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Preface to the Second Edition

This book is a significant revision of the first edition of the Handbook of Hydraulic Fluid
Technology, which was edited by Dr. George E. Totten and published 10 years ago. Since the origi-
nal publication of this text, no other similar book has been published that treats hydraulic fluids as
a component of a hydraulic system and addresses all the major aspects of hydraulic fluid technol-
ogy. In view of the unique position of the Handbook of Hydraulic Fluid Technology, a decision was
made to significantly update this invaluable text.

The Handbook of Hydraulic Fluid Technology—Second Edition contains 21 chapters.
Chapter 1: Fundamentals of Hydraulic Systems and Components, Chapter 5: Control and
Management of Particle Contamination in Hydraulic Fluids, Chapter 11: Noise and Vibration of
Fluid Power Systems, and Chapter 18: Biobased and Biodegradable Hydraulic Oils have been com-
pletely rewritten to more effectively address and expand coverage of critical new technology devel-
opments. Chapter 21: Food-Grade Hydraulic Fluids, is a newly added chapter to the book. The
remaining chapters of the book have been revised and updated, and in many cases substantially. The
updated and expanded coverage necessitated the elimination of three chapters from the first edition:
Lubricant Additives for Mineral Oil-Based Hydraulic Fluids, Bearing Selection, and Lubrication
and Electro-Rheological Fluids. With the exception of the chapter on electro-rheological fluids, the
necessary content has been integrated into the remaining chapters of the book as appropriate. In
general, the Handbook of Hydraulic Fluid Technology—Second Edition is a substantially new text
on this very important critical hydraulics technology.

The editors of the Handbook of Hydraulic Fluid Technology—Second Edition are George
E. Totten, PhD and Victor De Negri, D.Eng. Both editors are deeply indebted to the contributing
authors for their vital assistance in completing this project. The editors also express appreciation to
the staff of CRC Press for the opportunity to undertake this task and for their ongoing encourage-
ment and vital support during all aspects of the book, from concept to production. Most importantly,
the encouragement of our families is particularly appreciated.

George E. Totten
Texas A&M University
College Station, TX, USA

Victor J. De Negri

Federal University of Santa Catarina
Florian6polis, SC, Brazil
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Preface to the First Edition

One of the most frustrating practices of my career has been the search for information on hydraulic
fluids, which includes information on fluid chemistry; physical properties; maintenance practices;
and fluid, system, and component design. Although some information on petroleum oil hydraulic
fluids can be found, there is much less information on fire resistant, biodegradable, and other types
of fluids. Unfortunately, with few exceptions, fluid coverage in hydraulic texts is typically limited to
a single-chapter overview intended to cover all fluids. Therefore, it is often necessary to perform a
literature search or a time-consuming manual search of my files. Some time ago, it occurred to me
that others must be encountering the same problem. There seemed to be a vital need for an extensive
reference text on hydraulic fluids that would provide information in sufficient depth and breadth to
be of use to the fluid formulator, hydraulic system designer, plant maintenance engineer, and others
who serve the industry.

Currently, there are no books dedicated to hydraulic fluid chemistry. Most hydraulic fluid treat-
ment is found in handbooks, which primarily focus on hydraulic system hardware, installation, and
troubleshooting. Most of these books fit into one of two categories. One type of book deals with
hydraulic equipment, with a single, simplified overview chapter covering all hydraulic fluids, but
with a focus on petroleum-derived fluids. The second type of book provides fluid coverage with
minimal, if any, discussion of engineering properties of importance in a hydraulic system.

The purpose of the Handbook of Hydraulic Fluid Technology is to provide a comprehensive and
rigorous overview of hydraulic fluid technology. The objective is not only to discuss fluid chemistry
and physical properties in detail, but also to integrate both classic and current fundamental lubrica-
tion concepts with respect to various classes of hydraulic fluids. A further objective is to integrate
fluid dynamics with respect to their operation in a hydraulic system in order to enable the reader
to obtain a broader understanding of the total system. Hydraulic fluids are an important and vital
component of the hydraulic system.

The 21 chapters of this book are grouped into three main parts: hardware, fluid properties and
testing, and fluids.

HARDWARE

Chapter 1 provides the reader with an overview of basic hydraulic concepts, a description of the
components, and an introduction to hydraulic system operation. In Chapter 2, the rolling element
bearings and their lubrication are discussed. An extremely important facet of any well-designed
hydraulic system is fluid filtration. Chapter 3 not only provides a detailed discussion of fluid filtra-
tion and particle contamination and quantification, but also discusses fluid filterability.

An understanding of the physical properties of a fluid is necessary to understand the performance
of a hydraulic fluid as a fluid power medium. Chapter 4 features a thorough overview of the physical
properties, and their evaluation and impact on hydraulic system operation, which includes: viscos-
ity, viscosity-temperature and viscosity-pressure behavior, gas solubility, foaming, air entrainment,
air release, and fluid compressibility and modulus.

FLUID PROPERTIES AND TESTING

Viscosity is the most important physical property exhibited by a hydraulic fluid. Chapter 5 presents
an in-depth discussion of hydraulic fluid viscosity and classification. The hydraulic fluid must not
only perform as a power transmission medium, but also lubricate the system. Chapter 6 provides a
thorough review of the fundamental concepts involved in lubricating a hydraulic system. In many

xi
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xii Preface to the First Edition

applications, fluid fire resistance is one of the primary selection criteria. An overview of historically
important fire-resistance testing procedures is provided in Chapter 7, with a discussion of cur-
rently changing testing protocol required for industry, national, and insurance company approvals.
Ecological compatibility properties exhibited by a hydraulic fluid is currently one of the most inten-
sive research areas of hydraulic fluid technology. An overview of the current testing requirements
and strategies is given in Chapter 8.

One of the most inexpensive but least understood components of the hydraulic system is hydrau-
lic seals. Chapter 9 provides a review of mechanical and elastomeric seal technology and seal com-
patibility testing. An often overlooked but vitally important area is adequate testing and evaluation
of hydraulic fluid performance in a hydraulic system. Currently, there is no consensus on the best
tests to perform and what they reveal. Chapter 10 reviews the state-of-the-art of bench and pump
testing of hydraulic fluids. Vibrational analysis is not only an important plant maintenance tool, but
it is also one of the most important diagnostic techniques for evaluating and troubleshooting the
operational characteristics of a hydraulic system. An introductory overview of the use of vibrational
analysis in fluid maintenance is given in Chapter 11. No hydraulic system operates trouble-free
forever. When problems occur, it is important to be able to identify both the problem and its cause.
Chapter 12 provides a thorough discussion of hydraulic system failure analysis strategies.

FLUIDS

Although water hydraulics do not constitute a major fluid power application, they are coming under
increasing scrutiny as ecocompatible alternatives to conventional hydraulic fluids. Chapter 13 offers
an overview of this increasingly important technology.

The largest volume fluid power medium is petroleum oil. In Chapter 14, the reader is provided
with a thorough overview of oil chemistry, properties, fluid maintenance, and change-out proce-
dures. Chapter 15 reviews additive technology for petroleum oil hydraulic fluids. There are various
types of synthetic hydraulic fluids. A description of the more important synthetic fluids, with a focus
on aerospace applications, is given in Chapter 16.

Chapters 17 to 20 describe fire-resistant hydraulic fluids. Emulsions, water glycols, polyol esters,
and phosphate esters are discussed individually and in depth in Chapters 17, 18, 19, and 20, respec-
tively. This discussion includes fluid chemistry, physical properties, additive technology, mainte-
nance, and hydraulic system conversion.

Vegetable oils are well-known lubricants that have been examined repeatedly over the years.
Currently, there is an intensive effort to increase the utilization of various types of vegetable oils
as an ecologically sound alternative to mineral oil hydraulic fluids. Chapter 21 provides a review of
vegetable oil chemistry, recovery, and properties. The applicability of these fluids as hydraulic fluid
basestocks is examined in detail.

Chapter 22 discusses electrorheological fluids, which are becoming increasingly interesting for
use in specialized hydraulic applications. In Chapter 23, various standardized fluid maintenance
procedures are discussed and a summary of equivalent international testing standards is provided.

The preparation of a text of this scope was a tremendous task. I am deeply indebted to many col-
leagues for their assistance, without whom this text would not have been possible. Special thanks go
to Dr. Stephen Lainer (University of Aachen), Professor Atsushi Yamaguchi (Yokohama National
University), Professor Toshi Kazama (Muroran Institute of Technology), K. Mizuno (Kayaba
Industrial Ltd.), and Jiirgen Reichel (formerly with DMT, Essen, Germany).

Special thanks also goes to my wife, Alice, for her unending patience, and to Susan Meeker,
who assisted in organizing and editing much of this material; to Glenn Webster, Roland J. Bishop,
Jr., and Yinghua Sun, without whose help this text would never have been completed; and to Union
Carbide Corporation for its support.

George E. Totten

© 2012 by Taylor & Francis Group, LLC



Editors

George E. Totten received his BS and MS degrees from Fairleigh Dickinson University in New
Jersey and his PhD from New York University. Dr. Totten is past president of the International
Federation for Heat Treating and Surface Engineering (IFHTSE) and a fellow of ASM International,
SAE International, IFHTSE and ASTM International. Dr. Totten is an adjunct professor at Texas
A&M University in College Station, TX and he is also president of G.E. Totten & Associates LLC, a
research and consulting firm specializing in thermal processing and industrial lubrication problems.

Dr. Totten is the author or coauthor (editor) of over 500 publications including patents, techni-
cal papers, book chapters, and books, which include Handbook of Hydraulic Fluid Technology;
Handbook of Aluminum Vol. 1 and Vol. 2; Handbook of Lubrication and Tribology — Volume 1:
Application and Maintenance; Handbook of Quenchants and Quenching Technology, Quenching
Theory and Technology, 2nd edition; Steel Heat Treatment Handbook; Handbook of Residual
Stress and Deformation of Steel; Handbook of Metallurgical Process Design; and the ASTM Fuels
and Lubricants Handbook: Technology, Properties, Performance, and Testing (MNL 37).

Victor Juliano De Negri, D.Eng. received his mechanical engineering degree in 1983, from
UNISINOS, Brazil, a M.Eng. degree in 1987 and a D.Eng. degree in 1996, both from UFSC, Brazil.
Since 1995, he has been associate professor in the mechanical engineering department at the Federal
University of Santa Catarina (UFSC). He is currently the head of the Laboratory of Hydraulic and
Pneumatic Systems (LASHIP). He is a member of the Brazilian Society of Mechanical Sciences
and Engineering (ABCM) and LASHIP official company representative to the National Fluid Power
Association (NFPA). His research areas include analysis and design of hydraulic and pneumatic
systems and components and design methodologies for automation and control of equipment and
processes. He has coordinated several research projects with industry and governmental agencies in
the areas of hydraulic components, power-generating plants, mobile hydraulics, pneumatic systems,
and positioning systems. He supervised 40 academic works including master’s and doctorate theses
and final term projects. He has 2 patents and written more than 90 journal and technical papers,
conference papers, and magazine articles.

xiii

© 2012 by Taylor & Francis Group, LLC



Contributors

Christa M.A. Chilson
PolyMod® Technologies Inc.
Fort Wayne, Indiana

Donald L. Clason
The Lubrizol Corporation
Mentor, Ohio

Victor J. De Negri

Department of Mechanical Engineering
Federal University of Santa Catarina
Florianépolis, Brazil

Acires Dias

Department of Mechanical Engineering
Federal University of Santa Catarina
Florianépolis, Brazil

Brian B. Filippini
The Lubrizol Corporation
Wickliffe, Ohio

Jim C. Fitch
Noria Corporation
Tulsa, Oklahoma

Samir N.Y. Gerges

Department of Mechanical Engineering
Federal University of Santa Catarina
Florianépolis, Brazil

Lois J. Gschwender
Air Force Research Laboratory
Wright-Patterson Air Force Base, Ohio

Sibtain Hamid
Lubriplate Lubricants Co.
Toledo, Ohio

Lou A.T. Honary
Department of Marketing
University of Northern Iowa
Cedar Falls, Iowa

© 2012 by Taylor & Francis Group, LLC

D. Nigel Johnston

Department of Mechanical Engineering
University of Bath

Bath, UK.

Toshi Kazama

Department of Mechanical Systems
Engineering

Muroran Institute of Technology

Muroran, Japan

Bernard G. Kinker
Consultant to Evonik RohMax USA, Inc.
Kintnersville, Pennsylvania

Kari T. Koskinen

Department of Intelligent Hydraulics and
Automation

Tampere University of Technology

Tampere, Finland

Irlan von Linsingen
Mechanical Engineering Department
Federal University of Santa Catarina
Florianépolis, Brazil

Kenneth C. Ludema

Department of Mechanical Engineering
University of Michigan

Ann Arbor, Michigan

Paul W. Michael

Fluid Power Institute

Milwaukee School of Engineering
Milwaukee, Wisconsin

John J. Mullay
The Lubrizol Corporation
Wickliffe, Ohio

W.D. Phillips

W David Phillips & Associates
Stockport, U.K.

XV



XVi

In-Sik Rhee

Development and Engineering Center
U.S. Army TARDEC

Warren, Michigan

Leonardo Zanetti Rocha

Department of Mechanical Engineering
Federal University of Santa Catarina
Florianépolis, Brazil

John R. Sander
Lubrication Engineers, Inc.
Wichita, Kansas

John V. Sherman
BASF Corporation
Wyandotte, Michigan

Ronald L. Shubkin
Albemarle Corporation
Baton Rouge, Louisiana

D. Smrdel
The Lubrizol Corporation
Wickliffe, Ohio

Carl E. Snyder, Jr.
University of Dayton Research Institute
Dayton, Ohio

© 2012 by Taylor & Francis Group, LLC

Contributors

Yinghua Sun
Union Carbide Corporation
Tarrytown, New York

George E. Totten

Department of Mechanical Engineering
Texas A&M University

College Station, TX

Paula R. Vettel
Primagy
Downers Grove, Illinois

Matti J. Vilenius

Department of Intelligent Hydraulics and
Automation

Tampere University of Technology

Tampere, Finland

Thomas S. Wanke

Milwaukee School of Engineering
Fluid Power Institute

Milwaukee, Wisconsin

Lavern D. Wedeven
Wedeven Associates, Inc.
Edgmont, Pennsylvania

Ronald E. Zielinski
PolyMod® Technologies Inc.
Fort Wayne, Indiana



1

Fundamentals of Hydraulic
Systems and Components

Irlan von Linsingen and Victor J. De Negri'

CONTENTS
L1 INEFOQUCHION ..ottt sttt ettt s s 2
1.2 Hydromechanical PrinCiples.........cocceiiiiiriiiiniiieieieieetesieeeette ettt 3
1.2.1 Hydrostatics: Pascal’s PrinCiple ..........coccooieriiiiniiiiiiniieiiiiiicneeeeeiesteeeesieeesiens 3
1.2.2  Hydrodynamics: Conservation Of MassS........c.ceoeeierieeiiniinienienieneenieseenieeeesieeienieens 4
1.2.3 Hydrostatic Press: Linear MOtION .......c.coueriiienieiieniieicieeiesieete sttt 5
1.2.4 Hydrostatic Transmission: Rotary MOtION .......c..cecueveeiinieiiinieneiienenieneeeesieeeniens 6
1.2.5 Hydrodynamics: Conservation of ENeIrgy .......cccccecevieiiniiiiniieniiecnienieneeienieeieniens 8
1.3 HYATraulic CITCUILS....c.uirtteiieiieieeiiesieete sttt ettt ettt ettt ettt e bt et e beesnenbeenenbeenn 9
1.4 Hydraulic COMPONENLS ......ccueeiiriieiieiietieiiente ettt ettt ettt ettt ettt ettt et ebe et ebeeseeeseenaeenees 15
1.4.1 Hydrostatic Machines: Pumps and MOtOIS..........coceevuerierienienienienieneenieecenie e 15
1.4.1.1  Gear Pump and MOTOTIS. ....cc.cecuerieiiinieniiiieienienieeteieeesieee e 17
1.4.1.2 SCIrew PUMPS...couviiiiiiiiiiiiieeee et 18
1.4.1.3  Vane Pumps and MOTOIS .......ccueveeriirienenienieiienienienieetesieete e 19
1.4.1.4  Piston Pumps and MOTOTS .....c..coeeviirieniniiniiiienienierieeeeeeeeesie e 21
1.4.1.5 Pump and Motor Performance Characteristics........c..cecueverueneevenensuenenn 24
1.4.1.6  Characteristic CUIVES. ......cc.ccueieieieieiieiieiieesie ettt 27
1.4.2  Hydraulic CYINAETS......cc.eeieriiiriiiiieiiiieit ettt 29
1.4.2.1 Hydraulic Cylinder Behavior...........ccooceiieniiiiniiiininieneeeeeceeeee 31
1.4.2.2  Cylinder Performance CharacteriStiCs.......c.ceeverueriererieninienieeienieeeenieenns 32
1.4.3  Directional Control VALVES ..........ccccueiiiiiiiiiiiiiiiiesieteeeceeeeeeee et 34
1.4.3.1 Non-return Valves (Check Valves).........ccoovieeiiiieiiiiieiieeeciieeeeee e 34
1.4.3.2  Spool-type Directional Control Valves.........c.ccoceriererieniniieneniienieeneene 35
1.4.4  Pressure Control VALVES ........ccccceviiiiiiiiiiiiiiieiecse sttt 38
1.4.4.1 Normally Closed Pressure Control Valves .........cccccovevieniniienieiiineenienene. 38
1.4.4.2 Normally Open Pressure Control Valves (Pressure-Reducing Valves)....... 40
1.4.5  FIow Control VAIVES ......c.cccoiviiiiiiiiiiiiiiieieieteteiesie sttt 41
1.4.6 Directional Continuous Control ValVes............cccccvivirinininiiniinienieieiciceeeeeeeeas 43
L.4.6.1  SErvO-VAIVES....c.ooiriiiiiiiiiiieicictcetctet ettt 43
1.4.6.2 Proportional Directional Control Valves ..........ccccecevervcniniiniiiicneeicnene 44
1.4.6.3 Fundamental Model and Characteristic CUrves ..........ccceeeveeeeevenieieenennns 45
1.4.7 Hydraulic ACCUMUIALOLS ......eoutiriiiiieiiiierieetericete ettt 47
1.4.8 Reservoir and ItS ACCESSOTIES ......cueviiiiiiiiiiieiieiieierte sttt sttt 48
L9 FIILETS ittt sttt 49
1.4.10 Hydraulic FIUIA......cooecoiiiniiniiiniiincincincetcet ettt 51
ACKNOWIEAGIMENES.....ccuteiiiiiiiieieeiiet ettt ettt et b et b et e bt et ebt e b et enbeeaees 51
RETETEICES ...ttt 51

* Some parts of this chapter are based on the chapter titled “Basic Hydraulic Pump and Circuit Design” by Richard K. Tessmann,
Hans M. Melief, and Roland J. Bishop, Jr. from the Handbook of Hydraulic Fluid Technology, 1st Edition of this book.

© 2012 by Taylor & Francis Group, LLC



2 Handbook of Hydraulic Fluid Technology, Second Edition

1.1 INTRODUCTION

A hydraulic system, from a general perspective, is an arrangement of interconnected components
that uses a liquid under pressure to provide energy transmission and control. It has an extremely
broad range of applications covering basically all fields of production, manufacturing and service.
Consequently, the energy transmission and control requirements are very diverse and thus the struc-
ture of each hydraulic system has its specificities.

However, on analyzing the current hydraulic systems, one can identify four main functions [1],
as presented in Figure 1.1, which are: primary energy conversion, energy limitation and control,
secondary energy conversion, and fluid storage and conditioning.

Furthermore, this figure shows the main resources that flow through a hydraulic system and
which can be grouped into the classes: information, material, and energy [2].

The input of mechanical energy (M), which is a result of the external conversion of primary
electrical or chemical (combustion) energy, is converted into hydraulic energy (H). Using signals or
data (S, D) from an operator or from other equipment, the hydraulic energy (H) is limited and con-
trolled such that it becomes appropriate for conversion into mechanical energy (M). This mechani-
cal energy is the desired output of the hydraulic system and will be used to drive or move external
devices.

The hydraulic energy is carried by the hydraulic fluid (F) and thus its storage and conditioning,
including contamination and temperature control, are also essential functions.

As a consequence of the physical phenomena, construction characteristics, and circuit arrange-
ment, part of the useful energy is dissipated in a hydraulic system. Therefore, all functions transfer
thermal energy (T) to the fluid and to the environment.

Since this Handbook is concerned with fluid technology, the objective of this chapter is to char-
acterize hydraulic systems, that is, applications in which hydraulic fluids are used.

The construction characteristics and the functioning principles of the main hydraulic compo-
nents are presented, with the aim of providing an overview of the interaction between the fluid and
the mechanical parts.

Moreover, the main equations that govern the component and circuit behavior are presented,
where one can identify the influence of the fluid parameters, which, in turn, are a consequence of
the physical-chemistry proprieties.

An important aspect of this chapter is the symbol notation that is used in the diagrams and equa-
tions. Both the hydraulic circuit diagrams and the component identification codes are in accordance

. Hydraulic system |
| Secondary oM
: conversion |

I
Legend:
O BEEIR Py i
| & . H = Hydraulic energy

| M = Mechanical energy
: T = Thermal energy (losses)
I S,D = Signal, data

g

i z . — = Information flow
anafy | — = Energy flow
| COnversion : —» = Energy and material flow
—

= Material flow

FIGURE 1.1  Generic hydraulic system: Functions and resource flows.
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Fundamentals of Hydraulic Systems and Components 3

with ISO 1219-1 [3] and ISO 1219-2 [4]. The quantities (variables and parameters) used in the circuit
diagrams, component illustrations, and equations are represented by letter symbols, including sub-
scripts and superscripts, in compliance with ISO 4391 [5], IEC 27-1 [6], and ISO 1219-2 [4] standards.

1.2 HYDROMECHANICAL PRINCIPLES

Essentially, a hydraulic system consists of mechanical parts operating together with a hydraulic
fluid. Hence, its behavior is described by the classic laws of both mechanics and fluid mechanics.
Although it is not the focus of this text, it is important to remember that several hydraulic compo-
nents comprise electromechanical converters, such as solenoids, linear motors and torque motors
and/or electro-electronic systems like sensors, power amplifiers and controllers. Therefore, the prin-
ciples of electricity, electronics and electro-magnetism are also required for their modeling.

1.2.1 HyprostaTics: PascAl’s PRINCIPLE

Fluids (gases or liquids) are compressible, which means that their mass density varies with the pressure
to which they are submitted. Consequently, an abrupt local pressure variation will be propagated through
the fluid with a velocity equal to the fluid sound velocity until the equilibrium has been re-established.
This means that the fluid will have a dynamic behavior alternating between the two equilibrium states.

When a fluid is treated as incompressible it is assumed that a local pressure perturbation is
instantaneously transmitted throughout the fluid. This means that considering a fluid as being com-
pressible or incompressible is dependent on the observer’s viewpoint and its validation depends on
the use of the system and the particular design or analysis that is being carried out.

Pascal’s principle states that “a change in the pressure of an enclosed incompressible fluid is
conveyed undiminished to every part of the fluid and to the surfaces of its container” [1,7]. Hence,
when a fluid is in a state of equilibrium, that is, in a steady state, the whole system is under the same
internal pressure.

The practical use of Pascal’s principle can be exemplified by the hydrostatic press principle
whose objective is to amplify the force. As shown in Figure 1.2a [1], it consists of two cylinders
(actuators) (Al and A2) that are connected by a pipe.

In this press, the resistive force (FA%* [N]) offered by the material to be pressed must be com-
pensated by the input force (FA! [N]) such that the equilibrium occurs. Since in a steady state the
pressure (p [N/m?] or [Pa]) is equal throughout the volume, one has

(a) (b)

l FAL
FAI
AL FA2
XA A2
VA2
A2
x
JA2 AM
4
P P = — \AA2

FIGURE 1.2 Hydrostatic press principle: (a) Illustration of the hydraulic circuit; (b) Hydraulic circuit diagram.

* The kernel (central part of the letter symbol) represents the generic quantity. The subscript indicates the quantity appli-
cation and the superscript is used to indicate to which component or system the quantity is associated (ISO 4391, ISO
1219-2 - Fluid Power Systems and Components — Graphic symbols and circuit diagrams — Part 2: Circuit diagrams,
Switzerland, 1991.
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FIGURE 1.3 Mechanical system of force amplification.

p_F_ AA2 = FAL = AAL (LD

~ FAl B FA? FA? AN o PR = [AAzj i
where AA! [m?] and AA? [m?] are the piston areas.
Equation 1.1 shows that, for AA2/AA1 >> 1, a low force F*! is sufficient to overcome a higher force
like FA2, which is the objective of most hydraulic systems.
Moreover, considering the incompressible fluid, the volume variations in the two cylinders (AVA!
[m3] and AVA? [m?]) are equal. According to Equation 1.2, in this case the displacements x*! [m] and
xA2 [m] are different, their relationship being determined by the area ratio:

Al
AVAL = AVAZ Iy (AL AAT (A2 gA2 (0 A2 (j‘lAzj'xAl' (1.2)

Considering an efficiency of 100%, the work required of cylinder A1, determined by the product
of the force and displacement, is equal to the work applied to cylinder A2. Hence, according to
Equation 1.3, the correlation between FA! and F? is given by the displacement ratio:

_ Al Al _ A2 A2 F* _ M A2 _ XA Al
W=F" - x"=F"-x :>FA1 =—g or F'"=| —/— [-F". (1.3)
X X

Equation 1.3 is designed as the hydraulic lever equation [1], since the same force amplification
could be obtained through a mechanical system—such as that shown in Figure 1.3.

These hydrostatic relationships allow the static behavior of a system to be determined—that is,
the relationships between the forces and displacements in the equilibrium condition. The behavioral
description with temporal variation is carried out using the laws of hydrodynamics [1].

1.2.2 HyDRODYNAMICS: CONSERVATION OF MASS

The steady-state and transient behavior of hydraulic components and systems is described by the
basic principles of hydrodynamics and thermodynamics [1,8]. In this chapter, two of these prin-
ciples are studied; namely, the conservation of mass (continuity equation) and the conservation of
energy (Bernoulli’s equation), which are essential to the comprehension of the hydraulic component
behavior.

From the conservation of mass principle, an important expression is obtained which describes
the behavior of pressure in volumes. Consider the hydraulic device shown in Figure 1.4 [1], which
has an inlet port (1), an outlet port (2) and a movable piston.

The mass density (p [kg/m?]), the pressure (p [Pa]), and the temperature (7' [K] or [°C]) of the
fluid are considered constant in the space defined by the chamber, but they vary over time. The flow
rate in the inlet port is considered positive when entering the chamber and the flow rate in the outlet
port is positive when leaving the chamber. The chamber volume changes with the piston movement.

The result of the continuity equation [1,8,9] applied to this case is [5].
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N

V1

FIGURE 1.4 Chamber with variable volume.

av VvV dp

- =+ 1.4
qvi —4v2 a B dr (1.4)

where V [m?] is the chamber volume and ¢y, [m?/s] and ¢y, [m?/s] are the volumetric flow rates
(commonly referred to as the “flow rate”) at the inlet and outlet ports, respectively.  [Pa] is the bulk
modulus (inverse of compressibility), which characterizes the mass density variation with the fluid
pressure.

In this equation, the terms on the right are related to the mass accumulation in the volume, where
dV/dt represents the variation in the chamber volume over time and (V/B)(dp/dt) the variation in the
pressure over time associated with the fluid compressibility.

Therefore, Equation 1.4 describes the dynamic behavior of the pressure in the chamber as a
consequence of the change in flow rate at port 1 and/or port 2. The pressure change will take the
piston out of equilibrium, causing its movement. As a consequence, the first term on the right will
be different from zero, in turn changing the pressure.

It is important to note that the continuity equation, as presented in Equation 1.4, is the basic form
used in the hydraulics area to model the dynamic behavior of a fluid in cylinders, accumulators,
motors, pipes and so forth.

Studying again the hydrostatic press (Figure 1.2), one can observe that the volume variation in
cylinders Al and A2 is dependent on the displacement direction of the pistons, which means that
volume VA! will be decreasing and volume V*? increasing toward the positive directions indicated
in this figure, that is

Al A2
% = —AM A and d‘;t AN 15)

where vA! [m] and vA? [m?] are the piston velocities.

Appling Equations 1.4 and 1.5 to cylinders Al and A2 for a constant pressure condition and tak-
ing into account that the flow rate that leaves cylinder Al is the same as that entering cylinder A2,
one can obtain

A2 Al Al
A A
gy = AAL AL Z A2 (A2 % _ e or vA2 = (wj.vm. (1.6)

Equation 1.6 describes the velocity relationship for the hydraulic press, completing the set of
equations together with Equations 1.1 and 1.2.

1.2.3 HyDROSTATIC PRESS: LINEAR MOTION

By means of the circuit in Figure 1.2, it is possible to have an upward moving cylinder A2 when
cylinder Al is moving downward. The displacement relationship (Equation 1.2) and velocity
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FAl

FA2
xAl

X
VAl

FIGURE 1.5 Hydraulic circuit diagram of a real hydrostatic press.

relationship (Equation 1.6) imply that a movement of cylinder A1 with displacement and velocity
according to human capacity results in a press operation with both small displacement and veloc-
ity. Cylinder A1, having reached the required displacement, will reach its stroke end much earlier
than cylinder A2.

Therefore, this basic circuit is not valuable for real uses. A typical circuit found in hydrostatic
presses and hydraulic jacks is presented in Figure 1.5, where some components are added to the
original circuit (Figure 1.2).

In this circuit an external reservoir (R), which compensates for the difference between the
cylinder volumes, and two non-return valves (V1 and V2) are included. These valves allow
fluid suction from the reservoir on the upward movement of cylinder Al and fluid pumping to
cylinder A2 on the downward movement. Valve (register) V3, when opened, allows the fluid in
cylinder A2 to return to the reservoir as a consequence of the external force (F*?) applied to
the piston.

Correlating Figure 1.5 and 1.1, the arrangement constituted by Al, V1, and V2 performs the pri-
mary energy conversion function, V3 the energy control, and A2 the secondary energy conversion.
The fluid storage and conditioning is performed by both the reservoir (R) and the air filter (F). The
filter establishes the connection between the fluid and the external environment in order to keep the
reservoir cleaned and at atmospheric pressure.

1.2.4 HyprosTtaTIC TRANSMISSION: ROTARY MOTION

The principles presented previously for linear motion are now applied to rotary motion transmis-
sion using a pump and a motor (hydrostatic machines) as presented in Figure 1.6. According to ISO
1219-2 [4], the pump has its own symbol, P, while the hydraulic motor is an actuator and, for this
reason, it is designed as A.

FIGURE 1.6 Hydrostatic transmission: (a) Illustration of the hydraulic circuit; (b) Hydraulic circuit diagram.

© 2012 by Taylor & Francis Group, LLC



Fundamentals of Hydraulic Systems and Components 7

()

FIGURE 1.7 Principles of a hydrostatic machine: (a) Functioning as a pump; (b) Functioning as a motor.

The hydrostatic pump driven by an electric motor, for example, runs at an angular speed
(@F [rad/s])” supplying a flow rate (g, [m?/s]) to the hydraulic motor that causes an angular speed
(w* [rad/s]) at the motor axis. At the same time, a loading applied to the axis causes a torque (7%)
in the opposite direction to the movement, inducing a pressure (p) increase. This pressure, which is
transmitted to the whole system, acts on the pump increasing the mechanical torque 7'*.

In fact, the pressure in the motor inlet is not the same as that in the pump outlet, as a consequence
of the flow energy losses. However, as an ideal system is being considered, the load losses, leakages,
and mechanical friction are neglected. In the same way as the hydrostatic press (Figure 1.2), both
the pump suction port and motor discharge port are at atmospheric pressure, which means that the
gauge pressure is equal to zero.

At each complete revolution of a hydrostatic machine rotor (Figure 1.7) (1 revolution = 27 rad)
a certain fluid volume displacement (V [m?]) occurs. From this effect, the volumetric displacement
(D [m?/rad]) is defined as

ng. (1.7)

The volume displaced in one complete revolution is a function of the rotor geometry. For a rotor
with vanes, as shown in Figure 1.7, this volume is the product of the vane area and the mean perim-
eter—that is, V=A - 2m - r. Hence, the volumetric displacementis D =A - r.

Moreover, the torque on the pump or motor axis can be calculated by the product of the result-
ing force on the vanes and the mean radius, that is, 7= F - r. Thus, the pressure in a pump or motor
chamber can be written as

(1.8)

Equivalently to the hydrostatic press (Equation 1.1), the pump and motor torques can be related by

™ 1% T1* DA DA
p:W:F:TT:W or T* = o ™. (1.9)

Since the tangential velocity (v [m/s]) at a distance r [m] from the rotor axis is related to the angular
velocity (w [rad/s]) and to the rotational frequency (n [rps]) by v=r- wand v =r - 21 - n, respectively,
Equation 1.6 can be modified to describe the relationship between the pump and motor velocities as

A A

M M
qV=DM-mM:DA-mA:wA:[gj.mM:nA:[gj.nM_ (1.10)

* Observe that the quantity rotational frequency (or just rotation) (n [rps]) is commonly used instead of angular velocity
(o [rad]) and these are correlated by ® =21 - n.
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1.2.5 HyYDRODYNAMICS: CONSERVATION OF ENERGY

To understand the energy transmission and control in hydraulic systems it is fundamental to apply
Bernoulli’s equation [8,9]. According to this equation the sum of all forms of mechanical energy in
a steady and unidimensional flow of an ideal and incompressible fluid is the same at all points in
the stream line.

One fundamental use of Bernoulli’s equation is to describe the flow behavior through a sharp-edge
orifice in a pipe, which causes an abrupt reduction in the flow cross section, as shown in Figure 1.8 [1].

In this case, the stream lines converge to a point where the diameter of the stream is the smallest.
This point is called vena contracta and corresponds to cross section 2 in the figure. By applying
Bernoulli’s equation to cross section 1 (orifice upstream) and cross section 2 (orifice downstream),
one obtains

1 1
P1+5'P-V12+P'g'zl=P2+E'P'V§+P'8'Zz, (1.11)

p [Pa] being the static pressure, 1/2 - p - v? [Pa] the dynamic pressure and p - g - z [Pa] the gravita-
tional pressure.

Since Bernoulli’s equation is valid for steady flow, the use of Equation 1.4 implies that the inlet
and outlet flow rates are the same, that is, gy = A, - v, = A, - v,. Furthermore, since the orifice area
(A,) and, consequently, the vena contracta area (A,), are much smaller than the inlet area (A,), the
velocity in the inlet cross section (v,) is neglected.

Therefore, since the change in the p - g - z term along the stream line is very small compared
with the other terms it can be ignored and Equation 1.11 can be written as

Gy =A,- f2-(p1p—pz). (L12)

Aiming at its practical use, this equation must be corrected to include viscosity losses.
Additionally, experimental data from the literature [9,10] correlate the vena contracta area (A,)
with the real orifice area (A,) such that Equation 1.10 can be rewritten as

gy =cd-Ay- —Z'pAp, (1.13)

where cd is the discharge coefficient whose value is dependent on the orifice geometry and flow type.
Another important aspect is that the turbulence downstream of the orifice causes a significant
energy loss such that the velocity reduction in cross section 3 (Figure 1.8), as a consequence of the
cross-sectional area increase, does not cause a static pressure increase. Hence p; is very close to p,.
Therefore, Equation 1.13, known as the orifice flow equation, is appropriate to calculate the flow
rate through an orifice as a function of the cross-sectional area and the pressure drop between the
cross sections of the inlet (1) and outlet (3).

FIGURE 1.8 Flow through an orifice. (From Linsingen, I. von, Fundamentos de Sistemas Hidrdulicos, 3rd
ed., Florianopolis, Brazil: UFSC Ed., 2008. With permission.)
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Finally, since the hydraulic power is defined as
B =p-qv, (1.14)

the fact that the input pressure (p,) is greater than the output pressure (p;) implies that the hydrau-
lic power is reduced with the fluid passing through an orifice. This hydraulic power difference is
transformed into thermal energy, heating the fluid and the environment.

1.3 HYDRAULIC CIRCUITS

Hydraulic circuits are comprised of interconnected components so as to perform the four functions
as identified in Figure 1.1. Typically, these circuits are represented by diagrams composed of graphi-
cal symbols that represent fluid power components and devices.

ISO 1219-1 [3] establishes basic elements for symbols and rules for devising fluid power symbols
for use in components and circuit diagrams. ISO 1219-2 [4] establishes the rules for drawing fluid
power diagrams using symbols from ISO 1219-1 [3], including rules for identification of equipment.

Table 1.1 presents the symbols according to ISO 1219-1 [3] for the hydraulic components used
in this chapter. Furthermore, an identification code will be associated with these symbols following
the rules shown in Figure 1.9.

TABLE 1.1
Some Symbols of Hydraulic Components

Primary Energy Conversion

Hydraulic pumps Fixed-displacement

Variable-displacement Pl

Variable-displacement, with pressure compensation, |
external drain line, one direction of rotation

Variable-displacement, two directions of flow,
external drain line, one direction of rotation

Electric motor : :
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TABLE 1.1 (Continued)
Some Symbols of Hydraulic Components

Energy Limitation and Control

Directional control Manual shut-off D <I

valves
Non-return (check)

2-port, 2-position, controlled by hydraulic pilot

control, opening pressure adjusted by spring

4-way, 3-position, controlled by lever, with

spring-centered central position
C{ﬁ ]

4-way, 3-position, directly controlled by two

solenoids with spring-centered central position T T ><

5-way, 3-position, hydraulically controlled, with
spring-centered central position

Pressure control Pressure relief, directly controlled, opening pressure

valves adjusted by a spring (See Figure 1.45)

Pressure reducing valve, directly operated, closing

——

pressure adjusted by a spring

Flow control valves Flow control adjustable, with reverse free flow J
7~

Accumulators (See Figure 1.55) O

Directional Servo-valve, pilot-operated, pilot stage with electrical r

continuous control control mechanism with two coils, continuously >< 1 1T ‘
valves controlled in both directions, with mechanical F | i ; W\
T T \
7

feedback of the main stage to the pilot stage —|—|—

Proportional directional control valve, directly
operated, with closed-loop position control of the

main stage —‘—‘—
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TABLE 1.1 (Continued)
Some Symbols of Hydraulic Components

Secondary Energy Conversion

Hydraulic cylinders Single-acting (See Figure 1.32)

Double-acting (See Figure 1.33)

G

Hydraulic motors Fixed-displacement

Fixed-displacement, two directions of flow, two

directions of rotation, with external drain

Variable-displacement

Hydraulic filters Filter

Filter with bypass valve

Filter with air exhausting

SR TRE Y

Reservoir Reservoir with return line / Reservoir with drain line

E_ -

Heat exchanger Cooler

Figure 1.10 shows a typical hydraulic circuit where the fixed-displacement pump (P) runs at a
constant rotational frequency driven by the electric motor (M). Since the pump theoretically sup-
plies a constant flow rate, it is necessary to direct part of the flow through the relief valve (V1) aim-
ing to obtain velocity control in the cylinder (A). Therefore, the effect of the flow control valve (V3)
is to cause a pressure loss such that the supply pressure (p;) is above the setting pressure (pp,,,) at the
relief valve (V1), and it opens. The directional control valve (V2) directs the fluid from the supply
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*Component codes

2 Installation no P = Pumps and compressors
12, Circui ‘ 4' A = Actuators
1,2,... Circuit No. :
component M = Prime movers

S = Sensors
V = Valves
Z or another letter = All other equipment

=
o ow

,2,3,... Component no.

FIGURE 1.9 Identification code according to ISO 1219-2.

line (P) to cylinder chamber A or B and from cylinder chamber B or A to the reservoir line (This
type of circuit is considered an open circuit since the fluid does not return directly to the pump suc-
tion port but to the reservoir, where it is stored before undergoing suction by the pump. The motion
control of the actuators is fundamentally dissipative since it is carried out by directional, pressure,
and flow control valves. The functioning principle of these valves is described by the orifice flow
equation (Equation 1.13).

By comparing Figures 1.10 and 1.1, one can observe that the pump (P), together with the electric
motor (M), performs the primary conversion function; the actuator (A) performs the secondary
conversion; and the pressure relief valve (V1), directional control valve (V2) and flow control valve
(V3) perform the energy limitation and control. The fluid storage and conditioning is performed by
the reservoir (R) and filter (F1).

The open-loop circuit is by far the most popular design. The advantage of an open-loop design is
that, if necessary, a single pump can be used to operate several different actuators simultaneously.
The main disadvantage is its large reservoir size.

(@) (®) Ag
Cylinder (A) A
Pa - y . >
)
P
Flow : [
control /} (
valve (V3) {

pd
PAin ey —
1B
Directional R V\/\ -
control
valve (V2) P| [T
V2
S N |
Pressure Filter (F1) ! ,J qvvs
relief —— / — b
valve (V1)
Breather é\ Pp Tqvp
filter (F2) Prrg -
Pump (P) / A )|(
o) )
Reservoir |
R —
®) | | (=]

FIGURE 1.10 Open-loop hydraulic circuit: (a) Illustration; (b) Circuit diagram.
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]

FIGURE 1.11 Closed-loop circuit diagram.

A second general type of hydraulic circuit is the closed-loop circuit [7], whose main operational
difference relates to the means of hydraulic energy control. As can be observed in the example in
Figure 1.11, it is not only the pump discharge but also the pump suction that is directly connected
to the motor ports. Therefore, the motor rotational frequency will be modified if the volumetric
displacement of either the motor or the pump is varied or the pump rotational frequency is changed.
The relationship between the flow rate, volumetric displacement, and rotational frequency of a
pump or motor is described by Equation 1.10.

In the circuit shown in Figure 1.11 [7], a variable-displacement pump (P1) is used to drive a
fixed-displacement hydraulic motor (A). A closed-loop circuit is always used in conjunction with a
smaller replenishing circuit. The replenishing circuit consists of a small fixed-displacement pump
(P2) (usually about 15% of the displacement of the main pump), a small fluid reservoir (R), filter (F),
and a heat exchanger (cooler) (C).

The replenishing circuit always works on the low-pressure side of the main loop. Its function
is to pump freshly filtered fluid into the closed loop through non-return valves (V1 and V2) while
bleeding-off a percentage of the hot fluid through a directional control valve (V3). This hot fluid is
then cooled by a cooler (H) and stored in a small reservoir (R) before returning to the main system.
The pressure in the replenishing circuit is limited to 10-20 bar (1-2 MPa) by the supercharge relief
valve (V6). The pressure setting of this valve is determined by the requirements of the pump/motor
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combination and the operating conditions of the system. The cross-port relief valves (V4 and V5)
on the motor are there only to protect the actuator from load-induced pressure spikes. They are not
intended to function like those found in open-loop circuits, which would cause severe overheating
of the circuit due to the diverting of the unnecessary flow through the relief valve.

The advantages of a closed-loop circuit are that high-power systems are compact and efficient and
require less hydraulic fluid storage. The high efficiency of this circuit is the result of the pump control
being designed to supply only the fluid flow required by the actuator to operate at the load-induced
pressure. The pump is the heart of the system and controls the direction, acceleration, speed, and
torque of the hydraulic motor, thus eliminating the need for pressure and flow control components.

In this type of circuit the energy control is transformative, instead of dissipative as in open-loop cir-
cuits, since it is the energy transformed in the pump or motor that is controlled. However, the second-
ary valves (pressure, directional and flow-control valves) impose energy losses—besides the internal
mechanical and fluid flow losses—in pumps and motors, thereby reducing the overall efficiency.

A major disadvantage of a closed-loop circuit is that a single pump can only operate a single
output function or actuator. In addition, this type of hydraulic circuit is generally used only with
motor actuators.

The third general configuration is the half-closed-loop circuit as shown in Figure 1.12 [7]. This
circuit is similar to the closed-loop circuit except that it can be used with cylinder actuators with
different areas. As can be seen from the figure, during cylinder extension, the pump (P) must
generate a higher flow rate from its left-hand port than that being returned to its right-hand port
from the cylinder (A). The extra fluid needed by the pump (P) is supplied by its left-hand inlet non-
return valve, which is an integral part of the pump. When the pump control moves the pump over

—

I e

:
H =)
y
SHLSTR

FIGURE 1.12 Half-closed-loop circuit diagram.
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the center, the flow from the pump (P) is reversed and the cylinder (A) begins to retract. During
retraction, the larger area of the cylinder piston causes a higher flow rate than needed at the inlet
of the pump (P). This excess flow is directed to the reservoir (R) through the unloading valve (V3).
The unloaded fluid is filtered and cooled prior to its return to the reservoir. In this way, a portion
of the closed-loop fluid is filtered (by F) and cooled (by C) in an open-loop circuit each time the
cylinder (A) is cycled.

In this case, the fluid volume and reservoir size reductions are not as significant as in the closed-
loop scenario.

As can be seen in the above examples, each hydraulic component has a basic function, but it is
the circuit itself that determines the hydraulic system behavior. Hence, for a designer to conceive
a hydraulic system he/she needs to have an understanding of the functional and behavioral charac-
teristics of the components which, in turn, are dependent on the fluid-mechanical interaction inside
the component.

1.4 HYDRAULIC COMPONENTS

1.4.1 HyprostATIC MACHINES: PUMPS AND MOTORS

The energy conversion functions in a hydraulic system are performed by pumps and actuators (basi-
cally motors and cylinders). The pumps perform the primary conversion, transforming mechani-
cal energy into hydraulic energy. The actuators retransform the hydraulic energy into mechanical
energy to be used by the machine or the equipment.

There are two classes of hydraulic machines: hydrodynamic and hydrostatic machines. They dif-
fer in the way the internal energy is transformed and, consequently, in their form of construction [1].

In hydrodynamic machines (such as centrifugal pumps, turbines, and fans), the fluid energy
involved on the transformation process is fundamentally kinetic, due to the variation in the fluid
velocities of the impeller blades. In these machines there is a gap between the pump housing and the
impeller (or rotor) leading to a high internal leakage even with low differential pressure.

In the centrifugal pumps, as shown in Figure 1.13a, when the output fluid flow resistance is
increased (e.g., as a consequence of the load loss in the discharge line) the output flow rate is
reduced until it drops to zero, as shown in the characteristic curve in Figure 1.14a.

FIGURE 1.13  Classes of pumps: (a) Hydrodynamic pump (centrifugal pump) (Courtesy of Franklin Electric—
Joinville-SC-Brazil); (b) Hydrostatic pump (gear pump). (Courtesy of Bosch Rexroth—Pomerode—SC-Brazil).
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@, , (b) »
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FIGURE 1.14 Characteristic curves of pumps: (a) Hydrodynamic pump; (b) Hydrostatic pump.

In hydrostatic machines, also referred to as “positive displacement machines,” the fluid energy
involved in the transformation process is mainly related to the variation between the inlet and outlet
pressures through the rotor. Since the pressure in a system is caused by the fluid flow resistance,
the effective pump outlet pressure increase is dependent on the valves and actuators downstream of
the pump. In turn, the pressure in an actuator inlet is dependent on the rotor movement resistance
caused by an external mechanical loading.

In hydrostatic pumps the clearance between the housing and the rotor is very small and thus the
suction and discharge chambers are basically isolated. As a consequence, the pump flow rate is slightly
influenced by the downstream pressure, as illustrated by the characteristic curve shown in Figure 1.14b.

Since the construction principle of hydrostatic (rotary) motors is the same as that of pumps, an
increase in the mechanical axis loading leads to a small leakage increase. Hence, the motor rota-
tional frequency can be considered constant in several applications [1].

The fact that the hydrostatic pumps are an almost ideal flow rate source and operate under high
pressures makes this class of hydraulic machine basically the only one used in fluid power systems
[1]. At same time, to attain the requirements of the several application fields, different construction
principles of hydrostatic machines have been developed, as shown in Table 1.2.

In the right column of this table, an important feature of hydrostatic machines is indicated. According
to Equation 1.10, the volumetric displacement establishes the proportionality between the flow rate
and the rotational frequency. Machines whose construction characteristics do not allow changes in
the volumetric displacement are named fixed-displacement machines, and those where is possible to
obtain different flow rates at the same rotational frequency are named variable-displacement machines.

TABLE 1.2
Classification of Hydrostatic Machines According to Construction
Principle and Volumetric Displacement

Volumetric
Constructive Principle Displacement
Gear External Fixed
Internal Crescent Fixed
Gerotor Fixed
Screw Fixed
Vane Balanced Fixed
Unbalanced Fixed or Variable
Piston Radial Fixed or Variable
Axial Swash Plate Fixed or Variable
Bent-Axis Fixed or Variable
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TABLE 1.3
Typical Pump Performance Parameters
Max. Working Rotational
Pressure Flow Rate Frequency Global Efficiency
Pump Type [MPa (bar)] [dm3/s (Lpm)] [rps (rpm)] [%]
External Gear 15-25 0.08-9.5 8.3-83.3 80-90
(150-250) (5-570) (500-5,000)
Internal gear 3.5-20 0.08-12.7 15-41.7 70-90
(35-200) (5-760) (900-2500)
Screw 0.4-40 0.017-350 16.7-58.3 80-85
(4-400) (1-21,000) (1,000-3,500)
Vane 7-21 0.08-10 10-45 80-95
(70-210) (5-600) (600-2,700)
Radial piston 7-815 0.08-12.7 16.7-56.7 85-95
(70-815) (5-760) (1,000-3,400)
Axial piston 14-81.5 0.08-12.7 8.33-71.7 90-95
(140-815) (5-760) (500-4,300)

In Table 1.3 some typical values of the operational characteristics of pumps are presented.
Similar values are applicable to hydraulic motors.

In the next sections, the functional and construction principles of these hydrostatic machines are
presented. Although pumps and motors are very similar, some specific construction aspects—such
as internal channels for lubrication, external leakage drain, seals, and so forth—differ since motors
do not have a port under low pressure all the time, as in the case of pumps.

Therefore, a pump cannot be used as a motor and vice-versa, unless the component has been
designed to carry out both functions.

1.4.1.1 Gear Pump and Motors

External gear pumps and motors. This type of hydrostatic machine consists of a pair of equal

gears assembled in housing with one inlet and one outlet, enclosed by two side plates. The drive

gear is responsible for the external motion transmission and the driven gear runs free in its shaft.
According to Figure 1.15 (pump), fluid transport cells are formed between two consecutive teeth

of each gear and the housing through the rotational movement. At the same time, the ungearing

"‘ Outlet chamber

Drive gear Driven gear

Housing

Inlet chamber 1’

FIGURE 1.15 External gear pump (and motor).
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(a) (b)
x Outside geroter Inside gerotor
Outlet chamber  element element

Drive gear

Crescent seal

Inlet chamber

Inlet chamber Outlet chamber

Housing

FIGURE 1.16 Internal gear pumps: (a) Crescent-seal type; (b) Gerotor type.

produces new cells to which the fluid is suctioned. In the outlet chamber the continuous gearing
pushes the fluid out to the outlet port.

It is generally agreed that the gear pump is the most robust and rugged type of fluid power
pump and thus its use is predominant in hydraulic services and also very intensive in industrial
machines.

Gear pumps and motors are not very sensitive to fluid viscosity variations and to fluid contamina-
tion. However, since the outlet and inlet ports are opposite to one other, the forces over the gear axis
are unbalanced. This limits the maximum values of pressure and flow rate.

As a consequence of the friction between the gears and the side plates, and the fluid leakage
between the tips of the gears and across the side plates, the overall efficiency is lower than that of
solutions based on the other construction principles.

Internal gear pumps. Given the possibility of operating under high pressures with low ripple pres-
sures and low noise, these pumps are used in several systems such as injection machines, hydraulic
presses, machine tools, and so forth. The operational principle is the same as that of external gear
machines—that is, the continuous tooth ungearing and gearing of a gear pair.

The crescent seal internal gear pump consists of a small internal gear and a larger ring gear (see
Figure 1.16a). The small internal gear is driven by the prime mover. The internal gear meshes with
the ring gear and turns it in the same direction. The sealing of the high-pressure chamber from
the pump inlet is achieved by a crescent seal between the upper teeth of the internal small gear
and the upper teeth of the ring gear. In the gerotor gear pump, the inner gerotor has one less tooth
than the outer element (Figure 1.16b). The internal gear is driven by the prime mover and, in turn,
drives the outer element in the same direction [7].

In the same way as in external gear pumps, internal gear pumps are unbalanced, limiting the
maximum pressure and efficiency. Furthermore, the gear pump design does not allow the displace-
ment to be varied.

1.4.1.2 Screw Pumps

Screw pumps for fluid power systems are composed of two or more helical screws assembled inside
housing. The relative movement of the screws can be obtained driving one shaft where the move-
ment is transmitted to the others by either their own gearing or by external gears mounted on the
shafts. An illustration of this type of pump is shown in Figure 1.17.

Each screw thread is matched to carry a specific volume of fluid. Fluid is transferred through
successive contact between the housing and the screw flights from one thread to the next. Its
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FIGURE1.17  Screw pump. (From Linsingen, L. von, Fundamentos de Sistemas Hidrdulicos, 3rd ed., Florianépolis,
Brazil: UFSC Ed., 2008. With permission.)

operational characteristics imply that the flow does not present pulsation and the unbalanced forces
are axial, being compensated for easily.

Screw pumps are generally used for hydraulic systems where high flow rates are necessary and
they are also suitable for high pressures. The disadvantages are their low efficiency and high cost.

1.4.1.3 Vane Pumps and Motors

Fixed-displacement vane pumps and motors. Vane machines are comprised of a cylindrical rotor
with vanes sliding in its grooves. This set runs inside a cam ring and the sides of the rotor and vanes
are sealed by side bushings (port plates). Figure 1.18 presents an illustration of this type of machine.

The vanes are forced against the internal surface of the cam ring due to centrifugal force and either
high pressure applied on the vane bottom or the force of the spring mounted on the vane bottom.

Between two consecutive vanes, rotor, cam ring and port plates, fluid transport cells are formed
that increase in the inlet chamber and decrease in the outlet chamber. The port plates include aper-
tures connecting these chambers to the external ports of the machine.

In the construction principle shown in Figure 1.18 the low and high pressures act appositively over
the axis, causing unbalanced forces and limiting the maximum work pressure of the pump or motor.
An alternative is the balanced vane pump shown in Figure 1.19 where there are two low-pressure
chambers and two high-pressure chambers and thus the resultant radial forces tend to be null.

Inlet chamber Outlet chamber

@

Housing Cam ring

FIGURE1.18 Vane pump. (From Linsingen, I. von, Fundamentos de Sistemas Hidrdulicos, 3rd ed., Floriandpolis,
Brazil: UFSC Ed., 2008. With permission.)
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FIGURE 1.19 Balanced vane pump.

The total pumping flow results from the superposition of the flow rate from the two outlet cham-
bers. The resulting amplitude and frequency at the outlet port is dependent on the number of vanes,
where an odd number of vanes is advantageous, since the volumes discharged from each discharge
chamber are not in phase.

Variable-displacement vane pumps. The variation in the volumetric displacement in vane pumps
is achieved by moving the cam ring and, therefore, changing the eccentricity between it and the
rotor. This can be seen in Figure 1.20, where the flow direction can also be inverted without chang-
ing the rotational frequency direction. The hydraulic circuit shown in Figure 1.11 is an example of
the use of this type of pump.

Variable-displacement pumps can also include internal pressure compensation as shown in
Figure 1.21. In this case, the maximum eccentricity is obtained while the internal pressure in the
discharge chamber produces a force lower than the spring force. When the outlet pressure increases
over the pre-load force of the spring, the cam ring moves against the spring, changing the flow rate
delivered.

In general, fluid leakage in vane pumps occurs between the high- and low-pressure sides of the
vanes and across the side bushings, which results in decreased volumetric efficiency and, hence,
reduced flow output. The unbalanced design suffers from shortened bearing life because of the
unbalanced thrust force within the pump.

(a) e>0

FIGURE 1.20 TIllustration of the volumetric displacement variation: (a) Regular flow; (b) Null flow; (c)
Reverse flow. (From Linsingen, 1. von, Fundamentos de Sistemas Hidrdulicos, 3rd ed., Floriandpolis, Brazil:
UFSC Ed., 2008. With permission.)
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FIGURE 1.21 Variable-displacement vane pump with pressure compensation. (From Linsingen, I. von,
Fundamentos de Sistemas Hidrdulicos, 3rd ed., Florian6polis, Brazil: UFSC Ed., 2008. With permission.)

1.4.1.4 Piston Pumps and Motors

Piston machines have radial clearances in their main movable parts of between 2 and 5 mm.
Consequently, they can operate under higher pressures and lower volumetric losses when compared
with other hydrostatic machines.

According to the position of the pistons in relation to the shaft, these machines are classified as
axial piston pumps (swash plate and bent-axis) and radial piston pumps.

Fixed-displacement axial piston machines. In this type of machine the pistons run in cylindrical
holes machined in a cylinder block. The alternative movement of each piston is obtained by the
rotary movement of the cylinder block or the swash plate.

a. Swash plate design

As shown in Figure 1.22, axial machines can be constructed with either rotary or stationary swash
plates. In the motor shown in Figure 1.22a, the cylinder block is stationary and the swash plate is rigid
with the shaft. In Figure 1.22b, the swash plate is stationary and the cylinder block rotates with the
shaft. The swash plate angle defines the piston stroke and, hence, the volumetric displacement [1,11].

The valve plate identified in this figure consists of a plate with circumferential apertures and its
function is to connect the inlet and outlet ports to the bottom of each piston.

In this type of machine there is a continuous leakage that is necessary for the lubrication of parts
with relative mechanical movement such as that between the valve plate and the cylinder block, and
that between the cylinder block and the swash plate. Therefore, a port for external drainage is required.

(a) (b)
Valve plate Cylinder Rotary swash Valve plate Stationary swash
\ block / plate plate

\Piston Cylinder block Piston

FIGURE 1.22 Swash plate design: (a) Motor with rotary swash plate; (b) Pump with stationary swash plate.
(From Linsingen, 1. von, Fundamentos de Sistemas Hidrdulicos, 3rd ed., Floriandpolis, Brazil: UFSC Ed., 2008.
With permission.)
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Flange Pistonrod Piston Housing

Drive shaft
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Center support pin

Valve plate  Outlet

FIGURE 1.23 Illustration of axial piston machine bent-axis design. (From Frankenfield, T.C. Using
Industrial Hydraulics, 2nd ed., Penton Publishing, 1985, ISBN-13: 9780932905017. With permission.)

b. Bent-axis design

In this design the cylinder block is mounted obliquely in relation to the driven shaft (Figure 1.23).
The piston rods are coupled to the driven shaft by spherical articulations such that the rotary move-
ment of the cylinder block produces the alternating piston movement. The connection between the
pistons and the inlet and outlet ports is through the valve plate, as shown in this figure.

Since pistons have no lateral forces, angles of around 25° and even 40°, are allowable. In relation
to the swash plate, the bent-axis type has as disadvantages a greater occupied volume and higher
moment of inertia. On the other hand, it has higher efficiency and less sensitivity to contaminants.

Variable-displacement axial piston machines. The swash plate machines can also have variable
volumetric displacement by changing the swash plate angle. An angle equal to zero corresponds to
null flow rate and the maximum positive angle produces the maximum volumetric displacement
and, consequently, the maximum flow rate supplied by a pump or consumed by a motor. When a
negative angle is allowed, the machine has two flow directions. In the same way, in the bent-axis
type the angle between the cylinder block/valve plate axis and the shaft can also be controlled.

Pressure compensator Pressure adjustement

/ Positioning cylinder
< 1

P —

Swash plate

Valve plate  Cylinder block  Piston

FIGURE 1.24 Variable-displacement axial piston pump, swash plate design, with pressure compensation.
(From Linsingen, 1. von, Fundamentos de Sistemas Hidrdulicos, 3rd ed., Florianépolis, Brazil: UFSC Ed., 2008.
With permission.)
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Variable-displacement piston pumps lend themselves to the incorporation of various mecha-
nisms that will alter their performance. One typical example is the pressure-compensated pump
where the hydraulic mechanism will alter the pump displacement to limit the outlet pressure to
some pre-adjusted value. Figure 1.24 presents a pressure-compensated axial piston pump (swash
plate type).

Other commercial solutions allow the control of the hydraulically supplied power according to
the system demand. Electro-hydraulic pumps using proportional valves are also available to design
circuits with transformation control, which means directly through the primary conversion function.
The circuits presented in Figure 1.11 and 1.12 are examples of the use of variable-displacement
pumps.

Radial piston machines (fixed- and variable-displacement). In these machines, the piston axes
are perpendicular to the driven shaft. Depending on the construction principle, the pistons can be
mounted in a star format around the shaft or in line on a crankshaft.

Figure 1.25 shows the basic configuration of a three-piston pump. Each hollow piston consists
of an inlet non-return valve, a spring, a piston barrel, a pumping chamber, an outlet non-return
ball, and a support bearing. As the driven shaft is rotated, the spring holds the base of the piston
in contact with the eccentric cam shaft. The downward motion of the piston causes the volume
to increase in the pumping chamber. This creates a reduced pressure that enables the inlet check
valve to open, thereby allowing oil to enter the pump chamber. The oil enters the chamber by
way of a groove machined into the cam-shaft circumference. Further rotation of the cam shaft
causes the piston to move back into the cylinder barrel. The rapid rise in chamber pressure closes
the inlet check valve. When the rising pressure equals the system pressure, the outlet check valve
opens, allowing flow to exit the piston and pass to the pressure port of the pump. The resulting
flow is the sum of all the piston displacements. The number of pistons that a radial pump can
have is only limited by the spatial restrictions imposed by the size of the pistons, housing, and
cam shaft.

Figure 1.26 illustrates a variable-displacement pump with pressure compensation composed of a
cam ring eccentrically mounted relative to a cylinder block. The alternative movement of the pistons
is obtained by the rotary movement of the cylinder block reaming the pistons in contact with the cam
ring through shoes. The shoes slide on a trail fixed on the cam ring. The fluid suction and discharge
occurs via semicircular ports and pipes machined on a stationary piece inside the driven shaft.

t Outlet non-return
ball

Support

bearing Pump chamber
Piston chamber

Spring

N
L A\\\ Inlet non-return

\C% alve
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& %
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‘\\‘\\\\

FIGURE 1.25 Radial piston pump. (From Frankenfield, T.C. Using Industrial Hydraulics, 2nd ed., Penton
Publishing, 1985, ISBN-13: 9780932905017. With permission.)
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FIGURE 1.26 Radial piston pump with pressure compensation. (From Linsingen, 1. von, Fundamentos de
Sistemas Hidrdulicos, 3rd ed., Florian6polis, Brazil: UFSC Ed., 2008. With permission.)

In general, the radial piston pump has a higher continuous-pressure capability than any other
type of pump (Table 1.3). However, it should be noted that for extremely high-pressure applica-
tions, the volumetric displacements of radial pumps are usually not larger than 2.4 X 10-% m3/rad
(0.015 dm?/rev).

1.4.1.5 Pump and Motor Performance Characteristics

In Section 1.2.4 the flow rate and torque equations of pumps and motors was presented, where they
were considered as ideal machines, without internal or external leakage and friction. However,
these losses are present in real machines and they are identified in a general way by the volumetric,
mechanical and overall efficiencies.

Consider Figure 1.27, where the main variables associated with pumps and motors are presented.
Based on this figure, the equations given below describe the steady-state behavior and efficiency
expressions valid for pumps and motors.

(@) (b) (©

Valve plate Stationary swash Valve plate Stationay swash

(cross section AA) plate (cross section AA) plate Inlet chamber

B<—| l Qvsex B 4—' l Gvsex
Cylinder Piston Cylinder Piston
block block

Outlet chamber
Valve plate
(cross section BB)

FIGURE 1.27 Main variables associated with: (a) Pumps; and (b) Motors (c) Cross section BB.
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Flow rate and volumetric efficiency. The volumetric losses in hydrostatic machines occur as a
consequence of the mechanical clearances, pressure drops and relative velocity between movable
parts. Cavitation and fluid aeration also induce flow losses. However, since these phenomena should
not occur under normal operational conditions, they are not considered in the mathematical descrip-
tion of volumetric efficiency [12].

The theoretical flow rate given by Equation 1.10 and rewritten in Equation 1.15 is dependent on
the volumetric displacement (D). This parameter is calculated according to the geometric dimen-
sions or by measuring the absorbed or discharged volume for a complete revolution with differential
pressure close to zero.

gvie =D-0=D-21-n. (1.15)

The effective flow rate (discharged) (gy. [m?/s] or [L/min]) in pumps is lower than the theoretical
flow rate (g, [m*/s] or [L/min]) and can be determined by

q‘l;e = q{)/lc - q€sa (116)
where gy, [m3/s] or [L/min] is the flow rate loss that can be due to internal leakage (qv ;,) (between
the pump chambers), or external leakage (gy ..,), as in vane and piston pumps that have a drain port.

In motors, the effective flow rate (inlet) (gy, [m?/s] or [L/min]) is higher than the theoretical flow
rate (¢y,. [m*/s] or [L/min]), since part of the fluid is lost through leakage (gy;). Therefore:

Ve = Qi + Gvs. (1.17)

The volumetric efficiency is then calculated through the following expressions:

For pumps:
P
= ‘Ilye ) (1.18)
qvic
For motors:
M
ny = e (1.19)
qve

The leakage in pumps and motors is approximately laminar and thus under operational con-
ditions, with approximately constant temperature, the leakage is proportional to the pressure dif-
ference (qy 4, o< Ap). Hence, the volumetric efficiency also changes proportionally to the pressure
difference.

Torque and mechanical efficiency. Based on Equation 1.8, the theoretical torque (7;, [N-m]) can
be expressed as

T =D-Ap, (1.20)
where Ap [Pa] is the pressure difference between the inlet and outlet ports of the pump or motor.

However, this is not the real torque in the machine shaft, since there are losses associated with
mechanical friction and fluid viscous friction [12].
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For pumps, the effective torque required in the driven shaft (7, [N - m]) is higher than the theoreti-
cal torque (7, [N - m]), that is

I7 =T +Ty. (1.21)
where T;, [N-m] is the friction torque.

In the case of motors, the effective torque available in the shaft (7,) is lower than the theoretical
torque (7,,), such that

' =T - Ty (1.22)

Consequently, the mechanical efficiencies are defined by the following expressions:

For pumps:
Mo = ;‘E (1.23)
For motors:
A
e YT% , (1.24)

Power and overall efficiency. The useful power of a pump is the hydraulic power at the outlet port
and for a motor it is the mechanical power at the driven shaft. The useful power can be described by:
For pumps:

P, =qve AP = qve P2 = Gvic " P2 Mvs (1.25)
where Ap = p, — p,, P, P, 1s the pressure in the outlet port (discharge) and p, is the pressure in the
inlet port (suction). Since the pressure p, is close to atmospheric pressure (p,=0 Pa [gauge pressure]),
this expression can be written considering only the output pressure (p,).

For motors:

P.=T,-0=T, 2n-n=T, -2 -n-My. (1.26)
Or applying Equation 1.20:
Po=D-(pi—py)-21-n Ny =qGvic - (P1 = P2) M- (1.27)

The drive power is the mechanical power at the shaft for a pump and the hydraulic power at the
inlet port for a motor. Hence:

For pumps:
Pm:Y;-m:Te-Zn-n:M. (1.28)
M
Or applying Equation 1.20:
p =D Pa=p)2mn_ gue-(p=p) (1.29)
U™ U™
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For motors:
P, =QVe'Ap=qu'(p1_p2)=w- (1.30)
Nv
Consequently, the overall efficiency is defined as
For pumps:
PP
n =Pf‘}=n$‘ni. (1.31)
For motors:
Ry’
n =N =M (1.32)
14

1.4.1.6 Characteristic Curves

The variables presented in the section above are frequently presented in graphs as a function of
the pressure difference to which the hydrostatic machine will be submitted. Moreover, operational
conditions like temperature and rotational frequency, and fluid specification, need to be pre-fixed
when these operating curves are obtained experimentally.

Fixed-displacement pumps. A typical characteristic curve is shown in Figure 1.28 where the curve
of the effective flow rate (gy.) represents the basic characteristic of a pump, where its scope shows
the operating pressure influence on the leakage. From this curve the volumetric efficiency curve
(My) is obtained using Equation 1.18.

The mechanical efficiency (n,,) increases with the fluid leakage, improving the lubrication and
reducing the friction torque (Equations 1.22 and 1.23). The useful power (P,) is a linear function of
the effective flow rate and the output pressure (Equation 1.25) and, in turn, the drive power (P,) is
dependent on the mechanical losses (Equation 1.28). According to Equation 1.31, the curve of the
overall efficiency (1)) is determined by either the useful power to drive power ratio, or the volumet-
ric and mechanical efficiency product.
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FIGURE 1.28 Operating curves of a fixed-displacement pump. (From Linsingen, 1. von, Fundamentos de
Sistemas Hidrdulicos, 3rd ed., Florian6polis, Brazil: UFSC Ed., 2008. With permission.)
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FIGURE 1.29 Fixed-displacement pump with relief valve: (a) Hydraulic circuit; (b) Characteristic curve.

The strong reduction in the overall efficiency at low pressures is a consequence of poor lubrica-
tion and high friction in this operational range. For this reason, the manufacturers recommend a
minimal operation pressure, with the aim of not reducing the useful life of the pump. In the case of
Figure 1.28, the pump must operate above 2 MPa (20 bar) [1].

Fixed-displacement pumps with relief valve. The fixed-displacement pump is frequently used
together with a relief valve since the flow from the pump needs to be diverted to a reservoir when it
is not being used by the system (Figure 1.29a).

The effective flow rate supplied to the system (¢y) is obtained by combining the characteristic
curves of the two components, as can be seen in Figure 1.29b. The cracking pressure is the pressure
adjusted at the relief valve (pp,,,) at which it opens. From this operational point onward, any increase
in the system pressure (pp) causes a significant decrease in the flow rate to the system (gy).

For pressures lower than the cracking pressure the system flow rate is equal to the pump flow
rate (¢y =qv), and for higher pressures part of the flow is diverted to the relief valve (gy = gy —gqv ).
At the maximum supply pressure (pp,,.,) the relief valve flow rate is equal to the pump flow rate
(gv = qv), which means that all the hydraulic power (BY) is being dissipated at the relief valve,
increasing the temperature of the fluid that returns to the reservoir. Consequently, the pump drive
power (Py) continues to increase after the cracking pressure has been reached.

Variable-displacement pumps with pressure compensation. In the case of variable-displacement
pumps with pressure compensation, as shown in Figure 1.21, 1.24, and 1.26, the use of a relief valve
is not required, although it can be installed in the hydraulic circuit for safety reasons.

As shown in Figure 1.30a, the system flow rate is always equal to the pump flow rate. When
there is no demand from the system, the pressure increases above the set pump pressure, changing
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FIGURE 1.30 Variable-displacement pump with pressure compensation: (a) Hydraulic circuit; (b)
Characteristic curve.
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its volumetric displacement (D). Therefore, the power consumption is reduced when the cracking
pressure is surpassed, as illustrated in Figure 1.30b. One can observe that this power is not null
when gy = gy = 0 since there is always a small lubrication flow rate (gvs), which is drained to the
reservoir [13].

1.4.2 HyprauLic CYLINDERS

Hydraulic systems are designed to provide controlled mechanical energy through linear or angular
movement. The action over the external environment occurs on the last block of the functional chain
shown in Figure 1.1, the secondary energy conversion, and it is performed by the hydraulic actua-
tors, which in this case are the motors, oscillators and cylinders.

The basics of motors were described in the section above, since their construction principles are
the same as those of pumps.

The hydraulic oscillators also produce angular movement but they do not provide continuous
rotation and the angle is limited to a value below 360°. Their construction is derived from the
hydraulic motor design (from the vane motor, for example) or from double-acting hydraulic cylin-
ders with mechanical transmission converting linear into angular displacement.

In turn, cylinders are the hydraulic actuators most used in hydraulic systems. They are typically
comprised of (1) a barrel, (2) piston assembly, (3) piston rod, (4) end caps, (5) ports, and (6) seals,
as shown in Figure 1.31. The piston provides the effective area against which the fluid pressure is
applied and supports the piston assembly and rod. The opposite end of the rod is attached to the
load. The cylinder bore, end caps, ports, and seals maintain a fluid-tight chamber in which the fluid
energy is contained. Whether the rod will extend or retract is dependent on the port to which the
fluid is directed.

Hydraulic cylinders are classified according to different premises, with two of them being par-
ticularly important in terms of understanding the use and behavior of cylinders. Hence, in relation
to the operating principle they are sub-divided into single- and double-acting (single- and double-
effect) and, considering the area ratio, they are classified as either symmetrical or asymmetrical
(non-differential or differential) cylinders.

In Figure 1.32, the several types of single-acting cylinders are symbolically represented. In this
construction principle, the hydraulic power is available in only one direction of movement—that is,
on either extension or retraction. In the opposite direction the movement results from an external
force (including gravitational force) as shown in Figure 1.32a, b and e, or from an internal spring
force as in Figure 1.32c and d.

Unlike the other types, telescopic cylinders have two or more stages which, when fully extended,
can produce a stroke that exceeds the length of the cylinder when fully retracted. The symbol shown
in Figure 1.32e presents a two-stage model.

End caps

Piston
Seals

Barrel

i

Seals

Piston rod Ports

FIGURE 1.31 Main parts of a hydraulic cylinder. (From Linsingen, L. von, Fundamentos de Sistemas Hidrdulicos,
3rd ed., Floriandpolis, Brazil: UFSC Ed., 2008. With permission.)
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FIGURE 1.32 Single-acting cylinders: (a) Retraction by external force; (b) Extension by external force;
(c) Retraction by spring; (d) Extension by spring; (e) Telescopic cylinder with retraction by external force.

As a consequence of the inevitable leakage between the piston and barrel, the non-active cham-
bers must have an external drain avoiding counter-pressure and cylinder blocking.

Some examples of double-acting cylinders are shown in Figure 1.33. In this type of cylinder, the
effective work is carried out in both directions of movement (extension and retraction).

The most common double-acting cylinder is the single-rod cylinder (Figure 1.33a), which is
classified as an asymmetric (differential) cylinder since the piston areas on the bottom-side and the
rod-side are different. As a consequence, the velocity and hydraulic force are generally different
during the extension and retraction movements.

The double-rod cylinders (Figure 1.33b) can be designed with rods of the same diameter (sym-
metric [non-differential] cylinder) and with different diameters (asymmetric [differential] cylinder).
In the case of symmetric cylinders the hydraulic force and velocity are the same, considering the
same loading and supplied flow rate, during extension and retraction.

Tandem actuating cylinders (Figure 1.33c) consist of two or more cylinders arranged one behind
the other but designed as a single unit. The main operational characteristic is the greater force when
compared with a regular cylinder of the same diameter.

In the same way as in telescopic single-acting cylinders, the double-acting cylinders (Figure
1.33d) have the advantage of being compact. However, since their construction costs are higher than
those of other designs, their use is somewhat limited.

(c) @ 17 |

[ I
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FIGURE 1.33 Double-acting cylinders: (a) Single rod; (b) Double rod; (c) Tandem; (d) Telescopic.
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1.4.2.1 Hydraulic Cylinder Behavior

The hydraulic cylinders are intended for use under several operational conditions, including motion
with a constant velocity, positioning control, force control, or just to provide a force to fix something.

In all these situations, the motion achieved is influenced by factors such as inertia, fluid compress-
ibility and friction, and must be considered in the analysis and design of the hydraulic system [14,15].

By observing Figure 1.34 one can identify two main parts to be modeled: the movable piston and
the fluid in the cylinder chambers.

The linear motion of the piston is described by Newton’s second law, which establishes that the
sum of the forces must be equal to the product of the mass and acceleration (M, - a = M, - d,x/dt,).
Therefore, for an asymmetric double-acting cylinder, as shown in Figure 1.34, the motion equation is

d’x
(AA'pA)—(AB'pB)=Mt'de+Ffr+Fe, (1.33)

A, - p, being the force in area A, caused by the pressure in chamber A (p,), Ay - py is the force
in area Ay caused by the pressure in chamber B (py), and x, is the piston displacement. Fy, is the
friction force associated with the cylinder and external load and F, is the effective force available
at the rod piston to move the load. The total mass (M) includes the piston mass (M) and external
mass (load) (M.,).

Equation 1.33 demonstrates that a hydraulic force (A, - p,) — (Ag - pg) 1S necessary in order to
overcome the external forces, friction force and inertia. Therefore, for the piston to achieve a new
position or velocity the chamber pressures must change.

The dynamic behavior of the pressure in the chambers is determined by the conservation of mass
principle as presented in Section 1.2.2. Hence, applying Equation 1.4 to chamber A (Figure 1.34) the
following expression is obtained:

dx Va dp
= Ay —2 ot Gy + A
qva A dt qv B di

(1.34)

For the cylinder extension, the input flow rate at port A (gy,) leads to a pressure increase (dp /dr)
caused by the fluid compression. With the pressure increase internal leakage (gy,;,) can occur and
the cylinder will start to move. The product of the area and velocity (A, - dx/dt = A, - v,) establishes
the chamber volume variation with the piston movement and this volume is occupied by the fluid.

For chamber B the fluid behavior is expressed by Equation 1.35, such that, on the cylinder exten-
sion gy is the flow rate induced by the piston motion at which the fluid exits the cylinder in the
direction of a directional valve.

qvs =AB'ﬁ+quin_E'%' (1.35)

dt B dr

FIGURE 1.34 Parameters and variables associated with a hydraulic cylinder.
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One can observe that Equations 1.33 through 1.35 are suitable for any type of cylinder, symmetri-
cal or asymmetrical, single- or double-acting. In the case of symmetrical cylinders, the piston areas
are equal (A, = Ap). In the case of single-acting cylinders, the continuity equation is applied only to
the controlled chamber. In the other chamber, the pressure is considered to be constant or the spring
force is included in Equation 1.33.

1.4.2.2 Cylinder Performance Characteristics

Mechanical efficiency. The mechanical efficiency of the cylinder is the ratio between the theoreti-
cal force (hydraulic force) and the effective force available for the external system motion. Since
the efficiency characterizes the steady-state performance of the cylinder, the cylinder is considered
to have a constant velocity, equal to or differing from zero, and null acceleration. Therefore, the
mechanical efficiency can be expressed by

kK F,

= = . 1.36
F. F (As-pa)-(As ps) (150)

Volumetric efficiency. Similarly to hydraulic motors, the volumetric efficiency is the ratio between
the geometric (theoretical) flow rate and the effective flow rate through the cylinder ports, that is

¢ Axv  Apv
ny = e = 287 _ 28V (1.37)

gve 4va  4vs

However, cylinders remain stopped for some periods of time, as they can stay at the stroke end
or in a controlled position when enclosed in a closed-loop system. Therefore, aiming to obtain rep-
resentative values, this efficiency must be calculated beyond these specific operational conditions.

Power and overall efficiency. Considering the cylinder at constant velocity, the useful power
(mechanical power) present at the piston rod is

Fn=Fe-v (138)
Or applying Equation 1.36:
Po=Fe v Mo =(A,py —A;Py) v M- (1.39)
The drive power of a cylinder is the net hydraulic power at the cylinder ports, such that

AA'V. _AB'V.

By =qvaPa—qve s = Pa Ps. (1.40)
U\ Nv
The overall efficiency of the cylinder is expressed by
Fy
no=_r=M M. (1.41)
153

Natural frequency and dynamic performance. The concept of efficiency is a direct way to evalu-
ate the steady-state performance of a system. Thus, the dynamic performance can also be character-
ized through a simplified analysis as follows.

As seen above, the hydraulic cylinder behavior is described by differential equations. Dynamic
systems like this do not respond instantaneously to an input and a behavior analysis must be carried
out according to system control theory.
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Most mathematical models of systems can be reduced to a second-order equation, such as that
presented in Equation 1.42.

1
— e Py =K,
® d ®, dr Y= Rt

d’y 28 dy (1.42)
2

where u is the input, y is the output, , [rad/s] is the natural frequency, £ [1 (non dimensional)] is the

damping ratio and Ky [output unit/input unit] is the steady-state gain of the system [16].

The response time of a second-order system to a step input is shown in Figure 1.35a. Since the
abscissa is m, - ¢, these curves show how both the natural frequency and the damping ratio influence
the dynamic response.

In Figure 1.35b the time-domain specifications used in hydraulic system design are shown.
According to ISO 10770-1 [17] and ISO 10770-2 [18], the response time (¢,.) is defined as the time
required for the response to reach 90% of the final value. The settling time (z,) is defined as the time
required for the response to decrease to and remain at a specified percentage of its final value. The
settling time definition is well known from control theory [16] and 5% is the percentage recom-
mended by the standards mentioned above.

The natural frequency can be correlated with the settling time by [16]:

for 5% error. (1.43)

~
@
Il

3
C'(Dn

Since there is no algebraic correlation with the time response as defined by ISO 10770-1 [17], one
can use the rise time, defined as the time required to change from 0% to 100% of the final value [16].
The expression associated with the rise time is presented in Equation 1.44 [16] and can be used to
approximately calculate the natural frequency when the time response is known.

' 2
t = S -arctan 1-6 . (1.44)
o, 1-C g

On continuing the study of the hydraulic cylinder and its loading, Equations 1.33 through 1.35
can be combined such that, for ports A and B closed (gy, = gy = 0), the system model is
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2.0
1.8

TN

A A

0.4 \

16 |y
1.4’ V.o

12 10

1.0 — == :
\ |

[

\

i

|

I
_)|

|

\Niprie
)

0.8 i
*1.0 —
06| o /

20\ v/

04 - \

02 |4

Ot Lo > |
< b t N
< s >

01 2 3 45 6 7 8 9 1011 12"

(a) (b)

FIGURE 1.35 Response of a second-order system to a unit step input: (a) Influence of the natural frequency
and damping ratio; (b) Time-domain specifications.
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2
1‘241 . .L;CH:O, (1.45)
Be.(AAJFAB] dt
Vo Vi

Through comparing this equation with Equation 1.42, it can be concluded that the natural fre-
quency of the cylinder with loading is expressed by

) 2 1/2
o, =| B [Ar A ) (1.46)
M v W

Besides Equation 1.46 being valid for asymmetrical double-acting cylinders, it can also be applied to
symmetrical double-acting cylinders considering A, = Ag. For application to single-acting asymmetri-
cal cylinders the term related to the non-controlled chamber needs to be excluded (A} / Vyor A2 / V).

1.4.3 DirecTiONAL CONTROL VALVES

One of the main functions of the directional control valves is the connection or isolation of one
or more flow paths. These valves are identified according to their specific function, as will be
presented below, but some characteristics are common to all of them, such as the number of ports,
number of positions, and the type of control mechanism [19].

The port means the terminus of a flow path in a component, to which connections can be made.
The number of ports refers only to those related to the power flow paths, thus excluding drain and
pilot ports. For example, a valve with four ports [19] is commercially identified as a four-way valve.

The number of valve positions refers to the number of pre-defined states in which the valve can
operate and it is related to the feasible stable positions of a movable valve element. Designations
such as two-position valve or three-position valve are used in valve identifications.

Finally, control mechanisms are devices that provide an input signal to a component. Levers, sole-
noids, plungers, and pilots are examples of control mechanisms that are used in directional valves.

1.4.3.1 Non-return Valves (Check Valves)

The simplest type of directional control valve is a non-return valve or check valve. Its function is to
permit free flow in one direction and prevent flow in the opposite direction. Figure 1.36a shows a
simple non-return valve for line mounting which consists of a seat, a poppet, and a spring.

The valve remains closed to the flow until the pressure at its inlet port (A) creates sufficient force
to overcome the spring force. Once the poppet leaves its seat, hydraulic fluid is permitted to flow

(a) Seat (b)

/

2
/_\_//
1 /
r
ﬁv

0

Poppet Spring

0 50 100 150 200 gy [jpm]

FIGURE 1.36 Single non-return valve: (a) Illustration; (b) Characteristic curve. (From Linsingen, I. von,
Fundamentos de Sistemas Hidrdulicos, 3rd ed., Floriandpolis, Brazil: UFSC Ed., 2008. With permission.)
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FIGURE 1.37 Pilot-operated non-return valve. (From Linsingen, I. von, Fundamentos de Sistemas Hidrdulicos,
3rd ed., Florianépolis, Brazil: UFSC Ed., 2008. With permission.)

around and through the poppet to the valve outlet port (B). For this reason, a simple non-return valve
can only allow flow in one direction. By changing the spring, cracking pressures between 0.05 MPa
(0.5 bar) and 0.5 MPa (5 bar) can be obtained. For special applications, a no-spring version is also
available.

In Figure 1.36b, characteristic curves for three different springs are presented. The cracking
pressures are 0.05, 0.15, and 0.3 MPa (0.5, 1.5, and 3 bar). In each curve the pressure drop remains
basically constant until a specified flow rate. Above this value the load loss in the valve increases
and the valve behaves like a fixed orifice, as described by Equation 1.13.

Examples of circuits using non-return valves are shown in Figure 1.5 and 1.11. In Figure 1.12
the pump is designed with two internal non-return valves allowing the fluid suction through one
port without fluid return through the other. This type of valve is also enclosed in filters, as shown in
Figure 1.12, to prevent line blocking in the case of filter obstruction.

For load holding and in decompression-type hydraulic press circuits, a pilot-operated non-return
valve is used. This performs the same function as the simple non-return valve described above.
However, in contrast, a pilot-operated non-return valve can be piloted to remain opened when a
reverse flow is required. Figure 1.37 illustrates the components of a pilot-operated non-return valve.
The valve has two distinct sections—the non-return valve section and the pilot section. The non-
return valve section allows free fluid flow from port A to port B while preventing reverse flow from
B to A without leakage. However, if a pilot pressure signal is supplied to port X, then a force is
applied to the pilot piston, which forces the piston rod against the non-return valve poppet. This
force then unseats the poppet, allowing free flow of fluid from port B to port A.

1.4.3.2 Spool-type Directional Control Valves

As presented in Sections 1.4.1 and 1.4.2, the actuators normally have two ports. If hydraulic fluid is
pumped into one of the ports while the other is connected to the reservoir, the actuator will move in one
direction. In order to reverse its direction of motion, the pump and reservoir connections must be reversed.
The sliding spool-type directional control valve has been found to be the best way to achieve this change.

These valves have a cylindrical shaft called a “spool,” which slides into a machined bore in the
valve housing. The housing has ports to connect the valve to the hydraulic circuit.

The sliding spool-type directional control valves can be designed with different combinations of
spool and housing. Therefore, two-way and two-position, either normally closed or normally open
valves (2/2 NC or 2/2 NO), are available as well as three-way and four-way, or with more ports with
three or more positions and different configurations of valve center positions.

Because of their construction characteristics, these valves present internal leakage, which can be
a serious restriction in some applications. The use with pilot-operated non-return valves or counter-
balanced valves is a common solution.
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FIGURE 1.38 4/2 sliding spool-type directional control valve. (From Linsingen, I. von, Fundamentos de
Sistemas Hidrdulicos, 3rd ed., Florian6polis, Brazil: UFSC Ed., 2008. With permission.)

Two-position directional control valves. Figure 1.38 shows an illustration of a four-way, two-
position, lever-controlled, spring return sliding spool-type directional control valve.

In the solution shown in this figure, the normal position (non-actuated position) establishes the
flow paths P-B and A-T. While actuated by the lever the flow paths P-A and B-T are maintained.

A common use for such a valve is in a cylinder application which only requires the cylinder to
extend or retract to its fullest positions. Another application would be in hydraulic motors, which
only run in forward or reverse directions.

Three-position directional control valves. A three-position valve is similar in operation to a two-
position valve except that it can be stopped in a third or centered position. While in the centered
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FIGURE 1.39 Typical center flow paths for four-way, three-position valves: (a) Open center; (b) Closed center; (c)
Tandem center; (d) Pressure closed center; (e) Reservoir closed center; (f) Restricted open center. (From Linsingen,
L. von, Fundamentos de Sistemas Hidrdulicos, 3rd ed., Florian6polis, Brazil: UFSC Ed., 2008. With permission.)
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FIGURE 1.40 4/3 directional control valve, directly controlled by two solenoids with spring-centered cen-
tral position. (From Linsingen, 1. von, Fundamentos de Sistemas Hidrdulicos, 3rd ed., Florian6polis, Brazil:
UFSC Ed., 2008. With permission.)

or neutral position, flow may or may not be possible, depending on the spool design of the center
position. Figure 1.39 shows some common three-position spool designs.

The open center valve (Figure 1.39a) and the tandem center valve (Figure 1.39¢) divert the pump
flow to the reservoir keeping the supply pressure low. In the closed center valve (Figure 1.39b), all
ports are blocked in the centered position, preventing the actuator movement. At the same time, the
pump flow can be used for other parts of the circuit. The restricted open center valve shown in Figure
1.39f avoids both the complete actuator relaxation and peak pressures during the valve commutation.

The pressure closed center design (Figure 1.39d) allows low pressure at ports A and B to be
maintained while the reservoir closed center design (Figure 1.39¢) means that the supply pressure is
applied to both working ports (Figure 1.33a). This has a regenerative effect when an asymmetrical
cylinder is used, causing the cylinder to extend rapidly due to the difference in the effective areas at
opposite sides of the piston. The cylinder extension velocity is determined by the sum of the pump
flow rate (q\’} ) and the flow rate at the rod end of the cylinder (Q\/}B), that is, qéA = q{); + CI(’/‘E. When the
cylinder chambers are interconnected, the pressure has the tendency to be the same but, as the areas
are different, the hydraulic force (Equation 1.33) differs from zero, causing movement.

Control mechanisms, flow and pressure in directional valves. Besides the mechanical control
mechanisms, as exemplified in Figure 1.38, hydraulically-controlled and solenoid-controlled valves
are common. An example of a solenoid-controlled directional control valve is shown in Figure 1.40.

A typical characteristic curve of directional control valves is the graph of the pressure drop (Ap)
versus the flow rate (g) through each flow path, as shown in Figure 1.41. This steady-state behavior
is described by Equation 1.13 presented above, and shows that the load loss can be different for each
valve position (P-A, P-B, A-T, B-T).

AP [bar]
12
P-A
3 P-B /
4 e
1 B-T
0 //
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FIGURE 1.41 Characteristic curve of the steady-state behavior of directional control valves. (From
Linsingen, L. von, Fundamentos de Sistemas Hidrdulicos, 3rd ed., Floriandpolis, Brazil: UFSC Ed., 2008. With
permission.)
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1.4.4 Pressure CONTROL VALVES

One of the most important characteristics of hydraulic systems is the possibility for pressure control.
Besides providing security against overloading, the hydraulic system has the capability of limiting
and/or controlling the force and torque of the actuator, thereby avoiding mechanical damage.

Basically, there are two groups of pressure control valves: the normally closed (NC) valves and
the normally open (NO) valves. In the first group the pressure at the inlet port is controlled and in
the second the outlet pressure is controlled. In both cases, the valve begins to control the pressure
when the pressure set in the control mechanism is reached.

1.4.4.1 Normally Closed Pressure Control Valves

This group includes valves that have the same operational principle but with a few construction
differences and which thus can perform different functions in the hydraulic circuit. These are the
pressure relief valve, counterbalance valve, unloading valve and sequence valve [20].

The pressure relief valve is usually installed in parallel with the hydrostatic pump and remains
closed until the system pressure surpasses the set pressure, when pump flow is partially or com-
pletely diverted to the reservoir. Figure 1.10 shows this situation where the fixed-displacement pump
(P) runs at a constant rotational frequency, driven by the electrical motor (M), supplying a basically
constant flow rate to the circuit. As discussed in Section 1.3, for the effective velocity control of the
cylinder (A) the cracking pressure of the pressure relief valve (V1) must be reached and, in this way,
the flow rate to the cylinder is reduced.

A typical design of a pressure relief valve is shown in Figure 1.42, which is composed of a poppet
held in the valve seat by a spring force. In operation, the flow enters from the bottom of the valve (port
A). When the inlet pressure (p,) reaches the value such that the pressure times the exposed area of the
poppet is greater than the spring setting (Fy, = Kx,), the valve will begin to pass hydraulic fluid. Note
that the spring must be compressed in order for the poppet to move and provide a greater flow area.

Characteristic curves. The steady-state characteristic curve of a pressure relief valve is given
in Figure 1.42b, which shows that the inlet pressure increases as the flow rate through the valve
increases. The pressure at which the valve first begins to open is called the “cracking pressure” and
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FIGURE 1.42 Directly-operated pressure relief valve: (a) Illustration; (b) Steady-state characteristic curve.
(From Linsingen, 1. von, Fundamentos de Sistemas Hidrdulicos, 3rd ed., Floriandpolis, Brazil: UFSC Ed., 2008.
With permission.)
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FIGURE 1.43 Dynamic behavior of a directly-operated pressure relief valve: (a) Test circuit; (b) Dynamic
response.

it corresponds to the set pressure through the control mechanism (screw) (p, = P,,,,). The override
pressure is essentially a result of the spring force and flow force in the valve.

The dynamic behavior of a pressure relief valve has a strong influence on the system pressure
behavior, as shown in Figure 1.43. Observing the circuit in Figure 1.43a, when the directional control
valve (V2) is closed rapidly, the displacement of the valve element (poppet) and the system pressure
oscillate as shown in Figure 1.43b. The cushion in the valve shown in Figure 1.42a must be designed
to reduce the pressure spikes while at same time reaching the steady state as quickly as possible.

Since the pressure in a hydraulic system is described by the mass conservation principle (Equation
1.4) the pressure behavior is dependent on the circuit fluid volume and the fluid compressibility
(bulk modulus) and not only on the valve behavior.

Pilot-operated valve. The pilot-operated pressure relief valve, as shown in Figure 1.44, increases
pressure sensitivity and reduces the pressure override normally found in relief valves using only the
direct-acting force of the system pressure against a spring element. In operation, the fluid pressure
acts on both sides of the piston because of the small orifice through the piston, and the piston is
held in the closed position by the light-bias piston spring. When the pressure increases sufficiently

X(a) (external pilot) Pilot poppet ~ Poppet spring

Pilot stage

Piston spring —— Y (external drain)

Main stage Internal drain

Main piston — |

Restriction
X (external pilot)

FIGURE 1.44 Pilot-operated pressure relief valve. (From Linsingen, I. von, Fundamentos de Sistemas
Hidrdulicos, 3rd ed., Floriandpolis, Brazil: UFSC Ed., 2008. With permission.)

© 2012 by Taylor & Francis Group, LLC



40 Handbook of Hydraulic Fluid Technology, Second Edition

@ A®D (b) A © A

B L]y
@ A 0 A®) N
, /PXW //_;7—| :_ N /r;_i—i
| | . |
ST S =7 (1 Y
B LY B Ly B (T) e

FIGURE 1.45 Pressure control valves according to ISO 5781. (a) Pressure relief valve; (b) Counterbalance
valve; (c) Sequence valve; (d) Sequence valve with bypass non-return valve; (¢) Unloading valve; (f) Remote-
controlled pressure relief valve. (From ISO, ISO 5781 - Hydraulic fluid power — Pressure-reducing valves,
sequence valves, unloading valves, throttle valves and check valves — Mounting surfaces, Switzerland, 2000.
20p. With permission.)

to move the pilot poppet from its seat, the fluid behind the piston will be directed to a low-pressure
area, such as the return line. The resulting pressure imbalance in the piston will cause it to move in
the direction of the lower-pressure area, compressing the piston spring and opening the discharge
port. This action will effectively prevent any additional increase in pressure. The setting of the pilot-
operated pressure relief valve is adjusted by the preload of the poppet spring.

The valve design shown in Figure 1.44 allows different operational configurations. In the con-
figuration presented, the valve can be used as a pressure relief valve and when a non-return valve is
incorporated it becomes a counterbalance valve. Closing the internal drain and using the external
drain (Y) results in a sequence valve, with the incorporation of a bypass non-return valve being
optional. When the internal pilot line is closed and an external pilot signal (X) is used, the valve
is utilized as an unloading valve. It is also possible to open the valve at low pressure or promote a
remote control using the another external pilot port (X(a) in Figure 1.44). The symbolic representa-
tion of these valves is shown in Figure 1.45.

1.4.4.2 Normally Open Pressure Control Valves (Pressure-Reducing Valves)
Pressure-reducing valves (directly- or pilot-operated) are used to supply fluid to branch circuits at
a pressure lower than that of the main system. Their main purpose is to bring the pressure down to
the requirements of the branch circuit by restricting the flow when the branch reaches some preset
limit. One example of pressure-reducing valve is illustrated in Figure 1.46. In operation, a pressure-
reducing valve permits fluid to pass freely from port A to port B until the pressure at port B becomes
high enough to overcome the force of the spring. At this point, the spool will move, obstructing the
flow to port B and thus regulating the downstream pressure. The direction of flow is irrelevant with
a pressure-reducing valve, as the spool will close when the pressure at port B reaches the set value.
If free reverse flow is required, a non-return valve must be used.

The reduced pressure (pyz) must be kept constant even though there is no flow downstream. Since
the valve operational principle is based on the pressure drop control, an internal leakage (port Y) is
required so that there is a continuous flow through the control orifice.
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FIGURE 1.46 Directly-operated pressure-reducing valve. (From Linsingen, I. von, Fundamentos de Sistemas
Hidrdulicos, 3rd ed., Florian6polis, Brazil: UFSC Ed., 2008. With permission.)

1.4.5 Frow CoNTROL VALVES

Flow rate control in a hydraulic system is commonly used to control the rod velocity of linear
actuators or the shaft rotational frequency of hydraulic motors. There are three ways to carry out
flow rate control. One is to vary the speed of a fixed-displacement pump; another is to regulate the
volumetric displacement of a variable-displacement pump. The third way is with the use of flow
control valves.

Flow control valves may vary from a simple orifice to restrict the flow to a complex pressure-
compensated flow control valve or flow divider. In all designs the flow rate control is carried out
according to Equation 1.13, which means that the hydraulic energy is dissipated through the valve.

Uncompensated flow control valves. The simplest uncompensated flow control is the fixed-area
orifice. Normally, these orifices are used in conjunction with a non-return valve so that the fluid
passes through the orifice in one direction, but in the reverse direction the fluid may pass through the
non-return valve, thus bypassing the orifice. Another design incorporates a variable-area orifice so
that the effective area of the orifice can be increased or decreased (usually manually). One example
of a variable-area orifice with a reverse-flow non-return valve is shown in Figure 1.47. These uncom-
pensated flow control valves are used where exact flow control is not critical.

FIGURE 1.47 Uncompensated flow control valve.
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FIGURE 1.48 Example of pressure-compensated flow control valve. (From Linsingen, I. von, Fundamentos de
Sistemas Hidrdulicos, 3rd ed., Florian6polis, Brazil: UFSC Ed., 2008. With permission.)

Recalling Equation 1.13, the flow rate through an orifice is dependent on the pressure drop across
the orifice. Therefore, if the pressure differential increases or decreases, the flow will also increase
or decrease. To avoid this, a compensated flow control valve must be used.

Pressure-compensated flow control valves. A pressure-compensated flow control valve is shown
in Figure 1.48. In this valve, as the pressure differential across the valve from the inlet to the outlet
increases, the flow would also increase. However, any increase in flow will be accompanied by a
resulting increase in the pressure drop across the control orifice (A,) (Ap = p;, — pg).- When this pres-
sure differential begins to produce a force larger than the spring preload, the valve spool will shift
and the secondary orifice (A,) will be restricted. These valves normally incorporate a non-return
valve for a free inverse flow.

Flow dividers. Flow dividers are also a form of flow control valve. There are at least two
types of flow dividers: One is called a “priority flow divider”; the other is a “proportional flow
divider.” The priority type of flow rate control provides flow to a critical circuit at the expense
of other circuits in the system. Figure 1.49 [11] illustrates a priority flow divider. In operation,
the flow will enter the priority flow divider from port B. When the flow reaches a value and the

Spring

s

Spool Fixed orifice

FIGURE 1.49 Priority flow divider. (From Sullivan, J.A. Fluid Power: Theory and Application, 2nd ed.,
USA: Prentice—Hall International, 1982, ISBN 013907668-9. With permission.)
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pressure drop across the fixed orifice produces a force larger than that provided by the spring,
the spool will move to the left. This action will begin to close the priority outlet port (A) and
open the secondary outlet (B). When the flow rate is below the designed priority flow rate, the
spool will be all the way to the right, the secondary outlet will be closed, and the priority outlet
will be wide open. The proportional-type flow divider follows the same principle as the prior-
ity flow divider, except that two orifices are used and the spool is normally spring-loaded to a
particular flow split ratio.

1.4.6 DirecTioNAL CONTINUOUS CONTROL VALVES

As established by ISO 5598 [19], continuous control valves are valves “that control the flow of
energy of a system in a continuous way in response to a continuous input signal.’

Moreover, according to the function performed by the valve in the system, these valves can be
classified as directional continuous control valves, pressure continuous control valves and flow con-
tinuous control valves.

Observing the directional control valves described in Section 1.4.3, it can be seen that there is an
intrinsic possibility for continuous movement of the valve element (typically the spool). However,
several of the control mechanisms used for directional control valves, like a solenoid, detent lever,
hydraulic pilot, and so forth, only allow the valve to move to specific positions.

With directional continuous control valves, continuous position changing is possible; for
example, from the P-A/B-T position to the blocked port center position and then to the P-B/A-T
position.

Directional continuous control valves with mechanical control are well known in mobile hydrau-
lics where the position of the command lever is defined by a human operator based on his or her own
observation of the position or velocity of the cylinder or motor.

Valve technology with continuous electrical input started with the servo-valves in the early
1940s [21]. Another notable event was the development of the proportional directional control
valves in the late 1970s [22]. Encompassing technological principles from both these valve types,
new products are being offered on the market, such as servo-proportional valves [23]. Regardless
of their commercial identification or construction principle, according to ISO 10770-1 [17] and
ISO 10770-2 [18] these are electrically-modulated hydraulic flow control valves, since they
provide a degree of proportional flow control in response to a continuously variable electrical
input signal.

1.4.6.1 Servo-valves

Since their beginning in the 1940s, different conceptions have been developed and the two-stage
valve is a representative servo-valve concept. The first stage (pilot stage) is composed of either a jet
pipe valve or flapper-nozzle valve driven by a torque motor (a permanent magnet, variable reluc-
tance actuator). The second stage is a spool valve, its position being fed back in order to place the
torque motor armature at the null position.

Figure 1.50 shows a typical servo-valve with mechanical feedback or force feedback. Other
methods of position feedback are the spring-centered spool, direct position feedback or hydraulic
follower, and electric feedback using a position transducer [24].

Frequently, the spool slides into a sleeve where the ports were machined. The relative position
between the spool lands and sleeve ports then determines the flow control orifices. The same solu-
tion is adopted for directly operated valves with electrical feedback, driven by a linear force motor.
This valve design is referred to as the “servo-proportional valve” [23,25].

Advances in the manufacturing process and changes in the user requirements have led to changes
in the construction details. For example, pilot-operated servo-valves like that shown in Figure 1.50
but without a sleeve are also available.
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FIGURE 1.50 Pilot-operated servo-valve with mechanical feedback.

1.4.6.2 Proportional Directional Control Valves

The conception of proportional directional control valves comes from two distinct fields: mobile
hydraulics and industrial hydraulics. In both cases, the objective was to obtain the same functional
characteristics as servo-valves—that is, the continuous control of flow direction and rate, but with a
distinct mechanical design.

The proportional valves are controlled by proportional solenoids, which, unlike the torque motor
and linear force motor, do not comprise a permanent magnet and the force is provided in only one
direction for any current polarity.

Figure 1.51 shows a proportional directional valve, directly controlled by two solenoids, with a
spring-centered central position and a spool position transducer. The operation of this type of valve
requires an electronic controller/amplifier that receives both the external reference signal and the feed-
back signal from the position transducer, processes them and sends electrical signals to the solenoids.

There is a significant diversity of proportional directional valves on the market, including valves
without feedback position, valves with only one solenoid acting against a spring and valves with
controller/amplifier assembled together in the valve (on-board electronics). The metering notches
on the spool, as shown in Figure 1.51, can be of different types and are used to define the curve of
the flow rate against the spool displacement. However, they are not machined on all valve designs.

Valve designs with spool-sleeve mounting are also available with both smaller machining toler-
ances and radial clearances. Usually these valves include position feedback optimizing their static

Solenoid
Position transducer

= [

C

Spring Y APBT Spring

FIGURE 1.51 Proportional directional control valve.
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and dynamic behavior. The servo-proportional valve designation has also been used by valve manu-
factures for these construction solutions [23,26,27].

1.4.6.3 Fundamental Model and Characteristic Curves

Considering a directional continuous control valve as being the valve itself with the controller/
amplifier, on-board or not, its main function is to control the flow rate (output) in response to a input
voltage (reference signal).

The valve behavior can be described through the composition of two parts—with feedback or
without feedback. The first block corresponds to the transformation of the input voltage into spool
displacement. The second one refers to the output flow rate as a consequence of the spool displacement
and the pressures in the supply (P), return (T), and working (A and B) ports of the valve (Figure 1.52).

In essence, the valve amplifier controls the current applied to each proportional solenoid or to
the pair of coils of a torque motor or linear motor. According to electromechanical principles, this
current produces a force (or torque) that is transmitted to a valve element.

In the case of a pilot-operated servo-valve, as shown in Figure 1.50, the torque produces the pipe
motion (on jet-pipe valves) or the flapper motion (on flapper-nozzle valves) which, in turn, changes
the pressure on the spool sides. The pressure difference makes the resting spool change its position,
which is fed back to the pilot valve. In directly-operated valves, as shown in Figure 1.51, the force
produced by the electromagnetic actuator is applied directly on the spool.

Based on these principles, a dynamic relationship between the control voltage (U,) and the spool
displacement (x,) can be expressed by

d*x, 2-C dx,
2 +77
dt w, dt

KRP.UC :iz +.x5, (147)
oy

where Kyp [m/V] is the steady-state gain (ratio between the spool displacement and control voltage in
a steady state), @, [rad/s] is the natural frequency and C [1 (non-dimensional)] is the damping ratio.

The parameter values of Equation 1.47 can be obtained from valve data sheets; for example,
from the response time curves shown in Figure 1.53 [28]. Comparing these curves with the general
response time of a second-order system (Figure 1.35b), it can be concluded that this valve has a
damping ratio ({) close to 0.8 and a settling time (z,) of approximately 50 ms for an input of 50%
of the maximum amplitude. Using Equation 1.43, the natural frequency is determined as 53.6 rad/s
(8.5 Hz).

The valve catalogs also inform the response time defined according to ISO 10770-1 [17] and shown
in Figure 1.35b. The approximate calculation of the natural frequency based on the response time is
carried out using Equation 1.44, where { = 0.7 can be used when the value is not given in the catalog.

Another way to present the valve dynamic response is through a frequency response diagram
(Bode diagram), where it is possible to extract directly the values of the natural frequency and

damping ratio [16].
PAl Py l
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FIGURE 1.52 Block diagram of the directional continuous control valve.
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FIGURE 1.53 Response time of a directional proportional valve.

The second block in Figure 1.52 refers to the flow rate control as a function of the orifice opening
and the pressures at the valve ports. By applying the concepts related to Equation 1.13, the following
expression is valid for directional continuous control valves [14,29,30]:

Gve = Kv- . [Ap,, (1.48)

an

where gy, [m%s] is the control flow rate, Kv [(m?¥/s)/(Pa)'”?] is the flow coefficient, x_, [m] is the nomi-
nal spool displacement and Ap, [Pa] is the total pressure drop at the valve.

By combining Equations 1.47 and 1.48, one obtains the general expression for a directional con-
tinuous control valve—that is

1 U
qve =Kv-| — .7.@, (1.49)

where D = d/t is the differential operator.
When the valve is under a steady-state condition, this equation takes the following form:

U
qve =Kv- U \AD,. (1.50)

n

The total pressure drop at the valve (Ap,) corresponds to the pressure drop between the supply
port (P) and the return port (7'), which, for the flow paths P-A/B-T, is expressed by

Ap = App_p +Apg 1t =(pp — pa)+(ps — P1), (1.51)
where App_, = pp — P4 1S the pressure drop between ports P and A and Apy, = pg — pr is the pressure

drop between ports B and T.
For the flow paths P-B/A-T, the total pressure drop is:

Ap. = App_g+Aps-1 =(ps— ps)+(pa—pr), (1.52)
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FIGURE 1.54 Flow rate versus input voltage of a directional proportional valve.

where App_p = pg — pg is the pressure drop between ports P and B and Dp,_; = p, — pr is the pres-
sure drop between ports A and T.

The valve catalogs inform the nominal flow rate (gv.,) at a determined pressure drop that can be
either 1 MPa (10 bar), 7 MPa (70 bar), or 1/3 of the nominal supply pressure [17,18]. The nominal
flow occurs when the valve is operating with nominal voltage, that is, with the nominal opening.
The flow coefficient (Kv [(m3/s)/(Pa)"?] or [(Ipm/(bar)"?]) can be calculated as:

Ky = ven (1.53)

\ Apy,

The data for the Kv calculation can also be obtained from curves, as shown in Figure 1.54 [28],
at 100% of the input signal. In this case, the nominal flow rate presented on the data sheet is 25
Ipm@10 bar (41 x 102 m*/s@1 MPa) (which corresponds to curve 1).

It is important to observe that for some valves the nominal flow is specified at a partial pressure
drop (Dpp_,) and this must be multiplied by two to allow the flow coefficient calculation.

Constructive aspects of the directional control valves, like different center position arrangements
(Figure 1.39) and the existence of symmetrical and asymmetrical designs, are also applicable to
directional continuous control valves.

1.4.7 HybpRAULIC ACCUMULATORS

The purpose of a hydraulic accumulator is to store fluid or provide fluid at a certain pressure in
order to minimize short-duration pressure spikes or to reach a short-duration high-flow demand.
The accumulators used in hydraulic systems can be grouped into three categories: weight-loaded
or gravity type, spring-loaded type, and gas-loaded type [31] (Figure 1.55). The weight-loaded type
consists of a cylinder with a piston where a mass is attached to its top. The gravitational action
on the mass creates a constant fluid pressure, irrespective of the flow rate and fluid volume in the
cylinder chamber.

The spring-loaded accumulator simply uses the spring force to load the piston. When the fluid
pressure increases to a point above the preload force of the spring, fluid will enter the accumulator
to be stored until the pressure reduces. In this type of accumulator, the fluid pressure varies with the
piston position and, consequently, with the fluid volume in the accumulator.

The gas-loaded accumulator can be either without separation between liquid and gas, a piston
type or a bladder and diaphragm type, as shown in Figure 1.55. In the gas-loaded accumulator, an
inert gas, such as dry nitrogen, is used as a pre-charge medium. In operation, this type of accumu-
lator contains the relatively incompressible hydraulic fluid and the more readily compressible gas.
When the hydraulic pressure exceeds the pre-charge pressure exerted by the gas, the gas will com-
press, allowing hydraulic fluid to enter the accumulator. The hydraulic pressure changes with the
volume occupied by fluid as a consequence of the pressure gas variation caused by its compression/
decompression.
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FIGURE 1.55 Basic types of accumulators. (From Linsingen, I. von, Fundamentos de Sistemas Hidrdulicos,
3rd ed., Floriandpolis, Brazil: UFSC Ed., 2008. With permission.)

1.4.8 RESERVOIR AND ITS ACCESSORIES

A typical design for an industrial reservoir is shown in Figure 1.56 where the main parts can be
identified. The reservoir should be sized to both afford adequate fluid cooling and to enclose a suf-
ficient volume of oil to permit air bubbles and foam to escape during the residence time of the fluid
in the reservoir. Commonly, the reservoir is sized to hold at least three times the volume of fluid
that can be supplied by the pump in one minute. Baffles are also provided to prevent channeling of
the fluid from the return line to the inlet line and the bottom of the return line is usually cut at a 45°
angle to assist in the redirection of the fluid away from the inlet.

The reservoir depth must be adequate in order to assure that during peak pump demands, the oil
level will not drop below the pump inlet level. Moreover, the pump should be mounted below the
reservoir so that a positive head pressure is available at all times. This is critical when water-based
hydraulic fluids are used, as these fluids can have a higher mass density as well as a much higher
vapor pressure than mineral-oil-based fluids.

Sight gauges are normally used to monitor the fluid level and a cleanout plate is provided to
promote cleaning and inspection. A breather system with a filter is also provided to admit clean
air and to maintain atmospheric pressure as fluid is pumped into and out of the reservoir. With
water-based hydraulic fluids, a pressurized reservoir is recommended. Special breather caps can
be installed to vent between 0.005 MPa (0.05 bar) and 0.1 MPa (1 bar). If one of these is used, it

Mounting
plate

Suction line Filler/Breather
cap

Qil lever

Dished gage

bottom
Cleanout cover

Drain line

Return line Baffle plate Drain plug

FIGURE 1.56 A typical design for an industrial reservoir. (From Norvelle, F.D. Fluid Power Technology,
New York, NY, West Publishing Company, 1995. With permission.)
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FIGURE 1.57 Bubble eliminator.

must have a vacuum brake to vent at approximately —0.003 MPa (-0.03 bar). This is an important
feature to have so that when the reservoir is cooling down, no appreciable vacuum develops in the
reservoir. This feature will minimize pump cavitation upon start-up and also prevent a possible
reservoir implosion.

Recent trends in industrial manufacturing are to compact machines and equipment in order
to economize materials, energy consumption, and required space. A reduction in the size of fluid
power systems is encouraged in order to conserve energy and reserve oil. It is somewhat inevitable
in designing these systems to minimize the size of the oil reservoir, meaning that the bubbles
entrained in the oil may not be removed effectively during the fluid sojourn time in the reservoir. As
mentioned above, in order to remove bubbles big vessels are generally used, but it takes a long time
to eliminate minute bubbles from fluids by flotation alone.

Another solution is the device shown in Figure 1.57, which has the capacity to eliminate bubbles
and decrease dissolved gases using a swirl flow [33,34]. This device, called a “bubble eliminator,”
consists of a tapered tube where the fluid containing bubbles flows tangentially from the inlet port
(port A) and generates a swirling flow. Due to the difference in centrifugal forces created in the swirl
flow, the bubbles tend to move toward the central axis (port B) where they are collected and ejected
through the vent port (port X).

1.4.9 FiLTERS

As discussed throughout this chapter, hydraulic components are composed of mechanical elements
with relative movement and small clearances between them. The hydraulic fluid is expected to
create a lubricating film, thereby keeping precision parts separated. Particulate contaminants can
break this film, cause erosion on the surfaces or even block the relative movement. Consequently,
the hydraulic component life expectancy is reduced, impairing its performance or even causing its
complete failure.

The contaminants in hydraulic systems come from several sources, such as the degradation of
the circuit components, the external environment, the circuit assembly, and from the new hydraulic
fluid which can have a standard contamination level below the system requirements.

The removal of particulate matter and silt from a hydraulic fluid is performed by filters that can
be installed at different locations in the hydraulic circuit, characterizing the following types of fil-
tration: suction, pressure, return and off-line filtration [35,36].

Suction line filtration: Suction filters are located before the suction port of the pump and provide

pump protection against fluid contamination (Figure 1.58a). Some may be inlet strainers, submersed
in the fluid. Others may be externally mounted. In either case, they utilize relatively coarse elements
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FIGURE 1.58 Types of filtration: (a) Suction filter (F1) and Pressure filter (F2); (b) Return filter (F1);
(c) Pressure.

to avoid high pressure drops that can cause cavitation on the pump. Some pump manufacturers do
not recommend the use of a suction filter.

Pressure line filtration: Pressure filters are located downstream of the pump (Figure 1.58a and c).
They usually produce the lowest system contamination levels to assure clean fluid for sensitive high-
pressure components and provide protection of downstream components from pump-generated
contamination.

Return line filtration: In most systems, the return filter is the last component through which fluid
passes before entering the reservoir (Figure 1.58b). Therefore, it captures wear debris from system
working components and particles entering through worn cylinder rod seals before such contami-
nants can enter the reservoir. A special concern in applying return filters is sizing for a potential
flow rate greater than the pump output, since large rod cylinders and other components can cause
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induced return line flows. Return lines can have substantial pressure surges, which need to be taken
into consideration when selecting filters and their locations. The relatively low cost and the cleanli-
ness of the fluid suctioned by the pump are factors that make the use of these filters attractive.

Re-circulating or off-line filtration: Off-line filtration consists of a hydraulic circuit with at least a
pump and its prime mover and a filter. These components are installed off-line as a small subsystem
separate from the working lines or can be included in a fluid-cooling loop (Figure 1.58c). As with
a return line filter, this type of system is best suited to the maintenance of overall cleanliness, but
does not provide specific component protection. An off-line filtration loop has the added advantage
of being relatively easy to retrofit on an existing system that has inadequate filtration. Also, the filter
can be serviced without shutting down the main system.

The circuits shown in Figure 1.10 through 1.12 also present some examples of filter installations.
In general, the systems can incorporate multiple filtration techniques, using a combination of suc-
tion, pressure, return, and off-line filters.

1.4.10 Hypraulic FLuib

The main characteristic of hydraulic systems, as well as of pneumatic systems, is their requirement
that matter flow in such a way as to promote the flow of energy. As discussed in Section 1.1, the
hydraulic system must perform three fundamental functions in terms of the energy: primary conver-
sion, limitation and control, and secondary conversion. A fourth function is related to fluid storage
and conditioning. This function is required because the fluid must be available for the energy trans-
mission, and since the fluid is continuously in contact with the hydraulic components its proprieties
must be controlled.

Fluid proprieties such as viscosity, mass density, vapor pressure, contamination, gas solubility,
and bulk modulus change the physical relations modeled by the continuity equation, and conserva-
tion of energy, among others. Therefore, besides causing component degradation, the modifying of
physical proprieties also changes the hydraulic system behavior.

Throughout the chapters of this Handbook the proprieties of different fluids that are used in
hydraulic systems are analyzed as well as their effect on the life and behavior of the components.
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Appendix

Equipment Builder's Viscosity Guidelines for Hydraulic



Fluids

NFPA Tz2.13.13 2662 n Equipment Operating Startup (Under
Load) Optimum Minimum mm 2 /5 (cSt) Maximum mm 2 /5 (CS5t)
Maximum mm 2 /s (cS5t) mm 2 /s (CS5t)

Bosch (see Rexroth

Corporation)

Commercial

Intertech (see Parker

Hannifin}

Danfoss (see

Sauer-Danfoss, USA)

Denison Hudraulics

SPO-AM3AS Piston Pumps “ane Pumps 16 16 162 167 1618 866
(low speed and pressure) 36 36

Dynex/Rivett

axial piston pumps PF4266 Series PFEGG6/8, PF/PW4@8H, and
FF/PW00BG Series PF 1608, PF2e86 and PF3688 Series 1.5
2.3 3.5 372 413 342 372 413 342 20-70 20-78 26-78

Eaton Heavy-Duty Piston Pumps and Motors, MediumDuty
Piston Pumps and Motors Char ged Systems, Light-Duty Pumps
Medium-Duty Piston Pumps and Motors - Non-charged Sustems
Gear Pumps, Motor, and Cylinders 6 6 6 - - - 2158 432

2158 18-39 18-39 16-43

Eaton - Wickers Mohile Piston Pumps Industrial Piston Pumps
Mobile wane Pumps Industrial Yane Pumps 16 13 9 13 286 54
54 54 B6B 220 860 868 16-48 16-48 16-48 16-48

Eaton - Char-Lynn J, R, and 5 Series Motors, and Disc

Valve Motors A Series and H Series Motors 13 26 - - 2158
2158 20-43 26-43

Haldex Barnes W Series Gear Pumps 11 - 756 21

Kawasak i

F-963-6826



P-969-8196 Staffa Radial Piston Motors K3W/G Axial Piston
Pumps 25 16 156 286 2668 (no load) 1666 56

Linde ALl 16 86 1686 15-38
Mannesmann Rexroth

{see Rexroth

Corporation) (continued)

NFPA T2.13.13 2682 (Continued) n Eguipment Operating
Startup (Under Load) Optimum Minimum mm 2 /s (cSt) Maximum
mm 2 /s (cSt) Maximum mm 2 ss (cSt) mm 2 /s (CSt)

Parker HanniBin Roller and Sleeve-Bearing Gear Pumps

Gerotor Motors Gear Pumps PGH Series Gear Pumps DAHAM
Series Hudraulic Steering PFWH / PFVI Vane Pumps Series T1
WCR2 Series Low-Speed High-Torgue Motors Variable wol
Piston Pumps PWP and PVAC Axial-Fixed Piston Pumps Wariable
Yol Wane - P¥W 188 - -8-16 1318 - - - - - - - - - -
——————— 1666 - 1666 1686 - 1666 1666 1666 - 1668 1660
856 446 26 12-66 17-186 17-186 12-66 17-186 16-486 - -
17-186 17-186 12-166 16-116

Poclain Huydraulics H and S Series Motors 9 - 1588 26-166
Rexroth Corporation

F orm No S/166 US FA, RA,; K O, O-6, S¥-1a, 15, 28, 25,

YPY 16, 25, 32 SY-48, 86 and 1@ VPY 45, 63, 86, 168,
136,164 Radial Piston (SECO) Axial and RKP Piston Y3, ¥4,
W5, Y7 Pumps W2 Pumps R4 Radial Piston Pumps G2, G3, G4
Pumps and Motors G8, G99, G18 Pumps 15 21 32 16 14 25 16 16
16 216 216 216 65 456 - 166 266 366 8064 864 864 162 647 568
ae6 - 1066 26-45 32-54 43-64 21-54 32-65 25-166 25-164
25-166 25-166

FRotary Power “SMA” Radial Piston Motor 15 - 1806 28-26@

Sauer-Danfoss, USA Steering and valwves PYG Valwves Gear
Pumps and Motors Closed-Circuit Axial Piston Pumps and
Motors Open-Circuit Axial Piston Pumps Bent Axis Motors
LSHT Motors 16 4 18 76 7 18 - - - - - - - 1868 4608
1668 1666 1686 1680 1608 12-66 12-75 26-48 12-66 9-116
12-66 26-75

Sauer-Danf oss,



GmhH Series 16 and 26, RMF(Hydrostatic Motor) Series 15
Open Circuit Series 48, 42, 51 and 9% CW 3-8 Hudrostatic
Motor Series 45 Series 66, LPM (Hydrostatic Motor) Gear
Pumps plus Motors 7 12 79918 - - - - - - 1986 866

1668 19066 1686 1988 1Z2-08 12-66 12-6@ 12-68 12-68 12-68

5u ndstrand (see

Sauer-Danfoss, USA)
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FIGURE 7.3 Mechanical efBciency of hydraulic motors during
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GLOSSARIES
Acid Number: A measure of the amount of KOH needed to

neutralize all or part of the acidity of a petroleum
product .



Additive: Any material added to base stock to change its
properties, characteristics, or performance.

Anhydrous: A lubricating grease without water (as
determined by ASTH D 128).

Aniline Point: The lowest temperature at which egual
volumes of aniline and hydrocarbon fuel or lubricant base
stock are completely miscible. & measure of the aromatic
content of a hydrocarbon blend, used to predict the
solvency of a base stock or the cetane number of a
distillate fuel.

Apparent Yiscosity: A measure of the viscosity of a
non-Newtonian Buid under specifled temperature and shear
rate conditions.

Bactericide: Additive to inhibit bacterial growth in the
agueous component of Builds, preventing foul odors.

Bases: Compounds that react with acids to form salts plus
water. Alkalis are water-soluble bases, used in petroleum
refining to remove acidic impurities. 0il-soluble bases are
included in lubricating oil additives to neutralize acids
formed during the combustion of fuel or oxidation of the
lubricant.

Base NWumber: The amount of acid (perchloric or
hydrochloric) needed to neutralize all or part of a
lubricant’s basicity, expressed as KOH eguivalents.

Base Stock: The bhase Buid, usually a refined petroleum
fraction or a selected sunthetic material, into which
additives are blended to produce Bnished lubricants.

Bleeding: Separation of liguid lubricant from grease. ing
desired phusical properties.

Boundary Lubrication: Lubrication between two rubbing
surfaces without the development of a full Buid
lubricating Blm. It occurs under high loads and reguires
the use of antiwear or extreme-pressure (EP) additives to
prevent metal-to-metal contact.

Bright Stock: A heawvy residual lubricant stock with low
pour point, used in Bnished blends to provide good bearing
Im strength, prevent scuf@ing, and reduce oil consumption.
Usually identiBed by its viscosity, SUS at 218°F, or cSt
at 100°C.



Brookfield VWiscosity: Measure of apparent wiscosity of a
non-Newtonian Buid as determined by the BrookBeld
viscometer at a controlled temperature and shear rate.

Bulk Appearance: Appearance of an undisturbed grease
surface. Bulk appearance is described hy:

s Bleeding: Free oil on the surface (or in the cracks of a
cracked grease.)

* Cracked: Surface cracks.

s Grainy: Composed of small granules or lumps of
constituent thickener.

s Rough: Composed of small irregularities.
¢ Smooth: Relatively free of irregularities.

Cetane Number: A measure of the ignition quality of a
diesel fuel, as determined in a standard single cylinder
test engine, which measures ignition delay compared to
primary reference fuels. The higher the cetane number, the
easier a high-speed, direct-injection engine will start,
and the less “white smoking” and “diesel knock™ after
startup.

Cloud Point: The temperature at which a cloud of wax
crystals appears when a lubricant or distillate fuel is
cooled under standard conditions. Indicates the tendency of
the material to plug Blters or small orifices under cold
weather conditions.

Coefficient of Friction: CoefBcient of static friction is
the ratio of the tangential force initiating sliding

motion to the load perpendicular to that motion. CoefBcient
of kinetic friction {usually called “coefBcient of
friction”) is the ratio of the tangential force sustaining
sliding motion at constant velocity to the load
perpendicular to that motion.

Cohesion: Molecular attraction between grease particles
contributing to its resistance to Bow.

Complex Soap: A soap crystal or Bber formed usually by
co-crystallization of two or more compounds. Complex soaps
can he a normal soap (such as metallic stearate or oleate),
or incorporate a complexing agent which causes a change in
grease characteristics—usually recognized by an increase



in dropping point.

Consistency: The resistance of a lubricating grease to
deformation under load. Usually indicated by ASTM Cone
Penetration, ASTH D 217 (IP 5&), or ASTM D 14@3.

Copper Strip Corrosion: A gualitative measure of the
tendency of a petroleum product to corrode pure copper.

Corrosion: The wearing away andsor pitting of a metal
surface due to chemical attack.

Corrosion Inhibitor: An additive that protects lubricated
metal surfaces from chemical attack by water or other
contaminants.

Demulsibility: & measure of the Buid’s ability to separate
from water.

Density: Mass per unit wolume.

Dispersant: An additive that helps keep solid contaminants
in a crankcase oil in colloidal suspension, preventing
sludge and varnish deposits on engine parts. Usually
nonmetallic (“ashless™), and used in combination with
detergents.

Dropping Point: The temperature at which grease becomes
soft enough to form a drop and fall from the orifice of the
test apparatus of ASTH D 566 (IP 132) and ASTM D 2265.

Dry Film Lubricant: A& low shear-strength lubricant that
shears in one particular plane within its crystal
structure (such as graphite, molybdenum disulBde and
certain soaps). and high speeds in rolling elements where
the mating parts deform elastically due to the
incompressibility of the lubricant Blm under wery high
pressure.

Emulsifier: Additive that promotes the formation of a
stable mixture, or emulsion, of oil and water.

Evaporation Loss: The loss of a portion of a lubricant due
to volatization (evaporation). Test methods include ASTM D
972 and ASTM D 2595.

Extreme Pressure Property: That property of a grease that,
under high applied loads, reduces scuf@ng, scoring, and
seizure of contacting surfaces. Common laboratory tests are
Timken OK Load (ASTM D 2569 and ASTM D 2782) and 4-Ball



Load Wear Index (ASTM D 2596 and ASTH D 2733).

Flash Point: Minimum temperature at which a Build will
support instantaneous combustion (a Bash) but hefore it
will burn continuously (Bre point). Flash point is an
important indicator of the Bre and explosion hazards
assocliated with a petroleum product.

Friction: Resistance to motion of one ohject ower another.
Friction depends on the smoothness of the contacting
surfaces, as well as the force with which they are pressed
together.

Fretting: Wear characterized by the removal of Bne
particles from mating surfaces. Fretting is caused by
vibratory or oscillatory motion of limited amplitude
between contacting surfaces.

Fuel Ethanol: Ethanol (ethyl alcohol, C 2 H 5 0OH) with
impurities, including water but excluding denaturants.

Homogenization: The intimate mixing of ¢rease to produce a
uniform dispersion of components.

Hydrolytic Stability: Ability of additives and certain
synthetic lubricants to resist chemical decomposition
(hydrolysis) in the presence of water.

Kinematic Viscosity: Measure of a Buid’'s resistance to Bow
under gravity at a specific temperature (usually 48°C or
100°C) .

Lubricating Grease: A solid to semiBuid dispersion of a
thickening agent in liguid lubricant containing additives
(if used) to impart special properties.

MNaphthenic: A type of petroleum Buid derived from
naphthenic crude oil, containing a high proportion of
closed-ring methylene groups.

Neutralization Wumber: A measure of the acidity or
alkalinity of an oil. The number is the mass in milligrams
of the amount of acid (HC1) or bhase (KOH) reguired to
neutralize one gram of oil.

MNeutral 0il: The hasis of most commonly used automotive and
diesel lubricants; they are light overhead cuts from

vacuum distillation.

Newtonian Behavior: A lubricant exhibits MNewtonian behavior



if its shear rate is directly proportional to the shear
stress. This constant proportion is the wviscosity of the
liguid.

Newtonian Flow: Occurs in a liguid system where the rate of
shear is directly proportional to the shearing force. When
shear rate is not directly proportional to the shearing
force, Bow is non-MWewtonian.

MLGI Mumber: A& scale for comparing the consistency
(hardness) range of greases (numbers are in order of
increasing consistency). Based on the ASTM D 217 worked
penetration at 25°C (77°F).

Non-Newtonian Behavior: The property of some Buids and many
plastic solids (including grease), of exhibiting a
variable relationship between shear stress and shear rate.

MNon-Soap Thickener: Specially treated or synthetic
materials (not including metallic soaps) dispersed in
liguid lubricants to form greases. Sometimes called

“synthetic thickener, inorganic thickener,” or “organic
thickener.”

Oxidation: Occurs when oxygen attacks petroleum Buids. The
process is accelerated by heat, light, metal catalusts and
the presence of water, acids, or solid contaminants. It
leads to increased wiscosity and deposit formation.

Oxidation Inhibitor: Substance added in small guantities to
a petroleum product to increase its oxidation resistance,
thereby lengthening its service or storage life; also
called “antioxidant.”

Paraffinic: A type of petroleum Buid derived from parafBnic
crude o0il and containing a high proportion of straight
chain saturated by hydrocarbons; often susceptible to
cold-Bow problems.

Poise: Measurement unit of a Buid’s resistance to Bow
(i.e., viscosity), delined by the shear stress (in dynes

per sguare centimeter) reguired to move one layer of Buid
along another over a total layer thickness of one
centimeter at a velocity of one centimeter per second. This
viscosity is independent of Buid density and directly
related to Bow resistance. Wiscosity shear stress shear
rate dynesscm cmssscm = dunesdocm 2 = = 2 s =1 polse

Pour Point: An indicator of the ability of an oil or
distillate fuel to Bow at cold operating temperatures. It



is the lowest temperature at which the Buid will Bow when
cooled under prescribed conditions.

Pour Point Depressant: Additive used to lower the pour
point or low-temperature Buldity of a petroleum product.

Pumpability: The low temperature, low shear stress-shear
rate wviscosity characteristics of an oil that permit
satisfactory Bow to and from the engine oil pump and
subseguent lubrication of moving components.

Rheology: The deformation andsor Bow characteristics of
grease in terms of stress, strain, temperature, and time
(commonly measured by penetration and apparent wiscosity).

Rust Preventative: Compound for coating metal surfaces with
a Blm that protects against rust. Commonly used to
preserve equipment in storage.

Saponification: The formation of a metallic salt (soap) due
to the interaction of fatty acids, fats, or esters
generally with an alkali.

Sludge: A thick, dark residue, normally of mayonnaise
consistency, that accumulates on nonmoving engine interior
surfaces. Generally remowvable by wiping unless baked to a
carbonaceous consistency. Its formation is associated with
insolubles overloading of the lubricant.

Stoke (St): Kinematic measurement of a Buid’s resistance to
ow de@ined by the ratio of the Buid’s dynamic viscosity to
its density.

Synthetic Lubricant: Lubricating Buid made by chemically
reacting materials of a specific chemical composition to
produce a compound with planned and predictable properties.
Texture: The texture of a grease is obserwved when a small
portion of it is pressed together and then slowly drawn
apart. Texture can he described as:

¢ Brittle: ruptures or crumbles when compressed

e Buttery: separates in short peaks with no wvisible Bbers

e Long fibers: stretches or strings out into a single
hundle of Bhers

¢ Resilient: withstands a moderate compression without
permanent deformation or rupture



* Short fiher: short break-off with evidence of Bhers

¢ Stringy: stretches or strings out into long Bne threads,
hut with no evidence of Bber structure

Thickener: The structure within a grease of extremely
small, uniformly dispersed particles in which the liguid
is held by surface tension andsor other internal forces.
study of lubrication, friction, and wear.

Yiscosity: A measure of a Buid’s resistance to Bow.

Viscosity Index: Relationship of viscosity to temperature
of a Buid. High-viscosity-index Buids tend to display less
change in viscosity with temperature than
low-viscosity-index Buids.

Viscosity Modifier: Lubricant additive, usually a
high-molecular-weight polumer, that reduces the tendency
of an oil’s viscosity to change with temperature.

Water Resistance: The resistance of a lubricating grease to
adverse effects due to the addition of water to the
lubricant suystem. Water resistance is described in terms of
resistance to washout due to submersion (see ASTM D1264)

ar spray (see ASTM D4849), absorption characteristics and
corrosion resistance (see ASTM D1743).

White 0il: Highly refined lubricant stock used for specialty
applications such as cosmetics and medicines.

Yield: The amount of grease (of a given consistency) that
can be produced from a specific amount of thickening agent;
as yield increases, percent thickener decreases.
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APFENDIX 1

International Specifications and Use Guides for
Fire-Resistant Hydraulic Fluids Including

Phosphate Esters
Organization Standard Number Title

I50 6743-4 Lubricants, industrial oils and related products
fclass L). ClassiBication-Part 4: Family H (Hudraulic
systems)

IS0 7745 Hydraulic Fluid Power—-Fire-resistant (FR)
Buids—Guidelines for use

I=50
I=50

CEN 18858 12927 TR14489 Lubricants, industrial oils and
related products (class L)— Family T (Turbines) —
Specifications of triaryl phosphate ester turbine control
uids (category ISO-L-TCD) Lubricants, industrial oils and
related products (class L)— Family H (hydraulic
systems)—SpeciBcations for categories HFAE, HFAS, HFB, HFC,
HFDR and HFOU Fire-resistant hudraulic Buids—ClassiBication
and specification—Guidelines on selection for the
protection of safety, health and the environment

I50 11365 Maintenance and use guide for triaryl phosphate
ester turhine control Buids

Additional Mational Specifications and Use Guides for
Fire-Resistant Fluids Including

Phosphate Esters
Country Organization Standard number Title

Canada Canadian Standards CSA M423-M87 Fire-resistant
hydraulic Buids

China Chinese National Standards DLAT 571-95 Guide for
acceptance, in-serwvice supervision, and maintenance of
Bre-resistant Buid used in power plant



Germany DIN 24326 SchuwerentBammbare
Flissigkeiten—Fliussigkeiten der Kategorien HFAE and
HFAS—Eigenschaften und Anforderungen

India Indian Bureau of Standards IS: 16531 Code of
practice for the selection and use of Breresistant Buids

USA ANSI/(NFPA) T2.13.8 T2.13.1 T2.13.5 Hydraulic Buid
power—Fire-resistant Buids— DeBinitions, classifications and
testing Practice for the use of Bre-resistant huydraulic
uids for industrial Buid power systems Hydraulic Buid
power—Industrial systems—Practice for the use of high
water content Buids Key to Appendix 1 IS0 International
Standards Organization IEC International Electrotechnical
Commission ANSI American National Standards Institute NFPA
MNational Fluid Power Association (USA)

APPENDIX¥ 2 Suitable Test Methods for Monitoring Phosphate
Ester Quality Fluid property Test method Kinematic
viscosity ISO 3164 MWeutralization no. IS0 6618/6619 Pour
point IS0 3616 Density IS0 3675 Foaming IS0 6247 Air
release IS0 9126 Rust pre vention IS0 7126 Corrosion
protection IS0 4464-2 Water content IS0 768 Flash/f@re
points IS0 2592 Spray ignition ISO 15629-2 Hot surface
ignition IS0 26823 Wick Bame persistence IS0 14935
Particulate levels IS0 11588/4486 Emulsion stability ISO
6614 Color ISO 2649 Volume resistivity IEC 68247 Chlorine
content IP 516 Mineral oil Thin-layer chromatography Metal
content ASTM D2783 (mod)
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