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CHPTER ONE  

Introduction  
1.1  Introduction 

Chemical engineering has to do with industrial processes in which raw materials are 
changed or separated into useful products.  
The chemical engineer must develop, design, and engineer both the complete process 
and the equipment used; choose the proper raw materials; operate the plants efficiently, 
safely, and economically; and see to it that products meet the requirement set by the 
customers. 
A  Fluid  is any substance that conforms to the shape of its container and it may be 
defined as a substance that dose not permanently resist distortion and hence, will its 
shape. Gases and liquids and vapors are considered to have the characteristics of fluids 
and to obey many of the same laws. 

In the process industries, many of the materials are in fluid form and must be 
stored, handled, pumped, and processed, so it is necessary that we become familiar with 
the principles that govern the flow of fluids and also with the equipment used. Typical 
fluids encountered include water, acids, air, Co2, oil, slurries.  

If a fluid affected by changes in pressure, it is said to be “ compressible fluid”,  
otherwise, it is said to be “ incompressible fluid”.   

Most liquids are incompressible, and gases are can considered to be compressible 
fluids. However, if gases are subjected to small percentage changes in pressure and 
temperature, their densities change will be small and they can be considered to be 
incompressible fluids. 

The fluid mechanics can be divided into two branches;  
“Fluid static”   that means fluid at rest, and 
“Fluid dynamics”  that means fluid in motion. 

1.2  Physical Properties of Fluids                                    

1. Mass density or density [symbol: ρ (rho)] 

 It is the ratio of mass of fluid to its volume,   
fluid of Volume

 fluid of Mass
=ρ    

The common units used of density is (kg/m3), (g/cm3), (lb/ft3). 
2. Specific Volume [symbol: υ (upsilon)] 

It is the ratio of volume of fluid to its mass (or mole); it is the reciprocal of its 

density,   
fluid of Mass

 fluid of Volume
=υ    

The common units used of density is (m3/ kg), (cm3/g), (ft3/lb). 
3. Weight density or specific weight [symbol: sp.wt.] 

It is the ratio of weight of fluid to its volume,  
fluid of Volume

 fluid ofWeight 
.. =wtsp    

The common units used of density is (N/m3), (dyne/cm3), (lbf/ft
3). 
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4. Specific gravity [symbol: sp.gr.] 
It is the ratio of mass density or (density) of fluid to mass density or (density) of water, 
Physicists use 39.2°F (4°C) as the standard, but engineers ordinarily use 60°F 

(15.556°C)  
water of density Mass

 fluid of density Mass
.. =grsp   

      The common density used of water is (1000 kg/m3), (1.0g/cm3), (62.43 lb/ft3). 
5. Dynamic viscosity [symbol: ȝ (mu)] 

It is the property of a fluid, which offers resistance to the movement of one layer of 
fluid over another adjacent layer of the fluid.  
The common units used of dynamic viscosity is (kg/m.s), (g/cm.s), (lb/ft.s), (poise) 
(N.s/m2 ≡ Pa.m), (dyne.s/cm2). [poise ≡ g/cm.s ≡ dyne.s/cm2] [poise = 100 c.p] 

6. Kinematic viscosity [symbol: ν (nu)] 

It is the ratio of the dynamic viscosity to mass density of fluid, 
ρ
µ

ν =   

The common units used of kinematics viscosity is (m2/s), (cm2/s), (ft2/s), (stoke).  
[stoke ≡ cm2/s] [stoke = 100 c.stoke] 

7. Surface tension [symbol: σ (sigma)] 
It is the property of the liquid, which enables it to resist tensile stress. It is due to 
cohesion between surface molecules of a liquid. 
The common units used of Surface tension is (N/m), (dyne/cm), (lbf/ft). 

1.3  Useful Information  

1. The shear stress  [symbol: τ (tau)] 
It is the force per unit surface area that resists the sliding of the fluid layers. 
The common units used of shear stress is (N/m2 ≡ Pa), (dyne/cm2), (lbf/ft

2). 
2.  The pressure [symbol: P] 

It is the force per unit cross sectional area normal to the force direction. 
The common units used of shear stress is (N/m2 ≡ Pa), (dyne/cm2), (lbf/ft

2) (atm) 
(bar) (Psi) (torr ≡ mmHg). The pressure difference between two points refers to (ΔP). 
The pressure could be expressed as liquid height (or head) (h) where, 

ghP ρ=  and ghP ρΔΔ =   
h: is the liquid height (or head), units (m), (cm), (ft). 

3. The energy [symbol: E]  
Energy is defined as the capacity of a system to perform work or produce heat. 
There are many types of energy such as [Internal energy (U), Kinetic energy (K.E), 
Potential energy (P.E), Pressure energy (Prs.E), and others. 
The common units used for energy is (J ≡ N.m), (erg ≡ dyne.cm), (Btu), (lbf.ft) (cal).  
The energy could be expressed in relative quantity per unit mass or mole (J/kg or 
mol). 
The energy could be expressed in head quantity [(m) (cm) (ft)] by dividing the 
relative energy by acceleration of gravity. 

4. The Power [symbol: P]  
It is the energy per unit time. The common units used for Power is (W ≡ J/s), 
(Btu/time), (lbf.ft/time) (cal/time), (hp). 
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5. The flow rate 
5.1. Volumetric flow rate [symbol: Q]  

It is the volume of fluid transferred per unit time. 
AuQ =  where A: is the cross sectional area of flow normal to the flow 

direction. The common units used for volumetric flow is (m3/s), (cm3/s), (ft3/s). 
5.2. Mass flow rate [symbol: m& ] 

 It is the mass of fluid transferred per unit time. ρρ AuQm ==&   
The common units used for volumetric flow is (kg/s), (g/s), (lb/s). 

5.3. Mass flux or (mass velocity) [symbol: G]  

It is the mass flow rate per unit area of flow,  ρu
A
m

G ==
&

  

The common units used for mass flux is (kg/m2.s), (g/cm2.s), (lb/ft2.s).  
6. Ideal fluid 

An ideal fluid is one that is incompressible It is a fluid, and having no viscosity (μ = 
0). Ideal fluid is only an imaginary fluid since all the fluids, which exist, have some 
viscosity.  

7. Real fluid  
 A fluid, which possesses viscosity, is known as real fluid.  All the fluids, an actual 
practice, are real fluids. 

1.4 Important Laws 

1. Law of conservation of mass 

   “ The mass can neither be created nor destroyed, and it can not be created from 
nothing”  

2. Law of conservation of energy 

“ The energy can neither be created nor destroyed, though it can be transformed 
from one form into another”  
Newton’s Laws of Motion 

Newton has formulated three law of motion, which are the basic postulates or 
assumption on which the whole system of dynamics is based. 

3. Newton’s first laws of motion 

“Every body continues in its state of rest or of uniform motion in a straight line, 
unless it is acted upon by some external forces” 

4.  Newton’s second laws of motion 

“The rate of change in momentum is directly proportional to the impressed force and 
takes place in the same direction in which the force acts”[momentum = mass × 
velocity]  

5. Newton’s third laws of motion 

“To every action, there is always an equal and opposite reaction” 
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6.  First law of thermodynamics 

“Although energy assumes many forms, the total quantity of energy is constant, and 
when energy disappears in one form it appears simultaneously in other forms”   

1.5 Flow Patterns 

The nature of fluid flow is a function of the fluid physical properties, the geometry of 
the container, and the fluid flow rate. The flow can be characterized either as Laminar 
or as Turbulent  flow. 

Laminar flow  is also called “viscous or streamline flow”. In this type of flow layers of 
fluid move relative to each other without any intermixing. 

Turbulent flow  in this flow, there is irregular random movement of fluid in directions 
transverse to the main flow.  

1.6 Newton’s Law of Viscosity and Momentum Transfer 

Consider two parallel plates of area (A), distance (dz) apart shown in Figure (1). The 
space between the plates is filled with a fluid. The lower plate travels with a velocity (u) 
and the upper plate with a velocity (u-du). The small difference in velocity (du) between 
the plates results in a resisting force (F) acting over the plate area (A) due to viscous 
frictional effects in the fluid.   

Thus the force (F) must 
apply to the lower plate to 
maintain the difference in 
velocity (du) between the two 
plates. The force per unit area 
(F/A) is known as the shear 
stress (τ).    

 

 

Figure (1) Shear between two plates 

Newton’s law of viscosity states that: 

dz
du

dz
du

µττ −=⇒−∝  

Fluids, which obey this equation, are called “Newtonian Fluids” and Fluids, don’t obey 
this equation, are called “non-Newtonian Fluids”. 

Note: Newton’s law of viscosity holds for Newtonian fluids in laminar flow. 

Momentum (shear stress) transfers through the fluid from the region of high velocities 
to region of low velocities, and the rate of momentum transfer increase with increasing 
the viscosity of fluids.  

 

  

u-du

u 
F dz

A

A
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1.7 Newtonian and non-Newtonian fluids 

The plot of shear stress (τ) against shear rate (
dz
du

≡γ& ) is different in Newtonian fluids 

than that in non-Newtonian fluids as shown in Figure (2).  

For Newtonian fluids the plot give a 
straight line from the origin but for 
non-Newtonian fluids the plot gives 
different relations than that of 
Newtonian some of these relations 
are given in Figure (2). 

 

A- Newtonian fluids 

B- non-Newtonian (pseudoplastic) 

C- non-Newtonian (dilatant) 

D- non-Newtonian (Bingham)     

   Figure (2): Shear stress (τ) against shear rate (
dz

du
−≡− γ& )   

Example -1.1- 
One liter of certain oil weighs 0.8 kg, calculate the specific weight, density, specific 

volume, and specific gravity of it. 
Solution: 

333

2

7848
101

)/81.9)(8.0(
fluid of Volume

 fluid ofWeight 
..

m

N

mx

smkg
wtsp === −  

  333 800
101

)8.0(

m

kg

mx

kg
== −ρ   

kg
m

x
3

31025.1
1 −==
ρ

υ  

 

 8.0
/1000
/800 

.. 3

3

water

liquid
===

mkg

mkg
grsp

ρ

ρ
 

 
Example -1.2- 
Determine the specific gravity of a fluid having viscosity of 4.0 c.poice and kinematic 

viscosity of 3.6 c.stokes. 
Solution: 

scm
g

poise
pc

poice
pc

.
04.004.0

.100
.4 ===µ   

s
cm

stoke
sc

stoke
sc

2

04.0036.0
.100

.6.3 ===ν  

1111.1..1.11111111.1
/036.0

.
04.0

32 =⇒=⇒===⇒= grsp
m

kg
cc
g

scm
scm

g

ρ
ν
µ

ρ
ρ
µ

ν  

 
 
 

τ

τ◦

-γ . 

A 
B 

C 

D 

μ 



Chapter One                            Fluid Flow    Introduction 

           6-Ch.1                                                                                                   Dr. Salah S. Ibrahim  

Example -1.3- 
The space between two large plane surfaces kept 2.5 cm apart is filled with liquid of 

viscosity 0.0825 kg/m.s. What force is required to drag a thin plate of surface area 0.5 
m2 between the two large surfaces at speed of 0.5 m/s, (i) when the plate is placed in the 
middle of the two surfaces, and (ii) when the plate is placed 1.5 cm from one of the 
plates surfaces.   

Solution: 
(i) Shear stress on the upper side of the plate is  

A

F

dy
du 1

1 =−= µτ  

1
22

025.1
40

1025.1

/5.00

01025.1
−

−−

==
−=

−
=

−

−
=≅ s

mx

sm

x

uu

y
u

dy
du yy

Δ
Δ

 

NssPam
dy
du

AF 65.1)]40(.0825.0[5.0)( 12
1 =−−=−= −µ  

Likewise on the lower surface NAF 65.122 == τ  
The total force required NFF 3.321 =+=  
(ii) Shear stress on the upper side of the plate is 

A

F

dy
du 1

1 =−= µτ  

1
2

05.1

3
100

0105.1
−

−

==
−=

−

−
=≅ s

x

uu

y
u

dy
du yy

Δ
Δ

 

NssPam
dy
du

AF 375.1)]
3

100
(.0825.0[5.0)( 12

1 =−−=−= −µ  

A

F

dy
du 2

2 =−= µτ  and  150
01.0

5.00 −−=
−

= s
dy
du

 

NssPamF 0625.2)]50(.0825.0[5.0 12
2 =−−= −  

The total force required NFF 4375.321 =+=  

Example -1.4- 
The velocity distribution within the fluid flowing over a plate is given by  

where u is the velocity in (m/s) and y is a distance above the plate in (m). Determine the 
shear stress at y=0 and at y=0.2 m. take that μ=8.4 poise.   

24/3 yyu −=

Solution: 
24/3 yyu −= 1

4
3

2
4
3 −

= =⇒−=⇒ s
dy
du

y
dy
du

oy  

and 1
2.0 35.0)2.0(2

4
3 −

= =−= s
dy
du

y  

A
F

dy
du

=−= µτ ; ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

=
g

kg
m

cm
ccm

g
1000

100
.

4.8µ   

PassPay 63.0)4/3(.84.0 1
0 == −

=τ  and PassPay 294.0)35.0(.84.0 1
2.0 == −

=τ  

 
 

2.5 cm F 

y

x

2.5 cm F 

y

x

1.5 cm

y

x

24/3 yyu −=
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Example -1.5- 
A flat plate of area 2x104 cm2 is pulled with a speed of 0.5 m/s relative to another plate 

located at a distance of 0.2 mm from it. If the fluid separated the two plates has a 
viscosity of 1.0 poise, find the force required to maintain the speed.     

Solution: 

A
F

dy
du

=−= µτ ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

=
g

kg
m

cm
ccm

g
1000

100
.

0.1µ  

1
3

12

12 2500
0102.0

/5.00 −
− −=

−
−

=
−
−

=≅ s
mx

sm
yy

uu

y
u

dy
du

Δ
Δ

 

( ) NmPaFPassPa 5002250250)2500(.1.0 21 ==⇒== −τ  

Example -1.6- 
A shaft of diameter 10 cm having a clearance of 1.5 mm rotates at 180 rpm in a 

bearing which is lubricated by an oil of viscosity 100 c.p. Find the intensity of shear of 
the lubricating oil if the length of the bearing is 20 cm and find the torque.     

Solution:  
The linear velocity of rotating is  

sm
s

rpmm
DNu /9425.0

min/60
180)1.0(

===
π

π  

 sPa
g

kg
m

cm
ccm

g
pc .1.0

1000
100

.
0.1.100 =⎟

⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

==µ  

NPaDLFPa
m

sm
sPa

A
F

dy
du

95.3))2.0(1.0(83.62)(83.62
0015.0

/9425.0
.1.0 ===⇒=⎟

⎠
⎞

⎜
⎝
⎛

=== ππτµτ  

The torque is equivalent to rotating moment  

JN
D

F 1975.0)
2
1.0

(95.3
2

===Γ   

Example -1.7- 
A plate of size 60 cm x 60 cm slides over a plane inclined to the horizontal at an angle 

of 30°. It is separated from the plane with a film of oil of thickness 1.5 mm. The plate 
weighs 25kg and slides down with a velocity of 0.25 m/s. Calculate the dynamic 
viscosity of oil used as lubricant. What would be its kinematic viscosity if the specific 
gravity of oil is 0.95.      

Solution: 
Component of W along the plane =W cos(60) =W sin(30) 

= 25 (0.5) = 12.5 kg 
F = 12.5 kg (9.81 m/s2) =122.625 N 
τ = F/A = 122.625 N/(0.6 x0.6) m2 = 340.625 Pa  

poisesPa
s

Pa
dydu

44.20.044.2
)0015.0/25.0(

625.340
)/( 1 ==== −

τ
µ    

stokesm
mkg

sPa
5.21/00215.0

/950

.044.2 2
3 ====

ρ
µ

ν  

 
 
 

0.2 mm F
y

x

Shaft 
D=10 cm

1.5 mm 

Lubricating  
oil

1.5mm

w 30° 

60° 
30°
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Home Work  
P.1.1  

Two plates are kept separated by a film of oil of 0.025 mm. the top plate moves 
with a velocity of 50 cm/s while the bottom plate is kept fixed. Find the fluid viscosity 
of oil if the force required to move the plate is 0.2 kg/m2.  Ans. μ= 9.81x10-5 Pa.s ?  

P.1.2  
If the equation of a velocity profile over a plate is u=3 y(2/3) in which the velocity 

in m/s at a distance y meters above the plate, determine the shear stress at y=0 and y=5 
cm. Take μ= 8.4 poise         Ans. τy=0 = ∞, τy=5 = 4.56 Pa.s  

P.1.3  
The equation of a velocity distribution over a plate is u=1/3 y - y2 in which the 

velocity in m/s at a distance y meters above the plate, determine the shear stress at y=0 
and y=0.1 m. Take μ= 8.35 poise      Ans. τy=0 =2.78, τy=0.1= 4.56 dyne/cm2 

P.1.4  
A cylinder of diameter 10 cm rotates concentrically inside another hollow 

cylinder of inner diameter 10.1 cm. Both cylinders are 20 cm long and stand with their 
axis vertical. The annular space is filled with oil. If a torque of 100 kg cm is required to 
rotate the inner cylinder at 100 rpm, determine the viscosity of oil.  Ans. μ= 29.82poise  
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CHPTER TWO  

Dimensional Analysis 
2.1  Introduction 

Any phenomenon is physical sciences and engineering can be described by the 
fundamentals dimensions mass, length, time, and temperature. Till the rapid 
development of science and technology the engineers and scientists depend upon the 
experimental data. But the rapid development of science and technology has created new 
mathematical methods of solving complicated problems, which could not have been 
solved completely by analytical methods and would have consumed enormous time. 
This mathematical method of obtaining the equations governing certain natural 
phenomenon by balancing the fundamental dimensions is called (Dimensional Analysis). 
Of course, the equation obtained by this method is known as (Empirical Equation). 

2.2 Fundamentals Dimensions  

The various physical quantities used by engineer and scientists can be expressed 
in terms of fundamentals dimensions are: Mass (M), Length (L), Time (T), and 
Temperature (θ). All other quantities such as area, volume, acceleration, force, energy, 
etc., are termed as “ derived quantities”. 

2.3 Dimensional Homogeneity  

An equation is called “dimensionally homogeneous” if the fundamentals 
dimensions have identical powers of [L T M] (i.e. length, time, and mass) on both sides. 
Such an equation be independent of the system of measurement (i.e. metric, English, or 
S.I.). Let consider the common equation of volumetric flow rate, 

      Q = A  u 

L3T-1 = L2 LT-1 = L3T-1. 

We see, from the above equation that both right and left hand sides of the equation 
have the same dimensions, and the equation is therefore dimensionally homogeneous. 

Example -2.1- 
a) Determine the dimensions of the following quantities in M-L-T system 1- force 2-

pressure 3- work 4- power 5- surface tension 6- discharge 7- torque 8- momentum. 
b) Check the dimensional homogeneity of the following equations 

1- 
ρ

ρρ zg
u m Δ−

=
)(2

       2- 2

5

2
2

tan
15

8
oZgcdQ

θ
=   

Solution:  
a)  

1- F = m.g (kg.m/s2)      ≡ [MLT -2] 
2- P=F/A ≡ [(MLT -2) (L-2)]  (Pa)    ≡ [ML -1T-2] 
3- Work = F.L ≡ [(MLT -2) (L)]  (N.m)   ≡ [ML 2T-2] 
4- Power = Work/time ≡ [(ML 2T-2) (T-1)] (W)  ≡ [ML -1T-2] 
5- Surface tension = F/L ≡ [(MLT -2) (L-1)] (N/m)  ≡ [ML -1T-2] 
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6- Discharge (Q) m3/s      ≡ [L3T-1]   
7- Torque (Γ) = F.L ≡ [(MLT -2) (L)] N.m  ≡ [ML 2T-2] 
8- Moment = m.u L)] N.m     ≡ [ML 2T-2] 

b)  1- 
ρ

ρρ zg
u m Δ−

=
)(2

 

L.H.S. u ≡ [LT -1] 

R.H.S. u ≡ 
2/1

3

32 )(
⎥⎦

⎤
⎢⎣

⎡
−

−

ML

MLLT ≡ [LT -1] 

Since the dimensions on both sides of the equation are same, therefore the equation 
is dimensionally homogenous. 

 2- 2

5

2
2

tan
15

8
oZgcdQ

θ
=  

L.H.S. u ≡ [L3T-1] 
R.H.S. (LT-2)  (L)5/2 ≡ [L3T-1] 
This equation is dimensionally homogenous. 

2.4 Methods of Dimensional Analysis  

Dimensional analysis, which enables the variables in a problem to be grouped into 
form of dimensionless groups. Thus reducing the effective number of variables. The 
method of dimensional analysis by providing a smaller number of independent groups is 
most helpful to experimenter. 

Many methods of dimensional analysis are available; two of these methods are 
given here, which are:  

1- Rayleigh’s method (or Power series) 

2-  Buckingham’s method (or Π-Theorem)  

2.4.1  Rayleigh’s method (or Power series) 

In this method, the functional relationship of some variable is expressed in the 
form of an exponential equation, which must be dimensionally homogeneous. If (y) is 
some function of independent variables (x1, x2, x3, ………etc.), then functional 
relationship may be written as; 

  y = f(x1, x2, x3, ………etc.) 

The dependent variable (y) is one about which information is required; whereas 
the independent variables are those, which govern the variation of dependent variables. 

The Rayleigh’s method is based on the following steps:- 

1- First of all, write the functional relationship with the given data. 

2- Now write the equation in terms of a constant with exponents i.e. powers a, b, c,... 

3- With the help of the principle of dimensional homogeneity, find out the values of 
a, b, c, … by obtaining simultaneous equation and simplify it. 

4- Now substitute the values of these exponents in the main equation, and simplify it.  
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Example -2.2- 
If the capillary rise (h) depends upon the specific weight (sp.wt) surface tension (σ) of 

the liquid and tube radius (r) show that: 

  ⎟
⎠

⎞
⎜
⎝

⎛
= 2.).( rwtsp

rh
σ

φ , where φ  is any function. 

Solution: 
Capillary rise (h) m    ≡ [L] 
Specific weight (sp.wt) N/m3 (MLT -2 L-3) ≡ [ML -2T-2] 
Surface tension (σ) N/m (MLT-2 L-1)   ≡ [MT -2] 
Tube radius (r) m     ≡ [L] 

h = f (sp.wt., σ, r) 

h = k (sp.wt.a, σb, rc) 

[L] = [ML -2T-2]a [MT -2]b[L] c 

Now by the principle of dimensional homogeneity, equating the power of M, L, T on 
both sides of the equation  

  For M 0 = a + b      ⇒     a = – b  

  For L 1 = – 2 a + c     ⇒ a = – b 

  For T 0 = – 2 a – 2 b     ⇒ a = – b 
h = k (sp.wt.-b, σb, r1-2b) 

b

rwtsp
rkh ⎟

⎠

⎞
⎜
⎝

⎛
= 2..

σ
  ∴  ⎟

⎠

⎞
⎜
⎝

⎛
= 2.).( rwtsp

rh
σ

φ  

Example -2.3- 
Prove that the resistance (F) of a sphere of diameter (d) moving at a constant speed (u) 

through a fluid density (ρ) and dynamic viscosity (μ) may be expressed as: 

  ⎟
⎠
⎞

⎜
⎝
⎛

=
µ

ρ
φ

ρ
µ du

F
2

, where φ  is any function. 

Solution: 
Resistance (F) N   ≡ [MLT -2] 
Diameter (d) m   ≡ [L] 
Speed (u) m/s    ≡ [LT -1] 
Density  (ρ) kg/m3     ≡ [ML -3] 
Viscosity  (μ) kg/m.s     ≡ [ML -1 T-1] 
 

F = f (d, u,  ρ, μ) 

F = k (da, ub,  ρc, μd) 

       [MLT-2] = [L] a [LT -1]b[ML -3]c[ML -1T-1]d 

  For M 1 = c + d       ⇒     c =1 – b ----------------(1)  
  For L 1 = a + b – 3c – d     ------------------------(2) 

  For T – 2 = – b – d      ⇒ b = 2 – b ----------------(3) 
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By substituting equations (1) and (2) in equation (3) give 
 a = 1 – b + 3c + d = 1 – (2 – d) + 3 (1 – d) + d = 2 – d  

F = k (d2-d, u2-d, ρ1-d, μd) = k {(d2 u2 ρ) (μ / ρ u d)d} ---------x {( ρ/ μ2) / (ρ/ μ2)} 

 F = k {(d2 u2 ρ2 / μ2) (μ / ρ u d)d (μ2 / ρ)} 

∴  ⎟
⎠
⎞

⎜
⎝
⎛

=
µ

ρ
φ

ρ
µ du

F
2

 

Example -2.4- 
The thrust (P) ( عϓقوة الد) of a propeller depends upon diameter (D); speed (u) through a 

fluid density (ρ); revolution per minute (N); and dynamic viscosity (μ) Show that: 

  ⎟
⎠

⎞
⎜
⎝

⎛
= )(,)()( 22

u

ND

uD
fuDP

ρ
µ

ρ , where f is any function. 

Solution: 
Thrust (P) N   ≡ [MLT -2] 
Diameter (D) m   ≡ [L] 
Speed (u) m/s    ≡ [LT -1] 
Density  (ρ) kg/m3     ≡ [ML -3] 
Rev. per min. (N) min-1  ≡ [T-1] 
Viscosity  (μ) kg/m.s     ≡ [ML -1 T-1] 
 

P = f (D, u, ρ, N, μ) 

P = k (Da, ub,  ρc, Nd, μe) 

[MLT -2] = [L] a [LT -1]b[ML -3]c[T-1][ML -1T-1]d 

  For M 1 = c + e       ⇒     c =1 – e  --------------(1)  

  For L 1 = a + b – 3c – e     ⇒ a  = 1– b + 3c + e  --------------(2) 

  For T – 2 = – b – d– e         ⇒ b = 2 – e – d  --------------(3) 
By substituting equations (1) and (3) in equation (2) give 
a = 1 – (2 – e – d) + 3 (1 – e) + e =  2 – e + d  
P = k (D2-e+d, u2-e+d,  ρ1-e, Nd, μe) 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⎟

⎠

⎞
⎜
⎝

⎛
=

u

ND

uD
kuDP

e

,)( 22

ρ
µ

ρ  

∴ ⎟
⎠

⎞
⎜
⎝

⎛
= )(,)()( 22

u

ND

uD
fuDP

ρ
µ

ρ  
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Home Work  
P.2.1  

Show, by dimensional analysis, that the power (P) developed by a hydraulic 

turbine is given by; ⎟
⎠

⎞
⎜
⎝

⎛
= )()(

22
53

Hg

DN
fDNP ρ  where (ρ) is the fluid density, (N) 

is speed of rotation in r.p.m.,  (D) is the diameter of runner, (H) is the working head, and 
(g) is the gravitational acceleration.  

P.2.2  
The resistance (R) experienced by a partially submerged body depends upon the 

velocity (u), length of the body (L), dynamic viscosity (μ) and density (ρ) of the fluid, 
and gravitational acceleration (g). Obtain a dimensionless expression for (R). 

      Ans. ⎟
⎠

⎞
⎜
⎝

⎛
= )(),()( 2

22

u

gL

gLu
fLuR

µ
ρ   

P.2.3  
Using Rayleigh’s method to determine the rational formula for discharge (Q) 

through a sharp-edged orifice freely into the atmosphere in terms of head (h), diameter 
(d), density (ρ), dynamic viscosity (μ), and gravitational acceleration (g). 

     Ans. ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

= )(),()(
2

1

2

3 d

h

gd

fhgdQ

ρ

µ
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2.4.2  Buckingham’s method (or Π-Theorem)  

It has been observed that the Rayleigh’s method of dimensional analysis becomes 
cumbersome, when a large number of variables are involved. In order to overcome this 
difficulty, the Buckingham’s method may be convenient used. It states that “ If there are 
(n) variables in a dimensionally homogeneous equation, and if these variables contain 
(m) fundamental dimensions such as (MLT) they may be grouped into (n-m) non-
dimensional independent Π-terms”. 

Mathematically, if a dependent variable X1 depends upon independent variables 
(X2, X3, X4, ………. Xn), the functional equation may be written as: 

X1 = k (X2, X3, X4, ………. Xn) 

This equation may be written in its general form as; 

f (X1, X2, X3, ………. Xn) = 0 

In this equation, there are n variables. If there are m fundamental dimensions, then 
according to Buckingham’s Π-theorem; 

 f1 (Π 1, Π 2, Π 3, ………. Π n-m) = 0 

The Buckingham’s Π-theorem is based on the following steps:  

1. First of all, write the functional relationship with the given data. 

2. Then write the equation in its general form. 

3. Now choose m repeating variables (or recurring set) and write separate 
expressions for each Π-term. Every Π-term will contain the repeating variables 
and one of the remaining variables. Just the repeating variables are written in 
exponential form. 

4. With help of the principle of dimensional homogeneity find out the values of 
powers a, b, c, …… by obtaining simultaneous equations. 

5.  Now substitute the values of these exponents in the Π-terms. 

6. After the Π-terms are determined, write the functional relation in the required 
form. 

Note:-   

Any Π-term may be replaced by any power of it, because the power of a non-
dimensional term is also non-dimensional e.g. Π1 may be replaced by Π1

2, Π1
3, 

Π1
0.5,……. or by 2Π1, 3Π1, Π1/2, ……etc.  

 

2.4.2.1 Selection of repeating variables  

In the previous section, we have mentioned that we should choose (m) repeating 
variables and write separate expressions for each Π-term. Though there is no hard or fast 
rule for the selection of repeating variables, yet the following points should be borne in 
mind while selecting the repeating variables: 
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1. The variables should be such that none of them is dimension les. 

2. No two variables should have the same dimensions. 

3. Independent variables should, as far as possible, be selected as repeating 
variables.   

4. Each of the fundamental dimensions must appear in at least one of the m 
variables. 

5.  It must not possible to form a dimensionless group from some or all the variables 
within the repeating variables. If it were so possible, this dimensionless group 
would, of course, be one of the Π-term. 

6. In general the selected repeating variables should be expressed as the following: 
(1) representing the flow characteristics, (2), representing the geometry and (3) 
representing the physical properties of fluid. 

7. In case of that the example is held up, then one of the repeating variables should 
be changed. 

Example -2.5- 
By dimensional analysis, obtain an expression for the drag force (F) on a partially 

submerged body moving with a relative velocity (u) in a fluid; the other variables being 
the linear dimension (L), surface roughness (e), fluid density (ρ), and gravitational 
acceleration (g).  

Solution: 
Drag force (F) N    ≡ [MLT -2] 
Relative velocity (u) m/s   ≡ [LT -1] 
Linear dimension (L) m   ≡ [L] 
Surface roughness (e) m  ≡ [L] 
Density  (ρ) kg/m3      ≡ [ML -3] 
Acceleration of gravity (g) m/s2    ≡ [ML -1 T-1] 
 

F = k (u, L, e, ρ, g) 

f (F, u, L, e, ρ, g) = 0 

 n = 6, m = 3,  ⇒ Π = n – m = 6 – 3 = 3 

No. of repeating variables = m = 3 
The selected repeating variables is (u, L, ρ) 

  Π1 = ua1 Lb1 ρc1 F  --------------(1) 

Π2 = ua2 Lb2 ρc2 e  --------------(2) 

 Π3 = ua3 Lb3 ρc3 g  --------------(3) 

For Π1 equation (1) 

[M 0 L0 T0] = [L T-1]a1 [L] b1[ML -3]c1[MLT -2] 
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Now applied dimensional homogeneity 

  For M 0 = c1 + 1       ⇒     c1 = – 1    

  For T 0 = – a1 – 2      ⇒ a1 = – 2  

  For L 0 = a1 + b1 – 3c1+ 1        ⇒ b1 = – 2  

Π1 = u-2 L-2 ρ-1 F   
ρ221 Lu

F
=Π⇒  

For Π2 equation (2) 

[M 0 L0 T0] = [L T-1]a2 [L] b2[ML -3]c2[L] 

  For M 0 = c2        ⇒     c2 = 0  

  For T 0 = – a2        ⇒ a2 = 0  

  For L 0 = a2 + b2 – 3c2+ 1        ⇒ b2 = – 1  

Π2 = L-1 e   
L

e
=Π⇒ 2  

For Π3 equation (3) 

[M 0 L0 T0] = [L T-1]a3 [L] b3[ML -3]c3[L T -2] 

  For M 0 = c3        ⇒     c3 = 0  

  For T 0 = – a3 – 2        ⇒ a3 = – 2   

  For L 0 = a3 + b3 – 3c3+ 1        ⇒ b3 = 1 

Π3 = u-2 L g 23 u

gL
=Π⇒  

f1 (Π 1, Π 2, Π 3) = 0  ⇒  f1( ρ22 Lu

F
,
L

e
, 2u

gL
) = 0 

∴ ),( 2
22

u

gL

L

e
fLuF ρ=  

Example -2.6- 
Prove that the discharge (Q) over a spillway ( ϧهر  او  سد  من  المياϓ  ϩائض  لتصرϒϳ  قϨاة  ( is given 

by the relation  where (u) velocity of flow (D) depth at the throat, 

(H), head of water, and (g) gravitational acceleration.  

),(2

D

H

u

Dg
fDuQ =

Solution: 
Discharge (Q) m3/s   ≡ [L3T-1] 
Velocity (u) m/s     ≡ [LT -1] 
Depth (D) m    ≡ [L] 
Head of water (H) m   ≡ [L] 
Acceleration of gravity (g) m/s2    ≡ [ML -1 T-1] 
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Q = k (u, D, H, g) 

f (Q, u, D, H, g) = 0 

 n = 5, m = 2,  ⇒ Π = n – m = 5 – 2 = 3 

No. of repeating variables = m = 2 
The selected repeating variables is (u, D) 

  Π1 = ua1 Db1 Q  --------------(1) 

Π2 = ua2 Db2 H  --------------(2) 

 Π3 = ua3 Db3 g  --------------(3) 

For Π1 equation (1) 

[M 0 L0 T0] = [L T-1]a1 [L] b1[L 3T-1] 

  For T 0 = – a1 – 1      ⇒ a1 = – 1  

  For L 0 = a1 + b1 +3        ⇒ b1 = – 2  

Π1 = u-1 D-2 Q   21 Du

Q
=Π⇒  

For Π2 equation (2) 

[M 0 L0 T0] = [L T-1]a2 [L] b2[L] 

  For T 0 = – a2        ⇒ a2 = 0  

  For L 0 = a2 + b2 + 1        ⇒ b2 = – 1  

Π2 = D-1 H   
H

D
=Π⇒ 2  

For Π3 equation (3) 

[M 0 L0 T0] = [L T-1]a3 [L] b3 [L T-2] 

  For T 0 = – a3 – 2        ⇒ a3 = – 2   

  For L 0 = a3 + b3 + 1        ⇒ b3 = 1 

Π3 = u-2 D g 
u

Dg

u

gD
==Π⇒ 23  

f1 (Π 1, Π 2, Π 3) = 0  ⇒  f1( 2Du

Q
,
H

D
,

u

gD
) 

∴ ),(2

D

H

u

Dg
fDuQ =  
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Example -2.5- 

Show that the discharge of a centrifugal pump is given by ),( 222
2

ρ
µ

NDDN

Hg
fDNQ =  

where (N) is the speed of the pump in r.p.m., (D) the diameter of impeller, (g) 
gravitational acceleration, (H) manometric head, (μ), (ρ) are the dynamic viscosity and 
the density of the fluid.  

Solution: 
Discharge (Q) m3/s   ≡ [L3T-1] 
Pump speed (N) r.p.m.   ≡ [T-1] 
Diameter of impeller (D) m  ≡ [L] 
Acceleration of gravity (g) m/s2    ≡ [ML -1 T-1] 
Head of manometer (H) m  ≡ [L] 
Viscosity  (μ) kg/m.s      ≡ [ML -1 T-1] 
Density  (ρ) kg/m3      ≡ [ML -3] 
 

Q = k (N, D, g, H, μ, ρ) 

f (Q, N, D, g, H, μ, ρ) = 0 

 n = 7, m = 3,  ⇒ Π = n – m = 7 – 3 = 4 

No. of repeating variables = m = 3 
The selected repeating variables is (N, D, ρ) 

  Π1 = Na1 Db1 ρc1 Q  --------------(1) 

Π2 = Na2 Db2 ρc2 g  --------------(2) 

 Π3 = Na3 Db3 ρc3 H  --------------(3) 

 Π4 = Na4 Db4 ρc4 μ  --------------(4) 

For Π1 equation (1) 

[M 0 L0 T0] = [T-1]a1 [L] b1[ML -3]c1[L 3 T-1] 

  For M 0 = c1       ⇒     c1 = 0    

  For T 0 = – a1 – 1      ⇒ a1 = – 1  

  For L 0 = b1 – 3c1+ 3        ⇒ b1 = – 3  

Π1 = N-1 D-3 Q   31 DN

Q
=Π⇒  

For Π2 equation (2) 

[M 0 L0 T0] = [T-1]a2 [L] b2[ML -3]c2[LT -2] 

  For M 0 = c2        ⇒     c2 = 0  

  For T 0 = – a2 – 2        ⇒ a2 = – 2    
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  For L 0 = b2 – 3c2+ 1        ⇒ b2 = – 1  

Π2 = N-2 D-1 g   
DN

g
22 =Π⇒  

For Π3 equation (3) 

[M 0 L0 T0] = [T-1]a3 [L] b3[ML -3]c3[L] 

  For M 0 = c3        ⇒     c3 = 0  

  For T 0 = – a3       ⇒ a3 = 0   

  For L 0 = b3 – 3c3+ 1        ⇒ b3 = – 1 

Π3 = D-1 H  
D

H
=Π⇒ 3  

For Π3 equation (4) 

[M 0 L0 T0] = [T-1]a4 [L] b4[ML -3]c4[ML -1T-1] 

  For M 0 = c4 + 1       ⇒     c4 = – 1 

  For T 0 = – a4 – 1        ⇒ a4 = – 1   

  For L 0 = b4 – 3c4 – 1        ⇒ b4 = – 2 

Π4 = N-1 D-2 ρ-1 μ  
ρ

µ
24

ND
=Π⇒  

f1 (Π 1, Π 2, Π 3, Π 4) = 0  ⇒  f1( 3DN

Q
,

DN

g
2 ,

D

H
,

ρ
µ

2ND
) = 0 

Since the product of two Π-terms is dimensionless, therefore replace the term Π2 and 

Π3 by 22DN

gH
   

),,( 2223 ρ
µ

NDDN

gH

ND

Q
f⇒   ∴ ),( 222

3

ρ
µ

NDDN

gH
fNDQ =  

 

Note:  

The expression outside the bracket may be multiplied or divided by any amount, 
whereas the expression inside the bracket should not be multiplied or divided. e.g. 
π/4 , sin θ, tan θ/2, ….c. 
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2.5 Dimensions of some important variables 
Item Property Symbol SI Units M.L.T. 
1- Velocity  u m/s LT-1 

2- Angular velocity ω Rad/s, Deg/s T-1 

3- Rotational velocity N Rev/s T-1 

4- Acceleration  a, g m/s2 LT-2 

5- Angular acceleration α s-2 T-2 

6- Volumetric flow rate Q m3/s L3T-1 

7- Discharge Q m3/s L3T-1 

8- Mass flow rate m&  kg/s MT-1 

9- Mass (flux) velocity G kg/m2.s ML-2T-1 

10- Density ρ kg/m3 ML -3 

11- Specific volume υ m3/kg L3M 
12- Specific weight sp.wt N/m3 ML -2T-2 

13- Specific gravity sp.gr [-] [-] 
14- Dynamic viscosity μ kg/m.s, Pa.s ML -1T-1 

15- Kinematic viscosity  Ȟ m2/s L2T-1 

16- Force F N MLT-2 

17- Pressure P N/m2≡Pa ML-1T-2 

18- Pressure gradient ΔP/L Pa/m ML -2T-2 

19- Shear stress τ N/m2 ML -1T-2 

20- Shear rate γ&  s-1 T-1 

21- Momentum M kg.m/s MLT-1 

22- Work W N.m≡J ML2T-2 

23- Moment M N.m≡J ML2T-2 

24- Torque Γ N.m≡J ML2T-2 

25- Energy E J ML2T-2 

26- Power P J/s≡W ML2T-3 

27- Surface tension σ N/m MT-2 

28- Efficiency η [-] [-] 
29-  Head h m L 
30- Modulus of elasticity ε, K Pa ML-1T-2 

 
English Units     SI Units 
g = 32.741 ft/s2      g = 9.81 m/s2 
gc =32.741 lbm.ft/lbf.s

2     gc =1.0 kg.m/N.s2 
 
psi ≡ lbf/in

2   Pa ≡ Pascal = N/m2    bar = 105 Pa 
1.0 atm = 1.01325 bar = 1.01325*105 Pa = 101.325 kPa = 14.7 psi = 760 torr (mmHg) 
    ≈ 1.0 kg/cm2 

 
R = 8.314 (Pa.m3/mol.K) or (J/mol.K) = 82.06 (atm.cm3/mol.K) =10.73 (psi.ft3/lbmol.R) 
    = 1.987 (cal/mol.K) = 1.986 (Btu/lbmol.R) = 1545 (lbf.ft/lbmol.R) 
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Home Work  
P.2.4  

The resisting force (F) of a supersonic plane during flight can be considered as 
dependent upon the length of the air craft (L), Velocity (u), air dynamic viscosity (μ), air 
density (ρ), and bulk modulus of elasticity of air (ε). Express, by dimensional analysis, 
the functional relationship between these variables and the resisting force. 

      Ans. ⎟
⎠

⎞
⎜
⎝

⎛
=

ρ
ε

ρ
µ

ρ 2
22 (,)()(

uLu
fuLF    

Note: Expressing bulk modulus of elasticity in the form of an equation
dV

dP
V−=ε  where 

P is pressure, and V is volume. This mean (ε) is a measure of the increment change in 
pressure (dP) which takes place when a volume of fluid (V) is changed by an 
incremental amount (dV). Since arise in pressure always causes a decrease in volume, 
i.e. (dV) is always negative and so the minus sign comes in the equation to give a 
positive value of (ε). 
      where (ρ) is the fluid density, (N) is speed of rotation in r.p.m.,  (D) is the diameter 
of runner, (H) is the working head, and (g) is the gravitational acceleration.  

P.2.5  
The efficiency (η) of a fan depends upon density (ρ), and dynamic viscosity (μ), 

of the fluid, angular velocity (ω), diameter of the rotator (D), and discharge (Q). Express 

(η) in terms of dimensionless groups.     Ans. ⎟
⎠

⎞
⎜
⎝

⎛
= )

3
(),( 2 D

Q

D
f

ωωρ
µ

η   

P.2.6  
The pressure drop (ΔP) in a pipe depends upon the mean velocity of flow (u), 

length of pipe (L), diameter of pipe (d), the fluid density (ρ), and dynamic viscosity (μ), 
average height of roughness on inside pipe surface (e). By using Buckingham’s Π-

theorem obtain a dimensionless expression for (ΔP). And show that
g

u

d

L
fh f 2

4
2

=  where 

(hf) is the head loss due to friction (
g

P

ρ
Δ

) and (f) is the dimensionless fanning friction 

factor. 
P.2.7  

The Power (P) required to drive the pump depends upon the diameter (D), the 
angular velocity (ω), the discharge (Q), and the fluid density (ρ). Drive expression for 

(P) by dimensional analysis.     Ans. ⎟
⎠

⎞
⎜
⎝

⎛
= )(,53

Q

D
fDP

ω
ρω  
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CHPTER THREE  

Fluid Static and Its Applications 
3.1 Introduction 

Static fluids means that the fluids are at rest.  
The pressure in a static fluid is familiar as a surface force exerted by the fluid 

ageist a unit area of the wall of its container. Pressure also exists at every point within a 
volume of fluid. It is a scalar quantity; at any given point its magnitude is the same in all 
directions.  

3.2 Pressure in a Fluid  

 In Figure (1) a stationary column of fluid of height 
(h2) and cross-sectional area A, where A=Ao=A1=A2, is 
shown. The pressure above the fluid is Po, it could be the 
pressure of atmosphere above the fluid. The fluid at any 
point, say h1, must support all the fluid above it. It can be 
shown that the forces at any point in a nonmoving or static 
fluid must be the same in all directions. Also, for a fluid at 
rest, the pressure or (force / unit area) in the same at all 
points with the same elevation. For example, at h1 from 
the top, the pressure is the same at all points on the cross-
sectional area A1.  

The total mass of fluid for h2, height and ρ density    Figure (1): Pressure in a static fluid. 
is: -   (h2 A ρ)   (kg)  

But from Newton’s 2nd law in motion the total force of the fluid on area (A) due to the 

fluid only is: -  (h2 A ρ g)  (N) i.e.  F = h2 A ρ g    (N)   

The pressure is defined as (P = F/A = h2 ρ g)    (N/m2 or Pa)  

This is the pressure on A2 due to the weight of the fluid column above it. However to get 
the total pressure P2 on A2, the pressure Po on the top of the fluid must be added,  
  i.e.   P2 = h2 ρ g +  Po      (N/m2 or Pa) 

  Thus to calculate P1, P1 = h1 ρ g + Po      (N/m2 or Pa) 

The pressure difference between points  and  is: - 
P2 – P1 = (h2 ρ g + Po) – (h1 ρ g + Po)       

⇒ P2 – P1 = (h2 – h1) ρ g    SI units 

 P2 – P1 = (h2 – h1) ρ g / gc    English units 

 Since it is vertical height of a fluid that determines the pressure in a fluid, the 
shape of the vessel does not affect the pressure. For example in Figure (2) the pressure 
P1 at the bottom of all three vessels is the same and equal to (h1 ρ g + Po).  
 
 

Po 

P1 

P2 

Ao 

A1 

A2 

h1

h3

h21

2
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Figure (2): Pressure in vessel of various shapes. 

  3.3 Absolute and Relative Pressure 

 The term pressure is sometimes associated with different terms such as 
atmospheric, gauge, absolute, and vacuum. The meanings of these terms have to be 
understood well before solving problems in hydraulic and fluid mechanics. 

1- Atmospheric Pressure 

It is the pressure exerted by atmospheric air on the earth due to its weight. This 
pressure is change as the density of air varies according to the altitudes. Greater the 
height lesser the density. Also it may vary because of the temperature and humidity of 
air. Hence for all purposes of calculations the pressure exerted by air at sea level is 
taken as standard and that is equal to: - 

     1 atm = 1.01325 bar = 101.325 kPa = 10.328 m H2o = 760 torr (mm Hg) = 14.7 psi 

2- Gauge Pressure or Positive Pressure 

It is the pressure recorded by an instrument. This is always above atmospheric. The 
zero mark of the dial will have been adjusted to atmospheric pressure. 

3- Vacuum Pressure or Negative Pressure 

This pressure is caused either artificially or by flow conditions. The pressure 
intensity will be less than the atmospheric pressure whenever vacuum is formed. 

4- Absolute Pressure       

Absolute pressure is the algebraic sum of atmospheric pressure and gauge pressure. 
Atmospheric pressure is usually considered as the datum line and all other pressures are 
recorded either above or below it.  

 
   
 
 
 
 
 
 
 

Po Po Po Po

h1 ρ ρ ρρ 
P1 P1 P1 P1

Absolute zero pressure line 

Vacuum pressure line 

Atmospheric pressure line 

Gauge pressure line 

1 atm

Pv 

Pg 

1atm - Pv 

1atm + Pg 
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 Absolute Pressure = Atmospheric Pressure + Gauge Pressure  

 Absolute Pressure = Atmospheric Pressure – Vacuum Pressure  

For example if the vacuum pressure is 0.3 atm ⇒ absolute pressure = 1.0 – 0.3 = 0.7 atm 

Note: -  

Barometric pressure is the pressure that recorded from the barometer (apparatus used to 
measure atmospheric pressure). 
3.4 Head of Fluid  

Pressures are given in many different sets of units, such as N/m2, or Pa, dyne/cm2, psi, 
lbf/ft

2. However a common method of expressing pressures is in terms of head (m, cm, 
mm, in, or ft) of a particular fluid. This height or head of the given fluid will exert the 
same pressure as the pressures it represents. P = h ρ g. 

Example -3.1- 
A large storage tank contains oil having a density of 917 kg/m3. The tank is 3.66 m tall 

and vented (open) to the atmosphere of 1 atm at the top. The tank is filled with oil to a 
depth of 3.05 m (10 ft) and also contains 0.61 m (2 ft) of water in the bottom of the tank. 
Calculate the pressure in Pa and psia at 3.05 m from the top of the tank and at the 
bottom. And calculate the gauge pressure at the bottom of the tank. 

Solution: 
Po = 1 atm = 14.696 psia = 1.01325 x 105 Pa 
P1 = h1 ρoil g + Po   
     = 3.05 m (917 kg/m3) 9.81 m/s2 + 1.01325 x 105 Pa 
     = 1.28762 x 105 Pa 
P1 = 1.28762 x 105 Pa (14.696 psia/1.01325 x 105 Pa) 
     = 18.675 psia 
or 
P1 = h1 ρoil g + Po 

= 10 ft m [917 kg/m3 (62.43 lb/ft3/1000 kg/m3)] (32.174 ft/s2/32.174 lb.ft/lbf.s
2) 

1/144 ft2/in2 +14.696 = 18.675 psia 
 
P2 = P1 + h2 ρwater g   
     = 1.28762 x 105 Pa + 0.61 m (1000 kg/m3) 9.81 m/s2  
     = 1.347461 x 105 Pa 
P2 = 1.347461 x 105 Pa (14.696 psia/1.01325 x 105 Pa) 
     = 19.5433 psia 
The gauge pressure = abs – atm  
       = 33421.1 Pa = 4.9472 psig 
 
 
 
 
 

Po= 1 atm 

Oil  

Water  

P1  

P2 

h1=3.05m

h2=0.61m
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Example -3.2- 
Convert the pressure of [  1 atm =101.325 kPa] to  
a- head of water in (m) at 4°C 
b- head of Hg in (m) at 0°C  
Solution: 
a- The density of water at 4°C is approximatly1000 kg/m3 

h = P / ρwater g = 1.01325 x 105 Pa/(1000 kg/m3 x 9.81m/s2) =10.33 m H2o 
b- The density of mercury at 0°C is approximatly13595.5 kg/m3 

h = P / ρmercury g = 1.01325 x 105 Pa/(13595.5 kg/m3 x 9.81m/s2) =0.76 m Hg 
or 

 P = (h ρ g) water = (h ρ g) mercury    ⇒ hHg = hwater (ρwater / ρHg) 
 hHg = 10.33 (1000 / 13595.5) = 0.76 m Hg 

Example -3.3- 
Find the static head of a liquid of sp.gr. 0.8 and pressure equivalent to 5 x 104 Pa.  
Solution: 
 ρ = 0.8 (1000) = 800 kg/m3 
h = P / ρ g = 5x104/(800 x 9.81) = 6.37 m H2o 
 

3.5 Measurement of Fluid  Pressure 

In chemical and other industrial processing plants it is often to measure and control the 
pressure in vessel or process and/or the liquid level 
vessel.  

The pressure measuring devices are:  - 
1- Piezometer tube 

The piezometer consists a tube open at one end to 
atmosphere, the other end is capable of being inserted 
into vessel or pipe of which pressure is to be measured. 
The height to which liquid rises up in the vertical tube 
gives the pressure head directly.     
 i.e.  P = h ρ g  

Piezometer is used for measuring moderate pressures. It 
is meant for measuring gauge pressure only as the end is 
open to atmosphere. It cannot be used for vacuum 
pressures.         Figure (3): The Piezometer 

2- Manometers      

The manometer is an improved (modified) form of a piezometer. It can be used for 
measurement of comparatively high pressures and of both gauge and vacuum 
pressures. 
Following are the various types of manometers: - 
a- Simple manometer     b- The well type manometer 
c- Inclined manometer   d-  The inverted manometer 
e- The two-liquid manometer 

h
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a- Simple manometer 

It consists of a transparent U-tube containing 
the fluid A of density (ρA) whose pressure is 
to be measured and an immiscible fluid (B) 
of higher density (ρB). The limbs are 
connected to the two points between which 
the pressure difference (P2 - P1) is required; 
the connecting leads should be completely 
full of fluid A. If P2 is greater than P1, the 
interface between the two liquids in limb  
will be depressed a distance (hm) (say) 
below that in limb .  
The pressure at the level a — a must be the 
same in each of the limbs and, therefore: 

  P2 + Zm ρA g = P1 + (Zm– hm) ρA g + hm ρB g 

⇒   Δp = P2 – P1 = hm (ρB – ρA) g  
If fluid A is a gas, the density ρA will 
normally be small compared with the   Figure (4): The simple manometer  
density of the manometer fluid pm so that:  
Δp = P2 – P1 = hm ρB g 

b- The well-type manometer 

 In order to avoid the inconvenience of 
having to read two limbs, and in order to 
measure low pressures, where accuracy id 
of much importance, the well-type 
manometer shown in Figure (5) can be 
used. If Aw and Ac are the cross-sectional 
areas of the well and the column and hm is 
the increase in the level of the column and 
hw the decrease in the level of the well, 
then: 

P2 = P1 + (hm + hw) ρ g  

or:  Δp = P2 – P1 = (hm + hw) ρ g        Figure (5): The well-type manometer 

The quantity of liquid expelled from the well is equal to the quantity pushed into the 
column so that: 

 Aw hw = Ac hm  ⇒ hw = (Ac/Aw) hm  

⇒ Δp = P2 – P1 = ρ g hm (1 +  Ac/Aw)  

If the well is large in comparison to the column then: 

i.e. (Ac/Aw) →≈0 ⇒ Δp = P2 – P1 = ρ g hm  

P1 P2

1 2 

hm aa

B 

A 

P1

P2

1

2

hw 

Area = Ac

Area = Aw 
hm

Initial level 
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c- The inclined manometer  

Shown in Figure (6) enables the 
sensitivity of the manometers 
described previously to be increased 
by measuring the length of the column 
of liquid. If θ is the angle of inclination 
of the manometer (typically about 10-
20°) and L is the movement of the 
column of liquid along the limb, then: 
  hm = L sin θ       Figure (6): The inclined manometer 
If θ = 10°, the manometer reading L is increased by about 5.7 
times compared with the reading hm which would have been 
obtained from a simple manometer. 

d- The inverted manometer  

Figure (7) is used for measuring pressure differences in 
liquids. The space above the liquid in the manometer is filled 
with air, which can be admitted or expelled through the tap A 
in order to adjust the level of the liquid in the manometer. 

e- The two-liquid manometer  

Small differences in pressure in gases are often measured with 
a manometer of the form shown in Figure 6.5. The reservoir at 
the top of each limb is of a sufficiently large cross-section for 
the liquid level to remain approximately  Figure (6): The inverted manometer 
the on each side of the manometer.  
The difference in pressure is then given by:  
Δp = P2 – P1 = hm (ρm1 - ρm2) g  

where ρm1 and ρm2 are the densities of the two manometer 
liquids. The sensitivity of the instrument is very high if the 
densities of the two liquids are nearly the same. To obtain 
accurate readings it is necessary to choose liquids, which 
give sharp interfaces: paraffin oil and industrial alcohol are 
commonly used.  
 

 

 

            Figure (7): The two-liquid manometer 
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3- Mechanical Gauges 

Whenever a very high fluid pressure is to be 
measured, and a very great sensitivity a 
mechanical gauge is best suited for these 
purposes. They are also designed to read vacuum 
pressure. A mechanical gauge is also used for 
measurement of pressure in boilers or other 
pipes, where tube manometer cannot be 
conveniently used.  

There are many types of gauge available in the 
market. But the principle on which all these 
gauge work is almost the same. The followings 
are some of the important types of mechanical 
gauges: - 

1- The Bourdon gauge 
2- Diaphragm pressure gauge 
3- Dead weight pressure gauge 

The Bourdon gauge  

The pressure to be measured is applied to a 
curved tube, oval in cross-section, and the 
deflection of the end of the tube is communicated 
through a system of levers to a recording needle. 
This gauge is widely used for steam and 
compressed gases, and frequently forms the 
indicating element on flow controllers. The 
simple form of the gauge is illustrated in Figures 
(7a) and (7b). Figure (7c) shows a Bourdon type 
gauge with the sensing element in the form of a 
helix; this instrument has a very much greater 
sensitivity and is suitable for very high pressures. 

It may be noted that the pressure measuring 
devices of category (2) all measure a pressure 
difference (Δp = P2 – P1). In the case of the Bourdon 
gauge (1) of category (3), the pressure indicated is 
the difference between that communicated by the 
system to the tube and the external (ambient) 
pressure, and this is usually referred to as the gauge 
pressure. It is then necessary to add on    Figure (7) Bourdon gauge 
the ambient pressure in order to obtain  
the (absolute) pressure.  
Gauge pressures are not, however, used in the SI System of units.       
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Example -3.4- 
A simple manometer is used to measure the 

pressure of oil sp.gr. 0.8 flowing in a pipeline. 
Its right limb is open to atmosphere and the 
left limb is connected to the pipe. The center 
of the pipe is 9.0 cm below the level of the 
mercury in the right limb. If the difference of 
the mercury level in the two limbs is 15 cm, 
determine the absolute and the gauge 
pressures of the oil in the pipe.  

Solution: 
ρ = 0.8 (1000) = 800 kg/m3 
P1 = P2 
P1 = (0.15 –0.0 9)m(800 kg/m3)9.81m/s2+ Pa 
P2 = (0.15) m (13600 kg/m3) 9.81 m/s2 + Po 
Pa = 15 (13600) 9.81 + Po + [(15 – 9)cm 

(800 kg/m3) 9.81 m/s2] 
     = 1.20866 x 105 Pa (Absolute pressure) 
The gauge press. = Abs. press. – Atm. Press. 
  = 1.20866 x 105 - 1.0325 x 105  
 = 1.9541 x 104 Pa 
Example -3.5- 
The following Figure shows a 

manometer connected to the 
pipeline containing oil of sp.gr. 0.8.  
Determine the absolute pressure of 
the oil in the pipe, and the gauge 
pressure.  

Solution: 
ρa = 0.8 (1000) = 800 kg/m3 
P1 = P2 
P1 = Pa – h2 ρa g  
P2 = Po + h1 ρm g  

⇒ Pa = Po + h1 ρm g + h2 ρa g 
  = 1.0325 x 105 + (0.25) m 

(13600 kg/m3) 9.81 m/s2 + 
(0.75) m (800 kg/m3) 9.81 m/s2 

  = 1.40565 x 105 Pa 
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Example -3.6- 

A conical vessel is connected to a U-tube having 
mercury and water as shown in the Figure. When 
the vessel is empty the manometer reads 0.25 m. 
find the reading in manometer, when the vessel is 
full of water.   

Solution: 
P1 = P2 
P1 = (0.25 + H) ρw g + Po  
P2 = 0.25 ρm g +Po 

⇒ (0.25 + H) ρw g + Po = 0.25 ρm g +Po 

⇒  H =  0.25 (ρm – ρw)/ ρw 

   =  0.25 (12600 /1000) = 3.15 m 
 
When the vessel is full of water, let the mercury 
level in the left limp go down by (x) meter and the mercury level in the right limp go to 
up by the same amount (x) meter. 
i.e. the reading manometer =  (0.25 + 2x) 

 P1 = P2 
P1 = (0.25 + x +H + 3.5) ρw g + Po  
P2 = (0.25 + 2x) ρm g +Po 

⇒ (0.25 + x +H + 3.5) ρw g + Po = (0.25 + 2x) ρm g +Po 

⇒  6.9 + x =  (0.25 + 2x) (ρm/ ρw) ⇒  x = 0.1431 m 
   The manometer reading = 0.25 + 2 (0.1431) = 0.536 m 

Example -3.7- 
The following Figure shows a 

compound manometer connected to the 
pipeline containing oil of sp.gr. 0.8.  
Calculate Pa.  

Solution: 
ρa = 0.8 (1000) = 800 kg/m3 
Pa + 0.4 ρa g – 0.3 ρm g + 0.3 ρa g – 

0.3 ρm g – Po = 0  

⇒ Pa = Po + 0.7 ρa g – 0.6 ρm g  
       = 1.01325 x 105 – 0.7 (800) 

9.81 + 0.6 (13600) 9.81 
  = 1.75881 x 105 Pa 
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Example -3.8- 
A differential manometer is 

connected to two pipes as shown in 
Figure. The pipe A is containing 
carbon tetrachloride sp.gr. = 1.594 
and the pipe B is contain an oil of 
sp.gr. = 0.8. Find the difference of 
mercury level if the pressure 
difference in the two pipes be 0.8 
kg/cm2. 

 Solution: 
P1 = P2 
P1 = PB + (1 + h) ρb g  
P2 = PA + 3.5 ρa g + h ρm g  

⇒ PA – PB = 3.5 ρa g + h ρm g - (1 + h) ρb g = (0.8 kg/cm2) (9.81 m/s2) (104 cm2/m2) 

⇒ 7.848 x104 = 3.5 (1594) 9.81 + h (13600) 9.81- (1+h) 800 (9.81) 

⇒h = 25.16 cm. 
 
Example -3.9- 
A differential manometer is connected to 

two pipes as shown in Figure. At B the air 
pressure is 1.0 kg/cm2 (abs), find the 
absolute pressure at A.  

 Solution: 
P1 = P2 
P1 = Pair + 0.5 ρw g  
P2 = PA + 0.1 ρa g + 0.05 ρm g  

⇒PA = Pair + 0.5 ρw g – 0.1 ρa g – 0.05 ρm g 

⇒ Pair = (1.0 kg/cm2 PB) (9.81m/s2)  
(104 cm2/ m2) 

    = 9.81 x104 Pa 

 
∴ PA = 9.81 x104 Pa + 0.5 (1000) 9.81 – 0.1 (900) 9.81 – 0.05 (13600) 9.81 

   = 9.54513 x104 Pa 
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Example -3.10- 
A Micromanometer, having ratio of 

basin to limb areas as 40, was used to 
determine the pressure in a pipe 
containing water. Determine the 
pressure in the pipe for the manometer 
reading shown in Figure.  

 Solution: 
P1 = P2 
P1 = Po + h2 ρm g  
P2 = PA + h1 ρw g  

⇒ PA = Po + h2 ρm g – h1 ρw g  
= 1.01325x105 +0.08 (13600) 9.81–  
    0.05 (1000) 9.81 

= 1.11507 x105 Pa 
Note:  
If h2 and h1 are the heights from initial level, the ratio (Aw/Ac) will enter in calculation.   

 

 
Example -3.11- 
An inverted manometer, when connected to 

two pipes A and B, gives the readings as 
shown in Figure. Determine the pressure in 
tube B, if the pressure in pipe A 1.0 kg/cm2. 
Solution: 

PA– 0.8 ρw g + 0.15 ρ1 g + 0.5 ρ2 g – PB = 0 

⇒ PB = PA – [0.8 (1000) – 0.15 (800) – 0.5 
(900)] 9.81  

PA = 1.0 kg/cm2 x 9.81 x 104  =9.81 x 104 Pa  
∴ PA = 9.58437 x104 Pa 
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Example -3.12- 
Two pipes, one carrying toluene of 

sp.gr. = 0.875, and the other carrying 
water are placed at a difference of level of 
2.5 m. the pipes are connected by a U-
tube manometer carrying liquid of sp.gr. 
= 1.2. The level of the liquid in the 
manometer is 3.5 m higher in the right 
limb than the lower level of toluene in the 
limb of the manometer. Find the 
difference of pressure in the two pipes.    
Solution: 

T ≡ Toluene, W ≡ Water, L ≡ Liquid  

PA+ 3.5 ρT g – 3.5 ρL g + 5 ρW g – PB = 0 

⇒ PA – PB = [3.5 (1200) – 3.5 (875) –5 (1000)] 9.81 
    = – 3862.5 Pa 

⇒ PB – PA =  3862.5 Pa 
Example -3.13- 
A closed tank contains 0.5 m of mercury, 1.5 m of water, 2.5 

m of oil of sp.gr. = 0.8 and air space above the oil. If the 
pressure at the bottom of the tank is 2.943 bar gauge, what 
should be the reading of mechanical gauge at the top of the 
tank.    

Solution: 
Pressure due to 0.5 m of mercury 

Pm = 0.5 (13600) 9.81 = 0.66708 bar 

Pressure due to 1.5 m of water 
Pw = 1.5 (1000) 9.81 = 0.14715 bar 

Pressure due to 2.5 m of oil 
PO = 2.5 (800) 9.81 = 0.19620 bar 

Pressure at the bottom of the tank = Pm + Pw + PO + PAir  

 ⇒ 2.943 = 0.66708 bar + 0.14715 bar + 0.19620 bar + PAir 

⇒ PAir = 1.93257 bar 

 

 

 

A

sp.gr. = 1.2

B

3.5m

1.0 m 

5.0m

2.5m

sp.gr. = 0.875

Water

Mercur y 

Water 

Oil 

Air 

0.5 m

1.5 m

2.5 m
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Home Work  
P.3.1  

Two pipes A and B carrying water are connected by a 
connecting tube as shown in Figure,  
a- If the manometric liquid is oil of sp.gr. = 0.8, find the 

difference in pressure intensity at A and B when the 
difference in level between the two pipes be (h = 2 m) 
and (x = 40 cm). 

b- If mercury is used instead of water in the pipes A and 
B and the oil used in the manometer has sp.gr. = 1.5, 
find the difference in pressure intensity at A and B 
when (h = 50 cm) and (x = 100 cm). 

Ans. a-  PB-PA =18835.2 Pa, b-  PB-PA =51993 Pa 
 
 
 
P.3.2   
A closed vessel is divided into two 
compartments. These compartments contain 
oil and water as shown in Figure. Determine 
the value of (h). 
 Ans. h = 4.5 m   

 

 
 
 
 
P.3.3  

Oil of sp.gr. = 0.9 flows through a vertical pipe (upwards). Two points A and B one 
above the other 40 cm apart in a pipe are connected by a U-tube carrying mercury. If 
the difference of pressure between A and B is 0.2 kg/cm2, 
1- Find the reading of the manometer. 
2- If the oil flows through a horizontal pipe, find the reading in manometer for the 

same difference in pressure between A and B.  
Ans. 1-  R = 0.12913 m, 2-  R = 0.1575 m, 

 
P.3.4 

A mercury U-tube manometer is used to measure the pressure drop across an orifice 
in pipe. If the liquid that flowing through the orifice is brine of sp.gr. 1.26 and 
upstream pressure is 2 psig and the downstream pressure is (10 in Hg) vacuum, find 
the reading of manometer.  
Ans.   R = 394 mm Hg 

0.15 kg/cm2

Water

Oil 
sp.gr.=0.8 

B 
Air

1 m

4 m

A 
Air

Liquid 
sp.gr.=1.6

h

0.34 kg/cm2

h

B 

A 

y

x
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P.3.5  

Three pipes A, B, and C at the same level connected by a multiple differential 
manometer shows the readings as show in Figure. Find the differential of pressure 
heads in terms of water column between A and B, between A and C, and between B 
and C.  
 

 

 

 

 

 

 

 

 

 

 

 

Ans.  PA-PB =1.359666 bar = 13.86 m H2o 
  PA-PC =1.606878 bar = 16.38 m H2o 
  PB-PC =0.247212 bar = 2.52 m H2o 
 
 

 

h

B A 

Mercury

150cm

C 

130cm

20 cm 

Water 
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CHPTER FOUR  

Fluid Dynamic 
4.1  Introduction 

In the process industries it is often necessary to pump fluids over long distances 
from storage to processing units, and there may be a substantial drop in pressure in both 
the pipeline and in individual units themselves. It is necessary, therefore, to consider the 
problems concerned with calculating the power requirements for pumping, with 
designing the most suitable flow system, with estimating the most economical sizes of 
pipes, with measuring the rate of flow, and frequently with controlling this flow at 
steady state rate. 

It must be realized that when a fluid is flowing over a surface o through a pipe, the 
velocity at various points in a plane at right angles to the stream velocity is rarely 
uniform, and the rate change of velocity with distance from the surface will exert a vital 
influence on the resistance to flow and the rate of mass or heat transfer. 

4.2  The Nature of Fluid Flow 

When a fluid is flowing through a tube or over a surface, the pattern of flow will 
vary with the velocity, the physical properties of fluid, and the geometry of the surface. 
This problem was first examined by Reynolds in 1883. Reynolds has shown that when 
the velocity of the fluid is slow, the flow pattern is smooth. However, when the velocity 
is quite high, an unstable pattern is observed in which eddies or small packets of fluid 
particles are present moving in all directions and at all angles to the normal line of flow. 

The first type of flow at low velocities where the layers of fluid seen to slide by 
one another without eddies or swirls being present is called “laminar flow” and 
Newton’s law of viscosity holds. 

The second type of flow at higher velocities where eddies are present giving the 
fluid a fluctuating nature is called “turbulent flow”. 
4.3  Reynolds Number (Re) 

Studies have shown that the transition from laminar to turbulent flow in tubes is 
not only a function of velocity but also of density (ρ), dynamic viscosity (μ), and the 
diameter of tube. These variables are combining into the Reynolds number, which is 
dimensionless group. 

    
µ

ρ ud
=Re  

where u is the average velocity of fluid, which is defined as the volumetric flow rate 
divided by the cross-sectional area of the pipe. 

 24/ d

Q

A

Q
u

π
==       

⇒ µµπµπ
ρ dG

d

m

d

Q
===

&44
Re      

for a straight circular pipe when the value of Re is less than 2,100 the flow is 
always laminar. When the value is over 4,000 the flow be turbulent. In between, which 

Where, Q: volumetric flow rate m3/s 
   m : mass flow rate kg/s &

 G: mass flux or mass velocity kg/m2.s 



Chapter Four Fluid Flow    Fluid Dynamic 

           2-Ch.4                                                                                                   Dr. Salah S. Ibrahim  

is called the transition region the flow can be laminar or turbulent depending upon the 
apparatus details. 

Example -4.1- 
Water at 303 K is flowing at the rate of 10 gal/min in a pipe having an inside diameter 

I.D. of 2.067 in. calculate the Reynolds number using both English and S.I. units  
Solution:  
The volumetric flow rate (Q) = 10 gal/min (1.0 ft3/7.481 gal) (min/60 s) = 0.0223 ft3/s 
Pipe diameter (d) = 2.067 in (ft/12 in) = 0.172 ft 
Cross-sectional area (A) = π/4 d2 = π/4 (0.172)2 = 0.0233 ft2 
Average velocity (u) =Q/A = (0.0223 ft3/s) / 0.0233 ft2  = 0.957 ft/s 
At T = 303 K   The density of water (ρ = 62.18 lb/ft3), 

       The dynamic viscosity (μ = 5.38 x 10-4) lb/ft.s 

µ
ρ ud

=Re    =
sftlb

ftsftftlb

./1038.5

)172.0)(/957.0(/18.62
4

3

−×
  = 1.902 x 104 (turbulent) 

Using S.I. units 
At T = 303 K   The density of water (ρ = 996 kg/m3), 
               The dynamic viscosity (μ = 8.007 x 10-4) kg/m.s (or Pa.s) 
  Pipe diameter (d) = 0.172 ft (m/3.28 ft) = 0.0525m 
  Average velocity (u) =0.957 ft/s (m/3.28 ft) = 0.2917 m/s 

 
smkg

msmmkg

./10007.8

)0525.0)(/2917.0(/996
Re 4

3

−×
= = 1.905 x 104 (turbulent) 

4.4  Overall Mass Balance and Continuity Equation  

In fluid dynamics, fluids are in motion. Generally, they are moved from place to 
place by means of mechanical devices such as pumps or blowers, by gravity head, or by 
pressure, and flow through systems of piping and/or process equipment.  

The first step in the solution of flow problems is generally to apply the principles 
of the conservation of mass to the whole system or any part of the system. 

INPUT – OUTPUT = ACCUMULATION 
At steady state, the rate of accumulation is zero 

∴      INPUT = OUTPUT  
 In the following Figure a simple flow system is shown where fluid enters section 
 with an average velocity (u1) and density (ρ1) through the cross-sectional area (A1). 

The fluid leaves section  with an average velocity (u2) and density (ρ1) through the 
cross-sectional area (A2). 

Thus, 
At steady state      21 mm && =
         Q1 ρ1 = Q2 ρ2 
     u1 A1 ρ1 = u2 A2 ρ2 
For incompressible fluids at the same temperature [ρ1 = ρ2] 

    ∴ u1 A1 = u2 A2   
   
 
 

Process u1 

ρ1 

u2 

ρ2 

  
A1 A2
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Example -4.2-      **************  
A petroleum crude oil having a density of 892 kg/m3 is flowing, through the piping 

arrangement shown in the below Figure, at total rate of 1.388 x 10-3 m3/s entering pipe 
. The flow divides equally in each of pipes . The steel pipes are schedule 40 pipe. 

Table{{{{}}}.  Calculate the following using SI units: 
a- The total mass flow rate in pipe  and pipes . 
b- The average velocity in pipe  and pipes . 
c- The mass velocity in pipe .  
 
 
Solution:  

Pipe  I.D. = 0.0525 m,  A1 = 21.65 x 10-4 m2 

Pipe  I.D. = 0.07792 m, A1 = 47.69 x 10-4 m2 

Pipe  I.D. = 0.04089 m, A1 = 13.13 x 10-4 m2 
a- the total mass flow rate is the same through pipes  and  and is  

ρ11 Qm =&  = 1.388 x 10-3 m3/s (892 kg/m3) = 1.238 kg/s 
Since the flow divides equally in each pipes ’ 

   ⇒ = 0.619 kg/s 2/238.12/13 == mm &&

b- ρρ 1111 AuQm ==&  ⇒ 
)/892)(1065.21(

/238.1
324

1

1
1 mkgm

skg

A

m
u −×

==
ρ
&

= 0.641 m/s 

 
)/892)(1013.13(

/619.0
324

3

3
3 mkgm

skg

A

m
u −×

==
ρ
&

= 0.528 m/s 

d- G1= u1 ρ1 = 0.641 m/s (892 kg/m3) = 572 kg/m2.s 

e-  or  24
1

1
1 1065.21

/238.1

m

skg

A

m
G −×

==
&

= 572 kg/m2.s 

 

4.5  Energy Relationships and Bernoulli’s Equation 

The total energy of a fluid in motion consists of the following components: - 
Internal Energy (U)  
 This is the energy associated with the physical state of fluid, i.e. the energy of 

atoms and molecules resulting from their motion and configuration. Internal 
energy is a function of temperature. It can be written as (U) energy per unit mass 
of fluid. 

Potential Energy (PE)  
 This is the energy that a fluid has because of its position in the earth’s field of 

gravity. The work required to raise a unit mass of fluid to a height (z) above a 
datum line is (zg), where (g) is gravitational acceleration. This work is equal to 
the potential energy per unit mass of fluid above the datum line. 

Kinetic Energy (KE)   
 This is the energy associated with the physical state of fluid motion. The kinetic 

energy of unit mass of the fluid is (u2/2), where (u) is the linear velocity of the 
fluid relative to some fixed body.  

Pressure Energy (Prss.E)  

2"

1 1/2" 

3"

1 1/2" 
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 This is the energy or work required to introduce the fluid into the system without 
a change in volume. If (P) is the pressure and (V) is the volume of a mass (m) of 
fluid, then (PV/m ≡ Pυ) is the pressure energy per unit mass of fluid. The ratio 
(V/m) is the fluid density (ρ).  
The total energy (E) per unit mass of fluid is given by the equation: - 

E = U + zg + P/ ρ + u2/2  
where, each term has the dimension of force times distance per unit mass. In calculation, 
each term in the equation must be expressed in the same units, such as J/kg, Btu/lb or 
lbf.ft/lb. i.e. (MLT-2)(L)(M -1) = [L2T-2] ≡ {m2/s2, ft2/s2}. 
 A flowing fluid is required to do work in order to overcome viscous frictional 
forces that resist the flow. 
 The principle of the conservation of energy will be applied to a process of input 
and output streams for ideal fluid of constant density and without any pump present and 
no change in temperature. 
 E1 = E2 
U1 + z1 g + P1/ ρ + u1

2/2 = U2 + z2 g + P2/ ρ + u2
2/2 

 U1 = U2  (no change in temperature) 
P1/ ρ + u1

2/2 + z1 g = P2/ ρ + u2
2/2 + z2 g  

⇒ P/ ρ + u2/2 + z g = constant 

⇒ ΔP/ ρ + Δu2/2 + Δz g = 0  --------- Bernoulli’s equation 

4.6  Equations of Motion 

According to Newton’s second law of motion, the net force in x-direction (Fx) 
acting on a fluid element in x-direction is: - 

Fx = (mass) x (acceleration in x-direction) 
Fx = (m) (ax)   
In the fluid flow the following forces are present: - 

1- Fg  ---------force due to gravity 
2- FP  ---------force due to pressure 
3- FV  ---------force due to viscosity 
4- Ft  ---------force due to turbulence 
5- Fc  ---------force due to compressibility 
6- Fσ  ---------force due to surface tension  

The net force is could be given by  
Fx =    (Fg)x  +  (FP)x  +  (FV)x  +  (Ft)x  +  (Fc)x  +  ( Fσ)x  
 
 
 
 
 
 
 
In most of the problems of fluid in motion the forces due to surface tension (Fσ), 

and the force due to compressibility (Fc) are neglected, 

 
Process 

E1 E2 

 
 
 
 

 
Reynolds Equation 

 
 

Navie
 

r-Stokes equation 

 
Euler’s equation 
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⇒   Fx =    (Fg)x  +  (FP)x  +  (FV)x  +  (Ft)x   

This equation is called “Reynolds equation of motion” which is useful in the 
analysis of turbulent flow. 

In laminar (viscous) flow, the turbulent force becomes insignificant and hence the 
equation of motion may be written as: - 

 Fx =    (Fg)x  +  (FP)x  +  (FV)x   

This equation is called “Navier-Stokes equation of motion” which is useful in the 
analysis of viscous flow. 

If the flowing fluid is ideal and has very small viscosity, the viscous force and 
viscosity being almost insignificant and the equation will be: - 

 Fx =    (Fg)x  +  (FP)x   
This equation is called “Euler’s equation of motion”. 

4.6.1 Euler’s equation of motion 

The Euler’s equation for steady state flow on an ideal fluid along a streamline is 
based on the Newton’s second law of motion. The integration of the equation gives 
Bernoulli’s equation in the form of energy per unit mass of the flowing fluid. 

Consider a steady flow of an ideal fluid along a streamline. Now consider a small 
element of the flowing fluid as shown below, 

Let:  
dA: cross-sectional area of the fluid element, 
dL: Length of the fluid element’ 
dW: Weight of the fluid element’ 
u: Velocity of the fluid element’ 
P: Pressure of the fluid element’ 

  
 
 
The Euler’s equation of motion is based 

on the following assumption: - 
1- The fluid is non-viscous (the frictional  
 losses are zero). 
2- The fluid is homogenous and  
Incompressible (the density of fluid 
is constant). 
3- The flow is continuous, steady,  
and along the streamline (laminar). 
4- The velocity of flow is uniform over the section. 
5- No energy or force except gravity and pressure forces is involved in the flow.  

The forces on the cylindrical fluid element are, 
1- Pressure force acting on the direction of flow (PdA) 
2- Pressure force acting on the opposite direction of flow [(P+dP)dA] 
3- A component of gravity force acting on the opposite direction of flow (dW 

sin θ) 

θ

dW 

dz

θ

dA

dL

P

P+dP

Flow

Flow
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- The pressure force in the direction of low 
FP = PdA – (P+dP) dA = – dPdA  

- The gravity force in the direction of flow 
Fg = – dW sin θ    {W=m g = ρ dA dL g} 

  = – ρ g dA dL sin θ  { sin θ = dz / dL} 
   = – ρ g dA dz 

- The net force in the direction of flow  
        F = m a     { m  = ρ dA dL } 

   = ρ dA dL a    {
dL

du
u

dt

dL

dL

du

dt

du
a =×== } 

 = ρ dA u du 
We have  
       Fx =    (Fg)x  +  (FP)x  
    ρ dA u du = – dP dA – ρ g dA dz  {÷ – ρ  dA z} 

⇒ dP/ ρ + du2/2 + dz g = 0  --------- Euler’s equation of motion 
Bernoulli’s equation could be obtain by integration the Euler’s equation 
∫dP/ ρ + ∫du2/2 + ∫dz g = constant 

   ⇒ P/ ρ + u2/2 + z g = constant 

⇒ ΔP/ ρ + Δu2/2 + Δz g = 0  --------- Bernoulli’s equation 

4.7 Modification of Bernoulli’s Equation 

1- Correction of the kinetic energy term 
The velocity in kinetic energy term is the mean linear velocity in the pipe. To 

account the effect of the velocity distribution across the pipe [(α) dimensionless 
correction factor] is used. 

For a circular cross sectional pipe:  
- α = 0.5  for laminar flow 
- α = 1.0  for turbulent flow 

2- Modification for real fluid 
The real fluids are viscous and hence offer resistance to flow. Friction appears 

wherever the fluid flow is surrounding by solid boundary. Friction can be defined 
as the amount of mechanical energy irreversibly converted into heat in a flow in 
stream. As a result of that the total energy is always decrease in the flow direction 
i.e. (E2 < E1). Therefore E1 = E2 + F, where F is the energy losses due to friction.  

Thus the modified Bernoulli’s equation becomes, 
 P1/ ρ + u1

2/2 + z1 g  = P2/ ρ + u2
2/2 + z2 g + F  ---------(J/kg ≡ m2/s2) 

3- Pump work in Bernoulli’s equation 
A pump is used in a flow system to increase the 

mechanical energy of the fluid. The increase being 
used to maintain flow of the fluid. Assume a pump is 
installed between the stations  and  as shown in 
Figure. The work supplied to the pump is shaft work 
(– Ws), the negative sign is due to work added to 
fluid.  

Pump
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Frictions occurring within the pump are: - 
a- Friction by fluid 
b- Mechanical friction 
Since the shaft work must be discounted by these frictional force (losses) to 

give net mechanical energy as actually delivered to the fluid by pump (Wp). 
Thus,  Wp = η Ws   where η, is the efficiency of the pump.  

  Thus the modified Bernoulli’s equation for present of pump between the two 
selected points  and   becomes, 

Fzg
uP

Wszg
uP

+++=+++ 2
2

2
22

1
1

2
11

22 αρ
η

αρ
 ---------(J/kg ≡ m2/s2) 

By dividing each term of this equation by (g), each term will have a length units, 
and the equation will be: - 

Fhz
g

u

g

P

g

Ws
z

g

u

g

P
+++=+++ 2

2

2
22

1
1

2
11

22 αρ
η

αρ
  ---------(m)    

where  hF = F/g    ≡ head losses due to friction. 

4.8 Friction in Pipes 

When a fluid is flowing through a pipe, the fluid experiences some resistance due 
to which some of energy of fluid is lost. This loss of energy is classified on: - 

 
 
 
 
 
 
 
 
 
 

4.8.1 Relation between Skin Friction and Wall Shear Stress 

For the flow of a fluid in short length of pipe (dL) of diameter (d), the total 
frictional force at the wall is the product of shear stress (τrx) and the surface area of the 
pipe (π d dL). This frictional force causes a drop in pressure (– dPfs). 

Consider a horizontal pipe as shown in Figure; 
Force balance on element (dL) 

τ(π d dL)= [P– (P+dPfs)] (π/4 d2) 

⇒ – dPfs = 4(τ dL/d) = 4 (τ /ρ ux
2) (dL/d) ρ ux

2 ------------------------(*) 
 
where,  (τ /ρ ux

2) = Φ=Jf =f/2 =f′/2 
 
Φ(or Jf): Basic friction Factor  
f: Fanning (or Darcy) friction Factor 
f′: Moody friction Factor. 

Major energy losses 
(Skin friction) 
Due to surface skin 
of the pipe  

Minor energy losses 
(Form friction) 

• Sudden expansion or 
contraction pipe 

• Bends, valves and fittings 
• An obstruction in pipe  

Energy Losses

τrx 

τrx 

dP 
Flo

P+dPfs 

L 
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For incompressible fluid flowing in a pipe of constant cross-sectional area, (u) is 

not a function of pressure or length and equation (*) can be integrated over a length (L) 
to give the equation of pressure drop due to skin friction:   

–ΔPfs = 4f (L/d) (ρu2/2)  ---------------------(Pa) 

The energy lost per unit mass Fs is then given by: 

Fs = (–ΔPfs/ρ) = 4f (L/d) (u2/2)  -----------------(J/kg) or (m2/s2) 

The head loss due to skin friction (hFs) is given by: 

hFs = Fs/g = (–ΔPfs/ρg) = 4f (L/d) (u2/2g) ---------------(m) 

Note: -  

• All the above equations could be used for laminar and turbulent flow. 

• ΔPfs =P2 – P1 ⇒  -ΔPfs =P1 – P2 (+ve value) 

4.8.2 Evaluation of Friction Factor in Straight Pipes 

1. Velocity distribution in laminar flow  
Consider a horizontal circular pipe of a uniform diameter in which a Newtonian, 
incompressible fluid flowing as shown in Figure: 
   
 
 
 
 
 
 
Consider the cylinder of radius (r) sliding in a cylinder of radius (r+dr).  
Force balance on cylinder of radius (r) 

    τrx (2π r L)= (P1- P2) (π r2) 

for laminar flow   τrx = - μ (dux/dr) 

⇒ r (P1-P2) = - μ (dux/dr) 2L  ⇒ [(P2- P1)/(2L μ)] r dr  = dux 

⇒ [ΔPfs/(2L μ)] r2/2 = ux + C 
- Boundary Condition (1)   (for evaluation of C) 

 at r = R    ux = 0  ⇒ C = [(ΔPfs R
2)/(4L μ)] 

⇒ [(ΔPfs r
2)/(4L μ)] = ux +  [(ΔPfs R

2)/(4L μ)] 
⇒ ux = [(-ΔPfs R

2)/(4L μ)][1– (r/R)2]    velocity distribution (profile) in laminar flow 
- Boundary Condition (2)   (for evaluation of umax) 

at r = o   ux = umax ⇒ umax = [(–ΔPfs R
2)/(4 L μ)]   

⇒ umax = [(–ΔPfs d
2)/(16 L μ)]  ----------centerline velocity in laminar flow 

r 

dr 

r+dr
R

P1 
Flow 

P2d 

dr

r
R
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∴ ux / umax = [1–(r/R)2] ---------velocity distribution (profile)in laminar flow 

2. Average (mean) linear velocity in laminar flow  
       Q = u A----------------------- (1)  
Where, (u) is the average velocity and (A) is the cross-sectional area = (π R2) 
     dQ = ux dA  where ux = umax[1–(r/R)2], and dA = 2π r dr 

⇒ dQ = umax[1–(r/R)2] 2π r dr  
RRQ

R

rr
udr

R

r
rudQ

0

2

42

max
0

2

3

max
0 42

2)(2 −=−= ∫∫ ππ  

⇒Q = umax/2 (π R2) ----------------------- (2) 
By equalization of equations (1) and (2) 

⇒ u = umax/2 = [(–ΔPfs R
2)/(8L μ)]  = [(–ΔPfs d

2)/(32 L μ)]  
∴ –ΔPfs = (32 L μ u) / d2  Hagen–Poiseuille equation 

3. Friction factor in laminar flow  

We have  –ΔPfs = 4f (L/d) (ρu2/2)----------------------(3)  
and also  –ΔPfs = (32 L μ u) / d2  ----------------------(4)  
 By equalization of these equations [i.e. eqs. (3) and (4)] 

⇒ (32 L μ u) / d2 = 4f (L/d) (ρu2/2) ⇒ f = 16 μ /(ρ u d) 

∴ f = 16 / Re Fanning or Darcy friction factor in laminar flow. 

4. Velocity distribution in turbulent flow  

The velocity, at any point in the cross-section of cylindrical pipe, in turbulent flow 
is proportional to the one-seventh power of the distance from the wall. This may be 
expressed as follows: - 
  ux / umax = [1–(r/R)]1/7  

5. Average (mean) linear velocity in Turbulent flow 

       Q = u A----------------------- (1)  
     dQ = ux dA  where ux  = umax [1–(r/R)]1/7, and dA = 2π r dr 

⇒ dQ = umax [1– (r/R)]1/7 2π r dr  

∫∫ −=
RQ

dr
R

r
rudQ

0

7/1
max

0

)1(2π  

Let M = (1– r/R) dM = (–1/R) dr 
or   r = R(1 – M)   dr  = – R dM 
at   r = 0     M=1 
at   r = R    M=0 
Rearranging the integration  

∫∫ −=−−=
0

1

7/87/12
max

0

1

7/12
max )(2)()1(2 dMMMRudMMMRuQ ππ   

⎥⎦
⎤

⎢⎣
⎡

−=−=
15

7

8

7
2

7/157/8
2 2

max

1

0

7/157/8
2

max Ru
MM

RuQ ππ  

Prandtl one-seventh law equation. 
velocity distribution (profile)in laminar flow 

average velocity in 
laminar flow
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⇒Q = 49/60 umax (π R2) ----------------------- (5) 
By equalization of equations (1) and (5) 

∴ u = 49/60 umax ≈ 0.82 umax   ------------average velocity in turbulent flow 
 
 
                                                                         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. Friction factor in Turbulent flow  

A number of expressions have been proposed for calculating friction factor in terms 
of or function of (Re). Some of these expressions are given here: -  

25.0Re

079.0
=f      for 2,500 < Re <100,000 

and,     for 2,500 < Re <10,000,000 4.0)log(Re4 5.05.0 −=− ff

These equations are for smooth pipes in turbulent flow. For rough pipes, the ratio 
of (e/d) acts an important role in evaluating the friction factor in turbulent flow as 
shown in the following equation 

⎥⎦
⎤

⎢⎣
⎡

+−= −−− 5.015.0 )2/(Re885.027.0ln5.2)2/( f
d

e
f   

Table of the roughness values e.  
Surface type ft mm

Planed wood  
or finished concrete 0.00015 0.046

Unplaned wood 0.00024 0.073
Unfinished concrete 0.00037 0.11 
Cast iron 0.00056 0.17 
Brick 0.00082 0.25 
Riveted steel 0.0017 0.51 
Corrugated metal 0.0055 1.68 
Rubble 0.012 3.66 

Figure of the shape of velocity profiles 
for streamline and turbulent flow 

 
V

el
oc

ity
 r

at
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 (
u/

u
m

ax
) 

Figure of the Variation of (u/umax) with 
Reynolds number in a pipe 
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7. Graphical evaluation of friction factor  

As with the results of Reynolds number the curves are in three regions (Figure 3.7 
vol.I). At low values of Re (Re < 2,000), the friction factor is independent of the 
surface roughness, but at high values of Re (Re > 2,500) the friction factor vary 
with the surface roughness. At very high Re, the friction factor become 
independent of Re and a function of the surface roughness only. Over the transition 
region of Re from 2,000 to 2,500 the friction factor increased rapidly showing the 
great increase in friction factor as soon as turbulent motion established. 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (3.7) Pipe friction chart Φ versus Re 
Example -4.3- 
Water flowing through a pipe of 

20 cm I.D. at section  and 10 cm 
at section . The discharge 
through the pipe is 35 lit/s. The 
section  is 6 m above the datum 
line and section  is 2 m above it. 
If the pressure at section  is 245 
kPa, find the intensity of pressure 
at section . Given that ρ = 1000 
kg/m3, μ= 1.0 mPa.s.   

 
2 m

6 m

Datum line
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Solution: 
Q = 35 lit/s = 0.035 m3/s 

u =  Q/A   ⇒ u1= (0.035 m3/s) / (0.22 π/4) m2 = 1.114 m/s 

     ⇒ u2= (0.035 m3/s) / (0.12 π/4) m2 = 4.456 m/s 

Re = ρud / μ ⇒ Re1= (1000 kg/m3 x 1.114 m/s x 0.2 m) / (0.001Pa.s) = 222,800 

Re = ρud / μ ⇒ Re2= (1000 kg/m3 x 4.456 m/s x 0.1 m) / (0.001Pa.s) = 445,600 
The flow is turbulent along the tube (i.e. α1 = α2 =1.0) 

Fzg
uP

Wzg
uP

s +++=+++ 2
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2
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1
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2
11

22 αρ
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αρ
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22
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2

2
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1

2
1

21
1

2 ααρ
ρ

uu
zzg

P
P = 253.3 kPa 

H.W. 
If the pipe is smooth and its length is 20 m, find P2.  Ans. P2 = 246.06 kPa 
Example -4.4- 
A conical tube of 4 m length is fixed at an inclined angle of 30° with the horizontal-

line and its small diameter upwards. The velocity at smaller end is (u1 = 5 m/s), while (u2 
= 2 m/s) at other end. The head losses in the tub is [0.35 (u1-u2)

2/2g]. Determine the 
pressure head at lower end if the flow takes place in down direction and the pressure 
head at smaller end is 2 m of liquid.   

Solution: 
 
No information of the fluid properties.  
Then assume the flow is turbulent, (i.e. α1 = α2 =1.0) 

z1  = L sinθ  
     =4 sin 30  
     =2 m 
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 = 2.0 + 2.0 + (25– 4)/(2 x 9.81) – 0.35(5–2)2 / (2 x 9.81) = 4.9 m 
 
Example -4.5- 
Water with density ρ = 998 kg/m3, is flowing at steady mass flow rate through a 

uniform-diameter pipe. The entrance pressure of the fluid is 68.9 kPa in the pipe, which 
connects to a pump, which actually supplies 155.4 J/kg of fluid flowing in the pipe. The 
exit pipe from the pump is the same diameter as the inlet pipe. The exit section of the 
pipe is 3.05 m higher than the entrance, and the exit pressure is 137.8 kPa. The Reynolds 
number in the pipe is above 4,000 in this system. Calculate the frictional loss (F) in the 
pipe system. 

 

z1

Datum line 30°
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Solution:  
Setting the datum line at z1 thus, z1 = 0, z2 = 3.05 m 
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Wzg
uP

s +++=+++ 2
2

2
22

1
1

2
11

22 αρ
η

αρ
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⎡
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= 2
21 zgWs

PP
F η

ρ
 

= (68.9 - 137.8) x 1000/998 +155.4 - 9.81(3.05) 
= 56.5 J/kg or m2/s2  
 
Example -4.6 
A pump draws 69.1 gal/min of liquid solution having a density of 114.8 lb/ft3 from an 

open storage feed tank of large cross-sectional area through a 3.068ƎI.D. suction pipe. 
The pump discharges its flow through a 2.067ƎI.D. line to an open over head tank. The 
end of the discharge line is 50′ above the level of the liquid in the feed tank. The friction 
losses in the piping system are F = 10 ft lbf/lb. what pressure must the pump develop and 
what is the horsepower of the pump if its efficiency is η=0.65.                      

Solution:  
No information of the type of fluid and   
then its viscosity, therefore assume 
the flow is turbulent. 
P1 = P2 = atmospheric press. 
u1 ≈ 0 large area of the tank 
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cc 2

2
22η  

Q = 69.1 gal/min (ft3/7.48 gal)(min/60 s) = 0.154 ft3/s 
A3 (area of suction line) = π/4 (3.068 in)2 (ft/12 in)2 = 0.0513 ft2  
A4 = A2 (area of discharge line) = π/4 (2.067 in)2 (ft/12 in)2 = 0.0235 ft2  
u2 = Q / A2 = (0.154 ft3/s) / (0.0235 ft2) = 6.55 ft/s 
u3 = Q / A3 = (0.154 ft3/s) / (0.0513 ft2) = 3.0 ft/s 

⇒ lblbft
slbftlb

sft

slbftlb

ftsft
Ws f

ff

/10
/174.322

)/55.6(

/174.32

50/174.32
2

2

2

2

+
×

+
×

=η = 60.655 ft lbf/lb 

Ws = ηWs/η = 60.655/0.65 = 93.3 lbf ft/lb 
Mass flow rate ρQm =& = 0.1539 ft3/s (114.8 lb/ft3) = 17.65 lb/s 
Power required for pump =  = 17.65 lb/s (93.3 ft lbf/lb)(hp/550 ft lbf/s) Wsm&

       = 3.0 hP 
To calculate the pressure that must be developed by the pump, Energy Balance 

equation must be applied over the pump itself (points  and ) 
u4 = u2 = 6.55 ft / s  and u3 = 3 ft / s 

3.05 m 

u1 

u2 

50 ft 

I.D. = 3.068 in 

I.D. = 2.06 in 
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η
ρ

= 60.655 + (- 0.527) = 60.13 ft lbf / lb   

⇒ ΔP = 60.13 ft lbf/lb (114.8) lb/ft3  = 69.03 lbf/ft
2 

      = 47.94 psi 
      = 3.26 bar 
Example -4.7- 
A liquid with a constant density (ρ) is flowing at an unknown velocity (u1) through a 

horizontal pipe of cross-sectional area (A1) at a pressure (Pi), and then it passes to a 
section of the pipe in which the area is reduced gradually to (A2) and the pressure (P2). 
Assume no friction losses, find the velocities (u1) and (u2) if the pressure difference (P1-
P2) is measured.         

Solution:  
 
 
 
 
 

From continuity equation  ⇒ ρ Q = ρ1 Q1 = ρ2 Q2 21 mmm &&& ==

And for constant density ⇒Q = Q1 = Q2 ⇒ u A = u1 A1 = u2 A2 

    ⇒u2 = u1 A1/A2 
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Assume the flow is turbulent (α1 = α2) 
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Example -4.8- 
A nozzle of cross-sectional area (A2) is discharging to the atmosphere and is located in 

the side of a large tank, in which the open surface of liquid in the tank is (H) above the 
centerline of the nozzle. Calculate the velocity (u2) in the nozzle and the volumetric rate 
of discharge if no friction losses are assumed and the flow is turbulent.           

Solution: 

Since A1 is very large compared to A2 (⇒u1 ≈ 0). 
The pressure P1 is greater than atmosphere pressure 
by the head of fluid H. 
The pressure P2 which is at nozzle exit, is at  
atmospheric pressure . 

u1 
A1 

u2 
A2 

P1 
P2 

A1

A2 1. 

3. 

.2

H
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Example -4.9- 
98% H2So4 is pumped at 1.25 kg/s through a 25 mm inside diameter pipe, 30 m long, 

to a reservoir 12 m higher than the feed point. Calculate the pressure drop in the 
pipeline. Take that ρ = 1840 kg/m3, μ= 25 mPa.s, e = 0.05 mm.        

Solution: 

A

m
uuAQm

ρ
ρρ

&
& =⇒== ⇒u =(1.25 kg/s) / (π/4 0.0252)(1840 kg/m3) 

⇒u = 1.38 m/s 
Re = (1840 x 1.38 x 0.025)/0.025 = 2546 
e/d = 0.05 x 10-3 /0.025 =  0.002 
From Figure (3.7)- Vol.I  

Φ = 0.006 ⇒f = 2 Φ = 0.012 
Fs = (–ΔPfs/ρ) = 4f (L/d) (u2/2) = 4(0.012) (30/0.025)(1.382/2) = 54.84 m2/s2 
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If the kinetic energy at point 2 is neglected  
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F = Fs = 54.84 m2/s2 
gz2 = 9.81(12) = 117.72 m2/s2 
u1

2/2α1 = 1.382/2 = 0.952 m2/s2 

⇒(P1-P2) = 1840 [117.72+54.84-0.952] = 315.762 kPa 

4.8.3 Figure (3.8)- Vol.I 

For turbulent flow, it is not possible to determine directly the fluid flow rate 
through a pipe from Figure (3.7) –Vol.I. For a known pressure drop, the method of 
solution to this problem is as follows: 

Φ = Jf = τ/ρu2  ⇒τ = Φ ρu2 ------------------------------(1) 

But from force balance for fluid flow through horizontal pipe   

τ π dL = -ΔPfs (π/4 d2) 

⇒τ = -ΔPfs/L (d/4)-------------------------------------------(2) 

By equalization of equations (1) and (2) 

⇒Φρu2 = -ΔPfs/L (d/4) -------------- x  ρd2/μ2 

30 m 

1 .

.2 

12 m

Datum line
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⇒Φρ2 u2 d2 /μ2= -ΔPfs/L (d3ρ /4 μ2)  

or  Φ Re2 = -ΔPfs/L (ρ d3 /4 μ2)  -----------------------(3)  

This equation dose not contains the mean linear velocity (u) of fluid. This can be 
determine through using Figure (3.8)- Vol.I as follows: 

1- Calculate the value of ΦRe2 from equation (3) of (ΔPfs, ρ, d, L, and μ). 
2- Read the corresponding value of Re from Figure (3.8) for a known value of (e/d). 

3- Calculate U from the extracted value of Re. 

 
Figure (3.8) Pipe friction chart ΦRe2 versus Re for various values of e/d 

Example -4.10- 
Calculate the pressure drop in Pa for a fluid flowing through a 30.48 m long 

commercial steel pipe of I.D. 0.0526 m and a pipe roughness (e = 0.045 mm). The fluid 
flows at steady transfer rate of 9.085 m3/h. Take that ρ = 1200 kg/m3, μ= 0.01 Pa.s.      

Solution: 
Q = 9.085 m3/h x h/3600s =2.524 x10 –3 m3/s 

u = Q/A =  (2.524 x10 –3 m3/s) / (π/4 x 0.05262) = 1.16 m/s 

  Re = (1200 x1.16 x 0.0526)/0.01 = 7322 
e/d =0.000045/0.0526 = 0.000856 

Figure (3.7) Φ = 0.0042 ⇒f = 2 Φ = 0.084 
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⇒-ΔPfs = ρ Fs = 4 f (L/d)( ρu2/2) = 4 (0.0084) (30.48/0.0526) (1200 x 1.162/2) 
       = 15719 Pa 
 
 

(3)------



Chapter Four Fluid Flow    Fluid Dynamic 

           17-Ch.4                                                                                                   Dr. Salah S. Ibrahim  

Example -4.11- 
Repeat the previous example with the following conditions, the volumetric flow rate 

(i.e. the velocity) is unknown and the pressure drop in the pipe is 15.72 kPa.      
Solution: 
ΦRe2 =(-ΔPfs/L)(ρd3/4μ2)=[(15720)/(30.48)][(1200)(0.0526)3/(4)(0.01)2]= 2.252 x 105  

e/d = 0.000856 ⇒Figure (3.8) Re = 7200 ⇒u = 7200(0.01)/(1200 x 0.0526)= 1.141m/s 

Example -4.12- 
Repeat the previous example with the following conditions, the diameter of the pipe is 

unknown and the pressure drop in the pipe is 15.72 kPa and the velocity of the liquid is 
1.15 m/s. Estimate the diameter of the pipe.      

Solution: 

-ΔPfs = ρ Fs = 4 f (L/d)( ρu2/2) ⇒d = (4 ρ f L u2/2)/ -ΔPfs 

⇒d = 6.154 f  ---------------------------------(1) 

Re = ρud/μ = 138000 d ----------------------(2) 

e/d = 0.000045/d -----------------------------(3) 

 
 
 
 
Assumed  
 
 
 
 
 
 
 

⇒d = 0.0529 m 

Example -4.13- 
Sulfuric acid is pumped at 3 kg/s through a 60 m length of smooth 25 mm pipe. 

Calculate the drop in pressure. If the pressure drop falls to one half, what will new flow 
rate be? Take that ρ = 1840 kg/m3, μ= 25 mPa.s.      

Solution: 

sm
mmkg

skg

A

m
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u /32.3

)025.04/)(/1840(
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223 =

×
===

πρ
&

 

Re = (1840 x3.32 x 0.025)/0.025 = 6111 

Figure (3.7) for smooth pipe Φ = 0.0043 ⇒f = 0.0086 

-ΔPfs = ρ Fs = 4 f (L/d)( ρu2/2) = 4(0.0086)(60/0.025)(1840 x 3.322)/2 = 837.209 kPa 

Φ 
Figure (3.7) 

f=2Φ 

f 

Eq.(1) 

d 

Eq.(2)

Re 

Eq.(3) 

e/d 

 0.001 0.006154 849 0.0073 

0.01 0.02 0.123 16985 0.00036 

0.0037 0.0074 0.045 6284 0.00099 

0.0045 0.009 0.0554 7643 0.0008 

0.0043 0.0086 0.0529 7303 0.00085 

0.0043 0.0086    



Chapter Four Fluid Flow    Fluid Dynamic 

           18-Ch.4                                                                                                   Dr. Salah S. Ibrahim  

The pressure drop falls to one half (i.e. -ΔPfs = 837.209 kPa/2 = 418.604kPa 

ΦRe2 = (-ΔPfs/L)(ρd3/4μ2)=[(418604)/( 60)][ (1840)(0.025)3/(4)(0.025)2]= 8.02 x 104 

From Figure (3.8) for smooth pipe Re = 3800 ⇒u = 2.06m/s   

== Aum ρ& 1.865 kg/s. 

Example -4.14- 
A pump developing a pressure of 800 kPa is used to pump water through a 150 mm 

pipe, 300 m long to a reservoir 60 m higher. With the valves fully open, the flow rate 
obtained is 0.05 m3/s. As a result of corrosion and scalling the effective absolute 
roughness of the pipe surface increases by a factor of 10 by what percentage is the flow 
rate reduced. μ= 1 mPa.s 

Solution: 
The total head of pump developing =(ΔP/ρg) 

= 800,000/(1000 x 9.81)= 81.55 mH2o  
The head of potential energy = 60 m 
Neglecting the kinetic energy losses (same 

diameter) 

0
2

2

=+−
Δ

+Δ+
Δ

FWs
u

zg
P

η
αρ

 

⇒ΔP/ρg + Δz +hF = 0 

⇒ hF =– ΔP/ρg – Δz = 81.55 – 60 = 21.55 m 
u = Q/A = (0.05 m3/s)/( π/4 0.152) =2.83 m/s 
hFs = (–ΔPfs/ρg) = 4f (L/d) (u2/2g)  

⇒f =  hFs d 2g/(4Lu2) = (21.55) (0.15)(9.81)/(2 x 300 x 2.832) = 0.0066 
Φ = 0.0033, Re = (1000 x 2.83 x 0.15)/0.001 = 4.23 x105 
From Figure (3.7) e/d = 0.003 
Due to corrosion and scalling the roughness increase by factor 10 
i.e.  (e/d)new = 10  (e/d)old = 0.03 
The pump head that supplied is the same  
(–ΔPfs) = hFs ρg = 21.55 (1000) 9.81 = 211.41 kPa 

ΦRe2 = (-ΔPfs/L)(ρd3/4μ2) = [(211410)/( 300)][(1000)(0.15)3/(4)(0.01)2] = 6 x 108 

From Figure (3.8) Re = 2.95 x105   ⇒u = 1.97m/s   

The percentage reduced in flow rate = (2.83 - 1.97)/ 2.83 x 100 % = 30.1 %. 

4.8.4 Form Friction  
Skin friction loss in flow straight pipe is calculated by using the Fanning friction 

factor (f). However, if the velocity of the fluid is changed in direction or magnitude, 
additional friction losses occur. This results from additional turbulence, which develops 
because of vertices and other factors.  

300 m 

1 .

.2

60 m

Datum line
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1- Sudden Expansion (Enlargement) Losses 
If the cross section of a pipe 

enlarges gradually, very little or no 
extra losses are incurred. If the 
change is sudden, as that in Figure, 
it results in additional losses due to 
eddies formed by the jet expanding 
in the enlarged suction. This 
friction loss can be calculated by 
the following for laminar or turbulent flow in both sections, as: 

Continuity equation  u1A1 = u2A2       ⇒u2 = u1(A1/A2) 

Momentum balance  21
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For fully turbulent flow in both sections 
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2-  Sudden Contraction Losses 
The effective area for the 

flow gradually decreases as the 
sudden contraction is approached 
and then continues to decrease, 
for a short distance, to what is 
known as the “Vena Contacta”. 
After the Vena Contracta the 
flow area gradually approaches 
that of the smaller pipe, as 
shown in Figure. When the cross 
section of the pipe is suddenly 
reduced, the stream cannot follow around the sharp corner, and additional loses due to 
eddies occur.  
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3- Losses in Fittings and Valves  
Pipe fittings and valves also disturb the normal flow lines in a pipe and cause 

additional friction losses. In a short pipe with many fittings, the friction losses from 
these fittings could be greater than in the straight pipe. The friction loss for fittings and 
valves is: 

u1 u2

15

Vena 
Contracta 

C 
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2
2u

KF ff = ; where Kf as in table below.  

2
4 2u

d

Le
fF f = ; where 

d

Le
 as in table below. 

Table of the Friction losses in pipe fittings 
Fittings Kf Le/d 

45° elbows (a)* 15 0.3 
90° elbows (standard radius) (b) 30-40 0.6-0.8 
90° square elbows (c) 60 1.2 
Entry from leg of T-piece (d) 60 1.2 
Entry into leg of T-piece (d) 90 1.8 
Unions and couplings (e) Very small Very small 
Globe valves fully open 60-300 1.2-6.0 
Gate valves: fully open 7 0.15 
3/4 open 40 1 
1/2 open 200 4 
1/4 open 800 16 

* See Figure below 

 
 
 

 

 

 

 

 

 

 

 

  

 

Figures of standard pipe fittings and standard valves 
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. 1

10 m

H.Ex. 

2  .

150 m

4.8.5 Total Friction Losses 

The frictional losses from the friction in the straight pipe (skin friction), 
enlargement losses, contraction losses, and losses in fittings and valves are all 
incorporated in F term in mechanical energy balance equation (modified Bernoulli’s 
equation), so that, 

2222
4

22
2

2
1

2 u
K

u
K

u
K

u

d

L
fF fce +++=      

If all the velocity u, u1, and u2 are the same, then this equation becomes, for this 
special case; 

    
2

4
2u

KKK
d

L
fF fce ⎥⎦

⎤
⎢⎣
⎡

+++=  

If equivalent length of the straight pipe for the losses in fittings and/or valves, 
then this equation becomes;  

  
2

4
2u

KK
d

Le

d

L
fF ce ⎥⎦

⎤
⎢⎣

⎡
++⎟

⎠
⎞

⎜
⎝
⎛

+= ∑  

 
Example -4.15- 
630 cm3/s water at 320 K is pumped in a 40 mm I.D. pipe through a length of 150 m in 

horizontal direction and up through a vertical height of 10 m. In the pipe there is a 
control valve which may be taken as equivalent to 200 pipe diameters and also other 
fittings equivalent to 60 pipe diameters. Also other pipe fittings equivalent to 60 pipe 
diameters. Also in the line there is a heat exchanger across which there is a loss in head 
of 1.5 m H2o. If the main pipe has a roughness of 0.0002 m, what power must supplied 
to the pump if η = 60%, μ= 0.65 mPa.s.    

Solution: 
Q = 630 cc/s (m/100 cm)3 = 6.3 x 10-4 m3/s 
 u = (6.3 x 10-4 m3/s)/(π/4 0.042) = 0.5 m/s 
Re = (1000 x 0.5 x 0.04)/0.00065 = 30,770 
e/d = 0.0002/0.04 = 0.005 
From Figure (3.7) Φ = 0.004, 

⇒f = 0.008   
L = 150 m + 10 m = 160 m 

0)(
2 ..

2

=++−
Δ

+Δ+
Δ

ExHF hh
g

Ws

g

u
z

g

P η
αρ

 

g

u

d

Le

d

L
fhF 2

4
2

⎥⎦

⎤
⎢⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+= ∑  = 4 (0.008) (160/0.04 + 200 + 60) x 0.52/(2 x 9.81) = 1.74  m 

⇒(-ΔP/ρg)  = Δh =10 + 1.74 + 1.5 = 13.24  m 
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10 m 
1 .

.2
25 m

Datum line

60 m 

30 m

⇒ The head required (that must be supplied to water by the pump) is Δh =13.24 m 
and the power required for the water is ηWs = Q ΔP = Q (Δh ρg) 

⇒ ηWs = 6.3 x 10-4 m3/s (13.24 x 1000 x 9.81) = 81.8 (N.m/s ≡ J/s ≡ W) 
The power required for the pump is (Ws) = ηWs / η = 81.8 / 0.6 =136.4 W. 
 
Example -4.16- 
Water in a tank flows through an outlet 25 m below the water level into a 0.15 m I.D. 

horizontal pipe 30 m long, with 90° elbow at the end leading to vertical pipe of the same 
diameter 15 m long. This is connected to a second 90° elbow which leads to a horizontal 
pipe of the same diameter, 60 m long, containing a fully open globe valve and discharge 
to atmosphere 10 m below the level of the water in the tank. Calculate the initial rate.  
Take that μ= 1 mPa.s, e/d =0.01   

Solution: 
L = 30 + 15 + 60 = 105 m 

Fhz
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g
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P
+++=+++ 2
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u
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⎠
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⎜
⎝
⎛

+= ∑  

 5/0.15)+2(40)+250] u2
2/(2 x 9.81) = 4f [(10

= 210 f u 2
2 

Assume turbulent flow (α2 =1.0) 

 ⇒ (25-15) = u2
2/(2 x 9.81) + 210 f u2

2  ⇒
f21005.0

10
2 +

=u ---(*) 

This equation solved by trial and error 

 

f 

Eq.(*)

u2 

 

Re 

Figure (3.7)

Φ 

0.01 2.16 3.235 x105 0.0046 

0.0092 2.246 3.37 x105 0.0046 

⇒ u2(t=0) = 2.246 m/s, Re = 3.37 x105 (turbulent) ⇒Q=0.04 m3/s ; m = 40 kg/s  

Assumed 
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Example -4.17- 
An elevated storage tank contains water at 82.2°C as shown in Figure below. It is 

desired to have a discharge rate at point 2 of 0.223 ft3/s. What must be the height H in ft 
of the surface of the water in the tank relative to discharge point? The pipe is schedule 
40, e = 1.5 x10-4 ft. Take that ρ = 60.52 lb/ft3, μ= 2.33 x10-4 lb/ft.s.    

 
 
 
 
 
 
 
 
 
 
Solution: 

F
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zguP
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++=+++ 2
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2
2

1 2α
, where z1 = H 

for schedule 40 
d4Ǝ = 4.026/12 = 0.3353 ft,  A4Ǝ = 0.0884 ft2, 
d2Ǝ = 2.067/12 = 0.1722 ft,  A4Ǝ = 0.0233 ft2, 
u4Ǝ = (0.223 ft3/s) / (0.0884 ft2) = 2.523 ft,  u2Ǝ = (0.223 ft3/s) / (0.0233 ft2) = 9.57 ft, 
The F-term for friction losses in the system includes the followings: 
1- Contraction losses at tank exit. 2-Friction in 4Ǝ straight pipe. 
3- Friction in 4Ǝ elbow.   4-Contraction losses in 4Ǝ to 2Ǝ pipe.  
5- Friction in 2Ǝ straight pipe.  6-Friction in the two 2Ǝ elbows.  
1- Contraction losses at tank exit.  (let tank area =A1, 4Ǝ pipe area = A3) 

  
2

2
2u

KF cc = ; where ⎥⎦

⎤
⎢⎣

⎡
−=

1

2155.0
A

A
K c  ≈ 0.5 

⇒ Fc = 0.55 (2.5232 /2 x 32.174) = 0.054 ft.lbf/lb. 
2- Friction in 4Ǝ straight pipe. 

 Re = (60.52 x 2.523 x 0.3353)/ 2.33 x10-4  = 2.193 x105   

e/d = 0.000448 ⇒ Figure (3.7)  f = 0.0047 

  
c

Fs g

u

d

L
fF

2
4

2

= =4 (0.0047) (20/0.3353) x 2.5232/(2 x 32.174) = 0.111 ft.lbf/lb. 

3- Friction in 4Ǝ elbow. 

2
2u

KF ff = ; where Kf = 0.75 ⇒ Ff = 0.074 ft.lbf/lb. 

4- Contraction losses in 4Ǝ to 2Ǝ pipe. 

10ƍ 

1 . 

20ƍ
Datum line

50ƍ 
125ƍ

.2

H

4Ǝ 
2Ǝ 
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2

2
2u

KF cc = ; where ⎥⎦

⎤
⎢⎣

⎡
−=

1

2155.0
A

A
K c  = 0.55 (1- 0.0233/0.0884) = 0.405 

⇒ Fc = 0.405 (9.572 /2 x 32.174) = 0.575 ft.lbf/lb. 
5- Friction in 2Ǝ straight pipe. 

Re = (60.52 x 9.57 x 0.1722)/ 2.33 x10-4  = 4.28 x105   

e/d = 0.00087 ⇒ Figure (3.7)  f = 0.0048 

  
c

Fs g

u

d

L
fF

2
4

2

=  =4 (0.0048) (185/0.3353) x 9.572/(2 x 32.174) = 29.4 ft.lbf/lb. 

6- Friction in the two 2Ǝ elbow. 

)
2

(2 2u
KF ff = ; where Kf = 0.75 ⇒ Ff = 2.136 ft.lbf/lb. 

 
F (total frictional losses) = 0.054 + 0.111 + 0.575 + 29.4 + 2.136 =32.35 ft.lbf/lb 

⇒ H g/gc = (9.572 /2 x 32.174) + 32.35= 33.77 ft.lbf/lb 
H = 33.77 ft ≈ 10.3m (height of water level above the discharge outlet) 

Example -4.18- 
Water at 20°C being pumped from a tank to an elevated tank at the rate of 0.005 m3/s. 

All the piping in the Figure below is 4Ǝ Schedule 40 pipe. The pump has an efficiency of 
η= 0.65. calculate the kW power needed for the pump. e = 4.6 x10-5 m  ρ = 998.2 kg/m3, 
μ= 1.005 x10-3 Pa.s   

 
 
 
 
 
 
 
 
Solution: 

For 4Ǝ Schedule 40 pipe  d = 0.1023 m, A = 8.219 x10-3 m2 
u = Q/A = (5 x10-3 m3/s)/ 8.219 x10-3 m2 = 0.6083 m/s 

  0
2

2

=+−
Δ

+Δ+
Δ

FWs
u

zg
P

η
αρ

⇒ ηWs = F +gΔz 

The F-term for friction losses in the system includes the followings: 
1- Contraction losses at tank exit. 2-Friction loss in straight pipe. 
3- Friction in the two elbows.  4- Expansion loss at the tank entrance.  

1- Contraction losses at tank exit. 

  
2

2
2u

KF cc = ; where ⎥⎦

⎤
⎢⎣

⎡
−=

1

2155.0
A

A
K c  ≈ 0.5 

⇒ Fc = 0.55 (0.60832 /2) = 0.102 J/kg or m2/s2. 
2- Friction loss in straight pipe. 

Re = (998.2 x 0.6083 x 0.1023)/ 1.005x10-3  = 6.181 x104 

5 m 

100 m

15 m
1 . 

2 .

50 m

15 m 
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e/d = 0.00045 ⇒ Figure (3.7)  f = 0.0051 
L = 5+50+15+100 = 170 m 

  
2

4
2u

d

L
fFFs =  =4 (0.0051) (170/0.1023) x (0.60832/2) = 6.272 J/kg or m2/s2. 

3- Friction in the two elbows. 

)
2

(2 2u
KF ff = ; where Kf = 0.75 ⇒ Ff = 0.278 J/kg or m2/s2. 

4- Expansion loss at the tank entrance. 

2

2
1u

KF ee = ; where 
2

2

11 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
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⎞
⎜
⎝

⎛
−=

A

A
Ke ≈ 1.0 ⇒ Fe = 0.185 J/kg or m2/s2. 

 
F (total frictional losses) = 0.102 + 6.272 + 0.278 + 0.185 = 6.837 J/kg or m2/s2. 

⇒ ηWs = 6.837 + 9.81(15) = 153.93 J/kg or m2/s2 
The power required for pump (Ws) = ηWs/Ws = 153.93/0.65 = 236.8 J/kg or m2/s2 
The total power required for pump (mWs) = Q ρ Ws  &

= (5 x10-3 m3/s) 998.2 kg/m3 (236.8 J/kg) = 1.182 kW. 
Example -4.19- 

Water at 4.4°C is to flow through a horizontal commercial steel pipe having a length of 
305 m at the rate of 150 gal/min. A head of water of 6.1 m is available to overcome the 
skin friction losses (hFs). Calculate the pipe diameter. e = 4.6 x10-5 m  ρ = 1000 kg/m3, 
μ= 1.55 x10-3 Pa.s. 

Solution: 

g

u

d

L
fhFs 2

4
2

⎥⎦

⎤
⎢⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

=  = 6.1 m 

Q = 150 gal/min (ft3/ 7.481gal)(min/60s) (m/3.28 ft)3 = 9.64 x10-3 m3/s 

u = Q/A = (9.64 x10-3 m3/s)/(π/4 d2) ⇒ u = 0.01204 d-2. 

⇒ 6.1 = 4 f  (305/d)(0.01204 d-2)/(2 x9.81)  

⇒ f = 676.73 d5  ⇒ d = (f /676.73)1/5      ----------------------(1) 
Re = (1000 x (0.01204 d-2) x d)/ 1.55x10-3  = 7769.74 d-1 ----------------------(2) 
e/d = 4.6 x10-5 d-1         ----------------------(3) 
solution by trial and error  

 

f  

Eq.(1)

d 

Eq.(2) 

Re 

Fq. (3) 

e/d 

Figure (3.7) 

f = 2 Φ 

0.00378 0.089 8.73 x104 0.00052 0.0052 

0.0052 0.095 8.176 x104 0.000484 0.0051 

0.0051 0.0945 8.22 x104 0.00049 0.0051 

⇒ d = 0.0945 m. 
 

Assumed 
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Example -4.20- 
A petroleum fraction is pumped 2 km from a distillation plant to storage take through a 

mild steel pipeline, 150 mm I.D. at 0.04 m3/s rate. What is the pressure drop along the 
pipe and the power supplied to the pumping unit if it has an efficiency of 50%. The 
pump impeller is eroded and the pressure at its delivery falls to one half. By how much 
is the flow rate reduced? Take that: sp.gr. = 0.705, μ= 0.5 m Pa.s e = 0.004 mm.   

Solution: 

u = Q/A = (0.04 m3/s)/(π/4 x 0.152) ⇒ u = 2.26 m/s 
Re = (705 x 2.26 x 0.15)/ 0.5x10-3  = 4.78x105   

e/d = 0.000027 ⇒ Figure (3.7) f = 2 Φ ⇒f = 0.0033 

2
4

2u

d

L
fPFs

ρ
⎥⎦

⎤
⎢⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

=Δ−  = 4 (0.0033) (2000/0.15) (705 x 2.262/2) = 316876 Pa. 

Power =
η

)( PQ Δ−
= (0.04 m3/s)(316876 Pa)/0.5 = 25.35 kW 

Due to impeller erosion (-ΔP)new = (-ΔP)old/2 = 316876 Pa/2 = 158438 Pa 

ΦRe2=(-ΔPfs/L)(ρd3/4μ2)=[(158438)/(2000)][(1000)(0.15)3/(4)(0.5x10-3)2] = 1.885x108 

e/d = 0.000027⇒ From Figure (3.8) Re = 3 x105   ⇒u = 1.42m/s   

The new volumetric flow rate is now Q = 1.42 (π/4 x 0.152) = 0.025 m3/s. 

4.9 Friction Losses in Noncircular Conduits 

The friction loss in long straight channels or conduits of noncircular cross-section 
can be estimated by using the same equations employed for circular pipes if the diameter 
in the Reynolds number and in the friction factor equation is taken as equivalent 
diameter. The equivalent diameter De or hydraulic diameter defined as four times the 
cross-sectional area divided by the wetted perimeter of the conduit. 

 channel ofperimeter  Wetted

  channel of area sectional-Cross
4=De  

• For circular cross section. 
De = 4 (π/4 x d2)/ π d = d 

• For an annular space with outside diameter d1 and inside d2. 
De = 4 [π/4 x (d1

2 – d2
2)]/ π (d1 + d2) = d1+d2  

• For a rectangular duct of sides a and b. 
 De = 4 (a.b) / 2(a + b) = 2ab / (a + b) 

• For open channels and pattly filled ducts of y-liquid depth and b width 
De = 4 (b.y) / (b + 2y) 
 
 

4.10 Selection of Pipe Sizes 

In large or complex piping systems, the optimum size of pipe to use for a specific 
situation depends upon the relative costs of capital investment, power, maintenance, and 
so on. Charts are available for determining these optimum sizes. However, for small 

d1 d2

a

b 

y

b 
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installations approximations are usually sufficient accurate. A table of representative 
values of ranges of velocity in pipes is shown in the following table: - 

 
Velocity 

Type of fluid Type of flow 
ft/s m/s 

Inlet to pump 2 - 3 0.6 – 0.9 
Nonviscous liquid Process line or 

Pump discharge
5 - 8 1.5 – 2.5 

Inlet to pump 0.2 – 0.8 0.06 – 0.25 
Viscous liquid Process line or 

Pump discharge
0.5 - 2 0.15 – 0.6 

Gas 30 - 120 9 – 36 
Steam 30 - 75 9 – 23 

 

4.11 The Boundary Layer 

When a fluid flow over a surface, that part of the stream, which is close to the 
surface, suffers a significant retardation, and a velocity profile develops in the fluid. In 
the bulk of the fluid away from the boundary layer the flow can be adequately described 
by the theory of ideal fluids with zero viscosity (μ =0). However in the thin boundary 
layer, viscosity is important.   

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure of boundary layer for flow past a flat plate 
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If the velocity profile of the entrance region of a tube is flat, a certain length of the 
tube is necessary for the velocity profile to be fully established (developed). This length 
for the establishment of fully developed flow is called “entrance length”. 

 
 
 
 
 
 
 
 
 

Figure of conditions at entry to pipe. 
At the entrance the velocity profile is flat; i.e. the velocity is the same at all 

positions. As the fluid progresses down the tube, the boundary layer thickness increases 
until finally they meet at the centerline of the pipe. 

For fully developed velocity profile to be formed in laminar flow, the approximate 
entry length (Le) of pipe having diameter d, is: - 

Le/d = 0.0575 Re --------------------laminar 
For fully developed velocity profile to be formed in turbulent flow, no relation is 

available to predict the entry length. As an approximation the entry length (Le) is after 
50 diameters downstream of pipe. Thus;   

Le/d = 50   ------------------turbulent 
 
 
 

4.12 Unsteady State Problems 

Example -4.21- 
A cylindrical tank, 5 m in diameter, discharges through a horizontal mild steel pipe 

100 m long and 225 mm diameter connected to the base of the tank. Find the time taken 
for the water level in the tank to drop from 3 m to 0.3 m above the bottom. The viscosity 
of water is 1.0 mNs/m2, e = 0.05 mm. 

Solution: 
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u1 ≈ 0, z2 = 0 (datum line) 

at time = 0 ⇒z = z1  

at time = t ⇒z = z 
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z +=⇒
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1 2α
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⎠
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Fully developed flow
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at time = 0 ⇒z1 = (0.051 +  90.61 f ) u2
2  

f

z
u

61.90051.0
1

2 +
=⇒   

at time = t,  ⇒z = (0.051 +  90.61 f ) u2
2  

f

z
u

61.90051.02 +
=⇒  --------------------- (1) 

Let the level of liquid in the tank at time (t) is (z) 
and the level of liquid in the tank at time (t+dt) is (z–dz) 
The volume of liquid discharge during (time =t) to (time = t+dt) is (– dV) 
     = (π/4 D2) [z– (z-dz)] =  (19.63 dz) m3 

Q = dV/dt  = –19.63 (dz/dt) m3/s  ------------------------------------------(2) 
But  Q = A u2 = (π/4 d2) u2 = (0.04 m2) u2   -------------------------------------(3) 
Substitute eq.(1) into eq.(3) to give; 

f

z
Q

61.90051.0
04.0

+
=          ----------------------------------(4) 

The equalization between eq.(2) and eq.(4) gives; 

    
f

z

dt

dz
Q

61.90051.0
04.063.19

+
=−=  ∫∫ −

+−=⇒
3.0

3

2

1

0

61.90051.075.490 dzzfdt
T

 

3

3.0

2

1
3

3.0

2

1

2/1
61.90051.075.49061.90051.075.490

z
fdzzfT +=+=⇒ ∫ −

 

fT 61.90051.0 1169.4 +=⇒  
P3 = Po + zρg, and P2 = Po 

⇒ (P3 – P2) = (– ΔPFs) the pressure drop along the pipe due to friction 

From applied the modified Bernoulli’s equation between 3 and 2 ⇒ (– ΔPFs) = zρg 

But ΦRe2 = (-ΔPfs/L)(ρd3/4μ2) = [(zρg)/(L)][ (ρd3/4μ2)] = 2.79x108z 

at z = 3.0 m ⇒ ΦRe2 = 8.79x108 

at z = 0.3 m ⇒ ΦRe2 = 8.38x107 

e/d = 0.0002 ⇒ From Figure (3.8)  

⇒at z = 3.0 m  Re = 7.0 x105    

⇒at z = 0.3 m  Re = 2.2 x105 

e/d = 0.0002 ⇒ From Figure (3.7) 

⇒at z = 3.0 m  Re = 7.0 x105   ⇒ f = 0.0038   

⇒at z = 0.3 m  Re = 2.2 x105  ⇒ f = 0.004 
taking a value of f = 0.004, and assume it constant  

∴ T = 752 s  
 
 
 
 

Turbulent 
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Example -4.21- 
Two tanks, the bottoms of which are at the same level, are connected with one another 

by a horizontal pipe 75 mm diameter and 300 m long. The pipe is bell-mouthed at each 
end so that losses on entry and exit are negligible. One tank is 7 m diameter and contains 
water to a depth of 7 m. The other tank is 5 m diameter and contains water to a depth of 
3 m. If the tanks are connected to each other by means of the pipe, how long will it take 
before the water level in the larger tank has fallen to 6 m? Take e =0.05 mm. 

Solution: 
 
 
 
 
 
 

At any time (t) the depth in the larger tank is (h) and the depth in the smaller tank is (H) 

0
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g
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g

P η
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⇒ Δz = h – H = hFs ------------------------------------(1) 
When the level in the large tank fall to (h), the level in the small tank will rise by a 

height (x) by increasing to reach a height (H).  
The volume of the liquid in large tank that discharged to small tank is; 
    = π/4 x 72 (7–h) = 38.48 (7–h) m3 
and is equal to   =  π/4 x 52 (x) = 38.48 (7–h)  

 ⇒ x = 13.72 – 1.96 h  ---------------------------(2) 
 H = 3 + x = 3 + 13.72 – 1.96 h  

⇒ H = 16.72 – 1.96 h ---------------------------(3) 
Substitute eq.(3) into eq.(1), to give, 

 h – (16.72 – 1.96 h) = 
g

u

d

L
fhFs 2

4
2

⎥⎦

⎤
⎢⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

=  

 2.96 h – 16.72 = 815.5 f u2  
f

h
u

02.000363.0 −
=⇒  

The level of water in the large at (t = 0) = 7 m 
The level of water in the large at (t = t) = h m 
The level of water in the large at (t = t+dt) = (h–dh) m 
The discharge of liquid during the timed (dt) is, 
 Q = dV / dt = π/4 72 [h–(h–dh)] / dt = π/4 72 (dh / dt)  --------------------(4) 

  But Q = A u = π/4 d2

f

h
Q

02.000363.0
)075.0(

4
2 −

=⇒
π

 ------------------------(5) 

By equalization between eq.(4) and eq.(5)  

f

dh
dt

02.000363.0
11.8711

−
−=⇒  

e/d = 0.05/75 = 0.00067  assume f = 0.004 

7m

1. 
7 m
dh

d

x

5 m

.2

3m
Hh
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)4.03.1(19358
5.0

)59.0(
)

9.0

1
(11.8711)59.0(11.8711 5.05.0

7

6

5.0

0

6

7

5.0 −=
−

=−−=∫ ∫ − h
dhhdt

T

  

⇒ T = 9777.67 s 
Q = [π/4 72 (7 – 6)] / 9777.67 = 0.00393 m3/s average volumetric flow rate   

u = Q / A = (0.00393 m3/s) / (π/4 x 0.0752) = 0.89 m/s ⇒ Re = 6.6552 x104 

e/d = 0.00067 ⇒ From Figure (3.7) ⇒ f =0.006 

Repeat the integration based on the new value of (f = 0.006) ⇒ T = 9777.67 s 
Example -4.21- 

Water is being discharged, from a reservoir, through a pipe 4 km long and 50 cm I.D. 
to another reservoir having water level 12.5 m below the first reservoir. It is required to 
feed a third reservoir, whose level is 15 m below the first reservoir, through a pipe line 
1.5 km long to be connected to the pipe at distance of 1.0 km from its entrance. Find the 
diameter of this new pipe, so that the flow into both the reservoirs may be the same. 

Solution: 
AD + DB = 4,000 m, its i.d = 50 cm 

AD = 1,000 m ⇒ DB = 3,000 m 
DC = 1,500 m  
QA = QB + QC  
QB = QC = QA/ 2-----------------(1) 
A-D  

0
2

)(4)15(
2

=+−+− A
AD

D u

d

L
fgz

P

ρ
 

2

4

d

Q
u

π
=  

0)
2

16
)(

5.0

000,1
(415 42

2

=+−+−
A

A
D

D

d

Q
fggz

P

πρ
 

08301.147 2 =+−+− AD
D Qgz

P

ρ
-------------------------(2) 

A-B  

0)
2

16
)(

5.0

000,3
(4)15( 42

2

=+−−−
B

B
D

D

d

Q
fgz

P

πρ
 

0490,25.24 2 =++−− BD
D Qgz

P

ρ
-------------------------(3) 

A-B  

0)
2

16
)(

500,1
(4 42

2

=+−−
C

C

C
D

D

d

Q

d
fgz

P

πρ
 

09.38 5

2

=+−−
C

C
D

D

d

Q
gz

P

ρ
--------------------------------(4) 

Datum line 

15m
QA

QB 

A

C

B

D 

QC

12.5m
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Substitute eq.(1) into eqs.(3) and (4)     

Equation (2) 08301.147 2 =+−+− AD
D Qgz

P

ρ
-------------------------(2) 

Equation (3) 05.6225.24 2 =++−− AD
D Qgz

P

ρ
-------------------------(5) 

Equation (4) 072.9 5

2

=+−−
C

A
D

D

d

Q
gz

P

ρ
--------------------------------(6) 

eq.(2) + eq.(5) ⇒ – 122.6 + 1452.5 QA
2 = 0 ⇒ QA = 0.29 m3/s 

⇒ QB = QC = (0.29 m3/s) / 2 = 0.145 m3/s 

eq.(5) – eq.(6) ⇒  24.5 + 622.5(0.29)2 – 9.72(0.29)2 / dC
5 = 0  ⇒  dC

5 = 0.0106 m5 

 ⇒  dC = 0.4 m = 40 cm. 
Example -4.21- 

Two storage tanks, A and B, containing a petroleum product, discharge through pipes 
each 0.3 m in diameter and 1.5 km 
long to a junction at D, as shown in 
Figure. From D the liquid is passed 
through a 0.5 m diameter pipe to a 
third storage tank C, 0.75 km away. 
The surface of the liquid in A is 
initially 10 m above that in C and the 
liquid level in B is 6 m higher than 
that in A. Calculate the initial rate of 
discharge of liquid into tank C 
assuming the pipes are of mild steel. 
The density and viscosity of the 
liquid are 870 kg/m3 and 0.7 m Pa.s 
respectively. 

Solution: 
Because the pipes are long, the kinetic energy of the fluid and minor losses at the entry 

to the pipes may be neglected. It may be assumed, as a first approximation, that f is the 
same in each pipe and that the velocities in pipes AD, BD, and DC are u1, u2, and u3 
respectively, if the pressure at D is taken as PD and point D is zD m above the datum for 
the calculation of potential energy, the liquid level in C. 

Then applying the energy balance equation between D and the liquid level in each of 
the tanks gives: 

A-D  0
2

)
3.0

500,1
(4)10(

1

2
1 =+−+−

αρ
u

fgz
P

D
D  

B-D  0
2

)
3.0

500,1
(4)16(

2

2
2 =+−+−

αρ
u

fgz
P

D
D  

D-C  0
2

)
5.0

750
(4)(

3

2
3 =+−−

αρ
u

fgz
P

D
D  

Datum line 

16m
Q2

Q1 

B

C

AD

Q3

6m

10m

d = 0.3 m 
1.5 km 

d = 0.3 m 
1.5 km 

d = 0.5 m 
0.75 km 
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Assume turbulent flow in all pipes  

⇒ A-D   0000,101.98 2
1 =+−+− ufgz

P
D

D

ρ
------------------------------(1)  

     B-D  0000,1096.156 2
2 =+−+− ufgz

P
D

D

ρ
----------------------------(2) 

    D-C 0000,3 2
3 =+−− ufgz

P
D

D

ρ
  ------------------------------(3) 

eq.(1) – eq.(2)  ⇒ 58.86 + 10,000 f (u1
2 – u2

2) = 0 ----------------------(4) 

eq.(2) – eq.(3)  ⇒ – 156.96 + 10,000 f (u2
2 + 0.3u3

2) = 0 ---------------(5) 

Q1 + Q2 = Q3 ⇒ [(π/4 0.32) u1] + [(π/4 0.32) u2] = [(π/4 0.52) u3] 

 ⇒ u1 + u2 = 2.78 u3 ------------------------------------(6) 
equations (4), (5), and (6) are three equations with 4 unkowns. As first approximation 

for e/d = 0.0001 to 0.00017 ⇒ f  = 0.004 

⇒ eq.(4) become 58.86 + 40  (u1
2 – u2

2) = 0 -----------------------------(7) 

⇒ eq.(5) become – 156.96 + 40  (u2
2 – 0.3u3

2) = 0 ----------------------(8) 
From eq.(7)  u1

2 = u2
2 – 1.47   -------------------------------(9) 

u3 = (u1 + u2)  ⇒ u3
2 = (1/2.78)2 (u1

2 + 2u1 u2 + u2
2) 

⇒ u3
2 = (1/2.78)2 [u2

2 + (u2
2 – 1.47) + 2u2(u2

2 – 1.47)0.5] 

⇒ u3
2 = (1/2.78)2 [2u2

2 – 1.47 + 2u2(u2
2 – 1.47)0.5] -----------------(10) 

Substitute eq.(10) into (8) 

⇒ – 156.96 + 40 {u2
2 + 0.3(1/2.78)2 [2u2

2 – 1.47 + 2u2(u2
2 – 1.47)0.5]} = 0 

⇒ u2(u2
2 – 1.47)0.5 = (159.24 – 43.2 u2

2)/ 3.2   squaring the two limits  

⇒ u2
2(u2

2 – 1.47)0.5 = (49.8 – 13.5 u2
2)2  

⇒ u2
4 – 7.41u2

2 + 13.68 = 0    
a

acbb
x

2

42 −±−
=  

⇒ either u2
2 = 3.922  or u2

2 = 3.488 

⇒ u2 = 1.98 m/s  or  u2 = 1.87 m/s  
Substituting u2 into eq.(9)  

⇒ u1 = 1.56 m/s  or  u1 = 1.42 m/s  
Substituting u2, and u2 into eq.(6) 

 ⇒ u3 = 1.3 m/s  or  u3 = 1.18 m/s 
The lower set values satisfies equation (8) 

⇒ u1 = 1.42 m/s, u2 = 1.87 m/s, and u3 = 1.18 m/s 

⇒ Re1 = 5.3 x 105, Re2 = 6.9 x 105, and Re3 = 7.3 x 105  

  From Figure (3.7) ⇒ f1 =0.0043, f2 =0.0036, and f3 =0.0038  

⇒ the assumption  f = 0.004 is ok. 
Q3 = (π/4 0.52) u3 = (π/4 0.52) 1.18 = 0.23 m3/s 
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CHPTER FIVE  

Pumping of Liquids 
5.1 Introduction  

Pupmps are devices for supplying energy or head to a flowing liquid in order to 
overcome head losses due to friction and also if necessary, to raise liquid to a higher 
level. 

For the pumping of liquids or gases from one vessel to another or through long 
pipes, some form of mechanical pump is usually employed. The energy required by 
the pump will depend on the height through which the fluid is raised, the pressure 
required at delivery point, the length and diameter of the pipe, the rate of flow, together 
with the physical properties of the fluid, particularly its viscosity and density. The 
pumping of liquids such as sulphuric acid or petroleum products from bulk store to 
process buildings, or the pumping of fluids round reaction units and through heat 
exchangers, are typical illustrations of the use of pumps in the process industries. On the 
one hand, it may be necessary to inject reactants or catalyst into a reactor at a low, but 
accurately controlled rate, and on the other to pump cooling water to a power station or 
refinery at a very high rate. The fluid may be a gas or liquid of low viscosity, or it may 
be a highly viscous liquid, possibly with non-Newtonian characteristics. It may be clean, 
or it may contain suspended particles and be very corrosive. All these factors influence 
the choice of pump. 

Because of the wide variety of requirements, many different types are in use 
including centrifugal, piston, gear, screw, and peristaltic pumps, though in the chemical 
and petroleum industries the centrifugal type is by far the most important. 

5.2 The Total Head (Δh)  

The head imparted to a flowing liquid by a pump is known as the total head (Δh). 
If a pump is placed between points  and  in a pipeline, the head for steady flow are 
related by: -  

    

   
 
 

 
 
 
 
 
 
 
 
 
 

Figure (1) Typical pumping system. 

Pump

Discharge side Suction side

zd 

zs 

.Ps 

.Pd

Datum line 
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5.3 System Heads  

The important heads to consider in a pumping system are: - 
1- Suction head  
2- Discharge head 
3- Total head 
4- Net positive suction head (NPSH) 

The following definitions are given in reference to typical pumping system shown 
in preceding Figure, where the datum line is the centerline of the pump 

1- Suction head (hs) 

sF
s

ss h
g

P
zh )(−+=

ρ
 

2- Discharge head (hd) 

   dF
d

dd h
g

P
zh )(++=

ρ
 

3- Total head (Δh) 
The total head (Δh), which is required to impart to the flowing liquid is the 

difference between the discharge and suction heads. Thus, 
  sd hhh −=Δ   
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The suction head (hs) decreases and the discharge head (hd) increases with 
increasing liquid flow rate because of the increasing value of the friction head loss terms 
(hF)s and (hF)d. Thus the total; head (Δh) which the pump is required to impart to the 
flowing liquid increases with increasing the liquid pumping rate. 

Note:   
 If the liquid level on the suction side is below the centerline of the pump, zs is 

negative. 
4- Net positive suction head (NPSH) 

Available net positive suction head  

 sF
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s h
g
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⎜
⎝

⎛ −
+=

ρ
 

This equation gives the head available to get the liquid through the suction piping. 
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Pv is the vapor pressure of the liquid being pumped at the particular temperature in 
question. 

The available net positive suction head (NPSH) can also be written as:  

g

P
hNPSH v

s ρ
−=  

The available net positive suction head (NPSH) in a system should always be 
positive i.e. the suction head always be capable of overcoming the vapor pressure (Pv) 
since the frictional head loss (hF)s increases with increasing pumping rate.  

At the boiling temperature of the liquid Ps and Pv are equal and the available 
NPSH becomes [zs-(hF)s]. In this case no suction lift is possible since zs must be 
positive. If the term (Ps-Pv) is sufficiently large, liquid can b lifted from below the 
centerline of the pump. In this case zs is negative. 

From energy consideration it is immaterial whether the suction pressure is below 
atmospheric pressure or well above it, as long as the fluid remains liquid. However, if 
the suction pressure is only slightly greater than the vapor pressure, some liquid may 
flash to vapor inside the pump, a process called “Cavitation”, which greatly reduces the 
pump capacity and severe erosion.  

If the suction pressure is actually less than the vapor pressure, there will be 
vaporization in the suction line, and no liquid can be drawn into the pump. 

To avoid cavitation, the pressure at the pump inlet must exceed the vapor pressure 
by a certain value, called the “ net positive suction head (NPSH)”. The required values 
of NPSH is about 2-3 m H2o for small pump; but it increases with pump capacity and 
values up to 15 m H2o are recommended for very large pump. 

5.4 Power Requirement   

The power requirement to the pump drive from an external source is denoted by 
(P). It is calculated from Ws by:  

 
ηη

ρ
η

hgmghQPQ
WsmP

Δ
=

Δ
=

Δ
==

&
&    

The mechanical efficiency (η) decreases as the liquid viscosity and hence the 
frictional losses increase. The mechanical efficiency is also decreased by power losses in 
gear, Bering, seals, etc. 

These losses are not proportional to pump size. Relatively large pumps tend to 
have the best efficiency whilst small pumps usually have low efficiencies. Furthermore 
high-speed pumps tend to be more efficient than low-speed pumps. In general, high 
efficiency pumps have high NPSH requirements. 

5.5 Types of Pumps    

Pumps can be classified into: - 
1- Centrifugal pumps. 
2- Positive displacement pumps.  
 1- Centrifugal pumps 

  This type depends on giving the liquid a high kinetic energy, which is then 
converted as efficiently as possible into pressure energy. It used for liquid with very 
wide ranging properties and suspensions with high solid content including, for example, 
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cement slurries, and may be constructed from a very wide range of corrosion resistant 
materials. Process industries commonly use centrifugal pumps. The whole pump casing 
may be constructed from plastics such as polypropylene or it may be fitted with a 
corrosion resistant lining. Because it operates at high speed, it may be directly coupled 
to an electric motor and it will give a high flow rate for its size. They are available in 
sizes about 0.004 to 380 m3/min [1-100,000 gal/min] and for discharge pressures from a 
few m H2o head to 5,000 kPa.  

In this type of pump (Figure 2), the fluid is fed to the center of a rotating impeller 
and is thrown outward by centrifugal action. As a result of the high speed of rotation the 
liquid acquires a high kinetic energy and the pressure difference between the suction and 
delivery sides arises from the interconversion of kinetic and pressure energy.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (2) Section of centrifugal pump 
The impeller (Figure 3) consists of a series 

of curved vanes so shaped that the flow within 
the pump is as smooth as possible. The greater 
the number of vanes on the impeller, the greater 
is the control over the direction of motion of the 
liquid and hence the smaller are the losses due to 
turbulence and circulation between the vanes. In 
the open impeller, the vanes are fixed to a central 
hub, whereas in the closed type the vanes are 

held between two supporting plates and leakage 
across the impeller is reduced.  

The liquid enters the casing of the pump, 
normally in an axial direction, and is picked up 
by the vanes of the impeller. In the simple type of centrifugal pump, the liquid 
discharges into a volute, a chamber of gradually increasing cross-section with a 
tangential outlet. A volute type of pump is shown in Figure 4. In the turbine pump 

Figure (3) Types of impeller  
(a) for pumping suspensions (b) standard 

closed impeller (c) double impeller 
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(Figure 4(b)) the liquid flows from 
the moving vanes of the impeller 
through a series of fixed vanes 
forming a diffusion ring. This 
gives a more gradual change in 
direction to the fluid and more 
efficient conversion of kinetic 
energy into pressure energy than is 
obtained with the volute type. 

 
 
 
 
2- Positive Displacement Pumps 

  In this type, the volume of liquid delivered is directly related to the displacement 
of the piston and therefore, increases directly with speed and is not appreciably 
influenced by the pressure. It used for high pressure and constant rates this type can be 
classified into: - 

2.1-Reciprocating Pumps, such as 
a- The Piston Pump 

This pump may be single-acting, with the liquid admitted only to the portion of 
the cylinder in front of the piston or double-acting, in which case the feed is 
admitted to both sides of the piston. The majority of pumps are of the single-
acting type typically giving a low flow rate of say 0.02 m3/s at a high pressure of 
up to 100 Mpa. 

b- The Plunger (or Ram) Pump 
This pump is the same in principle as the piston type but differs in that the 

gland is at one end of the cylinder making its replacement easier than with the 
standard piston type. The piston or ram pump may be used for injections of 
small quantities of inhibitors to polymerization units or of corrosion inhibitors to 
high-pressure systems, and also for boiler feed water applications. 

c- The Diaphragm Pump  
The diaphragm pump has been developed for handling corrosive liquids and 

those containing suspensions of abrasive solids. It is in two sections separated 
by a diaphragm of rubber, leather, or plastics material. In one section a plunger 
or piston operates in a cylinder in which a non-corrosive fluid is displaced. The 
particularly simple and inexpensive pump results, capable of operating up to 0.2 
Mpa. 

d- The Metering (or Dosing) Pump  
Metering pumps are driven by constant speed electric motors. They are used 

where a constant and accurately controlled rate of delivery of a liquid is 
required, and they will maintain this constant rate irrespective of changes in the 
pressure against which they operate. The pumps are usually of the plunger type 
for low throughput and high-pressure applications; for large volumes and lower 
pressures a diaphragm is used. In either case, the rate of delivery is controlled by 

Figure (4) Radial flow pumps  
(a) with volute (b) with diffuser vanes
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adjusting the stroke of the piston element, and this can be done whilst the pump 
is in operation. A single-motor driver may operate several individual pumps and 
in this way give control of the actual flows and of the flow ratio of several 
streams at the same time. The output may be controlled from zero to maximum 
flow rate, either manually on the pump or remotely. These pumps may be used 
for the dosing of works effluents and water supplies, and the feeding of 
reactants, catalysts, or inhibitors to reactors at controlled rates, and although a 
simple method for controlling flow rate is provided, high precision standards of 
construction are required. 

2.2-Rotary Pumps, such as 
a- The Gear Pump 

Gear and lobe pumps operate on the principle of using mechanical means to 
transfer small elements or "packages" of fluid from the low pressure (inlet) side 
to the high pressure (delivery) side. There is a wide range of designs available 
for achieving this end. The general characteristics of the pumps are similar to 
those of reciprocating piston pumps, but the delivery is more even because the 
fluid stream is broken down into so much smaller elements. The pumps are 
capable of delivering to a high pressure, and the pumping rate is approximately 
proportional to the speed of the pump and is not greatly influenced by the 
pressure against which it is delivering. Again, it is necessary to provide a 
pressure relief system to ensure that the safe operating pressure is not exceeded. 

b- The Cam Pump  
A rotating cam is mounted eccentrically in a cylindrical casing and a very 

small clearance is maintained between the outer edge of the cam and the casing. 
As the cam rotates it expels liquid from the space ahead of it and sucks in liquid 
behind it. The delivery and suction sides of the pump are separated by a sliding 
valve, which rides on the cam. The characteristics again are similar to those of 
the gear pump. 

c- The Vane Pump  
The rotor of the vane pump is mounted off centre in a cylindrical casing. It 

carries rectangular vanes in a series of slots arranged at intervals round the 
curved surface of the rotor. The vanes are thrown outwards by centrifugal action 
and the fluid is carried in the spaces bounded by adjacent vanes, the rotor, and 
the casing. Most of the wear is on the vanes and these can readily be replaced. 

d- The Flexible Vane Pump  
The pumps described above will not handle liquids containing solid particles in 

suspension, and the flexible vane pumps has been developed to overcome this 
disadvantage. In this case, the rotor (Figure 8.10) is an integral elasomer 
moulding of a hub with flexible vanes which rotates in a cylindrical casing 
containing a crescent-shaped block, as in the case of the internal gear pump.  

e- The Flow Inducer or Peristaltic Pump  
This is a special form of pump in which a length of silicone rubber or other 

elastic tubing, typically of 3 to 25 mm diameter, is compressed in stages by 
means of a rotor as shown in Figure 8.11. The tubing is fitted to a curved track 
mounted concentrically with a rotor carrying three rollers. As the rollers rotate, 
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they flatten the tube against the track at the points of contact. These "flats" move 
the fluid by positive displacement, and the flow can be precisely controlled by 
the speed of the motor. These pumps have been particularly useful for biological 
fluids where all forms of contact must be avoided. They are being increasingly 
used and are suitable for pumping emulsions, creams, and similar fluids in 
laboratories and small plants where the freedom from glands, avoidance of 
aeration, and corrosion resistance are valuable, if not essential. Recent 
developments^ have produced thick-wall, reinforced moulded tubes which give 
a pumping performance of up to 0.02 m3/s at 1 MN/m2. The control is such that 
these pumps may conveniently be used as metering pumps for dosage processes. 

f- The Mono pump  
Another example of a positive acting rotary pump is the single screw-extruder 

pump typified by the Mono pump, in which a specially shaped helical metal 
rotor revolves eccentrically within a double-helix, resilient rubber stator of twice 
the pitch length of the metal rotor. A continuous forming cavity is created as the 
rotor turns — the cavity progressing towards the discharge, advancing in front of 
a continuously forming seal line and thus carrying the pumped material with it. 
The Mono pump gives a uniform flow and is quiet in operation. It will pump 
against high pressures; the higher the required pressure, the longer are the stator 
and the rotor and the greater the number of turns. The pump can handle 
corrosive and gritty liquids and is extensively used for feeding slurries to filter 
presses. It must never be run dry. The Mono Merlin Wide Throut pump is used 
for highly viscous liquids. 

g- The Screw pumps  
A most important class of pump for dealing with highly viscous material is 

represented by the screw extruder used in the polymer industry. The screw pump 
is of more general application and will be considered first. The fluid is sheared 
in the channel between the screw and the wall of the barrel. The mechanism that 
generates the pressure can be visualized in terms of a model consisting of an 
open channel covered by a moving plane surface. If a detailed analysis of the 
flow in a screw pump is to be carried out, then it is also necessary to consider 
the small but finite leakage flow that can occur between the flight and the wall. 
With the large pressure generation in a polymer extruder, commonly 100 bar 
(107 N/m2), the flow through this gap, which is typically about 2 per cent of the 
barrel internal diameter, can be significant. The pressure drop over a single pitch 
length may be of the order of 10 bar (106 N/m2), and this will force fluid 
through the gap. Once in this region the viscous fluid is subject to a high rate of 
shear (the rotation speed of the screw is often about 2 Hz), and an appreciable 
part of the total viscous heat generation occurs in this region of an extruder. 
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5.6 The advantages and disadvantages of the centrifugal pump 

The main advantages are: 
(1) It is simple in construction and can, therefore, be made in a wide range of 

materials. 
(2) There is a complete absence of valves. 
(3) It operates at high speed (up to 100 Hz) and, therefore, can be coupled directly to 

an electric motor. In general, the higher the speed the smaller the pump and motor 
for a given duty. 

(4) It gives a steady delivery. 
(5) Maintenance costs are lower than for any other type of pump. 
(6) No damage is done to the pump if the delivery line becomes blocked, provided it 

is not ran in this condition for a prolonged period. 
(7) It is much smaller than other pumps of equal capacity. It can, therefore, be made 

into a sealed unit with the driving motor, and immersed in the suction tank. 
(8) Liquids containing high proportions of suspended solids are readily handled. 

The main disadvantages are: 
(1) The single-stage pump will not develop a high pressure. Multistage pumps will 

develop greater heads but they are very much more expensive and cannot readily 
be made in corrosion-resistant material because of their greater complexity. It is 
generally better to use very high speeds in order to reduce the number of stages 
required. 

(2) It operates at a high efficiency over only a limited range of conditions: this applies 
especially to turbine pumps. 

(3) It is not usually self-priming. 
(4) If a non-return valve is not incorporated in the delivery or suction line, the liquid 

will run back into the suction tank as soon as the pump stops. 
(5) Very viscous liquids cannot be handled efficiently. 

5.7 Priming The Pump 

The theoretical head developed by a centrifugal pump depends on the impeller 
speed, the radius of the impeller, and the velocity of the fluid leaving the impeller. If 
these factors are constant, the developed head is the same for fluids of all densities and 
is the same for liquids and gases. A centrifugal pump trying to operate on air, then can 
neither draw liquid upward from an initially empty suction line nor force liquid a full 
discharge line. Air can be displaced by priming the pump.       

For example, if a pump develops a head of 100 ft and is full of water, the increase 
in pressure is [100 ft (62.3lb/ft3) (ft2 / 144 in2)] = 43 psi (2.9 atm). If full of air the 
pressure increase is about 0.05 psi (0.0035 atm). 
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5.8 Operating Characteristics  

The operating characteristics of a pump are conveniently shown by plotting the 
head (h), power (P), efficiency (η), and 
sometimes required NPSH against the 
flow (or capacity) (Q) as shown in Figure 
(5). Theses are known as characteristic 
curves of the pump. It is important to 
note that the efficiency reaches a 
maximum and then falls, whilst the head 
at first falls slowly with Q but eventually 
falls off rapidly. The optimum conditions 
for operation are shown as the duty point, 
i.e. the point where the head curve cuts 
the ordinate through the point of 
maximum efficiency. 

Characteristic curves have a variety 
of shapes depending on the geometry of 
the impeller and pump casing. Pump 
manufactures normally supply the curves 
only for operation with water.    

In a particular system, a centrifugal 
pump can only operate at one point on the 
Δh against Q curve and that is the point 
where the Δh against Q curve of the pump 
intersect with the Δh against Q curve of 
the system as shown in Figure. 

The system total head at a particular 
liquid flow rate  
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Example -5.1- 
A petroleum product is pumped at a rate of 2.525 x 10-3 m3/s from a reservoir under 

atmospheric pressure to 1.83 m height. If the pump 1.32 m height from the reservoir, the 
discharge line diameter is 4 cm and the pressure drop along its length 3.45 kPa. The 
gauge pressure reading at the end of the discharge line 345 kPa. The pressure drop along 
suction line is 3.45 kPa and pump efficiency η=0.6 calculate:- 
(i) The total head of the system Δh. (ii)  The power required for pump. (iii)  The NPSH 

Take that: the density of this petroleum product ρ=879 kg/m3, the dynamic viscosity 
μ=6.47 x 10-4 Pa.s, and the vapor pressure Pv= 24.15 kPa. 

Solution:  
(i) 

αg

u

2

2Δ
ρ

hh
g

PP
zzh sFdF

sd
sd ])()[()( +++⎟

⎠

⎞
⎜
⎝

⎛ −
+−=Δ  

us = 0 
ud = (2.525 x 10-3 m3/s)/(π/4 0.042)  
    = 2 m/s 
Red = (879 x 2 x 0.04)/ 6.47 x 10-4 
       = 1.087 x 105 
The pressure drop in suction line 3.45kPa 

⇒ (hF)s = 3.45 x 103/(879 x 9.81) 
    = 0.4 m 

And in discharge line is also 3.45 kPa ⇒ (hF)d = 0.4 m 
The kinetic energy term = 22/(2 x 9.81) =0.2 m 
The pressure at discharge point = gauge + atmospheric pressure = 345 + 101.325 
     = 446.325 kPa 
The difference in pressure head between discharge and suction points is 
   (446.325 – 101.325) x 103 /(879 x 9.81) = 40 m 
 Δz = 1.83 m 
 

⇒ Δh = 40 m + 1.83 m + 0.2 m + 0.4 m + 0.4 m = 42.83 m 
(ii)   

 
η

ρ
η

ghQPQ
P

Δ
=

Δ
= = [(2.525 x 10-3 m3/s)(42.83 m)(879 kg/m3)(9.81 m/s2)]/0.6 

  ⇒ P = 1.555 kW 
(iii)   

 sF
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s h
g

PP
zNPSH )(−⎟

⎠

⎞
⎜
⎝

⎛ −
+=

ρ
 

  = (- 1.32) + (1.01325 x 105  - 24150)/ (879 x 9.81) – 0.4 m 
  = 7.23 m  
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Example -5.2- 
It is required to pump cooling water from storage pond to a condenser in a process 

plant situated 10 m above the level of the pond. 200 m of 74.2 mm i.d. pipe is available 
and the pump has the characteristics given below. The head loss in the condenser is 
equivalent to 16 velocity heads based on the flow in the 74.2 mm pipe. If the friction 
factor Φ = 0.003, estimate the rate of flow and the power to be supplied to the pump 
assuming η = 0.5 

Q (m3/s) 0.0028 0.0039 0.005 0.0056 0.0059 
Δh (m) 23.2 21.3 18.9 15.2 11.0 

Solution: 

 ( ) ( ) ( )[ ]
condenserFsFdF hhh

g

P
zh +++

Δ
+Δ=Δ

ρ

2

g

uΔ
α2

 

g

u

d

L
fh sdF 2

4)(
2

=+  = 4(0.006)(200/0.0742)(u2/2g) = 3.3 u2 

g

u
h condenserF 2

16)(
2

=  = 0.815 u2 

u = Q/A = 321.26 Q  

⇒ Δh = 10 + (0.815 + 3.3)(321.26 Q)2 = 10 + 2.2 x 105 Q2 
To draw the system curve   

Q (m3/s) 0.003 0.004 0.005 0.006
Δh (m) 11.98 13.52 15.5 17.92

 
 
 

 
 
From Figure 
Q = 0.0054 m3/s 
Δh = 16.4 m 
 
 
 
 
 
 
 
 

Power required for pump = 
η

ρ ghQΔ
 = (0.0054)(16.4)(1000)(9.81)/0.5 

    = 17.375 kW 
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Example -5.3- 
A centrifugal pump used to take water from reservoir to another through 800 m length 

and 0.15 m i.d. if the difference in two tank is 8 m, calculate the flow rate of the water 
and the power required, assume f =0.004. 

Q (m3/h) 0 23 46 69 92 115 
Δh (m) 17 16 13.5 10.5 6.6 2.0 
η 0 0.495 0.61 0.63 0.53 0.1 

Solution: 

 ( ) ( )[ ]
sFdF hh

g

P
zh ++

Δ
+Δ=Δ

ρ

2

g

uΔ
α2

 

u = Q/A = 56.59 Q  

g

u

d

L
fh sdF 2

4)(
2

=+  = 4(0.004)(800/0.15)(56.59 Q(h/3600 s) )2/2g  

       = 1.0747 x 10-3 Q2 -----------------------  (Q in m3/h) 

⇒ Δh = 8 + 1.0747 x 10-3 Q2   
To draw the system curve   

Q (m3/h) 0 20 40 60 80 
Δh (m) 8.0 8.43 9.72 11.87 14.88

 
 
 
 
 
 

 
From Figure 
Q = 60 m3/h 
Δh = 11.8 m 
η = 0.64 
 
 
 
 

Power required for pump = 
η

ρ ghQΔ
 = (60)(1 h/3600 s)(11.8)(1000)(9.81)/0.64 

    = 3.014 kW 
Example -5.4- 
A pump take brine solution at a tank and transport it to another in a process plant 

situated 12 m above the level in the first tank. 250 m of 100 mm i.d. pipe is available 
sp.gr. of brine is 1.2 and μ = 1.2 cp. The absolute roughness of pipe is 0.04 mm and f = 
0.0065. Calculate (i) the rate of flow for the pump (ii) the power required for pump if η 
= 0.65. (iii) if the vapor pressure of water over the brine solution at 86°F is 0.6 psia, 
calculate the NPSH available, if suction line length is 30 m. 

Q (m3/s) 0.0056 0.0076 0.01 0.012 0.013 
Δh (m) 25 24 22 17 13 
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Solution: 

(i) ( )
sdFh

g

P
zh ++

Δ
+Δ=Δ

ρ

2

g

uΔ
α2

 

u = Q/A = 127.33 Q  

g

u

d

L
fh sdF 2

4)(
2

=+  = 4(0.0065)(250/0.1)(127.33 Q)2/2g  

       = 53.707 x 103 Q2  

⇒ Δh = 12 + 53.707 x 103 Q2 
To draw the system curve   

Q (m3/h) 0.005 0.007 0.009 0.011 0.013 
Δh (m) 13.34 14.63 16.35 18.5 21.08 

 
 
 
From Figure 
Q = 0.0114 m3/s 
Δh = 18.9 m 
(ii)  
Power required for pump = 

η
ρ ghQΔ

=(00.0114)(18.9) 

(1200)(9.81)/0.65=3.9 kW 
 
(iii)  
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u = Q/A = 0.0114/(π/4 0.12) =1.45 m/s  
For datum line passes through the centerline of the pump (zs = 0)   

g

u

d

L
fh s

sF 2
4)(

2

=  = 4(0.0065)(30/0.1)(1.45 )2/2g = 0.84 m 

  

⇒ NPSH = (101.325 x 103  - 0.6psi 101.325 x 103Pa/14.7psi)/(1200 x 9.81) – 0.84 
       = 7.416 m 
 

5.9 Centrifugal Pump Relations 

The power (PE) required in an ideal centrifugal pump can be expected to be a 
function of the liquid density (ρ), the impeller diameter (D), and the rotational speed of 
the impeller (N). If the relationship is assumed to be given by the equation, 

PE = c ρa Nb Dc ---------------------------------(1) 
then it can be shown by dimensional analysis that  

PE = c1 ρ N3 D5 ---------------------------------(2)  
where, c1 is a constant which depends on the geometry of the system. 
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The power (PE) is also proportional to the product of the volumetric flow rate (Q) 
and the total head (Δh) developed by the pump. 

PE = c2 Q Δh ---------------------------------(3) 
where, c2 is a constant. 
 The volumetric flow rate (Q) and the total head (Δh) developed by the pump are: - 
  Q = c3 N D3  ---------------------------------(4) 
 Δh = c4 N

2 D2 ---------------------------------(5) 
where, c3 and c4 are  constants. 
 Equation (5) could be written in the following form, 
 Δh3/2 = c4

3/2 N3 D3 ---------------------------------(6) 
Combine equations (4) and (6) [ eq. (4) divided by eq. (6)] to give; 

.
1

2

3

2

2

3

4

3

2

3 const

h

QN

N
c

c

h

Q
=

Δ
⇒=

Δ
 ------------------------------(7) 

or, sNconst

h

QN
==

Δ
.

4

3   ---------------------------------(8) 

When the rotational speed of the impeller N is (rpm), the volumetric flow rate Q 
in (USgalpm) and the total head Δh developed by the pump is in (ft), the constant Ns in 
equation (8) is known as the specific speed of the pump. The specific speed is used as 
an index of pump types and always evaluated at the best efficiency point (bep) of the 
pump. Specific speed vary in the range (400 – 10,000) depends on the impeller type, and 
has the dimensions of (L/T2)3/4. [ British gal=1.2USgal, ft3=7.48USgal, m3=264USgal]  

5.9.1 Homologous Centrifugal Pumps 

Two different size pumps are said to be geometrically similar when the ratios of 
corresponding dimensions in one pump are equal to those of the other pump. 
Geometrically similar pumps are said to be homologous. A sets of equations known as 
the affinity laws govern the performance of homologous centrifugal pumps at various 
impeller speeds. 

For the tow homologous pumps, equations (4), and (5) are given 
3
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Similarly for the tow homologous pumps equation (2)can be written in the form;  
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And by analogy with equation (10),  
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Equations (9), (10), (11), and (12) are the affinity law for homologous centrifugal 
pumps. 
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For a particular pump where the impeller of diameter D1, is replaced by an 
impeller with a slightly different diameter D2 the following equations hold 
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The characteristic performance curves are available for a centrifugal pump 
operating at a given rotation speed, equations (13), (14), and (15) enable the 
characteristic performance curves to be plotted for other operating speeds and for other 
slightly impeller diameters. 

Example -5.5- 
A volute centrifugal pump with an impeller diameter of 0.02 m has the following 

performance data when pumping water at the best efficiency point (bep). Impeller speed 
N = 58.3 rev/s capacity Q = 0.012 m3/s, total head Δh = 70 m, required NPSH = 18 m, 
and power = 12,000 W. Evaluate the performance data of an homologous pump with 
twice the impeller diameter operating at half the impeller speed.  
Solution: 

Let subscripts 1 and 2 refer to the first and second pump respectively, 
N1/N2 = 2,   D1/D2 = 1/2  
Ratio of capacities  
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D
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N

N

Q

Q
= 2 (1/8) =1/4 

⇒ Capacity of the second pump Q2 = 4 Q1 = 4(0.012) = 0.048 m3/s 
Ratio of total heads 

2

2

1

2

2

1

2

1 ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
=

Δ
Δ

D

D

N

N

h

h
= 4 (1/4) = 1 

⇒ Total head of the second pump Δh2 = Δh1= 70 m 
Ratio of powers 
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E = 8 (1/32) = ¼ 

assume 
4
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⇒ Break power of the second pump PB2 = 4 PB1= 4(12,000) = 48,000 W 
2

2

1

2

2

1

2

1 ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
=

D

D

N

N
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NPSH
= 4 (1/4) = 1 

⇒ NPSH of the second pump NPSH2 = NPSH1= 18 m 
H.W. 

Calculate the specific speed for these two pumps.     Ans.  Ns1 = Ns2 = 816.4  
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Note: - 
 The break power PB can be defined as the actual power delivered to the pump by 
prime mover. It is the sum of liquid power and friction power and is given by the 

equation,  
η

E
B

P
P =   

Example -5.6- 
A centrifugal pump was manufactured to couple directly to a 15 hp electric motor 

running at 1450 rpm delivering 50 liter/min against a total head 20 m. It is desired to 
replace the motor by a diesel engine with 1,000 rpm speed and couple it directly to the 
pump. Find the probable discharge and head developed by the pump. Also find the hp of 
the engine that would be employed.  
Solution: 
With the same impeller D1 = D2,  
then Q1/Q2 = N1/N2  

⇒ Q2= 50 (1000 / 1450) = 34.5 liter/min 
and Δh2 = Δh1 (N2/N1)

2 = 20 (1000/1450)2 = 9.5 m 
PE2 = PE1 (N2/N1)

3 = 15 (1000/1450)3 = 4.9 hp 
 
 
 
 H.W. 

1- Repeat example 5.6 with Q1 = 850 lit/min, Δh1 = 40 m, N = 1450 rpm, and Power 
= 15 hp. 

2- Calculate the pump efficiency (η) for pumping of water, and the specific speed for 
these two pumps.  

Ans.  η = 0.497 ≈ 0.5, and  Ns1 = Ns2 = 650 
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5.10 Centrifugal Pumps in Series and in Parallel  

5.10.1 Centrifugal Pumps in Parallel 

Consider two centrifugal pumps in parallel. The total head for the pump 
combination (ΔhT) is the same as the total head for each pump,   

ΔhT = Δh1 = Δh2 
QT = Q1 + Q2 
The operating characteristics curves for 

two pumps in parallel are: - 
Solution by trail and error 

1- Draw Δh versus Q for the two pumps 
and the system. 

2- Draw horizontal ΔhT line and determine 
Q1, Q2, and QS. 

3- QT (Total) = Q1 + Q2 = QS (system). 
4- If QT ≠ QS repeat steps 2, 3, and 4 until 

QT = QS. 
Another procedure for solution 

1- The same as above. 
2- Draw several horizontal lines (4 to 6) 

for ΔhT and determine their QT. 
3- Draw ΔhT versus QT. 
4- The duty point is the intersection of ΔhT curve with ΔhS curve. 

5.10.2 Centrifugal Pumps in Series 

Consider two centrifugal pumps in series. The total head for the pump 
combination (ΔhT) is the sum of the total heads for the two pumps,   

ΔhT = Δh1 + Δh2 
QT = Q1 = Q2 
The operating characteristics curves for 

two pumps in series are: - 
Solution by trail and error 

1- Draw Δh versus Q for the two pumps 
and the system. 

2- Draw vertical QT line and determine 
Δh1, Δh2, and ΔhS. 

3- QT (Total) = Q1 + Q2 = QS (system). 
4- If ΔhT ≠ ΔhS repeat steps 2, 3, and 4 

until ΔhT = ΔhS. 
Another procedure for solution 

1- The same as above. 
2- Draw several Vertical lines (4 to 6) 

for QT and determine their ΔhT. 
3- Draw ΔhT versus QT. 
4- The duty point is the intersection of ΔhT curve with ΔhS curve. 
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Home Work  
P.5.1  
Show that for homologous pumps, the specific speed (NS) of them is not depended on 
the impeller rotational speed (N) and its diameter (D). 
P.5.2  
Figure 1.5 diagrammatically represents the heads in a liquid flowing through a pipe. 
Redraw this diagram with a pump placed between points 1 and 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
P.5.3  
Calculate the available net positive section head NPSH in a pumping system if the 
liquid density ρ = 1200 kg/m3, the liquid dynamic viscosity μ = 0.4 Pa s, the mean 
velocity u = 1 m/s , the static head on the suction side zs = 3 m, the inside pipe 
diameter di = 0.0526 m, the gravitational acceleration g = 9.81 m/s2, and the equivalent 
length on the suction side (∑Le)s = 5.0 m.  
The liquid is at its normal boiling point. Neglect entrance and exit losses. 
P.5.4  
A centrifugal pump is used to pump a liquid in steady turbulent flow through a smooth 
pipe from one tank to another. Develop an expression for the system total head Δh in 
terms of the static heads on the discharge and suction sides zd and zs respectively, the 
gas pressures above the tanks on the discharge and suction sides pd and Ps respectively, 
the liquid density ρ, the liquid dynamic viscosity μ, the gravitational acceleration g, the 
total equivalent lengths on the discharge and suction sides (∑Le)d and (∑Le)s 
respectively, and the volumetric flow rate Q. 
P.5.5  
A system total head against mean velocity curve for a particular power law liquid in a 
particular pipe system can be represented by the equation  
Δh = (0.03)( 100n)(un) + 4.0    for u ≤ 1.5 m/s  
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where,  Δh is the total head in m, u is the mean velocity in m/s, and n is the power law 
index. 
A centrifugal pump operates in this particular system with a total head against mean 
velocity curve represented by the equation 
Δh = 8.0 - 0.2u - 1.0u2    for u ≤ 1.5 m/s 
(This is a simplification since Δh is also affected by n). 
(a) Determine the operating points for the pump for 

(i) a Newtonian liquid 
(ii) a shear thinning liquid with n = 0.9 
(iii) a shear thinning liquid with n = 0.8. 

(b) Comment on the effect of slight shear thinning on centrifugal pump operation. 
P.5.6  
A volute centrifugal pump has the following performance data at the best efficiency 
point: 
Volumetric flow rate     Q = 0.015 m3/s 
Total head       Δh = 65 m 
Required net positive suction head   NPSH = 16 m 
Liquid power      PE = 14000 W 
Impeller speed      N = 58.4 rev/s 
Impeller diameter     D = 0.22 m 
Evaluate the performance of a homologous pump which operates at an impeller speed 
of 29.2 rev/s but which develops the same total head Δh and requires the same NPSH. 
P.5.7  
Two centrifugal pumps are connected in series in a given pumping system. Plot total 
head Δh against capacity Q pump and system curves and determine the operating 
points for 
(a) only pump 1 running (b) only pump 2 running  (c) both pumps running 
on the basis of the following data: 
operating data for pump 1 
Δh1 m,  50.0  49.5  48.5  48.0  46.5  44.0  42.0  39.5  36.0  32.5  28.5 
Q m3/h,  0  25  50  75  100  125  150  175  200  225  250 
operating data for pump 2 
Δh2 m,  40.0  39.5  39.0  38.0  37.0  36.0  34.0  32.0  30.5  28.0  25.5 
Q m3/h,  0  25  50  75  100  125  150  175  200  225  250 
data for system 
Δhs  m,   35.0  37.0  40.0  43.5  46.5  50.5  54.5  59.5  66.0  72.5  80.0 
Q m3/h,  0  25  50  75  100  125  150  175  200  225  250  
P.5.8  
Two centrifugal pumps are connected in parallel in a given pumping system. Plot total 
head Ah against capacity Q pump and system curves for both pumps running on the 
basis of the following data: 
operating data for pump 1    operating data for pump 2 
Δh m, 40.0  35.0  30.0  25.0   Δh m,   0.0  35.0  30.0  25 .0 
Q1m

3/h,  169  209  239  265   Q2m
3/h  0  136  203  267 

data for system 
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Δh m,  20.0  25.0  30.0  35.0 
Qsm

3/h,  0  244  372  470 
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CHPTER SIX  

Non-Newtonian Fluids 
6.1 Introduction  

For Newtonian fluids a plot of shear stress (τ), against shear rate (- ≡ dux/dy) on 
Cartesian coordinate is a straight line having a slope equal to the dynamic viscosity (μ). 
For many fluids a plot of shear stress against shear rate does not give a straight line. 
These are so-called “ Non-Newtonian Fluids”. Plots of shear stress against shear rate are 
experimentally determined using viscometer.  

γ&

The term viscosity has no meaning for a non-Newtonian fluid unless it is related 
to a particular shear rate . An apparent viscosity (μa) can be defined as follows: - γ&

γ
τ

=µ
&a     

6.2 Types of Non-Newtonian Fluids 
There are two types of non-Newtonian fluids: - 

1- Time-independent. 
2- Time-dependent. 

6.2.1 Time-Independent Non-Newtonian Fluids    
In this type the apparent viscosity depends only on the rate of shear at any 

particular moment and not on the time for which the shear rate is applied. 
For non-Newtonian fluids the relationship between shear stress and shear rate is 

more complex and this type can be written as: - 
( ) nk γ−=τ &   ------------------For power-law fluids 

or as   ( )γ−+τ=τ &
o k  ------------------For Bingham plastics fluids 

The shape of the flow curve for time-independent fluids in compare with 
Newtonian fluid is shown in thee Figure, where 

 τ D
   

A: Newtonian fluids 
B: Pseudoplastic fluids [power-law n<1] 

Ex. Polymer solution, detergent. A 
B

C: Dilatant fluids [power-law n>1]     
Ex. Wet beach sand, starch in water. Cτ°

γ&

D: Bingham plastic fluids, it required 
(τ°) for initial flow  
Ex. Chocolate mixture, soap, sewage 
sludge, toothpaste. 
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6.2.2Time-Dependent Non-Newtonian Fluids    
For this type the curves of 

share stress versus shear rate 
depend on how long the shear has 
been active. This type is classified 
into: - 
1- Thixotropic Fluids  

Which exhibit a reversible 
decrease in shear stress and 
apparent viscosity with time at a 
constant shear rate. Ex. Paints. 
2- Rheopectic Fluids 

Which exhibit a reversible 
increase in shear stress and 
apparent viscosity with time at a 
constant shear rate. Ex. Gypsum 
suspensions, bentonite clay. 

Thixotro pic

τ

γ&

Rheopectic

6.3 Flow Characteristic [8u/d] 

The velocity distribution for Newtonian fluid of laminar flow through a circular 
pipe, as given in chapter four, is given by the following equation; 

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−=
22

maxx R
r

1u2
R
r

1uu  
ux

uma
R r

L

d

where, u: is the mean (average) linear velocity 
u = Q/A 

2
x

R
r

u4
R
r2

u2
dr

du
−=⎟

⎠
⎞

⎜
⎝
⎛
−==γ&  

)d/u8or(
w

γ&−

τw
Decreasing diameter 

d1
d2 d3

Laminar Flow

- At pipe walls (r = R) 
Rr

x
w dr

du

=

== γγ &&  

⇒
R
u4

w −=γ& ∴
d
u8

w =− γ& Flow 

characteristic  
For laminar flow 

d
u8

ww µγµτ =−= & ----------at wall 

The force balance on an element of fluid 
of L length is; 

Pd
4

dL 2
w Δ

π
πτ =  

d
u8

d/L4
P

w µ
Δ

τ ==⇒  -----------(1) this equation for Newtonian fluids  

A plot of τw or ΔP/(4L/d) against - or (8u/d) is shown in Figure for a typical time 
independent non-Newtonian fluid flows in a pipe. In laminar flow the plot gives a single 
line independent of pipe size. In turbulent flow a separate line for each pipe size. 

wγ&
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6.4 Flow of Genral Time-Independent Non-Newtonian Fluids 

The slope of a log-log plot of shear stress at the pipe walls against flow 
characteristic [8u/d] at any point along the pipe is the flow behavior index (n′)  

)d/u8ln(d
)]d/L4/(Pln[d

)d/u8ln(d

lnd

)ln(d

lnd
n w

w

w Δτ
γ
τ

==
−

=′
&

 ----------------------(2) 

This equation lead to, 
n

w d
u8

pK
d/L4

P ′

⎟
⎠
⎞

⎜
⎝
⎛
′==

Δ
τ     ----------------------(3) 

where, Kp′ and n′ are point values for a particular value of the flow characteristic (8u/d). 
or as’ 

d
u8

d
u8

pK
d/L4

P 1n

w

−′

⎟
⎠
⎞

⎜
⎝
⎛
′==

Δ
τ    ----------------------(4) 

By the analogy of equation (4) with equation (1), the following equation can be 
written for non-Newtonian fluids; 

 )
d
u8

()(
d/L4

P
Paw µ

Δ
τ ==     ----------------------(5) 

where, (μa)P is apparent viscosity for pipe flow. 
1n

Pa )
d
u8

(pK)( −′′=∴ µ     ----------------------(6) 

This equation gives a point value for the apparent viscosity of non-Newtonian 
fluid flow through a pipe. 

Reynolds number for the of non-Newtonian fluids can be written as; 

1nPa )
d
u8

(pK

ud
)(

ud
Re

−′′
==

ρ
µ
ρ

      ----------------------(7)  

m
du

Re
nn2 ′′−

=⇒
ρ

       ----------------------(8)  

where, m = Kp′ (8n′-1)    
Equations (7) or (8) gives a point value for Re at a particular flow characteristic 

(8u/d).  
A point value of the basic friction factor (Φ or Jf) or fanning friction factor (f ) for 

laminar flow can be obtained from; 
Φ = Jf = 8 / Re  or   f =16 / Re --------------(9) 
The pressure drop due to skin friction can be calculated in the same way as for 

Newtonian fluids, 
–ΔPfs = 4f (L/d) (ρu2/2)     ----------------------(10)   
Equation (10) is used for laminar and turbulent flow, and the fanning friction 

factor (f ) for turbulent flow of general time independent non-Newtonian fluids in 
smooth cylindrical pipes can be calculated from; 

f = a / Reb        ----------------------(11) 
where, a, and b are function of the flow behavior index (n′)    

n′ 0.2 0.3 0.4 0.6 0.8 1.0 1.4 2.0 
a 0.0646 0.0685 0.0714 0.074 0.0761 0.0779 0.0804 0.0826
b 0.349 0.325 0.307 0.2810.263 0.25 0.231 0.213 
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There is another equation to calculate (f ) for turbulent flow of time-independent 
non-Newtonian fluids in smooth cylindrical pipes; 

2.1

)
2

1(

75.02/1 )(
4.0

]log[Re
)(
41

n
f

nf

n

′
−

′
=

′
−

  ----------------------(12) 

Example -6.1- 
A general time-independent non-Newtonian liquid of density 961 kg/m3 flows steadily 

with an average velocity of 1.523 m/s through a tube 3.048 m long with an inside 
diameter of 0.0762 m. For these conditions, the pipe flow consistency coefficient Kp' 
has a value of 1.48 Pa.s0.3 [or 1.48 (kg / m.s2) s0.3] and n' a value of 0.3. Calculate the 
values of the apparent viscosity for pipe flow (μa)P, the Reynolds number Re and the 
pressure drop across the tube, neglecting end effects. 

Solution:  

Apparent viscosity 1)
8

()( −′′= n
Pa d

u
pKµ  

    = 1.48 (kg/m) s-1.7 [8 (1.523)/0.0762]-0.7s-0.7 
    = 0.04242 kg/m.s (or Pa .s) 

1nPa )
d
u8

(pK

ud
)(

ud
Re

−′′
==

ρ
µ
ρ

   = 961 (1.523)(0.762) / 0.04242 

    =2629 
 
f = a / Reb  from table n' = 0.3, a = 0.0685, b = 0.325 
  
f = 0.0685 / 26290.325  = 0.005202 
–ΔPfs = 4f (L/d) (ρu2/2) = 4(0.005202) (3.048 / 0.0762)[961(1.523)2/2] 
    = 927.65 Pa. 

6.5 Flow of Power-Law Fluids in Pipes 

Power-law fluids are those in which the shear stress (τ) is related to the shear rate 
( ) by this equation; γ&

( )nk γτ &=         ----------------------(13) 
For shear stress at a pipe wall (τw) and the shear rate at the pipe wall (), 

equation (13) becomes; 
wγ&

( )n
ww k γτ &=         ----------------------(14) 

Equation (3) gives the relationship between (ΔP) and (8u/d) for general time-
independent non-Newtonian fluids.  

But for power-law fluids the parameters Kp′ and n′ in equation (3) are no longer 
point values but remain constant over a range of (8u/d), so that for power-law fluids 
equation (3) can be written as; 

 
n

w d
u

Kp
dL

P
⎟
⎠
⎞

⎜
⎝
⎛

==
8

/4
Δ

τ     ----------------------(15) 

where,  
 Kp: is the consistency coefficient for pipe flow. 
 n: is the power-law inex. 
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The shear rate at pipe wall for general time-independent non-Newtonian fluids is; 

⎟
⎠
⎞

⎜
⎝
⎛

′
+′

=
n

n
d
u

w 4
138

γ&        ----------------------(16) 

and for power-law fluids; 

⎟
⎠
⎞

⎜
⎝
⎛ +

=
n

n
d
u

w 4
138

γ&        ----------------------(17) 

Combine equations (14), (15), and (17) to give the relationship between the 
general consistency coefficient (K) and the consistency coefficient for pipe flow (Kp). 

n

n
n

d
u

Kp ⎟
⎠
⎞

⎜
⎝
⎛ +

=
4

138
       ----------------------(18) 

The apparent viscosity for power-law fluids in  pipe flow 

  
18

)(
−

⎟
⎠
⎞

⎜
⎝
⎛

=
n

a d
u

Kpµ       ----------------------(19) 

The Reynolds number for non-Newtonian fluids flow in pipe 

Pa

ud
)(

Re
µ
ρ

=         ----------------------(20) 

For power –law fluids flow in pipes the Re can be written either as;  

1)
8

(
Re

−
=

n

d
u

Kp

udρ
     ----------------------(21) 

 or as; 

 
m

du nn−

=
2

Re
ρ

       ----------------------(22)  

where, m = Kp (8n-1)     ----------------------(23)  
Example -6.2- 
A Power-law liquid of density 961 kg/m3 flows in steady state with an average velocity 

of 1.523 m/s through a tube 2.67 m length with an inside diameter of 0.0762 m. For a 
pipe consistency coefficient of 4.46 Pa.sn [or 4.46 (kg / m.s2) s0.3], calculate the values of 
the apparent viscosity for pipe flow (μa)P in Pa.s, the Reynolds number Re, and the 
pressure drop across the tube for power-law indices n = 0.3, 0.7, 1.0, and 1.5 
respectively. 

Solution:  

Apparent viscosity 1)
8

()( −= n
Pa d

u
Kpµ  

    = 4.46 (kg/m) sn-2 [8 (1.523)/0.0762]n-1sn-1 

  ⇒ (μa)P = 4.46 (159.9)n-1  ----------------------------(1) 

-1n(159.9) 4.46)(
Re

udud

Pa

ρ
µ
ρ

==    = 961 (1.523)(0.762) / 4.46 (159.9)n-1 

  ⇒ Re = 25.006/ (159.9)n-1 ----------------------------(2) 
 
–ΔPfs = 4f (L/d) (ρu2/2) = 4(16/Re) (2.67 / 0.0762)[961(1.523)2/2] for laminar 

⇒ –ΔPfs = 99950.56 (159.9)n-1 --------------------------(3) 
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n 
(μa)P 

Eq.(1) 
Re 

Eq.(2) 
–ΔPfs 
Eq.(3) 

(–ΔPfs)New / (–ΔPfs)non-New 

0.3 0.1278 872.44 2,865 0.0287 
0.7 0.9732 114.6 21,809 0.218 
1.0 4.46 25.006 999,50.56 1.0 
1.5 56.4 1.9776 1,263,890.541 12.7 

6.6 Friction Losses Due to Form Friction in Laminar Flow 

Since non-Newtonian power-law fluids flowing in conduits are often in laminar 
flow because of their usually high effective viscosity, loss in sudden changes of diameter 
(velocity) and in fittings are important in laminar flow. 

1- Kinetic Energy in Laminar Flow 
Average kinetic energy per unit mass = u2/2α  [m2/s2 or J/kg] 
α = 1.0   -------------in turbulent flow 

( )(
( )

)
2133

3512

+
++

=
n

nn
α   -------------in laminar flow  

- For Newtonian fluids (n = 1.0)   ⇒ α = 1/2 in laminar flow 
- For power-law non-Newtonian fluids (n < 1.0 or n > 1.0) 
2- Losses in Contraction and Fittings 
The frictional pressure losses for non-Newtonian fluids are very similar to those for 
Newtonian fluids at the same generalized Reynolds number in laminar and turbulent 
flow for contractions and also for fittings  and valves.  
3- Losses in Sudden Expansion 
 For a non-Newtonian power-law fluid flow in laminar flow through a sudden 
expansion from a smaller inside diameter d1 to a larger inside diameter d2 of circular 
cross-sectional area, then the energy losses is 
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6.7 Turbulent Flow and Generalized Friction Factor 

The generalized Reynolds number has been defined as  

m
ud nn ρ′−′

=
2

Re  

where, m = Kp′ 8n-1 = K 8n-1 (3n+1/4n)n 
The fanning friction factor is plotted versus the generalized Reynolds number. 

Since many non-Newtonian power-law fluids have high effective viscosities, they are 
often in laminar flow. The correction for smooth tube also holds for a rough pipe in 
laminar flow. 

Figure of friction factor chart for purely viscous non-Newtonian fluids  
 
For rough pipes with various values of roughness ratio (e/d), this figure can not be 

used for turbulent flow, since it is derived for smooth pipes. 
Example -6.3- 
A pseudoplastic fluid that follows the power-law, having a density of 961 kg/m3 is 

flowing in steady state through a smooth circular tube having an inside diameter of 
0.0508 m at an average velocity of 6.1 m/s. the flow properties of the fluid are n′ = 0.3, 
Kp = 2.744 Pa.sn.  Calculate the frictional pressure drop across the tubing of 30.5 m 
long.  

Solution:  

m
ud nn ρ′−′

=
2

Re  = (1.523)0.3 (6.1)1.7 (961) / 2.744 (8)-0.7 

    =  1.328 x104   ------------ the flow is turbulent 

From Figure for Re = 1.328 x104, n′ = 0.3  ⇒ f = 0.0032 
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–ΔPfs = 4f (L/d) (ρu2/2) = 4(0.0032) (30.5 / 0.0508)[961(6.1)2/2]  

⇒ –ΔPfs = 134.4 kPa  
Example -6.4- 
The laminar flow velocity profile in a pipe for a power-law liquid in steady state flow 

is given by the equation  
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, where n is the power-law index and u, is the mean velocity. 

Use this equation to drive the following expression   
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γ&  for the velocity gradient at the pipe walls. 

Solution:  
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Home Work  
P.6.1  
The shear stress in power-law liquids in steady state laminar flow is given by the 
equation 

n
x

rx dr

du
K ⎟

⎠
⎞

⎜
⎝
⎛
−=τ , show that the velocity distribution is given by the following equation   
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P.6.2  
Calculate the frictional pressure gradient –ΔPfs/L for a time independent non-
Newtonian fluid in steady state flow in a cylindrical tube if  

the liquid density the    ρ = 1000 kg/m3 
inside diameter of the tube   d = 0.08 m 
the mean velocity     u = l.0 m / s 
the point pipe consistency coefficient  K' = 2 Pa. s0.5 

and the flow behavior index   n' = 0.5. 
P.6.3  
Substitute the equation  

n
x

rx dr

du
K ⎟

⎠
⎞

⎜
⎝
⎛
−=τ into equation dr

dr

du
r

dd
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and integrate to show the shear rate at a pipe wall for power law fluid in steady state 
flow is 
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CHPTER SEVEN  

Flow Measurement 
7.1 Introduction  

It is important to be able to measure and control the amount of material entering 
and leaving a chemical and other processing plants. Since many of the materials are in 
the form of fluids, they are flowing in pipes or conduits. Many different types of devices 
are used to measure the flow of fluids. The flow of fluids is most commonly measured 
using head flow meters. The operation of these flow meters is based on the Bernoulli’s 
equation. 

A construction in the flow path is used to increase in the lines flow velocity. This 
is accompanied by a decrease in pressure intensity or head and since the resultant 
pressure drop is a function of the flow rate of fluid, the latter can be evaluated. 

 

7.2 Flow Measurement Apparatus 

Head flow meters include orifice, venture meter, flow nozzles, Pitot tubes, and 
wiers. They consist of primary element, which causes the pressure or head loss and a 
secondary element, which measures it.  

7.2.1 Pitot Tube  
The Pitot tube is used to measure the local velocity at a given point in the flow 
stream and not the average velocity in the pipe or conduit. In the Figures below a 
sketch of this simple device is shown. One tube, the impact tube, has its opening 
normal to the direction of flow and the static tube has its opening parallel to the 
direction of flow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Point 2 called stagnation point at which the impact pressure is be and u2 = 0. 

Impact 
Tube

Static 
Tube R 

2 1 Impact 
Tube

Static 
Tube

R 

2 1

Simple Pitot tube  

Impact 
Tube

Static 
Tube

Δh

21

Simple Pitot tube with 
manometer provided with 

static pressure holes

Simple Pitot tube with 
manometer 

h2h1
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By applying Bernoulli’s equation between points 1 and 2 
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=⇒  where, ΔP = R(ρm-ρ)g  

The fluid flows into the opening at point 2, pressure builds up, and then remains 
stationary at this point, called “Stagnation Point”. The difference in the stagnation 
pressure (impact pressure) at this point (2) and the static pressure measured by the 
static tube represents the pressure rise associated with the direction of the fluid.  

Impact pressure head = Static pressure head + kinetic energy head 
Since Bernoulli’s equation is used for ideal fluids, therefore for real fluids the last 
equations of local velocity become: 

   
ρ

ρρ
Δ

ρ
Δ gR

CphgCp
P

Cpu m
x

)(2
2

)(2 −
==

−
=  

where, Cp: dimensionless coefficient to take into account deviations from Bernoulli’s 
equation and general varies between about 0.98 to 1.0. 
Since the Pitot tube measures velocity at one point only in the flow, several methods 
can be used to obtain the average velocity in the pipe; 
The first method, the velocity is measured at the exact center of the tube to obtain 
umax. then by using the Figure, the average velocity can be obtained. 
The second method, readings are taken at several known positions in the pipe cross 
section and then a graphical or numerical integration is performed to obtain the 
average velocity, from the following equation; 

A

dAu

u A
x∫∫

=     (see Problem 5.16 Vol.I)      

Example -7.1- 
Find the local velocity of the flow of an oil of sp.gr. =0.8 through a pipe, when the 

difference of mercury level in differential U-tube manometer connected to the two 
tapping of the Pitot tube is 10 cm Hg. Take Cp = 0.98. 

Solution: 

 sm /49.5
800

81.9)100013600)(1.0(2
98.0 =

−
=  

ρ
ρρ gR

Cpu m
x

)(2 −
=    

Example -7.2- 
A Pitot tube is placed at a center of a 30 cm I.D. pipe line has one orifice pointing 

upstream and other perpendicular to it. The mean velocity in the pipe is 0.84 of the 
center velocity (i.e. u/ux =0.94).  Find the discharge through the pipe if: -  

i- The fluid flow through the pipe is water and the pressure difference between 
orifice is 6 cm H2O. 

ii- The fluid flow through the pipe is oil of sp.gr. = 0.78 and the reading manometer 
is 6 cm H2O. Take Cp = 0.98. 

Solution: 
 i- hgCpx Δ2=u sm /063.1)06.0)(81.9(298.0 ==

u = 0.84 (1.063) = 0.893 m/s, Q = A.u = π/4(0.3)2 (0.893) = 0.063 m3/s 
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ii-  
ρ

ρρ gR
Cpu m

x

)(2 −
= sm /565.0

780
81.9)78013600)(06.0(2

98.0 =
−

=  

u = 0.84 (0.565) = 0.475 m/s, Q = A.u = π/4(0.3)2 (0.475) = 0.0335 m3/s 
Example -7.3- 
A Pitot tube is inserted in the pipe of 30 cm I.D. The static pressure head is 10 cm Hg 
vacuum, and the stagnation pressure at center of the pipe is 0.981 N/cm2 gauge. 
Calculate the discharge of water through the pipe if u/umax = 0.85. Take Cp = 0.98. 
Solution: 

P1 = –10 cm Hg (13600) 9.81 (m / 100 cm) = –13.3416 kPa 
P2 = 0.981 N/cm2 (m / 100 cm)2 = 9.81 kPa 
ΔP = P2 – P1 = 9.81- (-13.3416) = 23.1516 kPa 

1000
101516.23(2

98.0
)(2 3×

=
−

=
ρ
ΔP

Cpux =6.67 m/s 

u = 0.85 (6.67) = 5.67 m/s, Q = A.u = π/4(0.3)2 (5.67) = 0.4 m3/s 
Example -7.4- 
A Pitot tube is used to measure the air flow rate in a circular duct 60 cm I.D. The 
flowing air temperature is 65.5ºC. The Pitot tube is placed at the center of the duct and 
the reading R on the manometer is 10.7 mm of water. A static pressure measurement 
obtained at the Pitot tube position is 205 mm of water above atmospheric. Take Cp = 
0.98, μ = 2.03 x 10-5 Pa.s 
a- Calculate the velocity at the center and the average velocity. 
b- Calculate the volumetric flow rate of the flowing air in the duct.   
Solution: 
a- 

P1 ≡ the static pressure 
P1(gauge) = 0.205 (1000) 9.81 = 2011 kPa 
P1(abs) = 2011 + 1.01325 x 105 Pa = 1.03336 x 105 Pa 
ρair = Mwt. P/(R.T) = 29 (1.03336 x 105)/[(8314 Pa.m3/kmol.K) (65.5 + 273.15)] 
     =  1.064 kg/m3 

ρ
ρρ gR

Cpu m
x

)(2 −
= sm /04.14

064.1
81.9)064.11000)(0107.0(2

98.0 =
−

= = umax 

Renax = ρumaxd/μ = 1.064(14.04)0.6/2.03 x 10-5 = 4.415x 105 

From Figure   u/umax = 0.85 ⇒ u = 0.85 (14.04) = 11.934 
b-  

Q = A.u = π/4(0.6)2 (11.934) = 3.374 m3/s 
H.W. 
 Problem 5.17 Vol.I  
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7.2.2 Measurement by Flow Through a Constriction  
In measuring devices where the fluid is accelerated by causing it to flow through a 

constriction, the kinetic energy is thereby increased and the pressure energy therefore 
decreases. The flow rate is obtained by measuring the pressure difference between the 
inlet of the meter and a point of reduced pressure. 

Venturi meters, orifice meters, and flow nozzles measure the volumetric flow rate 
Q or average (mean linear) velocity u. In contrast the Pitot tube measures a point (local) 
velocity ux. 

7.2.2.1 Venturi Meter  
Venturi meters consist of three sections as shown in Figure; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-  From continuity equation  A1u1 = A2u2  ⇒ u1 = (A2/A1) u2 
- From Bernoulli’s equation between points 1 and 2 
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All these equation of velocity at throat u2, which derived from Bernoulli’s equation 
are for ideal fluids. Using a coefficient of discharge Cd to take account of the frictional 
losses in the meter and of the parameters of kinetic energy correction α1 and α2. Thus the 
volumetric flow rate will be obtained by: - 
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For many meters and for Re > 104 at point 1 
 Cd = 0.98   for d1 < 20 cm 
 Cd = 0.99   for d1 > 20 cm 

Example -7.5- 
A horizontal Venturi meter with d1 = 20 cm, and d2 = 10 cm, is used to measure the 
flow rate of oil of sp.gr. = 0.8, the discharge through venture meter is 60 lit/s. find the 
reading of (oil-Hg) differential Take Cd = 0.98.  
Solution: 

Q = u2 A2 = 60 lit/s (m3/1000lit) = 0.06 m3/s 

0.06 = 
2
2

2
1

21)(2

AA

AAgR
C m

d
−

−
ρ

ρρ
= [ ]442

222

)1.0()2.0()4/(

)2.0()1.0()4/(
800

81.9)80013600(2
98.0

−

−

π

πR
 

⇒ R = 0.1815 m Hg = 18.15 cm Hg 
Example -7.6- 
A horizontal Venturi meter is used to measure the flow rate of water through the piping 
system of 20 cm I.D, where the diameter of throat in the meter is d2 = 10 cm. The 
pressure at inlet is 17.658 N/cm2 gauge and the vacuum pressure of 35 cm Hg at throat.  
Find the discharge of water. Take Cd = 0.98.  
Solution: 

P1 = 17.658 N/cm2 (100 cm / m)2 = 176580 Pa 
P2 = –35 mm Hg (m / 100 cm) 9.81 (13600) = –46695.6 Pa 
P1 – P2 = 176580–(–46695.6) = 223275.6 Pa 

Q = u2 A2 = 
2
2

2
1

212

AA

AAP
Cd

−ρ
Δ

= [ ]44

22

)1.0()2.0(

])1.0)(4/[()2.0(
1000

)6.223275(2
98.0

−

π
 

⇒ Q = 0.168 m3/s  
Example -7.7- 
A Venturi meter is to be fitted to a 25 cm diameter pipe, in which the maximum flow is 
7200 lit/min and the pressure head is 6 m of water. What is the maximum diameter of 
throat, so that there is non-negative head on it?  
Solution: 

h1 = 6 m H2O 
Since the pressure head at the throat is not to be negative, or maximum it can be 

zero (i.e. h2 = zero). Therefore; 
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Δh = h1 – h2 = 6 – 0 = 6 m H2O 
Q = u2 A2 = 7200 lit/min (m3/1000lit) (min / 60 s) = 0.12 m3/s 

⇒ 0.12 = 
2
2

2
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212
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−
Δ = [ ]4

2
4

2
2

2
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44
2

44
2

4
2 10887237.1010983.1507.0 −− ×=⇒=×−+⇒ ddd  

⇒ d2 = 0.1172 m = 11.72 cm 
Note: - 
In case of using vertical or inclined Venturi meter instead of horizontal one, the same 

equations for estimation the actual velocity are used. 
Example -7.8- 
A (30cm x 15cm) Venturi meter is provided in a vertical pipe-line carrying oil of sp.gr. 
= 0.9. The flow being upwards and the difference in elevations of throat section and 
entrance section of the venture meter is 30 cm. The differential U-tube mercury 
manometer shows a gauge deflection of 25 cm. Take Cd = 0.98 and calculate: - 
i- The discharge of oil  
ii-  The pressure difference between the entrance and throat sections.  
Solution: 

i-  
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   = 0.1488 m3/s 
ii-  Applying Bernoulli’s equation at points 1 and 2 
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u1 = 0.1488/(π/4 0.32) = 2.1 m/s, u2 = 0.1488/(π/4 0.152) = 8.42 m/s 

25cm

30cm 

1 

2 
⇒ P1– P2 = 900 (9.81) [0.3 + (8.422 – 2.12)/2(9.81)] 
       = 32.5675 kPa 
but P1– P2 = 0.25 (13600–900)(9.81) = 31.1467 kPa 
% error = 4.36 % 
 

 
 
 
 
 
 
 
 
 



Chapter Seven Fluid Flow    Flow Measurement 

7-Ch.7         Dr . Salah S. Ibrahim 

Home Work  
P.7.1  

A Venturi meter with a 15 cm I.D. at inlet and 10 cm I.D. at throat is laid with its 
axis horizontal and is used for measuring the flow of oil of sp.gr. = 0.9. The oil-mercurry 
differential manometer shows a gauge difference of 20 cm. If Cd = 0.98, calculate the 
discharge of oil. 

        Ans. Q = 0.06393 m3/s  
P.7.2  

A horizontal Venturi meter (160mm x 80mm) used to measure the flow of oil of 
sp.gr. = 0.8. Determine the deflection of oil-mercury gauge, if discharge of oil is 50 lit/s.  

        Ans. R = 29.6 cm Hg 
P.7.3  

A Venturi meter has an area ratio (9:1), the larger diameter being 30 cm. During 
the flow the recorded pressure head in larger section is 6.5 m and that at throst 4.25 m. If 
Cd = 0.99, compute the discharge through the meter. 

        Ans. Q = 0.052 m3/s 
P.7.4  

A Venturi meter is fitted to 15 cm diameter pipeline conveying water inclined at 
60º to the horizontal. The throat diameter is 5 cm and it is placed higher than the inlet 
side. The difference of pressure between the throat and the inlet which are 0.9 m apart is 
equivalent to 7.5 cm of mercury. Calculate the discharge if Cd = 0.98. 

        Ans. Q = 0.00832 m3/s 
P.7.5  

Find the throat diameter of a Venturi meter when fitted to a horizontal pipe 10 cm 
diameter having a discharge of 20lit/s. The differential U-tube mercury manometer, 
shows a deflection giving a reading of 60 cm, Cd = 0.98. In case, this Venturi meter is 
introduced in a vertical pipe, with the water flowing upwards, find the difference in the 
reading of mercury gauge. The dimensions of pipe and Venturi meter remain unaltered, 
as well as the discharge through the pipe. 

   Ans. d2 = 0.04636 m, and the same reading in case II i.e. 60 cm Hg 
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7.2.2.2 Orifice Meter 
The primary element of an orifice meter is simply a flat plate containing a drilled 

located in a pipe perpendicular to the direction of fluid flow as shown in Figure;   
 

R

Sharp edged orifice 

Vena Contracta 

•
2

•
1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
At point 2 in the pipe the fluid attains its maximum mean linear velocity u2 and its 

smallest cross-sectional flow area A2. This point is known as “the vena contracta”. It is 
occurs at about one-half to two pipe diameters downstream from the orifice plate.  

Because of relatively the large friction losses from the eddies generated by the 
expanding jet below vena contracta, the pressure recovery in orifice meter is poor. 

-  From continuity equation  A1u1 = A2u2  ⇒ u1 = (A2/A1) u2 
- From Bernoulli’s equation between points 1 and 2 
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But Cc = A2/Ao ⇒  A2 = CcAo 
Cc: coefficient of contraction [0.6 – 1.0] common value is 0.67 
A2: cross-sectional area at vena contracta  
Ao: cross-sectional area of orifice  
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Using a coefficient of discharge Cd to take into account the frictional losses in the 
meter and of parameters Cc, α1, and α2. Thus the velocity at orifice or the discharge 
through the meter is;  
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For  Reo > 104    Cd = 0.61   
And for Reo > 104   Cd From Figure below 

 

  
Figure of the discharge coefficient for orifice meter.  

The holes in orifice plates may be concentric, eccentric or segmental as shown in 
Figure. Orifice plates are prone to damage by erosion. 

 
 
 
 
 
 

Figure of Concentric. eccentric and segmental orifice plates 
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Example -7.9- 
An orifice meter consisting of 10 cm diameter orifice in a 25 cm diameter pipe has Cd 
= 0.65. The pipe delivers oil of sp.gr. = 0.8. The pressure difference on the two sides of 
the orifice plate is measured by mercury oil differential manometer. If the differential 
gauge is 80 cm Hg, find the rate of flow.  
Solution: 
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⇒ Q = 0.08196 m3/s. 
Example -7.10- 
Water flow through an orifice meter of 25 mm diameter situated in a 75 mm diameter 
pipe at a rate of 300 cm3/s, what will be the difference in pressure head across the 
meter  μ = 1.0 mPa.s.  
Solution: 

Q = 300 x 10-6 m3/s ⇒ u = (300 x 10-6 m3/s) / (π/4 0.252) = 0.611 m/s 
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⇒ hΔ  = 0.2248   ⇒  Δh = 0.05 m H2O = 50 mm H2O 
Example -7.11- 
Water flow at between 3000-4000 cm3/s through a 75 mm diameter pipe and is 
metered by means of an orifice. Suggest a suitable size of orifice if the pressure 
difference is to be measured with a simple water manometer. What approximately is 
the pressure difference recorded at the maximum flow rate? Cd = 0.6.  
Solution: 

The largest practicable height of a water manometer is 1.0 m 
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⇒ do = 0.039 m = 39 mm 
(P1 – P2) = Δh ρg = 1.0 (1000)(9.81) = 9810 Pa. 
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7.2.2.3 The Nozzle  
The nozzle is similar to the orifice meter other than that it has a converging tube 

in place of the orifice plate, as shown in below. The velocity of the fluid is gradually 
increased and the contours are so designed that almost frictionless flow takes place in 
the converging portion; the outlet corresponds to the vena contracta on the orifice meter. 
The nozzle has a constant high coefficient of discharge (ca. 0.99) over a wide range of 
conditions because the coefficient of contraction is unity , though because the simple 
nozzle is not fitted with a diverging cone, the head lost is very nearly the same as with 
an orifice. Although much more costly than the orifice meter, it is extensively used for 
metering steam. When the ratio of the pressure at the nozzle exit to the upstream 
pressure is less than the critical pressure ratio ωc, the flow rate is independent of the 
downstream pressure and can be calculated from the upstream pressure alone. 

 
Figures of nozzle (a) General arrangement (b) Standard nozzle (Ao/A1) is less than 0.45. 

Left half shows construction for corner tappings. Right half shows construction for 
piezometer ring (c) Standard nozzle where (Ao/A1) is greater than 0.45 
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7.2.3 Variable Area Meters - Rotameters  
In the previous flow rates the area of constriction or orifice 

is constant, and the pressure drop is dependent on the rate of the 
flow (due to conversions between the pressure energy with kinetic 
energy).  

Float

In the Rotameter the drop in pressure is constant and the 
flow rate is function of the area of constriction. When the fluid is 
flowing the float rises until its weight is balanced by the up thrust 
of the fluid.         وةϘو او الϔمائع قوة الطϠعة لϓالدا . Its position then indicting 
the rate of flow. 

Force balance on the float  
Gravity force = up thrust force + Pressure force  

V f ρf g  = Vf ρg + (–ΔP) Af 

f

ff

A

gV
P

)( ρρ
Δ

−
=−  i.e. constant  

where, Vf ρf, and Af are float volume, float density, and 
maximum cross- section area of  the float. 

(–ΔP) is the pressure difference over the float, (–ΔP) =P1 – P2. 
  The area of flow is the annulus formed between the float and 

the wall of the tube. This meter may thus be considered, as an 
orifice meter with a variable aperture, and the equation of flow 
rate already derived are therefore applicable with only minor 
changes. 

2
2

2
1

21)(2

AA

AAP
CQ d

−

−
=

ρ
Δ

    

2
2

2
1

21
)(2

AA

AA

A

gV
CQ

f

ff

d
−

−
=

ρ

ρρ
        

where,  A1 : cross-section area of the tube when the float arrived.  
  A1 : cross-section area of the annulus (flow area). 
 

A1 A2 

 
 
 
 
 
 
 
 
 Af 
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Example -7.12- 
A rotameter tube of 0.3 m long with an internal diameter of 25 mm at the top and 20 
mm at the bottom. The diameter of float is 20 mm, its sp.gr. is 4.8 and its volume is 6 
cm3. If the coefficient of discharge is 0.7, what will be the flow rate water when the 
float is half way up the tube?  
Solution: 

A1 = π/4 d1
2, d1 = df + 2x  

To find x 

1- 0.25/30 = x/15, ⇒ x = 0.125 cm 

 or   2- tan (θ) = 0.25 / 30 = x/15, ⇒ x = 0.125 cm 

⇒ d1 = 2 + 2(0.125) = 2.25 cm  

⇒ A1 = π/4 (0.0225)2 = 3.976 x 10-4 m2  
    A2 = A1 – Af  = 3.976 x 10-4 - π/4 (0.02)2  

= 8.345 x 10-5 m2 

2
2

2
1

21
)(2

AA

AA

A

gV
CQ

f

ff

d
−

−
=

ρ

ρρ
 

2524

54

2

6

)10345.8()10976.3(

)10345.8)(10976.3(
)02.0(4/

)18.4)(81.9(1026
7.0

−−

−−−

×−×

××−×
=

π

 = 7.13 x 10-5 m3/s 

Float

x

2.52.5 20
25

20

30 cm 

x 

θ

 
Example -7.13- 
A rotameter has a tube of 0.3 m long, which has an internal diameter of 25 mm at the 
top and 20 mm at the bottom. The diameter of float is 20 mm, its effective sp.gr. is 4.8 
and its volume is 6.6 cm3. If the coefficient of discharge is 0.72, what height will the 
float be when metering water at 100 cm3/s?  
Solution: 

Q = 10-4 m3/s = 
2
2

2
1

21
)(2

AA

AA

A

gV
C

f

ff

d
−

−

ρ

ρρ
 

2

1

2

24

2
2

2
1

21

)(1

1010976.1

A

A

A

AA

AA

−

=×=
−

⇒ −  

assume 2

1

2 )(1
A

A
− = 1.0 ------- i.e. A2                 0 

⇒ A2 = 1.10976 x 10-4 m2,  A1 = A2 + Af 

⇒ A1 = 4.2513 x 10-4 m2 
Correct the assumption  

2

1

2 )(1
A

A
−   = 0.965 

⇒ A2 = 0.965 (1.10976 x 10-4 m2) = 1.0713 x 10-4 m2 

Float

x

2.52.5 20
25

x 

30 cm 

θ

20
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A1 = A2 + Af  ⇒ A1 = 4.213 x 10-4 m2 
Re-correct the last value 

2

1

2 )(1
A

A
−   = 0.967   -------------close enough  

⇒ d1 = (A1 / π/4)0.5  = 0.02316 m  = 2.316 cm 

d1 = 2x + df  ⇒ x = (0.02316 – 0.02) / 2  = 0.0016 m = 0.16 cm 

0.25/30 = 0.16/ L  ⇒ L = 19.2 cm 
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7.2.4 The Notch or Weir  
The flow of liquid presenting a free surface (open channels) can be measured by means 

of a weir. The pressure energy converted into kinetic energy as it flows over the weir, 
which may or may not cover the full width of the stream, and a calming screen may be 
fitted before the weir. Then the height of the weir crest gives a measure of the rate of 
flow. The velocity with which the liquid leaves depends on its initial depth below the 
surface. 

Many shapes of notch are available of which three shapes are given here as shown in 
Figures, 

 
 
 
 
 
 
   Rectangular notch     Triangular notch   Trapezoidal notch 
 
7.2.4.1 Rectangular Notch  
 

b

H H

b

Hdh 
h 

 
 
 
 
 
 
H: height of liquid above base of the notch 
h: depth of liquid from its level 
b: width or length of notch 
Consider a horizontal strip of liquid of thickness (dh) at depth (h).  
The theoretical velocity of liquid flow through the strip = gh2  

 
To prove this equation applies Bernoulli’s equation 
between points M and N as shown in Figure; 

ZM =H zN  

h  M 
N 

 N
NN

M
MM z

g

u

g

P
z

g

u

g

P
++=++

22

22

ρρ
  

The cross sectional area of flow at point M is larger 
than that at notch (point N), then (uM ≈ 0) 
PM = PN = Po atmospheric pressure  

g

u
zz N

NM 2

2

=−⇒ ghuN 2=∴  

 
The area of the strip dA = b.dh 
The discharge through the strip dQ = u.dA = Cd ( gh2 )(b.dh) 
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∫∫ =⇒
H

d

Q

dhhgbCdQ
0

2/1

0

2  
2/3

2
2/3H

gbCQ d=⇒   

2/32
3
2

HgbCQ d=∴  

 
Example -7.14- 
A rectangular notch 2.5 m wide has a constant head of 40 cm, find the discharge over 
the notch where Cd = 0.62  
Solution: 

2/32
3
2

HgbCQ d=  = 2/3 (0.62) (2.5) (2 x 9.81)0.5 (0.4)3/2 

 Q = 1.16 m3/s 
 
Example -7.15- 
A rectangular notch has a discharge of 21.5 m3/min, when the head of water is half the 
length of the notch. Find the length of the notch where Cd = 0.6.  
Solution: 

2/32
3
2

HgbCQ d=  ⇒ 21.5/60 = 2/3 (0.6) (b) (2 x 9.81)0.5 (0.5 b)3/2 

 ⇒ b5/2 = 0.572  ⇒ b = (0.572)2/5 = 0.8 m 
 
 

H
dh

h
x' 

x 

Apex of the notch
θ 

7.2.4.2 Triangular Notch  
 
A triangular notch is also called a 

V-notch. 
H: height of liquid above base of 

the apex of the notch. 
θ: Angle of the notch. 
 
tan (θ/2) = x / H = x' / (H-h) 
The width of the notch at liquid surface = 2x = 2H tan(θ/2) 
The width of the strip  = 2x' = 2(H-h) tan(θ/2) 
The area of the strip = 2x' dh = 2(H-h) tan(θ/2)dh 
The theoretical velocity of water through the strip = gh2  

The discharge over the notch dQ = u. dA = Cd ( gh2 ) [2(H-h) tan(θ/2)dh] 

∫∫ −=
H

d

Q

dhhHhgCdQ
0

2/32/1

0

)(2)2/tan(2 θ  

H

d

hHh
gCQ

0

2/52/3

2/52/3
2)2/tan(2 ⎥⎦

⎤
⎢⎣

⎡
−= θ = ⎥⎦

⎤
⎢⎣
⎡

− 2/52/5

5
2

3
2

2)2/tan(2 HHgCd θ  

2/52)2/tan(
15
8

HgCQ d θ=∴  
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If Cd = 0.6 and θ =90º ⇒ Q = 1.417 H5/2 
Example -7.16- 
During an experiment in a laboratory, 50 liters of water flowing over a right-angled 
notch was collected in one minute. If the head of still is 50mm. Calculate the 
coefficient of discharge of the notch.  
Solution: 

2/52)2/tan(
15
8

HgCQ d θ=   = 50 lit/min (m3/1000lit)(min/60s) = 8.334 x 10-4 m3/s 

 ⇒ Cd = (8.334 x 10-4)/[(8/15)(2x9.81)0.5 tan(θ/2)(0.05)5/2] = 0.63 
Example -7.17- 
A rectangular channel 1.5 m wide is used to carry 0.2 m3/s water. The rate of flow is 
measured by placing a 90º V-notch weir. If the maximum depth of water is not to 
exceed 1.2 m, find the position of the apex of the notch from the bed of channel. Cd = 
0.6.  
Solution: 

Q = 1.417 H5/2   ⇒ H5/2 = (0.2 m3/s)/1.417  ⇒ H = 0.46 m 
The maximum depth of water in channel = 1.2 m 
H is the height of water above the apex of notch. 
Apex of triangular notch is to be kept at distance  = 1.2 –0.46 
        = 0.74 m from the bed of channel. 
 
7.2.4.3 Trapezoidal Notch  
A trapezoidal notch is a combination of 

a rectangular notch and triangular notch 
as shown in Figure;  

Hθ/2

b

θ/2 
Discharge over the trapezoidal notch, 

Q=[Discharge over the rectangular notch  
     + Discharge over the triangular notch] 
 

2/5
2

2/3
1 2)2/tan(

15
8

2
3
2

HgCHgbCQ dd θ+=  

Example -7.18- 
A trapezoidal notch 120 cm wide at top and 45 cm at the bottom has 30 cm height. 
Find the discharge through the notch, if the head of water is 22.5 cm. Cd1 = Cd2 = 0.6.  
Solution: 

22.5 cm

x = (120+45)/2 = 37.5 cm 
tan(θ/2) = x/30 = 37.5/30 = 1.25 

2/5
2

2/3
1 2)2/tan(

15
8

2
3
2

HgCHgbCQ dd θ+=  

 45 cm

30 cm

120 cm xx

Q = 2/3(0.6)(0.45)(2 x 9.81)0.5 (0.225)3/2 +8/15(0.6) (2 x 9.81)0.5 (1.25)(0.225)5/2 
    = 0.1276 m3/s 
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7.3 Unsteady State Problems 
Example -7.19- 
A reservoir 100 m long and 100 m wide is provided with a rectangular notch 2m long. 
Find the time required to lower the water level in the reservoir from 2 m to 1 m. Cd = 
0.6.  
Solution: 
Let, at some instant, the height of the water above the base of the notch be (h) and the 

liquid level fall to small height (dh) in time (dt).  
The volume of water discharged in time (dt) is:  

dV = - A dh,  A= 100 x 100 = 104 m2 

H dh
h Q = dV / dt =  2/32

3
2

hgbCd  = -A dh/dt 

∫∫ −−
=⇒

2

1

2/3

0 2)3/2(

H

Hd

T

dhh
gbC

A
dt  

2

1
2/122

3 2/1 H

Hd

h

gbC

A
T ⎥⎦

⎤
⎢⎣

⎡

−
−

=
−

 

sec33min,27sec1.1653
2

1

1

1

81.92)2(6.0

10311

2

3 4

12

==⎥⎦

⎤
⎢⎣

⎡
−

×

×
=⎥

⎦

⎤
⎢
⎣

⎡
−=

HHgbC

A

d

 

 
Example -7.20- 
A tank 25 m long and 15 m wide is provided with a right-angled V-notch. Find the 
time required to lower the level in the tank from 1.5 m to 0.5 m. Cd = 0.62.  
Solution: 
Let, at some instant, the height of the liquid above the apex of the notch be (h) and a 

small volume of the liquid (dv) flow over the notch in a small interval of time (dt), 
reducing the liquid level by an amount (dh) in the tank.  

dV = - A dh,  A= 25 x 15 = 375 m2 

Q = dV / dt  =  2/5)2/tan(2
15
8

hgCd θ  = -A dh/dt 

∫∫ −−
=⇒

2

1

2/5

0 )2/tan(2)15/8(

H

Hd

T

dhh
gC

A
dt

θ
 

2

1
2/3)2/tan(28

15 2/3 H

Hd

h

gC

A
T ⎥⎦

⎤
⎢⎣

⎡

−
−

=
−

θ
 

sec30min,6sec390
5.1

1

5.0

1

)1(81.926.0

375
4
511

)2/tan(24
5

333
1

3
2

=≅⎥
⎦

⎤
⎢
⎣

⎡
−

×
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

HHgC

A
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Home Work  
P.7.6  

A wier 8 m length is to be built across a rectangular channel to discharge a flow of 
9 m3/s. If the maximum depth of water on the upstream side of weir is to be 2 m, what 
should be the height of the weir? Cd = 0.62. 

        Ans. 1.277 m  
P.7.7  

A rectangular notch 1 m long and 40 cm high is discharging water. If the same 
quantity of water be allowed to flow over a 90º V-notch, find the height to which water 
will rise above the apex of notch. Cd = 0.62. 

      Ans. Q = 464 lit/s, H = 63.1 cm  
P.7.8  

Water flow over a right angled V-notch under a constant head of 25 cm. 1- Find 
the discharge. 2- Using principles of geometric similarity find the head required for a 
flow of 1417.6 lit/s through the same notch. Cd = 0.62. 

Hint  

 For similar notch 
2/3

2

1

2

1

2

1
⎥⎦

⎤
⎢⎣

⎡
=

H

H

b

b

Q

Q
 and for the same notch 

2/3

2

1

2

1
⎥⎦

⎤
⎢⎣

⎡
=

H

H

Q

Q
 

      Ans. Q = 44.3 lit/s, H2 = 1 m  
P.7.9  

A sharp-edge 90º V-notch is inserted in the side of a rectangular tank 3 m long 
and 1.5 m wide. Find how long it will take to reduce the head in tank from 30 cm to 7.5 
cm if the water discharges freely over the notch and there is no inflow into the tank. Cd = 
0.62. 

        Ans. T = 87s = 1min 27s 
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CHPTER EIGHT  

Flow of Compressible Fluid 
8.1 Introduction  

All fluids are to some degree compressible, compressibility is sufficiently great to 
affect flow under normal conditions only for a gas. If the pressure of the gas does not 
change by more than about 20%, [or when the change in density more than 5-10 %] it is 
usually satisfactory to treat the gas as incompressible fluid with a density equal to that at 
the mean pressure. 

When compressibility is taken into account, the equations of flow become more 
complex than they are for an incompressible fluid. 

The flow of gases through orifices, nozzles, and to flow in pipelines presents in all 
these cases, the flow may reach a limiting maximum value which independent of the 
downstream pressure (P2); this is a phenomenon which does not arise with 
incompressible fluids. 

8.2 Velocity of Propagation of a Pressure Wave 

The velocity of propagation is a function of the bulk modulus of elasticity (ε), 
where;  

υυ
ε

/strain volumetric resulting
  fluid the within stress of increase

d
dP

−
==   

υ
υε

d
dP

−=⇒    

where, υ: specific volume (υ = 1/ρ). 
Suppose a pressure wave to be transmitted at a velocity uw over a distance dx in a 

fluid of cross-sectional area A, from section  to section  as shown in Figure; 
Now imagine the pressure wave to be brought to rest by causing the fluid to flow 

at a velocity uw in the opposite direction.  

  

dx 

uw 

(uw + duw) 
(P + dP)

uw

P

From conservation of mass law; 
21 mm && =  

ρuwA =  (ρ+dρ)(uw +duw)A 

A
d

duu
A

u www

)(

)(

υυυ +
+

=⇒  

and υυ
υ

d
A
m

du
A
m

uA
u

m ww
w &&

& =⇒=⇒=  

Newton’s 2nd law of motion stated that “The rate of change in momentum of fluid 
is equal to the net force acting on the fluid between sections  and . 

Thus; 

( )[ ] ( )[ ] dPdu
A
m

dPPPAuduum wwww −=⇒+−=−−
&

&    
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2
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⎠
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υε
υ

υ
υ
ε

=⇒⎟
⎠
⎞

⎜
⎝
⎛

=⎟
⎠
⎞

⎜
⎝
⎛

=⇒ 2

22/
w

ww u
u

A

Au
 

υε=∴ wu  
For ideal gases  

.constP =κυ   where, κ = 1.0   for isothermal conditions 

     κ = γ      for isentropic conditions, 
v

p

c

c
=γ  

( )
υυ

υ
υ
υ

υυυυυ
P

k
d
dP

dkPdPdPkdPPd
k

kkkk −=⇒−=⇒=+⇒= − 00 1  

ε
υ

υ ==⎟
⎠
⎞

⎜
⎝
⎛

−⇒ kP
d
dP

  υkPuw =∴  

- For isothermal conditions k = 1  υPuw =⇒  

- For isentropic (adiabatic) conditions k = γ  υγ Puw =⇒  
The value of uw is found to correspond closely to the velocity of sound in the 

fluid  and its correspond to the velocity of the fluid at the end of a pipe uder conditions 
of maximum flow.  

Mach Number 

Is the ratio between gas velocity to sonic velocity, 

wu
u

Ma =  

where, Ma > 1 supersonic velocity 
  Ma = 1 sonic velocity 
  Ma < 1 subsonic velocity 

8.3 General Energy Equation for Compressible Fluids 

 Let E the total energy per unit mass of the fluid where,  
E=Internal energy (U)+Pressure energy (Pυ)+Potential energy(zg)+Kinetic energy (u2/2) 

Assume the system in the Figure; 
Energy balance 
E1 + q = E2 + Ws 

⇒ E2 – E1 = q – Ws 

⇒ ΔU + Δ(Pυ) + gΔ(z) + Δ(u2/2) = q – Ws 
[α = 1 for compressible fluid since it almost in turbulent flow] 

 
System 

Ws 

E2E1

q 

but ΔH = ΔU + Δ(Pυ) 
⇒ ΔH + gΔ(z) + Δ(u2/2) = q – Ws 
dH + gd(z) + ud(u) = dq – dWs 
but,  

dH = dq + dF + υdP 
where, 
dF: amount of mechanical energy converted  

For irreversible process 
dW = Pdυ – dF -------useful work 
dU = dq – dW  -------closed system 
dH = dU + d(Pυ) 
      = dq – dW + d(Pυ) 
       = dq – (Pdυ – dF) + d(Pυ)  
       = dq – Pdυ + dF + Pdυ + υdP  
 ⇒ dH = dq + dF + υdP       into heat  
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⇒ u du + g dz + υ dP +dWs + dF = 0  

0
2

2

1

2

=++++∴ ∫ FWsdPzg
u P

P

υΔ
Δ

 General equation of energy apply to any
type of fluid 

 
 For compressible fluid flowing through (dl) of pipe of constant area 

u du + g dz + υ dP +dWs + 4Φ (dl/d) u2 = 0  ----------------------------(*) 
 

G
u

A
m

uAm ==⇒=
υ

ρ
&

&  

∴ u = G υ  ⇒ du = G dυ 
 
 
Substitute these equations into 
equation (*), to give  
G υ (G dυ) + g dz + υ dP +dWs + 4Φ (dl/d) (G υ)2 = 0  
    For horizontal pipe (dz = 0), and no shaft work (Ws =0) 

⇒ G2 υ (dυ) + υ dP + 4Φ (dl/d) (G υ)2 = 0 ----------------------------(**)  
Dividing by (υ2) and integrating over a length L of pipe to give; 

04ln 2

1

22
2
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=++⎟
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⎝
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d
LdP

G
P

P
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Kinetic   Pressure  Frictional  

u (u + du)u1

dl
P2P1

u2

L 

d

General equation of energy apply to
compressible fluid in horizontal pipe with
no shaft work

energy    energy     energy 

8.3.1 Isothermal Flow of an Ideal Gas in a Horizontal Pipe 

For isothermal conditions of an ideal gas  

P υ = constant ⇒ P υ = P1 υ1   ⇒ 1/υ = P / (P1 υ1) 

( 2
1

2
2

1111 2
11 2

1

2

1

PP
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dPP
P

dP P

P

P

P

−==⇒ ∫∫
υυυ

)    -----------------------(1) 

P1 υ1 = P2 υ2   ⇒ υ2 / υ1 = P1/ P2     -----------------------(2) 
Substitute equations (1) and (2) into the genral equation of compressibl fluid to 

give;  
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Let υm the mean specific volume at mean pressure Pm, where,  
Pm =(P1 + P2)/2 

Pm υm = P1 υ1   ⇒ Pm =(P1 + P2)/2 = P1 υ1/ υm 
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If (P1 – P2) / P1 < 0.2 the fist term of kinetic energy  [G2 ln(P1/P2)] is negligible. 

⇒ 
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(i.e. the fluid can be treated as an incompressible fluid at the mean pressure in the pipe.) 

It is used for low-
pressure drop. 

 8.3.1.1 Maximum Velocity in Isothermal Flow  

From equation of isothermal conditions, 
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the mass velocity G = 0 when (P1 = P2) 
At some intermediate value of P2, the flow must therefore be a maximum. To find 

it, the differentiating the above equation with respect to P2 for constant P1 must be 
obtained.  

i.e. (dG/dP2 = 0),  
First dividing the above equation by G2 
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Then differentiating with respect to P2     
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Rearrangement  
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maximum velocity when (dG/dP2 = 0) where, P2 = Pw, and  G = Gw 
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To find Pw, the following equation is used,  
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Example -8.1- 
Over a 30 m length of a 150 mm vacuum line carrying air at 295 K, the pressure falls 

from 0.4 kN/m2 to 0.13 kN/m2. If the relative roughness e/d is 0.003 what is the 
approximate flow rate? Take that μair at 295 K = 1.8 x 10-5 Pa.s   
Solution: 
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It is required the velocity or G for calculating Re that used to estimate Φ from 
Figure (3.7)-vol.I. i.e. the solution is by trial and error  technique. 

1- Assume Φ = 0.004  

kg/kmol29   Pa)10(0.4
 mol/kmol)] [(10 295K /mol.K)(Pa.m 8.3141

3

33
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1 ×

===
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     = 211.434 m3/kg 

⇒ 0
15.0
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GG  

⇒ 4.324 G2 = 0.846 ⇒ G = 0.44 kg/m2.s 

Re = G d / μ = 3686 ⇒ Φ = 0.005 (Figure 3.7) 
2- Assume Φ = 0.005 

⇒ 1.124 G2 + 4 G2  = 0.846 ⇒ G = 0.41 kg/m2.s 

Re = G d / μ = 3435 ⇒ Φ = 0.005 (Figure 3.7) 
 
K.E. = G2 ln(P1/P2) = (0.41)2 ln(0.4/0.13)  = 0.189 kg2/(m4.s2) 
Press.E. = (P2

2 – P1
2) / (2 P1ν1)   = – 0.846 kg2/(m4.s2) 

Frc.E. = 4 Φ L/d G2     = 0.6724 kg2/(m4.s2) 
[(P1 – P2) / P1] %     = 67.5% 
 

Example -8.2- 
A flow of 50 m3/s methane, measured at 288 K and 101.3 kPa has to be delivered 

along a 0.6 m diameter line, 3km long a relative roughness e = 0.0001 m linking a 
compressor and a processing unit. The methane is to be discharged at the plant at 288 K 
and 170 kPa, and it leaves the compressor at 297 K. What pressure must be developed at 
the compressor in order to achieve this flow rate? Take that μCH4 at 293 K = 0.01 x 10-3 Pa.s   
Solution: 
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⇒ G = (50) / [(π/4 0.62)(1.477)] = 119.7 kg/m2.s 
Since the difference in temperature is relatively small, therefore the processes could be 
consider isothermal at (T =  Tm),  

T1 = 297 
K

T2 = 297 K 
P2 = 170 kPa

ΔT/L = 11ºC/3000 m = 0.00366ºC/m = 0.0366 ºC/10 m 
         = 0.366 ºC/100 m = 3.66 ºC/1000 m 

Tm = (297 + 288)/2 = 293 K 
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11 ///.105225.1
kg/kmol61

  293K /kmol.K)(Pa.m 8314
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RT
P m ≡×===υ   

Re = G d / μ = 119.7(0.6)/0.01 x 10-3 = 7.182 x 106, e/d = 0.0001 / 0.6 = 0.00016 

⇒ Φ = 0.0015 (Figure 3.7) 
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⇒ ln P1 – 2.292 x 10-10 P1
2 + 24.58  = 0 10

1
1 10292.2

58.24ln
−×

+
=⇒

p
P  

Solution by trial and error 
P1 Assumed 200 x 103 400.617 x 103 404.382 x 103 404.432 x 103

P1 Calculated 400.617 x 103 404.382 x 103 404.432 x 103 404.433 x 103

⇒  P1 = 404.433 x 103 Pa 
 
K.E. = G2 ln(P1/P2)  = 12418 kg2/(m4.s2) 
Press.E.   =– 442253 kg2/(m4.s2) 
Frc.E.    = 429842 kg2/(m4.s2) 
[(P1 – P2) / P1] %  = 58.5% 
 

Example -8.3- 
Town gas, having a molecular weight 13 kg/kmol and a kinematic viscosity of 0.25 

stoke is flowing through a pipe of 0.25 m I.D. and 5 km long at arate of 0.4 m3/s and is 
delivered at atmospheric pressure. Calculate the pressure required to maintain this rate 
of flow. The volume of occupied by 1 kmol and 101.3 kPa may be taken as 24 m3. What 
effect on the pressure required would result if the gas was delivered at a height of 150 m 
(i) above and (ii) below its point of entry into the pipe? e =  0.0005 m.        
Solution: 
P2 = P1 = 101.3 kPa 
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⇒ G = (0.4) / [(π/4 0.252)(1.846)] = 4.414 kg/m2.s 
Re = G d / μ = G d / (ρ Ȟ) = 4.414 (0.25) / [(1/1.846) 0.25 x 10-4] = 8.1489 x 104, 

e/d = 0.0005 / 0.25 = 0.002 ⇒ Φ = 0.0031 (Figure 3.7) 
 As first approximation the kinetic energy term will be omitted 
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 ⇒ υ1 = (8314) (289) / [(P1) 13] = 184.826 x 103/P1 
 υm = (υ1 + υ2) / 2 = [(184.826 x 103/P1) + 1.846]/2 = [92413.3+0.923 P1]/ P1 
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a
acb

bx
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42 −
±−=

⇒ P1
2 – 105.76 x 103 P1 – 4.4653 x 108 = 0  

 either P1 = 109.825 x 103 Pa   
or P1 = – 4065.8 ------neglect 

K.E. = G2 ln(P1/P2)   = 1.5744 kg2/(m4.s2) 
Press.E.    =– 4831.9 kg2/(m4.s2) 
Frc.E.     = 4831.9 kg2/(m4.s2) 
[(P1 – P2) / P1] %   = 7.7 % 

∴ The first approximation is justified 
 If use the equation of the terms;  
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 = (101.3 x 103)2 + 2(184.8266 x 103) [4(0.0031)(5000/0.25)(4.414)2] 

⇒P1
2 = 1.20478 x 1010 ⇒P1 = 109.762 x 103 Pa 

 If the pipe is not horizontal, the term (g dz) must be included in equation (**) or the 
term (g Δz/υm

2) to integration of this equation [i.e. General equation of energy apply to 
compressible fluid in horizontal pipe with no shaft work] 
 υm = 1.7644 m3/kg,    υair = (8314 x 289)/(101.3 x 103 x 29) = 0.8179 m3/kg 
ρm = 0.5668 kg / m3,    ρair = 1.223 kg / m3 

As gas is less dense than air, υm is replaced by (υair - υm) in potential energy term; 
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(i) Point  150 m above point  ⇒  P1 = 109.762 x 103  - 1555 = 108.207 x 103 Pa 

(ii) Point  150 m below point  ⇒  P1 = 109.762 x 103  + 1555 = 111.317 x 103 Pa 
 

Example -8.4- 
Nitrogen at 12 MPa pressure fed through 25 mm diameter mild steel pipe to a synthetic 

ammonia plant at the rate of 1.25 kg/s. What will be the drop in pressure over a 30 m 
length of pipe for isothermal flow of the gas at 298 K? e =  0.0005 m, μ = 0.02 mPa.s        
Solution: 
P1 = 12 MPa 

 First approximation [neglect the kinetic energy] 
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Re = G d / μ = 2546.48 (0.025) / 0.02 x 10-3 = 3.183 x 106, e/d = 0.0002  

⇒ Φ = 0.0017 (Figure 3.7) 
P2

2 = (12 x 106)2 –2(88484.7) [4(0.0017)(30/0.025)(2546.48)2] 

⇒ P2 = 11.603 x 106  Pa 
K.E. = G2 ln(P1/P2)   = 2.1816 x 105  kg2/(m4.s2) 
Press.E.    = – 529.492 x 105  kg2/(m4.s2) 
Frc.E.     = 529.14 x 105   kg2/(m4.s2) 
[(P1 – P2) / P1] %   = 3.3 % 

∴ the first approximation is justified 
 

Example -8.5- 
Hydrogen is pumped from a reservoir at 2 MPa pressure through a clean horizontal 

mild steel pipe 50 mm diameter and 500 m long. The downstream pressure is also 2 
MPa. And the pressure of this gas is raised to 2.6 MPa by a pump at the upstream end of 
the pipe. The conditions of the flow are isothermal and the temperature of the gas is 293 
K. What is the flow rate and what is the effective rate of working of the pump if η = 0.6      
e = 0.05 mm, μ = 0.009 mPa.s.        
Solution: 

 First approximation [neglect the kinetic energy] 
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H2 

P = 2MPa
H2 

P2 = 2MPa

P1 = 2.6MPa 

P1 = 2.6 MPa, P2 = 2 MPa,  –ΔPf = P1 – P2 = 0.6 x 106 Pa  
ρm = 1/υm = Pm Mwt/RT = (2.3 x 106) 2 / (8314 x 293) = 1.89 kg/m3  
ΦRe2=(-ΔPf/L)(ρmd3/4μ2)=[(0.6x106)/(500)][(1.89)(0.05)3/(4)(0.009x10-3)2]= 8.75x108  

e/d = 0.001 ⇒Figure (3.8) Re = 5.9 x105 ⇒ G = 5.9 x105 (0.009x10-3) / (0.05) 

⇒G = 106.2 kg / m2.s 

Re = 5.9 x105, e/d = 0.001    ⇒ Φ = 0.0025 (Figure 3.7) 
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⇒ G = 106.44 kg / m2.s ------------------------∴ ok 
K.E. = G2 ln(P1/P2)   = 2.9726 x 103  kg2/(m4.s2)  
Press.E.    = – 1133.005 x 103    kg2/(m4.s2) 
Frc.E.     = 1132.94736 x 103   kg2/(m4.s2) 
[(P1 – P2) / P1] %   = 3.3 % 
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∴ the neglecting the 
kinetic energy term is OK

H.W. drive this equation
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Example -8.6- 
In the synthetic ammonia plant the hydrogen is fed through a 50 mm diameter steel 

pipe to the converters. The pressure drop over the 30 m length of pipe is 500 kPa, the 
pressure at the downstream end being 7.5 MPa. What power is required in order to 
overcome friction losses in the pipe? Assume isothermal expansion of the gas at 298 K. 
What error introduced by assuming the gas to be an incompressible fluid of density 
equal to that at the mean pressure in the pipe? μ = 0.02 mPa.s.        
Solution: 

P2 = 7.5 MPa, P1 = P2 + (–ΔPf) =  7.5 MPa + 0.5 MPa = 8MPa = 8 x 106 Pa 
The pressure (Pm) = (P1 + P2)/2 = 7.75 x 106 Pa 
[(P1 – P2) / P1] % = 6.25 % 
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Assume Φ = 0.003 

⇒ G2 = 434,444.444 kg2/m4.s2 ⇒ G = 659.124 kg/m2.s 

⇒ Re =1.647 x 106, and Φ = 0.003  ⇒ from Figure (3.7)  e/d = 0.00189 

 ⇒ e = 0.09 mm (this value is reasonable for steel)  
 For compressible fluids 
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⇒ G2 = 430,593.418 kg2/m4.s2 ⇒ G = 656.2 kg/m2.s 
Very little error is made by the simplifying assumption in this particular case. 
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Example -8.7- 
A vacuum distillation plant operating at 7 kPa pressure at top has a boil-up rate of 

0.125 kg/s of xylene. Calculate the pressure drop along a 150 mm bore vapor pipe used 
to connect the column to the condenser. And also calculate the maximum flow rate if L 
= 6 m, e = 0.0003 m, Mwt = 106 kg/kmol, T = 338 K, μ = 0.01 mPa.s.       
Solution: 
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G = 0.125 / [π/4 (0.15)2] = 7.074 kg/m2.s 
P1 = 7 kPa,  P2 = Pressure at condenser  
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Re = G d / μ = 7.074(0.15)/0.01 x 10-3 = 1.06 x 105, e/d = 0.002  

⇒ Φ = 0.003 (Figure 3.7) 
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Solution by trial and error 
P2 Assumed 5 x 103 6.8435 x 103 6.904 x 103 6.9057 x 103

P2 Calculated 6.8435 x 103 6.904 x 103 6.9057 x 103 6.9058 x 103

⇒  P2 = 6.9058 x 103 Pa 
–ΔP = P1 – P2 = (7 – 6.9058) x 103 = 94.2Pa 
[(P1 – P2) / P1] % = 0.665 % we can neglect the K.E. term in this problem 

H.W. resolve this example with neglecting the K.E. term  
 
For maximum flow rate calculations  

11max11max /1/1 υυ PPGPPAm ww =⇒=&  
To estimate Pw  
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Let X ≡ (P1/Pw)2 

⇒ ln(X) + 1 – X + 8 Φ L/d = 0 ⇒ X = 1.96 + ln(X)  
Solution by trial and error 

X Assumed 1.2 2.14 2.722.96 3.074 3.086 3.087 
X Calculated 2.14 2.72 2.96 3.074 3.086 3.087 3.087 

⇒  X = 3.087 = (P1/Pw)2  ⇒ Pw = P1/(3.087)0.5 = 3984 Pa 

∴  the system does not reach maximum velocity (H.W. explain)  

⇒ Gmax = 3984 / (26510.68)0.5 = 24.47 kg/m2.s 
Example -8.8- 
A vacuum system is required to handle 10 g/s of vapor (molecular weight 56 kg/kmol) 

so as to maintain a pressure of 1.5 kN/m2 in a vessel situated 30 m from the vacuum 
pump. If the pump is able to maintain a pressure of 0.15 kN/m2 at its suction point, what 
diameter of pipe is required? The temperature is 290 K, and isothermal conditions may 
be assumed in the pipe, whose surface can be taken as smooth. The ideal gas law is 
followed. Gas viscosity μ = 0.01 mN s/m2.       
Solution: 
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Re = G d / μ = 1273.25 d-1    ---------------------------------(1) 

( )22
3

11 //64.43054
kg/kmol56

  290K /kmol.K)(Pa.m 8314
smkgJ

Mwt
RT

P ≡===υ  

⇒  2.3 G2 – 52.97 + 120 Φ/d G2 = 0 

⇒  3.733 x 10-4 d-4 – 52.97 + 0.019 d-3 Φ = 0 
4/1

4

3

10733.3
019.097.52

−

−

−

⎥⎦

⎤
⎢⎣

⎡

×
−

=⇒
φd

d ---------------------------------(2) 

Assume smooth pipe  
Solution by trial and error 
            Eq.(1)     Figure (3.7)     Eq.(2) 

Assume  d = 0.1 ⇒   Re = 1.3 x 10-4  ⇒  Φ = 0.0038 ⇒  d = 0.0515 

  d = 0.0515 ⇒  Re = 2.5 x 10-4  ⇒  Φ = 0.0028 ⇒  d = 0.0516 

∴ d = 0.0516 m. 
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8.3.2 Adiabatic Flow of an Ideal Gas in a Horizontal Pipe 

The general energy equation of a steady-state flow system is: -  
dH + g dz + u du = dq -dWs 
For adiabatic conditions (dq = 0) and in horizontal pipe (dz = 0) with no shaft 

work dWs = 0)  

⇒ dH + u du = 0 

but Gu
u

u
A
m

G υ
υ

ρ =⇒===
&

 

⇒ dH + G2 υ d υ = 0 

we have  dH = cp dT,   and dPυ = RdT   ⇒dT = dPυ/R = dPυ/(cp – cv) 

dH  = dU  + d(Pυ) 
cp dT  = cv dT + R dT 

∴ c  = cv + R  p

⇒ dH = cp  [dPυ/(cp – cv)] = (cp / cv) /[(cp – cv)/ cv] dPυ = [γ/( γ – 1)] dPυ 

0
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∴ υυυ
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dGdP  

The integration of this equation gives  
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This equation is used to estimate the downstream pressure P2 

 
To estimate the downstream specific volume υ2 the procedure is as follow  
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But, 
The general equation of energy apply to
compressible fluid in horizontal pipe with
no shaft work
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This equation is used to estimate the downstream specific volume υ2 
 

8.3.2.1 Maximum Velocity in Adiabatic Flow  

For constant upstream conditions, the maximum flow through the pipe is found by 
differentiating (G) with respect to (υ2) of the last equation and putting (dG/dυ2) equal to 
zero.  

The maximum flow is thus shown to occur when the velocity at downstream end 
of the pipe is the sonic velocity.  

i.e. 
2
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Note: -   
In isentropic (or adiabatic) flow [P1υ1 ≠ P2υ2] where, in these conditions [P1υ1

γ ≠ P2υ2
 γ] 

i.e. 1122 υγυγ PPuw ≠=  
Typical values of (γ) for ordinary temperatures and pressures are: - 
i-   For monatomic gases such as He, Ar  (γ = 1.67)  
ii-  For diatomic gases such as H2, N2, CO  (γ = 1.4) 
iii- For tritomic gases such as CO2   (γ = 1.3) 
 
Example -8.9- 
Air, at a pressure of 10 MN/m2 and a temperature of 290 K, flows from a reservoir 

through a mild steel pipe of 10 mm diameter and 30 m long into a second reservoir at a 
pressure P2. Plot the mass rate of flow of the air as a function of the pressure P2. Neglect 
any effects attributable to differences in level and assume an adiabatic expansion of the 
air. μ =  0.018 mN s/m2, γ = 1.36.            
Solution: 
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1- at P2 = P1 ⇒ G = 0 
eq.(2)          Figure (3.7) 

2- assume G = 2000 kg/m2.s ⇒ Re = 1.11 x 106 ⇒ Φ = 0.0028 
Solution by trial and error 
υ2 Assumed 10 x 10-3 9.44 x 10-3

υ2 Calculated eq.(1) 9.44 x 10-3 9.44 x 10-3

⇒  υ2 = 9.44 x 10-3 m3/kg ⇒  P2 = 8.8 x 106 Pa 

3- assume G = 3000 kg/m2.s ⇒ Re = 1.6 x 106 ⇒ Φ = 0.0028  
Solution by trial and error 
υ2 Assumed 10 x 10-3 11.8 x 10-3 
υ2 Calculated eq.(1) 11.8 x 10-3 11.81 x 10-3

⇒  υ2 = 11.84 x 10-3 m3/kg ⇒  P2 = 7.013 x 106 Pa 
G (kg/m2.s) υ2(m

3/kg)  P2(Mpa)
0 8.314 x 10-3 10 

2000 9.44 x 10-3 8.8 
3000 11.81 x 10-3 7.013 
3500 16.5 x 10-3 5.01 
4000 25 x 10-3 3.37 
4238 39 x 10-3 2.04 
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Example -8.10- 
Nitrogen at 12 MN/m2 pressure is fed through a 25 mm diameter mild steel pipe to a 

synthetic ammonia plant at the rate of 0.4 kg/s. What will be the drop in pressure over a 
30 m length of pipe assuming isothermal expansion of the gas at 300 K? What is the 
average quantity of heat per unit area of pipe surface that must pass through the walls in 
order to maintain isothermal conditions? What would be the pressure drop in the pipe if 
it were perfectly lagged? What would be the maximum flow rate in each case? Or what 
would be the Mach number?  μ = 0.02 mNs/m2, γ = 1.36, e/d = 0.002.            
Solution: 
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24/ d
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π
&

= = 0.4 / [π/4 (0.25)2] = 814.9 kg/m2 .s,  Re = G d / μ = 1.02 x 106 

e/d = 0.002  ⇒  Φ = 0.0028 Figure (3.7) 
 Neglect the K.E. term  

⇒  P2
2 = P1

2 – 2 P1υ1(4 Φ (L/d) G2) = 1.4241 x 1014 

⇒  P2 = 11.93 x 106 Pa 
K.E. = G2 ln(P1/P2)   = 3.885 x 104  kg2/(m4.s2)  ∴ the neglecting the 

kinetic energy term is OK
Press.E.    = – 940.24 x 104    kg2/(m4.s2) 
Frc.E.     = 892.5 x 104   kg2/(m4.s2) 
[(P1 – P2) / P1] %   = 0.583 % 

⇒  –ΔP = P1 – P2  = 0.07 x 106 Pa 
 

  isothermal  horizontal      no shaft work 
dH + g dz + u du = dq -dWs 

⇒  u du = dq ⇒  q = Δu2/2 = u1
2/2  [since the veloity in the plant is taken as zero] 

⇒  q = (G υ1)
2 /2 = [814.9(89078.6/12 x 106)]2 / 2 = 18.3 J/kg 

The total heat pass through the wall  = 0.4 (18.3) = 7.32 W qmqT &=
Heat flux  = qT / (π d L) = 7.32 / [π (0.025) 30] = 3.1 W/m2 Aqq T /=′′
It is clear that the heat flux is very low value that could be considered the process is 

adiabatic. 
For adiabatic conditions 
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Solution by trial and error 
υ2 Assumed 10 x 10-3 7.5 x 10-3 
υ2 Calculated  7.5 x 10-3 7.46 x 10-3

⇒  υ2 = 7.46 x 10-3 m3/kg  
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+=
GP

P ⇒  P2 = 11.94 x 106 Pa 

This value of P2 in adiabatic conditions is very close to the value in isothermal 
condition since the actual heat flux is very small.  

 

8.4 Converging-Diverging Nozzles for Gas Flow  

Converging-diverging nozzles, sometimes known as “Laval nozzles”, are used for 
expansion of gases where the pressure drop is large.  
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P1: the pressure in the reservoir or initial pressure. 
P2: the pressure at any point in diverging section of the nozzle. 
PE: the pressure at exit of the nozzle.  
PB: the back pressure or the pressure at end.  
Pcritical: the pressure at which the velocity of the gas is sonic velocity. 

Because the flow rate is large for high-pressure differentials, there is little time  
for heat transfer to take place between the gas and surroundings and the expansion is 
effectively isentropic [adiabatic + reversible].   
In these conditions, 
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 the genral energy equation for any type of fluid. 

for gas flow from reservoir (u1 = 0) at pressure (P1) in a horizontal direction, with no 
shaft work, and by assuming F=0 this equation becomes 
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Flow of Compressible Fluid
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To estimate the velocity at any point 
downstream 

Cross-sectional area at any point 
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8.4.1 Maximum Velocity and Critical Pressure Ratio  

Critical pressure is the pressure at which the gas reaches sonic velocity [i.e. Ma =1.0].  
In converging-diverging nozzles, if the pressure ratio (P2/P1) is less than the 

critical pressure ratio (Pcritical/P1) (usually, ≈ 0.5) and the velocity at throat is then equal 
to the velocity of sound, the effective area for flow presented by nozzle must therefore 
pass through a minimum. Thus in a converging section the velocity of the gas stream 
will never exceed the sonic velocity, though supersonic velocities may be obtained in the 
diverging section of the converging-diverging nozzle. 

 
Case (I)  [PB high, Pt > Pcritical ] 
The pressure falls to a minimum at throat 
[lager than critical pressure] and then rises to 
a value (PE1=PB). The velocity increase to the 
maximum at throat [less than sonic velocity] 
and then decreases to a value of (uE1) at the 
exit of the nozzle. [ Case (I) is corresponding 
to conditions in a venturi meter operating 
entirely at subsonic velocities]  
   
Case (II)  [PB reduced, PB > (Pt = Pcritical )] 
The pressure falls to a critical value at throat 
where the velocity is sonic. The pressure then 
rises to a value (PE2=PB) at the exit of the 
nozzle. The velocity rises to the sonic value at 
the throat and then falls to a value of (uE2) at 
the exit of the nozzle.  
   
Case (III)  [PB low, PB < (Pt = Pcritical )] 
The pressure falls to a critical value at throat 
and continues to fall to give an exit pressure 
(PE3=PB). The velocity rises to the sonic value 
at the throat and continues to increase to 
supersonic in the diverging section cone to a 
value (uE3) at the exit of the nozzle.  
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With converging-diverging nozzle, the velocity increases beyond the sonic 
velocity [i.e. reach supersonic velocity] only if the velocity at the throat is sonic [i.e. 
critical pressure at throat] and the pressure at outlet is lower than the throat pressure. 

   

8.4.2 The Pressure and Area for Flow  

In converging-diverging nozzles, the area required at any point depend upon the 
ratio of the downstream to upstream pressure (P2/P1), and it is helpful to establish the 
minimum value of (At = A2). 
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To find the maximum value of (G2) i.e. (G2)max, set (dG2
2/dr =0) where, r =P2/P1 to get 

the following equation   22max /υγPG = . 
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Example -8.11- 
Air enters at a pressure of 3.5 MPa and a temperature of 500ºC. The air flow rate th 

rough the nozzle is 1.3 kg/s and it leaves the nozzle at a pressure of 0.7 MPa. The 
expansion of air may be considered adiabatic. Calculate the area of throat and the exit 
area. Take γ = 1.4.            
Solution: 
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⇒ Pcritical = Pt = 0.528 (3.5 MPa) = 1.85 MPa 
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At exit (P2/P1) = 0.7/3.5 = 0.2 
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8.5 Flow Measurement for Compressible Fluid  

For horizontal flow with no shaft work and neglecting the frictional energy tem, 
the net of the general energy will be: - 
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It should be noted that equations (1) and (2) apply provided that (P2/P1) is greater 

than the critical pressure ratio (rc). Where if  (P2/P1) < (rc), the flow becomes 
independent on P2 and conditions of maximum flow occur. 
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8.6 Fans, Blowers, and Compression Equipment  

Fans and blowers are used for many types of ventilating work such as air-
conditioning systems. In large buildings, blowers are often used due to the high delivery 
pressure needed to overcome the pressure drop in the ventilation system. 

Blowers are also used to supply draft air to boilers and furnaces.  
Fans are used to move large volumes of air or gas through ducts, supplying air to 

drying, conveying material suspended in the gas stream, removing fumes, condensing 
towers and other high flow, low pressure applications. 

Fans are used for low pressure where generally the delivery pressure is less than 
3.447 kPa (0.5 psi), and blowers are used for higher pressures. However they are usually 
below delivery pressure of 10.32 kPa (1.5 psi). These units can either be centrifugal or 
the axial-flow type. 

The axial flow type in which the air or gas enters in an axial direction and leaves 
in an axial direction.  

The centrifugal blowers in which the air or gas enters in the axial direction and 
being discharge in the radial direction. 
Compressors 

Compressor are used to handle large volume of gas at pressures increase from 
10.32 kPa (1.5 psi) to several hundred kPa or (psi). Compressors are classified into: -            

1- Cotinuous-flow compressors 
1-a- Centrifugal compressors 
1-b- Axial-flow compressors    

2- Positive displacement compressors 
2-a- Rotary compressors 
2-b- Reciprocating compressors  
Since a large proportion of the energy of compression appears as heat in the gas, 

there will normally be a considerable increase in temperature, which may limit the 
operation of the compressors unless suitable cooling can be effected. For this reason gas 
compression is often carried out in a number of stages and the gas is cooled between 
each stage.     

8.7 Gas Compression Cycle 

Suppose that, after the compression of a 
volume V1 of gas at P1 to a pressure P2, the whole 
of the gas is expelled at constant pressure P2, and a 
fresh charge of gas is admitted at a pressure P1. 
The cycle can be followed as in Figure, where P is 
plotted as ordinate against V as abscissa.      

Point 1 represents the initial conditions of 
the gas of pressure and volume of (P1,V1). 
► A-line 1→2 Compression of gas from (P1,V1) 

to (P2,V2). P1 

V1 

P 

V  

P2 

V2 

A 

B 

C 

D 

1 

2 3 

4 

5 6 
0 

► B-line 2→3 Expulsion of gas at constant 
pressure P2. 
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► C-line 3→4 Sudden reduction in pressure in the cylinder from P2 to P1. As the 
whole of the gas has been expelled. 

► D-line 4→1 A fresh charge of the gas through the suction stroke of the piston, 
during which a volume V1 of gas is admitted at constant pressure P1. 

The Total Work Done Per Cycle 

It will be noted that the mass of gas in the cylinder varies during the cycle. The 
work done by the compressor during each of the cycle is as follows: - 

- Step (A): Compression      [area 1→2→5→6] ∫−
2

1

V

V

PdV

- Step (B): Expulsion    P2V2    [area 2→3→0→5] 
 - Step (D): Suction           – P1V1    [area 4→0→6→1] 

∴ the total work done per cycle  = + P2V2 – P1V1   ∫−
2

1

V

V

PdV

       = [area 1→2→3→4] 

 dPV = P dV + V dP  ⇒  P dV = dPV – V dP  

  ∫ ∫∫ −=−
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⇒ the total work done per cycle  = – P2V2 + P1V1 + P2V2– P1V1 ∫
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Or  The total work done per cycle (W)  = + ΔPV ∫−
2

1

V

V

PdV

                       ⇒      dW  = –P dV + dPV = –PdV + VdP + PdV 

                      ⇒      dW  = dPV ⇒ W = ∫       
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 Under isothermal conditions    

The work of compression for an ideal gas per cycle =   ∫ ∫=
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                = RT ln(P2/P1) = P1V1 ln(P2/P1)   
 Under adiabatic conditions    

The work of compression for an ideal gas per cycle =   ∫ ∫ −=
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8.7.1 Clearance Volume 

It practice, it is not possible to expel the whole of the gas fro the cylinder at the end 
of the compression; the volume remaining in the cylinder after the forward stroke of the 
piston is termed “the clearance volume”. 

The volume displaced by the piston is termed “the swept volume”, and therefore 
the total volume of the cylinder is made up of the clearance volume plus the swept 
volume.  

i.e.  Total volume of cylinder = [clearance volume + swept volume] 
A typical cycle for a compressor with a finite 

clearance volume can be followed by reference to 
the Figure; 

A volume V1 of gas at a pressure P1 is 
admitted to the cylinder; its condition is 
represented by point 1, 
► A-line 1→2 Compression of gas from (P1,V1) 

to (P2,V2). 
► B-line 2→3 Expulsion of gas at constant 

pressure P2, so that the volume remaining in 
the cylinder is V3.  P1 

V1 

► C-line 3→4 Expansion of this residual gas to 
the lower pressure P1 and volume V4 during 
the return stroke. 

► D-line 4→1 Introduction of fresh gas into the c

 Total Work Done Per Cycle

ylinder at constant pressure P. 1

The  

The work done by the compressor during each of the actual cycle is as follows: - 

V

- Step (B): Expulsion   P2 (V2-V3)  

   

 - Step (D): Suction          – P1 (V1-V4)      
sum of these four components. It is 

repre

=    

       =

- Step (A): Compression   ∫−
2V

PdV     
1

- Step (C): Expansion  ∫−
4

 
3
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PdV

The total work done per cycle is equal to the 
sented by the selected area [i.e. area 1→2→3→4], which is equal to 

[area1→2→5→6] less [area 3→4→5→6] 
 Under isentropic conditions   

The work done per cycle     ∫∫ −
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Now V  os not know explicitly, but can be calculated in terms of V3, the clearance 

  V  = V  (P /P )1/γ 
And  

1 – V3)}  – {V 3 /(V1 – V3)}  (P2/P1)
1/γ] 

  
) = C : the clearance 

1 4 = V γ

 per cycle is therefore, 

4

volume, for isentropic conditions     
4 3 2 1

  V1 – V4 = (V1 – V3) + V3 – V3(P2/P1)
1/γ 

       = (V  – V ) [1+ {V 3 /(V1 3

where  
(V1 – V3) = V  : the swept volume s

V   : the clearance volume 3

V /(V  – V3 1 3

 V  – V 1/⇒   s [1+ C – C (P2/P1) ] 

∴ The total work done on the fluid
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CC is called “the theoretical volumetric efficiency”, and 

is a measure of the effect of the clearance on an isentropic compression. 
quently cooledThe as is fre  

less than that given by the last equation, (γ) is replaced by some smaller quantity (k). the 

and frictional effects, where, 

during compression so that the work done per cycle is 

greater the rate of heat removal, the less is the work done. 
Notice that the isothermal compression is usually taken as the condition for the 

least work of compression. The actual work of compression is greater than the 
theoretical work because of clearance gases, back leakage, 

η = Wtheo/Wact        
 
8.8 Multistage Compressors 

The maximum pressure ratio normally obtained in a single cylinder is (10) but 
alues above (6) are usual. If the required pressure ratio (P2/P1) is large, it is not 

ole of the compression in a single cylinder because of the 
high t

he work done in compressing isentropically 
from 

 cooled to its initial temperature in an inter-stage 
cooler

 

v
practicable to carry out the wh

emperatures, which would be set up, and the adverse effects of clearance volume 
on the efficiency. Further, lubrication would be difficult due to carbonization of the oil 
and there would be a risk of causing oil mist explosions in the cylinders when gases 
containing oxygen were being compressed. 

The operation of the multistage compressor can conveniently be followed again 
on a pressure-volume diagram as shown in the Figure, 

The [area 1→2→3→4] represents t
P1 to P2 in a single stage. The [area1→2→5→46] represents the necessary 

work for an isothermal compression. 
 Now consider a multistage isentropic compression in which the intermediate 

pressures are Pi1, Pi2, Pi3, …………etc. 
The gas will be assumed to be
 before it enters each cylinder. 
 



Chapter Eight Fluid Flow    Flow of Compressible Fluid 

25-Ch.8         Dr . Salah S. Ibrahim 

► A-
ere a

volume (V1) of gas is admitted at a 
pressure (P1). 

► C
 the first stage at a 

► D uction 

t which would 

      

► E compression in the second stage from a 

► F the second stage. 
► G-line V     represents the suction stroke of the third stage point    again lyses on 

done on the gas is intermediate between that for a 

The

line 1→2 represents the suction 
stroke of the first stage wh  

► B-line 2→6 represents an isentropic 
compression to a pressure (Pi1).  
-line 6→7 represents the delivery of 
the gas from
constant pressure (Pi1). 
-line 7→8 represents the s

stroke of the second stage. The volume 
of the gas has the reduced in the inter-
stage cooler to (Vi1), tha
have been obtained as a result of an 
isothermal compression to (Pi2).  
      
-line 8→9 represents an isentropic 
pressure (Pi1) to a pressure (Pi2). 
-line 9→V represents the delivery stroke of 

→
the line 2→5 that representing an isothermal compression.  

It is seen that the overall work 
single stage isothermal compression and that for isentropic compression. The net saving 
in energy is shown as the shaded area in the last Figure.   

 Total Work Done for Multistage Compressors 

 The total work done for compression the gas from P1 to P2 in an ideal single stage is, 
( )
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 The total work done for compression the gas from P1 to P2 in an ideal two stages is, 
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but for perfect inter-stage cooling i.e. at isothermal line P1V1 = Pi1V i1= constant 
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 The total work done for compression the gas from P1 to P2 in an ideal n-stages is, 
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for perfect inter-stage cooling P1V1= Pi1V i1= Pi2V i2= ------ = Pin-1V in-1= constant 
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The optimum values of intermediate pressures Pi1, Pi2, Pi3, -------Pin-1 are so that 
the compression ratio (r) is the same in each stage and equal work is then done in 
each stage.  
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effect of clearance volume can now be taken into account. If the clearance in 
the successive cylinders are C1, C2 C3, -------Cn the theoretical volumetric efficiency of 
the first cylinder = ] . 

Assuming that the same compression ratio is used in each cylinder, then the 
theoretical volumetric efficiency of the first stage = 

The 

( )[ γ/1
1111 /1 PPCC i−+

( )[ ]γnPPCC /1
1211 /1 −+ . 

If the swept volumes of the cylinders are Vs1, Vs2, Vs3, ----------- the volume of the 
gas ad

are assumed perfe y efficient, the ratio of the volumes of gas 
admitt

n r

mitted to the first cylinder = ( )[ ]γn
s PPCCV /1

12111 /1 −+  
The same mass of gas passes through each of the cylinders and, therefore, if the 

inter-stage coolers ctl
ed to successive cylinder is (P1/P2)

1/n [because lies on the isothermal line]. 
The volume of gas admitted to the second cyli de   
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Where, Vi : represents the volume of gas admitted to stage i. 

But for perfectly cooled [i.e. isothermal]  ⇒P V  = P V = P 2= --------= Pin-1Vn 

In this manner the swept volume of each cylinder can be calculated in terms of 
Vs1, and C1, C2, …………., and the cylinder dimensions determined. 
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Example -8.12- 
A single-acting air compressor supplies 0.1 m3/s of air (at STP) compressed to 380 kPa 

from 101.3 kPa. If the suction temperature is 289 K, the stroke is 0.25 m, and the speed 
is 4 Hz, what is the cylinder diameter? Assume the cylinder clearance is 4% and 
compression and re-expansion are isentropic (γ=1.4). What are the theoretical power 
requirements for the compression?            
Solution: 
S ية ومتشابهة")  troke(حرآة من سϠδϠة حرآات متϠδϠδة "متوال  
V 3 -1

Vs[1+0.04-0.04(3.75)  ⇒ Vs = 0.0283 m3 = (V1 – V3) ≡ volume of cylinder 
.25 = 0.113 m2 

 

olume of gas per stroke = (0.1 m/s)/4s  (289/273) 
    = 0.0264 m3   
    =(V1–V4) ≡[volume of gas admitted per cycle]  
P2/P1 = 380/101.3 = 3.75 
(V1–V4) = Vs [1+ C – C (P2/P1)

1/γ] 
1/1.4

0.25 m

0.0264   = 
Cross-section area of cylinder = Vs/Lstroke = 0.0283/0

⇒ The diameter of cylinder = [0.113/(π/4)]1/2 =0.38 m
( ) ⎤⎡ − /1 γγ

⎥
⎥⎢ −⎟

⎠

⎞
⎜
⎝

⎛
−= 1)( 2

411

γ
P

P
VVPW  

⎢⎣−1γ ⎦1

r per cycle]     for 1kg of gas that compressed [o

( )[ ] kgJW /4278175.3)0264.0)(103.101(
4.1 4.1/4.03 =−×=⇒ per stroke 
4.0

The theoretical power required = 4278 J/kg (4s-1) per stroke= 17110 W =17.11kW   

Example -8.13-
 

 
Air at 290 K is compressed from 101.3 kPa to 2065 kPa in two-stage compressor 

%. The relation between pressure and 
pansion of clearance gas is (PV1.25 = 

constant). The compression ratio in each of the two cylinders is the same, and the inter-
stage 
4% an

ompression per kg of air compressed; 

operating with a mechanical efficiency of 85
volume during the compression stroke and ex

cooler may be assumed 100% efficient. If the clearance in the two cylinders are 
 5%, calculate: d

a- The work of c
b- The isothermal efficiency; 
c- The isentropic efficiency; 
d- The ratio of swept volumes in the two cylinders. 

Solution: 
P2/P1 = 2065/101.3 = 20.4 

( )kgm
PaMwtP kg/kmol29)103.101( 3

1
1 ×

RT
V

  290K /kmol.K)(Pa.m 8314 3

== /82.0 3=  

at inter-stage, the work of compression in multistage For 100% efficient of cooler 
compressor of n-stages is; 
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The work of compressor = Wact = W/η =292.3/0.85 = 344 kJ/kg 
For isothermal compression = Wiso = P1V1 ln(P2/P1) = 250.5 kJ/kg 

 = Wadb = P1V1 γ/(γ –1) [(P2/P1) -1]   = 397.4 kJ/kg 
Isentropic efficiency = (Wadb/ Wact) 100 = 115.5 % 

35.2/1

Isothermal efficiency = (Wiso/ Wact) 100 = 72.8 % 
For isentropic compression (γ-1)/ γ 

( )[ ]γn
s PPCCVV /1

121111 /1 −+=  
( )

ss /905.04.2004.004.0182.0 11 =⇒−+=⇒  [ ] kgmVV

The swept volume of the second cylinder is given by: 
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/1
1211 /1 ⎟

⎞
⎜
⎛−+

= انتبه 

( )
( )[ ]

( )
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PPCC ns /206.0
4.2005.005.01/1

3
5.2/1/1

1222

211
2 −+

=
−+ γ  

∴ V /V  = 0.905/0.206 = 4.4 

Example -8.14-

PPV
V

n 4.20/182.0/ 2/1/1

==

s1 s2

 
 

Calculate the theoretical work in (J/kg) required to compress a diatomic gas initially at 
T = 200 K adiabatically compressed from a pressure of 10 kPa to 100 kPa in;  

1- Single stage compressor; 
2- Two equal stages; 

 γ = 1.4, Mwt = 28 kg/kmol 
olution:
3- Three equal stages; Taken that

S  

1
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P2/P1 = 100/10 = 10 
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100% efficient of cooler at inter-stage, the work of compression in multistage 

 

For 
compressor of n-stages is; 
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Example -8.15- 
A three stages compressor is required to compress air from 140 kPa and 283 K to 4000 

kPa. Calculate the ideal intermediate pressures, the work required per kg of gas, and the 
isothermal efficiency of the process. Assume the compression to be adiabatic and perfect 

to the initial temperature. Taken that γ = 1.4. 
oluti n:

the inter-stage cooling to cool the air 
S o  

057.3
1401211

=⎟
⎠

⎜
⎝

=⎟
⎠

⎜
⎝ PPP ii

 

⇒ Pi1=3.057 (140) =428 kPa 
 Pi2=3.057 (428) =1308.4 kPa 

4000 3

1
3

1

2 ⎞⎛⎞⎛P

P

P 221 ==== r
PPii 1P1 Pi1 2 Pi2 

( ) ⎤⎡ ⎞⎛ − /1 γγ
γ

n
P
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⎥
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−⎟
⎠
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1
1 1

2

γ P
 = 11

n
VPW

( )kgkJ
Mwt
RT

VP /133.81
kg/kmol)29(

  283K /kmol.K)(Pa.m 8314 3

11 ===  

kgkJW /43.3201
1404.0

133.81 =⎥
⎦

⎢ −⎟
⎠

⎜
⎝

⇒
4000)4.1(3 2.4/4.0⎡ ⎞⎛ ⎤

⎣
=  

For isothermal compression = Wiso = P1V1 ln(P2/P1) = 272 kJ/kg 
Isothermal efficiency = (Wiso/ W) 100 = 84.88 % 

Example -8.16- 
A twin-cylinder single-acting compressor, working at 5 Hz, delivers air at 515 kPa 

pressure at the rate of 0.2 m3/s. If the diameter of the cylinder is 20 cm, the cylinder 
clearance ratio 5%, and the temperature of the inlet air 283 K, calculate the length of 

=1.4).          stroke of the piston and delivery temperature (γ     
Solution:

   
 

T (γ-1)/ γ   ⇒ T =283(515/101.3)0.4/1.4=450K  2/T1 = (P2/P1) 2

T

05 (515/101.3) ]    

 0.0718 m3 = π/4 (0.2)2 Lstroke⇒  L  = 2.286 m 

he volume handled per cylinder = 0.2/2 =0.1 m3/s 
Volume per stroke per cylinder = (0.1 m3/s) / (5 s-1) = 0.02 m3 
Volume at inlet conditions = (0.02 m3) (283/450) (515/101.3) = 0.0639 m3 

 V1 – V4 = Vs [1+ C – C (P2/P1)
1/γ] ⇒  0.0639 = Vs [1+ 0.05 – 0. 1/1.4

⇒  Vs = stroke

Example -8.17- 
In a single-acting compressor suction pressure and temperature are 101.3 kPa and 283 

ic and each new charge is 
 temperature 

K, the final pressure is 380 kPa. If the compression is adiabat
heated 18 K by contact with the clearance gases, calculate the maximum
attained in the cylinder (γ=1.4).                 
Solution: On the first stroke the air enters at 283 K and is com

 ⇒ 0/ 01.3)0.4/1.4 = 415 K 

pressed adiabati ly cal

1
T

linder = 301 K, and Texit = 439.2 K. 

  T2 = 283 (38
he clearance volume gases at 413 K which remain in the cylinder are able to raise the 

next cylinder full of air by 18 K i.e. the air temperature in the next cylinder is [18 + 283 

= 301 K] ⇒  The exit temperature = 301 (380/101.3)0.4/1.4 = 439.2 K 
 On each subsequent stroke Tin=283 K, Tcy

3 P2 

0.2 m 
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  Example -8.18- 
A single-stage double-acting compressor running at 3 Hz is used to compess air from 

110 kPa and 282 K to 1150 kPa. If the internal diameter of the cylinder 20 cm, the 
length of the stroke 25 cm, and the piston clearance 5%. Calculate; 

a- The maximum capacity of machine, referred to air at initial conditions; 
b- The theoretical power requirements under isentr  conditionsopic . 

Solution:  
The swept volume per stroke = 2[π/4 (0.2)  (0.25)] = 0.0157 m 

(V1 – V4) =Vs[1+ C – C (P2/P1)
1/γ] ⇒(V1 – V4) = 0.0157[1+ 0.05 – 0.05 (1150/110)1/1.4]    

⇒ (V1 – V4) = 0.0123 m3  

2 3

( )

⎥
⎥
⎦⎢

⎢
⎣

−⎟
⎠

⎜
⎝−

−= 1
1

)(
1

2
411 γ P

VVPW
⎤⎡ ⎞⎛ − /1 γγ

γ P
strokekJW 1

1104.0
)0123.0(110 =⎥

⎦
⎢
⎣

−⎟
⎠

⎜
⎝

=⇒ /775.5  

C

11504.1 4.1/4.0 ⎤⎡ ⎞⎛

The power required = (3 stroke/s)(5.775 kJ/stroke) = 17.324 kW 
=  3 3  apacity  (3 stroke/s) (0.0123 m/stroke) = 0.0369 m/s

  Example -8.19- 
Methane is to be compressed fom atmospheric pressure ton 30 MPa in four stages. 

Calculate the ideal intermediate pressures and the work required per kg of gas. Assume 
compression to be isentropic and the gas to behave as an ideal gas and the initial 
condition at STP (γ=1.4). 
Solution: 
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CHPTER NINE  

Liquid Mixing  
9.1 Introduction  

Mixing is one of the most common operations carried out in the chemical, 
processing. The term “ Mixing ” is applied to the processes used to reduce the degree of 
non-uniformity, or gradient of a property in the system such as concentrations, viscosity, 
temperature, and so on. Mixing is achieved by moving material from one region to 
another. It may be interest simply as a means of achieving a desired degree of 
homogeneity but it may also be used to promote heat and mass transfer, often where a 
system is undergoing a chemical reaction. 

A rotating agitator generates high velocity streams of liquid, which in turn entrain 
stagnant or slower moving regions of liquid resulting in uniform mixing by momentum 
transfer. As viscosity of the liquid is increased, the mixing process becomes more 
difficult since frictional drag retards the high velocity streams and confines them to 
immediate vicinity of the rotating agitator.      

9.2 Types of Agitators 

In general, agitators can be classified into the following two types: - 
1- Agitators with a small blade area, which rotate at high speeds. These include 

turbines and marine type propellers. 
2- Agitators with a large blade area, which rotate at low speeds. These include 

anchors, and Paddles, and helical screws. 

 

 

Six-blade flat blade turbine Marine Propeller  
 

 
The second group is more effective than the first in the mixing of high viscosity-

liquids.  
For a liquid mixed in a tank with a rotating agitator, the shear rate is greatest in 

the intermediate vicinity of agitator. In fact the shear rate decreases exponentially with 
distance from the agitator. Thus the shear stresses and strains vary greatly throughout an 
agitated liquid in tank. Since the dynamic viscosity of a Newtonian liquid is independent 
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Liquid Mixing
of shear rate at a given temperature, its viscosity will be the same at all points in the 
tank. In contrast the apparent viscosity of a non-Newtonian liquid varies throughout the 
tank. This in turn significantly influences the mixing process.  

The mean share  produced by an agitator in a mixing tank is proportional to the 
rotational speed of the agitator N 

mγ&

i.e. KNN mm =⇒∝ γγ &&  

where, K is a dimensionless proportionality constant for a particular system. 
It is desirable to produce a particular mixing result in the minimum time (t) and 

with the minimum input power per unit volume (PA/V). Thus the efficiency function (E) 
can be defined as  

⎟
⎠
⎞

⎜
⎝
⎛⎟

⎠

⎞
⎜
⎝

⎛
=

tVP
E

A

1
/

1
    

 

9.2.1 Small Blade, High Speed Agitators  

They are used to mix low to medium 
viscosity liquids. Two of most common types 
are 6-blade flat blade turbine and the marine 
type propeller. 

Flat blade turbines used to mix liquids 
in baffled tanks produce radial flow patterns 
primarily perpendicular to the vessel wall. 
This type is suitable to mix liquids with 
dynamic viscosity up to 50 Pa.s.   

Marine type Propellers used to mix 
liquids in baffled tanks produce axial flow 
patterns primarily parallel to the vessel wall. 
This type is suitable to mix liquids with 
dynamic viscosity up to 10 Pa.s. 

Radial flow pattern produced by a flat blade turbine

 
 

Agitator Tip Speed (TS) 

Is commonly used as a measure of the 
degree of the agitation in a liquid mixing 
system. 

 TS = π DA N 
Where,  DA: diameter of agitator. 
  N: rotational speed. 

Tip speed ranges for turbine agitator are 
recommended as follows: 

TS = 2.5 to 3.3 m/s for low agitation. 
TS = 3.3 to 4.1 m/s for medium agitation. 
TS = 4.1 to 5.6 m/s for high agitation.   

Axial flow pattern produced by a marine 
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Standard Tank Configuration  

A turbine agitator of 
diameter (DA) in a cylindrical 
tank of diameter (DT) filled 
with liquid to a height (HL). 
The agitator is located at a 
height (HA) from the bottom 
of the tank and the baffles, 
which are located immediately 
adjacent to the wall, have a 
width (b). The agitator has a 
blade width (a) and a blade 
length (r) and the blades are 
mounted on a central disc of 
diameter (s). A typical turbine 
mixing system is the standard 
configuration defined by the 
following geometrical 
relationships: - 
 
1- a 6-blade flat blade turbine 

agitator. 
2- DA  = DT / 3  
3- HA  = DT / 3 
4- a   = DT / 5 
5- r   = DT / 8 
6- HL  = DT  
7- 4 symmetrical baffles  
8- b   = DT / 10  
 
 
 
 
 

Processing considerations sometimes necessitate deviations from the standard 
configuration.   

Marine Type Propeller 

It can be considered as a case-less pump. In this case its volumetric circulating 
capacity (QA) is related to volumetric displacement per revolution (VD) by the equation; 

QA = η VD N  
where,  η: is a dimensionless efficiency factor which is approximately (0.6). 

VD is related to the propeller pitch (P) and the propeller diameter (DA) by the 
equation; 

Baffle

Driving Shaft 

Tank 

6-blade flat 
blade turbine

a

HA

s
DA 

DT

HL 

b

Figure of Standard Tank Configuration 
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4

2 PD
V A

D

π
=  

Most propellers are square pitch propellers where (P = DA) so that the last equation 
becomes; 

  
4

3
A

D

D
V

π
=   

4

3 ND
Q A

A

ηπ
=⇒  

A tank turnover rate (IT) is defined by the equation; 
IT = QA / V  

where, V: is the tank volume and IT: is the number of turnovers per unit time. 
To get the best mixing IT should be at a maximum for a given tank volume (V), this 

means that the circulating capacity QA should have the highest possible value for the 
minimum consumption of power. 

The head developed by the rotating agitator (hA) can be written as; 
 hA = C1 N

2 DA
2   where, C1 is a constant. 

QA/hA = C DA/N where, C = ηπ/(4C1) 
but KNm =γ&  

 
m

A

A

A D
C

h

Q

γ&
′=   where, C´ = C.K = constant 

9.2.2 Small Blade, High Speed Agitators  

This type of agitators includes anchors, gates, paddles, helical ribbons, and 
helical screws. They are used to mix relatively high viscosity liquids and depend on a 
large blade area to produce liquid movement throughout a tank. Since they are low shear 
agitators.   

 
 

Gate type anchor agitator Flow pattern in a baffled helical screw 
system 
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9.3 Dimensionless Groups for Mixing  

Some of the various types of forces that may be arise during mixing or agitation will 
be formulated: - 
1- Inertial Force [Fi] 

Is associated with the reluctance of a body to change its state of rest or motion. 
The inertial force (Fi) = (mass) (acceleration) = m.a  
    dFi = dm (du/dt) 
but   m  = ρ V   = ρ A L   

⇒  dm = ρ dV  = ρ A dL 
and   u = dL/dt   

  ⇒ dFi = ρ A dL du/dt  =  ρ A (dL/dt) du = ρ A u du 

  ⇒   = ρ A u2/2  ∫ ∫==
iF u

ii AududFF
0 0

ρ

In mixing applications; 

   A ∝ DA
2    DA: diameter of agitator 

   u = π DAN    N: rotational speed 
Therefore, the expression for inertial force may be written as; 

   Fi ∝ ρ DA
4 N2  

2- Viscous Force [Fv] 
The viscous force for Newtonian fluid is given by: 
     Fv = μ A (du/dy) 
In mixing applications; 

   A ∝ DA
2;   du/dy ∝ π DAN /DA    

Therefore, the expression for viscous force may be written as; 

   Fv ∝ μ DA
2 N  

3- Gravity Force [Fg] 
The inertial force (Fg) = (mass) (gravitational acceleration) = m.g 
In mixing applications; 

 m  = ρ V   = ρ A L  ∝ ρ DA
3 

   Fg ∝ ρ DA
3 g  

4- Surface Tension Force [Fσ] 
In mixing applications; 

   Fσ ∝ σ DA    
In the design of liquid mixing systems the following dimensionless groups are of 

importance: - 
1- The Power Number (Np) 

 

53
A

A

DN

P
Np

ρ
=  

 where, PA: is the power consumption. 

Or  dtuAdtmdm
dt
dm

m ρ==⇒= &&  
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2- The Reynolds Number (Re)m 
 

( )
ForceViscous

 Force Inertial
Re =m  

ND

ND

F

F

A

A

v

i
2

24

µ
ρ

==  

( )
µ

ρ 2

Re A
m

ND
=⇒  

 
3- The Froude Number (Fr)m 

This number related to fluid surface [related to vortex system in mixing]   

( )
ForceGravity

 Force Inertial
=mFr  

gD

ND

F

F

A

A

g

i
3

24

ρ
ρ

==  

( )
g

DN
Fr A

m

2

=⇒  

4- The Weber Number (We)m 
This number related to multiphase fluids [or fluid flow with interfacial forces]   

( )
ForceTension Surface
 Force Inertial

=mWe  
A

Ai

D

ND

F

F

σ
ρ

σ

24

==  

( )
σ

ρ 32
A

m

DN
We =⇒  

  
It can be shown by dimensional analysis that the power number (Np) can be 

related to the Reynolds number (Re)m and the Froude number (Fr)m by the equation; 
( ) ( ) y

m
x
m FrCNp Re=   

where, C is an overall dimensionless shape factor which represents the geometry of the 
system.  

 The last equation can also be written in the form;  

 
( )

( ) x
my

m

C
Fr

Np
Re==Φ  

where, Φ is defined as the dimensionless power function.  
 The Froude number (Fr)m is usually important only in situations where gross 

vortexing. Since vortexing is a gravitational effect, the (Fr)m is not required to describe a 
baffled liquid mixing systems. In this case the exponent of (Fr)m (i.e. y) in the last two 
equations is zero.[ . ( ) ( ) [ ]NpFrFr y =⇒== Φ10

Thus the non-vortexing systems, the equation of power function (Φ) can be 
written wither as;  

( ) x
mCNp Re==Φ   or as;    ( ) mxCNp Reloglogloglog +==Φ  

 
The Weber number of mixing (We)m is only of importance when separate 

physical phases are present in the liquid mixing system as in liquid-liquid extraction.  
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9.4 Power Curve  

A power curve is a plot of the power function (Φ) or the power number (Np) 
against the Reynolds number of mixing (Re)m on log-log coordinates. Each geometrical 
configuration has its own power curve and since the plot involves dimensionless groups 
it is independent of tank size. Thus a power curve that used to correlate power data in a 
1 m3 tank system is also valid for a 1000 m3 tank system provided that both tank systems 
have the same geometrical configuration.  

The Figure below shows the power curve for the standard tank configuration. 
Since this is a baffled tank (non-vortexing system), the following equation is applied; 

( ) mxCNp Reloglogloglog +==Φ    -------------------------- (☼)   
From the Figure it is clear that the power curve for the standard tank configuration 

is linear in the laminar flow region (line-AB) with slope (-1) in this region [(Re)m < 10]. 
Then the last equation can be written in the following form; 

( ) mCNp Reloglogloglog −==Φ        
which can be rearranged to give; 

PA = C μ N2 DA
3  

C is a constant depend on the type of agitator and vessel arrangement and if the tank is 
with or without baffles. For the standard tank configuration C = 71 and for marine 
type 3-blade C = 41. Thus for the laminar flow, power (PA) is directly proportional to 
dynamic viscosity (μ) for a fixed agitator speed (N). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the transition flow region BCD which extends up to (Re)m = 10,000, the 

constant (C) and the slope (x) in equation (☼) vary continuously. 
In fully turbulent flow   (Re)m > 10,000, the curve becomes horizontal and the 

power function (Φ) is independent of Reynolds number of mixing (Re)m .     
i.e.  Φ = Np = 6.3  for (Re)m > 10,000 

At point (C) on the power curve, for the standard tank configuration, enough 
energy is being transferred to the liquid for vortexing to start. However the baffles in the 
tank prevent this.  

Viscous 
range Transition range Turbulent 

range 

(Re)M
Figure (1): Power Curve for the Standard Tank Configuration with Baffles 

  100   101          102      103     104  105 

102 

101 

A 

B 

C
D E 

Ф 



Chapter Nine Fluid Flow    Liquid Mixing 

8-Ch.9         Dr . Salah S. Ibrahim 

If the baffles were not present, vortexing would develop and the power curve 
would be as shown in Figure below;      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The power curve for the baffled system is identical with that for the unbaffled 
system up to point (C) where [(Re)m ≈ 300]. As the (Re)m increases beyond point (C) in 
the unbaffled system, vortexing increases and the power falls sharply as shown in the 
above Figure. 

   As mentioned previously it can be shown by dimensional analysis that the 
power number (Np) can be related to the Reynolds number (Re)m and the Froude 
number (Fr)m by the equation; 

   ( ) ( ) y
m

x
m FrCNp Re=

( ) ( ) mm FryxCNp logRelogloglog ++=⇒  
For the unbaffled system  

Φ = Np   for (Re)m < 300 
And  Φ = Np/[(Fr)m]y  for (Re)m > 300 
A plot of (Np) against (Fr)m on log-log coordinates is a straight line of slop y at a 

constant (Re)m. A number of lines can be plotted for different values of (Re)m. A plot of 
(y) against log(Re)m is also a straight line. If the slope of the line is (-1/β) and the 
intercept at (Re)m = 1 is (α/β) then 

  
β

α my
log(Re)−

=  

[ ] β
αΦ

m

m

y
m Fr

Np

Fr

Np
log(Re)

)()( −==∴  

The values of (α and β) are varying for various vortexing system. For a 6-blade 
flat blade turbine agitator of 0.1 m diameter [(α = 1) and (β = 40)]    

If a power curve is available for particular system geometry, it can be used to 
calculate the power consumed by an agitator at various rotational speeds, liquid 
viscosities and densities. The procedure is as follows: - 
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range Transition range Turbulent 

range 

(Re)M

Ф 

Figure (1): Power Curve for the Standard Tank Configuration without Baffles
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1- Calculate (Re)m  
2- Read power number (Np) or power function (Φ) from the appropriate power 

curve 
3- Calculate the power (PA) from  

either  PA = Np ρ N3 DA
5   or PA = Φ [(Fr)m]y ρ N3 DA

5        
These equations can b used to calculate only the power consumed by the agitator. 

Electrical and mechanical losses required additional power, which occur in all mixing 
system. 

 
Example -9.1- 
Calculate the theoretical power in Watt for a 3 m diameter, 6-blade flat blade turbine 

agitator running at 0.2 rev/s in a tank system conforming to the standard tank 
configuration. The liquid in the tank has a dynamic viscosity of 1 Pa.s, and a liquid 
density of 1000 kg/m3.    

Solution:  
(Re)m = ρ N DA

2 / μ = (1000) (0.2) (3)2 / 1 = 1,800 
From Figure (1)  Φ = Np = 4.5 
The theoretical power for mixing    
PA  = Np ρ N3 DA

5 
 = 4.5 (1000) (0.2)3 (3)5 
 = 8,748 W 
  

Example -9.2- 
Calculate the theoretical power in Watt for a 0.1 m diameter, 6-blade flat blade turbine 

agitator running at 16 rev/s in a tank system without baffles and conforming to the 
standard tank configuration. The liquid in the tank has a dynamic viscosity of 0.08 Pa.s, 
and a liquid density of 900 kg/m3.    

Solution:  
(Re)m = ρ N DA

2 / μ = (900) (16) (0.1)2 / (0.08) = 1,800 
From Figure (2)  Φ = 2.2 
The theoretical power for mixing    
PA  = Φ [(Fr)m]y ρ N3 DA

5 

 
β

α my
log(Re)−

=   05638.0
40

)1800log(1
−=

−
=⇒ y  

(Fr)m   = N2 DA / g = (16)2 (0.1) / 9.81 = 2.61 
[(Fr)m]y = [2.61]-0.05638  =  0.9479 
 

⇒PA  = 2.2 (0.9479) (900) (16)3 (0.1)5 
   = 76.88 W 
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