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Preface to the Second Edition
This book is a signi�cant revision of the �rst edition of the Handbook of Hydraulic Fluid 

Technology, which was edited by Dr. George E. Totten and published 10 years ago. Since the origi-

nal publication of this text, no other similar book has been published that treats hydraulic �uids as 

a component of a hydraulic system and addresses all the major aspects of hydraulic �uid technol-

ogy. In view of the unique position of the Handbook of Hydraulic Fluid Technology, a decision was 

made to signi�cantly update this invaluable text.

The Handbook of Hydraulic Fluid Technology—Second Edition contains 21 chapters. 

Chapter 1: Fundamentals of Hydraulic Systems and Components, Chapter 5: Control and 

Management of Particle Contamination in Hydraulic Fluids, Chapter 11: Noise and Vibration of 

Fluid Power Systems, and Chapter 18: Biobased and Biodegradable Hydraulic Oils have been com-

pletely rewritten to more effectively address and expand coverage of critical new technology devel-

opments. Chapter 21: Food-Grade Hydraulic Fluids, is a newly added chapter to the book. The 

remaining chapters of the book have been revised and updated, and in many cases substantially. The 

updated and expanded coverage necessitated the elimination of three chapters from the �rst edition: 

Lubricant Additives for Mineral Oil–Based Hydraulic Fluids, Bearing Selection, and Lubrication 

and Electro-Rheological Fluids. With the exception of the chapter on electro-rheological �uids, the 

necessary content has been integrated into the remaining chapters of the book as appropriate. In 

general, the Handbook of Hydraulic Fluid Technology—Second Edition is a substantially new text 

on this very important critical hydraulics technology.

The editors of the Handbook of Hydraulic Fluid Technology—Second Edition are George 

E. Totten, PhD and Victor De Negri, D.Eng. Both editors are deeply indebted to the contributing 

authors for their vital assistance in completing this project. The editors also express appreciation to 

the staff of CRC Press for the opportunity to undertake this task and for their ongoing encourage-

ment and vital support during all aspects of the book, from concept to production. Most importantly, 

the encouragement of our families is particularly appreciated.

George E. Totten

Texas A&M University

College Station, TX, USA

Victor J. De Negri

Federal University of Santa Catarina

Florianópolis, SC, Brazil
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Preface to the First Edition
One of the most frustrating practices of my career has been the search for information on hydraulic 

�uids, which includes information on �uid chemistry; physical properties; maintenance practices; 

and �uid, system, and component design. Although some information on petroleum oil hydraulic 

�uids can be found, there is much less information on �re resistant, biodegradable, and other types 

of �uids. Unfortunately, with few exceptions, �uid coverage in hydraulic texts is typically limited to 

a single-chapter overview intended to cover all �uids. Therefore, it is often necessary to perform a 

literature search or a time-consuming manual search of my �les. Some time ago, it occurred to me 

that others must be encountering the same problem. There seemed to be a vital need for an extensive 

reference text on hydraulic �uids that would provide information in suf�cient depth and breadth to 

be of use to the �uid formulator, hydraulic system designer, plant maintenance engineer, and others 

who serve the industry.

Currently, there are no books dedicated to hydraulic �uid chemistry. Most hydraulic �uid treat-

ment is found in handbooks, which primarily focus on hydraulic system hardware, installation, and 

troubleshooting. Most of these books �t into one of two categories. One type of book deals with 

hydraulic equipment, with a single, simpli�ed overview chapter covering all hydraulic �uids, but 

with a focus on petroleum-derived �uids. The second type of book provides �uid coverage with 

minimal, if any, discussion of engineering properties of importance in a hydraulic system.

The purpose of the Handbook of Hydraulic Fluid Technology is to provide a comprehensive and 

rigorous overview of hydraulic �uid technology. The objective is not only to discuss �uid chemistry 

and physical properties in detail, but also to integrate both classic and current fundamental lubrica-

tion concepts with respect to various classes of hydraulic �uids. A further objective is to integrate 

�uid dynamics with respect to their operation in a hydraulic system in order to enable the reader 

to obtain a broader understanding of the total system. Hydraulic �uids are an important and vital 

component of the hydraulic system.

The 21 chapters of this book are grouped into three main parts: hardware, �uid properties and 

testing, and �uids.

HARDWARE

Chapter 1 provides the reader with an overview of basic hydraulic concepts, a description of the 

components, and an introduction to hydraulic system operation. In Chapter 2, the rolling element 

bearings and their lubrication are discussed. An extremely important facet of any well-designed 

hydraulic system is �uid �ltration. Chapter 3 not only provides a detailed discussion of �uid �ltra-

tion and particle contamination and quanti�cation, but also discusses �uid �lterability.

An understanding of the physical properties of a �uid is necessary to understand the performance 

of a hydraulic �uid as a �uid power medium. Chapter 4 features a thorough overview of the physical 

properties, and their evaluation and impact on hydraulic system operation, which includes: viscos-

ity, viscosity-temperature and viscosity-pressure behavior, gas solubility, foaming, air entrainment, 

air release, and �uid compressibility and modulus.

FLUID PROPERTIES AND TESTING

Viscosity is the most important physical property exhibited by a hydraulic �uid. Chapter 5 presents 

an in-depth discussion of hydraulic �uid viscosity and classi�cation. The hydraulic �uid must not 

only perform as a power transmission medium, but also lubricate the system. Chapter 6 provides a 

thorough review of the fundamental concepts involved in lubricating a hydraulic system. In many 

© 2012 by Taylor & Francis Group, LLC



xii Preface to the First Edition

applications, �uid �re resistance is one of the primary selection criteria. An overview of historically 

important �re-resistance testing procedures is provided in Chapter 7, with a discussion of cur-

rently changing testing protocol required for industry, national, and insurance company approvals. 

Ecological compatibility properties exhibited by a hydraulic �uid is currently one of the most inten-

sive research areas of hydraulic �uid technology. An overview of the current testing requirements 

and strategies is given in Chapter 8.

One of the most inexpensive but least understood components of the hydraulic system is hydrau-

lic seals. Chapter 9 provides a review of mechanical and elastomeric seal technology and seal com-

patibility testing. An often overlooked but vitally important area is adequate testing and evaluation 

of hydraulic �uid performance in a hydraulic system. Currently, there is no consensus on the best 

tests to perform and what they reveal. Chapter 10 reviews the state-of-the-art of bench and pump 

testing of hydraulic �uids. Vibrational analysis is not only an important plant maintenance tool, but 

it is also one of the most important diagnostic techniques for evaluating and troubleshooting the 

operational characteristics of a hydraulic system. An introductory overview of the use of vibrational 

analysis in �uid maintenance is given in Chapter 11. No hydraulic system operates trouble-free 

forever. When problems occur, it is important to be able to identify both the problem and its cause. 

Chapter 12 provides a thorough discussion of hydraulic system failure analysis strategies.

FLUIDS

Although water hydraulics do not constitute a major �uid power application, they are coming under 

increasing scrutiny as ecocompatible alternatives to conventional hydraulic �uids. Chapter 13 offers 

an overview of this increasingly important technology.

The largest volume �uid power medium is petroleum oil. In Chapter 14, the reader is provided 

with a thorough overview of oil chemistry, properties, �uid maintenance, and change-out proce-

dures. Chapter 15 reviews additive technology for petroleum oil hydraulic �uids. There are various 

types of synthetic hydraulic �uids. A description of the more important synthetic �uids, with a focus 

on aerospace applications, is given in Chapter 16.

Chapters 17 to 20 describe �re-resistant hydraulic �uids. Emulsions, water glycols, polyol esters, 

and phosphate esters are discussed individually and in depth in Chapters 17, 18, 19, and 20, respec-

tively. This discussion includes �uid chemistry, physical properties, additive technology, mainte-

nance, and hydraulic system conversion.

Vegetable oils are well-known lubricants that have been examined repeatedly over the years. 

Currently, there is an intensive effort to increase the utilization of various types of vegetable oils 

as an ecologically sound alternative to mineral oil hydraulic �uids. Chapter 21 provides a review of 

vegetable oil chemistry, recovery, and properties. The applicability of these �uids as hydraulic �uid 

basestocks is examined in detail.

Chapter 22 discusses electrorheological �uids, which are becoming increasingly interesting for 

use in specialized hydraulic applications. In Chapter 23, various standardized �uid maintenance 

procedures are discussed and a summary of equivalent international testing standards is provided.

The preparation of a text of this scope was a tremendous task. I am deeply indebted to many col-

leagues for their assistance, without whom this text would not have been possible. Special thanks go 

to Dr. Stephen Lainer (University of Aachen), Professor Atsushi Yamaguchi (Yokohama National 

University), Professor Toshi Kazama (Muroran Institute of Technology), K. Mizuno (Kayaba 

Industrial Ltd.), and Jürgen Reichel (formerly with DMT, Essen, Germany).

Special thanks also goes to my wife, Alice, for her unending patience, and to Susan Meeker, 

who assisted in organizing and editing much of this material; to Glenn Webster, Roland J. Bishop, 

Jr., and Yinghua Sun, without whose help this text would never have been completed; and to Union 

Carbide Corporation for its support.

George E. Totten
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1 Fundamentals of Hydraulic 

Systems and Components

Irlan von Linsingen and Victor J. De Negri*

* Some parts of this chapter are based on the chapter titled “Basic Hydraulic Pump and Circuit Design” by Richard K. Tessmann, 

Hans M. Melief, and Roland J. Bishop, Jr. from the Handbook of Hydraulic Fluid Technology, 1st Edition of this book.
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2 Handbook of Hydraulic Fluid Technology, Second Edition

1.1 INTRODUCTION

A hydraulic system, from a general perspective, is an arrangement of interconnected components 

that uses a liquid under pressure to provide energy transmission and control. It has an extremely 

broad range of applications covering basically all �elds of production, manufacturing and service. 

Consequently, the energy transmission and control requirements are very diverse and thus the struc-

ture of each hydraulic system has its speci�cities.

However, on analyzing the current hydraulic systems, one can identify four main functions [1], 

as presented in Figure 1.1, which are: primary energy conversion, energy limitation and control, 

secondary energy conversion, and �uid storage and conditioning.

Furthermore, this �gure shows the main resources that �ow through a hydraulic system and 

which can be grouped into the classes: information, material, and energy [2].

The input of mechanical energy (M), which is a result of the external conversion of primary 

electrical or chemical (combustion) energy, is converted into hydraulic energy (H). Using signals or 

data (S, D) from an operator or from other equipment, the hydraulic energy (H) is limited and con-

trolled such that it becomes appropriate for conversion into mechanical energy (M). This mechani-

cal energy is the desired output of the hydraulic system and will be used to drive or move external 

devices.

The hydraulic energy is carried by the hydraulic �uid (F) and thus its storage and conditioning, 

including contamination and temperature control, are also essential functions.

As a consequence of the physical phenomena, construction characteristics, and circuit arrange-

ment, part of the useful energy is dissipated in a hydraulic system. Therefore, all functions transfer 

thermal energy (T) to the �uid and to the environment.

Since this Handbook is concerned with �uid technology, the objective of this chapter is to char-

acterize hydraulic systems, that is, applications in which hydraulic �uids are used.

The construction characteristics and the functioning principles of the main hydraulic compo-

nents are presented, with the aim of providing an overview of the interaction between the �uid and 

the mechanical parts.

Moreover, the main equations that govern the component and circuit behavior are presented, 

where one can identify the in�uence of the �uid parameters, which, in turn, are a consequence of 

the physical-chemistry proprieties.

An important aspect of this chapter is the symbol notation that is used in the diagrams and equa-

tions. Both the hydraulic circuit diagrams and the component identi�cation codes are in accordance 

Hydraulic system
Secondary
conversion

M

Legend:

F = Hydraulic fluid
H = Hydraulic energy
M = Mechanical energy
T = �ermal energy (losses)
S,D = Signal, data

= Information flow
= Energy flow
= Energy and material flow
= Material flow

HH

HHT

M F

S

D

T

Limitation and
control

Storage and
conditioning

Primary
conversion

FIGURE 1.1 Generic hydraulic system: Functions and resource �ows.
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Fundamentals of Hydraulic Systems and Components 3

with ISO 1219-1 [3] and ISO 1219-2 [4]. The quantities (variables and parameters) used in the circuit 

diagrams, component illustrations, and equations are represented by letter symbols, including sub-

scripts and superscripts, in compliance with ISO 4391 [5], IEC 27-1 [6], and ISO 1219-2 [4] standards.

1.2 HYDROMECHANICAL PRINCIPLES

Essentially, a hydraulic system consists of mechanical parts operating together with a hydraulic 

�uid. Hence, its behavior is described by the classic laws of both mechanics and �uid mechanics. 

Although it is not the focus of this text, it is important to remember that several hydraulic compo-

nents comprise electromechanical converters, such as solenoids, linear motors and torque motors 

and/or electro-electronic systems like sensors, power ampli�ers and controllers. Therefore, the prin-

ciples of electricity, electronics and electro-magnetism are also required for their modeling.

1.2.1 HYDROSTATICS: PASCAL’S PRINCIPLE

Fluids (gases or liquids) are compressible, which means that their mass density varies with the pressure 

to which they are submitted. Consequently, an abrupt local pressure variation will be propagated through 

the �uid with a velocity equal to the �uid sound velocity until the equilibrium has been re-established. 

This means that the �uid will have a dynamic behavior alternating between the two equilibrium states.

When a �uid is treated as incompressible it is assumed that a local pressure perturbation is 

instantaneously transmitted throughout the �uid. This means that considering a �uid as being com-

pressible or incompressible is dependent on the observer’s viewpoint and its validation depends on 

the use of the system and the particular design or analysis that is being carried out.

Pascal’s principle states that “a change in the pressure of an enclosed incompressible �uid is 

conveyed undiminished to every part of the �uid and to the surfaces of its container” [1,7]. Hence, 

when a �uid is in a state of equilibrium, that is, in a steady state, the whole system is under the same 

internal pressure.

The practical use of Pascal’s principle can be exempli�ed by the hydrostatic press principle 

whose objective is to amplify the force. As shown in Figure 1.2a [1], it consists of two cylinders 

(actuators) (A1 and A2) that are connected by a pipe.

In this press, the resistive force (FA2* [N]) offered by the material to be pressed must be com-

pensated by the input force (FA1 [N]) such that the equilibrium occurs. Since in a steady state the 

pressure (p [N/m2] or [Pa]) is equal throughout the volume, one has

* The kernel (central part of the letter symbol) represents the generic quantity. The subscript indicates the quantity appli-

cation and the superscript is used to indicate to which component or system the quantity is associated (ISO 4391, ISO 

1219-2 - Fluid Power Systems and Components – Graphic symbols and circuit diagrams – Part 2: Circuit diagrams, 

Switzerland, 1991.

FA1

FA2

FA2

AA1
vA1

xA1

xA2

vA2

xA2

vA2

AA2

p

FA1

A1

(a) (b)

A2

AA1

AA2

vA1

xA1

pp p

FIGURE 1.2 Hydrostatic press principle: (a) Illustration of the hydraulic circuit; (b) Hydraulic circuit diagram.
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where AA1 [m2] and AA2 [m2] are the piston areas.

Equation 1.1 shows that, for AA2/AA1 >> 1, a low force FA1 is suf�cient to overcome a higher force 

like FA2, which is the objective of most hydraulic systems.

Moreover, considering the incompressible �uid, the volume variations in the two cylinders (ΔVA1 

[m3] and ΔVA2 [m3]) are equal. According to Equation 1.2, in this case the displacements xA1 [m] and 

xA2 [m] are different, their relationship being determined by the area ratio:
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Considering an ef�ciency of 100%, the work required of cylinder A1, determined by the product 

of the force and displacement, is equal to the work applied to cylinder A2. Hence, according to 

Equation 1.3, the correlation between FA1 and FA2 is given by the displacement ratio:
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Equation 1.3 is designed as the hydraulic lever equation [1], since the same force ampli�cation 

could be obtained through a mechanical system—such as that shown in Figure 1.3.

These hydrostatic relationships allow the static behavior of a system to be determined—that is, 

the relationships between the forces and displacements in the equilibrium condition. The behavioral 

description with temporal variation is carried out using the laws of hydrodynamics [1].

1.2.2 HYDRODYNAMICS: CONSERVATION OF MASS

The steady-state and transient behavior of hydraulic components and systems is described by the 

basic principles of hydrodynamics and thermodynamics [1,8]. In this chapter, two of these prin-

ciples are studied; namely, the conservation of mass (continuity equation) and the conservation of 

energy (Bernoulli’s equation), which are essential to the comprehension of the hydraulic component 

behavior.

From the conservation of mass principle, an important expression is obtained which describes 

the behavior of pressure in volumes. Consider the hydraulic device shown in Figure 1.4 [1], which 

has an inlet port (1), an outlet port (2) and a movable piston.

The mass density (ρ [kg/m3]), the pressure (ρ [Pa]), and the temperature (T [K] or [°C]) of the 

�uid are considered constant in the space de�ned by the chamber, but they vary over time. The �ow 

rate in the inlet port is considered positive when entering the chamber and the �ow rate in the outlet 

port is positive when leaving the chamber. The chamber volume changes with the piston movement.

The result of the continuity equation [1,8,9] applied to this case is [5].

FA1 FA2

xA1

xA1 ∙ tgθ xA2 ∙ tgθ

xA2 θ

FIGURE 1.3 Mechanical system of force ampli�cation.
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β
,  (1.4)

where V [m3] is the chamber volume and qV1 [m
3/s] and qV2 [m

3/s] are the volumetric �ow rates 

(commonly referred to as the “�ow rate”) at the inlet and outlet ports, respectively. β [Pa] is the bulk 

modulus (inverse of compressibility), which characterizes the mass density variation with the �uid 

pressure.

In this equation, the terms on the right are related to the mass accumulation in the volume, where 

dV/dt represents the variation in the chamber volume over time and (V/β)(dp/dt) the variation in the 

pressure over time associated with the �uid compressibility.

Therefore, Equation 1.4 describes the dynamic behavior of the pressure in the chamber as a 

consequence of the change in �ow rate at port 1 and/or port 2. The pressure change will take the 

piston out of equilibrium, causing its movement. As a consequence, the �rst term on the right will 

be different from zero, in turn changing the pressure.

It is important to note that the continuity equation, as presented in Equation 1.4, is the basic form 

used in the hydraulics area to model the dynamic behavior of a �uid in cylinders, accumulators, 

motors, pipes and so forth.

Studying again the hydrostatic press (Figure 1.2), one can observe that the volume variation in 

cylinders A1 and A2 is dependent on the displacement direction of the pistons, which means that 

volume VA1 will be decreasing and volume VA2 increasing toward the positive directions indicated 

in this �gure, that is
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where vA1 [m] and vA2 [m2] are the piston velocities.

Appling Equations 1.4 and 1.5 to cylinders A1 and A2 for a constant pressure condition and tak-

ing into account that the �ow rate that leaves cylinder A1 is the same as that entering cylinder A2, 

one can obtain
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Equation 1.6 describes the velocity relationship for the hydraulic press, completing the set of 

equations together with Equations 1.1 and 1.2.

1.2.3 HYDROSTATIC PRESS: LINEAR MOTION

By means of the circuit in Figure 1.2, it is possible to have an upward moving cylinder A2 when 

cylinder A1 is moving downward. The displacement relationship (Equation 1.2) and velocity 

qV1 qV2

xp

A V

p

M

FIGURE 1.4 Chamber with variable volume.
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relationship (Equation 1.6) imply that a movement of cylinder A1 with displacement and velocity 

according to human capacity results in a press operation with both small displacement and veloc-

ity. Cylinder A1, having reached the required displacement, will reach its stroke end much earlier 

than cylinder A2.

Therefore, this basic circuit is not valuable for real uses. A typical circuit found in hydrostatic 

presses and hydraulic jacks is presented in Figure 1.5, where some components are added to the 

original circuit (Figure 1.2).

In this circuit an external reservoir (R), which compensates for the difference between the 

cylinder volumes, and two non-return valves (V1 and V2) are included. These valves allow 

�uid suction from the reservoir on the upward movement of cylinder A1 and �uid pumping to 

cylinder A2 on the downward movement. Valve (register) V3, when opened, allows the �uid in 

cylinder A2 to return to the reservoir as a consequence of the external force (FA2) applied to 

the piston.

Correlating Figure 1.5 and 1.1, the arrangement constituted by A1, V1, and V2 performs the pri-

mary energy conversion function, V3 the energy control, and A2 the secondary energy conversion. 

The �uid storage and conditioning is performed by both the reservoir (R) and the air �lter (F). The 

�lter establishes the connection between the �uid and the external environment in order to keep the 

reservoir cleaned and at atmospheric pressure.

1.2.4 HYDROSTATIC TRANSMISSION: ROTARY MOTION

The principles presented previously for linear motion are now applied to rotary motion transmis-

sion using a pump and a motor (hydrostatic machines) as presented in Figure 1.6. According to ISO 

1219-2 [4], the pump has its own symbol, P, while the hydraulic motor is an actuator and, for this 

reason, it is designed as A.

DA

p

qv

pP

A DA

TA TATP

DP
DP ω

Pω
A

ω
PTP ω

A

(a) (b)

FIGURE 1.6 Hydrostatic transmission: (a) Illustration of the hydraulic circuit; (b) Hydraulic circuit diagram.

FA1

FA2

AA1

AA2
p

A1 A2

V2

V3
V1F

R

vA1

p

xA1

vA2

xA2

FIGURE 1.5 Hydraulic circuit diagram of a real hydrostatic press.
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The hydrostatic pump driven by an electric motor, for example, runs at an angular speed 

(ωP [rad/ s])* supplying a �ow rate (qV [m3/s]) to the hydraulic motor that causes an angular speed 

(ωA [rad/s]) at the motor axis. At the same time, a loading applied to the axis causes a torque (TA) 

in the opposite direction to the movement, inducing a pressure (p) increase. This pressure, which is 

transmitted to the whole system, acts on the pump increasing the mechanical torque T P.

In fact, the pressure in the motor inlet is not the same as that in the pump outlet, as a consequence 

of the �ow energy losses. However, as an ideal system is being considered, the load losses, leakages, 

and mechanical friction are neglected. In the same way as the hydrostatic press (Figure 1.2), both 

the pump suction port and motor discharge port are at atmospheric pressure, which means that the 

gauge pressure is equal to zero.

At each complete revolution of a hydrostatic machine rotor (Figure 1.7) (1 revolution = 2π rad) 

a certain �uid volume displacement (V [m3]) occurs. From this effect, the volumetric displacement 

(D [m3/rad]) is de�ned as

 
D

V
=

2π 
.
 

(1.7)

The volume displaced in one complete revolution is a function of the rotor geometry. For a rotor 

with vanes, as shown in Figure 1.7, this volume is the product of the vane area and the mean perim-

eter—that is, V = A · 2π · r. Hence, the volumetric displacement is D = A · r.

Moreover, the torque on the pump or motor axis can be calculated by the product of the result-

ing force on the vanes and the mean radius, that is, T = F · r. Thus, the pressure in a pump or motor 

chamber can be written as
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(1.8)

Equivalently to the hydrostatic press (Equation 1.1), the pump and motor torques can be related by
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(1.9)

Since the tangential velocity (v [m/s]) at a distance r [m] from the rotor axis is related to the angular 

velocity (ω [rad/s]) and to the rotational frequency (n [rps]) by v = r · ω and v = r · 2π · n, respectively, 

Equation 1.6 can be modi�ed to describe the relationship between the pump and motor velocities as
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(1.10)

* Observe that the quantity rotational frequency (or just rotation) (n [rps]) is commonly used instead of angular velocity 

(ω [rad]) and these are correlated by ω = 2π ⋅ n.

qvqv qv qv

F F

T

(a) (b)A A

ω Tω

FIGURE 1.7 Principles of a hydrostatic machine: (a) Functioning as a pump; (b) Functioning as a motor.
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1.2.5 HYDRODYNAMICS: CONSERVATION OF ENERGY

To understand the energy transmission and control in hydraulic systems it is fundamental to apply 

Bernoulli’s equation [8,9]. According to this equation the sum of all forms of mechanical energy in 

a steady and unidimensional �ow of an ideal and incompressible �uid is the same at all points in 

the stream line.

One fundamental use of Bernoulli’s equation is to describe the �ow behavior through a sharp-edge 

ori�ce in a pipe, which causes an abrupt reduction in the �ow cross section, as shown in Figure 1.8 [1].

In this case, the stream lines converge to a point where the diameter of the stream is the smallest. 

This point is called vena contracta and corresponds to cross section 2 in the �gure. By applying 

Bernoulli’s equation to cross section 1 (ori�ce upstream) and cross section 2 (ori�ce downstream), 

one obtains

 
p v g z p v g z1 1

2
1 2 2

2
2

1

2

1

2
+ ⋅ ⋅ + ⋅ ⋅ = + ⋅ ⋅ + ⋅ ⋅ρ ρ ρ ρ ,

 
(1.11)

p [Pa] being the static pressure, 1/2 · ρ · v2 [Pa] the dynamic pressure and ρ · g · z [Pa] the gravita-

tional pressure.

Since Bernoulli’s equation is valid for steady �ow, the use of Equation 1.4 implies that the inlet 

and outlet �ow rates are the same, that is, qV = A1 · v1 = A2 · v2. Furthermore, since the ori�ce area 

(A0) and, consequently, the vena contracta area (A2), are much smaller than the inlet area (A1), the 

velocity in the inlet cross section (v1) is neglected.

Therefore, since the change in the ρ · g · z term along the stream line is very small compared 

with the other terms it can be ignored and Equation 1.11 can be written as

 

q A
p p

V = ⋅
⋅ −

2
1 22 ( )

.
ρ

 

(1.12)

Aiming at its practical use, this equation must be corrected to include viscosity losses. 

Additionally, experimental data from the literature [9,10] correlate the vena contracta area (A2) 

with the real ori�ce area (A0) such that Equation 1.10 can be rewritten as

 

q cd A
p

V = ⋅ ⋅
⋅

0

2 ∆

ρ
,

 

(1.13)

where cd is the discharge coef�cient whose value is dependent on the ori�ce geometry and �ow type.

Another important aspect is that the turbulence downstream of the ori�ce causes a signi�cant 

energy loss such that the velocity reduction in cross section 3 (Figure 1.8), as a consequence of the 

cross-sectional area increase, does not cause a static pressure increase. Hence p3 is very close to p2.

Therefore, Equation 1.13, known as the ori�ce �ow equation, is appropriate to calculate the �ow 

rate through an ori�ce as a function of the cross-sectional area and the pressure drop between the 

cross sections of the inlet (1) and outlet (3).

A1

1 0 2 3

A0 A2

qv v1 v2

FIGURE 1.8 Flow through an ori�ce. (From Linsingen, I. von, Fundamentos de Sistemas Hidráulicos, 3rd 

ed., Florianópolis, Brazil: UFSC Ed., 2008. With permission.)
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Finally, since the hydraulic power is de�ned as

 
P p qh V= ⋅ ,

 (1.14)

the fact that the input pressure (p1) is greater than the output pressure (p3) implies that the hydrau-

lic power is reduced with the �uid passing through an ori�ce. This hydraulic power difference is 

transformed into thermal energy, heating the �uid and the environment.

1.3 HYDRAULIC CIRCUITS

Hydraulic circuits are comprised of interconnected components so as to perform the four functions 

as identi�ed in Figure 1.1. Typically, these circuits are represented by diagrams composed of graphi-

cal symbols that represent �uid power components and devices.

ISO 1219-1 [3] establishes basic elements for symbols and rules for devising �uid power symbols 

for use in components and circuit diagrams. ISO 1219-2 [4] establishes the rules for drawing �uid 

power diagrams using symbols from ISO 1219-1 [3], including rules for identi�cation of equipment.

Table 1.1 presents the symbols according to ISO 1219-1 [3] for the hydraulic components used 

in this chapter. Furthermore, an identi�cation code will be associated with these symbols following 

the rules shown in Figure 1.9.

TABLE 1.1
Some Symbols of Hydraulic Components

Primary Energy Conversion

Hydraulic pumps Fixed-displacement

Variable-displacement

Variable-displacement, with pressure compensation, 

external drain line, one direction of rotation

Variable-displacement, two directions of �ow, 

external drain line, one direction of rotation

Electric motor

(continued)
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TABLE 1.1 (Continued)
Some Symbols of Hydraulic Components

Energy Limitation and Control

Directional control 

valves

Manual shut-off

Non-return (check)

2-port, 2-position, controlled by hydraulic pilot 

control, opening pressure adjusted by spring

4-way, 3-position, controlled by lever, with 

spring-centered central position

4-way, 3-position, directly controlled by two 

solenoids with spring-centered central position

5-way, 3-position, hydraulically controlled, with 

spring-centered central position

Pressure control 

valves

Pressure relief, directly controlled, opening pressure 

adjusted by a spring (See Figure 1.45)

Pressure reducing valve, directly operated, closing 

pressure adjusted by a spring

Flow control valves Flow control adjustable, with reverse free �ow

Accumulators (See Figure 1.55)

Directional 

continuous control 

valves

Servo-valve, pilot-operated, pilot stage with electrical 

control mechanism with two coils, continuously 

controlled in both directions, with mechanical 

feedback of the main stage to the pilot stage

Proportional directional control valve, directly 

operated, with closed-loop position control of the 

main stage
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Figure 1.10 shows a typical hydraulic circuit where the �xed-displacement pump (P) runs at a 

constant rotational frequency driven by the electric motor (M). Since the pump theoretically sup-

plies a constant �ow rate, it is necessary to direct part of the �ow through the relief valve (V1) aim-

ing to obtain velocity control in the cylinder (A). Therefore, the effect of the �ow control valve (V3) 

is to cause a pressure loss such that the supply pressure (pP) is above the setting pressure (pPset) at the 

relief valve (V1), and it opens. The directional control valve (V2) directs the �uid from the supply 

TABLE 1.1 (Continued)
Some Symbols of Hydraulic Components

Secondary Energy Conversion

Hydraulic cylinders Single-acting (See Figure 1.32)

Double-acting (See Figure 1.33)

Hydraulic motors Fixed-displacement

Fixed-displacement, two directions of �ow, two 

directions of rotation, with external drain

Variable-displacement

Hydraulic �lters Filter

Filter with bypass valve

Filter with air exhausting

Reservoir Reservoir with return line / Reservoir with drain line

Heat exchanger Cooler
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line (P) to cylinder chamber A or B and from cylinder chamber B or A to the reservoir line (This 

type of circuit is considered an open circuit since the �uid does not return directly to the pump suc-

tion port but to the reservoir, where it is stored before undergoing suction by the pump. The motion 

control of the actuators is fundamentally dissipative since it is carried out by directional, pressure, 

and �ow control valves. The functioning principle of these valves is described by the ori�ce �ow 

equation (Equation 1.13).

By comparing Figures 1.10 and 1.1, one can observe that the pump (P), together with the electric 

motor (M), performs the primary conversion function; the actuator (A) performs the secondary 

conversion; and the pressure relief valve (V1), directional control valve (V2) and �ow control valve 

(V3) perform the energy limitation and control. The �uid storage and conditioning is performed by 

the reservoir (R) and �lter (F1).

The open-loop circuit is by far the most popular design. The advantage of an open-loop design is 

that, if necessary, a single pump can be used to operate several different actuators simultaneously. 

The main disadvantage is its large reservoir size.

Cylinder (A)

Flow
control
valve (V3)

Directional
control
valve (V2)

Filter (F1)

Breather
filter (F2)

Pressure
relief
valve (V1)

Pump (P)

Reservoir
(R)

(a)
AB

AA

pA

pAin

pp

qv

qv

qv

p

pPrg

pB

A

V3

V2

V1

M

V2

V3

F1

F2

R

P

A B

P T

(b)

FIGURE 1.10 Open-loop hydraulic circuit: (a) Illustration; (b) Circuit diagram.

*Component codes

P = Pumps and compressors
A = Actuators
M = Prime movers
S = Sensors
V = Valves
Z or another letter = All other equipment

1, 2, 3,... Installation no.
0, 1, 2,... Circuit No.
* component
1, 2, 3,... Component no.

FIGURE 1.9 Identi�cation code according to ISO 1219-2.
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A second general type of hydraulic circuit is the closed-loop circuit [7], whose main operational 

difference relates to the means of hydraulic energy control. As can be observed in the example in 

Figure 1.11, it is not only the pump discharge but also the pump suction that is directly connected 

to the motor ports. Therefore, the motor rotational frequency will be modi�ed if the volumetric 

displacement of either the motor or the pump is varied or the pump rotational frequency is changed. 

The relationship between the �ow rate, volumetric displacement, and rotational frequency of a 

pump or motor is described by Equation 1.10.

In the circuit shown in Figure 1.11 [7], a variable-displacement pump (P1) is used to drive a 

�xed-displacement hydraulic motor (A). A closed-loop circuit is always used in conjunction with a 

smaller replenishing circuit. The replenishing circuit consists of a small �xed-displacement pump 

(P2) (usually about 15% of the displacement of the main pump), a small �uid reservoir (R), �lter (F), 

and a heat exchanger (cooler) (C).

The replenishing circuit always works on the low-pressure side of the main loop. Its function 

is to pump freshly �ltered �uid into the closed loop through non-return valves (V1 and V2) while 

bleeding-off a percentage of the hot �uid through a directional control valve (V3). This hot �uid is 

then cooled by a cooler (H) and stored in a small reservoir (R) before returning to the main system. 

The pressure in the replenishing circuit is limited to 10–20 bar (1–2 MPa) by the supercharge relief 

valve (V6). The pressure setting of this valve is determined by the requirements of the pump/motor 

A

V5

V4

V3

V1 V2

P1

M
M

R

P2

F

C

V6

FIGURE 1.11 Closed-loop circuit diagram.
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combination and the operating conditions of the system. The cross-port relief valves (V4 and V5) 

on the motor are there only to protect the actuator from load-induced pressure spikes. They are not 

intended to function like those found in open-loop circuits, which would cause severe overheating 

of the circuit due to the diverting of the unnecessary �ow through the relief valve.

The advantages of a closed-loop circuit are that high-power systems are compact and ef�cient and 

require less hydraulic �uid storage. The high ef�ciency of this circuit is the result of the pump control 

being designed to supply only the �uid �ow required by the actuator to operate at the load-induced 

pressure. The pump is the heart of the system and controls the direction, acceleration, speed, and 

torque of the hydraulic motor, thus eliminating the need for pressure and �ow control components.

In this type of circuit the energy control is transformative, instead of dissipative as in open-loop cir-

cuits, since it is the energy transformed in the pump or motor that is controlled. However, the second-

ary valves (pressure, directional and �ow-control valves) impose energy losses—besides the internal 

mechanical and �uid �ow losses—in pumps and motors, thereby reducing the overall ef�ciency.

A major disadvantage of a closed-loop circuit is that a single pump can only operate a single 

output function or actuator. In addition, this type of hydraulic circuit is generally used only with 

motor actuators.

The third general con�guration is the half-closed-loop circuit as shown in Figure 1.12 [7]. This 

circuit is similar to the closed-loop circuit except that it can be used with cylinder actuators with 

different areas. As can be seen from the �gure, during cylinder extension, the pump (P) must 

generate a higher �ow rate from its left-hand port than that being returned to its right-hand port 

from the cylinder (A). The extra �uid needed by the pump (P) is supplied by its left-hand inlet non-

return valve, which is an integral part of the pump. When the pump control moves the pump over 

A

V3

V2

V1

M

P
C

F

R

FIGURE 1.12 Half-closed-loop circuit diagram.
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the center, the �ow from the pump (P) is reversed and the cylinder (A) begins to retract. During 

retraction, the larger area of the cylinder piston causes a higher �ow rate than needed at the inlet 

of the pump (P). This excess �ow is directed to the reservoir (R) through the unloading valve (V3). 

The unloaded �uid is �ltered and cooled prior to its return to the reservoir. In this way, a portion 

of the closed-loop �uid is �ltered (by F) and cooled (by C) in an open-loop circuit each time the 

cylinder (A) is cycled.

In this case, the �uid volume and reservoir size reductions are not as signi�cant as in the closed-

loop scenario.

As can be seen in the above examples, each hydraulic component has a basic function, but it is 

the circuit itself that determines the hydraulic system behavior. Hence, for a designer to conceive 

a hydraulic system he/she needs to have an understanding of the functional and behavioral charac-

teristics of the components which, in turn, are dependent on the �uid-mechanical interaction inside 

the component.

1.4 HYDRAULIC COMPONENTS

1.4.1 HYDROSTATIC MACHINES: PUMPS AND MOTORS

The energy conversion functions in a hydraulic system are performed by pumps and actuators (basi-

cally motors and cylinders). The pumps perform the primary conversion, transforming mechani-

cal energy into hydraulic energy. The actuators retransform the hydraulic energy into mechanical 

energy to be used by the machine or the equipment. 

There are two classes of hydraulic machines: hydrodynamic and hydrostatic machines. They dif-

fer in the way the internal energy is transformed and, consequently, in their form of construction [1].

In hydrodynamic machines (such as centrifugal pumps, turbines, and fans), the �uid energy 

involved on the transformation process is fundamentally kinetic, due to the variation in the �uid 

velocities of the impeller blades. In these machines there is a gap between the pump housing and the 

impeller (or rotor) leading to a high internal leakage even with low differential pressure.

In the centrifugal pumps, as shown in Figure 1.13a, when the output �uid �ow resistance is 

increased (e.g., as a consequence of the load loss in the discharge line) the output �ow rate is 

reduced until it drops to zero, as shown in the characteristic curve in Figure 1.14a.

(a) (b)

FIGURE 1.13 Classes of pumps: (a) Hydrodynamic pump (centrifugal pump) (Courtesy of Franklin Electric–

Joinville–SC-Brazil); (b) Hydrostatic pump (gear pump). (Courtesy of Bosch Rexroth–Pomerode–SC-Brazil).
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In hydrostatic machines, also referred to as “positive displacement machines,” the �uid energy 

involved in the transformation process is mainly related to the variation between the inlet and outlet 

pressures through the rotor. Since the pressure in a system is caused by the �uid �ow resistance, 

the effective pump outlet pressure increase is dependent on the valves and actuators downstream of 

the pump. In turn, the pressure in an actuator inlet is dependent on the rotor movement resistance 

caused by an external mechanical loading.

In hydrostatic pumps the clearance between the housing and the rotor is very small and thus the 

suction and discharge chambers are basically isolated. As a consequence, the pump �ow rate is slightly 

in�uenced by the downstream pressure, as illustrated by the characteristic curve shown in Figure 1.14b.

Since the construction principle of hydrostatic (rotary) motors is the same as that of pumps, an 

increase in the mechanical axis loading leads to a small leakage increase. Hence, the motor rota-

tional frequency can be considered constant in several applications [1].

The fact that the hydrostatic pumps are an almost ideal �ow rate source and operate under high 

pressures makes this class of hydraulic machine basically the only one used in �uid power systems 

[1]. At same time, to attain the requirements of the several application �elds, different construction 

principles of hydrostatic machines have been developed, as shown in Table 1.2.

In the right column of this table, an important feature of hydrostatic machines is indicated. According 

to Equation 1.10, the volumetric displacement establishes the proportionality between the �ow rate 

and the rotational frequency. Machines whose construction characteristics do not allow changes in 

the volumetric displacement are named ixed-displacement machines, and those where is possible to 

obtain different �ow rates at the same rotational frequency are named variable-displacement machines.

TABLE 1.2
Classification of Hydrostatic Machines According to Construction 
Principle and Volumetric Displacement

Constructive Principle

Volumetric 

Displacement

Gear External Fixed

Internal Crescent Fixed

Gerotor Fixed

Screw Fixed

Vane Balanced Fixed

Unbalanced Fixed or Variable

Piston Radial Fixed or Variable

Axial Swash Plate Fixed or Variable

Bent-Axis Fixed or Variable

qv qv

∆p ∆p

(a) (b)

FIGURE 1.14 Characteristic curves of pumps: (a) Hydrodynamic pump; (b) Hydrostatic pump.
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In Table 1.3 some typical values of the operational characteristics of pumps are presented. 

Similar values are applicable to hydraulic motors.

In the next sections, the functional and construction principles of these hydrostatic machines are 

presented. Although pumps and motors are very similar, some speci�c construction aspects—such 

as internal channels for lubrication, external leakage drain, seals, and so forth—differ since motors 

do not have a port under low pressure all the time, as in the case of pumps.

Therefore, a pump cannot be used as a motor and vice-versa, unless the component has been 

designed to carry out both functions.

1.4.1.1 Gear Pump and Motors

External gear pumps and motors. This type of hydrostatic machine consists of a pair of equal 

gears assembled in housing with one inlet and one outlet, enclosed by two side plates. The drive 

gear is responsible for the external motion transmission and the driven gear runs free in its shaft.

According to Figure 1.15 (pump), �uid transport cells are formed between two consecutive teeth 

of each gear and the housing through the rotational movement. At the same time, the ungearing 

TABLE 1.3
Typical Pump Performance Parameters

Pump Type

Max. Working 

Pressure

[MPa (bar)]

Flow Rate

[dm3/s (Lpm)]

Rotational 

Frequency

[rps (rpm)]

Global Efficiency

[%]

External Gear 15–25

(150–250)

0.08–9.5

(5–570)

8.3–83.3

(500–5,000)

80–90

Internal gear 3.5–20

(35–200)

0.08–12.7

(5–760)

15–41.7

(900–2500)

70–90

Screw 0.4–40

(4–400)

0.017–350

(1–21,000)

16.7–58.3

(1,000–3,500)

80–85

Vane 7–21

(70–210)

0.08–10

(5–600)

10–45

(600–2,700)

80–95

Radial piston 7–815

(70–815)

0.08–12.7

(5–760)

16.7–56.7

(1,000–3,400)

85–95

Axial piston 14–81.5

(140–815)

0.08–12.7

(5–760)

8.33–71.7

(500–4,300)

90–95

Driven gearDrive gear

Inlet chamber

Outlet chamber

Housing

FIGURE 1.15 External gear pump (and motor).
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produces new cells to which the �uid is suctioned. In the outlet chamber the continuous gearing 

pushes the �uid out to the outlet port.

It is generally agreed that the gear pump is the most robust and rugged type of �uid power 

pump and thus its use is predominant in hydraulic services and also very intensive in industrial 

machines.

Gear pumps and motors are not very sensitive to �uid viscosity variations and to �uid contamina-

tion. However, since the outlet and inlet ports are opposite to one other, the forces over the gear axis 

are unbalanced. This limits the maximum values of pressure and �ow rate.

As a consequence of the friction between the gears and the side plates, and the �uid leakage 

between the tips of the gears and across the side plates, the overall ef�ciency is lower than that of 

solutions based on the other construction principles.

Internal gear pumps. Given the possibility of operating under high pressures with low ripple pres-

sures and low noise, these pumps are used in several systems such as injection machines, hydraulic 

presses, machine tools, and so forth. The operational principle is the same as that of external gear 

machines—that is, the continuous tooth ungearing and gearing of a gear pair.

The crescent seal internal gear pump consists of a small internal gear and a larger ring gear (see 

Figure 1.16a). The small internal gear is driven by the prime mover. The internal gear meshes with 

the ring gear and turns it in the same direction. The sealing of the high-pressure chamber from 

the pump inlet is achieved by a crescent seal between the upper teeth of the internal small gear 

and the upper teeth of the ring gear. In the gerotor gear pump, the inner gerotor has one less tooth 

than the outer element (Figure 1.16b). The internal gear is driven by the prime mover and, in turn, 

drives the outer element in the same direction [7].

In the same way as in external gear pumps, internal gear pumps are unbalanced, limiting the 

maximum pressure and ef�ciency. Furthermore, the gear pump design does not allow the displace-

ment to be varied.

1.4.1.2 Screw Pumps

Screw pumps for �uid power systems are composed of two or more helical screws assembled inside 

housing. The relative movement of the screws can be obtained driving one shaft where the move-

ment is transmitted to the others by either their own gearing or by external gears mounted on the 

shafts. An illustration of this type of pump is shown in Figure 1.17.

Each screw thread is matched to carry a speci�c volume of �uid. Fluid is transferred through 

successive contact between the housing and the screw �ights from one thread to the next. Its 

Drive gear

Ring gear

Inlet chamber

Housing

Crescent seal

Outlet chamber

Inlet chamber

Inside gerotor
element

Outlet chamber

(a) (b)

Outside geroter
element

FIGURE 1.16 Internal gear pumps: (a) Crescent-seal type; (b) Gerotor type.
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 operational characteristics imply that the �ow does not present pulsation and the unbalanced forces 

are axial, being compensated for easily.

Screw pumps are generally used for hydraulic systems where high �ow rates are necessary and 

they are also suitable for high pressures. The disadvantages are their low ef�ciency and high cost.

1.4.1.3 Vane Pumps and Motors

Fixed-displacement vane pumps and motors. Vane machines are comprised of a cylindrical rotor 

with vanes sliding in its grooves. This set runs inside a cam ring and the sides of the rotor and vanes 

are sealed by side bushings (port plates). Figure 1.18 presents an illustration of this type of machine.

The vanes are forced against the internal surface of the cam ring due to centrifugal force and either 

high pressure applied on the vane bottom or the force of the spring mounted on the vane bottom.

Between two consecutive vanes, rotor, cam ring and port plates, �uid transport cells are formed 

that increase in the inlet chamber and decrease in the outlet chamber. The port plates include aper-

tures connecting these chambers to the external ports of the machine.

In the construction principle shown in Figure 1.18 the low and high pressures act appositively over 

the axis, causing unbalanced forces and limiting the maximum work pressure of the pump or motor. 

An alternative is the balanced vane pump shown in Figure 1.19 where there are two low-pressure 

chambers and two high-pressure chambers and thus the resultant radial forces tend to be null.

A

Housing

A B B

Cross section AACross section BB

Screw

FIGURE 1.17 Screw pump. (From Linsingen, I. von, Fundamentos de Sistemas Hidráulicos, 3rd ed., Florianópolis, 

Brazil: UFSC Ed., 2008. With permission.)

Inlet chamber

Cam ringHousing

Outlet chamber

Rotor

Vane

FIGURE 1.18 Vane pump. (From Linsingen, I. von, Fundamentos de Sistemas Hidráulicos, 3rd ed., Florianópolis, 

Brazil: UFSC Ed., 2008. With permission.)
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The total pumping �ow results from the superposition of the �ow rate from the two outlet cham-

bers. The resulting amplitude and frequency at the outlet port is dependent on the number of vanes, 

where an odd number of vanes is advantageous, since the volumes discharged from each discharge 

chamber are not in phase.

Variable-displacement vane pumps. The variation in the volumetric displacement in vane pumps 

is achieved by moving the cam ring and, therefore, changing the eccentricity between it and the 

rotor. This can be seen in Figure 1.20, where the �ow direction can also be inverted without chang-

ing the rotational frequency direction. The hydraulic circuit shown in Figure 1.11 is an example of 

the use of this type of pump.

Variable-displacement pumps can also include internal pressure compensation as shown in 

Figure 1.21. In this case, the maximum eccentricity is obtained while the internal pressure in the 

discharge chamber produces a force lower than the spring force. When the outlet pressure increases 

over the pre-load force of the spring, the cam ring moves against the spring, changing the �ow rate 

delivered.

In general, �uid leakage in vane pumps occurs between the high- and low-pressure sides of the 

vanes and across the side bushings, which results in decreased volumetric ef�ciency and, hence, 

reduced �ow output. The unbalanced design suffers from shortened bearing life because of the 

unbalanced thrust force within the pump.

e > 0(a) (b) (c)e = 0 e < 0

FIGURE 1.20 Illustration of the volumetric displacement variation: (a) Regular �ow; (b) Null �ow; (c) 

Reverse �ow. (From Linsingen, I. von, Fundamentos de Sistemas Hidráulicos, 3rd ed., Florianópolis, Brazil: 

UFSC Ed., 2008. With permission.)

Rotor

Inlet
chamber

Inlet
chamber

Cam ring

Housing

Vane

Outlet
chamber

Outlet
chamber

FIGURE 1.19 Balanced vane pump.
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1.4.1.4 Piston Pumps and Motors

Piston machines have radial clearances in their main movable parts of between 2 and 5 mm. 

Consequently, they can operate under higher pressures and lower volumetric losses when compared 

with other hydrostatic machines.

According to the position of the pistons in relation to the shaft, these machines are classi�ed as 

axial piston pumps (swash plate and bent-axis) and radial piston pumps.

Fixed-displacement axial piston machines. In this type of machine the pistons run in cylindrical 

holes machined in a cylinder block. The alternative movement of each piston is obtained by the 

rotary movement of the cylinder block or the swash plate.

a. Swash plate design

As shown in Figure 1.22, axial machines can be constructed with either rotary or stationary swash 

plates. In the motor shown in Figure 1.22a, the cylinder block is stationary and the swash plate is rigid 

with the shaft. In Figure 1.22b, the swash plate is stationary and the cylinder block rotates with the 

shaft. The swash plate angle de�nes the piston stroke and, hence, the volumetric displacement [1,11].

The valve plate identi�ed in this �gure consists of a plate with circumferential apertures and its 

function is to connect the inlet and outlet ports to the bottom of each piston.

In this type of machine there is a continuous leakage that is necessary for the lubrication of parts 

with relative mechanical movement such as that between the valve plate and the cylinder block, and 

that between the cylinder block and the swash plate. Therefore, a port for external drainage is required.

Maximum eccentricity
control

Outlet chamber �rust screw

Spring
Pressure

adjustment

Cam ringDrainInlet chamber

Rotor

FIGURE 1.21 Variable-displacement vane pump with pressure compensation. (From Linsingen, I. von, 

Fundamentos de Sistemas Hidráulicos, 3rd ed., Florianópolis, Brazil: UFSC Ed., 2008. With permission.)

Valve plate

(a) (b)

Valve plateCylinder
block

Cylinder blockPiston Piston

Rotary swash
plate

Stationary swash
plate

FIGURE 1.22 Swash plate design: (a) Motor with rotary swash plate; (b) Pump with stationary swash plate. 

(From Linsingen, I. von, Fundamentos de Sistemas Hidráulicos, 3rd ed., Florianópolis, Brazil: UFSC Ed., 2008. 

With permission.)
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b. Bent-axis design

In this design the cylinder block is mounted obliquely in relation to the driven shaft (Figure 1.23). 

The piston rods are coupled to the driven shaft by spherical articulations such that the rotary move-

ment of the cylinder block produces the alternating piston movement. The connection between the 

pistons and the inlet and outlet ports is through the valve plate, as shown in this �gure.

Since pistons have no lateral forces, angles of around 25°, and even 40°, are allowable. In relation 

to the swash plate, the bent-axis type has as disadvantages a greater occupied volume and higher 

moment of inertia. On the other hand, it has higher ef�ciency and less sensitivity to contaminants.

Variable-displacement axial piston machines. The swash plate machines can also have variable 

volumetric displacement by changing the swash plate angle. An angle equal to zero corresponds to 

null �ow rate and the maximum positive angle produces the maximum volumetric displacement 

and, consequently, the maximum �ow rate supplied by a pump or consumed by a motor. When a 

negative angle is allowed, the machine has two �ow directions. In the same way, in the bent-axis 

type the angle between the cylinder block/valve plate axis and the shaft can also be controlled.

Pressure compensator Pressure adjustement

Positioning cylinder

Drain

Valve plate Piston
Swash plate

Cylinder block

FIGURE 1.24 Variable-displacement axial piston pump, swash plate design, with pressure compensation. 

(From Linsingen, I. von, Fundamentos de Sistemas Hidráulicos, 3rd ed., Florianópolis, Brazil: UFSC Ed., 2008. 

With permission.)

Flange Piston rod

Drive shaft

Center support pin

Valve plate Outlet

Piston Housing

Cylinder barrel

FIGURE 1.23 Illustration of axial piston machine bent-axis design. (From Franken�eld, T.C. Using 

Industrial Hydraulics, 2nd ed., Penton Publishing, 1985, ISBN-13: 9780932905017. With permission.)
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Variable-displacement piston pumps lend themselves to the incorporation of various mecha-

nisms that will alter their performance. One typical example is the pressure-compensated pump 

where the hydraulic mechanism will alter the pump displacement to limit the outlet pressure to 

some pre-adjusted value. Figure 1.24 presents a pressure-compensated axial piston pump (swash 

plate type).

Other commercial solutions allow the control of the hydraulically supplied power according to 

the system demand. Electro-hydraulic pumps using proportional valves are also available to design 

circuits with transformation control, which means directly through the primary conversion function. 

The circuits presented in Figure 1.11 and 1.12 are examples of the use of variable-displacement 

pumps.

Radial piston machines (ixed- and variable-displacement). In these machines, the piston axes 

are perpendicular to the driven shaft. Depending on the construction principle, the pistons can be 

mounted in a star format around the shaft or in line on a crankshaft.

Figure 1.25 shows the basic con�guration of a three-piston pump. Each hollow piston consists 

of an inlet non-return valve, a spring, a piston barrel, a pumping chamber, an outlet non-return 

ball, and a support bearing. As the driven shaft is rotated, the spring holds the base of the piston 

in contact with the eccentric cam shaft. The downward motion of the piston causes the volume 

to increase in the pumping chamber. This creates a reduced pressure that enables the inlet check 

valve to open, thereby allowing oil to enter the pump chamber. The oil enters the chamber by 

way of a groove machined into the cam-shaft circumference. Further rotation of the cam shaft 

causes the piston to move back into the cylinder barrel. The rapid rise in chamber pressure closes 

the inlet check valve. When the rising pressure equals the system pressure, the outlet check valve 

opens, allowing �ow to exit the piston and pass to the pressure port of the pump. The resulting 

�ow is the sum of all the piston displacements. The number of pistons that a radial pump can 

have is only limited by the spatial restrictions imposed by the size of the pistons, housing, and 

cam shaft.

Figure 1.26 illustrates a variable-displacement pump with pressure compensation composed of a 

cam ring eccentrically mounted relative to a cylinder block. The alternative movement of the pistons 

is obtained by the rotary movement of the cylinder block reaming the pistons in contact with the cam 

ring through shoes. The shoes slide on a trail �xed on the cam ring. The �uid suction and discharge 

occurs via semicircular ports and pipes machined on a stationary piece inside the driven shaft.

Outlet non-return
ball

Pump chamber

Piston chamber

Spring

Inlet non-return
valve

Housing

Eccentric

Support
bearing

FIGURE 1.25 Radial piston pump. (From Franken�eld, T.C. Using Industrial Hydraulics, 2nd ed., Penton 

Publishing, 1985, ISBN-13: 9780932905017. With permission.)
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In general, the radial piston pump has a higher continuous-pressure capability than any other 

type of pump (Table 1.3). However, it should be noted that for extremely high-pressure applica-

tions, the volumetric displacements of radial pumps are usually not larger than 2.4 × 10−6 m3/rad 

(0.015 dm3/rev).

1.4.1.5 Pump and Motor Performance Characteristics

In Section 1.2.4 the �ow rate and torque equations of pumps and motors was presented, where they 

were considered as ideal machines, without internal or external leakage and friction. However, 

these losses are present in real machines and they are identi�ed in a general way by the volumetric, 

mechanical and overall ef�ciencies.

Consider Figure 1.27, where the main variables associated with pumps and motors are presented. 

Based on this �gure, the equations given below describe the steady-state behavior and ef�ciency 

expressions valid for pumps and motors.

Valve plate
(cross section AA)

(a) (b) (c)

Stationary swash
plate

Valve plate
(cross section AA)

Stationay swash
plate Inlet chamber

Outlet chamber

Valve plate
(cross section BB)

PistonCylinder
block

PistonCylinder
block

B

B

B

B

w,n Te

qVe

qV sin

w,n Te

Tfr

qVsex

qV sin

P1

P2

P1

Tfr

qVsex

qVe

P2

A

A

FIGURE 1.27 Main variables associated with: (a) Pumps; and (b) Motors (c) Cross section BB.

Distributing element Pressure adjustement Pressure compensator

Inlet and outlet pipes

Cylinder block

A

A

Piston

Shoe

Inlet port Cylinder block

Outlet port Cam ring Cam ring

Drain

Cross section AA

FIGURE 1.26 Radial piston pump with pressure compensation. (From Linsingen, I. von, Fundamentos de 

Sistemas Hidráulicos, 3rd ed., Florianópolis, Brazil: UFSC Ed., 2008. With permission.)
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Flow rate and volumetric eficiency. The volumetric losses in hydrostatic machines occur as a 

consequence of the mechanical clearances, pressure drops and relative velocity between movable 

parts. Cavitation and �uid aeration also induce �ow losses. However, since these phenomena should 

not occur under normal operational conditions, they are not considered in the mathematical descrip-

tion of volumetric ef�ciency [12].

The theoretical �ow rate given by Equation 1.10 and rewritten in Equation 1.15 is dependent on 

the volumetric displacement (D). This parameter is calculated according to the geometric dimen-

sions or by measuring the absorbed or discharged volume for a complete revolution with differential 

pressure close to zero.

 
q D D nVtc = =⋅ ⋅ ⋅ω π2 .  (1.15)

The effective �ow rate (discharged) (qVe [m
3/s] or [L/min]) in pumps is lower than the theoretical 

�ow rate (qVtc [m
3/s] or [L/min]) and can be determined by

 
q q qVe

P
Vtc
P

Vs
P= − ,

 
(1.16)

where qVs [m
3/s] or [L/min] is the �ow rate loss that can be due to internal leakage (qV sin) (between 

the pump chambers), or external leakage (qV sex), as in vane and piston pumps that have a drain port.

In motors, the effective �ow rate (inlet) (qVe [m
3/s] or [L/min]) is higher than the theoretical �ow 

rate (qVtc [m
3/s] or [L/min]), since part of the �uid is lost through leakage (qVs). Therefore:

 
q q qVe

M
Vtc
M

Vs
M= + .

 
(1.17)

The volumetric ef�ciency is then calculated through the following expressions:

For pumps:

 

ηV
P Ve

P

Vtc
P

=
q

q
.

 

(1.18)

For motors:

 

ηV
M Vtc

M

Ve
M

=
q

q
.

 

(1.19)

The leakage in pumps and motors is approximately laminar and thus under operational con-

ditions, with approximately constant temperature, the leakage is proportional to the pressure dif-

ference (qV sin ∝ Δp). Hence, the volumetric ef�ciency also changes proportionally to the pressure 

difference.

Torque and mechanical eficiency. Based on Equation 1.8, the theoretical torque (Ttc [N ⋅ m]) can 

be expressed as

 
T D ptc = ∆⋅ ,

 (1.20)

where Δp [Pa] is the pressure difference between the inlet and outlet ports of the pump or motor.

However, this is not the real torque in the machine shaft, since there are losses associated with 

mechanical friction and �uid viscous friction [12].
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For pumps, the effective torque required in the driven shaft (Te [N ⋅ m]) is higher than the theoreti-

cal torque (Ttc [N ⋅ m]), that is

 T T Te
P

tc
P

fr
P

= + ,  
(1.21)

where Tfr [N ⋅ m] is the friction torque.

In the case of motors, the effective torque available in the shaft (Te) is lower than the theoretical 

torque (Ttc), such that

 T T Te
A

tc
A

fr
A

= − .  
(1.22)

Consequently, the mechanical ef�ciencies are de�ned by the following expressions:

For pumps:

 

ηm
P tc

P

e
P

=
T

T
.

 

(1.23)

For motors:

 

ηm
A e

A

tc
A

=
T

T
.

 

(1.24)

Power and overall eficiency. The useful power of a pump is the hydraulic power at the outlet port 

and for a motor it is the mechanical power at the driven shaft. The useful power can be described by:

For pumps:

 
P q p q p q ph Ve Ve Vtc V= ⋅ ≅ ⋅ = ⋅ ⋅∆ 2 2 η ,  (1.25)

where Δp = p2 – p1, p2 p2 is the pressure in the outlet port (discharge) and p1 is the pressure in the 

inlet port (suction). Since the pressure p1 is close to atmospheric pressure (p1≈0 Pa [gauge pressure]), 

this expression can be written considering only the output pressure (p2).

For motors:

 
P T T n T nm e e tc m2 2= ⋅ = ⋅ ⋅ = ⋅ ⋅ ⋅ω π π η .  (1.26)

Or applying Equation 1.20:

 
P D p p n q p pm m Vtc m2= ⋅ − ⋅ ⋅ ⋅ = ⋅ − ⋅( ) ( ) .1 2 1 2π η η  (1.27)

The drive power is the mechanical power at the shaft for a pump and the hydraulic power at the 

inlet port for a motor. Hence:

For pumps:

 

P T T n
T n

m e e
tc

m

2
2

= ⋅ = ⋅ ⋅ =
⋅ ⋅

ω π
π

η
.

 

(1.28)

Or applying Equation 1.20:

 

P
D p p n q p p

m

m

Vtc

m

 2  
=

⋅ − ⋅ ⋅
=

⋅ −( ) ( )
.

2 1 2 1π

η η  

(1.29)
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For motors:

 

P q p q p p
q p p

h Ve Ve
Vtc

V

= ⋅ = ⋅ − =
⋅ −

∆ ( )
( )

.1 2
1 2

η  

(1.30)

Consequently, the overall ef�ciency is de�ned as

For pumps:

 

η η ηt
P h

P

m
P V

P
m
P

= = ⋅
P

P
.

 

(1.31)

For motors:

 

η η ηt
M m

M

h
M V

M
m
M

= = ⋅
P

P
.

 

(1.32)

1.4.1.6 Characteristic Curves

The variables presented in the section above are frequently presented in graphs as a function of 

the pressure difference to which the hydrostatic machine will be submitted. Moreover, operational 

conditions like temperature and rotational frequency, and �uid speci�cation, need to be pre-�xed 

when these operating curves are obtained experimentally.

Fixed-displacement pumps. A typical characteristic curve is shown in Figure 1.28 where the curve 

of the effective �ow rate (qVe) represents the basic characteristic of a pump, where its scope shows 

the operating pressure in�uence on the leakage. From this curve the volumetric ef�ciency curve 

(ηV) is obtained using Equation 1.18.

The mechanical ef�ciency (ηm) increases with the �uid leakage, improving the lubrication and 

reducing the friction torque (Equations 1.22 and 1.23). The useful power (Ph) is a linear function of 

the effective �ow rate and the output pressure (Equation 1.25) and, in turn, the drive power (Pm) is 

dependent on the mechanical losses (Equation 1.28). According to Equation 1.31, the curve of the 

overall ef�ciency (ηt) is determined by either the useful power to drive power ratio, or the volumet-

ric and mechanical ef�ciency product.

qv[lpm]

qv

Pm

Ph

∆p[bar]

P[kw]

η[%]

100

80

20 60

15 40

10 20

5 0

50

40

30

20

10

0

0 40 80 120 160 200

ηm
ηv

ηt

FIGURE 1.28 Operating curves of a �xed-displacement pump. (From Linsingen, I. von, Fundamentos de 

Sistemas Hidráulicos, 3rd ed., Florianópolis, Brazil: UFSC Ed., 2008. With permission.)
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The strong reduction in the overall ef�ciency at low pressures is a consequence of poor lubrica-

tion and high friction in this operational range. For this reason, the manufacturers recommend a 

minimal operation pressure, with the aim of not reducing the useful life of the pump. In the case of 

Figure 1.28, the pump must operate above 2 MPa (20 bar) [1].

Fixed-displacement pumps with relief valve. The �xed-displacement pump is frequently used 

together with a relief valve since the �ow from the pump needs to be diverted to a reservoir when it 

is not being used by the system (Figure 1.29a).

The effective �ow rate supplied to the system (qV
S) is obtained by combining the characteristic 

curves of the two components, as can be seen in Figure 1.29b. The cracking pressure is the pressure 

adjusted at the relief valve (pPset) at which it opens. From this operational point onward, any increase 

in the system pressure (pP) causes a signi�cant decrease in the �ow rate to the system (qV
S).

For pressures lower than the cracking pressure the system �ow rate is equal to the pump �ow 

rate ( ),q qV
S

V
P=  and for higher pressures part of the �ow is diverted to the relief valve ( ).q q qV

S
V
P

V
V

= −  

At the maximum supply pressure (pPmax) the relief valve �ow rate is equal to the pump �ow rate 

( ),q qV
V

V
P=  which means that all the hydraulic power (Ph

P) is being dissipated at the relief valve, 

increasing the temperature of the �uid that returns to the reservoir. Consequently, the pump drive 

power (Pm
P) continues to increase after the cracking pressure has been reached.

Variable-displacement pumps with pressure compensation. In the case of variable-displacement 

pumps with pressure compensation, as shown in Figure 1.21, 1.24, and 1.26, the use of a relief valve 

is not required, although it can be installed in the hydraulic circuit for safety reasons.

As shown in Figure 1.30a, the system �ow rate is always equal to the pump �ow rate. When 

there is no demand from the system, the pressure increases above the set pump pressure, changing 

(a) (b)
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FIGURE 1.30 Variable-displacement pump with pressure compensation: (a) Hydraulic circuit; (b) 

Characteristic curve.
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FIGURE 1.29 Fixed-displacement pump with relief valve: (a) Hydraulic circuit; (b) Characteristic curve.
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its volumetric displacement (D). Therefore, the power consumption is reduced when the cracking 

pressure is surpassed, as illustrated in Figure 1.30b. One can observe that this power is not null 

when q qV
S

V
P= = 0 since there is always a small lubrication �ow rate (qVs

P ), which is drained to the 

reservoir [13].

1.4.2 HYDRAULIC CYLINDERS

Hydraulic systems are designed to provide controlled mechanical energy through linear or angular 

movement. The action over the external environment occurs on the last block of the functional chain 

shown in Figure 1.1, the secondary energy conversion, and it is performed by the hydraulic actua-

tors, which in this case are the motors, oscillators and cylinders.

The basics of motors were described in the section above, since their construction principles are 

the same as those of pumps.

The hydraulic oscillators also produce angular movement but they do not provide continuous 

rotation and the angle is limited to a value below 360°. Their construction is derived from the 

hydraulic motor design (from the vane motor, for example) or from double-acting hydraulic cylin-

ders with mechanical transmission converting linear into angular displacement.

In turn, cylinders are the hydraulic actuators most used in hydraulic systems. They are typically 

comprised of (1) a barrel, (2) piston assembly, (3) piston rod, (4) end caps, (5) ports, and (6) seals, 

as shown in Figure 1.31. The piston provides the effective area against which the �uid pressure is 

applied and supports the piston assembly and rod. The opposite end of the rod is attached to the 

load. The cylinder bore, end caps, ports, and seals maintain a �uid-tight chamber in which the �uid 

energy is contained. Whether the rod will extend or retract is dependent on the port to which the 

�uid is directed.

Hydraulic cylinders are classi�ed according to different premises, with two of them being par-

ticularly important in terms of understanding the use and behavior of cylinders. Hence, in relation 

to the operating principle they are sub-divided into single- and double-acting (single- and double-

effect) and, considering the area ratio, they are classi�ed as either symmetrical or asymmetrical 

(non-differential or differential) cylinders.

In Figure 1.32, the several types of single-acting cylinders are symbolically represented. In this 

construction principle, the hydraulic power is available in only one direction of movement—that is, 

on either extension or retraction. In the opposite direction the movement results from an external 

force (including gravitational force) as shown in Figure 1.32a, b and e, or from an internal spring 

force as in Figure 1.32c and d.

Unlike the other types, telescopic cylinders have two or more stages which, when fully extended, 

can produce a stroke that exceeds the length of the cylinder when fully retracted. The symbol shown 

in Figure 1.32e presents a two-stage model.

Seals

Seals

Piston

Barrel

End caps

Piston rod Ports

FIGURE 1.31 Main parts of a hydraulic cylinder. (From Linsingen, I. von, Fundamentos de Sistemas Hidráulicos, 

3rd ed., Florianópolis, Brazil: UFSC Ed., 2008. With permission.)
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As a consequence of the inevitable leakage between the piston and barrel, the non-active cham-

bers must have an external drain avoiding counter-pressure and cylinder blocking.

Some examples of double-acting cylinders are shown in Figure 1.33. In this type of cylinder, the 

effective work is carried out in both directions of movement (extension and retraction).

The most common double-acting cylinder is the single-rod cylinder (Figure 1.33a), which is 

classi�ed as an asymmetric (differential) cylinder since the piston areas on the bottom-side and the 

rod-side are different. As a consequence, the velocity and hydraulic force are generally different 

during the extension and retraction movements.

The double-rod cylinders (Figure 1.33b) can be designed with rods of the same diameter (sym-

metric [non-differential] cylinder) and with different diameters (asymmetric [differential] cylinder). 

In the case of symmetric cylinders the hydraulic force and velocity are the same, considering the 

same loading and supplied �ow rate, during extension and retraction.

Tandem actuating cylinders (Figure 1.33c) consist of two or more cylinders arranged one behind 

the other but designed as a single unit. The main operational characteristic is the greater force when 

compared with a regular cylinder of the same diameter.

In the same way as in telescopic single-acting cylinders, the double-acting cylinders (Figure 

1.33d) have the advantage of being compact. However, since their construction costs are higher than 

those of other designs, their use is somewhat limited.

(a) (b)

(d)(c)

FIGURE 1.33 Double-acting cylinders: (a) Single rod; (b) Double rod; (c) Tandem; (d) Telescopic.

(a) (b) (c)

(e)(d)

FIGURE 1.32 Single-acting cylinders: (a) Retraction by external force; (b) Extension by external force; 

(c) Retraction by spring; (d) Extension by spring; (e) Telescopic cylinder with retraction by external force.
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1.4.2.1 Hydraulic Cylinder Behavior

The hydraulic cylinders are intended for use under several operational conditions, including motion 

with a constant velocity, positioning control, force control, or just to provide a force to �x something.

In all these situations, the motion achieved is in�uenced by factors such as inertia, �uid compress-

ibility and friction, and must be considered in the analysis and design of the hydraulic system [14,15].

By observing Figure 1.34 one can identify two main parts to be modeled: the movable piston and 

the �uid in the cylinder chambers.

The linear motion of the piston is described by Newton’s second law, which establishes that the 

sum of the forces must be equal to the product of the mass and acceleration (Mt · a = Mt · d2x/dt2). 

Therefore, for an asymmetric double-acting cylinder, as shown in Figure 1.34, the motion equation is

 
( ) ( ) ,A p A p M

d x

dt
F FA A B B t

p
fr e⋅ − ⋅ = ⋅ + +

2

2
 

(1.33)

AA · pA being the force in area AA caused by the pressure in chamber A (pA), AB · pB is the force 

in area AB caused by the pressure in chamber B (pB), and xp is the piston displacement. Ffr is the 

friction force associated with the cylinder and external load and Fe is the effective force available 

at the rod piston to move the load. The total mass (Mt) includes the piston mass (Mp) and external 

mass (load) (Mex).

Equation 1.33 demonstrates that a hydraulic force (AA · pA) – (AB · pB) is necessary in order to 

overcome the external forces, friction force and inertia. Therefore, for the piston to achieve a new 

position or velocity the chamber pressures must change.

The dynamic behavior of the pressure in the chambers is determined by the conservation of mass 

principle as presented in Section 1.2.2. Hence, applying Equation 1.4 to chamber A (Figure 1.34) the 

following expression is obtained:

 

q A
dx

dt
q

V dp

dt
VA A

p
V

A A
= ⋅ + + ⋅sin .

β  

(1.34)

For the cylinder extension, the input �ow rate at port A (qVA) leads to a pressure increase (dpA/dt) 

caused by the �uid compression. With the pressure increase internal leakage (qVsin) can occur and 

the cylinder will start to move. The product of the area and velocity (AA · dxp/dt = AA · vp) establishes 

the chamber volume variation with the piston movement and this volume is occupied by the �uid.

For chamber B the �uid behavior is expressed by Equation 1.35, such that, on the cylinder exten-

sion qVB is the �ow rate induced by the piston motion at which the �uid exits the cylinder in the 

direction of a directional valve.

 

q A
dx

dt
q

V dp

dt
VB B

p
V

B B
= ⋅ + − ⋅sin .

β  

(1.35)
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MT qVA qVB
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FIGURE 1.34 Parameters and variables associated with a hydraulic cylinder.
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One can observe that Equations 1.33 through 1.35 are suitable for any type of cylinder, symmetri-

cal or asymmetrical, single- or double-acting. In the case of symmetrical cylinders, the piston areas 

are equal (AA = AB). In the case of single-acting cylinders, the continuity equation is applied only to 

the controlled chamber. In the other chamber, the pressure is considered to be constant or the spring 

force is included in Equation 1.33.

1.4.2.2 Cylinder Performance Characteristics

Mechanical eficiency. The mechanical ef�ciency of the cylinder is the ratio between the theoreti-

cal force (hydraulic force) and the effective force available for the external system motion. Since 

the ef�ciency characterizes the steady-state performance of the cylinder, the cylinder is considered 

to have a constant velocity, equal to or differing from zero, and null acceleration. Therefore, the 

mechanical ef�ciency can be expressed by

 

ηm
e

tc

e

h

e

A A B B

= = =
⋅( ) − ⋅( )

F

F

F

F

F

A p A p
.

 

(1.36)

Volumetric eficiency. Similarly to hydraulic motors, the volumetric ef�ciency is the ratio between 

the geometric (theoretical) �ow rate and the effective �ow rate through the cylinder ports, that is

 

ηV
Vtc

Ve

A

VA

B

VB

= = =
q

q

A v

q

A v

q
.

 

(1.37)

However, cylinders remain stopped for some periods of time, as they can stay at the stroke end 

or in a controlled position when enclosed in a closed-loop system. Therefore, aiming to obtain rep-

resentative values, this ef�ciency must be calculated beyond these speci�c operational conditions.

Power and overall eficiency. Considering the cylinder at constant velocity, the useful power 

(mechanical power) present at the piston rod is

 P F vm e  = ⋅ .  (1.38)

Or applying Equation 1.36:

 
P F v A p A p vm tc m mA A B B

= ⋅ ⋅ = − ⋅ ⋅η η( ) .
 (1.39)

The drive power of a cylinder is the net hydraulic power at the cylinder ports, such that

 

P q p q p
A v

p
A v

ph VA A VB B
A

V

A
B

V

B= ⋅ − ⋅ =
⋅

⋅ −
⋅

⋅
η η

.

 

(1.40)

The overall ef�ciency of the cylinder is expressed by

 

η ηt
m

h

V
M

m
M= = ⋅

P

P
η .

 

(1.41)

Natural frequency and dynamic performance. The concept of ef�ciency is a direct way to evalu-

ate the steady-state performance of a system. Thus, the dynamic performance can also be character-

ized through a simpli�ed analysis as follows.

As seen above, the hydraulic cylinder behavior is described by differential equations. Dynamic 

systems like this do not respond instantaneously to an input and a behavior analysis must be carried 

out according to system control theory.
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Most mathematical models of systems can be reduced to a second-order equation, such as that 

presented in Equation 1.42.

 

1 2
2

2

2ω

ζ

ωn n

ST⋅ +
⋅

⋅ + = ⋅
d y

dt

dy

dt
y K u,

 

(1.42)

where u is the input, y is the output, ωn [rad/s] is the natural frequency, ζ [1 (non dimensional)] is the 

damping ratio and KST [output unit/input unit] is the steady-state gain of the system [16].

The response time of a second-order system to a step input is shown in Figure 1.35a. Since the 

abscissa is ωn · t, these curves show how both the natural frequency and the damping ratio in�uence 

the dynamic response.

In Figure 1.35b the time-domain speci�cations used in hydraulic system design are shown. 

According to ISO 10770-1 [17] and ISO 10770-2 [18], the response time (tre) is de�ned as the time 

required for the response to reach 90% of the �nal value. The settling time (ts) is de�ned as the time 

required for the response to decrease to and remain at a speci�ed percentage of its �nal value. The 

settling time de�nition is well known from control theory [16] and 5% is the percentage recom-

mended by the standards mentioned above.

The natural frequency can be correlated with the settling time by [16]:

 

ts

n

for error=
⋅

3
5

ζ ω

% .

 

(1.43)

Since there is no algebraic correlation with the time response as de�ned by ISO 10770-1 [17], one 

can use the rise time, de�ned as the time required to change from 0% to 100% of the �nal value [16]. 

The expression associated with the rise time is presented in Equation 1.44 [16] and can be used to 

approximately calculate the natural frequency when the time response is known.

 

tr

n

arctan=

⋅ −

⋅
−











1

1

1

2

2

ω ζ

ζ
ζ
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(1.44)

On continuing the study of the hydraulic cylinder and its loading, Equations 1.33 through 1.35 

can be combined such that, for ports A and B closed (qVA = qVB = 0), the system model is
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FIGURE 1.35 Response of a second-order system to a unit step input: (a) In�uence of the natural frequency 

and damping ratio; (b) Time-domain speci�cations.
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Through comparing this equation with Equation 1.42, it can be concluded that the natural fre-

quency of the cylinder with loading is expressed by
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(1.46)

Besides Equation 1.46 being valid for asymmetrical double-acting cylinders, it can also be applied to 

symmetrical double-acting cylinders considering AA = AB. For application to single-acting asymmetri-

cal cylinders the term related to the non-controlled chamber needs to be excluded (A VA A
2  or A VB B

2 ).

1.4.3 DIRECTIONAL CONTROL VALVES

One of the main functions of the directional control valves is the connection or isolation of one 

or more �ow paths. These valves are identi�ed according to their speci�c function, as will be 

presented below, but some characteristics are common to all of them, such as the number of ports, 

number of positions, and the type of control mechanism [19].

The port means the terminus of a �ow path in a component, to which connections can be made. 

The number of ports refers only to those related to the power �ow paths, thus excluding drain and 

pilot ports. For example, a valve with four ports [19] is commercially identi�ed as a four-way valve.

The number of valve positions refers to the number of pre-de�ned states in which the valve can 

operate and it is related to the feasible stable positions of a movable valve element. Designations 

such as two-position valve or three-position valve are used in valve identi�cations.

Finally, control mechanisms are devices that provide an input signal to a component. Levers, sole-

noids, plungers, and pilots are examples of control mechanisms that are used in directional valves.

1.4.3.1 Non-return Valves (Check Valves)

The simplest type of directional control valve is a non-return valve or check valve. Its function is to 

permit free �ow in one direction and prevent �ow in the opposite direction. Figure 1.36a shows a 

simple non-return valve for line mounting which consists of a seat, a poppet, and a spring.

The valve remains closed to the �ow until the pressure at its inlet port (A) creates suf�cient force 

to overcome the spring force. Once the poppet leaves its seat, hydraulic �uid is permitted to �ow 

Poppet Spring

Seat(a) (b)

A

A0

B

4

∆P [bar]

3

2

1

0
0 50 100 150 200 qv [lpm]

FIGURE 1.36 Single non-return valve: (a) Illustration; (b) Characteristic curve. (From Linsingen, I. von, 

Fundamentos de Sistemas Hidráulicos, 3rd ed., Florianópolis, Brazil: UFSC Ed., 2008. With permission.)
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around and through the poppet to the valve outlet port (B). For this reason, a simple non-return valve 

can only allow �ow in one direction. By changing the spring, cracking pressures between 0.05 MPa 

(0.5 bar) and 0.5 MPa (5 bar) can be obtained. For special applications, a no-spring version is also 

available.

In Figure 1.36b, characteristic curves for three different springs are presented. The cracking 

pressures are 0.05, 0.15, and 0.3 MPa (0.5, 1.5, and 3 bar). In each curve the pressure drop remains 

basically constant until a speci�ed �ow rate. Above this value the load loss in the valve increases 

and the valve behaves like a �xed ori�ce, as described by Equation 1.13.

Examples of circuits using non-return valves are shown in Figure 1.5 and 1.11. In Figure 1.12 

the pump is designed with two internal non-return valves allowing the �uid suction through one 

port without �uid return through the other. This type of valve is also enclosed in �lters, as shown in 

Figure 1.12, to prevent line blocking in the case of �lter obstruction.

For load holding and in decompression-type hydraulic press circuits, a pilot-operated non-return 

valve is used. This performs the same function as the simple non-return valve described above. 

However, in contrast, a pilot-operated non-return valve can be piloted to remain opened when a 

reverse �ow is required. Figure 1.37 illustrates the components of a pilot-operated non-return valve. 

The valve has two distinct sections—the non-return valve section and the pilot section. The non-

return valve section allows free �uid �ow from port A to port B while preventing reverse �ow from 

B to A without leakage. However, if a pilot pressure signal is supplied to port X, then a force is 

applied to the pilot piston, which forces the piston rod against the non-return valve poppet. This 

force then unseats the poppet, allowing free �ow of �uid from port B to port A.

1.4.3.2 Spool-type Directional Control Valves

As presented in Sections 1.4.1 and 1.4.2, the actuators normally have two ports. If hydraulic �uid is 

pumped into one of the ports while the other is connected to the reservoir, the actuator will move in one 

direction. In order to reverse its direction of motion, the pump and reservoir connections must be reversed. 

The sliding spool-type directional control valve has been found to be the best way to achieve this change.

These valves have a cylindrical shaft called a “spool,” which slides into a machined bore in the 

valve housing. The housing has ports to connect the valve to the hydraulic circuit.

The sliding spool-type directional control valves can be designed with different combinations of 

spool and housing. Therefore, two-way and two-position, either normally closed or normally open 

valves (2/2 NC or 2/2 NO), are available as well as three-way and four-way, or with more ports with 

three or more positions and different con�gurations of valve center positions.

Because of their construction characteristics, these valves present internal leakage, which can be 

a serious restriction in some applications. The use with pilot-operated non-return valves or counter-

balanced valves is a common solution.

A0

Pilot section

PoppetPilot piston

BAY

X

Non-return

valve section

Ap

FIGURE 1.37 Pilot-operated non-return valve. (From Linsingen, I. von, Fundamentos de Sistemas Hidráulicos, 

3rd ed., Florianópolis, Brazil: UFSC Ed., 2008. With permission.)
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Two-position directional control valves. Figure 1.38 shows an illustration of a four-way, two-

position, lever-controlled, spring return sliding spool-type directional control valve.

In the solution shown in this �gure, the normal position (non-actuated position) establishes the 

�ow paths P-B and A-T. While actuated by the lever the �ow paths P-A and B-T are maintained.

A common use for such a valve is in a cylinder application which only requires the cylinder to 

extend or retract to its fullest positions. Another application would be in hydraulic motors, which 

only run in forward or reverse directions.

Three-position directional control valves. A three-position valve is similar in operation to a two-

position valve except that it can be stopped in a third or centered position. While in the centered 

(b) (c)

(f)(e)(d)

(a)

FIGURE 1.39 Typical center �ow paths for four-way, three-position valves: (a) Open center; (b) Closed center; (c) 

Tandem center; (d) Pressure closed center; (e) Reservoir closed center; (f) Restricted open center. (From Linsingen, 

I. von, Fundamentos de Sistemas Hidráulicos, 3rd ed., Florianópolis, Brazil: UFSC Ed., 2008. With permission.)

Land spool

Housing

Control
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A B A B

TPTP

Spool

FIGURE 1.38 4/2 sliding spool-type directional control valve. (From Linsingen, I. von, Fundamentos de 

Sistemas Hidráulicos, 3rd ed., Florianópolis, Brazil: UFSC Ed., 2008. With permission.)
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or neutral position, �ow may or may not be possible, depending on the spool design of the center 

position. Figure 1.39 shows some common three-position spool designs.

The open center valve (Figure 1.39a) and the tandem center valve (Figure 1.39c) divert the pump 

�ow to the reservoir keeping the supply pressure low. In the closed center valve (Figure 1.39b), all 

ports are blocked in the centered position, preventing the actuator movement. At the same time, the 

pump �ow can be used for other parts of the circuit. The restricted open center valve shown in Figure 

1.39f avoids both the complete actuator relaxation and peak pressures during the valve commutation.

The pressure closed center design (Figure 1.39d) allows low pressure at ports A and B to be 

maintained while the reservoir closed center design (Figure 1.39e) means that the supply pressure is 

applied to both working ports (Figure 1.33a). This has a regenerative effect when an asymmetrical 

cylinder is used, causing the cylinder to extend rapidly due to the difference in the effective areas at 

opposite sides of the piston. The cylinder extension velocity is determined by the sum of the pump 

�ow rate ( qV
P ) and the �ow rate at the rod end of the cylinder (qVB

A
), that is, q q qVA

A
V
P

VB
A

= + . When the 

cylinder chambers are interconnected, the pressure has the tendency to be the same but, as the areas 

are different, the hydraulic force (Equation 1.33) differs from zero, causing movement.

Control mechanisms, low and pressure in directional valves. Besides the mechanical control 

mechanisms, as exempli�ed in Figure 1.38, hydraulically-controlled and solenoid-controlled valves 

are common. An example of a solenoid-controlled directional control valve is shown in Figure 1.40.

A typical characteristic curve of directional control valves is the graph of the pressure drop (Δp) 

versus the �ow rate (qV) through each �ow path, as shown in Figure 1.41. This steady-state behavior 

is described by Equation 1.13 presented above, and shows that the load loss can be different for each 

valve position (P–A, P–B, A–T, B–T).

Solenoid

A

Spool P T Housing

B

FIGURE 1.40 4/3 directional control valve, directly controlled by two solenoids with spring-centered cen-

tral position. (From Linsingen, I. von, Fundamentos de Sistemas Hidráulicos, 3rd ed., Florianópolis, Brazil: 

UFSC Ed., 2008. With permission.)
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FIGURE 1.41 Characteristic curve of the steady-state behavior of directional control valves. (From 

Linsingen, I. von, Fundamentos de Sistemas Hidráulicos, 3rd ed., Florianópolis, Brazil: UFSC Ed., 2008. With 

permission.)
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1.4.4 PRESSURE CONTROL VALVES 

One of the most important characteristics of hydraulic systems is the possibility for pressure control. 

Besides providing security against overloading, the hydraulic system has the capability of limiting 

and/or controlling the force and torque of the actuator, thereby avoiding mechanical damage.

Basically, there are two groups of pressure control valves: the normally closed (NC) valves and 

the normally open (NO) valves. In the �rst group the pressure at the inlet port is controlled and in 

the second the outlet pressure is controlled. In both cases, the valve begins to control the pressure 

when the pressure set in the control mechanism is reached.

1.4.4.1 Normally Closed Pressure Control Valves

This group includes valves that have the same operational principle but with a few construction 

differences and which thus can perform different functions in the hydraulic circuit. These are the 

pressure relief valve, counterbalance valve, unloading valve and sequence valve [20].

The pressure relief valve is usually installed in parallel with the hydrostatic pump and remains 

closed until the system pressure surpasses the set pressure, when pump �ow is partially or com-

pletely diverted to the reservoir. Figure 1.10 shows this situation where the �xed-displacement pump 

(P) runs at a constant rotational frequency, driven by the electrical motor (M), supplying a basically 

constant �ow rate to the circuit. As discussed in Section 1.3, for the effective velocity control of the 

cylinder (A) the cracking pressure of the pressure relief valve (V1) must be reached and, in this way, 

the �ow rate to the cylinder is reduced.

A typical design of a pressure relief valve is shown in Figure 1.42, which is composed of a poppet 

held in the valve seat by a spring force. In operation, the �ow enters from the bottom of the valve (port 

A). When the inlet pressure (pA) reaches the value such that the pressure times the exposed area of the 

poppet is greater than the spring setting (Fk0 = Kx0), the valve will begin to pass hydraulic �uid. Note 

that the spring must be compressed in order for the poppet to move and provide a greater �ow area.

Characteristic curves. The steady-state characteristic curve of a pressure relief valve is given 

in Figure 1.42b, which shows that the inlet pressure increases as the �ow rate through the valve 

increases. The pressure at which the valve �rst begins to open is called the “cracking pressure” and 
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FIGURE 1.42 Directly-operated pressure relief valve: (a) Illustration; (b) Steady-state characteristic curve. 

(From Linsingen, I. von, Fundamentos de Sistemas Hidráulicos, 3rd ed., Florianópolis, Brazil: UFSC Ed., 2008. 

With permission.)
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it corresponds to the set pressure through the control mechanism (screw) (pA = PAset). The override 

pressure is essentially a result of the spring force and �ow force in the valve.

The dynamic behavior of a pressure relief valve has a strong in�uence on the system pressure 

behavior, as shown in Figure 1.43. Observing the circuit in Figure 1.43a, when the directional control 

valve (V2) is closed rapidly, the displacement of the valve element (poppet) and the system pressure 

oscillate as shown in Figure 1.43b. The cushion in the valve shown in Figure 1.42a must be designed 

to reduce the pressure spikes while at same time reaching the steady state as quickly as possible.

Since the pressure in a hydraulic system is described by the mass conservation principle (Equation 

1.4) the pressure behavior is dependent on the circuit �uid volume and the �uid compressibility 

(bulk modulus) and not only on the valve behavior.

Pilot-operated valve. The pilot-operated pressure relief valve, as shown in Figure 1.44, increases 

pressure sensitivity and reduces the pressure override normally found in relief valves using only the 

direct-acting force of the system pressure against a spring element. In operation, the �uid pressure 

acts on both sides of the piston because of the small ori�ce through the piston, and the piston is 

held in the closed position by the light-bias piston spring. When the pressure increases suf�ciently 

0.6

v2v1

V2

V1

P

M

0.5

0.4

0.3

0.2

0.1 50

0 10 20 30 40 50 60 70 80 90 100 t[ms]

pp[bar]x[mm]

100

150

200

250

300

x

pp
qv

qv

pT pp

pPset

qv

(a) (b)

FIGURE 1.43 Dynamic behavior of a directly-operated pressure relief valve: (a) Test circuit; (b) Dynamic 

response.
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FIGURE 1.44 Pilot-operated pressure relief valve. (From Linsingen, I. von, Fundamentos de Sistemas 

Hidráulicos, 3rd ed., Florianópolis, Brazil: UFSC Ed., 2008. With permission.)
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to move the pilot poppet from its seat, the �uid behind the piston will be directed to a low-pressure 

area, such as the return line. The resulting pressure imbalance in the piston will cause it to move in 

the direction of the lower-pressure area, compressing the piston spring and opening the discharge 

port. This action will effectively prevent any additional increase in pressure. The setting of the pilot-

operated pressure relief valve is adjusted by the preload of the poppet spring.

The valve design shown in Figure 1.44 allows different operational con�gurations. In the con-

�guration presented, the valve can be used as a pressure relief valve and when a non-return valve is 

incorporated it becomes a counterbalance valve. Closing the internal drain and using the external 

drain (Y) results in a sequence valve, with the incorporation of a bypass non-return valve being 

optional. When the internal pilot line is closed and an external pilot signal (X) is used, the valve 

is utilized as an unloading valve. It is also possible to open the valve at low pressure or promote a 

remote control using the another external pilot port (X(a) in Figure 1.44). The symbolic representa-

tion of these valves is shown in Figure 1.45.

1.4.4.2 Normally Open Pressure Control Valves (Pressure-Reducing Valves)

Pressure-reducing valves (directly- or pilot-operated) are used to supply �uid to branch circuits at 

a pressure lower than that of the main system. Their main purpose is to bring the pressure down to 

the requirements of the branch circuit by restricting the �ow when the branch reaches some preset 

limit. One example of pressure-reducing valve is illustrated in Figure 1.46. In operation, a pressure-

reducing valve permits �uid to pass freely from port A to port B until the pressure at port B becomes 

high enough to overcome the force of the spring. At this point, the spool will move, obstructing the 

�ow to port B and thus regulating the downstream pressure. The direction of �ow is irrelevant with 

a pressure-reducing valve, as the spool will close when the pressure at port B reaches the set value. 

If free reverse �ow is required, a non-return valve must be used.

The reduced pressure (pB) must be kept constant even though there is no �ow downstream. Since 

the valve operational principle is based on the pressure drop control, an internal leakage (port Y) is 

required so that there is a continuous �ow through the control ori�ce.
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FIGURE 1.45 Pressure control valves according to ISO 5781. (a) Pressure relief valve; (b) Counterbalance 

valve; (c) Sequence valve; (d) Sequence valve with bypass non-return valve; (e) Unloading valve; (f) Remote-

controlled pressure relief valve. (From ISO, ISO 5781 - Hydraulic luid power – Pressure-reducing valves, 

sequence valves, unloading valves, throttle valves and check valves – Mounting surfaces, Switzerland, 2000. 

20p. With permission.)
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1.4.5 FLOW CONTROL VALVES

Flow rate control in a hydraulic system is commonly used to control the rod velocity of linear 

actuators or the shaft rotational frequency of hydraulic motors. There are three ways to carry out 

�ow rate control. One is to vary the speed of a �xed-displacement pump; another is to regulate the 

volumetric displacement of a variable-displacement pump. The third way is with the use of �ow 

control valves.

Flow control valves may vary from a simple ori�ce to restrict the �ow to a complex pressure-

compensated �ow control valve or �ow divider. In all designs the �ow rate control is carried out 

according to Equation 1.13, which means that the hydraulic energy is dissipated through the valve.

Uncompensated low control valves. The simplest uncompensated �ow control is the �xed-area 

ori�ce. Normally, these ori�ces are used in conjunction with a non-return valve so that the �uid 

passes through the ori�ce in one direction, but in the reverse direction the �uid may pass through the 

non-return valve, thus bypassing the ori�ce. Another design incorporates a variable-area ori�ce so 

that the effective area of the ori�ce can be increased or decreased (usually manually). One example 

of a variable-area ori�ce with a reverse-�ow non-return valve is shown in Figure 1.47. These uncom-

pensated �ow control valves are used where exact �ow control is not critical.

Restriction A

B Y

Control orifice

FIGURE 1.46 Directly-operated pressure-reducing valve. (From Linsingen, I. von, Fundamentos de Sistemas 

Hidráulicos, 3rd ed., Florianópolis, Brazil: UFSC Ed., 2008. With permission.)
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FIGURE 1.47 Uncompensated �ow control valve.
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Recalling Equation 1.13, the �ow rate through an ori�ce is dependent on the pressure drop across 

the ori�ce. Therefore, if the pressure differential increases or decreases, the �ow will also increase 

or decrease. To avoid this, a compensated �ow control valve must be used.

Pressure-compensated low control valves. A pressure-compensated �ow control valve is shown 

in Figure 1.48. In this valve, as the pressure differential across the valve from the inlet to the outlet 

increases, the �ow would also increase. However, any increase in �ow will be accompanied by a 

resulting increase in the pressure drop across the control ori�ce (A0) (Δp = pin – pB). When this pres-

sure differential begins to produce a force larger than the spring preload, the valve spool will shift 

and the secondary ori�ce (A1) will be restricted. These valves normally incorporate a non-return 

valve for a free inverse �ow.

Flow dividers. Flow dividers are also a form of �ow control valve. There are at least two 

types of �ow dividers: One is called a “priority �ow divider”; the other is a “proportional �ow 

divider.” The priority type of �ow rate control provides �ow to a critical circuit at the expense 

of other circuits in the system. Figure 1.49 [11] illustrates a priority �ow divider. In operation, 

the �ow will enter the priority �ow divider from port B. When the �ow reaches a value and the 

Spring A B

P

Fixed orificeSpool

FIGURE 1.49 Priority �ow divider. (From Sullivan, J.A. Fluid Power: Theory and Application, 2nd ed., 

USA: Prentice–Hall International, 1982, ISBN 013907668-9. With permission.)
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FIGURE 1.48 Example of pressure-compensated �ow control valve. (From Linsingen, I. von, Fundamentos de 

Sistemas Hidráulicos, 3rd ed., Florianópolis, Brazil: UFSC Ed., 2008. With permission.)
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pressure drop across the �xed ori�ce produces a force larger than that provided by the spring, 

the spool will move to the left. This action will begin to close the priority outlet port (A) and 

open the secondary outlet (B). When the �ow rate is below the designed priority �ow rate, the 

spool will be all the way to the right, the secondary outlet will be closed, and the priority outlet 

will be wide open. The proportional-type �ow divider follows the same principle as the prior-

ity �ow divider, except that two ori�ces are used and the spool is normally spring-loaded to a 

particular �ow split ratio.

1.4.6 DIRECTIONAL CONTINUOUS CONTROL VALVES

As established by ISO 5598 [19], continuous control valves are valves “that control the �ow of 

energy of a system in a continuous way in response to a continuous input signal.’

Moreover, according to the function performed by the valve in the system, these valves can be 

classi�ed as directional continuous control valves, pressure continuous control valves and �ow con-

tinuous control valves.

Observing the directional control valves described in Section 1.4.3, it can be seen that there is an 

intrinsic possibility for continuous movement of the valve element (typically the spool). However, 

several of the control mechanisms used for directional control valves, like a solenoid, detent lever, 

hydraulic pilot, and so forth, only allow the valve to move to speci�c positions.

With directional continuous control valves, continuous position changing is possible; for 

example, from the P-A/B-T position to the blocked port center position and then to the P-B/A-T 

position.

Directional continuous control valves with mechanical control are well known in mobile hydrau-

lics where the position of the command lever is de�ned by a human operator based on his or her own 

observation of the position or velocity of the cylinder or motor.

Valve technology with continuous electrical input started with the servo-valves in the early 

1940s [21]. Another notable event was the development of the proportional directional control 

valves in the late 1970s [22]. Encompassing technological principles from both these valve types, 

new products are being offered on the market, such as servo-proportional valves [23]. Regardless 

of their commercial identi�cation or construction principle, according to ISO 10770-1 [17] and 

ISO 10770-2 [18] these are electrically-modulated hydraulic �ow control valves, since they 

provide a degree of proportional �ow control in response to a continuously variable electrical 

input signal.

1.4.6.1 Servo-valves

Since their beginning in the 1940s, different conceptions have been developed and the two-stage 

valve is a representative servo-valve concept. The �rst stage (pilot stage) is composed of either a jet 

pipe valve or �apper-nozzle valve driven by a torque motor (a permanent magnet, variable reluc-

tance actuator). The second stage is a spool valve, its position being fed back in order to place the 

torque motor armature at the null position.

Figure 1.50 shows a typical servo-valve with mechanical feedback or force feedback. Other 

methods of position feedback are the spring-centered spool, direct position feedback or hydraulic 

follower, and electric feedback using a position transducer [24].

Frequently, the spool slides into a sleeve where the ports were machined. The relative position 

between the spool lands and sleeve ports then determines the �ow control ori�ces. The same solu-

tion is adopted for directly operated valves with electrical feedback, driven by a linear force motor. 

This valve design is referred to as the “servo-proportional valve” [23,25].

Advances in the manufacturing process and changes in the user requirements have led to changes 

in the construction details. For example, pilot-operated servo-valves like that shown in Figure 1.50 

but without a sleeve are also available.
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1.4.6.2 Proportional Directional Control Valves

The conception of proportional directional control valves comes from two distinct �elds: mobile 

hydraulics and industrial hydraulics. In both cases, the objective was to obtain the same functional 

characteristics as servo-valves—that is, the continuous control of �ow direction and rate, but with a 

distinct mechanical design.

The proportional valves are controlled by proportional solenoids, which, unlike the torque motor 

and linear force motor, do not comprise a permanent magnet and the force is provided in only one 

direction for any current polarity.

Figure 1.51 shows a proportional directional valve, directly controlled by two solenoids, with a 

spring-centered central position and a spool position transducer. The operation of this type of valve 

requires an electronic controller/ampli�er that receives both the external reference signal and the feed-

back signal from the position transducer, processes them and sends electrical signals to the solenoids.

There is a signi�cant diversity of proportional directional valves on the market, including valves 

without feedback position, valves with only one solenoid acting against a spring and valves with 

controller/ampli�er assembled together in the valve (on-board electronics). The metering notches 

on the spool, as shown in Figure 1.51, can be of different types and are used to de�ne the curve of 

the �ow rate against the spool displacement. However, they are not machined on all valve designs.

Valve designs with spool-sleeve mounting are also available with both smaller machining toler-

ances and radial clearances. Usually these valves include position feedback optimizing their static 
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FIGURE 1.51 Proportional directional control valve.
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FIGURE 1.50 Pilot-operated servo-valve with mechanical feedback.
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and dynamic behavior. The servo-proportional valve designation has also been used by valve manu-

factures for these construction solutions [23,26,27].

1.4.6.3 Fundamental Model and Characteristic Curves

Considering a directional continuous control valve as being the valve itself with the controller/

ampli�er, on-board or not, its main function is to control the �ow rate (output) in response to a input 

voltage (reference signal).

The valve behavior can be described through the composition of two parts—with feedback or 

without feedback. The �rst block corresponds to the transformation of the input voltage into spool 

displacement. The second one refers to the output �ow rate as a consequence of the spool displacement 

and the pressures in the supply (P), return (T), and working (A and B) ports of the valve (Figure 1.52).

In essence, the valve ampli�er controls the current applied to each proportional solenoid or to 

the pair of coils of a torque motor or linear motor. According to electromechanical principles, this 

current produces a force (or torque) that is transmitted to a valve element.

In the case of a pilot-operated servo-valve, as shown in Figure 1.50, the torque produces the pipe 

motion (on jet-pipe valves) or the �apper motion (on �apper-nozzle valves) which, in turn, changes 

the pressure on the spool sides. The pressure difference makes the resting spool change its position, 

which is fed back to the pilot valve. In directly-operated valves, as shown in Figure 1.51, the force 

produced by the electromagnetic actuator is applied directly on the spool.

Based on these principles, a dynamic relationship between the control voltage (Uc) and the spool 

displacement (xs) can be expressed by
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where KRP [m/V] is the steady-state gain (ratio between the spool displacement and control voltage in 

a steady state), ωn [rad/s] is the natural frequency and ζ [1 (non-dimensional)] is the damping ratio.

The parameter values of Equation 1.47 can be obtained from valve data sheets; for example, 

from the response time curves shown in Figure 1.53 [28]. Comparing these curves with the general 

response time of a second-order system (Figure 1.35b), it can be concluded that this valve has a 

damping ratio (ζ) close to 0.8 and a settling time (ts) of approximately 50 ms for an input of 50% 

of the maximum amplitude. Using Equation 1.43, the natural frequency is determined as 53.6 rad/s 

(8.5 Hz).

The valve catalogs also inform the response time de�ned according to ISO 10770-1 [17] and shown 

in Figure 1.35b. The approximate calculation of the natural frequency based on the response time is 

carried out using Equation 1.44, where ζ = 0.7 can be used when the value is not given in the catalog.

Another way to present the valve dynamic response is through a frequency response diagram 

(Bode diagram), where it is possible to extract directly the values of the natural frequency and 

damping ratio [16].
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FIGURE 1.52 Block diagram of the directional continuous control valve.
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The second block in Figure 1.52 refers to the �ow rate control as a function of the ori�ce opening 

and the pressures at the valve ports. By applying the concepts related to Equation 1.13, the following 

expression is valid for directional continuous control valves [14,29,30]:
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where qVc [m3/s] is the control �ow rate, Kv [(m3/s)/(Pa)1/2] is the �ow coef�cient, xcn [m] is the nomi-

nal spool displacement and Δpt [Pa] is the total pressure drop at the valve.

By combining Equations 1.47 and 1.48, one obtains the general expression for a directional con-

tinuous control valve—that is
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where D = d/t is the differential operator.

When the valve is under a steady-state condition, this equation takes the following form:
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The total pressure drop at the valve (Δpt) corresponds to the pressure drop between the supply 

port (P) and the return port (T), which, for the �ow paths P−A/B−T, is expressed by

 
∆ ∆ ∆p p p p p p pt P A B T P A B T= + = − + −− − ( ) ( ),  (1.51)

where ΔpP–A = pP – pA is the pressure drop between ports P and A and ΔpB–T = pB – pT is the pressure 

drop between ports B and T.

For the �ow paths P−B/A−T, the total pressure drop is:

 
∆ ∆ ∆p p p p p p pt P B A T S B A T= + = − + −− − ( ) ( ),  (1.52)
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FIGURE 1.53 Response time of a directional proportional valve.
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where ΔpP–B = pS – pB is the pressure drop between ports P and B and DpA–T = pA – pT is the pres-

sure drop between ports A and T.

The valve catalogs inform the nominal �ow rate (qVcn) at a determined pressure drop that can be 

either 1 MPa (10 bar), 7 MPa (70 bar), or 1/3 of the nominal supply pressure [17,18]. The nominal 

�ow occurs when the valve is operating with nominal voltage, that is, with the nominal opening. 

The �ow coef�cient (Kv [(m3/s)/(Pa)1/2] or [(lpm/(bar)1/2]) can be calculated as:
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(1.53)

The data for the Kv calculation can also be obtained from curves, as shown in Figure 1.54 [28], 

at 100% of the input signal. In this case, the nominal �ow rate presented on the data sheet is 25 

lpm@10 bar (41 × 10–3 m3/s@1 MPa) (which corresponds to curve 1).

It is important to observe that for some valves the nominal �ow is speci�ed at a partial pressure 

drop (DpP–A) and this must be multiplied by two to allow the �ow coef�cient calculation.

Constructive aspects of the directional control valves, like different center position arrangements 

(Figure 1.39) and the existence of symmetrical and asymmetrical designs, are also applicable to 

directional continuous control valves.

1.4.7 HYDRAULIC ACCUMULATORS

The purpose of a hydraulic accumulator is to store �uid or provide �uid at a certain pressure in 

order to minimize short-duration pressure spikes or to reach a short-duration high-�ow demand. 

The accumulators used in hydraulic systems can be grouped into three categories: weight-loaded 

or gravity type, spring-loaded type, and gas-loaded type [31] (Figure 1.55). The weight-loaded type 

consists of a cylinder with a piston where a mass is attached to its top. The gravitational action 

on the mass creates a constant �uid pressure, irrespective of the �ow rate and �uid volume in the 

cylinder chamber.

The spring-loaded accumulator simply uses the spring force to load the piston. When the �uid 

pressure increases to a point above the preload force of the spring, �uid will enter the accumulator 

to be stored until the pressure reduces. In this type of accumulator, the �uid pressure varies with the 

piston position and, consequently, with the �uid volume in the accumulator.

The gas-loaded accumulator can be either without separation between liquid and gas, a piston 

type or a bladder and diaphragm type, as shown in Figure 1.55. In the gas-loaded accumulator, an 

inert gas, such as dry nitrogen, is used as a pre-charge medium. In operation, this type of accumu-

lator contains the relatively incompressible hydraulic �uid and the more readily compressible gas. 

When the hydraulic pressure exceeds the pre-charge pressure exerted by the gas, the gas will com-

press, allowing hydraulic �uid to enter the accumulator. The hydraulic pressure changes with the 

volume occupied by �uid as a consequence of the pressure gas variation caused by its compression/

decompression.
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FIGURE 1.54 Flow rate versus input voltage of a directional proportional valve.

© 2012 by Taylor & Francis Group, LLC



48 Handbook of Hydraulic Fluid Technology, Second Edition

1.4.8 RESERVOIR AND ITS ACCESSORIES

A typical design for an industrial reservoir is shown in Figure 1.56 where the main parts can be 

identi�ed. The reservoir should be sized to both afford adequate �uid cooling and to enclose a suf-

�cient volume of oil to permit air bubbles and foam to escape during the residence time of the �uid 

in the reservoir. Commonly, the reservoir is sized to hold at least three times the volume of �uid 

that can be supplied by the pump in one minute. Baf�es are also provided to prevent channeling of 

the �uid from the return line to the inlet line and the bottom of the return line is usually cut at a 45° 

angle to assist in the redirection of the �uid away from the inlet.

The reservoir depth must be adequate in order to assure that during peak pump demands, the oil 

level will not drop below the pump inlet level. Moreover, the pump should be mounted below the 

reservoir so that a positive head pressure is available at all times. This is critical when water-based 

hydraulic �uids are used, as these �uids can have a higher mass density as well as a much higher 

vapor pressure than mineral-oil-based �uids.

Sight gauges are normally used to monitor the �uid level and a cleanout plate is provided to 

promote cleaning and inspection. A breather system with a �lter is also provided to admit clean 

air and to maintain atmospheric pressure as �uid is pumped into and out of the reservoir. With 

water-based hydraulic �uids, a pressurized reservoir is recommended. Special breather caps can 

be installed to vent between 0.005 MPa (0.05 bar) and 0.1 MPa (1 bar). If one of these is used, it 
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FIGURE 1.56 A typical design for an industrial reservoir. (From Norvelle, F.D. Fluid Power Technology, 

New York, NY, West Publishing Company, 1995. With permission.)
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FIGURE 1.55 Basic types of accumulators. (From Linsingen, I. von, Fundamentos de Sistemas Hidráulicos, 

3rd ed., Florianópolis, Brazil: UFSC Ed., 2008. With permission.)
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must have a vacuum brake to vent at approximately –0.003 MPa (–0.03 bar). This is an important 

feature to have so that when the reservoir is cooling down, no appreciable vacuum develops in the 

reservoir. This feature will minimize pump cavitation upon start-up and also prevent a possible 

reservoir implosion.

Recent trends in industrial manufacturing are to compact machines and equipment in order 

to economize materials, energy consumption, and required space. A reduction in the size of �uid 

power systems is encouraged in order to conserve energy and reserve oil. It is somewhat inevitable 

in designing these systems to minimize the size of the oil reservoir, meaning that the bubbles 

entrained in the oil may not be removed effectively during the �uid sojourn time in the reservoir. As 

mentioned above, in order to remove bubbles big vessels are generally used, but it takes a long time 

to eliminate minute bubbles from �uids by �otation alone.

Another solution is the device shown in Figure 1.57, which has the capacity to eliminate bubbles 

and decrease dissolved gases using a swirl �ow [33,34]. This device, called a “bubble eliminator,” 

consists of a tapered tube where the �uid containing bubbles �ows tangentially from the inlet port 

(port A) and generates a swirling �ow. Due to the difference in centrifugal forces created in the swirl 

�ow, the bubbles tend to move toward the central axis (port B) where they are collected and ejected 

through the vent port (port X).

1.4.9 FILTERS

As discussed throughout this chapter, hydraulic components are composed of mechanical elements 

with relative movement and small clearances between them. The hydraulic �uid is expected to 

create a lubricating �lm, thereby keeping precision parts separated. Particulate contaminants can 

break this �lm, cause erosion on the surfaces or even block the relative movement. Consequently, 

the hydraulic component life expectancy is reduced, impairing its performance or even causing its 

complete failure.

The contaminants in hydraulic systems come from several sources, such as the degradation of 

the circuit components, the external environment, the circuit assembly, and from the new hydraulic 

�uid which can have a standard contamination level below the system requirements.

The removal of particulate matter and silt from a hydraulic �uid is performed by �lters that can 

be installed at different locations in the hydraulic circuit, characterizing the following types of �l-

tration: suction, pressure, return and off-line �ltration [35,36].

Suction line iltration: Suction �lters are located before the suction port of the pump and provide 

pump protection against �uid contamination (Figure 1.58a). Some may be inlet strainers, submersed 

in the �uid. Others may be externally mounted. In either case, they utilize relatively coarse elements 

D C

A
Tapered tube

B

Swirling flow

Collected bubble

Cross-section DD

C

X

D

FIGURE 1.57 Bubble eliminator.
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to avoid high pressure drops that can cause cavitation on the pump. Some pump manufacturers do 

not recommend the use of a suction �lter.

Pressure line iltration: Pressure �lters are located downstream of the pump (Figure 1.58a and c). 

They usually produce the lowest system contamination levels to assure clean �uid for sensitive high-

pressure components and provide protection of downstream components from pump-generated 

contamination.

Return line iltration: In most systems, the return �lter is the last component through which �uid 

passes before entering the reservoir (Figure 1.58b). Therefore, it captures wear debris from system 

working components and particles entering through worn cylinder rod seals before such contami-

nants can enter the reservoir. A special concern in applying return �lters is sizing for a potential 

�ow rate greater than the pump output, since large rod cylinders and other components can cause 
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FIGURE 1.58 Types of �ltration: (a) Suction �lter (F1) and Pressure �lter (F2); (b) Return �lter (F1); 

(c) Pressure.
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induced return line �ows. Return lines can have substantial pressure surges, which need to be taken 

into consideration when selecting �lters and their locations. The relatively low cost and the cleanli-

ness of the �uid suctioned by the pump are factors that make the use of these �lters attractive.

Re-circulating or off-line iltration: Off-line �ltration consists of a hydraulic circuit with at least a 

pump and its prime mover and a �lter. These components are installed off-line as a small subsystem 

separate from the working lines or can be included in a �uid-cooling loop (Figure 1.58c). As with 

a return line �lter, this type of system is best suited to the maintenance of overall cleanliness, but 

does not provide speci�c component protection. An off-line �ltration loop has the added advantage 

of being relatively easy to retro�t on an existing system that has inadequate �ltration. Also, the �lter 

can be serviced without shutting down the main system.

The circuits shown in Figure 1.10 through 1.12 also present some examples of �lter installations. 

In general, the systems can incorporate multiple �ltration techniques, using a combination of suc-

tion, pressure, return, and off-line �lters.

1.4.10 HYDRAULIC FLUID

The main characteristic of hydraulic systems, as well as of pneumatic systems, is their requirement 

that matter �ow in such a way as to promote the �ow of energy. As discussed in Section 1.1, the 

hydraulic system must perform three fundamental functions in terms of the energy: primary conver-

sion, limitation and control, and secondary conversion. A fourth function is related to �uid storage 

and conditioning. This function is required because the �uid must be available for the energy trans-

mission, and since the �uid is continuously in contact with the hydraulic components its proprieties 

must be controlled.

Fluid proprieties such as viscosity, mass density, vapor pressure, contamination, gas solubility, 

and bulk modulus change the physical relations modeled by the continuity equation, and conserva-

tion of energy, among others. Therefore, besides causing component degradation, the modifying of 

physical proprieties also changes the hydraulic system behavior.

Throughout the chapters of this Handbook the proprieties of different �uids that are used in 

hydraulic systems are analyzed as well as their effect on the life and behavior of the components.
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Appendix

Equipment Builder’s Viscosity Guidelines for Hydraulic



Fluids

NFPA T2.13.13 2002 n Equipment Operating Startup (Under
Load) Optimum Minimum mm 2 /s (cSt) Maximum mm 2 /s (cSt)
Maximum mm 2 /s (cSt) mm 2 /s (cSt)

Bosch (see Rexroth

Corporation)

Commercial

Intertech (see Parker

Hanni�n)

Danfoss (see

Sauer-Danfoss, USA)

Denison Hydraulics

SPO-AM305 Piston Pumps Vane Pumps 10 10 162 107 1618 860
(low speed and pressure) 30 30

Dynex/Rivett

axial piston pumps PF4200 Series PF2006/8, PF/PV4000, and
PF/PV6000 Series PF 1000, PF2000 and PF3000 Series 1.5
2.3 3.5 372 413 342 372 413 342 20-70 20-70 20-70

Eaton Heavy-Duty Piston Pumps and Motors, MediumDuty
Piston Pumps and Motors Char ged Systems, Light-Duty Pumps
Medium-Duty Piston Pumps and Motors – Non-charged Systems
Gear Pumps, Motor, and Cylinders 6 6 6 – – – 2158 432
2158 10-39 10-39 10-43

Eaton - Vickers Mobile Piston Pumps Industrial Piston Pumps
Mobile Vane Pumps Industrial Vane Pumps 10 13 9 13 200 54
54 54 860 220 860 860 16-40 16-40 16-40 16-40

Eaton - Char-Lynn J, R, and S Series Motors, and Disc
Valve Motors A Series and H Series Motors 13 20 – – 2158
2158 20-43 20-43

Haldex Barnes W Series Gear Pumps 11 – 750 21

Kawasaki

P-969-0026



P-969-0190 Staffa Radial Piston Motors K3V/G Axial Piston
Pumps 25 10 150 200 2000 (no load) 1000 50

Linde All 10 80 1000 15-30

Mannesmann Rexroth

(see Rexroth

Corporation) (continued)

NFPA T2.13.13 2002 (Continued) n Equipment Operating
Startup (Under Load) Optimum Minimum mm 2 /s (cSt) Maximum
mm 2 /s (cSt) Maximum mm 2 /s (cSt) mm 2 /s (cSt)

Parker Hanni�n Roller and Sleeve-Bearing Gear Pumps
Gerotor Motors Gear Pumps PGH Series Gear Pumps D/H/M
Series Hydraulic Steering PFVH / PFVI Vane Pumps Series T1
VCR2 Series Low-Speed High-Torque Motors Variable Vol
Piston Pumps PVP and PVAC Axial-Fixed Piston Pumps Variable
Vol Vane - PVV 10 8 – – 8 – 10 13 10 – – – – – – – – – –
– – – – – – – 1600 – 1000 1000 – 1000 1000 1000 – 1000 1000
850 440 20 12-60 17-180 17-180 12-60 17-180 10-400 – –
17-180 17-180 12-100 16-110

Poclain Hydraulics H and S Series Motors 9 – 1500 20-100

Rexroth Corporation

F orm No S/106 US FA, RA,; K Q, Q-6, SV-10, 15, 20, 25,
VPV 16, 25, 32 SV-40, 80 and 100 VPV 45, 63, 80, 100,
130,164 Radial Piston (SECO) Axial and RKP Piston V3, V4,
V5, V7 Pumps V2 Pumps R4 Radial Piston Pumps G2, G3, G4
Pumps and Motors G8, G9, G10 Pumps 15 21 32 10 14 25 16 10
10 216 216 216 65 450 – 160 200 300 864 864 864 162 647 800
800 – 1000 26-45 32-54 43-64 21-54 32-65 25-160 25-160
25-160 25-160

Rotary Power “SMA” Radial Piston Motor 15 – 1000 20-200

Sauer-Danfoss, USA Steering and Valves PVG Valves Gear
Pumps and Motors Closed-Circuit Axial Piston Pumps and
Motors Open-Circuit Axial Piston Pumps Bent Axis Motors
LSHT Motors 10 4 10 7 6 7 10 – – – – – – – 1000 460
1600 1600 1000 1600 1000 12-60 12-75 20-40 12-60 9-110
12-60 20-75

Sauer-Danf oss,



GmbH Series 10 and 20, RMF(Hydrostatic Motor) Series 15
Open Circuit Series 40, 42, 51 and 90 CW S-8 Hydrostatic
Motor Series 45 Series 60, LPM (Hydrostatic Motor) Gear
Pumps plus Motors 7 12 7 9 9 10 – – – – – – 1000 860
1600 1000 1600 1000 12-60 12-60 12-60 12-60 12-60 12-60

Su ndstrand (see

Sauer-Danfoss, USA)
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GLOSSARIES

Acid Number: A measure of the amount of KOH needed to
neutralize all or part of the acidity of a petroleum
product.



Additive: Any material added to base stock to change its
properties, characteristics, or performance.

Anhydrous: A lubricating grease without water (as
determined by ASTM D 128).

Aniline Point: The lowest temperature at which equal
volumes of aniline and hydrocarbon fuel or lubricant base
stock are completely miscible. A measure of the aromatic
content of a hydrocarbon blend, used to predict the
solvency of a base stock or the cetane number of a
distillate fuel.

Apparent Viscosity: A measure of the viscosity of a
non-Newtonian �uid under speci�ed temperature and shear
rate conditions.

Bactericide: Additive to inhibit bacterial growth in the
aqueous component of �uids, preventing foul odors.

Bases: Compounds that react with acids to form salts plus
water. Alkalis are water-soluble bases, used in petroleum
re�ning to remove acidic impurities. Oil-soluble bases are
included in lubricating oil additives to neutralize acids
formed during the combustion of fuel or oxidation of the
lubricant.

Base Number: The amount of acid (perchloric or
hydrochloric) needed to neutralize all or part of a
lubricant’s basicity, expressed as KOH equivalents.

Base Stock: The base �uid, usually a re�ned petroleum
fraction or a selected synthetic material, into which
additives are blended to produce �nished lubricants.

Bleeding: Separation of liquid lubricant from grease. ing
desired physical properties.

Boundary Lubrication: Lubrication between two rubbing
surfaces without the development of a full �uid
lubricating �lm. It occurs under high loads and requires
the use of antiwear or extreme-pressure (EP) additives to
prevent metal-to-metal contact.

Bright Stock: A heavy residual lubricant stock with low
pour point, used in �nished blends to provide good bearing
lm strength, prevent scuf�ng, and reduce oil consumption.
Usually identi�ed by its viscosity, SUS at 210°F, or cSt
at 100°C.



Brookfield Viscosity: Measure of apparent viscosity of a
non-Newtonian �uid as determined by the Brook�eld
viscometer at a controlled temperature and shear rate.

Bulk Appearance: Appearance of an undisturbed grease
surface. Bulk appearance is described by:

• Bleeding: Free oil on the surface (or in the cracks of a
cracked grease.)

• Cracked: Surface cracks.

• Grainy: Composed of small granules or lumps of
constituent thickener.

• Rough: Composed of small irregularities.

• Smooth: Relatively free of irregularities.

Cetane Number: A measure of the ignition quality of a
diesel fuel, as determined in a standard single cylinder
test engine, which measures ignition delay compared to
primary reference fuels. The higher the cetane number, the
easier a high-speed, direct-injection engine will start,
and the less “white smoking” and “diesel knock” after
startup.

Cloud Point: The temperature at which a cloud of wax
crystals appears when a lubricant or distillate fuel is
cooled under standard conditions. Indicates the tendency of
the material to plug �lters or small ori�ces under cold
weather conditions.

Coefficient of Friction: Coef�cient of static friction is
the ratio of the tangential force initiating sliding
motion to the load perpendicular to that motion. Coef�cient
of kinetic friction (usually called “coef�cient of
friction”) is the ratio of the tangential force sustaining
sliding motion at constant velocity to the load
perpendicular to that motion.

Cohesion: Molecular attraction between grease particles
contributing to its resistance to �ow.

Complex Soap: A soap crystal or �ber formed usually by
co-crystallization of two or more compounds. Complex soaps
can be a normal soap (such as metallic stearate or oleate),
or incorporate a complexing agent which causes a change in
grease characteristics—usually recognized by an increase



in dropping point.

Consistency: The resistance of a lubricating grease to
deformation under load. Usually indicated by ASTM Cone
Penetration, ASTM D 217 (IP 50), or ASTM D 1403.

Copper Strip Corrosion: A qualitative measure of the
tendency of a petroleum product to corrode pure copper.

Corrosion: The wearing away and/or pitting of a metal
surface due to chemical attack.

Corrosion Inhibitor: An additive that protects lubricated
metal surfaces from chemical attack by water or other
contaminants.

Demulsibility: A measure of the �uid’s ability to separate
from water.

Density: Mass per unit volume.

Dispersant: An additive that helps keep solid contaminants
in a crankcase oil in colloidal suspension, preventing
sludge and varnish deposits on engine parts. Usually
nonmetallic (“ashless”), and used in combination with
detergents.

Dropping Point: The temperature at which grease becomes
soft enough to form a drop and fall from the ori�ce of the
test apparatus of ASTM D 566 (IP 132) and ASTM D 2265.

Dry Film Lubricant: A low shear-strength lubricant that
shears in one particular plane within its crystal
structure (such as graphite, molybdenum disul�de and
certain soaps). and high speeds in rolling elements where
the mating parts deform elastically due to the
incompressibility of the lubricant �lm under very high
pressure.

Emulsifier: Additive that promotes the formation of a
stable mixture, or emulsion, of oil and water.

Evaporation Loss: The loss of a portion of a lubricant due
to volatization (evaporation). Test methods include ASTM D
972 and ASTM D 2595.

Extreme Pressure Property: That property of a grease that,
under high applied loads, reduces scuf�ng, scoring, and
seizure of contacting surfaces. Common laboratory tests are
Timken OK Load (ASTM D 2509 and ASTM D 2782) and 4-Ball



Load Wear Index (ASTM D 2596 and ASTM D 2783).

Flash Point: Minimum temperature at which a �uid will
support instantaneous combustion (a �ash) but before it
will burn continuously (�re point). Flash point is an
important indicator of the �re and explosion hazards
associated with a petroleum product.

Friction: Resistance to motion of one object over another.
Friction depends on the smoothness of the contacting
surfaces, as well as the force with which they are pressed
together.

Fretting: Wear characterized by the removal of �ne
particles from mating surfaces. Fretting is caused by
vibratory or oscillatory motion of limited amplitude
between contacting surfaces.

Fuel Ethanol: Ethanol (ethyl alcohol, C 2 H 5 OH) with
impurities, including water but excluding denaturants.

Homogenization: The intimate mixing of grease to produce a
uniform dispersion of components.

Hydrolytic Stability: Ability of additives and certain
synthetic lubricants to resist chemical decomposition
(hydrolysis) in the presence of water.

Kinematic Viscosity: Measure of a �uid’s resistance to �ow
under gravity at a speci�c temperature (usually 40°C or
100°C).

Lubricating Grease: A solid to semi�uid dispersion of a
thickening agent in liquid lubricant containing additives
(if used) to impart special properties.

Naphthenic: A type of petroleum �uid derived from
naphthenic crude oil, containing a high proportion of
closed-ring methylene groups.

Neutralization Number: A measure of the acidity or
alkalinity of an oil. The number is the mass in milligrams
of the amount of acid (HC1) or base (KOH) required to
neutralize one gram of oil.

Neutral Oil: The basis of most commonly used automotive and
diesel lubricants; they are light overhead cuts from
vacuum distillation.

Newtonian Behavior: A lubricant exhibits Newtonian behavior



if its shear rate is directly proportional to the shear
stress. This constant proportion is the viscosity of the
liquid.

Newtonian Flow: Occurs in a liquid system where the rate of
shear is directly proportional to the shearing force. When
shear rate is not directly proportional to the shearing
force, �ow is non-Newtonian.

NLGI Number: A scale for comparing the consistency
(hardness) range of greases (numbers are in order of
increasing consistency). Based on the ASTM D 217 worked
penetration at 25°C (77°F).

Non-Newtonian Behavior: The property of some �uids and many
plastic solids (including grease), of exhibiting a
variable relationship between shear stress and shear rate.

Non-Soap Thickener: Specially treated or synthetic
materials (not including metallic soaps) dispersed in
liquid lubricants to form greases. Sometimes called
“synthetic thickener,” “inorganic thickener,” or “organic
thickener.”

Oxidation: Occurs when oxygen attacks petroleum �uids. The
process is accelerated by heat, light, metal catalysts and
the presence of water, acids, or solid contaminants. It
leads to increased viscosity and deposit formation.

Oxidation Inhibitor: Substance added in small quantities to
a petroleum product to increase its oxidation resistance,
thereby lengthening its service or storage life; also
called “antioxidant.”

Paraffinic: A type of petroleum �uid derived from paraf�nic
crude oil and containing a high proportion of straight
chain saturated by hydrocarbons; often susceptible to
cold-�ow problems.

Poise: Measurement unit of a �uid’s resistance to �ow
(i.e., viscosity), de�ned by the shear stress (in dynes
per square centimeter) required to move one layer of �uid
along another over a total layer thickness of one
centimeter at a velocity of one centimeter per second. This
viscosity is independent of �uid density and directly
related to �ow resistance. Viscosity shear stress shear
rate dynes/cm cm/s/cm = dynes/cm 2 = = 2 s =1 poise

Pour Point: An indicator of the ability of an oil or
distillate fuel to �ow at cold operating temperatures. It



is the lowest temperature at which the �uid will �ow when
cooled under prescribed conditions.

Pour Point Depressant: Additive used to lower the pour
point or low-temperature �uidity of a petroleum product.

Pumpability: The low temperature, low shear stress-shear
rate viscosity characteristics of an oil that permit
satisfactory �ow to and from the engine oil pump and
subsequent lubrication of moving components.

Rheology: The deformation and/or �ow characteristics of
grease in terms of stress, strain, temperature, and time
(commonly measured by penetration and apparent viscosity).

Rust Preventative: Compound for coating metal surfaces with
a �lm that protects against rust. Commonly used to
preserve equipment in storage.

Saponification: The formation of a metallic salt (soap) due
to the interaction of fatty acids, fats, or esters
generally with an alkali.

Sludge: A thick, dark residue, normally of mayonnaise
consistency, that accumulates on nonmoving engine interior
surfaces. Generally removable by wiping unless baked to a
carbonaceous consistency. Its formation is associated with
insolubles overloading of the lubricant.

Stoke (St): Kinematic measurement of a �uid’s resistance to
ow de�ned by the ratio of the �uid’s dynamic viscosity to
its density.

Synthetic Lubricant: Lubricating �uid made by chemically
reacting materials of a speci�c chemical composition to
produce a compound with planned and predictable properties.

Texture: The texture of a grease is observed when a small
portion of it is pressed together and then slowly drawn
apart. Texture can be described as:

• Brittle: ruptures or crumbles when compressed

• Buttery: separates in short peaks with no visible �bers

• Long fibers: stretches or strings out into a single
bundle of �bers

• Resilient: withstands a moderate compression without
permanent deformation or rupture



• Short fiber: short break-off with evidence of �bers

• Stringy: stretches or strings out into long �ne threads,
but with no evidence of �ber structure

Thickener: The structure within a grease of extremely
small, uniformly dispersed particles in which the liquid
is held by surface tension and/or other internal forces.
study of lubrication, friction, and wear.

Viscosity: A measure of a �uid’s resistance to �ow.

Viscosity Index: Relationship of viscosity to temperature
of a �uid. High-viscosity-index �uids tend to display less
change in viscosity with temperature than
low-viscosity-index �uids.

Viscosity Modifier: Lubricant additive, usually a
high-molecular-weight polymer, that reduces the tendency
of an oil’s viscosity to change with temperature.

Water Resistance: The resistance of a lubricating grease to
adverse effects due to the addition of water to the
lubricant system. Water resistance is described in terms of
resistance to washout due to submersion (see ASTM D1264)
or spray (see ASTM D4049), absorption characteristics and
corrosion resistance (see ASTM D1743).

White Oil: Highly re�ned lubricant stock used for specialty
applications such as cosmetics and medicines.

Yield: The amount of grease (of a given consistency) that
can be produced from a speci�c amount of thickening agent;
as yield increases, percent thickener decreases.
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APPENDIX 1

International Specifications and Use Guides for
Fire-Resistant Hydraulic Fluids Including

Phosphate Esters

Organization Standard Number Title

ISO 6743–4 Lubricants, industrial oils and related products
(class L). Classi�cation—Part 4: Family H (Hydraulic
systems)

ISO 7745 Hydraulic Fluid Power—Fire-resistant (FR)
�uids—Guidelines for use

ISO

ISO

CEN 10050 12922 TR14489 Lubricants, industrial oils and
related products (class L)— Family T (Turbines) —
Speci�cations of triaryl phosphate ester turbine control
uids (category ISO-L-TCD) Lubricants, industrial oils and
related products (class L)— Family H (hydraulic
systems)—Speci�cations for categories HFAE, HFAS, HFB, HFC,
HFDR and HFDU Fire-resistant hydraulic �uids—Classi�cation
and speci�cation—Guidelines on selection for the
protection of safety, health and the environment

ISO 11365 Maintenance and use guide for triaryl phosphate
ester turbine control �uids

Additional National Specifications and Use Guides for
Fire-Resistant Fluids Including

Phosphate Esters

Country Organization Standard number Title

Canada Canadian Standards CSA M423–M87 Fire-resistant
hydraulic �uids

China Chinese National Standards DL/T 571–95 Guide for
acceptance, in-service supervision, and maintenance of
�re-resistant �uid used in power plant



Germany DIN 24320 Schwerent�ammbare
Flüssigkeiten—Flüssigkeiten der Kategorien HFAE and
HFAS—Eigenschaften und Anforderungen

India Indian Bureau of Standards IS: 10531 Code of
practice for the selection and use of �reresistant �uids

USA ANSI/(NFPA) T2.13.8 T2.13.1 T2.13.5 Hydraulic �uid
power—Fire-resistant �uids— De�nitions, classi�cations and
testing Practice for the use of �re-resistant hydraulic
uids for industrial �uid power systems Hydraulic �uid
power—Industrial systems—Practice for the use of high
water content �uids Key to Appendix 1 ISO International
Standards Organization IEC International Electrotechnical
Commission ANSI American National Standards Institute NFPA
National Fluid Power Association (USA)

APPENDIX 2 Suitable Test Methods for Monitoring Phosphate
Ester Quality Fluid property Test method Kinematic
viscosity ISO 3104 Neutralization no. ISO 6618/6619 Pour
point ISO 3016 Density ISO 3675 Foaming ISO 6247 Air
release ISO 9120 Rust pre vention ISO 7120 Corrosion
protection ISO 4404-2 Water content ISO 760 Flash/�re
points ISO 2592 Spray ignition ISO 15029-2 Hot surface
ignition ISO 20823 Wick �ame persistence ISO 14935
Particulate levels ISO 11500/4406 Emulsion stability ISO
6614 Color ISO 2049 Volume resistivity IEC 60247 Chlorine
content IP 510 Mineral oil Thin-layer chromatography Metal
content ASTM D2788 (mod)
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