Substituting for t1 into (2), we have

v1 5
5
2

 
mk 

g

r
 t1 5

5
2

 
mk 

g

r
 a2

7
 

v0

mk 
g
b     v1 5

5
7

 
v0

r
  V1 5

5
7

 
v0

r
 i ◀

 
v1 5 rv1 5 r a5

7
 
v0

r
b   v1 5 5

7 v0   v1 5 5
7 v0 y  ◀

⎯v0

G
⎯a

a
r

= ⎯am
G

G
W

N

F

a⎯I

⎯v1

w1

G
C
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1054

This chapter deals with the plane motion of rigid bodies, and in this first lesson 
we considered rigid bodies that are free to move under the action of applied 

forces.

1. Effective forces. We first recalled that a rigid body consists of a large number 
of particles. The effective forces of the particles forming the body were found to 
be equivalent to a vector ma attached at the mass center G of the body and a 
couple of moment IA [Fig. 16.7]. Noting that the applied forces are equivalent to 
the effective forces, we wrote

 oFx 5 max      oFy 5 may      oMG 5 Ia (16.5)

where ax and ay are the x and y components of the acceleration of the mass center 
G of the body and a is the angular acceleration of the body. It is important to 
note that when these equations are used, the moments of the applied forces 
must be computed with respect to the mass center of the body. However, you learned 
a more efficient method of solution based on the use of a free-body-diagram 
equation.

2. Free-body-diagram equation. Your first step in the solution of a problem 
should be to draw a free-body-diagram equation.
 a. A free-body-diagram equation consists of two diagrams representing two 
equivalent systems of vectors. In the first diagram you should show the forces 
exerted on the body, including the applied forces, the reactions at the supports, 
and the weight of the body. In the second diagram you should show the vector 
ma and the couple IA representing the effective forces.
 b. Using a free-body-diagram equation allows you to sum components in 
any direction and to sum moments about any point. When writing the three equa-
tions of motion needed to solve a given problem, you can therefore select one or 
more equations involving a single unknown. Solving these equations first and sub-
stituting the values obtained for the unknowns into the remaining equation(s) will 
yield a simpler solution.

SOLVING PROBLEMS
ON YOUR OWN
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3. Plane motion of a rigid body. The problems that you will be asked to solve 
will fall into one of the following categories.
 a. Rigid body in translation. For a body in translation, the angular accelera-
tion is zero. The effective forces reduce to the vector ma applied at the mass center 
[Sample Probs. 16.1 and 16.2].
 b. Rigid body in centroidal rotation. For a body in centroidal rotation, the 
acceleration of the mass center is zero. The effective forces reduce to the couple 
IA [Sample Prob. 16.3].
 c. Rigid body in general plane motion. You can consider the general plane 
motion of a rigid body as the sum of a translation and a centroidal rotation. The 
effective forces are equivalent to the vector ma and the couple IA [Sample Probs. 
16.4 and 16.5].

4. Plane motion of a system of rigid bodies. You first should draw a free-body-
diagram equation that includes all the rigid bodies of the system. A vector ma and 
a couple IA are attached to each body. However, the forces exerted on each other 
by the various bodies of the system can be omitted, since they occur in pairs of 
equal and opposite forces.
 a. If no more than three unknowns are involved, you can use this free-
body-diagram equation and sum components in any direction and sum moments 
about any point to obtain equations that can be solved for the desired unknowns 
[Sample Prob. 16.3].
 b. If more than three unknowns are involved, you must draw a separate 
free-body-diagram equation for each of the rigid bodies of the system. Both inter-
nal forces and external forces should be included in each of the free-body-diagram 
equations, and care should be taken to represent with equal and opposite vectors 
the forces that two bodies exert on each other.
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PROBLEMS

1056

CONCEPT QUESTIONS

 16.CQ1 Two pendulums, A and B, with the masses and lengths shown are 
released from rest. Which system has a larger mass moment of 
inertia about its pivot point?
a. A
b. B
c. They are the same.

A

B

L
2m

m

q q

L
2

Fig. P16.CQ1 and P16.CQ2

A

B

r

2r

F1

F2

Fig. P16.CQ3

 16.CQ2 Two pendulums, A and B, with the masses and lengths shown are 
released from rest. Which system has a larger angular acceleration 
immediately after release?
a. A
b. B
c. They are the same.

 16.CQ3 Two solid cylinders, A and B, have the same mass m and the 
radii 2r and r, respectively. Each is accelerated from rest with 
a force applied as shown. In order to impart identical angular 
accelerations to both cylinders, what is the relationship between 
F1 and F2?

 a. F1 5 0.5F2

 b. F1 5 F2

 c. F1 5 2F2

 d. F1 5 4F2

 e. F1 5 8F2
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1057ProblemsFREE BODY PRACTICE PROBLEMS

 16.F1 A 6-ft board is placed in a truck with one end resting against a 
block secured to the floor and the other leaning against a verti-
cal partition. Draw the FBD and KD necessary to determine the 
maximum allowable acceleration of the truck if the board is to 
remain in the position shown.

 16.F2 A uniform circular plate of mass 3 kg is attached to two links AC 
and BD of the same length. Knowing that the plate is released 
from rest in the position shown, in which lines joining G to A and 
B are, respectively, horizontal and vertical, draw the FBD and KD 
for the plate.

 16.F3 Two uniform disks and two cylinders are assembled as indicated. 
Disk A weighs 20 lb and disk B weighs 12 lb. Knowing that the 
system is released from rest, draw the FBD and KD for the whole 
system.

A

B

78°

Fig. P16.F1

75°

75°
C

A

D

B

G

Fig. P16.F2

18 lb15 lb

6 in.8 in.

B

C D

A

Fig. P16.F3

 16.F4 The 400-lb crate shown is lowered by means of two overhead 
cranes. Knowing the tension in each cable, draw the FBD and KD 
that can be used to determine the angular acceleration of the crate 
and the acceleration of the center of gravity.

TA TB

6.6 ft

3.6 ft

3.3 ft

1.8 ft

A

G

B

Fig. P16.F4
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1058 Plane Motion of Rigid Bodies:
Forces and Accelerations

END-OF-SECTION PROBLEMS

 16.1 A conveyor system is fitted with vertical panels, and a 15-in. rod 
AB weighing 5 lb is lodged between two panels as shown. If the 
rod is to remain in the position shown, determine the maximum 
allowable acceleration of the system.

10 in.

A

C

B
70°

a

Fig. P16.1 and P16.2

40 in.60 in.

20 in.

G

Fig. P16.3

 16.2 A conveyor system is fitted with vertical panels, and a 15-in. rod AB 
weighing 5 lb is lodged between two panels as shown. Knowing 
that the acceleration of the system is 3 ft/s2 to the left, determine 
(a) the force exerted on the rod at C, (b) the reaction at B.

 16.3 Knowing that the coefficient of static friction between the tires and 
the road is 0.80 for the automobile shown, determine the  maximum 
possible acceleration on a level road, assuming (a) four-wheel 
drive, (b) rear-wheel drive, (c) front-wheel drive.

 16.4 The motion of the 2.5-kg rod AB is guided by two small wheels 
which roll freely in horizontal slots. If a force P of magnitude 8 N 
is applied at B, determine (a) the acceleration of the rod, (b) the 
reactions at A and B.

 16.5 A uniform rod BC of mass 4 kg is connected to a collar A by a 
250-mm cord AB. Neglecting the mass of the collar and cord, 
determine (a) the smallest constant acceleration aA for which the 
cord and the rod will lie in a straight line, (b) the corresponding 
tension in the cord.

r 5 0.3 m

B

A

P

Fig. P16.4

250 mm

350 mm
400 mm

B

C

A

PaA

Fig. P16.5
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1059Problems 16.6 A 2000-kg truck is being used to lift a 400-kg boulder B that is on 
a 50-kg pallet A. Knowing the acceleration of the rear-wheel-drive 
truck is 1 m/s2, determine (a) the reaction at each of the front 
wheels, (b) the force between the boulder and the pallet.

G

A

B

a

1 m
0.6 m

1.4 m 2 m 1.2 m

Fig. P16.6

 16.7 The support bracket shown is used to transport a cylindrical can 
from one elevation to another. Knowing that ms 5 0.25 between the 
can and the bracket, determine (a) the magnitude of the upward 
acceleration a for which the can will slide on the bracket, (b) the 
smallest ratio h/d for which the can will tip before it slides.

30°

h

d

A

a

Fig. P16.7 

100 N

h

G

0.6 m

0.9 m

Fig. P16.9

 16.8 Solve Prob. 16.7, assuming that the acceleration a of the bracket 
is directed downward.

 16.9 A 20-kg cabinet is mounted on casters that allow it to move freely 
(m 5 0) on the floor. If a 100-N force is applied as shown, deter-
mine (a) the acceleration of the cabinet, (b) the range of values of 
h for which the cabinet will not tip.

 16.10 Solve Prob. 16.9, assuming that the casters are locked and slide on 
the rough floor (mk 5 0.25).
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1060 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.11 A completely filled barrel and its contents have a combined mass 
of 90 kg. A cylinder C is connected to the barrel at a height h 5 
550 mm as shown. Knowing ms 5 0.40 and mk 5 0.35, determine 
the maximum mass of C so the barrel will not tip.

 16.12 A 40-kg vase has a 200-mm-diameter base and is being moved 
using a 100-kg utility cart as shown. The cart moves freely (m 5 
0) on the ground. Knowing the coefficient of static friction between 
the vase and the cart is ms 5 0.4, determine the maximum force 
F that can be applied if the vase is not to slide or tip.

G

600 mm

F

Fig. P16.12

30°

30° 30°

A

G

C

D

E

F

B

80 mm

80 mm

50 mm 100 mm

100 mm

200 mm

300 mm

Fig. P16.13

500 mm

A B

h
450 mm

900 mm

C

G

Fig. P16.11

 16.13 The retractable shelf shown is supported by two identical linkage-
and-spring systems; only one of the systems is shown. A 20-kg 
machine is placed on the shelf so that half of its weight is supported 
by the system shown. If the springs are removed and the system is 
released from rest, determine (a) the acceleration of the machine, 
(b) the tension in link AB. Neglect the weight of the shelf and links.
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1061Problems

300 mm

240 mm

D E

A B

C F

qq

Fig. P16.14 and P16.15

 16.14 A uniform rectangular plate has a mass of 5 kg and is held in posi-
tion by three ropes as shown. Knowing that u 5 30°, determine, 
immediately after rope CF has been cut, (a) the acceleration of the 
plate, (b) the tension in ropes AD and BE.

B

A

C

D

30°

30°

30 in.

8 in.

8 in.

Fig. P16.18

 16.15 A uniform rectangular plate has a mass of 5 kg and is held in posi-
tion by three ropes as shown. Determine the largest value of u for 
which both ropes AD and BE remain taut immediately after rope 
CF has been cut.

 16.16 Three bars, each of mass 3 kg, are welded together and pin- 
connected to two links BE and CF. Neglecting the weight of the 
links, determine the force in each link immediately after the system 
is released from rest.

 16.17 Members ACE and DCB are each 600 mm long and are connected 
by a pin at C. The mass center of the 10-kg member AB is located 
at G.  Determine (a) the acceleration of AB immediately after the 
system has been released from rest in the position shown, (b) the 
corresponding force exerted by roller A on member AB. Neglect 
the weight of members ACE and DCB.

 16.18 The 15-lb rod BC connects a disk centered at A to crank CD. 
Knowing that the disk is made to rotate at the constant speed of 
180 rpm, determine for the position shown the vertical compo-
nents of the forces exerted on rod BC by pins at B and C.

450 mm

450 mm

A D

B

E F

C

50° 50°

Fig. P16.16

30°

C

E

B

G

D

A

50 mm

150 mm

Fig. P16.17
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1062 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.19 The triangular weldment ABC is guided by two pins that slide 
freely in parallel curved slots of radius 6 in. cut in a vertical plate. 
The weldment weighs 16 lb and its mass center is located at point 
G. Knowing that at the instant shown the velocity of each pin is 
30 in./s downward along the slots, determine (a) the acceleration 
of the weldment, (b) the reactions at A and B.

 16.20 The coefficients of friction between the 30-lb block and the 5-lb 
platform BD are ms 5 0.50 and mk 5 0.40. Determine the accelera-
tions of the block and of the platform immediately after wire AB 
has been cut.

 16.21 Draw the shear and bending-moment diagrams for the vertical rod 
AB of Prob. 16.16.

 *16.22 Draw the shear and bending-moment diagrams for the connecting 
rod BC of Prob. 16.18.

 16.23 For a rigid slab in translation, show that the system of the effective 
forces consists of vectors (¢mi)a attached to the various particles 
of the slab, where a is the acceleration of the mass center G of the 
slab. Further show, by computing their sum and the sum of their 
moments about G, that the effective forces reduce to a single vec-
tor ma attached at G.

 16.24 For a rigid slab in centroidal rotation, show that the system of the 
effective forces consists of vectors 2(¢mi)v

2r¿i and (¢mi)(A 3 r¿i) 
attached to the various particles Pi of the slab, where V and A are 
the angular velocity and angular acceleration of the slab, and where 
r¿i  denotes the position vector of the particle Pi relative to the mass 
center G of the slab. Further show, by computing their sum and 
the sum of their moments about G, that the effective forces reduce 
to a couple IA.

 16.25 The rotor of an electric motor has an angular velocity of 3600 rpm 
when the load and power are cut off. The 50-kg rotor, which has a 
centroidal radius of gyration of 180 mm, then coasts to rest. Know-
ing that kinetic friction results in a couple of magnitude 3.5 N ? m 
exerted on the rotor, determine the number of revolutions that the 
rotor executes before coming to rest.

 16.26 It takes 10 min for a 6000-lb flywheel to coast to rest from an 
angular velocity of 300 rpm. Knowing that the radius of gyration 
of the flywheel is 36 in., determine the average magnitude of the 
couple due to kinetic friction in the bearings.

6 in.

6 in.

3 in.

60°

60°

G

A C

B

Fig. P16.19

C

A
D

B

18 in.

5 lb

30 lb
308

E

308

Fig. P16.20

G
⎯a

Pi

(Δmi)a⎯

Fig. P16.23

Pi

–(Δmi)w2r'i

(Δmi)(a × r'i)

r'i

G a
w

Fig. P16.24
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1063Problems 16.27 The 8-in.-radius brake drum is attached to a larger flywheel that 
is not shown. The total mass moment of inertia of the drum and 
the flywheel is 14 lb ? ft ? s2 and the coefficient of kinetic friction 
between the drum and the brake shoe is 0.35. Knowing that the 
angular velocity of the flywheel is 360 rpm counterclockwise when 
a force P of magnitude 75 lb is applied to the pedal C, determine 
the number of revolutions executed by the flywheel before it 
comes to rest.

 16.28 Solve Prob. 16.27, assuming that the initial angular velocity of the 
flywheel is 360 rpm clockwise.

 16.29 The 100-mm-radius brake drum is attached to a flywheel which is 
not shown. The drum and flywheel together have a mass of 300 kg 
and a radius of gyration of 600 mm. The coefficient of kinetic fric-
tion between the brake band and the drum is 0.30. Knowing that 
a force P of magnitude 50 N is applied at A when the angular 
velocity is 180 rpm counterclockwise,  determine the time required 
to stop the flywheel when a 5 200 mm and b 5 160 mm.

A m

Fig. P16.32 and P16.33

 16.30 The 180-mm-radius disk is at rest when it is placed in contact with 
a belt moving at a constant speed. Neglecting the weight of the 
link AB and knowing that the coefficient of kinetic friction between 
the disk and the belt is 0.40, determine the angular acceleration 
of the disk while slipping occurs.

 16.31 Solve Prob. 16.30, assuming that the direction of motion of the 
belt is reversed.

 16.32 In order to determine the mass moment of inertia of a flywheel of 
radius 600 mm, a 12-kg block is attached to a wire that is wrapped 
around the flywheel. The block is released and is observed to fall 
3 m in 4.6 s. To eliminate bearing friction from the computation, 
a second block of mass 24 kg is used and is observed to fall 3 m 
in 3.1 s. Assuming that the moment of the couple due to friction 
remains constant, determine the mass moment of inertia of the 
flywheel.

 16.33 The flywheel shown has a radius of 20 in., a weight of 250 lb, 
and a radius of gyration of 15 in. A 30-lb block A is attached to 
a wire that is wrapped around the flywheel, and the system is 
released from rest. Neglecting the effect of friction, determine 
(a) the acceleration of block A, (b) the speed of block A after it 
has moved 5 ft.

10 in.

8 in.

A

B

C

P

6 in.

15 in.

D

Fig. P16.27

A

a

r

B

O

P

b

DC

Fig. P16.29

B

A
180 mm

60°

v

Fig. P16.30
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1064 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.34 Each of the double pulleys shown has a mass moment of inertia 
of 15 lb ? ft ? s2 and is initially at rest. The outside radius is 18 in., 
and the inner radius is 9 in. Determine (a) the angular acceleration 
of each pulley, (b) the angular velocity of each pulley after point 
A on the cord has moved 10 ft.

 16.35 Each of the gears A and B has a mass of 9 kg and has a radius of 
gyration of 200 mm; gear C has a mass of 3 kg and has a radius of 
gyration of 75 mm. If a couple M of constant magnitude 5 N-m is 
applied to gear C, determine (a) the angular acceleration of gear A, 
(b) the tangential force which gear C exerts on gear A.

A A A A

160 lb

(1) (2) (3) (4)

160 lb 460 lb 300 lb 80 lb

Fig. P16.34

100 mm

A B

C

250 mm 250 mm

M

Fig. P16.35

A
B

4 in.2 in.

2 in.

6 in.

C

M

Fig. P16.37

 16.36 Solve Prob. 16.35, assuming that the couple M is applied to disk A.

 16.37 Gear A weighs 1 lb and has a radius of gyration of 1.3 in; gear B 
weighs 6 lb and has a radius of gyration of 3 in.; gear C weighs 9 lb 
and has a radius of gyration of 4.3 in. Knowing a couple M of 
constant magnitude of 40 lb ? in is applied to gear A, determine 
(a) the angular acceleration of gear C, (b) the tangential force 
which gear B exerts on gear C.
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1065Problems 16.38 Disks A and B are bolted together, and cylinders D and E are 
attached to separate cords wrapped on the disks. A single cord 
passes over disks B and C. Disk A weighs 20 lb and disks B and 
C each weigh 12 lb. Knowing that the system is released from rest 
and that no slipping occurs between the cords and the disks, deter-
mine the acceleration (a) of cylinder D, (b) of cylinder E.

 16.39 A belt of negligible mass passes between cylinders A and B and is 
pulled to the right with a force P. Cylinders A and B weigh, respec-
tively, 5 and 20 lb. The shaft of cylinder A is free to slide in a vertical 
slot and the coefficients of friction between the belt and each of the 
cylinders are ms 5 0.50 and mk 5 0.40. For P 5 3.6 lb, determine 
(a) whether slipping occurs between the belt and either cylinder, 
(b) the angular acceleration of each cylinder.

 16.40 Solve Prob. 16.39 for P 5 2.00 lb.

 16.41 Disk A has a mass of 6 kg and an initial angular velocity of 360 rpm 
clockwise; disk B has a mass of 3 kg and is initially at rest. The disks 
are brought together by applying a horizontal force of  magnitude 
20 N to the axle of disk A. Knowing that mk 5 0.15 between the 
disks and neglecting bearing friction, determine (a) the angular 
acceleration of each disk, (b) the final angular velocity of each disk.

18 lb E15 lbD

6 in.8 in.

B
A

6 in.

C

Fig. P16.38
P

8 in.

4 in.

B

A

Fig. P16.39

A

B

80 mm 60 mm

Fig. P16.41

 16.42 Solve Prob. 16.41, assuming that initially disk A is at rest and disk 
B has an angular velocity of 360 rpm clockwise.
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1066 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.43 Disk A has a mass mA 5 4 kg, a radius rA 5 300 mm, and an initial 
angular velocity V0 5 300 rpm clockwise. Disk B has a mass mB 5 
1.6 kg, a radius rB 5 180 mm, and is at rest when it is brought 
into contact with disk A. Knowing that mk 5 0.35 between the disks 
and neglecting bearing friction, determine (a) the angular accelera-
tion of each disk, (b) the reaction at the support C.

 16.44 Disk B is at rest when it is brought into contact with disk A, which 
has an initial angular velocity V0. (a) Show that the final angular 
velocities of the disks are independent of the coefficient of friction 
mk between the disks as long as mk fi 0. (b) Express the final angular 
velocity of disk A in terms of v0 and the ratio of the masses of the 
two disks mA /mB.

 16.45 Cylinder A has an initial angular velocity of 720 rpm clockwise, 
and cylinders B and C are initially at rest. Disks A and B each 
weigh 5 lb and have radius r 5 4 in. Disk C weighs 20 lb and 
has a radius of 8 in. The disks are brought together when C is 
placed gently onto A and B. Knowing that mk 5 0.25 between A 
and C and no slipping occurs between B and C, determine 
(a) the angular acceleration of each disk, (b) the final angular 
velocity of each disk.

 16.46 Show that the system of the effective forces for a rigid slab in 
plane motion reduces to a single vector, and express the distance 
from the mass center G of the slab to the line of action of this 
vector in terms of the centroidal radius of gyration k of the 
slab, the magnitude a of the acceleration of G, and the angular 
acceleration a.

 16.47 For a rigid slab in plane motion, show that the system of the effective 
forces consists of vectors (¢mi)a, 2(¢mi)v

2r9i, and (¢mi)(A 3 r9i) 
attached to the various particles Pi of the slab, where a is the 
acceleration of the mass center G of the slab, V is the angular 
velocity of the slab, A is its angular acceleration, and r9i denotes the 
position vector of the particle Pi, relative to G. Further show, by 
computing their sum and the sum of their moments about G, that 
the effective forces reduce to a vector ma attached at G and a 
couple IA.

rB

rA

A

C

B

w0

Fig. P16.43 and P16.44

r

2r

r

C

A B

30° 30°

Fig. P16.45

G

⎯a

Pi
(Δmi)a⎯

–(Δmi)w2r'i

(Δmi)(a × r'i)

a

r'i

w

Fig. P16.47
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1067Problems 16.48 A uniform slender rod AB rests on a frictionless horizontal surface, 
and a force P of magnitude 0.25 lb is applied at A in a direction 
perpendicular to the rod. Knowing that the rod weighs 1.75 lb, 
determine (a) the acceleration of point A, (b) the acceleration of 
point B, (c) the location of the point on the bar that has zero 
acceleration.

 16.49 (a) In Prob. 16.48, determine the point of the rod AB at which the 
force P should be applied if the acceleration of point B is to be 
zero. (b) Knowing that P 5 0.25 lb, determine the corresponding 
acceleration of point A.

 16.50 A force P of magnitude 3 N is applied to a tape wrapped around 
a thin hoop of mass 2.4 kg. Knowing that the body rests on a friction-
less horizontal surface, determine the acceleration of (a) point A, 
(b) point B.

 16.51 A force P is applied to a tape wrapped around a uniform disk that 
rests on a frictionless horizontal surface. Show that for each 360° 
rotation of the disk the center of the disk will move a distance pr.

z

x

y

B

A

P

36 in.

Fig. P16.48

z x

A
C

B

r

y

P

Fig. P16.50

P

z x

A

B

r C

y

Fig. P16.51

 16.52 A 250-lb satellite has a radius of gyration of 24 in. with respect to 
the y axis and is symmetrical with respect to the zx plane. Its ori-
entation is changed by firing four small rockets A, B, C, and D, 
each of which produces a 4-lb thrust T directed as shown. Deter-
mine the angular acceleration of the satellite and the acceleration 
of its mass center G (a) when all four rockets are fired, (b) when 
all rockets except D are fired.

32 in.

x

z

AB
C G

T

T
T

y

D

T

Fig. P16.52
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1068 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.53 A rectangular plate of mass 5 kg is suspended from four vertical 
wires, and a force P of magnitude 6 N is applied to corner C as 
shown. Immediately after P is applied, determine the acceleration 
of (a) the midpoint of edge BC, (b) corner B.

 16.54 A uniform slender L-shaped bar ABC is at rest on a horizontal 
surface when a force P of magnitude 4 N is applied at point A. 
Neglecting friction between the bar and the surface and knowing 
that the mass of the bar is 2 kg, determine (a) the initial angular 
acceleration of the bar, (b) the initial acceleration of point B.

T

Fig. P16.55 and P16.56

 16.55 By pulling on the string of a yo-yo, a person manages to make the 
yo-yo spin, while remaining at the same elevation above the floor. 
Denoting the mass of the yo-yo by m, the radius of the inner drum 
on which the string is wound by r, and the centroidal radius of 
gyration of the yo-yo by k, determine the angular acceleration of 
the yo-yo.

B
D

A

CP

z
x

y

300 mm
400 mm

Fig. P16.53

z

y

0.3 m

0.3 m

x

CA

B

P

Fig. P16.54

 16.56 The 80-g yo-yo shown has a centroidal radius of gyration of 
30 mm. The radius of the inner drum on which a string is wound 
is 6 mm. Knowing that at the instant shown the acceleration of 
the center of the yo-yo is 1 m/s2 upward, determine (a) the 
required tension T in the string, (b) the corresponding angular 
acceleration of the yo-yo.
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1069Problems 16.57 A 6-lb sprocket wheel has a centroidal radius of gyration of 
2.75 in. and is suspended from a chain as shown. Determine the 
acceleration of points A and B of the chain, knowing that TA 5 3 lb 
and TB 5 4 lb.

 16.58 The steel roll shown has a mass of 1200 kg, a centroidal radius of 
gyration of 150 mm, and is lifted by two cables looped around its 
shaft. Knowing that for each cable TA 5 3100 N and TB 5 3300 N, 
determine (a) the angular acceleration of the roll, (b) the accelera-
tion of its mass center.

 16.59 The steel roll shown has a mass of 1200 kg, has a centroidal radius 
of gyration of 150 mm, and is lifted by two cables looped around 
its shaft. Knowing that at the instant shown the acceleration of the 
roll is 150 mm/s2 downward and that for each cable TA 5 3000 N, 
determine (a) the corresponding tension TB, (b) the angular accel-
eration of the roll.

 16.60 and 16.61 A 15-ft beam weighing 500 lb is lowered by means 
of two cables unwinding from overhead cranes. As the beam 
approaches the ground, the crane operators apply brakes to slow 
the unwinding motion. Knowing that the deceleration of cable A 
is 20 ft/s2 and the deceleration of cable B is 2 ft/s2, determine the 
tension in each cable.

3.5 in.3.5 in.

TA TB

A B

Fig. P16.57
B

TA TB

TA TB

A

B
A

100 mm

Fig. P16.58 and P16.59

A B

15 ft

TBTA

Fig. P16.60

A B

15 ft

12 ft

TBTA

Fig. P16.61
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1070 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.62 Two uniform cylinders, each of weight W 5 14 lb and radius r 5 
5 in., are connected by a belt as shown. If the system is released 
from rest, determine (a) the angular acceleration of each cylinder, 
(b) the tension in the portion of belt connecting the two cylinders, 
(c) the velocity of the center of the cylinder A after it has moved 
through 3 ft.

A B

L

1 2

Fig. P16.63

A B

1 2

3L
4

L
4

Fig. P16.64

A B

1 2

L
3

L
3

L
3

30°30°

Fig. P16.65

 16.63 through 16.65 A beam AB of mass m and of uniform cross 
section is suspended from two springs as shown. If spring 2 breaks, 
determine at that instant (a) the angular acceleration of the bar, 
(b) the acceleration of point A, (c) the acceleration of point B.

A B

b 21

Fig. P16.67

B

b
2

b 21

A

Fig. P16.66

B

21

A

45° 45°

b
2

a

Fig. P16.68

 16.66 through 16.68 A thin plate of the shape indicated and of mass 
m is suspended from two springs as shown. If spring 2 breaks, 
determine the acceleration at that instant (a) of point A, (b) of 
point B.

 16.66 A square plate of side b
 16.67 A circular plate of diameter b
 16.68 A rectangular plate of height b and width a

r

r

A

B

Fig. P16.62
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1071Problems 16.69 A sphere of radius r and mass m is projected along a rough horizontal 
surface with the initial velocities indicated. If the final velocity of the 
sphere is to be zero, express, in terms of v0, r, and mk, (a) the required 
magnitude of V0, (b) the time t1 required for the sphere to come to 
rest, (c) the distance the sphere will move before coming to rest.

 16.70 Solve Prob. 16.69, assuming that the sphere is replaced by a uni-
form thin hoop of radius r and mass m.

 16.71 A bowler projects an 8-in.-diameter ball weighing 12 lb along an 
alley with a forward velocity v0 of 15 ft/s and a backspin V0 of 
9 rad/s. Knowing that the coefficient of kinetic friction between 
the ball and the alley is 0.10, determine (a) the time t1 at which 
the ball will start rolling without sliding, (b) the speed of the ball 
at time t1, (c) the distance the ball will have traveled at time t1.

v0

w0

Fig. P16.69

ww0

v0

Fig. P16.71

 16.72 Solve Prob. 16.71, assuming that the bowler projects the ball with 
the same forward velocity but with a backspin of 18 rad/s.

 16.73 A uniform sphere of radius r and mass m is placed with no  initial 
velocity on a belt that moves to the right with a constant velocity 
v1. Denoting by mk the coefficient of kinetic friction between the 
sphere and the belt, determine (a) the time t1 at which the sphere 
will start rolling without sliding, (b) the linear and angular veloci-
ties of the sphere at time t1.

v1

Fig. P16.73

v1

v0

Fig. P16.74

 16.74 A sphere of radius r and mass m has a linear velocity v0 directed to 
the left and no angular velocity as it is placed on a belt moving to
the right with a constant velocity v1. If after first sliding on the belt the 
sphere is to have no linear velocity relative to the ground as 
it starts rolling on the belt without sliding, determine in terms of 
v1 and the coefficient of kinetic friction mk between the sphere and 
the belt (a) the required value of v0, (b) the time t1 at which the 
sphere will start rolling on the belt, (c) the distance the sphere will 
have moved relative to the ground at time t1.
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1072 Plane Motion of Rigid Bodies: 
Forces and Accelerations 16.8 CONSTRAINED PLANE MOTION

Most engineering applications deal with rigid bodies which are mov-
ing under given constraints. For example, cranks must rotate about 
a fixed axis, wheels must roll without sliding, and connecting rods 
must describe certain prescribed motions. In all such cases, definite 
relations exist between the components of the acceleration a of the 
mass center G of the body considered and its angular acceleration 
A; the corresponding motion is said to be a constrained motion.
 The solution of a problem involving a constrained plane motion 
calls first for a kinematic analysis of the problem. Consider, for exam-
ple, a slender rod AB of length l and mass m whose extremities are 
connected to blocks of negligible mass which slide along horizontal 
and vertical frictionless tracks. The rod is pulled by a force P applied 
at A (Fig. 16.11). We know from Sec. 15.8 that the acceleration a of 
the mass center G of the rod can be determined at any given instant 
from the position of the rod, its angular velocity, and its angular accel-
eration at that instant. Suppose, for example, that the values of u, v, 
and a are known at a given instant and that we wish to determine 
the corresponding value of the force P, as well as the reactions at A 
and B. We should first determine the components ax and ay of the 
acceleration of the mass center G by the method of Sec. 15.8. We 
next apply d’Alembert’s principle (Fig. 16.12), using the expressions 
obtained for ax and ay. The unknown forces P, NA, and NB can then 
be determined by writing and solving the appropriate equations.

⎯ay
(q,w,a)

⎯a x (q,w,a)

A

B

P

a

q

w

l

G

Fig. 16.11

A

B

P

W

NA  

NB

=
⎯a xm

⎯a ym

a⎯I

GG

Fig. 16.12

 Suppose now that the applied force P, the angle u, and the 
angular velocity v of the rod are known at a given instant and that 
we wish to find the angular acceleration a of the rod and the com-
ponents ax and ay of the acceleration of its mass center at that instant, 
as well as the reactions at A and B. The preliminary kinematic study 
of the problem will have for its object to express the components ax 
and ay of the acceleration of G in terms of the angular acceleration 
a of the rod. This will be done by first expressing the acceleration 
of a suitable reference point such as A in terms of the angular accel-
eration a. The components ax and ay of the acceleration of G can 
then be determined in terms of a, and the expressions obtained car-
ried into Fig. 16.12. Three equations can then be derived in terms 
of a, NA, and NB and solved for the three unknowns (see Sample 
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1073Prob. 16.10). Note that the method of dynamic equilibrium can also 
be used to carry out the solution of the two types of problems we 
have considered (Fig. 16.13).
 When a mechanism consists of several moving parts, the 
approach just described can be used with each part of the mecha-
nism. The procedure required to determine the various unknowns is 
then similar to the procedure followed in the case of the equilibrium 
of a system of connected rigid bodies (Sec. 6.11).
 Earlier, we analyzed two particular cases of constrained plane 
motion: the translation of a rigid body, in which the angular accelera-
tion of the body is constrained to be zero, and the centroidal rotation, 
in which the acceleration a of the mass center of the body is con-
strained to be zero. Two other particular cases of constrained plane 
motion are of special interest: the noncentroidal rotation of a rigid 
body and the rolling motion of a disk or wheel. These two cases can 
be analyzed by one of the general methods described above. How-
ever, in view of the range of their applications, they deserve a few 
special comments.

Noncentroidal Rotation. The motion of a rigid body constrained 
to rotate about a fixed axis which does not pass through its mass 
center is called noncentroidal rotation. The mass center G of the 
body moves along a circle of radius r centered at the point O, where 
the axis of rotation intersects the plane of reference (Fig. 16.14). 
Denoting, respectively, by V and A the angular velocity and the 
angular acceleration of the line OG, we obtain the following expres-
sions for the tangential and normal components of the acceleration 
of G:

 at 5 ra   an 5 rv2 (16.7)

Since line OG belongs to the body, its angular velocity V and its 
angular acceleration A also represent the angular velocity and the 
angular acceleration of the body in its motion relative to G. Equa-
tions (16.7) define, therefore, the kinematic relation existing between 
the motion of the mass center G and the motion of the body about 
G. They should be used to eliminate at and an from the equations 
obtained by applying d’Alembert’s principle (Fig. 16.15) or the 
method of dynamic equilibrium (Fig. 16.16).

16.8 Constrained Plane Motion

Fig. 16.13
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W
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⎯a y–m

=  0– a⎯I
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Fig. 16.14 
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Fig. 16.15

O

F1
F2

F3
Ry

R x

a

=  0– a⎯I ⎯a t–m

⎯a n–m

G

Fig. 16.16 
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1074 Plane Motion of Rigid Bodies: 
Forces and Accelerations

 An interesting relation is obtained by equating the moments 
about the fixed point O of the forces and vectors shown, respectively, 
in parts a and b of Fig. 16.15. We write

1l oMO 5 Ia 1 (mra)r 5 (I 1 mr2)a

But according to the parallel-axis theorem, we have I 1 mr 
2 5 IO, 

where IO denotes the moment of inertia of the rigid body about the 
fixed axis. We therefore write

 oMO 5 IOa (16.8)

Although formula (16.8) expresses an important relation between the 
sum of the moments of the external forces about the fixed point O 
and the product IOa, it should be clearly understood that this for-
mula does not mean that the system of the external forces is equiva-
lent to a couple of moment IOa. The system of the effective forces, 
and thus the system of the external forces, reduces to a couple only 
when O coincides with G—that is, only when the rotation is centroi-
dal (Sec. 16.4). In the more general case of noncentroidal rotation, 
the system of the external forces does not reduce to a couple.
 A particular case of noncentroidal rotation is of special interest—
the case of uniform rotation, in which the angular velocity V is con-
stant. Since A is zero, the inertia couple in Fig. 16.16 vanishes and 
the inertia vector reduces to its normal component. This component 
(also called centrifugal force) represents the tendency of the rigid 
body to break away from the axis of rotation.

Rolling Motion. Another important case of plane motion is the 
motion of a disk or wheel rolling on a plane surface. If the disk is 
constrained to roll without sliding, the acceleration a of its mass 
center G and its angular acceleration A are not independent. Assum-
ing that the disk is balanced, so that its mass center and its geometric 
center coincide, we first write that the distance x traveled by G dur-
ing a rotation u of the disk is x 5 ru, where r is the radius of the 
disk. Differentiating this relation twice, we write

 a 5 ra (16.9)

O
O

=

F1

F2

F3
Ry

R x

(a) (b)

⎯r ⎯a nm

⎯a tm

a

a⎯I
G G

Fig. 16.15 (repeated)

O

F1
F2

F3
Ry

R x

a

=  0– a⎯I ⎯a t–m

⎯a n–m

G

Fig. 16.16 (repeated)
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1075 Recalling that the system of the effective forces in plane motion 
reduces to a vector ma and a couple IA, we find that in the particular 
case of the rolling motion of a balanced disk, the effective forces 
reduce to a vector of magnitude mra attached at G and to a couple 
of magnitude Ia. We may thus express that the external forces are 
equivalent to the vector and couple shown in Fig. 16.17.
 When a disk rolls without sliding, there is no relative motion 
between the point of the disk in contact with the ground and the 
ground itself. Thus, as far as the computation of the friction force F 
is concerned, a rolling disk can be compared with a block at rest on 
a surface. The magnitude F of the friction force can have any value, 
as long as this value does not exceed the maximum value Fm 5 msN, 
where ms is the coefficient of static friction and N is the magnitude 
of the normal force. In the case of a rolling disk, the magnitude F of 
the friction force should therefore be determined independently of N 
by solving the equation obtained from Fig. 16.17.
 When sliding is impending, the friction force reaches its maxi-
mum value Fm 5 msN and can be obtained from N.
 When the disk rotates and slides at the same time, a relative 
motion exists between the point of the disk which is in contact with 
the ground and the ground itself, and the force of friction has the 
magnitude Fk 5 mkN, where mk is the coefficient of kinetic friction. 
In this case, however, the motion of the mass center G of the disk 
and the rotation of the disk about G are independent, and a is not 
equal to ra.
 These three different cases can be summarized as follows:

Rolling, no sliding: F # msN   a 5 ra
Rolling, sliding impending: F 5 msN   a 5 ra
Rotating and sliding: F 5 mkN   a and a independent

When it is not known whether or not a disk slides, it should first be 
assumed that the disk rolls without sliding. If F is found smaller than 
or equal to msN, the assumption is proved correct. If F is found larger 
than msN, the assumption is incorrect and the problem should be 
started again, assuming rotating and sliding.
 When a disk is unbalanced, i.e., when its mass center G does 
not coincide with its geometric center O, the relation (16.9) does not 
hold between a and a. However, a similar relation holds between 
the magnitude aO of the acceleration of the geometric center and 
the angular acceleration a of an unbalanced disk which rolls without 
sliding. We have

 aO 5 ra (16.10)

To determine a in terms of the angular acceleration a and the angular 
velocity v of the disk, we can use the relative-acceleration formula

 a 5 aG 5 aO 1 aG/O
 5 aO 1 (aG/O)t 1 (aG/O)n (16.11)

where the three component accelerations obtained have the direc-
tions indicated in Fig. 16.18 and the magnitudes aO 5 ra, (aG/O)t 5 
(OG)a, and (aG/O)n 5 (OG)v2.

16.8 Constrained Plane Motion

N

F

=
a⎯I

W

P

CC

G
G

ma (a = ra)

Fig. 16.17

O

C

aO

aO (aG/O)n

(aG/O)t

G

Fig. 16.18

Photo 16.4 As the ball hits the bowling alley, 
it first spins and slides, then rolls without sliding.

bee02324_ch16_1040-1103.indd Page 1075  17/10/11  4:27 PM user-f494bee02324_ch16_1040-1103.indd Page 1075  17/10/11  4:27 PM user-f494 /203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles/203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


1076

SAMPLE PROBLEM 16.6

The portion AOB of a mechanism consists of a 400-mm steel rod OB welded 
to a gear E of radius 120 mm which can rotate about a horizontal shaft O. 
It is actuated by a gear D and, at the instant shown, has a clockwise angular 
velocity of 8 rad/s and a counterclockwise angular acceleration of 40 rad/s2. 
Knowing that rod OB has a mass of 3 kg and gear E a mass of 4 kg and a 
radius of gyration of 85 mm, determine (a) the tangential force exerted by 
gear D on gear E, (b) the components of the reaction at shaft O.

SOLUTION

In determining the effective forces of the rigid body AOB, gear E and rod 
OB will be considered separately. Therefore, the components of the accel-
eration of the mass center GOB of the rod will be determined first:

 (aOB)t 5 ra 5 (0.200 m)(40 rad/s2) 5 8 m/s2

 (aOB)n 5 rv2 5 (0.200 m)(8 rad/s)2 5 12.8 m/s2

Equations of Motion. Two sketches of the rigid body AOB have been 
drawn. The first shows the external forces consisting of the weight WE of 
gear E, the weight WOB of the rod OB, the force F exerted by gear D, and 
the components Rx and Ry of the reaction at O. The magnitudes of the 
weights are, respectively,

 WE 5 mEg 5 (4 kg)(9.81 m/s2) 5 39.2 N
 WOB 5 mOBg 5 (3 kg)(9.81 m/s2) 5 29.4 N

The second sketch shows the effective forces, which consist of a couple IEA 
(since gear E is in centroidal rotation) and of a couple and two vector com-
ponents at the mass center of OB. Since the accelerations are known, we 
compute the magnitudes of these components and couples:

 IE 
a 5 mEk2

Ea 5 (4 kg)(0.085 m)2(40 rad/s2) 5 1.156 N ? m
 mOB(aOB)t 5 (3 kg)(8 m/s2) 5 24.0 N
 mOB(aOB)n 5 (3 kg)(12.8 m/s2) 5 38.4 N

IOBa 5 ( 1
12mOBL2)a 5 1

12(3 kg)(0.400 m)2(40 rad/s2) 5 1.600 N ? m

Expressing that the system of the external forces is equivalent to the system 
of the effective forces, we write the following equations:

1l oMO 5 o(MO)eff :
 F(0.120 m) 5 IEa 1 mOB(aOB)t(0.200 m) 1 IOBa

 F(0.120 m) 5 1.156 N ? m 1 (24.0 N)(0.200 m) 1 1.600 N ? m

 F 5 63.0 N F 5 63.0 Nw ◀ 

y
1 oFx 5 o(Fx)eff : Rx 5 mOB(aOB)t

 Rx 5 24.0 N Rx 5 24.0 N y ◀

1xoFy 5 o(Fy)eff :   Ry 2 F 2 WE 2 WOB 5 mOB(aOB)n

 Ry 2 63.0 N 2 39.2 N 2 29.4 N 5 38.4 N

 Ry 5 170.0 N Ry 5 170.0 Nx ◀

O

400 mm

120 mm

D E
A

B

aw

B

O

GOB
(aOB)t

(aOB)n

⎯

⎯0.200 m

a⎯IOB

a⎯IE

B B

EE

A OO

0.120 mm

GOB
GOB

WOB

WE

R x

F

Ry
=

mOB(aOB)t⎯
0.200 m mOB(aOB)n⎯
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1077

SAMPLE PROBLEM 16.7

A 6 3 8 in. rectangular plate weighing 60 lb is suspended from two pins A 
and B. If pin B is suddenly removed, determine (a) the angular acceleration 
of the plate, (b) the components of the reaction at pin A, immediately after 
pin B has been removed.

SOLUTION

a. Angular Acceleration. We observe that as the plate rotates about point 
A, its mass center G describes a circle of radius r with center at A.
 Since the plate is released from rest (v 5 0), the normal component 
of the acceleration of G is zero. The magnitude of the acceleration a of the 
mass center G is thus a 5 ra. We draw the diagram shown to express that 
the external forces are equivalent to the effective forces:

1ioMA 5 o(MA)eff : Wx 5 (ma)r 1 Ia

Since a 5 ra, we have

 W x 5 m(ra)r 1 Ia   a 5
W x

W
g

 r 2 1 I
 (1)

The centroidal moment of inertia of the plate is

 I 5
m
12

(a2 1 b2) 5
60 lb

12(32 .2 ft/s2)
 [ ( 8

12 ft)
2 1 ( 6

12 ft)
2]

 5 0.1078 lb ? ft ? s2

Substituting this value of I together with W 5 60 lb, r 5 5
12 ft, and x 5 4

12 ft 
into Eq. (1), we obtain

 a 5 146.4 rad/s2 A 5 46.4 rad/s2 i ◀ 

b. Reaction at A. Using the computed value of a, we determine the mag-
nitude of the vector ma attached at G.

ma 5 mra 5
60 lb

32.2 ft/s2 ( 5
12 ft)(46.4 rad/s2) 5 36.0 lb

Showing this result on the diagram, we write the equations of motion

y
1 oFx 5 o(Fx)eff :  Ax 5 23

5(36 lb)
 5 221.6 lb Ax 5 21.6 lb z ◀

1xoFy 5 o(Fy)eff :  Ay 2 60 lb 5 24
5(36 lb)

 Ay 5 131.2 lb Ay 5 31.2 lbx ◀

The couple IA is not involved in the last two equations; nevertheless, it should 
be indicated on the diagram.

BA

6 in.

8 in.

⎯ r = 5 in.

⎯am

G

A

= a⎯I

36 lb

G

A

= a⎯I4

45

53

3

G

A

⎯a
a

⎯r

⎯x

w = 0

⎯x = 4 in.

A x

Ay

G

A

W
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1078

SAMPLE PROBLEM 16.8

A sphere of radius r and weight W is released with no initial velocity on 
the incline and rolls without slipping. Determine (a) the minimum value of 
the coefficient of static friction compatible with the rolling motion, (b) the 
velocity of the center G of the sphere after the sphere has rolled 10 ft, 
(c) the velocity of G if the sphere were to move 10 ft down a frictionless 
30° incline.

SOLUTION

a. Minimum Ms for Rolling Motion. The external forces W, N, and F form 
a system equivalent to the system of effective forces represented by the vector 
ma and the couple IA. Since the sphere rolls without sliding, we have a 5 ra.

1ioMC 5 o(MC)eff :  (W sin u)r 5 (ma)r 1 Ia
(W sin u)r 5 (mra)r 1 Ia

Noting that m 5 W/g and I 5 2
5mr2, we write

 (W sin u)r 5 aW
g

 rab r 1
2
5

 
W
g

 r2a     a 5 1
5g sin u

7r

 a 5 ra 5
5g sin u

7
5

5(32.2 ft/s2) sin 30°
7

5 11.50 ft /s2

1qoFx 5 o(Fx)eff :  W sin u 2 F 5 ma

W sin u 2 F 5
W
g

 
5g sin u

7
F 5 12

7W sin u 5 2
7W sin 30°   F 5 0.143W b 30°

1poFy 5 o(Fy)eff :  N 2 W cos u 5 0
N 5 W cos u 5 0.866W   N 5 0.866W a 60°

 
m

s
5

F
N

5
0.143W
0.866W  

ms 5 0.165 ◀

b. Velocity of Rolling Sphere. We have uniformly accelerated motion:

 v0 5 0    a 5 11.50 ft/s2    x 5 10 ft    x0 5 0
 v2 5 v2

0 1 2a(x 2 x0)    v2 5 0 1 2(11.50 ft/s2)(10 ft)
 v 5 15.17 ft/s v 5 15.17 ft/s c 30° ◀

c. Velocity of Sliding Sphere. Assuming now no friction, we have F 5 0 
and obtain

1ioMG 5 o(MG)eff :    0 5 Ia     a 5 0

1qoFx 5 o(Fx)eff :    W sin 30° 5 ma     0.50W 5 
W
g

 a

a 5 116.1 ft/s2     a 5 16.1 ft/s2 c 30°

Substituting a 5 16.1 ft/s2 into the equations for uniformly accelerated 
motion, we obtain

v2 5 v2
0 1 2a(x 2 x0)   v2 5 0 1 2(16.1 ft/s2)(10 ft)

 v 5 17.94 ft/s v 5 17.94 ft/s c 30° ◀

q = 30°

r
G

C

= ⎯am

a⎯I

C

C

G
G

xx

yy

W

N

F
q

⎯a

a
G

C

r
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SAMPLE PROBLEM 16.9

A cord is wrapped around the inner drum of a wheel and pulled horizontally 
with a force of 200 N. The wheel has a mass of 50 kg and a radius of gyra-
tion of 70 mm. Knowing that ms 5 0.20 and mk 5 0.15, determine the 
acceleration of G and the angular acceleration of the wheel.

SOLUTION

a. Assume Rolling without Sliding. In this case, we have

a 5 ra 5 (0.100 m)a

We can determine whether this assumption is justified by comparing the 
friction force obtained with the maximum available friction force. The 
moment of inertia of the wheel is

I 5 mk2 5 (50 kg)(0.070 m)2 5 0.245 kg ? m2

Equations of Motion

1ioMC 5 o(MC)eff :    (200 N)(0.040 m) 5 ma(0.100 m) 1 Ia
 8.00 N ? m 5 (50 kg)(0.100 m)a(0.100 m) 1 (0.245 kg ? m2)a
 a 5 110.74 rad/s2

 a 5 ra 5 (0.100 m)(10.74 rad/s2) 5 1.074 m/s2

y
1 oFx 5 o(Fx)eff :    F 1 200 N 5 ma
  F 1 200 N 5 (50 kg)(1.074 m/s2)
  F 5 2146.3 N F 5 146.3 N z

1xoFy 5 o(Fy)eff :
N 2 W 5 0    N 2 W 5 mg 5 (50 kg)(9.81 m/s2) 5 490.5 N

N 5 490.5 Nx

Maximum Available Friction Force

Fmax 5 msN 5 0.20(490.5 N) 5 98.1 N

Since F . Fmax, the assumed motion is impossible.

b. Rotating and Sliding. Since the wheel must rotate and slide at the 
same time, we draw a new diagram, where a and A are independent and 
where

F 5 Fk 5 mkN 5 0.15(490.5 N) 5 73.6 N

From the computation of part a, it appears that F should be directed to the 
left. We write the following equations of motion:

y
1 oFx 5 o(Fx)eff :  200 N 2 73.6 N 5 (50 kg)a
 a 5 12.53 m/s2 a 5 2.53 m/s2 y ◀

1ioMG 5 o(MG)eff :
(73.6 N)(0.100 m) 2 (200 N)(0.060 m) 5 (0.245 kg ? m2)a

a 5 218.94 rad/s2  A 5 18.94 rad/s2  
l ◀

F = 73.6 N

= a⎯I ⎯am

C

G200 N

C

G

0.060 m

N

W

0.100 m

G

100 mm 60 mm

200 N

= a⎯I ⎯am

C

G200 N
C

G

0.040 mF

N

W

0.100 m

⎯a

a

G

C

r = 0.100 m
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SAMPLE PROBLEM 16.10

The extremities of a 4-ft rod weighing 50 lb can move freely and with no 
friction along two straight tracks as shown. If the rod is released with no 
velocity from the position shown, determine (a) the angular acceleration of 
the rod, (b) the reactions at A and B.

SOLUTION

Kinematics of Motion. Since the motion is constrained, the acceleration 
of G must be related to the angular acceleration A. To obtain this relation, 
we first determine the magnitude of the acceleration aA of point A in terms 
of a. Assuming that A is directed counterclockwise and noting that aB/A 5 
4a, we write

aB 5 aA 1 aB/A

[aB c 45°] 5 [aA y] 1 [4a d 60°]

Noting that f 5 75° and using the law of sines, we obtain

aA 5 5.46a    aB 5 4.90a

The acceleration of G is now obtained by writing

a 5 aG 5 aA 1 aG/A

a 5 [5.46a y] 1 [2a d 60°]

Resolving a into x and y components, we obtain

 ax 5 5.46a 2 2a cos 60° 5 4.46a    ax 5 4.46a y
 ay 5 22a sin 60° 5 21.732a        ay 5 1.732aw

Kinetics of Motion. We draw a free-body-diagram equation expressing that 
the system of the external forces is equivalent to the system of the effective 
forces represented by the vector of components max and may attached at G 
and the couple IA. We compute the following magnitudes:

I 5 1
12ml2 5

1
12

 
50 lb

32.2 ft/s2 (4 ft)2 5 2.07 lb ? ft ? s2      Ia 5 2.07a

max 5
50

32.2
 (4.46a) 5 6.93a     may 5 2

50
32.2

(1.732a) 5 22.69a

Equations of Motion

1loME 5 o(ME)eff :
(50)(1.732) 5 (6.93a)(4.46) 1 (2.69a)(1.732) 1 2.07a

a 5 12.30 rad/s2    A 5 2.30 rad/s2 l ◀

y
1 oFx 5 o(Fx)eff :    RB sin 45° 5 (6.93)(2.30) 5 15.94

RB 5 22.5 lb    RB 5 22.5 lb a 45° ◀

1xoFy 5 o(Fy)eff : RA 1 RB cos 45° 2 50 5 2(2.69)(2.30)
RA 5 26.19 2 15.94 1 50 5 27.9 lb    RA 5 27.9 lbx ◀

=

⎯aym

⎯axm
a⎯I

45°

45°

EE

50 lb

1.732 ft1.732 ft 1.732 ft

1 ft

RA

RB

4.46 ft

⎯a

⎯a

a

ay⎯

ax⎯

aB

aA

aA

aA

aB/A

aG/A

aB

45° 60°

60°

f

b

G

A

B

G

A

B

D

b = 45° 30°

4 ft
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1081

SOLVING PROBLEMS
ON YOUR OWN

In this lesson we considered the plane motion of rigid bodies under constraints. 
We found that the types of constraints involved in engineering problems vary 

widely. For example, a rigid body may be constrained to rotate about a fixed axis or 
to roll on a given surface, or it may be pin-connected to collars or to other bodies.

1. Your solution of a problem involving the constrained motion of a rigid 
body, will, in general, consist of two steps. First, you will consider the kinematics 
of the motion, and then you will solve the kinetics portion of the problem.

2. The kinematic analysis of the motion is done by using the methods you 
learned in Chap. 15. Due to the constraints, linear and angular accelerations will 
be related. (They will not be independent, as they were in the last lesson.) You 
should establish relationships among the accelerations (angular as well as linear), 
and your goal should be to express all accelerations in terms of a single unknown 
acceleration. This is the first step taken in the solution of each of the sample 
problems in this lesson.
 a. For a body in noncentroidal rotation, the components of the acceleration 
of the mass center are at 5 ra and an 5 rv2, where v will generally be known 
[Sample Probs. 16.6 and 16.7].
 b. For a rolling disk or wheel, the acceleration of the mass center is a 5 ra 
[Sample Prob. 16.8].
 c. For a body in general plane motion, your best course of action, if neither 
a nor a is known or readily obtainable, is to express a in terms of a [Sample Prob. 
16.10].

3. The kinetic analysis of the motion is carried out as follows.
 a. Start by drawing a free-body-diagram equation. This was done in all 
the sample problems of this lesson. In each case the left-hand diagram shows the 
external forces, including the applied forces, the reactions, and the weight of the 
body. The right-hand diagram shows the vector ma and the couple IA.
 b. Next, reduce the number of unknowns in the free-body-diagram equation 
by using the relationships among the accelerations that you found in your kine-
matic analysis. You will then be ready to consider equations that can be written 
by summing components or moments. Choose first an equation that involves a 
single unknown. After solving for that unknown, substitute the value obtained into 
the other equations, which you will then solve for the remaining unknowns.

(continued)

bee02324_ch16_1040-1103.indd Page 1081  17/10/11  4:27 PM user-f494bee02324_ch16_1040-1103.indd Page 1081  17/10/11  4:27 PM user-f494 /203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles/203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


1082

4. When solving problems involving rolling disks or wheels, keep in mind the 
following.
 a. If sliding is impending, the friction force exerted on the rolling body has 
reached its maximum value, Fm 5 msN, where N is the normal force exerted on 
the body and ms is the coefficient of static friction between the surfaces of 
contact.
 b. If sliding is not impending, the friction force F can have any value smaller 
than Fm and should, therefore, be considered as an independent unknown. After 
you have determined F, be sure to check that it is smaller than Fm; if it is not, the 
body does not roll, but rotates and slides as described in the next paragraph.
 c. If the body rotates and slides at the same time, then the body is not 
rolling and the acceleration a of the mass center is independent of the angular 
acceleration a of the body: a fi ra. On the other hand, the friction force has a 
well-defined value, F 5 mkN, where mk is the coefficient of kinetic friction between 
the surfaces of contact.
 d. For an unbalanced rolling disk or wheel, the relation a 5 ra between 
the acceleration a of the mass center G and the angular acceleration a of the 
disk or wheel does not hold anymore. However, a similar relation holds between 
the acceleration aO of the geometric center O and the angular acceleration a of 
the disk or wheel: aO 5 ra. This relation can be used to express a in terms of 
a and v (Fig. 16.18).

5. For a system of connected rigid bodies, the goal of your kinematic analysis 
should be to determine all the accelerations from the given data, or to express 
them all in terms of a single unknown. (For systems with several degrees of free-
dom, you will need to use as many unknowns as there are degrees of freedom.)
  Your kinetic analysis will generally be carried out by drawing a free-body-
diagram equation for the entire system, as well as for one or several of the rigid 
bodies involved. In the latter case, both internal and external forces should be 
included, and care should be taken to represent with equal and opposite vectors 
the forces that two bodies exert on each other.
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PROBLEMS

1083

CONCEPT QUESTIONS

 16.CQ4 A cord is attached to a spool when a force P is applied to the cord 
as shown. Assuming the spool rolls without slipping, what direc-
tion does the spool move for each case?

 Case 1: a. left b. right c. It would not move.
 Case 2: a. left b. right c. It would not move.
 Case 3: a. left b. right c. It would not move.

 16.CQ5 A cord is attached to a spool when a force P is applied to the cord 
as shown. Assuming the spool rolls without slipping, in what direc-
tion does the friction force act for each case?

 Case 1: a. left b. right c. The friction force would be zero.
 Case 2: a. left b. right c. The friction force would be zero.
 Case 3: a. left b. right c. The friction force would be zero.

 16.CQ6 A front-wheel-drive car starts from rest and accelerates to the 
right. Knowing that the tires do not slip on the road, what is 
the direction of the friction force the road applies to the front 
tires?

 a. left
 b. right
 c. The friction force is zero.

 16.CQ7 A front-wheel-drive car starts from rest and accelerates to the 
right. Knowing that the tires do not slip on the road, what is 
the direction of the friction force the road applies to the rear 
tires?

 a. left
 b. right
 c. The friction force is zero.

Case 1 Case 2 Case 3

P
P

P

Fig. P16.CQ4 and P16.CQ5
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1084 Plane Motion of Rigid Bodies:
Forces and Accelerations

FREE BODY PRACTICE PROBLEMS

 16.F5 A uniform 6 3 8-in. rectangular plate of mass m is pinned at A. 
Knowing the angular velocity of the plate at the instant shown is 
V, draw the FBD and KD.

 16.F6 Two identical 4-lb slender rods AB and BC are connected by a pin 
at B and by the cord AC. The assembly rotates in a vertical plane 
under the combined effect of gravity and a couple M applied to rod 
AB. Knowing that in the position shown the angular velocity of the 
assembly is V, draw the FBD and KD that can be used to determine 
the angular acceleration of the assembly.

Fig. P16.F5

120°

M

12 in.

12 in.

B
A

C

Fig. P16.F6

 16.F7 The 4-lb uniform rod AB is attached to collars of negligible mass 
that slide without friction along the fixed rods shown. Rod AB is at 
rest in the position u = 258 when a horizontal force P is applied to 
collar A causing it to start moving to the left. Draw the FBD and 
KD for the rod.

25 in.

q 70°

A

B

Fig. P16.F7

r

G
30°30°

B

A D

C

Fig. P16.F8

 16.F8 A uniform disk of mass m 5 4 kg and radius r 5 150 mm is sup-
ported by a belt ABCD that is bolted to the disk at B and C. If the 
belt suddenly breaks at a point located between A and B, draw the 
FBD and KD for the disk immediately after the break.

A

6 in.

8 in.
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1085ProblemsEND-OF-SECTION PROBLEMS

 16.75 Show that the couple IA of Fig. 16.15 can be eliminated by attach-
ing the vectors mat and man at a point P called the center of per-
cussion, located on line OG at a distance GP 5 k2/r from the mass 
center of the body.

G

a

⎯r

m⎯a t

m⎯a n

P

O

Fig. P16.75

C

G

B

A

P

L
2

L
2

r⎯

Fig. P16.76

 16.76 A uniform slender rod of length L 5 900 mm and mass m 5 4 kg 
is suspended from a hinge at C. A horizontal force P of magnitude 
75 N is applied at end B. Knowing that r 5 225 mm, determine 
(a) the angular acceleration of the rod, (b) the components of the 
reaction at C.

 16.77 In Prob. 16.76, determine (a) the distance r for which the hori-
zontal component of the reaction at C is zero, (b) the correspond-
ing angular acceleration of the rod.

 16.78 A uniform slender rod of length L 5 36 in. and weight W 5 4 lb hangs 
freely from a hinge at A. If a force P of magnitude 1.5 lb is applied 
at B horizontally to the left (h 5 L), determine (a) the angular 
acceleration of the rod, (b) the components of the reaction at A.

 16.79 In Prob. 16.78, determine (a) the distance h for which the hori-
zontal component of the reaction at A is zero, (b) the correspond-
ing angular acceleration of the rod.

 16.80 The uniform slender rod AB is welded to the hub D, and the 
system rotates about the vertical axis DE with a constant angular 
velocity V. (a) Denoting by w the mass per unit length of the rod, 
express the tension in the rod at a distance z from end A in terms 
of w, l, z, and V, (b) Determine the tension in the rod for w 5 
0.3 kg/m, l 5 400 mm, z 5 250 mm, and v 5 150 rpm.

A

B

h

L

P

Fig. P16.78

l

z

A

E

B

w
D

Fig. P16.80
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1086 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.81 The shutter shown was formed by removing one quarter of a disk of 
0.75-in. radius and is used to interrupt a beam of light emanating 
from a lens at C. Knowing that the shutter weighs 0.125 lb and rotates 
at the constant rate of 24 cycles per second, determine the magnitude 
of the force exerted by the shutter on the shaft at A.

 16.82 A 6-in.-diameter hole is cut as shown in a thin disk of 15-in. diameter. 
The disk rotates in a horizontal plane about its geometric center A 
at the constant rate of 480 rpm. Knowing that the disk has a mass 
of 60 lb after the hole has been cut, determine the horizontal com-
ponent of the force exerted by the shaft on the disk at A.

A
BC

L

b = L
4

Fig. P16.85

B

C

A

r w

Fig. P16.81

A B

L

Fig. P16.84

AO 300 mm

Fig. P16.83

 16.83 A turbine disk of mass 26 kg rotates at a constant rate of 9600 rpm. 
Knowing that the mass center of the disk coincides with the  center 
of rotation O, determine the reaction at O immediately after a single 
blade at A, of mass 45 g, becomes loose and is thrown off.

 16.84 and 16.85 A uniform rod of length L and mass m is supported 
as shown. If the cable attached at end B suddenly breaks, determine 
(a) the acceleration of end B, (b) the reaction at the pin support.

 16.86 A 12-lb uniform plate rotates about A in a vertical plane under the 
combined effect of gravity and of the vertical force P. Knowing 
that at the instant shown the plate has an angular velocity of 
20 rad/s and an angular acceleration of 30 rad/s2 both counterclock-
wise, determine (a) the force P, (b) the components of the reaction 
at A.

A

8 in.

15 in.
3 in.

Fig. P16.82

B

5 in.

4 in.

20 in.

5 in.

A

P

Fig. P16.86
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1087Problems 16.87 A 1.5-kg slender rod is welded to a 5-kg uniform disk as shown. 
The assembly swings freely about C in a vertical plane. Knowing 
that in the position shown the assembly has an angular velocity of 
10 rad/s clockwise, determine (a) the angular acceleration of the 
assembly, (b) the components of the reaction at C.

 16.88 Two uniform rods, ABC of weight 6 lb and DCE of weight 8 lb, 
are connected by a pin at C and by two cords BD and BE. The 
T-shaped assembly rotates in a vertical plane under the combined 
effect of gravity and of a couple M which is applied to rod ABC. 
Knowing that at the instant shown the tension in cord BE is 2 lb 
and the tension in cord BD is 0.5 lb, determine (a) the angular 
acceleration of the assembly, (b) the couple M.

A

B

D C E

12 in.

9 in.

9 in.

12 in.

M

Fig. P16.88

400 mm

300 mm

400 mm

M

BA

C

Fig. P16.90

A B80 mm

C

120 mm

Fig. P16.87

 16.89 The object ABC consists of two slender rods welded together at point B. 
Rod AB has a weight of 2 lb and bar BC has a weight of 4 lb. Know-
ing the magnitude of the angular velocity of ABC is 10 rad/s when 
u 5 08, determine the components of the reaction at point C when 
u 5 08.

 16.90 A 3.5-kg slender rod AB and a 2-kg slender rod BC are connected 
by a pin at B and by the cord AC. The assembly can rotate in a 
vertical plane under the combined effect of gravity and a couple 
M applied to rod BC. Knowing that in the position shown the 
angular velocity of the assembly is zero and the tension in cord AC 
is equal to 25 N, determine (a) the angular acceleration of the 
assembly, (b) the magnitude of the couple M.

2 ft

1 ft

B

A

C

q

Fig. P16.89
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1088 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.91 A 9-kg uniform disk is attached to the 5-kg slender rod AB by 
means of frictionless pins at B and C. The assembly rotates in a 
vertical plane under the combined effect of gravity and of a couple 
M which is applied to rod AB. Knowing that at the instant shown 
the assembly has an angular velocity of 6 rad/s and an angular 
acceleration of 25 rad/s2, both counterclockwise, determine (a) the 
couple M, (b) the force exerted by pin C on member AB.

 16.92 Derive the equation oMC 5 ICa for the rolling disk of Fig. 16.17, 
where oMC represents the sum of the moments of the external 
forces about the instantaneous center C, and IC is the moment of 
inertia of the disk about C.

 16.93 Show that in the case of an unbalanced disk, the equation derived 
in Prob. 16.92 is valid only when the mass center G, the geometric 
center O, and the instantaneous center C happen to lie in a straight 
line.

 16.94 A wheel of radius r and centroidal radius of gyration k is released 
from rest on the incline and rolls without sliding. Derive an expres-
sion for the acceleration of the center of the wheel in terms of r, 
k, b, and g.

b

r

Fig. P16.94

A

B

C

M

500 mm

150 mm 200 mm

308

Fig. P16.91

b = 10°

S
C

P

Fig. P16.95

 16.95 A homogeneous sphere S, a uniform cylinder C, and a thin pipe P 
are in contact when they are released from rest on the incline 
shown. Knowing that all three objects roll without slipping, deter-
mine, after 4 s of motion, the clear distance between (a) the pipe 
and the cylinder, (b) the cylinder and the sphere.

 16.96 A 40-kg flywheel of radius R 5 0.5 m is rigidly attached to a shaft 
of radius r 5 0.05 m that can roll along parallel rails. A cord is 
attached as shown and pulled with a force P of magnitude 150 N. 
Knowing the centroidal radius of gyration is k 5 0.4 m, determine 
(a) the angular acceleration of the flywheel, (b) the velocity of the 
center of gravity after 5 s.

 16.97 A 40-kg flywheel of radius R 5 0.5 m is rigidly attached to a shaft 
of radius r 5 0.05 m that can roll along parallel rails. A cord is 
attached as shown and pulled with a force P. Knowing the centroi-
dal radius of gyration is k 5 0.4 m and the coefficient of static 
friction is ms 5 0.4, determine the largest magnitude of force P for 
which no slipping will occur.

r

R

15°

P

Fig. P16.96 and P16.97
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1089Problems 16.98 through 16.101 A drum of 60-mm radius is attached to a disk 
of 120-mm radius. The disk and drum have a total mass of 6 kg and 
a combined radius of gyration of 90 mm. A cord is attached as 
shown and pulled with a force P of magnitude 20 N. Knowing that 
the disk rolls without sliding, determine (a) the angular acceleration 
of the disk and the acceleration of G, (b) the minimum value of the 
coefficient of static friction compatible with this motion.

 16.102 through 16.105 A drum of 4-in. radius is attached to a disk of 
8-in. radius. The disk and drum have a combined weight of 10 lb 
and a combined radius of gyration of 6 in. A cord is attached as 
shown and pulled with a force P of magnitude 5 lb. Knowing that 
the coefficients of static and kinetic friction are ms 5 0.25 and 
mk 5 0.20, respectively, determine (a) whether or not the disk slides, 
(b) the angular acceleration of the disk and the  acceleration of G.

 16.106 and 16.107 A 12-in.-radius cylinder of weight 16 lb rests on a 
6-lb carriage. The system is at rest when a force P of magnitude 
4 lb is applied. Knowing that the cylinder rolls without sliding on 
the carriage and neglecting the mass of the wheels of the carriage, 
determine (a) the acceleration of the carriage, (b) the acceleration 
of point A, (c) the distance the cylinder has rolled with respect to 
the carriage after 0.5 s.

200 mm

100 mm

D

B

C

A

Fig. P16.108

 16.108 Gear C has a mass of 5 kg and a centroidal radius of gyration of 
75 mm. The uniform bar AB has a mass of 3 kg and gear D is 
stationary. If the system is released from rest in the position shown, 
determine (a) the angular acceleration of gear C, (b) the accelera-
tion of point B.

P

G

Fig. P16.99 and P16.103

G
P

Fig. P16.98 and P16.102

P

G

Fig. P16.101 and P16.105

P

G

Fig. P16.100 and P16.104

P

A

B

Fig. P16.106

PA

B

Fig. P16.107
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1090 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.109 Two uniform disks A and B, each of mass 2 kg, are connected by 
a 1.5-kg rod CD as shown. A counterclockwise couple M of 
moment 2.5 N-m is applied to disk A. Knowing that the disks roll 
without sliding, determine (a) the acceleration of the center of 
each disk, (b) the horizontal component of the force exerted on 
disk B by pin D.

 16.110 A 10-lb cylinder of radius r 5 4 in. is resting on a conveyor belt 
when the belt is suddenly turned on and it experiences an accelera-
tion of magnitude a 5 6 ft/s2. The smooth vertical bar holds the 
cylinder in place when the belt is not moving. Knowing the cylin-
der rolls without slipping and the friction between the vertical bar 
and the cylinder is negligible, determine (a) the angular accelera-
tion of the cylinder, (b) the components of the force the conveyor 
belt applies to the cylinder.

 16.111 A hemisphere of weight W and radius r is released from rest in 
the position shown. Determine (a) the minimum value of ms for 
which the hemisphere starts to roll without sliding, (b) the corre-
sponding acceleration of point B [Hint: Note that OG 5 3

8r and that, 
by the parallel-axis theorem, I 5 2

5mr2 2 m1OG22.]

B

A

r

q

Fig. P16.114 and P16.115

P

A

B G

r = 18 mm

R = 60 mm

Fig. P16.113

M
6 in.

50 mm A B

C D

6 in.
M

150 mm
A B

C D

150 mm

Fig. P16.109

5°

a
G r

Fig. P16.110

O

B

A

G

Fig. P16.111

 16.112 Solve Prob. 16.111, considering a half cylinder instead of a hemi-
sphere. [Hint: Note that OG 5 4r/3p and that, by the parallel-axis 
theorem, I 5 1

2mr2 2 m1OG22.]
 16.113 The center of gravity G of a 1.5-kg unbalanced tracking wheel is 

located at a distance r 5 18 mm from its geometric center B. The 
radius of the wheel is R 5 60 mm and its centroidal radius of 
gyration is 44 mm. At the instant shown the center B of the wheel 
has a velocity of 0.35 m/s and an acceleration of 1.2 m/s2, both 
directed to the left. Knowing that the wheel rolls without sliding 
and neglecting the mass of the driving yoke AB, determine the 
horizontal force P applied to the yoke.

 16.114 A small clamp of mass mB is attached at B to a hoop of mass mh. 
The system is released from rest when u 5 90° and rolls without 
sliding. Knowing that mh 5 3mB, determine (a) the angular accel-
eration of the hoop, (b) the horizontal and vertical components of 
the acceleration of B.

 16.115 A small clamp of mass mB is attached at B to a hoop of mass mh. 
Knowing that the system is released from rest and rolls without 
sliding, derive an expression for the angular acceleration of the 
hoop in terms of mB, mh, r, and u.
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1091Problems 16.116 A 4-lb bar is attached to a 10-lb uniform cylinder by a square pin, P, 
as shown. Knowing that r 5 16 in., h 5 8 in., u 5 20°, L 5 20 in., 
and v 5 2 rad/s at the instant shown, determine the reactions at 
P at this instant assuming that the cylinder rolls without sliding 
down the incline.

 16.117 The ends of the 20-lb uniform rod AB are attached to collars of 
negligible mass that slide without friction along fixed rods. If the 
rod is released from rest when u 5 25°, determine immediately 
after release (a) the angular acceleration of the rod, (b) the reaction 
at A, (c) the reaction at B.

 16.118 The ends of the 20-lb uniform rod AB are attached to collars of 
negligible mass that slide without friction along fixed rods. A verti-
cal force P is applied to collar B when u 5 25°, causing the collar 
to start from rest with an upward acceleration of 40 ft/s2. Deter-
mine (a) the force P, (b) the reaction at A.

 16.119 The motion of the 3-kg uniform rod AB is guided by small wheels 
of negligible weight that roll along without friction in the slots 
shown. If the rod is released from rest in the position shown, deter-
mine immediately after release (a) the angular acceleration of the 
rod, (b) the reaction at B.

 16.120 A beam AB of length L and mass m is supported by two cables as 
shown. If cable BD breaks, determine at that instant the tension in 
the remaining cable as a function of its initial angular orientation u.

w

L

h
r

P

q

Fig. P16.116
A

B

q

l = 4 ft

Fig. P16.117 and P16.118 

0.8 m

30°
A

B

Fig. P16.119

BA

C D

q q

Fig. P16.120

A

B

1 m

45°

Fig. P16.121

 16.121 End A of a uniform 10-kg bar is attached to a horizontal rope and 
end B contacts a floor with negligible friction. Knowing that the 
bar is released from rest in the position shown, determine imme-
diately after release (a) the angular acceleration of the bar, (b) the 
tension in the rope, (c) the reaction at B.
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1092 Plane Motion of Rigid Bodies:
Forces and Accelerations

 16.122 End A of the 8-kg uniform rod AB is attached to a collar that can 
slide without friction on a vertical rod. End B of the rod is attached 
to a vertical cable BC. If the rod is released from rest in the posi-
tion shown, determine immediately after release (a) the angular 
acceleration of the rod, (b) the reaction at A.

 16.123 A uniform thin plate ABCD has a mass of 8 kg and is held in posi-
tion by three inextensible cords AE, BF, and CG. If cord AE is 
cut, determine at that instant (a) if the plate is undergoing transla-
tion or general plane motion, (b) the tension in cords BF and CG.

30°

4 in.

25 in.

B

D

A
E

F

Fig. P16.125

 16.124 The 4-kg uniform rod ABD is attached to the crank BC and is 
fitted with a small wheel that can roll without friction along a verti-
cal slot. Knowing that at the instant shown crank BC rotates with 
an angular velocity of 6 rad/s clockwise and an angular acceleration 
of 15 rad/s2 counterclockwise, determine the reaction at A.

 16.125 The 7-lb uniform rod AB is connected to crank BD and to a collar 
of negligible weight, which can slide freely along rod EF. Knowing 
that in the position shown crank BD rotates with an angular veloc-
ity of 15 rad/s and an angular acceleration of 60 rad/s2, both clock-
wise, determine the reaction at A.

L = 750 mm

30° = q
A

B

C

Fig. P16.122

A

F

B

E

G

CD

60°

200 mm

150 mm

100 mm

100 mm

60°

G

Fig. P16.123

200 mm

200 mm

100 mm

A

B

D

C

Fig. P16.124

 16.126 In Prob. 16.125, determine the reaction at A, knowing that in the 
position shown crank BD rotates with an angular velocity of 15 rad/s 
clockwise and an angular acceleration of 60 rad/s2 counterclockwise.
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1093Problems 16.127 The 250-mm uniform rod BD, of mass 5 kg, is connected as shown 
to disk A and to a collar of negligible mass, that may slide freely 
along a vertical rod. Knowing that disk A rotates counterclockwise 
at a constant rate of 500 rpm, determine the reactions at D when 
u 5 0.

50 mm

150 mm

A

B

D

q

Fig. P16.127

0.75 m

0.75 m

1.5 m

D

A

B

Fig. P16.129

 16.128 Solve Prob. 16.127 when u 5 90°.

 16.129 The 4-kg uniform slender bar BD is attached to bar AB and a 
wheel of negligible mass that rolls on a circular surface. Knowing 
that at the instant shown bar AB has an angular velocity of 6 rad/s 
and no angular acceleration, determine the reaction at point D.

 16.130 The motion of the uniform slender rod of length L 5 0.5 m and 
mass m 5 3 kg is guided by pins at A and B that slide freely in 
frictionless slots, circular and horizontal, cut into a vertical plate as 
shown. Knowing that at the instant shown the rod has an angular 
velocity of 3 rad/s counterclockwise and u 5 308, determine the 
reactions at points A and B.

 16.131 At the instant shown, the 20-ft-long, uniform 100-lb pole ABC has 
an angular velocity of 1 rad/s counterclockwise and point C is slid-
ing to the right. A 120-lb horizontal force P acts at B. Knowing the 
coefficient of kinetic friction between the pole and the ground is 
0.3, determine at this instant (a) the acceleration of the center of 
gravity, (b) the normal force between the pole and the ground.

B

0.3 m

A

q

Fig. P16.130

B

P

A

80°
6 ft

C

w

Fig. P16.131

bee02324_ch16_1040-1103.indd Page 1093  17/10/11  4:28 PM user-f494bee02324_ch16_1040-1103.indd Page 1093  17/10/11  4:28 PM user-f494 /203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles/203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


 16.132 A driver starts his car with the door on the passenger’s side wide 
open (u 5 0). The 80-lb door has a centroidal radius of gyration 
k 5 12.5 in., and its mass center is located at a distance r 5 22 in. 
from its vertical axis of rotation. Knowing that the driver maintains 
a constant acceleration of 6 ft/s2, determine the angular velocity of 
the door as it slams shut (u 5 90°).

 16.133 For the car of Prob. 16.132, determine the smallest constant accel-
eration that the driver can maintain if the door is to close and latch, 
knowing that as the door hits the frame its angular velocity must be 
at least 2 rad/s for the latching mechanism to operate.

 16.134 Two 8-lb uniform bars are connected to form the linkage shown. 
Neglecting the effect of friction, determine the reaction at D 
immediately after the linkage is released from rest in the position 
shown.

  *16.135 The 6-kg rod BC connects a 10-kg disk centered at A to a 5-kg rod 
CD. The motion of the system is controlled by the couple M 
applied to disk A. Knowing that at the instant shown disk A has an 
angular velocity of 36 rad/s clockwise and no angular acceleration, 
determine (a) the couple M, (b) the components of the force 
exerted at C on rod BC.

  *16.136 The 6-kg rod BC connects a 10-kg disk centered at A to a 5-kg rod 
CD. The motion of the system is controlled by the couple M 
applied to disk A. Knowing that at the instant shown disk A has an 
angular velocity of 36 rad/s clockwise and an angular acceleration 
of 150 rad/s2 counterclockwise, determine (a) the couple M, 
(b) the components of the force exerted at C on rod BC.

 16.137 In the engine system shown l 5 250 mm and b 5 100 mm. The 
connecting rod BD is assumed to be a 1.2-kg uniform slender rod 
and is attached to the 1.8-kg piston P. During a test of the system, 
crank AB is made to rotate with a constant angular velocity of 
600 rpm clockwise with no force applied to the face of the piston. 
Determine the forces exerted on the connecting rod at B and D 
when u 5 180°. (Neglect the effect of the weight of the rod.)

 16.138 Solve Prob. 16.137 when u 5 90°.

A

B
q

a

w

Fig. P16.132

15 in. 15 in.

30 in.

A
C

B

D

Fig. P16.134

B

A

C

D

30°

30°

400 mm

250 mm200 mm

M

Fig. P16.135 and P16.136
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q

Fig. P16.137
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1095Problems 16.139 The 4-lb rod AB and the 6-lb rod BC are connected as shown to 
a disk that is made to rotate in a vertical plane at a constant angular 
velocity of 6 rad/s clockwise. For the position shown, determine 
the forces exerted at A and B on rod AB.

 16.140 The 4-lb rod AB and the 6-lb rod BC are connected as shown to 
a disk that is made to rotate in a vertical plane. Knowing that at 
the instant shown the disk has an angular acceleration of 18 rad/s2 
clockwise and no angular velocity, determine the components of 
the forces exerted at A and B on rod AB.

 16.141 Two rotating rods in the vertical plane are connected by a slider 
block P of negligible mass. The rod attached at A has a weight of 
1.6 lb and a length of 8 in. Rod BP weighs 2 lb and is 10 in. long 
and the friction between block P and AE is negligible. The motion 
of the system is controlled by a couple M applied to rod BP. Know-
ing that rod BP has a constant angular velocity of 20 rad/s clock-
wise, determine (a) the couple M, (b) the components of the force 
exerted on AE by block P.

 16.142 Two rotating rods in the vertical plane are connected by a slider 
block P of negligible mass. The rod attached at A has a mass of 
0.8 kg and a length of 160 mm. Rod BP has a mass of 1 kg and is 
200 mm long and the friction between block P and AE is negligible. 
The motion of the system is controlled by a couple M applied to bar 
BP. Knowing that at the instant shown rod BP has an angular velocity 
of 20 rad/s clockwise and an angular acceleration of 80 rad/s2 clock-
wise, determine (a) the couple M, (b) the components of the force 
exerted on AE by block P.

 * 16.143 Draw the shear and bending-moment diagrams for the rod of Prob. 
16.77 immediately after the cable at B breaks.

 * 16.144 A uniform slender bar AB of mass m is suspended as shown from 
a uniform disk of the same mass m. Neglecting the effect of fric-
tion, determine the accelerations of points A and B immediately 
after a horizontal force P has been applied at B.

 16.145 A uniform rod AB, of mass 15 kg and length 1 m, is attached to 
the 20-kg cart C. Neglecting friction, determine immediately after 
the system has been released from rest, (a) the acceleration of the 
cart, (b) the angular acceleration of the rod.

O

C

A B

3 in.

9 in.

6 in.

Fig. P16.139 and P16.140

A B

P

E

30°

Fig. P16.141 and P16.142

A

B

L

r

P

Fig. P16.144

B

A

25�

C

Fig. P16.145
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1096 Plane Motion of Rigid Bodies:
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 * 16.146 The 5-kg slender rod AB is pin-connected to an 8-kg uniform disk 
as shown. Immediately after the system is released from rest, 
determine the acceleration of (a) point A, (b) point B.

250 mm

B
A

100 mm

C

Fig. P16.146

 * 16.147 and *16.148 The 6-lb cylinder B and the 4-lb wedge A are held 
at rest in the position shown by cord C. Assuming that the cylinder 
rolls without sliding on the wedge and neglecting friction between 
the wedge and the ground, determine, immediately after cord C 
has been cut, (a) the acceleration of the wedge, (b) the angular 
acceleration of the cylinder.

A

B
Cr = 3 in.

20°

Fig. P16.147

A

B

C

r = 3 in.

20°

Fig. P16.148

 * 16.149 Each of the 3-kg bars AB and BC is of length L 5 500 mm. A 
horizontal force P of magnitude 20 N is applied to bar BC as 
shown. Knowing that b 5 L (P is applied at C), determine the 
angular acceleration of each bar.

 * 16.150 Each of the 3-kg bars AB and BC is of length L 5 500 mm. A 
horizontal force P of magnitude 20 N is applied to bar BC. For 
the position shown, determine (a) the distance b for which the bars 
move as if they formed a single rigid body, (b) the corresponding 
angular acceleration of the bars.

 * 16.151 (a) Determine the magnitude and the location of the maximum 
bending moment in the rod of Prob. 16.78. (b) Show that the 
answer to part a is independent of the weight of the rod.

 * 16.152 Draw the shear and bending-moment diagrams for the rod of Prob. 
16.84 immediately after the cable at B breaks.

L

C

A

B

L
b

P

Fig. P16.149 and P16.150
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1097

REVIEW AND SUMMARY

In this chapter, we studied the kinetics of rigid bodies, i.e., the rela-
tions existing between the forces acting on a rigid body, the shape 
and mass of the body, and the motion produced. Except for the first 
two sections, which apply to the most general case of the motion of 
a rigid body, our analysis was restricted to the plane motion of rigid 
slabs and rigid bodies symmetrical with respect to the reference 
plane. The study of the plane motion of nonsymmetrical rigid bodies 
and of the motion of rigid bodies in three-dimensional space will be 
considered in Chap. 18.

We first recalled [Sec. 16.2] the two fundamental equations derived 
in Chap. 14 for the motion of a system of particles and observed that 
they apply in the most general case of the motion of a rigid body. 
The first equation defines the motion of the mass center G of the 
body; we have

oF 5 ma (16.1)

where m is the mass of the body and a the acceleration of G. The 
second is related to the motion of the body relative to a centroidal 
frame of reference; we wrote

oMG 5 H
.

G (16.2)

where H
.

G is the rate of change of the angular momentum HG of the 
body about its mass center G. Together, Eqs. (16.1) and (16.2) 
express that the system of the external forces is equipollent to the 
system consisting of the vector ma attached at G and the couple of 
moment H

.
G (Fig. 16.19).

Restricting our analysis at this point and for the rest of the chapter 
to the plane motion of rigid slabs and rigid bodies symmetrical with 
respect to the reference plane, we showed [Sec. 16.3] that the angu-
lar momentum of the body could be expressed as

HG 5 IV (16.4)

where I is the moment of inertia of the body about a centroidal 
axis perpendicular to the reference plane and V is the angular 
velocity of the body. Differentiating both members of Eq. (16.4), 
we obtained

H
.

G 5 IV̇ 5 IA (16.5)

which shows that in the restricted case considered here, the rate of 
change of the angular momentum of the rigid body can be  represented 

Fundamental equations of motion 
for a rigid body

Angular momentum in plane motion

F4F1

F2

F3

==  ⎯am

HG
.

G

G

Fig. 16.19
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by a vector of the same direction as A (i.e., perpendicular to the 
plane of reference) and of magnitude Ia.

It follows from [Sec. 16.4] that the plane motion of a rigid slab or 
of a rigid body symmetrical with respect to the reference plane is 
defined by the three scalar equations

 oFx 5 max   oFy 5 may   oMG 5 Ia (16.6)

It further follows that the external forces acting on the rigid body 
are actually equivalent to the effective forces of the various particles 
forming the body. This statement, known as d’Alembert’s principle, 
can be expressed in the form of the vector diagram shown in Fig. 
16.20, where the effective forces have been represented by a vector 
ma attached at G and a couple IA. In the particular case of a slab 
in translation, the effective forces shown in part b of this figure 
reduce to the single vector ma, while in the particular case of a slab 
in centroidal rotation, they reduce to the single couple IA; in any 
other case of plane motion, both the vector ma and the couple IA 
should be included.

Any  problem involving the plane motion of a rigid slab may be solved 
by drawing a free-body-diagram equation similar to that of Fig. 16.20 
[Sec. 16.6]. Three equations of motion can then be obtained by 
equating the x components, y components, and moments about an 
arbitrary point A, of the forces and vectors involved [Sample Probs. 
16.1, 16.2, 16.4, and 16.5]. An alternative solution can be obtained by 
adding to the external forces an inertia vector 2ma of sense opposite 
to that of a, attached at G, and an inertia couple 2IA of sense oppo-
site to that of A. The system obtained in this way is equivalent to 
zero, and the slab is said to be in dynamic equilibrium.

The method described above can also be used to solve problems 
involving the plane motion of several connected rigid bodies [Sec. 
16.7]. A free-body-diagram equation is drawn for each part of the 
system and the equations of motion obtained are solved simultane-
ously. In some cases, however, a single diagram can be drawn for the 
entire system, including all the external forces as well as the vectors 
ma and the couples IA associated with the various parts of the sys-
tem [Sample Prob. 16.3].

In the second part of the chapter, we were concerned with rigid 
bodies moving under given constraints [Sec. 16.8]. While the kinetic 
analysis of the constrained plane motion of a rigid slab is the same 
as above, it must be supplemented by a kinematic analysis which has 
for its object to express the components ax and ay of the acceleration 
of the mass center G of the slab in terms of its angular acceleration a. 
Problems solved in this way included the noncentroidal rotation of 
rods and plates [Sample Probs. 16.6 and 16.7], the rolling motion of 
spheres and wheels [Sample Probs. 16.8 and 16.9], and the plane 
motion of various types of linkages [Sample Prob. 16.10].

Equations for the plane motion 
of a rigid body

D’Alembert’s principle

Free-body-diagram equation

Connected rigid bodies

Constrained plane motion

A
G

A
G =

F1F2

F4
F3

(a) (b)

⎯am

a⎯I

Fig. 16.20
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1099

REVIEW PROBLEMS

 16.153 A cyclist is riding a bicycle at a speed of 20 mph on a horizontal 
road. The distance between the axles is 42 in., and the mass center 
of the cyclist and the bicycle is located 26 in. behind the front axle 
and 40 in. above the ground. If the cyclist applies the brakes only 
on the front wheel, determine the shortest distance in which he 
can stop without being thrown over the front wheel.

16.154 The forklift truck shown weighs 2250 lb and is used to lift a crate of 
weight W 5 2500 lb. The truck is moving to the left at a speed of 
10 ft/s when the brakes are applied on all four wheels. Knowing that 
the coefficient of static friction between the crate and the fork lift is 
0.30, determine the smallest distance in which the truck can be 
brought to a stop if the crate is not to slide and if the truck is not to 
tip forward.

 16.155 A 5-kg uniform disk is attached to the 3-kg uniform rod BC by 
means of a frictionless pin AB. An elastic cord is wound around 
the edge of the disk and is attached to a ring at E. Both ring E
and rod BC can rotate freely about the vertical shaft. Knowing that 
the system is released from rest when the tension in the elastic 
cord is 15 N, determine (a) the angular acceleration of the disk, 
(b) the acceleration of the center of the disk.

A

G

B

4 ft

3 ft 3 ft4 ft

3 ft

W

Fig. P16.154

D

z

B

75 mm A

150 mm C

x

y

E

Fig. P16.155
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1100 Plane Motion of Rigid Bodies:
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 16.156 Identical cylinders of mass m and radius r are pushed by a series 
of moving arms. Assuming the coefficient of friction between all 
surfaces to be m , 1 and denoting by a the magnitude of the 
acceleration of the arms, derive an expression for (a) the maximum 
allowable value of a if each cylinder is to roll without sliding, 
(b) the minimum allowable value of a if each cylinder is to move 
to the right without rotating.

 16.157 The uniform rod AB of weight W is released from rest when 
b 5 70°. Assuming that the friction force between end A and the 
surface is large enough to prevent sliding, determine immediately 
after release (a) the angular acceleration of the rod, (b) the normal 
reaction at A, (c) the friction force at A.

a

Fig. P16.156

B

b
A

L

Fig. P16.157 and P16.158

Fig. P16.159

B

A

B

A

B

A

(a) (b) (c)

 16.158 The uniform rod AB of weight W is released from rest when 
b 5 70°. Assuming that the friction force is zero between end A 
and the surface, determine immediately after release (a) the angu-
lar acceleration of the rod, (b) the acceleration of the mass center 
of the rod, (c) the reaction at A.

 16.159 A bar of mass m 5 5 kg is held as shown between four disks, each 
of mass m9 5 2 kg and radius r 5 75 mm. Knowing that the normal 
forces on the disks are sufficient to prevent any slipping, for each 
of the cases shown determine the acceleration of the bar immedi-
ately after it has been released from rest.
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1101Review Problems 16.160 A uniform plate of mass m is suspended in each of the ways shown. 
For each case determine immediately after the connection B has 
been released (a) the angular acceleration of the plate, (b) the 
acceleration of its mass center.

 16.161 A cylinder with a circular hole is rolling without slipping on a fixed 
curved surface as shown. The cylinder would have a weight of 16 lb 
without the hole, but with the hole it has a weight of 15 lb. Know-
ing that at the instant shown the disk has an angular velocity of 
5 rad/s clockwise, determine (a) the angular acceleration of the 
disk, (b) the components of the reaction force between the cylinder 
and the ground at this instant.

BA
A B

(1) (2) (3)

1
2 c

c

1
2 c

c

Pin supports Wires

BA

Springs

Fig. P16.160

8 in.

36 in.

w12 in.A

Fig. P16.161

 16.162 The motion of a square plate of side 150 mm and mass 2.5 kg is 
guided by pins at corners A and B that slide in slots cut in a vertical 
wall. Immediately after the plate is released from rest in the posi-
tion shown, determine (a) the angular acceleration of the plate, 
(b) the reaction at corner A.

30°

B

A

Fig. P16.162
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1102 Plane Motion of Rigid Bodies:
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30°

B

A

Fig. P16.163

 16.163 The motion of a square plate of side 150 mm and mass 2.5 kg is 
guided by a pin at corner A that slides in a horizontal slot cut in 
a vertical wall. Immediately after the plate is released from rest in 
the position shown, determine (a) the angular acceleration of the 
plate, (b) the reaction at corner A.

 16.164 The Geneva mechanism shown is used to provide an intermittent 
rotary motion of disk S. Disk D weighs 2 lb and has a radius of 
gyration of 0.9 in., and disk S weighs 6 lb and has a radius of gyra-
tion of 1.5 in. The motion of the system is controlled by a couple 
M applied to disk D. A pin P is attached to disk D and can slide 
in one of the six equally spaced slots cut in disk S. It is desirable 
that the angular velocity of disk S be zero as the pin enters and 
leaves each of the six slots; this will occur if the distance between 
the centers of the disks and the radii of the disks are related as 
shown. Knowing disk D rotates with a constant counterclockwise 
angular velocity of 8 rad/s and the friction between the slot and 
pin P is negligible, determine when f 5 1508 (a) the couple M, 
(b) the magnitude of the force pin P applies to disk S.

RS = √3RD

O

P

B

f

RD = 1.25 in.

l = 2RD

Disk D
when f = 120°

Disk S

Fig. P16.164
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1103

COMPUTER PROBLEMS

 16.C1 The 5-lb rod AB is released from rest in the position shown. 
 (a) Assuming that the friction force between end A and the surface is large 
enough to prevent sliding, using software calculate the normal reaction and 
the friction force at A immediately after release for values of b from 0 
to 85°. (b) Knowing that the coefficient of static friction between the rod 
and the floor is actually equal to 0.50, determine the range of values of b
for which the rod will slip immediately after being released from rest.

 16.C2 End A of the 5-kg rod AB is moved to the left at a constant speed 
vA 5 1.5 m/s. Using computational software calculate and plot the normal 
reactions at ends A and B of the rod for values of u from 0 to 50°. Determine 
the value of u at which end B of the rod loses contact with the wall.

 16.C3 A 30-lb cylinder of diameter b 5 8 in. and height h 5 6 in. is placed 
on a 10-lb platform CD that is held in the position shown by three cables. 
It is desired to determine the minimum value of ms between the cylinder 
and the platform for which the cylinder does not slip on the platform, imme-
diately after cable AB is cut. Using computational software calculate and 
plot the minimum allowable value of ms for values of u from 0 to 30°. Know-
ing that the actual value of ms is 0.60, determine the value of u at which 
slipping impends.

A

B

L

b

Fig. P16.C1

A

B

L = 450 mm

vA

q

Fig. P16.C2

 16.C4 For the engine system of Prob. 15.C3 of Chap. 15, the masses of 
piston P and the connecting rod BD are 2.5 kg and 3 kg, respectively. Know-
ing that during a test of the system no force is applied to the face of the 
piston, use computational software to calculate and plot the horizontal and 
vertical components of the dynamic reactions exerted on the connecting rod 
at B and D for values of u from 0 to 180°.

 16.C5 A uniform slender bar AB of mass m is suspended from springs AC 
and BD as shown. Using computational software calculate and plot the 
accelerations of ends A and B, immediately after spring AC has broken, for 
values of u from 0 to 90°.

B

A C D

F E

h

b
q q

Fig. P16.C3

A B

DC

L

q q

Fig. P16.C5
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In this chapter the energy and 

momentum methods will be added to 

the tools available for your study of 

the motion of rigid bodies. For 

example, by using the principle of 

conservation of energy and direct 

application of Newton’s second law, the 

forces exerted on the hands of this 

gymnast can be determined as he 

swings from one stationary hold to 

another.

1104
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1106

17.1 INTRODUCTION
In this chapter the method of work and energy and the method of 
impulse and momentum will be used to analyze the plane motion of 
rigid bodies and of systems of rigid bodies.
 The method of work and energy will be considered first. In 
Secs. 17.2 through 17.5, the work of a force and of a couple will be 
defined, and an expression for the kinetic energy of a rigid body in 
plane motion will be obtained. The principle of work and energy will 
then be used to solve problems involving displacements and veloci-
ties. In Sec. 17.6, the principle of conservation of energy will be 
applied to the solution of a variety of engineering problems.
 In the second part of the chapter, the principle of impulse and 
momentum will be applied to the solution of problems involving veloc-
ities and time (Secs. 17.8 and 17.9) and the concept of conservation 
of angular momentum will be introduced and discussed (Sec. 17.10).
 In the last part of the chapter (Secs. 17.11 and 17.12), problems 
involving the eccentric impact of rigid bodies will be considered. As 
was done in Chap. 13, where we analyzed the impact of particles, 
the coefficient of restitution between the colliding bodies will be 
used together with the principle of impulse and momentum in the 
solution of impact problems. It will also be shown that the method 
used is applicable not only when the colliding bodies move freely 
after the impact but also when the bodies are partially constrained 
in their motion.

17.2  PRINCIPLE OF WORK AND ENERGY 
FOR A RIGID BODY

The principle of work and energy will now be used to analyze the 
plane motion of rigid bodies. As was pointed out in Chap. 13, the 
method of work and energy is particularly well adapted to the solu-
tion of problems involving velocities and displacements. Its main 
advantage resides in the fact that the work of forces and the kinetic 
energy of particles are scalar quantities.
 In order to apply the principle of work and energy to the analy-
sis of the motion of a rigid body, it will again be assumed that the 
rigid body is made of a large number n of particles of mass Dmi. 
Recalling Eq. (14.30) of Sec. 14.8, we write

 T1 1 U1y2 5 T2 (17.1)

where T1, T2 5  initial and final values of total kinetic energy of particles 
forming the rigid body

  U1y2 5  work of all forces acting on various particles of the body 

 The total kinetic energy

 T 5
1
2

 On

i51
¢mi v

2
i  (17.2)

is obtained by adding positive scalar quantities and is itself a positive 
scalar quantity. You will see later how T can be determined for vari-
ous types of motion of a rigid body.

 Chapter 17 Plane Motion of Rigid 
Bodies: Energy and Momentum 
Methods

 17.1 Introduction
 17.2 Principle of Work and Energy for 

a Rigid Body
 17.3 Work of Forces Acting on a 

Rigid Body
 17.4 Kinetic Energy of a Rigid Body in 

Plane Motion
 17.5 Systems of Rigid Bodies
 17.6 Conservation of Energy
 17.7 Power
 17.8 Principle of Impulse and 

Momentum for the Plane Motion 
of a Rigid Body

 17.9 Systems of Rigid Bodies
 17.10 Conservation of Angular 

Momentum
 17.11 Impulsive Motion
 17.12 Eccentric Impact

Photo 17.1 The work done by friction reduces 
the kinetic energy of the wheel.
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1107 The expression U1y2 in (17.1) represents the work of all the 
forces acting on the various particles of the body, whether these forces 
are internal or external. However, as you will see presently, the total 
work of the internal forces holding together the particles of a rigid 
body is zero. Consider two particles A and B of a rigid body and the 
two equal and opposite forces F and 2F they exert on each other 
(Fig. 17.1). While, in general, small displacements dr and dr9 of the 
two particles are different, the components of these displacements 
along AB must be equal; otherwise, the particles would not remain at 
the same distance from each other and the body would not be rigid. 
Therefore, the work of F is equal in magnitude and opposite in sign 
to the work of 2F, and their sum is zero. Thus, the total work of the 
internal forces acting on the particles of a rigid body is zero, and the 
expression U1y2 in Eq. (17.1) reduces to the work of the external forces 
acting on the body during the displacement considered.

17.3 WORK OF FORCES ACTING ON A RIGID BODY
We saw in Sec. 13.2 that the work of a force F during a displacement 
of its point of application from A1 to A2 is

 U1y2 5#
A2

A1

 F ? dr (17.3)

or

 U1y2 5#
s2

s1

 (F cos a) ds (17.39)

where F is the magnitude of the force, a is the angle it forms with 
the direction of motion of its point of application A, and s is the 
variable of integration which measures the distance traveled by A 
along its path.
 In computing the work of the external forces acting on a rigid 
body, it is often convenient to determine the work of a couple with-
out considering separately the work of each of the two forces forming 
the couple. Consider the two forces F and 2F forming a couple of 
moment M and acting on a rigid body (Fig. 17.2). Any small displace-
ment of the rigid body bringing A and B, respectively, into A9 and B0 
can be divided into two parts: in one part points A and B undergo 
equal displacements dr1; in the other part A9 remains fixed while B9 
moves into B0 through a displacement dr2 of magnitude ds2 5 r du. 
In the first part of the motion, the work of F is equal in magnitude 
and opposite in sign to the work of 2F and their sum is zero. In the 
second part of the motion, only force F works, and its work is dU 5 
F ds2 5 Fr du. But the product Fr is equal to the magnitude M of 
the moment of the couple. Thus, the work of a couple of moment M 
acting on a rigid body is

 dU 5 M du (17.4)

where du is the small angle expressed in radians through which the 
body rotates. We again note that work should be expressed in units 
obtained by multiplying units of force by units of length. The work 

17.3 Work of Forces Acting on a 
Rigid Body

A

B

A'

B'

F

–F

dr

dr'

Fig. 17.1

r

A

F–F

B

A'
B'

B"dq

dr1
dr1

dr2

Fig. 17.2 
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1108 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

of the couple during a finite rotation of the rigid body is obtained 
by integrating both members of (17.4) from the initial value u1 of 
the angle u to its final value u2. We write

 U1y2 5#
u2

u1

 M du (17.5)

When the moment M of the couple is constant, formula (17.5) reduces 
to
 U1y2 5 M(u2 2 u1) (17.6)

 It was pointed out in Sec. 13.2 that a number of forces encoun-
tered in problems of kinetics do no work. They are forces applied to 
fixed points or acting in a direction perpendicular to the displacement 
of their point of application. Among the forces which do no work the 
following have been listed: the reaction at a frictionless pin when the 
body supported rotates about the pin, the reaction at a frictionless 
surface when the body in contact moves along the surface, and the 
weight of a body when its center of gravity moves horizontally. We 
can add now that when a rigid body rolls without sliding on a fixed 
surface, the friction force F at the point of contact C does no work. 
The velocity vC of the point of contact C is zero, and the work of the 
friction force F during a small displacement of the rigid body is

dU 5 F dsC 5 F(vC dt) 5 0

17.4  KINETIC ENERGY OF A RIGID BODY 
IN PLANE MOTION

Consider a rigid body of mass m in plane motion. We recall from Sec. 
14.7 that, if the absolute velocity vi of each particle Pi of the body is 
expressed as the sum of the velocity v of the mass center G of the body 
and of the velocity v9i of the particle relative to a frame Gx9y9 attached 
to G and of fixed orientation (Fig. 17.3), the kinetic energy of the 
system of particles forming the rigid body can be written in the form

 T 5 1
2 mv 

2 1
1
2

 On

i51
 ¢miv¿i 2 (17.7)

But the magnitude v9i of the relative velocity of Pi is equal to the 
product r9iv of the distance r9i of Pi from the axis through G perpen-
dicular to the plane of motion and of the magnitude v of the angular 
velocity of the body at the instant considered. Substituting into 
(17.7), we have

 T 5 1
2 mv 

2 1
1
2

 aOn

i51
r¿i 2 ¢mib w2 (17.8)

or, since the sum represents the moment of inertia I  of the body 
about the axis through G,

 T 5 1
2 mv 

2 1 1
2 Iv2 (17.9)

y

O x

y'

x'
G

Pi

r'i

v'i

(v'i = r'i w)

vi

⎯v

⎯v

w

Fig. 17.3 
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1109 We note that in the particular case of a body in translation 
(v 5 0), the expression obtained reduces to 1

2 mv 
2, while in the case 

of a centroidal rotation (v 5 0), it reduces to 1
2Iv

2. We conclude that 
the kinetic energy of a rigid body in plane motion can be separated 
into two parts: (1) the kinetic energy 12 mv 

2 associated with the motion 
of the mass center G of the body, and (2) the kinetic energy 1

2Iv
2 

associated with the rotation of the body about G.

Noncentroidal Rotation. The relation (17.9) is valid for any type 
of plane motion and can therefore be used to express the kinetic 
energy of a rigid body rotating with an angular velocity V about a 
fixed axis through O (Fig. 17.4). In that case, however, the kinetic 
energy of the body can be expressed more directly by noting that 
the speed vi of the particle Pi is equal to the product riv of the dis-
tance ri of Pi from the fixed axis and the magnitude v of the angular 
velocity of the body at the instant considered. Substituting into 
(17.2), we write

T 5
1
2

 On

i51
 ¢mi(riv)2 5

1
2

 aOn

i51
 r

2
i  ¢mib v2

or, since the last sum represents the moment of inertia IO of the 
body about the fixed axis through O,

 T 5 1
2 IOv2 (17.10)

 We note that the results obtained are not limited to the motion 
of plane slabs or to the motion of bodies which are symmetrical with 
respect to the reference plane, and can be applied to the study of 
the plane motion of any rigid body, regardless of its shape. However, 
since Eq. (17.9) is applicable to any plane motion while Eq. (17.10) 
is applicable only in cases involving noncentroidal rotation, Eq. (17.9) 
will be used in the solution of all the sample problems.

17.5 SYSTEMS OF RIGID BODIES
When a problem involves several rigid bodies, each rigid body can be 
considered separately and the principle of work and energy can be 
applied to each body. Adding the kinetic energies of all the particles 
and considering the work of all the forces involved, we can also write 
the equation of work and energy for the entire system. We have

 T1 1 U1y2 5 T2 (17.11)

where T represents the arithmetic sum of the kinetic energies of the 
rigid bodies forming the system (all terms are positive) and U1y2 
represents the work of all the forces acting on the various bodies, 
whether these forces are internal or external from the point of view 
of the system as a whole.
 The method of work and energy is particularly useful in solving 
problems involving pin-connected members, blocks and pulleys con-
nected by inextensible cords, and meshed gears. In all these cases, 

O

Pi
ri

vi
(vi = ri w)

w

Fig. 17.4

17.5 Systems of Rigid Bodies
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1110 Plane Motion of Rigid Bodies: Energy and 
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the internal forces occur by pairs of equal and opposite forces, and 
the points of application of the forces in each pair move through 
equal distances during a small displacement of the system. As a 
result, the work of the internal forces is zero and U1y2 reduces to 
the work of the forces external to the system.

17.6 CONSERVATION OF ENERGY
We saw in Sec. 13.6 that the work of conservative forces, such as the 
weight of a body or the force exerted by a spring, can be expressed 
as a change in potential energy. When a rigid body, or a system of rigid 
bodies, moves under the action of conservative forces, the principle of 
work and energy stated in Sec. 17.2 can be expressed in a modified 
form. Substituting for U1y2 from (13.199) into (17.1), we write

 T1 1 V1 5 T2 1 V2 (17.12)

Formula (17.12) indicates that when a rigid body, or a system of rigid 
bodies, moves under the action of conservative forces, the sum of the 
kinetic energy and of the potential energy of the system remains 
constant. It should be noted that in the case of the plane motion of 
a rigid body, the kinetic energy of the body should include both the 
translational term 1

2 mv 
2 and the rotational term 1

2Iv
2.

 As an example of application of the principle of conservation 
of energy, let us consider a slender rod AB, of length l and mass m, 
whose extremities are connected to blocks of negligible mass sliding 
along horizontal and vertical tracks. We assume that the rod is released 
with no initial velocity from a horizontal position (Fig. 17.5a), and we 
wish to determine its angular velocity after it has rotated through an 
angle u (Fig. 17.5b).
 Since the initial velocity is zero, we have T1 5 0. Measuring the 
potential energy from the level of the horizontal track, we write V1 5 0. 
After the rod has rotated through u, the center of gravity G of the rod 
is at a distance 1

2 l sin u below the reference level and we have

V2 5 21
2 Wl sin u 5 21

2 mgl sin u

⎯v

w

DatumDatum

l

G

G

AB A

B

(a) (b)

q

C

l sin q1
2

Fig. 17.5
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1111Observing that in this position the instantaneous center of the rod is 
located at C and that CG 5 1

2 l, we write v2 5 1
2 lv and obtain

 T2 5 1
2 mv  

2
2 1 1

2 Iv2
2 5 1

2 m(1
2 lv)2 1 1

2( 1
12 ml2)v2

 5
1
2

 
ml2

3
 v2

Applying the principle of conservation of energy, we write

 T1 1 V1 5 T2 1 V2

 0 5
1
2

 
ml2

3
 v2 2 1

2 mgl sin u

 v 5 a3g

l
 sin ub1/2

 The advantages of the method of work and energy, as well as 
its shortcomings, were indicated in Sec. 13.4. Here we should add 
that the method of work and energy must be supplemented by the 
application of d’Alembert’s principle when reactions at fixed axles, 
rollers, or sliding blocks are to be determined. For example, in order 
to compute the reactions at the extremities A and B of the rod of 
Fig. 17.5b, a diagram should be drawn to express that the system 
of the external forces applied to the rod is equivalent to the vector 
ma and the couple IA. The angular velocity V of the rod, however, 
is determined by the method of work and energy before the equa-
tions of motion are solved for the reactions. The complete analysis 
of the motion of the rod and of the forces exerted on the rod 
requires, therefore, the combined use of the method of work and 
energy and of the principle of equivalence of the external and effec-
tive forces.

17.7 POWER
Power was defined in Sec. 13.5 as the time rate at which work is 
done. In the case of a body acted upon by a force F, and moving 
with a velocity v, the power was expressed as follows:

 Power 5
dU
dt

5 F ? v (13.13)

In the case of a rigid body rotating with an angular velocity V and 
acted upon by a couple of moment M parallel to the axis of rotation, 
we have, by (17.4),

 Power 5
dU
dt

5
M du

dt
5 Mv (17.13)

The various units used to measure power, such as the watt and the 
horsepower, were defined in Sec. 13.5.

17.7 Power
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SAMPLE PROBLEM 17.1

A 240-lb block is suspended from an inextensible cable which is wrapped 
around a drum of 1.25-ft radius rigidly attached to a flywheel. The drum and 
flywheel have a combined centroidal moment of inertia I 5 10.5 lb ? ft ? s2. 
At the instant shown, the velocity of the block is 6 ft/s directed downward. 
Knowing that the bearing at A is poorly lubricated and that the bearing 
friction is equivalent to a couple M of magnitude 60 lb ? ft, determine the 
velocity of the block after it has moved 4 ft downward.

SOLUTION

We consider the system formed by the flywheel and the block. Since the 
cable is inextensible, the work done by the internal forces exerted by the 
cable cancels. The initial and final positions of the system and the external 
forces acting on the system are as shown.

Kinetic Energy. Position 1.

Block:  v1 5 6 ft/s

Flywheel:  w1 5
v1

r
5

6 ft/s
1.25 ft

5 4.80 rad/s

 T1 5 1
2 mv 

2
1 1 1

2 Iv2
1

 5
1
2

 
240 lb

32.2 ft/s2 (6 ft/s)2 1 1
2(10.5 lb ? ft ? s2)(4.80 rad/s)2

 5 255 ft ? lb

Position 2. Noting that v2 5 v2 
/1.25, we write

 T2 5 1
2 mv 

2
2 1 1

2 Iv2
2

 5
1
2

 
240
32.2

 (v2)2 1 (1
2)(10.5)a v2

1.25
b2

5 7.09v 
2
2

Work. During the motion, only the weight W of the block and the friction 
couple M do work. Noting that W does positive work and that the friction 
couple M does negative work, we write

 s1 5 0      s2 5 4 ft

 u1 5 0       u2 5
s2

r
5

4 ft
1.25 ft

5 3.20 rad

 U1y2 5 W(s2 2 s1) 2 M(u2 2 u1)
 5 (240 lb)(4 ft) 2 (60 lb ? ft)(3.20 rad)
 5 768 ft ? lb

Principle of Work and Energy

 T1 1 U1y2 5 T2
 255 ft ? lb 1 768 ft ? lb 5 7.09v 2

2

 v2 5 12.01 ft/s  v2 5 12.01 ft/sw ◀

A

1.25 ft

240 lb

⎯v1 = 6 ft /s

W = 240 lb

s1 = 0

Ax

Ay

w1 M = 60 lb⋅ft

⎯v2

W = 240 lb

4 ft

s1 = 0

s2 = 4 ft

Ax

Ay

w2 M = 60 lb⋅ft

bee02324_ch17_1104-1171.indd Page 1112  17/10/11  5:48 PM user-f494bee02324_ch17_1104-1171.indd Page 1112  17/10/11  5:48 PM user-f494 /203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles/203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


1113

SAMPLE PROBLEM 17.2

Gear A has a mass of 10 kg and a radius of gyration of 200 mm; gear B has 
a mass of 3 kg and a radius of gyration of 80 mm. The system is at rest 
when a couple M of magnitude 6 N ? m is applied to gear B. Neglecting 
friction, determine (a) the number of revolutions executed by gear B before 
its angular velocity reaches 600 rpm, (b) the tangential force which gear B 
exerts on gear A.

SOLUTION

Motion of Entire System. Noting that the peripheral speeds of the gears 
are equal, we write

rAvA 5 rBvB      vA 5 vB 

rB

rA
5 vB 

100 mm
250 mm

5 0.40vB

For vB 5 600 rpm, we have

 vB 5 62.8 rad/s vA 5 0.40vB 5 25.1 rad/s
  IA 5 mAk 

2
A 5 (10 kg)(0.200 m)2 5 0.400 kg ? m2

  IB 5 mBk 
2
B 5 (3 kg)(0.080 m)2 5 0.0192 kg ? m2

Kinetic Energy. Since the system is initially at rest, T1 5 0. Adding the 
kinetic energies of the two gears when vB 5 600 rpm, we obtain

 T2 5 1
2 IAv2

A 1 1
2 IBv2

B

 5 1
2(0.400 kg ? m2)(25.1 rad/s)2 1 1

2(0.0192 kg ? m2)(62.8 rad/s)2

 5 163.9 J

Work. Denoting by uB the angular displacement of gear B, we have

U1y2 5 MuB 5 (6 N ? m)(uB rad) 5 (6uB) J

Principle of Work and Energy

 T1 1 U1y2 5 T2

 0 1 (6uB) J 5 163.9 J
 uB 5 27.32 rad uB 5 4.35 rev ◀ 

Motion of Gear A. Kinetic Energy. Initially, gear A is at rest, so T1 5 
0. When vB 5 600 rpm, the kinetic energy of gear A is

T2 5 1
2 IAv2

A 5 1
2(0.400 kg ? m2)(25.1 rad/s)2 5 126.0  J

Work. The forces acting on gear A are as shown. The tangential force F 
does work equal to the product of its magnitude and of the length uArA of 
the arc described by the point of contact. Since uArA 5 uBrB, we have

U1y2 5 F(uBrB) 5 F(27.3 rad)(0.100 m) 5 F(2.73 m)

Principle of Work and Energy

 T1 1 U1y2 5 T2

 0 1 F(2.73 m) 5 126.0 J
 F 5 146.2 N F 5 46.2 N o ◀ 

A

B

rA = 250 mm

rB = 100 mm

M

rA

wA

wB

A
B rB

rA

WA

F

A x

Ay
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SAMPLE PROBLEM 17.3

A sphere, a cylinder, and a hoop, each having the same mass and the same 
radius, are released from rest on an incline. Determine the velocity of each 
body after it has rolled through a distance corresponding to a change in 
elevation h.

SOLUTION

The problem will first be solved in general terms, and then results for each 
body will be found. We denote the mass by m, the centroidal moment of 
inertia by I, the weight by W, and the radius by r.

Kinematics. Since each body rolls, the instantaneous center of rotation is 
located at C and we write

v 5
v
r

Kinetic Energy
 T1 5 0
 T2 5 1

2 mv2 1 1
2 Iv

2

 5 1
2 mv2 1 1

2 I av
r
b2

5 1
2 am 1

I

r2b v2

Work. Since the friction force F in rolling motion does no work,

U1y2 5 Wh

Principle of Work and Energy

 T1 1 U1y2 5 T2

 0 1 Wh 5 1
2 am 1

I

r2b v 2      v 
2 5

2Wh

m 1 I/r2

Noting that W 5 mg, we rearrange the result and obtain

v2 5
2gh

1 1 I/mr 

2

Velocities of Sphere, Cylinder, and Hoop. Introducing successively the 
particular expression for I, we obtain

Sphere: I 5 2
5 mr 

2 v 5 0.84512gh ◀ 

Cylinder: I 5 1
2 mr 

2 v 5 0.81612gh ◀ 

Hoop: I 5 mr 
2 v 5 0.70712gh ◀ 

Remark. Let us compare the results with the velocity attained by a fric-
tionless block sliding through the same distance. The solution is identical to 
the above solution except that v 5 0; we find v 5 12gh.
 Comparing the results, we note that the velocity of the body is inde-
pendent of both its mass and radius. However, the velocity does depend upon 
the quotient I/mr 

2 5 k 
2/r2, which measures the ratio of the rotational kinetic 

energy to the translational kinetic energy. Thus the hoop, which has the largest 
k for a given radius r, attains the smallest velocity, while the sliding block, 
which does not rotate, attains the largest velocity.

r

C

⎯v

w

W

W

F N

F N
q

h
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SAMPLE PROBLEM 17.4

A 30-lb slender rod AB is 5 ft long and is pivoted about a point O which is 
1 ft from end B. The other end is pressed against a spring of constant k 5 
1800 lb/in. until the spring is compressed 1 in. The rod is then in a hori-
zontal position. If the rod is released from this position, determine its angu-
lar velocity and the reaction at the pivot O as the rod passes through a 
vertical position.

SOLUTION

Position 1. Potential Energy. Since the spring is compressed 1 in., we 
have x1 5 1 in.

Ve 5 1
2 kx2

1 5 1
2(1800 lb/in.)(1 in.)2 5 900 in ? lb

Choosing the datum as shown, we have Vg 5 0; therefore,

V1 5 Ve 1 Vg 5 900 in ? lb 5 75 ft ? lb

Kinetic Energy. Since the velocity in position 1 is zero, we have T1 5 0.

Position 2. Potential Energy. The elongation of the spring is zero, and 
we have Ve 5 0. Since the center of gravity of the rod is now 1.5 ft above 
the datum,
 Vg 5 (30 lb)(11.5 ft) 5 45 ft ? lb
 V2 5 Ve 1 Vg 5 45 ft ? lb

Kinetic Energy. Denoting by V2 the angular velocity of the rod in posi-
tion 2, we note that the rod rotates about O and write v2 5 rv2 5 1.5v2.

  I 5 1
12 ml2 5

1
12

 
30 lb

32.2 ft/s2 (5 ft)2 5 1.941 lb ? ft ? s2

 T2 5 1
2 mv2

2 1 1
2 Iv2

2 5
1
2

 
30

32.2
 (1.5v2)2 1 1

2(1.941)v2
2 5 2.019v2

2

Conservation of Energy

 T1 1 V1 5 T2 1 V2

 0 1 75 ft ? lb 5 2.019v2
2 1 45 ft ? lb

V2 5 3.86 rad/si ◀

Reaction in Position 2. Since v2 5 3.86 rad/s, the components of the 
acceleration of G as the rod passes through position 2 are

 an 5 rv2
2 5 (1.5 ft) (3.86 rad/s)2 5 22.3 ft/s2    an 5 22.3 ft/s2

 w

 at 5 ra    at 5 ra y

We express that the system of external forces is equivalent to the system of 
effective forces represented by the vector of components mat and man 
attached at G and the couple IA.

1ioMO 5 o(MO)eff : 0 5 Ia 1 m(ra)r a 5 0
 y1 oFx 5 o(Fx)eff : Rx 5 m(ra) Rx 5 0
 1xoFy 5 o(Fy)eff :     Ry 2 30 lb 5 2man

  Ry 2 30 lb 5 2
30 lb

32.2 ft/s2 (22.3 ft/s2)

Ry 5 19.22 lb  R 5 9.22 lbx ◀

A B
O

5 ft
1 ft

1.5 ft

Position 1

Position 2

Datum

30 lb

30 lb

⎯v2
⎯v1 = 0

w1 = 0

w2

w a

⎯r

G

⎯a n

⎯a t

Rx
Ry

30 lb

m⎯a t

m⎯a n

O O

G
G

a⎯I

=
⎯r
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SAMPLE PROBLEM 17.5

Each of the two slender rods shown is 0.75 m long and has a mass of 6 kg. 
If the system is released from rest with b 5 608, determine (a) the angular 
velocity of rod AB when b 5 208, (b) the velocity of point D at the same 
instant.

SOLUTION

Kinematics of Motion When B 5 208. Since vB is perpendicular to the 
rod AB and vD is horizontal, the instantaneous center of rotation of rod BD 
is located at C. Considering the geometry of the figure, we obtain

BC 5 0.75 m  CD 5 2(0.75 m) sin 208 5 0.513 m

Applying the law of cosines to triangle CDE, where E is located at the mass 
center of rod BD, we find EC 5 0.522 m. Denoting by v the angular veloc-
ity of rod AB, we have

 vAB 5 (0.375 m)v vAB 5 0.375v q
 vB 5 (0.75 m)v vB 5 0.75v q

Since rod BD seems to rotate about point C, we write

vB 5 (BC)vBD   (0.75 m)v 5 (0.75 m)vBD   VBD 5 v l
vBD 5 (EC)vBD 5 (0.522 m)v   vBD 5 0.522v q

Position 1. Potential Energy. Choosing the datum as shown, and observ-
ing that W 5 (6 kg)(9.81 m/s2) 5 58.86 N, we have

V1 5 2W y1 5 2(58.86 N)(0.325 m) 5 38.26 J

Kinetic Energy. Since the system is at rest, T1 5 0.

Position 2. Potential Energy

V2 5 2W y2 5 2(58.86 N)(0.1283 m) 5 15.10 J

Kinetic Energy

 IAB 5 IBD 5 1
12 ml2 5 1

12(6 kg)(0.75 m)2 5 0.281 kg ? m2

 T2 5 1
2 mv2

AB 1 1
2 IABv2

AB 1 1
2 mv2

BD 1 1
2 IBDv2

BD

 5 1
2 (6)(0.375v)2 1 1

2(0.281)v2 1 1
2(6)(0.522v)2 1 1

2 (0.281)v2

 5 1.520v2

Conservation of Energy

 T1 1 V1 5 T2 1 V2

 0 1 38.26 J 5 1.520v2 1 15.10 J
 v 5 3.90 rad/s VAB 5 3.90 rad/s i ◀

Velocity of Point D

vD 5 (CD)v 5 (0.513 m)(3.90 rad/s) 5 2.00 m/s
vD 5 2.00 m/s y ◀

A

B

D

l =
 0.

75
 m

l = 0.75 m

b

A

B

D

0.75 m

0.75 m

0.513 m
70°

E

C

20°

w

wBD

vB vDb = 20°

A

B

⎯vAB = 0.375w ⎯vBD = 0.522w
DE

C

wAB = w

wBD = w

A x

Ay

A

B

D
b = 60°

Datum

Position 1

D

⎯y1 = 0.325 m

58.9 N58.9 N

A x

Ay

A

B

⎯y2 = 0.1283 m
D

b = 20°

58.9 N 58.9 N

Datum
Position 2

D
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1117

SOLVING PROBLEMS 
ON YOUR OWN

In this lesson we introduced energy methods to determine the velocity of rigid 
bodies for various positions during their motion. As you found out previously 

in Chap. 13, energy methods should be considered for problems involving dis-
placements and velocities.

1. The method of work and energy, when applied to all of the particles forming 
a rigid body, yields the equation

 T1 1 U1y2 5 T2 (17.1)

where T1 and T2 are, respectively, the initial and final values of the total kinetic 
energy of the particles forming the body and U1y2 is the work done by the external 
forces exerted on the rigid body.
 a. Work of forces and couples. To the expression for the work of a force 
(Chap. 13), we added the expression for the work of a couple and wrote

 U1y2 5#
A2

A
1

 F ? dr       U1y2 5#
u2

u1

 M du (17.3, 17.5)

When the moment of a couple is constant, the work of the couple is

 U1y2 5 M(u2 2 u1) (17.6)

where u1 and u2 are expressed in radians [Sample Probs. 17.1 and 17.2].
 b. The kinetic energy of a rigid body in plane motion was found by con-
sidering the motion of the body as the sum of a translation with its mass center 
and a rotation about the mass center.

 T 5 1
2 mv 

2 1 1
2 Iv

2 (17.9)

where v is the velocity of the mass center and v is the angular velocity of the body 
[Sample Probs. 17.3 and 17.4].

2. For a system of rigid bodies we again used the equation

 T1 1 U1y2 5 T2 (17.1)

where T is the sum of the kinetic energies of the bodies forming the system and U 
is the work done by all the forces acting on the bodies, internal as well as external. 
Your computations will be simplified if you keep the following in mind.
 a. The forces exerted on each other by pin-connected members or by 
meshed gears are equal and opposite, and, since they have the same point of 
application, they undergo equal small displacements. Therefore, their total work 
is zero and can be omitted from your calculations [Sample Prob. 17.2].

(continued)
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1118

 b. The forces exerted by an inextensible cord on the two bodies it connects 
have the same magnitude and their points of application move through equal 
distances, but the work of one force is positive and the work of the other is nega-
tive. Therefore, their total work is zero and can again be omitted from your cal-
culations [Sample Prob. 17.1].
 c. The forces exerted by a spring on the two bodies it connects also have 
the same magnitude, but their points of application will generally move through 
different distances. Therefore, their total work is usually not zero and should be 
taken into account in your calculations.

3. The principle of conservation of energy can be expressed as

 T1 1 V1 5 T2 1 V2 (17.12)

where V represents the potential energy of the system. This principle can be used 
when a body or a system of bodies is acted upon by conservative forces, such as the 
force exerted by a spring or the force of gravity [Sample Probs. 17.4 and 17.5].

4. The last section of this lesson was devoted to power, which is the time rate 
at which work is done. For a body acted upon by a couple of moment M, the 
power can be expressed as

 Power 5 Mv (17.13)

where v is the angular velocity of the body expressed in rad/s. As you did in 
Chap. 13, you should express power either in watts or in horsepower (1 hp 5 
550 ft ? lb/s).
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PROBLEMS

CONCEPT QUESTIONS

 17.CQ1 A round object of mass m and radius r is released from rest at the 
top of a curved surface and rolls without slipping until it leaves the 
surface with a horizontal velocity as shown. Will a solid sphere, a 
solid cylinder, or a hoop travel the greatest distance x?

 a. Solid sphere
 b. Solid cylinder
 c. Hoop
 d. They will all travel the same distance.

x

Fig. P17.CQ1

 17.CQ2 A solid steel sphere A of radius r and mass m is released from rest 
and rolls without slipping down an incline as shown. After travel-
ing a distance d, the sphere has a speed v. If a solid steel sphere 
of radius 2r is released from rest on the same incline, what will its 
speed be after rolling a distance d?

 a. 0.25 v
 b. 0.5 v
 c. v
 d. 2v
 e. 4v

d
A

r

Fig. P17.CQ2
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1120 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

 17.CQ3 Slender bar A is rigidly connected to a massless rod BC in Case 1 
and two massless cords in Case 2 as shown. The vertical thickness 
of bar A is negligible compared to L. In both cases A is released 
from rest at an angle u 5 u0. When u 5 08, which system will have 
the larger kinetic energy?

 a. Case 1
 b. Case 2
 c. The kinetic energy will be the same.

L L

B

C A
A

Case 1 Case 2

�

�

Fig. P17.CQ3 and P17.CQ5

 17.CQ4 In Prob. 17.CQ3, how will the speeds of the centers of gravity 
compare for the two cases when u 5 08?

 a. Case 1 will be larger.
 b. Case 2 will be larger.
 c. The speeds will be the same.

 17.CQ5 Slender bar A is rigidly connected to a massless rod BC in Case 1 
and two massless cords in Case 2 as shown. The vertical thick-
ness of bar A is not negligible compared to L. In both cases A is 
released from rest at an angle u 5 u0. When u 5 08, which system 
will have the largest kinetic energy?

 a. Case 1
 b. Case 2
 c. The kinetic energy will be the same.

END-OF-SECTION PROBLEMS

 17.1 The rotor of an electric motor has an angular velocity of 3600 rpm 
when the load and power are cut off. The 50-kg rotor then coasts 
to rest after 5000 revolutions. Knowing that the kinetic friction of 
the rotor produces a couple of magnitude 4 N ? m, determine the 
centroidal radius of gyration of the rotor.

 17.2 It is known that 1500 revolutions are required for the 6000-lb 
flywheel to coast to rest from an angular velocity of 300 rpm. 
Knowing that the centroidal radius of gyration of the flywheel is 
36 in., determine the average magnitude of the couple due to 
kinetic friction in the bearings.
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1121Problems 17.3 Two disks of the same material are attached to a shaft as shown. 
Disk A has a weight of 30 lb and a radius r 5 5 in. Disk B is three 
times as thick as disk A. Knowing that a couple M of magnitude 
15 lb ? ft is to be applied to disk A when the system is at rest, 
determine the radius nr of disk B if the angular velocity of the 
system is to be 600 rpm after four revolutions.

 17.4 Two disks of the same material are attached to a shaft as shown. 
Disk A is of radius r and has a thickness b, while disk B is of radius 
nr and thickness 3b. A couple M of constant magnitude is applied 
when the system is at rest and is removed after the system has 
executed two revolutions. Determine the value of n which results 
in the largest final speed for a point on the rim of disk B.

 17.5 The flywheel of a small punch rotates at 300 rpm. It is known that 
1800 ft ? lb of work must be done each time a hole is punched. It 
is desired that the speed of the flywheel after one punching be 
not less than 90 percent of the original speed of 300 rpm. (a) 
Determine the required moment of inertia of the flywheel. (b) If 
a constant 25-lb ? ft couple is applied to the shaft of the flywheel, 
determine the number of revolutions which must occur between 
each punching, knowing that the initial velocity is to be 300 rpm 
at the start of each punching.

 17.6 The flywheel of a punching machine has a mass of 300 kg and a 
radius of gyration of 600 mm. Each punching operation requires 
2500 J of work. (a) Knowing that the speed of the flywheel is 
300 rpm just before a punching, determine the speed immedi-
ately after the punching. (b) If a constant 25-N ? m couple is 
applied to the shaft of the flywheel, determine the number of 
revolutions executed before the speed is again 300 rpm.

 17.7 Disk A, of weight 10 lb and radius r 5 6 in., is at rest when it is 
placed in contact with belt BC, which moves to the right with a 
constant speed v 5 40 ft/s. Knowing that mk 5 0.20 between the 
disk and the belt, determine the number of revolutions executed 
by the disk before it attains a constant angular velocity.

 17.8 Disk A is of constant thickness and is at rest when it is placed in 
contact with belt BC, which moves with a constant velocity v. 
Denoting by mk the coefficient of kinetic friction between the disk 
and the belt, derive an expression for the number of revolutions 
executed by the disk before it attains a constant angular velocity.

 17.9 The 10-in.-radius brake drum is attached to a larger flywheel 
which is not shown. The total mass moment of inertia of the fly-
wheel and drum is 16 lb ? ft ? s2 and the coefficient of kinetic 
friction between the drum and the brake shoe is 0.40. Knowing 
that the initial angular velocity is 240 rpm clockwise, determine 
the force which must be exerted by the hydraulic cylinder if the 
system is to stop in 75 revolutions.

 17.10 Solve Prob. 17.9, assuming that the initial angular velocity of the 
flywheel is 240 rpm counterclockwise.

B

nr

3b

Ab
r

M

Fig. P17.3 and P17.4

B

r
A

C

v

Fig. P17.7 and P17.8

6 in.

10 in.

6 in.

12 in.

D

C

A

B

Fig. P17.9
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1122 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

 17.11 Each of the gears A and B has a mass of 2.4 kg and a radius of 
gyration of 60 mm, while gear C has a mass of 12 kg and a radius 
of gyration of 150 mm. A couple M of constant magnitude 10 N ? m 
is applied to gear C. Determine (a) the number of revolutions of 
gear C required for its angular velocity to increase from 100 to 
450 rpm, (b) the corresponding tangential force acting on gear A.

 17.12 Solve Prob. 17.11, assuming that the 10-N ? m couple is applied to 
gear B.

 17.13 The gear train shown consists of four gears of the same thickness 
and of the same material; two gears are of radius r, and the other 
two are of radius nr. The system is at rest when the couple M0 is 
applied to shaft C. Denoting by I0 the moment of inertia of a gear 
of radius r, determine the angular velocity of shaft A if the couple 
M0 is applied for one revolution of shaft C. 

 17.14 The double pulley shown has a mass of 15 kg and a centroidal 
radius of gyration of 160 mm. Cylinder A and block B are attached 
to cords that are wrapped on the pulleys as shown. The coefficient 
of kinetic friction between block B and the surface is 0.2. Knowing 
that the system is at rest in the position shown when a constant 
force P 5 200 N is applied to cylinder A, determine (a) the velocity 
of cylinder A as it strikes the ground, (b) the total distance that 
block B moves before coming to rest.

nrr

A
B

C

nr

M0

r

Fig. P17.13

 17.15 Gear A has a mass of 1 kg and a radius of gyration of 30 mm; gear 
B has a mass of 4 kg and a radius of gyration of 75 mm; gear C 
has a mass of 9 kg and a radius of gyration of 100 mm. The system 
is at rest when a couple M0 of constant magnitude 4 N ? m is 
applied to gear C. Assuming that no slipping occurs between the 
gears, determine the number of revolutions required for disk A to 
reach an angular velocity of 300 rpm.

 17.16 A slender rod of length l and weight W is pivoted at one end as 
shown. It is released from rest in a horizontal position and swings 
freely. (a) Determine the angular velocity of the rod as it passes 
through a vertical position and determine the corresponding reac-
tion at the pivot. (b) Solve part a for W 5 1.8 lb and l 5 3 ft.

A B

80 mm 80 mm

200 mm
C

M

Fig. P17.11

A
5 kg

150 mm

250 mm

C

P

30°

1 m

B
15 kg

Fig. P17.14
A

B

100 mm50 mm

50 mm

150 mm

C

M0

Fig. P17.15

A B

l

Fig. P17.16
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1123Problems 17.17 A slender rod of length l is pivoted about a point C located at a 
distance b from its center G. It is released from rest in a horizontal 
position and swings freely. Determine (a) the distance b for which 
the angular velocity of the rod as it passes through a vertical posi-
tion is maximum, (b) the corresponding values of its angular veloc-
ity and of the reaction at C.

 17.18 and 17.19 A slender 9-lb rod can rotate in a vertical plane about 
a pivot at B. A spring of constant k 5 30 lb/ft and of unstretched 
length 6 in. is attached to the rod as shown. Knowing that the rod 
is released from rest in the position shown, determine its angular 
velocity after it has rotated through 908.

 17.20 A 160-lb gymnast is executing a series of full-circle swings on the 
horizontal bar. In the position shown he has a small and negligible 
clockwise angular velocity and will maintain his body straight and 
rigid as he swings downward. Assuming that during the swing the 
centroidal radius of gyration of his body is 1.5 ft, determine his 
angular velocity and the force exerted on his hands after he has 
rotated through (a) 908, (b) 1808.

 17.21 A collar with a mass of 1 kg is rigidly attached at a distance d 5 
300 mm from the end of a uniform slender rod AB. The rod has a 
mass of 3 kg and is of length L 5 600 mm. Knowing that the rod 
is released from rest in the position shown, determine the angular 
velocity of the rod after it has rotated through 908. 

 17.22 A collar with a mass of 1 kg is rigidly attached to a slender rod 
AB of mass 3 kg and length L 5 600 mm. The rod is released 
from rest in the position shown. Determine the distance d for 
which the angular velocity of the rod is maximum after it has 
rotated through 908. 

 17.23 Two identical slender rods AB and BC are welded together to form 
an L-shaped assembly. The assembly is pressed against a spring at 
D and released from the position shown. Knowing that the maxi-
mum angle of rotation of the assembly in its subsequent motion is 
908 counterclockwise, determine the magnitude of the angular 
velocity of the assembly as it passes through the position where rod 
AB forms an angle of 308 with the horizontal.

A B
GC

l

b

Fig. P17.17

D

A

B

C

5 in.

24 in.

14 in.

Fig. P17.18

C

A

D

B

5 in.

24 in.

14 in.

Fig. P17.19

3.5 ft

3.5 ft

G

Fig. P17.20

L
d

A B

C

Fig. P17.21 and P17.22

h

B A

C

D

0.4 m

0.4 m

Fig. P17.23
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1124 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

 17.24 The 30-kg turbine disk has a centroidal radius of gyration of 
175  mm and is rotating clockwise at a constant rate of 60 rpm 
when a small blade of weight 0.5 N at point A becomes loose and 
is thrown off. Neglecting friction, determine the change in the 
angular velocity of the turbine disk after it has rotated through 
(a) 908, (b) 2708.

 17.25 A rope is wrapped around a cylinder of radius r and mass m as 
shown. Knowing that the cylinder is released from rest, determine 
the velocity of the center of the cylinder after it has moved down-
ward a distance s.

r

Fig. P17.25

w

CG

r

Fig. P17.29

AO 300 mm

Fig. P17.24

9 in.

20 lb
G

Fig. P17.27

C

c

B
b

A

a

Fig. P17.28

 17.26 Solve Prob. 17.25, assuming that the cylinder is replaced by a thin-
walled pipe of radius r and mass m.

 17.27 A 45-lb uniform cylindrical roller, initially at rest, is acted upon 
by a 20-lb force as shown. Knowing that the body rolls without 
slipping, determine (a) the velocity of its center G after it has 
moved 5 ft, (b) the friction force required to prevent slipping.

 17.28 A small sphere of mass m and radius r is released from rest at A 
and rolls without sliding on the curved surface to point B where it 
leaves the surface with a horizontal velocity. Knowing that a 5 1.5 m 
and b 5 1.2 m, determine (a) the speed of the sphere as it strikes 
the ground at C, (b) the corresponding distance c.

 17.29 The mass center G of a 3-kg wheel of radius R 5 180 mm is 
located at a distance r 5 60 mm from its geometric center C. The 
centroidal radius of gyration of the wheel is k 5 90 mm. As the 
wheel rolls without sliding, its angular velocity is observed to vary. 
Knowing that v 5 8 rad/s in the position shown, determine 
(a) the angular velocity of the wheel when the mass center G is 
directly above the geometric center C, (b) the reaction at the hori-
zontal surface at the same instant. 
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1125Problems 17.30 A half section of pipe of mass m and radius r is released from rest 
in the position shown. Knowing that the pipe rolls without sliding, 
determine (a) its angular velocity after it has rolled through 908, 
(b) the reaction at the horizontal surface at the same instant. [Hint: 
Note that GO 5 2r/p and that, by the  parallel-axis theorem, I  5 
mr2 2 m(GO)2.]

 17.31 A sphere of mass m and radius r rolls without slipping inside a 
curved surface of radius R. Knowing that the sphere is released 
from rest in the position shown, derive an expression for (a) the 
linear velocity of the sphere as it passes through B, (b) the magni-
tude of the vertical reaction at that instant.

 17.32 Two uniform cylinders, each of weight W 5 14 lb and radius r 5 
5 in., are connected by a belt as shown. Knowing that at the instant 
shown the angular velocity of cylinder B is 30 rad/s clockwise, 
determine (a) the distance through which cylinder A will rise before 
the angular velocity of cylinder B is reduced to 5 rad/s, (b) the ten-
sion in the portion of belt connecting the two cylinders.

 17.33 Two uniform cylinders, each of weight W 5 14 lb and radius r 5 
5 in., are connected by a belt as shown. If the system is released 
from rest, determine (a) the velocity of the center of cylinder A 
after it has moved through 3 ft, (b) the tension in the portion of 
belt connecting the two cylinders.

 17.34 A bar of mass m 5 5 kg is held as shown between four disks each 
of mass m9 5 2 kg and radius r 5 75 mm. Knowing that the forces 
exerted on the disks are sufficient to prevent slipping and that the 
bar is released from rest, for each of the cases shown determine 
the velocity of the bar after it has moved through the distance h.

OG

Fig. P17.30

R

B

A

r
b

Fig. P17.31

r

r

A

B

Fig. P17.32 and P17.33

h hh

B

A

B

A

B

A

(a) (b) (c)

Fig. P17.34
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1126 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

A

B

q

Fig. P17.37 and P17.38

 17.35 The 5-kg rod BC is attached by pins to two uniform disks as 
shown. The mass of the 150-mm-radius disk is 6 kg and that of 
the 75-mm-radius disk is 1.5 kg. Knowing that the system is 
released from rest in the position shown, determine the velocity of 
the rod after disk A has rotated through 908.

 17.36 The motion of the uniform rod AB is guided by small wheels of 
negligible mass that roll on the surface shown. If the rod is released 
from rest when u 5 0, determine the velocities of A and B when 
u 5 308.

 17.37 A 5-m-long ladder has a mass of 15 kg and is placed against a house 
at an angle u 5 208. Knowing that the ladder is released from rest, 
determine the angular velocity of the ladder and the velocity of 
end A when u 5 458. Assume the ladder can slide freely on the 
horizontal ground and on the vertical wall.

 17.38 A long ladder of length l, mass m, and centroidal mass moment of 
inertia I is placed against a house at an angle u 5 u0. Knowing 
that the ladder is released from rest, determine the angular veloc-
ity of the ladder when u 5 u2. Assume the ladder can slide freely 
on the horizontal ground and on the vertical wall.

 17.39 The ends of a 9-lb rod AB are constrained to move along slots cut 
in a vertical plate as shown. A spring of constant k 5 3 lb/in. is 
attached to end A in such a way that its tension is zero when u 5 0. 
If the rod is released from rest when u 5 508, determine the angular 
velocity of the rod and the velocity of end B when u 5 0.

75 mm

75 mm

150 mm

A
B C

Fig. P17.35

60° q

L

B

A

Fig. P17.36 

A

B

q

l = 25 in.

Fig. P17.39 and P17.40

 17.40 The ends of a 9-lb rod AB are constrained to move along slots cut in 
a vertical plate as shown. A spring of constant k 5 3 lb/in. is attached 
to end A in such a way that its tension is zero when u 5 0. If the rod 
is released from rest when u 5 0, determine the angular velocity of 
the rod and the velocity of end B when u 5 308.
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1127Problems 17.41 The motion of a slender rod of length R is guided by pins at A and 
B which slide freely in slots cut in a vertical plate as shown. If end 
B is moved slightly to the left and then released, determine the 
angular velocity of the rod and the velocity of its mass center 
(a) at the instant when the velocity of end B is zero, (b) as end B 
passes through point D. 

 17.42 Each of the two rods shown is of length L 5 1 m and has a mass 
of 5 kg. Point D is connected to a spring of constant k 5 20 N/m 
and is constrained to move along a vertical slot. Knowing that the 
system is released from rest when rod BD is horizontal and the 
spring connected to point D is initially unstretched, determine the 
velocity of point D when it is directly to the right of point A.̀

 17.43 The 4-kg rod AB is attached to a collar of negligible mass at A and 
to a flywheel at B. The flywheel has a mass of 16 kg and a radius 
of gyration of 180 mm. Knowing that in the position shown the 
angular velocity of the flywheel is 60 rpm clockwise, determine 
the velocity of the flywheel when point B is directly below C.

 17.44 If in Prob. 17.43 the angular velocity of the flywheel is to be the 
same in the position shown and when point B is directly above C, 
determine the required value of its angular velocity in the position 
shown.

 17.45 The uniform rods AB and BC weigh 2.4 kg and 4 kg, respectively, 
and the small wheel at C is of negligible weight. If the wheel is 
moved slightly to the right and then released, determine the veloc-
ity of pin B after rod AB has rotated through 908.

A

B

D

C

R
R

Fig. P17.41

B

A

L

L

D

Fig. P17.42

A

B

240 mm

720 mm

C

Fig. P17.43 and P17.44

A

B

C

360 mm

600 mm

Fig. P17.45 and P17.46

 17.46 The uniform rods AB and BC weigh 2.4 kg and 4 kg, respectively, 
and the small wheel at C is of negligible weight. Knowing that in the 
position shown the velocity of wheel C is 2 m/s to the right, deter-
mine the velocity of pin B after rod AB has rotated through 908.
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1128 Plane Motion of Rigid Bodies: Energy and 
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 17.47 The 80-mm-radius gear shown has a mass of 5 kg and a centroidal 
radius of gyration of 60 mm. The 4-kg rod AB is attached to the 
center of the gear and to a pin at B that slides freely in a vertical 
slot. Knowing that the system is released from rest when u 5 608, 
determine the velocity of the center of the gear when u 5 208.

 17.48 Knowing that the maximum allowable couple that can be applied to 
a shaft is 15.5 kip ? in., determine the maximum horsepower that 
can be transmitted by the shaft at (a) 180 rpm, (b) 480 rpm.

 17.49 Three shafts and four gears are used to form a gear train which will 
transmit 7.5 kW from the motor at A to a machine tool at F. (Bearings 
for the shafts are omitted from the sketch.) Knowing that the fre-
quency of the motor is 30 Hz, determine the magnitude of the couple 
which is applied to shaft (a) AB, (b) CD, (c) EF. 

 17.50 The shaft-disk-belt arrangement shown is used to transmit 2.4 kW 
from point A to point D. Knowing that the maximum allowable 
couples that can be applied to shafts AB and CD are 25 N ? m 
and 80 N ? m, respectively, determine the required minimum 
speed of shaft AB.

 17.51 The experimental setup shown is used to measure the power out-
put of a small turbine. When the turbine is operating at 200 rpm, 
the readings of the two spring scales are 10 and 22 lb, respectively. 
Determine the power being developed by the turbine.

A

B

C

D

30 mm

120 mm

Fig. P17.50

75 mm

75 mm

180 mm

180 mm

C
E

F

D B

A

Fig. P17.49

320 mm

80 mm
A

B

q

Fig. P17.47 

BA

18 in.

Fig. P17.51
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112917.8  PRINCIPLE OF IMPULSE AND MOMENTUM FOR 
THE PLANE MOTION OF A RIGID BODY

The principle of impulse and momentum will now be applied to the 
analysis of the plane motion of rigid bodies and of systems of rigid 
bodies. As was pointed out in Chap. 13, the method of impulse and 
momentum is particularly well adapted to the solution of problems 
involving time and velocities. Moreover, the principle of impulse 
and momentum provides the only practicable method for the solu-
tion of problems involving impulsive motion or impact (Secs. 17.11 
and 17.12).
 Considering again a rigid body as made of a large number of 
particles Pi, we recall from Sec. 14.9 that the system formed by the 
momenta of the particles at time t1 and the system of the impulses 
of the external forces applied from t1 to t2 are together equipollent 
to the system formed by the momenta of the particles at time t2. 
Since the vectors associated with a rigid body can be considered as 
sliding vectors, it follows (Sec. 3.19) that the systems of vectors 
shown in Fig. 17.6 are not only equipollent but truly equivalent in 

17.8 Principle of Impulse and Momentum for 
the Plane Motion of a Rigid Body

y

O x

Pi

(a)

y

O x

(b)

y

O x

Pi

(c)

(vi Δmi)1

(vi Δmi)2

+ =

��F dt

Fig. 17.6  

the sense that the vectors on the left-hand side of the equals sign 
can be transformed into the vectors on the right-hand side through 
the use of the fundamental operations listed in Sec. 3.13. We there-
fore write

 Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2 (17.14)

 But the momenta vi Dmi of the particles can be reduced to a 
vector attached at G, equal to their sum

L 5 On

i51
 vi ¢mi

and a couple of moment equal to the sum of their moments about G

HG 5 On

i51
 r¿i 3 vi ¢mi

We recall from Sec. 14.3 that L and HG define, respectively, the 
linear momentum and the angular momentum about G of the system 

Photo 17.2 A Charpy impact test is used to 
determine the amount of energy absorbed by a 
material during impact by subtracting the final 
gravitation potential energy of the arm from its 
initial gravitational potential energy.
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1130 Plane Motion of Rigid Bodies: Energy and 
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of particles forming the rigid body. We also note from Eq. (14.14) 
that L 5 mv. On the other hand, restricting the present analysis to 
the plane motion of a rigid slab or of a rigid body symmetrical with 
respect to the reference plane, we recall from Eq. (16.4) that 
HG 5 IV. We thus conclude that the system of the momenta vi Dmi 
is equivalent to the linear momentum vector mv attached at G and 
to the angular momentum couple IV (Fig. 17.7). Observing that the 

Pi

vi Δmi

G=
HG = I w⎯

Fig. 17.7

system of momenta reduces to the vector mv in the particular case 
of a translation (V 5 0) and to the couple IV in the particular case of 
a centroidal rotation (v 5 0), we verify once more that the plane 
motion of a rigid body symmetrical with respect to the reference 
plane can be resolved into a translation with the mass center G and 
a rotation about G.
 Replacing the system of momenta in parts a and c of Fig. 17.6 
by the equivalent linear momentum vector and angular momentum 
couple, we obtain the three diagrams shown in Fig. 17.8. This figure 

y

O x

(a)

y

O x

(b)

y

O x

(c)

+ =

��F dt

G

I w1⎯

G I w2⎯

1

2

Fig. 17.8

expresses as a free-body-diagram equation the fundamental relation 
(17.14) in the case of the plane motion of a rigid slab or of a rigid 
body symmetrical with respect to the reference plane.
 Three equations of motion can be derived from Fig. 17.8. Two 
equations are obtained by summing and equating the x and y com-
ponents of the momenta and impulses, and the third equation is 
obtained by summing and equating the moments of these vectors 
about any given point. The coordinate axes can be chosen fixed in 

bee02324_ch17_1104-1171.indd Page 1130  17/10/11  5:48 PM user-f494bee02324_ch17_1104-1171.indd Page 1130  17/10/11  5:48 PM user-f494 /203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles/203/MHDQ295/bee02324_disk1of1/0077402324/bee02324_pagefiles

AxpertSoft Trial Version

http://www.axpertsoft.com/pdf-splitter-software/


1131space, or allowed to move with the mass center of the body while 
maintaining a fixed direction. In either case, the point about which 
moments are taken should keep the same position relative to the 
coordinate axes during the interval of time considered.
 In deriving the three equations of motion for a rigid body, care 
should be taken not to add linear and angular momenta indiscrimi-
nately. Confusion can be avoided by remembering that mvx and mvy 
represent the components of a vector, namely, the linear momen-
tum vector mv, while Iv represents the magnitude of a couple, namely, 
the angular momentum couple IV. Thus the quantity Iv should be 
added only to the moment of the linear momentum mv, never to this 
vector itself nor to its components. All quantities involved will then be 
expressed in the same units, namely N ? m ? s or lb ? ft ? s.

Noncentroidal Rotation. In this particular case of plane motion, 
the magnitude of the velocity of the mass center of the body is 
v 5 rv, where r represents the distance from the mass center to the 
fixed axis of rotation and V represents the angular velocity of the 
body at the instant considered; the magnitude of the momentum 
vector attached at G is thus mv 5 mrv. Summing the moments 
about O of the momentum vector and momentum couple (Fig. 17.9) 

†Note that the sum HA of the moments about an arbitrary point A of the momenta of 
the particles of a rigid slab is, in general, not equal to IAV. (See Prob. 17.67.)

O

G

⎯rw

 I w⎯

Fig. 17.9

and using the parallel-axis theorem for moments of inertia, we find 
that the angular momentum HO of the body about O has the 
magnitude†

 Iv 1 (mrv)r 5 (I 1 mr 
2)v 5 IOv (17.15)

Equating the moments about O of the momenta and impulses in 
(17.14), we write

 IOv1 1 O #
t2

t1

 MO dt 5 IOv2 (17.16)

 In the general case of plane motion of a rigid body symmetrical 
with respect to the reference plane, Eq. (17.16) can be used with 
respect to the instantaneous axis of rotation under certain conditions. 
It is recommended, however, that all problems of plane motion be 
solved by the general method described earlier in this section.

17.8 Principle of Impulse and Momentum for 
the Plane Motion of a Rigid Body
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1132 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods 17.9 SYSTEMS OF RIGID BODIES

The motion of several rigid bodies can be analyzed by applying the 
principle of impulse and momentum to each body separately (Sam-
ple Prob. 17.6). However, in solving problems involving no more 
than three unknowns (including the impulses of unknown reactions), 
it is often convenient to apply the principle of impulse and momen-
tum to the system as a whole. The momentum and impulse diagrams 
are drawn for the entire system of bodies. For each moving part of 
the system, the diagrams of momenta should include a momentum 
vector, a momentum couple, or both. Impulses of forces internal to 
the system can be omitted from the impulse diagram, since they 
occur in pairs of equal and opposite vectors. Summing and equating 
successively the x components, y components, and moments of all 
vectors involved, one obtains three relations which express that the 
momenta at time t1 and the impulses of the external forces form a 
system equipollent to the system of the momenta at time t2.† Again, 
care should be taken not to add linear and angular momenta indis-
criminately; each equation should be checked to make sure that con-
sistent units have been used. This approach has been used in Sample 
Prob. 17.8 and, further on, in Sample Probs. 17.9 and 17.10.

17.10 CONSERVATION OF ANGULAR MOMENTUM
When no external force acts on a rigid body or a system of rigid 
bodies, the impulses of the external forces are zero and the system 
of the momenta at time t1 is equipollent to the system of the momenta 
at time t2. Summing and equating successively the x components, 
y components, and moments of the momenta at times t1 and t2, we 
conclude that the total linear momentum of the system is conserved 
in any direction and that its total angular momentum is conserved 
about any point.
 There are many engineering applications, however, in which the 
linear momentum is not conserved yet the angular momentum HO of 
the system about a given point O is conserved that is, in which

 (HO)1 5 (HO)2 (17.17)

Such cases occur when the lines of action of all external forces pass 
through O or, more generally, when the sum of the angular impulses 
of the external forces about O is zero.
 Problems involving conservation of angular momentum about a 
point O can be solved by the general method of impulse and momen-
tum, i.e., by drawing momentum and impulse diagrams as described 
in Secs. 17.8 and 17.9. Equation (17.17) is then obtained by summing 
and equating moments about O (Sample Prob. 17.8). As you will see 
later in Sample Prob. 17.9, two additional equations can be written 
by summing and equating x and y components and these equations 
can be used to determine two unknown linear impulses, such as the 
impulses of the reaction components at a fixed point.

†Note that as in Sec. 16.7, we cannot speak of equivalent systems since we are not 
dealing with a single rigid body.

Photo 17.3 A figure skater at the beginning 
and at the end of a spin. By using the principle 
of conservation of angular momentum you will 
find that her angular velocity is much higher at 
the end of the spin.
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1133

SAMPLE PROBLEM 17.6

Gear A has a mass of 10 kg and a radius of gyration of 200 mm, and gear B 
has a mass of 3 kg and a radius of gyration of 80 mm. The system is at rest 
when a couple M of magnitude 6 N ? m is applied to gear B. (These gears 
were considered in Sample Prob. 17.2.) Neglecting friction, determine 
(a) the time required for the angular velocity of gear B to reach 600 rpm, 
(b) the tangential force which gear B exerts on gear A.

rAA

AA A xt

Ayt

Ft

+ =
⎯IA(wA)1 = 0 ⎯IA(wA)2

SOLUTION

We apply the principle of impulse and momentum to each gear separately. 
Since all forces and the couple are constant, their impulses are obtained by 
multiplying them by the unknown time t. We recall from Sample Prob. 17.2 
that the centroidal moments of inertia and the final angular velocities are

 IA 5 0.400 kg ? m2 IB 5 0.0192 kg ? m2

 (vA)2 5 25.1 rad/s (vB)2 5 62.8 rad/s

Principle of Impulse and Momentum for Gear A. The systems of initial 
momenta, impulses, and final momenta are shown in three separate 
sketches.

 Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2
 1lmoments about B: 0 1 Mt 2 FtrB 5 IB(vB)2

1(6 N ? m)t 2 (40.2 N ? s)(0.100 m) 5 (0.0192 kg ? m2)(62.8 rad/s)
 t 5 0.871 s ◀

Recalling that Ft 5 40.2 N ? s, we write

F(0.871 s) 5 40.2 N ? s   F 5 146.2 N

Thus, the force exerted by gear B on gear A is F 5 46.2 N o ◀

rB

BB B
Bxt

Byt

Ft

Mt+ =
⎯IB(wB)1 = 0 ⎯IB(wB)2

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

 1lmoments about A: 0 2 FtrA 5 2IA(vA)2

 Ft(0.250 m) 5 (0.400 kg ? m2)(25.1 rad/s)
 Ft 5 40.2 N ? s

Principle of Impulse and Momentum for Gear B.

A

B

rA = 250 mm

rB = 100 mm

M
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1134

SAMPLE PROBLEM 17.7

A uniform sphere of mass m and radius r is projected along a rough hori-
zontal surface with a linear velocity v1 and no angular velocity. Denoting by 
mk the coefficient of kinetic friction between the sphere and the surface, 
determine (a) the time t2 at which the sphere will start rolling without slid-
ing, (b) the linear and angular velocities of the sphere at time t2.

SOLUTION

While the sphere is sliding relative to the surface, it is acted upon by the 
normal force N, the friction force F, and its weight W of magnitude W 5 mg.

Principle of Impulse and Momentum. We apply the principle of impulse 
and momentum to the sphere from the time t1 5 0 when it is placed on 
the surface until the time t2 5 t when it starts rolling without sliding.

⎯v1

=+
w2⎯I

G ⎯v2m
G

CC C

G ⎯v1m
w1 = 0⎯I W t

N t

Ft

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

 1xy components: Nt 2 Wt 5 0 (1)
 1
y x components: mv1 2 Ft 5 mv2 (2)
 1i moments about G: Ftr 5 Iv2 (3)

From (1) we obtain N 5 W 5 mg. During the entire time interval consid-
ered, sliding occurs at point C and we have F 5 mkN 5 mkmg. Substituting 
CS for F into (2), we write

 mv1 2 mkmgt 5 mv2        v2 5 v1 2 mk 
gt (4)

Substituting F 5 mkmg and I 5 2
5 mr2 into (3),

 mkmgtr 5 2
5 mr2v2         v2 5

5
2

 
mkg

r
 t (5)

The sphere will start rolling without sliding when the velocity vC of the point 
of contact is zero. At that time, point C becomes the instantaneous center 
of rotation, and we have v2 5 rv2. Substituting from (4) and (5), we write

v2 5 rv2        v1 2 mkgt 5 r a5
2

 
mkg

r
 tb   t 5

2
7

 
v1

mkg
 ◀

Substituting this expression for t into (5),

 v2 5
5
2

 
mkg

r
 a2

7
 

v1

mkg
b       v2 5

5
7

 
v1

r
      V2 5

5
7

 
v1

r
 i ◀

  v2 5 rv2 v2 5 r a5
7

 
v1

r
b  v2 5 5

7  v1 y  ◀
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1135

SAMPLE PROBLEM 17.8

Two solid spheres of radius 3 in., weighing 2 lb each, are mounted at 
A and B on the horizontal rod A9B9, which rotates freely about the vertical 
with a counterclockwise angular velocity of 6 rad/s. The spheres are held in 
position by a cord which is suddenly cut. Knowing that the centroidal 
moment of inertia of the rod and pivot is IR 5 0.25 lb ? ft ? s2, determine 
(a) the angular velocity of the rod after the spheres have moved to positions 
A9 and B9, (b) the energy lost due to the plastic impact of the spheres and 
the stops at A9 and B9.

SOLUTION

a. Principle of Impulse and Momentum. In order to determine the final 
angular velocity of the rod, we will express that the initial momenta of the 
various parts of the system and the impulses of the external forces are 
together equipollent to the final momenta of the system.

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

 Observing that the external forces consist of the weights and the reac-
tion at the pivot, which have no moment about the y axis, and noting that 
vA 5 vB 5 rv, we equate moments about the y axis:

  2(mSr1v1)r1 1 2ISv1 1 IRv1 5 2(mSr2v2)r2 1 2ISv2 1 IRv2

  (2mSr 
2
1 1 2IS 1 IR)v1 5 (2mSr 

2
2 1 2IS 1 IR)v2 (1)

which expresses that the angular momentum of the system about the y axis 
is conserved. We now compute

IS 5 2
5mSa2 5 2

5(2 lb/32.2 ft/s2)( 3
12 ft)

2 5 0.00155 lb ? ft ? s2

mSr 
2
1 5 (2/32.2)( 5

12)
2 5 0.0108   mSr 

2
2 5 (2/32.2)(25

12)
2 5 0.2696

Substituting these values, and IR 5 0.25 and v1 5 6 rad/s into (1):

 0.275(6 rad/s) 5 0.792v2    V2 5 2.08 rad/s l ◀

b. Energy Lost. The kinetic energy of the system at any instant is

T 5 2(1
2 mSv 

2 1 1
2 
ISv

2) 1 1
2 IRv2 5 1

2(2mSr 
2 1 2IS 1 IR)v2

Recalling the numerical values found above, we have

T1 5 1
2(0.275)(6)2 5 4.95 ft ? lb   T2 5 1

2(0.792)(2.08)2 5 1.713 ft ? lb
DT 5 T2 2 T1 5 1.71 2 4.95  ¢T 5 23.24 ft ? lb ◀

A
A'

B
B'

y

x

z

Cord

25 in.

25 in.
5 in.5 in.

=+

w2⎯IS

w2⎯IS

w1⎯IS

w1⎯IS

w1⎯IR w2⎯IRy
y

y

z

A

B
x

A'

B'

r1
r2

r2

(mSvA)1

(mSvB)1

(mSvA)2

(mSvB)2

�R x dt

�R z dt

r1
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1136

SOLVING PROBLEMS
ON YOUR OWN

In this lesson you learned to use the method of impulse and momentum to solve 
problems involving the plane motion of rigid bodies. As you found out previ-

ously in Chap. 13, this method is most effective when used in the solution of 
problems involving velocities and time.

1. The principle of impulse and momentum for the plane motion of a rigid 
body is expressed by the following vector equation:

 Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2 (17.14)

where Syst Momenta represents the system of the momenta of the particles 
forming the rigid body, and Syst Ext Imp represents the system of all the external 
impulses exerted during the motion.
 a. The system of the momenta of a rigid body is equivalent to a linear 
momentum vector mv attached at the mass center of the body and an angular 
momentum couple IV (Fig. 17.7).
 b. You should draw a free-body-diagram equation for the rigid body to 
express graphically the above vector equation. Your diagram equation will consist 
of three sketches of the body, representing respectively the initial momenta, the 
impulses of the external forces, and the final momenta. It will show that the system 
of the initial momenta and the system of the impulses of the external forces are 
together equivalent to the system of the final momenta (Fig. 17.8).
 c. By using the free-body-diagram equation, you can sum components in 
any direction and sum moments about any point. When summing moments about 
a point, remember to include the angular momentum Iv of the body, as well as 
the moments of the components of its linear momentum. In most cases you will 
be able to select and solve an equation that involves only one unknown. This was 
done in all the sample problems of this lesson.

2. In problems involving a system of rigid bodies, you can apply the principle of 
impulse and momentum to the system as a whole. Since internal forces occur in equal 
and opposite pairs, they will not be part of your solution [Sample Prob. 17.8].

3. Conservation of angular momentum about a given axis occurs when, for a 
system of rigid bodies, the sum of the moments of the external impulses about that 
axis is zero. You can indeed easily observe from the free-body-diagram equation 
that the initial and final angular momenta of the system about that axis are equal 
and, thus, that the angular momentum of the system about the given axis is con-
served. You can then sum the angular momenta of the various bodies of the system 
and the moments of their linear momenta about that axis to obtain an equation 
which can be solved for one unknown [Sample Prob. 17.8].
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PROBLEMS

1137

CONCEPT QUESTIONS

 17.CQ6 Slender bar A is rigidly connected to a massless rod BC in Case 1 
and two massless cords in Case 2 as shown. The vertical thickness 
of bar A is negligible compared to L. If bullet D strikes A with a 
speed v0 and becomes embedded in it, how will the speeds of the 
center of gravity of A immediately after the impact compare for 
the two cases?

 a. Case 1 will be larger.
 b. Case 2 will be larger.
 c. The speeds will be the same.

D

v0

C

D

v0

A A

L L

B

Case 1 Case 2

Fig. P17.CQ6

 17.CQ7 A 1-m-long uniform slender bar AB has an angular velocity of 
12 rad/s and its center of gravity has a velocity of 2 m/s as shown. 
About which point is the angular momentum of A smallest at this 
instant?
a. P1

b. P2

c. P3

d. P4

e. It is the same about all the points.

vG

w

1 m

0.5 m

A P1

B

0.5 m

0.5 m

P2

P3

P4

Fig. P17.CQ7
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1138 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

IMPULSE-MOMENTUM PRACTICE PROBLEMS

 17.F1 The 350-kg flywheel of a small hoisting engine has a radius of gyra-
tion of 600 mm. If the power is cut off when the angular velocity 
of the flywheel is 100 rpm clockwise, draw an impulse-momentum 
diagram that can be used to determine the time required for the 
system to come to rest.

A
225 mm

120 kg

Fig. P17.F1w0

Fig. P17.F2

b

b

2b

b
b

b

w0

A

B

C

Fig. P17.F3

 17.F2 A sphere of radius r and mass m is placed on a horizontal floor with 
no linear velocity but with a clockwise angular velocity v0. Denot-
ing by mk the coefficient of kinetic friction between the sphere 
and the floor, draw the impulse-momentum diagram that can be 
used to determine the time t1 at which the sphere will start rolling 
without sliding.

 17.F3 Two panels A and B are attached with hinges to a rectangular plate 
and held by a wire as shown. The plate and the panels are made 
of the same material and have the same thickness. The entire 
assembly is rotating with an angular velocity v0 when the wire 
breaks. Draw the impulse-momentum diagram that is needed to 
determine the angular velocity of the assembly after the panels 
have come to rest against the plate.
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1139ProblemsEND-OF-SECTION PROBLEMS

 17.52 The rotor of an electric motor has a mass of 25 kg, and it is 
observed that 4.2 min is required for the rotor to coast to rest from 
an angular velocity of 3600 rpm. Knowing that kinetic friction 
produces a couple of magnitude 1.2 N ? m, determine the centroi-
dal radius of gyration for the rotor.

 17.53 A small grinding wheel is attached to the shaft of an electric motor 
which has a rated speed of 3600 rpm. When the power is turned 
off, the unit coasts to rest in 70 s. The grinding wheel and rotor 
have a combined weight of 6 lb and a combined radius of gyration 
of 2 in. Determine the average magnitude of the couple due to 
kinetic friction in the bearings of the motor.

 17.54 A bolt located 50 mm from the center of an automobile wheel is 
tightened by applying the couple shown for 0.10 s. Assuming that 
the wheel is free to rotate and is initially at rest, determine the 
resulting angular velocity of the wheel. The wheel has a mass of 
19 kg and has a radius of gyration of 250 mm.

rB

B

A

rA

M

Fig. P17.55 and P17.56

A

r

v

Fig. P17.57 and P17.58

Fig. P17.53

100 N

100 N

460 mm

Fig. P17.54

 17.55 Two disks of the same thickness and same material are attached 
to a shaft as shown. The 8-lb disk A has a radius rA 5 3 in., and 
disk B has a radius rB 5 4.5 in. Knowing that a couple M of mag-
nitude 20 lb ? in. is applied to disk A when the system is at rest, 
determine the time required for the angular velocity of the system 
to reach 960 rpm.

 17.56 Two disks of the same thickness and same material are attached 
to a shaft as shown. The 3-kg disk A has a radius rA 5 100 mm, 
and disk B has a radius rB 5 125 mm. Knowing that the angular 
velocity of the system is to be increased from 200 rpm to 800 rpm 
during a 3-s interval, determine the magnitude of the couple M 
that must be applied to disk A.

 17.57 A disk of constant thickness, initially at rest, is placed in contact 
with a belt that moves with a constant velocity v. Denoting by mk 
the coefficient of kinetic friction between the disk and the belt, 
derive an expression for the time required for the disk to reach a 
constant angular velocity.

 17.58 Disk A, of weight 5 lb and radius r 5 3 in., is at rest when it is 
placed in contact with a belt which moves at a constant speed 
v 5 50 ft/s. Knowing that mk 5 0.20 between the disk and the 
belt, determine the time required for the disk to reach a constant 
angular velocity.
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1140 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

 17.59 A cylinder of radius r and weight W with an initial counterclock-
wise angular velocity V0 is placed in the corner formed by the 
floor and a vertical wall. Denoting by mk the coefficient of kinetic 
friction between the cylinder and the wall and the floor, derive an 
expression for the time required for the cylinder to come to rest.

 17.60 and 17.61 Two uniform disks and two cylinders are assembled 
as indicated. Disk A has a mass of 10 kg and disk B has a mass of 
6 kg. Knowing that the system is released from rest, determine the 
time required for cylinder C to have a speed of 0.5 m/s.

  17.60 Disks A and B are bolted together and the cylinders 
are attached to separate cords wrapped on the disks.

  17.61 The cylinders are attached to a single cord that 
passes over the disks. Assume that no slipping occurs between 
the cord and the disks.

P

A

B

w0

rB

rA

Fig. P17.62 and P17.63

w0

Fig. P17.59

10 kg6 kg

B

C D

A

150 mm200 mm

Fig. P17.60

10 kg D6 kgC

200 mm
150 mm

A B

Fig. P17.61

 17.62 Disk B has an initial angular velocity V0 when it is brought into 
contact with disk A which is at rest. Show that the final angular 
velocity of disk B depends only on v0 and the ratio of the masses 
mA and mB of the two disks.

 17.63 The 7.5-lb disk A has a radius rA 5 6 in. and is initially at rest. 
The 10-lb disk B has a radius rB 5 8 in. and an angular velocity 
V0 of 900 rpm when it is brought into contact with disk A. Neglect-
ing friction in the bearings, determine (a) the final angular velocity 
of each disk, (b) the total impulse of the friction force exerted on 
disk A.
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1141Problems 17.64 A tape moves over the two drums shown. Drum A weighs 1.4 lb 
and has a radius of gyration of 0.75 in., while drum B weighs 3.5 lb 
and has a radius of gyration of 1.25 in. In the lower portion of 
the tape the tension is constant and equal to TA 5 0.75 lb. Know-
ing that the tape is initially at rest, determine (a) the required 
constant tension TB if the velocity of the tape is to be v 5 10 ft/s 
after 0.24 s, (b) the corresponding tension in the portion of the 
tape between the drums. 

 17.65 Show that the system of momenta for a rigid slab in plane motion 
reduces to a single vector, and express the distance from the mass 
center G to the line of action of this vector in terms of the cen-
troidal radius of gyration k of the slab, the magnitude v of the 
velocity of G, and the angular velocity V.

 17.66 Show that, when a rigid slab rotates about a fixed axis through O 
perpendicular to the slab, the system of the momenta of its par-
ticles is equivalent to a single vector of magnitude mrv, perpen-
dicular to the line OG, and applied to a point P on this line, called 
the center of percussion, at a distance GP 5 k2/ r from the mass 
center of the slab.

 17.67 Show that the sum HA of the moments about a point A of the 
momenta of the particles of a rigid slab in plane motion is equal 
to IAV, where V is the angular velocity of the slab at the instant 
considered and IA

 the moment of inertia of the slab about A, if and 
only if one of the following conditions is satisfied: (a) A is the mass 
center of the slab, (b) A is the instantaneous center of rotation, 
(c) the velocity of A is directed along a line joining point A and 
the mass center G.

 17.68 Consider a rigid slab initially at rest and subjected to an impulsive 
force F contained in the plane of the slab. We define the center 
of percussion P as the point of intersection of the line of action of 
F with the perpendicular drawn from G. (a) Show that the instan-
taneous center of rotation C of the slab is located on line GP at a 
distance GC 5 k 

2/GP on the opposite side of G. (b) Show that if 
the center of percussion were located at C the instantaneous center 
of rotation would be located at P.

 17.69 A flywheel is rigidly attached to a 1.5-in.-radius shaft that rolls 
without sliding along parallel rails. Knowing that after being 
released from rest the system attains a speed of 6 in./s in 30 s, 
determine the centroidal radius of gyration of the system.

C
G

P

F

Fig. P17.68

r

15°

Fig. P17.69

v TB

TA = 0.75 lb

0.9 in.

1.5 in.

A

B

Fig. P17.64

O

P

w

Gr⎯

m wr⎯

Fig. P17.66
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1142 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

 17.70 A wheel of radius r and centroidal radius of gyration k is released 
from rest on the incline shown at time t 5 0. Assuming that the wheel 
rolls without sliding, determine (a) the velocity of its center at time t, 
(b) the coefficient of static friction required to prevent slipping.

P

A

B

Fig. P17.72

PA

B

Fig. P17.73

 17.71 The double pulley shown has a mass of 3 kg and a radius of gyration 
of 100 mm. Knowing that when the pulley is at rest, a force P of 
magnitude 24 N is applied to cord B, determine (a) the velocity of 
the center of the pulley after 1.5 s, (b) the tension in cord C.

 17.72 and 17.73 A 9-in.-radius cylinder of weight 18 lb rests on a 6-lb 
carriage. The system is at rest when a force P of magnitude 2.5 lb 
is applied as shown for 1.2 s. Knowing that the cylinder rolls with-
out sliding on the carriage and neglecting the mass of the wheels 
of the carriage, determine the resulting velocity of (a) the carriage, 
(b) the center of the cylinder.

 17.74 Two uniform cylinders, each of mass m 5 6 kg and radius r 5 
125 mm, are connected by a belt as shown. If the system is released 
from rest when t 5 0, determine (a) the velocity of the center of 
cylinder B at t 5 3 s, (b) the tension in the portion of belt connecting 
the two cylinders.

 17.75 Two uniform cylinders, each of mass m 5 6 kg and radius r 5 
125 mm, are connected by a belt as shown. Knowing that at the 
instant shown the angular velocity of cylinder A is 30 rad/s coun-
terclockwise, determine (a) the time required for the angular 
velocity of cylinder A to be reduced to 5 rad/s, (b) the tension in 
the portion of belt connecting the two cylinders.

 17.76 In the gear arrangement shown, gears A and C are attached to rod 
ABC, which is free to rotate about B, while the inner gear B is 
fixed. Knowing that the system is at rest, determine the magnitude 
of the couple M which must be applied to rod ABC, if 2.5 s later 
the angular velocity of the rod is to be 240 rpm clockwise. Gears 
A and C weigh 2.5 lb each and may be considered as disks of radius 
2 in.; rod ABC weighs 4 lb. 

b

r

Fig. P17.70

A

80 
mm

150 
mm

B C

P

Fig. P17.71

r

r

A

B

Fig. P17.74 and P17.75

2 in.

2 in.

8 in.

2 in.

A

B

C

Fig. P17.76
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1143Problems 17.77 A sphere of radius r and mass m is projected along a rough 
 horizontal surface with the initial velocities shown. If the final 
velocity of the sphere is to be zero, express (a) the required mag-
nitude of V0 in terms of v0 and r, (b) the time required for the 
sphere to come to rest in terms of v0 and the coefficient of kinetic 
friction mk.

 17.78 A bowler projects an 8.5-in.-diameter ball weighing 16 lb along an 
alley with a forward velocity v0 of 25 ft/s and a backspin v0 of 
9 rad/s. Knowing that the coefficient of kinetic friction between the 
ball and the alley is 0.10, determine (a) the time t1 at which the ball 
will start rolling without sliding, (b) the speed of the ball at time t1.

 17.79 Four rectangular panels, each of length b and height 1
2 b, are 

attached with hinges to a circular plate of diameter 12 b and held 
by a wire loop in the position shown. The plate and the panels 
are made of the same material and have the same thickness. The 
entire assembly is rotating with an angular velocity v0 when the 
wire breaks. Determine the angular velocity of the assembly after 
the panels have come to rest in a horizontal position.

 17.80 A 2.5-lb disk of radius 4 in. is attached to the yoke BCD by means 
of short shafts fitted in bearings at B and D. The 1.5-lb yoke has a 
radius of gyration of 3 in. about the x axis. Initially the assembly is 
rotating at 120 rpm with the disk in the plane of the yoke (u 5 0). 
If the disk is slightly disturbed and rotates with respect to the yoke 
until u 5 908, where it is stopped by a small bar at D, determine 
the final angular velocity of the assembly.

 17.81 Two 10-lb disks and a small motor are mounted on a 15-lb rec-
tangular platform which is free to rotate about a central vertical 
spindle. The normal operating speed of the motor is 180 rpm. If 
the motor is started when the system is at rest, determine the 
angular velocity of all elements of the system after the motor has 
attained its normal operating speed. Neglect the mass of the motor 
and of the belt.

w0 v0⎯

Fig. P17.77

ww0

v0

Fig. P17.78

�0

b
b

1
2

b

Fig. P17.79

A

DC

E

B

G

xq

Fig. P17.80

4 in.
3 in.

4 in.

16 in. 6 in.

Motor

A B

3 in.

Belt

Fig. P17.81 
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1144 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

 17.82 A 3-kg rod of length 800 mm can slide freely in the 240-mm 
cylinder DE, which in turn can rotate freely in a horizontal plane. 
In the position shown the assembly is rotating with an angular 
velocity of magnitude v 5 40 rad/s and end B of the rod is mov-
ing toward the cylinder at a speed of 75 mm/s relative to the 
cylinder. Knowing that the centroidal mass moment of inertia of 
the cylinder about a vertical axis is 0.025 kg ? m2 and neglecting 
the effect of friction, determine the angular velocity of the assem-
bly as end B of the rod strikes end E of the cylinder.

 17.83 A 1.6-kg tube AB can slide freely on rod DE which in turn can 
rotate freely in a horizontal plane. Initially the assembly is rotating 
with an angular velocity v 5 5 rad/s and the tube is held in posi-
tion by a cord. The moment of inertia of the rod and bracket about 
the vertical axis of rotation is 0.30 kg ? m2 and the centroidal moment 
of inertia of the tube about a vertical axis is 0.0025 kg ? m2. If the 
cord suddenly breaks, determine (a) the angular velocity of the 
assembly after the tube has moved to end E, (b) the energy lost 
during the plastic impact at E.

A

D

E
B

240 mm

320 mm

120 mm

w

C

Fig. P17.82

 17.84 In the helicopter shown, a vertical tail propeller is used to prevent 
rotation of the cab as the speed of the main blades is changed. 
Assuming that the tail propeller is not operating, determine the 
final angular velocity of the cab after the speed of the main blades 
has been changed from 180 to 240 rpm. (The speed of the main 
blades is measured relative to the cab, and the cab has a centroi-
dal moment of inertia of 650 lb ? ft ? s2. Each of the four main 
blades is assumed to be a slender 14-ft rod weighing 55 lb.)

 17.85 Assuming that the tail propeller in Prob. 17.84 is operating and 
that the angular velocity of the cab remains zero, determine the 
final horizontal velocity of the cab when the speed of the main 
blades is changed from 180 to 240 rpm. The cab weighs 1250 lb 
and is initially at rest. Also determine the force exerted by the tail 
propeller if the change in speed takes place uniformly in 12 s.

 17.86 The circular platform A is fitted with a rim of 200-mm inner radius 
and can rotate freely about the vertical shaft. It is known that the 
platform-rim unit has a mass of 5 kg and a radius of gyration of 
175 mm with respect to the shaft. At a time when the platform is 
rotating with an angular velocity of 50 rpm, a 3-kg disk B of radius 
80 mm is placed on the platform with no velocity. Knowing that disk 
B then slides until it comes to rest relative to the platform against 
the rim, determine the final angular velocity of the platform.

200 mm

B

A

Fig. P17.86

B

E

C
D

w

A

375 mm

500 mm

125 mm

Fig. P17.83 

x
G

z

16 ft

y

Fig. P17.84
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1145Problems 17.87 Two 4-kg disks and a small motor are mounted on a 6-kg rectan-
gular platform which is free to rotate about a central vertical 
spindle. The normal operating speed of the motor is 240 rpm. If 
the motor is started when the system is at rest, determine the 
angular velocity of all elements of the system after the motor has 
attained its normal operating speed. Neglect the mass of the motor 
and of the belt.

 17.88 The 4-kg rod AB can slide freely inside the 6-kg tube CD. The rod 
was entirely within the tube (x 5 0) and released with no initial 
velocity relative to the tube when the angular velocity of the 
assembly was 5 rad/s. Neglecting the effect of friction, determine 
the speed of the rod relative to the tube when x 5 400 mm.

 17.89 A 1.8-kg collar A and a 0.7-kg collar B can slide without friction on 
a frame, consisting of the horizontal rod OE and the vertical rod 
CD, which is free to rotate about its vertical axis of symmetry. The 
two collars are connected by a cord running over a pulley that is 
attached to the frame at O. At the instant shown, the velocity vA of 
collar A has a magnitude of 2.1 m/s and a stop prevents collar B 
from moving. The stop is suddenly removed and collar A moves 
toward E. As it reaches a distance of 0.12 m from O, the magnitude 
of its velocity is observed to be 2.5 m/s. Determine at that instant 
the magnitude of the angular velocity of the frame and the moment 
of inertia of the frame and pulley system about CD.

100 mm

75 mm

400 mm
150 mm

Motor

A B

75 mm

Belt

Fig. P17.87

B x

C

A

D

800 mm

800 mm

w

Fig. P17.88

B

C

A

D

O

vA0.1 m

E

Fig. P17.89
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1146 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

24 in.

C

A

B

10 in.

Fig. P17.90

 17.90 A 6-lb collar C is attached to a spring and can slide on rod AB, 
which in turn can rotate in a horizontal plane. The mass moment 
of inertia of rod AB with respect to end A is 0.35 lb ? ft ? s2. The 
spring has a constant k 5 15 lb/in. and an undeformed length of 
10 in. At the instant shown the velocity of the collar relative to the 
rod is zero and the assembly is rotating with an angular velocity of 
12 rad/s. Neglecting the effect of friction, determine (a) the angular 
velocity of the assembly as the collar passes through a point located 
7.5 in. from end A of the rod, (b) the corresponding velocity of the 
collar relative to the rod.

 17.91 A small 4-lb collar C can slide freely on a thin ring of weight 6 lb 
and radius 10 in. The ring is welded to a short vertical shaft, which 
can rotate freely in a fixed bearing. Initially the ring has an angular 
velocity of 35 rad/s and the collar is at the top of the ring (u 5 0) 
when it is given a slight nudge. Neglecting the effect of friction, 
determine (a) the angular velocity of the ring as the collar passes 
through the position u 5 908, (b) the corresponding velocity of the 
collar relative to the ring.

30°
B

A C

Fig. P17.92

 17.92 A uniform rod AB, of mass 7 kg and length 1.2 m, is attached to 
the 11-kg cart C. Knowing that the system is released from rest in 
the position shown and neglecting friction, determine (a) the veloc-
ity of point B as rod AB passes through a vertical position, (b) the 
corresponding velocity of cart C.

 17.93 In Prob. 17.82, determine the velocity of rod AB relative to  cylinder 
DE as end B of the rod strikes end E of the cylinder.

 17.94 In Prob. 17.83, determine the velocity of the tube relative to the 
rod as the tube strikes end E of the assembly. 

 17.95 The 6-lb steel cylinder A and the 10-lb wooden cart B are at rest 
in the position shown when the cylinder is given a slight nudge, 
causing it to roll without sliding along the top surface of the cart. 
Neglecting friction between the cart and the ground, determine 
the velocity of the cart as the cylinder passes through the lowest 
point of the surface at C.

C

A

B
6 in.

Fig. P17.95

R

q
C

Fig. P17.91
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114717.11 IMPULSIVE MOTION
You saw in Chap. 13 that the method of impulse and momentum is 
the only practicable method for the solution of problems involving 
the impulsive motion of a particle. Now you will find that problems 
involving the impulsive motion of a rigid body are particularly well 
suited to a solution by the method of impulse and momentum. Since 
the time interval considered in the computation of linear impulses 
and angular impulses is very short, the bodies involved can be 
assumed to occupy the same position during that time interval, mak-
ing the computation quite simple.

17.12 ECCENTRIC IMPACT
In Secs. 13.13 and 13.14, you learned to solve problems of central 
impact, i.e., problems in which the mass centers of the two colliding 
bodies are located on the line of impact. You will now analyze the 
eccentric impact of two rigid bodies. Consider two bodies which col-
lide, and denote by vA and vB the velocities before impact of the two 
points of contact A and B (Fig. 17.10a). Under the impact, the two 

A
B

n

n

vA

vB

(a) (b) (c)

A
B

n

n

uA

uB

A
B

n

n

v'A

v'B

Fig. 17.10

bodies will deform, and at the end of the period of deformation, the 
velocities uA and uB of A and B will have equal components along 
the line of impact nn (Fig. 17.10b). A period of restitution will then 
take place, at the end of which A and B will have velocities v9A and 
v9B (Fig. 17.10c). Assuming that the bodies are frictionless, we find 
that the forces they exert on each other are directed along the line 
of impact. Denoting the magnitude of the impulse of one of these 
forces during the period of deformation by eP dt and the magnitude 
of its impulse during the period of restitution by eR dt, we recall 
that the coefficient of restitution e is defined as the ratio

 e 5
eR dt
eP dt

 (17.18)

We propose to show that the relation established in Sec. 13.13 
between the relative velocities of two particles before and after 
impact also holds between the components along the line of impact 

17.12 Eccentric Impact
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1148 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

of the relative velocities of the two points of contact A and B. We 
propose to show, therefore, that

 (v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n] (17.19)

 It will first be assumed that the motion of each of the two col-
liding bodies of Fig. 17.10 is unconstrained. Thus the only impulsive 
forces exerted on the bodies during the impact are applied at A and 
B, respectively. Consider the body to which point A belongs and 
draw the three momentum and impulse diagrams corresponding to 
the period of deformation (Fig. 17.11). We denote by v and u, 

respectively, the velocity of the mass center at the beginning and at 
the end of the period of deformation, and we denote by V and V* 
the angular velocity of the body at the same instants. Summing and 
equating the components of the momenta and impulses along the 
line of impact nn, we write

 mvn 2 eP dt 5 mun (17.20)

Summing and equating the moments about G of the momenta and 
impulses, we also write

 Iv 2 reP dt 5 Iv* (17.21)

where r represents the perpendicular distance from G to the line of 
impact. Considering now the period of restitution, we obtain in a 
similar way

  mun 2 eR dt 5 mv¿n (17.22)
  Iv* 2 reR dt 5 Iv¿  (17.23)

where v¿ and V9 represent, respectively, the velocity of the mass 
center and the angular velocity of the body after impact. Solving 
(17.20) and (17.22) for the two impulses and substituting into (17.18), 
and then solving (17.21) and (17.23) for the same two impulses and 
substituting again into (17.18), we obtain the following two alterna-
tive expressions for the coefficient of restitution:

 e 5
un 2 v¿n
vn 2 un

   e 5
v* 2 v¿
v 2 v*

 (17.24)

A

n

n

�P dt mvn

+ =A

n

n

G
G A

n

n

⎯
G

⎯ I w

⎯

 mun

 mu t

r

 mv t

 I w*

Fig. 17.11

Photo 17.4 When the rotating bat contacts 
the ball it applies an impulsive force to the ball 
requiring the method of impulse and momentum 
to be used to determine the final velocities 
of the ball and bat.
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1149Multiplying by r the numerator and denominator of the second 
expression obtained for e, and adding respectively to the numerator 
and denominator of the first expression, we have

 e 5
un 1 rv* 2 (v¿n 1 rv¿)
vn 1 rv 2 (un 1 rv*)

 (17.25)

Observing that vn 1 rv represents the component (vA)n along nn of 
the velocity of the point of contact A and that, similarly, un 1 rv* 
and v¿n 1 rv9 represent, respectively, the components (uA)n and (v9A)n, 
we write

 e 5
(uA)n 2 (v¿A)n

(vA)n 2 (uA)n
 (17.26)

The analysis of the motion of the second body leads to a similar 
expression for e in terms of the components along nn of the succes-
sive velocities of point B. Recalling that (uA)n 5 (uB)n, and eliminat-
ing these two velocity components by a manipulation similar to the 
one used in Sec. 13.13, we obtain relation (17.19).
 If one or both of the colliding bodies is constrained to rotate 
about a fixed point O, as in the case of a compound pendulum 
(Fig. 17.12a), an impulsive reaction will be exerted at O (Fig. 17.12b). 

17.12 Eccentric Impact

(a)

A

O

�P dt

n

n

(b)

�Qy dt

�Qx dt

A

O

r

Fig. 17.12

Let us verify that while their derivation must be modified, Eqs. (17.26) 
and (17.19) remain valid. Applying formula (17.16) to the period of 
deformation and to the period of restitution, we write

  IOv 2 reP dt 5 IOv* (17.27)
 IOv* 2 reR dt 5 IOv9 (17.28)

where r represents the perpendicular distance from the fixed point 
O to the line of impact. Solving (17.27) and (17.28) for the two 
impulses and substituting into (17.18), and then observing that rv, 
rv*, and rv9 represent the components along nn of the successive 
velocities of point A, we write

e 5
v* 2 v¿
v 2 v*

5
rv* 2 rv¿
rv 2 rv*

5
(uA)n 2 (v¿A)n

(vA)n 2 (uA)n

and check that Eq. (17.26) still holds. Thus Eq. (17.19) remains valid 
when one or both of the colliding bodies is constrained to rotate 
about a fixed point O.
 In order to determine the velocities of the two colliding bodies 
after impact, relation (17.19) should be used in conjunction with one 
or several other equations obtained by applying the principle of 
impulse and momentum (Sample Prob. 17.10).
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1150

SAMPLE PROBLEM 17.9

A 0.05-lb bullet B is fired with a horizontal velocity of 1500 ft/s into the 
side of a 20-lb square panel suspended from a hinge at A. Knowing that the 
panel is initially at rest, determine (a) the angular velocity of the panel 
immediately after the bullet becomes embedded, (b) the impulsive reaction 
at A, assuming that the bullet becomes embedded in 0.0006 s.

SOLUTION

Principle of Impulse and Momentum. We consider the bullet and the 
panel as a single system and express that the initial momenta of the bullet 
and panel and the impulses of the external forces are together equipollent 
to the final momenta of the system. Since the time interval Dt 5 0.0006 s 
is very short, we neglect all nonimpulsive forces and consider only the exter-
nal impulses Ax Dt and Ay Dt.

18 in.

18 in.

14 in.

A

G

vB = 1500 ft/s

B

=

A

14 in.

G

AyΔt

A xΔt

+
ωω2⎯IPmBvB

A

G

A

G

9 in.

mPv2⎯

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

1lmoments about A: mBvB(14
12 ft) 1 0 5 mPv2(

9
12 ft) 1 IPv2 (1)

y
1 x components: mBvB 1 Ax Dt 5 mPv2 (2)
1xy components: 0 1 Ay Dt 5 0 (3)

The centroidal mass moment of inertia of the square panel is

IP 5 1
6mPb2 5

1
6

 a20 lb
32.2
b(18

12 ft)
2 5 0.2329 lb ? ft ? s2

Substituting this value as well as the given data into (1) and noting that

v2 5 ( 9
12 ft)v2

we write

 a0.05
32.2
b(1500)(14

12) 5 0.2329v2 1 a 20
32.2
b( 9

12v2)( 9
12)

 v2 5 4.67 rad/s v2 5 4.67 rad/sl ◀

 v2 5 ( 9
12 ft)v2 5 ( 9

12 ft)(4.67 rad/s) 5 3.50 ft/s

Substituting v2 5 3.50 ft/s, Dt 5 0.0006 s, and the given data into Eq. (2), 
we have

 a0.05
32.2
b(1500) 1 Ax(0.0006) 5 a 20

32.2
b(3.50)

 Ax 5 2259 lb Ax 5 259 lb z ◀

From Eq. (3), we find  Ay 5 0 Ay 5 0 ◀
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1151

SAMPLE PROBLEM 17.10

A 2-kg sphere moving horizontally to the right with an initial velocity of 
5 m/s strikes the lower end of an 8-kg rigid rod AB. The rod is suspended 
from a hinge at A and is initially at rest. Knowing that the coefficient of 
restitution between the rod and the sphere is 0.80, determine the angular 
velocity of the rod and the velocity of the sphere immediately after the 
impact.

SOLUTION

Principle of Impulse and Momentum. We consider the rod and sphere as 
a single system and express that the initial momenta of the rod and sphere 
and the impulses of the external forces are together equipollent to the final 
momenta of the system. We note that the only impulsive force external to 
the system is the impulsive reaction at A.

A

G

B

vs

1.2 m

0.6 m

AyΔ t 

AxΔ t 

⎯vR = 0mR =+1.2 m

A

G

B

A

G

B

I w = 0⎯ I w' ⎯
⎯vmR

v'smsvsms

A

G

B

0.6 m
'R

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

1lmoments about A:

 msvs(1.2  m) 5 msv¿s(1.2  m) 1 mRv¿R(0.6  m) 1 Iv¿ (1)

Since the rod rotates about A, we have v¿R 5 rv¿ 5 (0.6  m)v¿. Also,

I 5 1
12mL2 5 1

12(8 kg)(1.2 m)2 5 0.96 kg ? m2

Substituting these values and the given data into Eq. (1), we have

(2 kg)(5 m/s)(1.2 m) 5 (2 kg)v9s (1.2 m) 1 (8 kg)(0.6 m)v9(0.6 m)
 1 (0.96 kg ? m2)v9

 12 5 2.4v9s 1 3.84v9 (2)

Relative Velocities. Choosing positive to the right, we write

v9B 2 v9s 5 e(vs 2 vB)

Substituting vs 5 5 m/s, vB 5 0, and e 5 0.80, we obtain

 v9B 2 v9s 5 0.80(5 m/s) (3)

Again noting that the rod rotates about A, we write

 v9B 5 (1.2 m)v9 (4)

Solving Eqs. (2) to (4) simultaneously, we obtain

 v9 5 3.21 rad/s V9 5 3.21 rad/s l ◀

 v9s 5 20.143 m/s v9s 5 20.143 m/s z ◀
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1152

SAMPLE PROBLEM 17.11

A square package of side a and mass m moves down a conveyor belt A with 
a constant velocity v1. At the end of the conveyor belt, the corner of the 
package strikes a rigid support at B. Assuming that the impact at B is per-
fectly plastic, derive an expression for the smallest magnitude of the velocity 
v1 for which the package will rotate about B and reach conveyor belt C.

SOLUTION

Principle of Impulse and Momentum. Since the impact between the pack-
age and the support is perfectly plastic, the package rotates about B during 
the impact. We apply the principle of impulse and momentum to the pack-
age and note that the only impulsive force external to the package is the 
impulsive reaction at B.

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2

1lmoments about B:  (mv1)(1
2a) 1 0 5 (mv2)(1

2 12a) 1 Iv2 (1)

Since the package rotates about B, we have v2 5 (GB)v2 5 1
2 12av2. We 

substitute this expression, together with I 5 1
6ma2, into Eq. (1):

 (mv1)(1
2a) 5 m(1

2 12av2)(1
2 12a) 1 1

6ma2v2     v1 5 4
3av2 (2)

Principle of Conservation of Energy. We apply the principle of conserva-
tion of energy between position 2 and position 3.

Position 2. V2 5 Wh2. Recalling that v2 5 1
2 12av2, we write

T2 5 1
2mv2

2 1 1
2Iv2

2 5 1
2m(1

2 12av2)2 1 1
2(1

6ma2)v2
2 5 1

3ma2v2
2

Position 3. Since the package must reach conveyor belt C, it must pass 
through position 3 where G is directly above B. Also, since we wish to 
determine the smallest velocity for which the package will reach this posi-
tion, we choose v3 5 v3 5 0. Therefore T3 5 0 and V3 5 Wh3.

Conservation of Energy

 T2 1 V2 5 T3 1 V3
 1

3ma2v2
2 1 Wh2 5 0 1 Wh3

 v2
2 5

3W

ma2 (h3 2 h2) 5
3g

a2  (h3 2 h2) (3)

Substituting the computed values of h2 and h3 into Eq. (3), we obtain

v2
2 5

3g

a2  (0.707a 2 0.612a) 5
3g

a2  (0.095a)      v2 5 10.285g/a

 v1 5 4
3av2 5 4

3a10.285g/a v1 5 0.7121ga ◀

⎯v1

15°
A

B
C

a

a

Iw2

15°
G

B

⎯v1

BΔt

+ =m

15°

G

B
15°G

B

⎯v2

⎯

m

a√2
2

a

a

15°
45°

Datum

G

B

h2

GB =     √2a = 0.707a

  h2 = GB sin (45° + 15°)

       = 0.612a

Position 2

⎯v2

w2

1
2

a

a

G

B

h3

h3 = GB = 0.707a

Position 3

⎯v3

w3

a

a
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1153

SOLVING PROBLEMS
ON YOUR OWN

This lesson was devoted to the impulsive motion and to the eccentric impact of 
rigid bodies.

1. Impulsive motion occurs when a rigid body is subjected to a very large force F
for a very short interval of time Dt; the resulting impulse F Dt is both finite and 
different from zero. Such forces are referred to as impulsive forces and are encoun-
tered whenever there is an impact between two rigid bodies. Forces for which the 
impulse is zero are referred to as nonimpulsive forces. As you saw in Chap. 13, 
the following forces can be assumed to be nonimpulsive: the weight of a body, the 
force exerted by a spring, and any other force which is known to be small by 
comparison with the impulsive forces. Unknown reactions, however, cannot be 
assumed to be nonimpulsive.

2. Eccentric impact of rigid bodies. You saw that when two bodies collide, the 
velocity components along the line of impact of the points of contact A and B 
before and after impact satisfy the following equation:

 (v9B)n 2 (v9A)n 5 e[(vA)n 2 (vB)n] (17.19)

where the left-hand member is the relative velocity after the impact, and the right-
hand member is the product of the coefficient of restitution and the relative veloc-
ity before the impact.

  This equation expresses the same relation between the velocity components 
of the points of contact before and after an impact that you used for particles in 
Chap. 13.

3. To solve a problem involving an impact you should use the method of impulse 
and momentum and take the following steps.
 a. Draw a free-body-diagram equation of the body that will express that 
the system consisting of the momenta immediately before impact and of the 
impulses of the external forces is equivalent to the system of the momenta imme-
diately after impact.
 b. The free-body-diagram equation will relate the velocities before and after 
impact and the impulsive forces and reactions. In some cases, you will be able to 
determine the unknown velocities and impulsive reactions by solving equations 
obtained by summing components and moments [Sample Prob. 17.9].
 c. In the case of an impact in which e . 0, the number of unknowns will 
be greater than the number of equations that you can write by summing compo-
nents and moments, and you should supplement the equations obtained from the 
free-body-diagram equation with Eq. (17.19), which relates the relative velocities 
of the points of contact before and after impact [Sample Prob. 17.10].
 d. During an impact you must use the method of impulse and momentum. 
However, before and after the impact you can, if necessary, use some of the other 
methods of solution that you have learned, such as the method of work and energy 
[Sample Prob. 17.11].
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1154

PROBLEMS

IMPULSE-MOMENTUM PRACTICE PROBLEMS

17.F4 A uniform slender rod AB of mass m is at rest on a frictionless 
horizontal surface when hook C engages a small pin at A. Knowing 
that the hook is pulled upward with a constant velocity v0, draw 
the impulse-momentum diagram that is needed to determine the 
impulse exerted on the rod at A and B. Assume that the velocity 
of the hook is unchanged and that the impact is perfectly plastic.

 17.F5 A uniform slender rod AB of length L is falling freely with a velocity 
v0 when cord AC suddenly becomes taut. Assuming that the impact 
is perfectly plastic, draw the impulse-momentum diagram that is 
needed to determine the angular velocity of the rod and the veloc-
ity of its mass center immediately after the cord becomes taut.

17.F6 A slender rod CDE of length L and mass m is attached to a pin 
support at its midpoint D. A second and identical rod AB is rotat-
ing about a pin support at A with an angular velocity V1 when its 
end B strikes end C of rod CDE. The coefficient of restitution 
between the rods is e. Draw the impulse-momentum diagrams 
that are needed to determine the angular velocity of each rod im-
mediately after the impact.

A

L

v0

B

C

Fig. P17.F4

C

A B

1
2

v0

Fig. P17.F5

A
C

B D
E

L L
2

L
2

w1

Fig. P17.F6
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1155ProblemsEND-OF-SECTION PROBLEMS

 17.96 At what height h above its center G should a billiard ball of radius r be 
struck horizontally by a cue if the ball is to start rolling without 
sliding?

 17.97 A bullet weighing 0.08 lb is fired with a horizontal velocity of 1800 ft/s 
into the lower end of a slender 15-lb bar of length L 5 30 in. Know-
ing that h 5 12 in. and that the bar is initially at rest, determine 
(a) the angular velocity of the bar immediately after the bullet 
becomes embedded, (b) the impulsive reaction at C, assuming 
that the bullet becomes embedded in 0.001 s.

 17.98 In Prob. 17.97, determine (a) the required distance h if the impul-
sive reaction at C is to be zero, (b) the corresponding angular veloc-
ity of the bar immediately after the bullet becomes embedded.

 17.99 An 16-lb wooden panel is suspended from a pin support at A and 
is initially at rest. A 4-lb metal sphere is released from rest at B 
and falls into a hemispherical cup C attached to the panel at a 
point located on its top edge. Assuming that the impact is perfectly 
plastic, determine the velocity of the mass center G of the panel 
immediately after the impact. 

 17.100 A 16-lb wooden panel is suspended from a pin support at A and 
is initially at rest. A 4-lb metal sphere is released from rest at B9 
and falls into a hemispherical cup C9 attached to the panel at the 
same level as the mass center G. Assuming that the impact is 
perfectly plastic, determine the velocity of the mass center G of 
the panel immediately after the impact. 

 17.101 A 45-g bullet is fired with a velocity of 400 m/s at u 5 308 into a 9-kg 
square panel of side b 5 200 mm. Knowing that h 5 150 mm and 
that the panel is initially at rest, determine (a) the velocity of the 
center of the panel immediately after the bullet becomes embedded, 
(b) the impulsive reaction at A, assuming that the bullet becomes 
embedded in 2 ms.

 17.102 A 45-g bullet is fired with a velocity of 400 m/s at u 5 58 into a 9-kg 
square panel of side b 5 200 mm. Knowing that the panel is initially 
at rest, determine (a) the required distance h if the horizontal com-
ponent of the impulsive reaction at A is to be zero, (b) the corre-
sponding velocity of the center of the panel immediately after the 
bullet becomes embedded.

9 in.

7 in. 7 in.

9 in.

18 in.

18 in.

G

C

B B9

C9

A

Fig. P17.99 and P17.100

G
h

Fig. P17.96

v0

B

C

A

h

L

Fig. P17.97

v0h G

A

b

b
q

Fig. P17.101 and P17.102
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1156 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

v1⎯

w1

G
b

Fig. P17.106

B

ba

A
q0

Fig. P17.107

 17.103 Two uniform rods, each of mass m, form the L-shaped rigid body 
ABC which is initially at rest on the frictionless horizontal surface 
when hook D of the carriage E engages a small pin at C. Knowing 
that the carriage is pulled to the right with a constant velocity v0, 
determine immediately after the impact (a) the angular velocity of 
the body, (b) the velocity of corner B. Assume that the velocity of the 
carriage is unchanged and that the impact is perfectly plastic.

 17.104 The uniform slender rod AB of weight 5 lb and length 30 in. forms 
an angle b 5 30° with the vertical as it strikes the smooth corner 
shown with a vertical velocity v1 of magnitude 8 ft/s and no angular 
velocity. Assuming that the impact is perfectly plastic, determine 
the angular velocity of the rod immediately after the impact.

 17.105 A bullet weighing 0.08 lb is fired with a horizontal velocity of 
1800 ft/s into the 15-lb wooden rod AB of length L 5 30 in. The 
rod, which is initially at rest, is suspended by a cord of length L 5 
30 in. Determine the distance h for which, immediately after the 
bullet becomes embedded, the instantaneous center of rotation of the 
rod is point C.

 17.106 A uniform sphere of radius r rolls down the incline shown without 
slipping. It hits a horizontal surface and, after slipping for a while, 
it starts rolling again. Assuming that the sphere does not bounce 
as it hits the horizontal surface, determine its angular velocity and 
the velocity of its mass center after it has resumed rolling.

 17.107 A uniformly loaded rectangular crate is released from rest in the 
position shown. Assuming that the floor is sufficiently rough to 
prevent slipping and that the impact at B is perfectly plastic, deter-
mine the smallest value of the ratio a/b for which corner A will 
remain in contact with the floor.
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B

D
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v0

Fig. P17.103
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Fig. P17.104
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Fig. P17.105
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1157Problems 17.108 A bullet of mass m is fired with a horizontal velocity v0 and at a height 
h 5 1

2R into a wooden disk of much larger mass M and radius R. The 
disk rests on a horizontal plane and the coefficient of friction between 
the disk and the plane is finite. (a) Determine the linear velocity v1 
and the angular velocity v1 of the disk immediately after the bullet 
has penetrated the disk. (b) Describe the ensuing motion of the disk 
and determine its linear velocity after the motion has become 
uniform.

 17.109 Determine the height h at which the bullet of Prob. 17.108 should be 
fired (a) if the disk is to roll without sliding immediately after impact, 
(b) if the disk is to slide without rolling immediately after impact.

 17.110 A uniform slender bar of length L 5 200 mm and mass m 5 
0.5 kg is supported by a frictionless horizontal table. Initially the 
bar is spinning about its mass center G with a constant angular 
speed v1 5 6 rad/s. Suddenly latch D is moved to the right and is 
struck by end A of the bar. Knowing that the coefficient of restitu-
tion between A and D is e 5 0.6, determine the angular velocity 
of the bar and the velocity of its mass center immediately after the 
impact.

 17.111 A uniform slender rod of length L is dropped onto rigid supports 
at A and B. Since support B is slightly lower than support A, the 
rod strikes A with a velocity v1 before it strikes B. Assuming per-
fectly elastic impact at both A and B, determine the angular velocity 
of the rod and the velocity of its mass center immediately after the 
rod (a) strikes support A, (b) strikes support B, (c) again strikes 
support A.

A

B

G

b
v1⎯

Fig. P17.112

 17.112 The slender rod AB of length L forms an angle b with the vertical 
as it strikes the frictionless surface shown with a vertical velocity 
v1 and no angular velocity. Assuming that the impact is perfectly 
plastic, derive an expression for the angular velocity of the rod 
immediately after the impact.

v0

h

A

R

Fig. P17.108 and P17.109
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w1

B

Fig. P17.110
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B

L B

v1⎯

Fig. P17.111
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1158 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

 17.113 The slender rod AB of length L 5 1 m forms an angle b 5 308 
with the vertical as it strikes the frictionless surface shown with a 
vertical velocity v1 5 2 m/s and no angular velocity. Knowing that 
the coefficient of restitution between the rod and the ground is 
e 5 0.8, determine the angular velocity of the rod immediately 
after the impact.

 17.114 The trapeze/lanyard air drop (t/LAD) launch is a proposed innova-
tive method for airborne launch of a payload-carrying rocket. The 
release sequence involves several steps as shown in (1) where the 
payload rocket is shown at various instances during the launch. To 
investigate the first step of this process, where the rocket body 
drops freely from the carrier aircraft until the 2-m lanyard stops 
the vertical motion of B, a trial rocket is tested as shown in (2). The 
rocket can be considered a uniform 1 3 7-m rectangle with a mass 
of 4000 kg. Knowing that the rocket is released from rest and falls 
vertically 2 m before the lanyard becomes taut, determine the 
angular velocity of the rocket immediately after the lanyard is taut.

200 mm

100 mm
BA q

v1

Fig. P17.115

A

B

G

b
v1⎯

Fig. P17.113

7 m

2 m

1 m

(1) (2)

B

A

lanyard

Fig. P17.114

 17.115 The uniform rectangular block shown is moving along a frictionless 
surface with a velocity v1 when it strikes a small obstruction at B. 
Assuming that the impact between corner A and obstruction B is 
perfectly plastic, determine the magnitude of the velocity v1 for 
which the maximum angle u through which the block will rotate 
will be 308.
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1159Problems 17.116 A slender rod of length L and mass m is released from rest in the 
position shown. It is observed that after the rod strikes the vertical 
surface it rebounds to form an angle of 308 with the vertical. 
(a) Determine the coefficient of restitution between knob K and 
the surface. (b) Show that the same rebound can be expected for 
any position of knob K.

 17.117 A slender rod of mass m and length L is released from rest in the 
position shown and hits edge D. Assuming perfectly plastic impact 
at D, determine for b 5 0.6L, (a) the angular velocity of the rod 
immediately after the impact, (b) the maximum angle through 
which the rod will rotate after the impact. 

A
A

B

C
D

B
C

D

A B

C D

q

(1) (2) (3)

Fig. P17.118

 17.118 A uniformly loaded square crate is released from rest with its corner 
D directly above A; it rotates about A until its corner B strikes the 
floor, and then rotates about B. The floor is sufficiently rough to 
prevent slipping and the impact at B is perfectly plastic. Denoting 
by V0 the angular velocity of the crate immediately before B strikes 
the floor, determine (a) the angular velocity of the crate immediately 
after B strikes the floor, (b) the fraction of the kinetic energy of the 
crate lost during the impact, (c) the angle u through which the crate 
will rotate after B strikes the floor.

v0

B

A

4 ft

Fig. P17.119

30°

B

D

A

L

b

Fig. P17.117

30°

L

b

A
K

B

Fig. P17.116

 17.119 A 1-oz bullet is fired with a horizontal velocity of 750 mi/h into the 
18-lb wooden beam AB. The beam is suspended from a collar of 
negligible mass that can slide along a horizontal rod. Neglecting 
friction between the collar and the rod, determine the maximum 
angle of rotation of the beam during its subsequent motion.

 17.120 For the beam of Prob. 17.119, determine the velocity of the 1-oz 
bullet for which the maximum angle of rotation of the beam will 
be 908.
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1160 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

 17.121 The plank CDE has a mass of 15 kg and rests on a small pivot at D. 
The 55-kg gymnast A is standing on the plank at C when the 70-kg 
gymnast B jumps from a height of 2.5 m and strikes the plank at E. 
Assuming perfectly plastic impact and that gymnast A is standing 
absolutely straight, determine the height to which gymnast A will rise.

B

ED

L L

hA

C

Fig. P17.121

R

A

B

h

Fig. P17.123

 17.122 Solve Prob. 17.121, assuming that the gymnasts change places so 
that gymnast A jumps onto the plank while gymnast B stands at C.

 17.123 A small plate B is attached to a cord that is wrapped around a 
uniform 8-lb disk of radius R 5 9 in. A 3-lb collar A is released 
from rest and falls through a distance h 5 15 in. before hitting 
plate B. Assuming that the impact is perfectly plastic and neglect-
ing the weight of the plate, determine immediately after the impact 
(a) the velocity of the collar, (b) the angular velocity of the disk.

 17.124 Solve Prob. 17.123, assuming that the coefficient of restitution 
between A and B is 0.8.

 17.125 Two identical slender rods may swing freely from the pivots shown. 
Rod A is released from rest in a horizontal position and swings to a 
vertical position, at which time the small knob K strikes rod B which 
was at rest. If h 5 1

2l and e 5 1
2, determine (a) the angle through which 

rod B will swing, (b) the angle through which rod A will rebound.

 17.126 A 2-kg solid sphere of radius r 5 40 mm is dropped from a height 
h 5 200 mm and lands on a uniform slender plank AB of mass 
4 kg and length L 5 500 mm which is held by two inextensible 
cords. Knowing that the impact is perfectly plastic and that the 
sphere remains attached to the plank at a distance a 5 40 mm 
from the left end, determine the velocity of the sphere immediately 
after impact. Neglect the thickness of the plank.
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Fig. P17.125
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Fig. P17.126
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1161Problems 17.127 and 17.128 Member ABC has a mass of 2.4 kg and is attached 
to a pin support at B. An 800-g sphere D strikes the end of member 
ABC with a vertical velocity vl of 3 m/s. Knowing that L 5 750 mm 
and that the coefficient of restitution between the sphere and 
member ABC is 0.5, determine immediately after the impact 
(a) the angular velocity of member ABC, (b) the velocity of the 
sphere.

 17.129 Sphere A of mass mA 5 2 kg and radius r 5 40 mm rolls without 
slipping with a velocity v1 5 2 m/s on a horizontal surface when it 
hits squarely a uniform slender bar B of mass is mB 5 0.5 kg and 
length L 5 100 mm that is standing on end and is at rest. Denoting 
by mk the coefficient of kinetic friction between the sphere and the 
horizontal surface, neglecting friction between the sphere and the 
bar, and knowing the coefficient of restitution between A and B is 
0.1, determine the angular velocities of the sphere and the bar 
immediately after the impact.

 17.130 A large 3-lb sphere with a radius r 5 3 in. is thrown into a light 
basket at the end of a thin, uniform rod weighing 2 lb and length 
L 5 10 in. as shown. Immediately before the impact the angular 
velocity of the rod is 3 rad/s counterclockwise and the velocity of 
the sphere is 2 ft/s down. Assume the sphere sticks in the basket. 
Determine after the impact (a) the angular velocity of the bar and 
sphere, (b) the components of the reactions at A.

 17.131 A small rubber ball of radius r is thrown against a rough floor with 
a velocity vA of magnitude v0 and a backspin VA of magnitude v0. 
It is observed that the ball bounces from A to B, then from B to 
A, then from A to B, etc. Assuming perfectly elastic impact, deter-
mine the required magnitude v0 of the backspin in terms of v0 
and r.
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1162 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods
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Fig. P17.134

 17.132 Sphere A of mass m and radius r rolls without slipping with a 
velocity v1 on a horizontal surface when it hits squarely an identical 
sphere B that is at rest. Denoting by mk the coefficient of kinetic 
friction between the spheres and the surface, neglecting friction 
between the spheres, and assuming perfectly elastic impact, deter-
mine (a) the linear and angular velocities of each sphere immedi-
ately after the impact, (b) the velocity of each sphere after it has 
started rolling uniformly.

 17.134 Each of the bars AB and BC is of length L 5 400 mm and mass 
m 5 1.2 kg. Determine the angular velocity of each bar immedi-
ately after the impulse QDt 5 (1.5 N ? s)i is applied at C. 

w1

A B

v1⎯

Fig. P17.132

 17.133 In a game of pool, ball A is rolling without slipping with a velocity 
v0 as it hits obliquely ball B, which is at rest. Denoting by r the 
radius of each ball and by mk the coefficient of kinetic friction 
between a ball and the table, and assuming perfectly elastic impact, 
determine (a) the linear and angular velocity of each ball immedi-
ately after the impact, (b) the velocity of ball B after it has started 
rolling uniformly.
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1163

REVIEW AND SUMMARY

In this chapter we again considered the method of work and energy 
and the method of impulse and momentum. In the first part of the 
chapter we studied the method of work and energy and its applica-
tion to the analysis of the motion of rigid bodies and systems of rigid 
bodies.

In Sec. 17.2, we first expressed the principle of work and energy for 
a rigid body in the form

T1 1 U1y2 5 T2 (17.1)

where T1 and T2 represent the initial and final values of the kinetic 
energy of the rigid body and U1y2 represents the work of the external 
forces acting on the rigid body.

In Sec. 17.3, we recalled the expression found in Chap. 13 for the 
work of a force F applied at a point A, namely

U1y2 5#
s2

s1

 (F cos a) ds (17.39)

where F was the magnitude of the force, a the angle it formed with 
the direction of motion of A, and s the variable of integration mea-
suring the distance traveled by A along its path. We also derived the 
expression for the work of a couple of moment M applied to a rigid 
body during a rotation in u of the rigid body:

U1y2 5#
u2

u1

 M du (17.5)

We then derived an expression for the kinetic energy of a rigid body 
in plane motion [Sec. 17.4]. We wrote

T 5 1
2mv2 1 1

2 Iv2 (17.9)

where v is the velocity of the mass center G of the body, v is the 
angular velocity of the body, and I  is its moment of inertia about an 
axis through G perpendicular to the plane of reference (Fig. 17.13) 
[Sample Prob. 17.3]. We noted that the kinetic energy of a rigid body 
in plane motion can be separated into two parts: (1) the kinetic 
energy 1

2 mv 

2 associated with the motion of the mass center G of the 
body, and (2) the kinetic energy 1

2 I  v2 associated with the rotation of 
the body about G.

Principle of work and energy 
for a rigid body

Work of a force or a couple

Kinetic energy in plane motion

G

w

Fig. 17.13
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1164 Plane Motion of Rigid Bodies: Energy and 
Momentum Methods

For a rigid body rotating about a fixed axis through O with an angular 
velocity V, we had

 T 5 1
2IOv2 (17.10)

where IO was the moment of inertia of the body about the fixed axis. 
We noted that the result obtained is not limited to the rotation of 
plane slabs or of bodies symmetrical with respect to the reference 
plane, but is valid regardless of the shape of the body or of the loca-
tion of the axis of rotation.

Equation (17.1) can be applied to the motion of systems of rigid 
bodies [Sec. 17.5] as long as all the forces acting on the various bod-
ies involved—internal as well as external to the system—are included 
in the computation of U1y2. However, in the case of systems consist-
ing of pin-connected members, or blocks and pulleys connected by 
inextensible cords, or meshed gears, the points of application of the 
internal forces move through equal distances and the work of these 
forces cancels out [Sample Probs. 17.1 and 17.2].

When a rigid body, or a system of rigid bodies, moves under the 
action of conservative forces, the principle of work and energy can 
be expressed in the form

 T1 1 V1 5 T2 1 V2 (17.12)

which is referred to as the principle of conservation of energy [Sec. 
17.6]. This principle can be used to solve problems involving conser-
vative forces such as the force of gravity or the force exerted by a 
spring [Sample Probs. 17.4 and 17.5]. However, when a reaction is 
to be determined, the principle of conservation of energy must be 
supplemented by the application of d’Alembert’s principle [Sample 
Prob. 17.4].

In Sec. 17.7, we extended the concept of power to a rotating body 
subjected to a couple, writing

 Power 5
dU
dt

5
M du

dt
5 Mv (17.13)

where M is the magnitude of the couple and v the angular velocity 
of the body.

 The middle part of the chapter was devoted to the method of 
impulse and momentum and its application to the solution of various 
types of problems involving the plane motion of rigid slabs and rigid 
bodies symmetrical with respect to the reference plane.

We first recalled the principle of impulse and momentum as it was 
derived in Sec. 14.9 for a system of particles and applied it to the 
motion of a rigid body [Sec. 17.8]. We wrote

Syst Momenta1 1 Syst Ext Imp1y2 5 Syst Momenta2 (17.14)

Kinetic energy in rotation

Systems of rigid bodies

Conservation of energy

Power

Principle of impulse and momentum 
for a rigid body
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1165Review and SummaryNext we showed that for a rigid slab or a rigid body symmetrical with 
respect to the reference plane, the system of the momenta of the 
particles forming the body is equivalent to a vector mv attached at the 
mass center G of the body and a couple IV (Fig. 17.14). The vector  

P

(Δm)v

G

 mv

Iww=

Fig. 17.14

mv is associated with the translation of the body with G and repre-
sents the linear momentum of the body, while the couple IV cor-
responds to the rotation of the body about G and represents the 
angular momentum of the body about an axis through G.
 Equation (17.14) can be expressed graphically as shown in Fig. 
17.15 by drawing three diagrams representing respectively the system 
of the initial momenta of the body, the impulses of the external forces 
acting on the body, and the system of the final momenta of the body. 

(a)

�F dt

x

y

O

Iw1

Iw2G

(b)

x

y

O

(c)

x

y

O

 mv1

 mv2

+ =G

Fig. 17.15

Summing and equating respectively the x components, the y compo-
nents, and the moments about any given point of the vectors shown 
in that figure, we obtain three equations of motion which can be 
solved for the desired unknowns [Sample Probs. 17.6 and 17.7].
 In problems dealing with several connected rigid bodies [Sec. 
17.9], each body can be considered separately [Sample Prob. 17.6], or, 
if no more than three unknowns are involved, the principle of impulse 
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