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Preface

Semiconductor electronics is commonplace in every household. Semiconductor
devices have enabled economically reasonable fiber-based optical communication,
optical storage, and high-frequency amplification and have recently revolutionized
photography, display technology, and lighting. By now solar energy harvesting
with photovoltaics contributes a significant portion to the energy mix. Along with
these tremendous technological developments, semiconductors have changed the
way we work, communicate, entertain, and think. The technological progress of
semiconductor materials and devices is evolving continuously with a large
worldwide effort in human and monetary capital. For students, semiconductors offer
a rich and exciting field with a great tradition, offering diverse fundamental and
applied topics [1] and a bright future.

This book introduces students to semiconductor physics and semiconductor
devices. It brings them to the point where they can specialize and enter supervised
laboratory research. It is based on the two-semester semiconductor physics course
taught at Universitét Leipzig in its Master of Science physics curriculum. Since the
book can be followed with little or no pre-existing knowledge in solid-state physics
and quantum mechanics, it is also suitable for undergraduate students. For the
interested reader several additional topics are included in the book that can be cov-
ered in subsequent, more specialized courses. The material is selected to provide a
balance between aspects of solid-state and semiconductor physics, the concepts of
various semiconductor devices and modern applications in electronics and photonics.

The first semester contains the fundamentals of semiconductor physics (Part I,
Chaps. 1-10) and selected topics from Part I (Chaps. 11-20). Besides important
aspects of solid-state physics such as crystal structure, lattice vibrations, and band
structure, semiconductor specifics such as technologically relevant materials and
their properties, doping and electronic defects, recombination, surfaces, and hetero-
and nanostructures are discussed. Semiconductors with electric polarization and
magnetization are introduced. The emphasis is put on inorganic semiconductors,
but a brief introduction to organic semiconductors is given in Chap. 17. Dielectric
structures (Chap. 19) serve as mirrors, cavities, and microcavities and are a vital
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viii Preface

part of many semiconductor devices. Other chapters give introduction to
carbon-based nanostructures and transparent conductive oxides (TCOs). The third
part (Part III, Chaps. 21-24) is dedicated to semiconductor applications and devices
that are taught in the second semester of the course. After a general and detailed
discussion of various diode types, their applications in electrical circuits, pho-
todetectors, solar cells, light-emitting diodes, and lasers are treated. Finally, bipolar
and field-effect transistors including thin-film transistors are discussed.

In the present text of the third edition, a few errors and misprints of the second
edition have been corrected. Several topics have been extended and are treated in
more depth, e.g., double donors and double acceptors, negative-U centers,
Boltzmann transport equation, ionic conductivity, hopping conductivity, impact
ionization, thermopower, polarons, intra-band transitions, amorphous semicon-
ductors, disorder effects, heteroepitaxy on mismatched, curved and patterned sub-
strates, and noise. A chapter on semiconductor surfaces has been added.

The list of references has been augmented by almost 400 quotations with respect
to the list in the second edition. All references now include title and complete page
numbers. The references have been selected to (i) cover important historical and
milestone papers, (ii) direct to reviews and topical books for further reading and
(iii) give access to current literature and up-to-date research. In Fig. 1, the original
papers within the more than 1800 references in this book are shown by year.
Roughly three phases of semiconductor physics and technology can be seen. Before
the realization of the first transistor in 1947, only a few publications are noteworthy.
Then an intense phase of understanding the physics of semiconductors and
developing semiconductor technology and devices based on bulk semiconductors
(mostly Ge, Si, GaAs) followed. At the end of the 1970s, a new era began with the
advent of quantum wells and heterostructures, and later nanostructures (nanotubes,
nanowires, and quantum dots) and new materials (e.g., organic semiconductors,
nitrides or graphene). Also several very recent references to emerging topics such as
2D materials, topological insulators or novel amorphous semiconductors are given.
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Preface ix

I would like to thank many colleagues for their various contributions to this
book, in alphabetical order (if no affiliation is given, at the time at Universitit
Leipzig): Gabriele Benndorf, Klaus Bente, Rolf Bdéttcher, Matthias Brandt,
Christian Czekalla, Christof Peter Dietrich, Pablo Esquinazi, Heiko Frenzel, Volker
Gottschalch, Helena Franke (née Hilmer), Axel Hoffmann (TU Berlin), Alois

KrostJr (Otto-von-Guericke Universitit Magdeburg), Michael Lorenz, Stefan
Miiller, Thomas Nobis, Rainer Pickenhain, Hans-Joachim Queisser
(Max-Planck-Institut fiir Festkorperforschung, Stuttgart), Bernd Rauschenbach
(Leibniz-Institut fiir Oberflichenmodifizierung, Leipzig), Bernd Rheinlidnder,
Heidemarie Schmidt, Mathias Schmidt, Riidiger Schmidt-Grund, Matthias
Schubert, Jan Sellmann, Oliver Stier (TU Berlin), Chris Sturm, Florian Tendille
(CNRS-CRHEA), Gerald Wagner, Eicke Weber (UC Berkeley), Holger von
Wenckstern, Michael Ziese, and Gregor Zimmermann. This book has benefitted
from their comments, proof reading, experimental data, and graphic material. Also,
numerous helpful comments from my students on my lectures and previous editions
of this book are gratefully acknowledged.

I am also indebted to many other colleagues, in particular to (in alphabetical
order) Gerhard Abstreiter, Zhores Alferov, Martin Allen, Levon Asryan, Giinther
Bauer, Manfred Bayer, Friedhelm Bechstedt, Dieter Bimberg, Otto Breitenstein,
Len Brillson, Fernando Briones, Immanuel BroserT, Jean-Michel Chauveau, Jiirgen
Christen, Philippe De Mierry, Steve Durbin, Laurence Eaves, Klaus Ellmer, Guy
Feuillet, Elvira Fortunato, Ulrich GéseleT, Alfred Forchel, Manus Hayne, Frank
Heinrichsdorff, Fritz HennebergerT, Detlev Heitmann, Robert HeitZT, Evamarie
Hey-Hawkins, Detlef Hommel, Evgeni Kaidashev, Eli Kapon, Nils Kirstaedter,
Claus Klingshirn, Fred KochT, Jorg Kotthaus, Nikolai Ledentsov, Peter Littlewood,
Dave Look, Axel Lorke, Anupam Madhukar, Ingrid Mertig, Bruno MeyerT, David
Mowbray, Hisao Nakashima, Jorg Neugebauer, Michael Oestreich, Louis Piper,
Mats-Erik Pistol, Fred PollakT, Volker Riede, Bernd Rosenow, Hiroyuki Sakaki,
Lars Samuelson, Darrell Schlom, Vitali Shchukin, Maurice Skolnick, Robert Suris,
Volker Tiirck, Konrad UngerT, Victor Ustinov, Leonid Vorob’jev, Richard
Warburton, Alexander Weber, Peter Werner, Wolf Widdra, Ulrike Woggon, Roland
Zimmermann, Arthur Zrenner, Alex Zunger, and Jesis Zuniga-Pérez, with whom I
have worked closely, had enjoyable discussions with and who have posed questions
that stimulated me. It is my distinct privilege and joy that this list becomes longer as
I pursue studies in semiconductor physics but sadly the number of {-symbols
increases too rapidly from edition to edition.

Leipzig Marius Grundmann
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Chapter 1
Introduction

The proper conduct of science lies in the pursuit of Nature’s
puzzles, wherever they may lead.
J.M. Bishop [2]

Abstract Important dates and events in the history of semiconductors are chronolog-
ically listed, from the early days (Volta, Seebeck and Faraday) to the latest achieve-
ments like the blue and white LED. Many known and not so well known scientists
are mentioned. Also a list of semiconductor related Nobel prizes and their winners
is given.

The historic development of semiconductor physics and technology began in the
second half of the 19th century. Interesting discussions of the history of the physics
and chemistry of semiconductors can be found in [3—5]. The development of crystal
growth is covered in [6]. The history of semiconductor industry can be followed in
[7, 8]. In 1947, the commercial realization of the transistor was the impetus to a fast-
paced development that created the electronics and photonics industries. Products
founded on the basis of semiconductor devices such as computers (CPUs, mem-
ories), optical-storage media (lasers for CD, DVD), communication infrastructure
(lasers and photodetectors for optical-fiber technology, high frequency electronics
for mobile communication), displays (thin film transistors, LEDs), projection (laser
diodes) and general lighting (LEDs) are commonplace. Thus, fundamental research
on semiconductors and semiconductor physics and its offspring in the form of devices
has contributed largely to the development of modern civilization and culture.

© Springer International Publishing Switzerland 2016 1
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
DOI 10.1007/978-3-319-23880-7_1



2 1 Introduction

1.1 Timetable and Key Achievements

In this section early important milestones in semiconductor physics and technology
are listed.

1782
A. Volta—coins the phrase ‘semicoibente’ (semi-insulating) which was translated
then into English as ‘semiconducting’ [9].

1821
T.J. Seebeck—discovery of thermopower (electrical phenomena upon temperature
difference) in metals and PbS, FeS,, CuFeS, [10].

1833
M. Faraday—discovery of the temperature dependence of the conductivity of Ag,S
(sulphuret of silver, negative dR/dT) [11].

1834
J. Peltie—discovery of the Peltier effect (cooling by current) [12].

1873
W. Smith—discovery of photoconductivity in selenium [13]. Early work on photo-
conductivity in Se is reviewed in [14, 15].

1874

F. Braunl—discovery of rectification in metal-sulfide semiconductor contacts [17],
e.g. for CuFeS, and PbS. The current through a metal-semiconductor contact is
nonlinear (as compared to that through a metal, Fig. 1.1), i.e. a deviation from Ohm’s
law. Braun’s structure is similar to a MSM diode.

1876
W.G. Adams and R.E. Day—discovery of the photovoltaic effect in selenium [18].

W. Siemens—Ilarge response from selenium photoconductor [19], made by winding
two thin platinum wires to the surface of a sheet of mica, and then covering the surface
with a thin film of molten selenium. Resistance ratio between dark and illuminated
by sunlight was larger than ten [19] and measured to 14.8 in [20].

1879

E.H. Hall—measurement of the transverse potential difference in a thin gold leaf on
glass [21, 22]. Experiments were continued by his mentor H.A. Rowland [23]. A
detailed account of the discovery of the Hall efect is given in [24, 25].

1883
Ch. Fritts—first solar cell, based on an gold/selenium rectifier [20]. The efficiency
was below 1 %.

IF. Braun made his discoveries on metal-semiconductor contacts in Leipzig while a teacher at the
Thomasschule zu Leipzig [16]. He conducted his famous work on vacuum tubes later as a professor
in Strasbourg, France.
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1901

J.C. Bose—point contact detector for electromagnetic waves based on galena
(PbS) [26]. At the time, the term semiconductor was not introduced yet and Bose
speaks about ‘substances of a certain class (...) presenting a decreasing resistance to
the passage of the electric current with an increasing impressed electromotive force’.

1906
G.W. Pickard—rectifier based on point contact (cat’s whisker) diode on silicon [27-
29]. Erroneously, the rectifying effect was attributed to a thermal effect, however, the

drawing of the ‘thermo-junction’ (TJ in Fig. 1.2) developed into the circuit symbol
for a diode (cmp. Fig.21.61a).

1907
H.J. Round—discovery of electroluminescence investigating yellow and blue light
emission from SiC [30].

Fig. 1.2 Circuit diagram for
aradio receiver with a
point-contact diode (TJ).
Adapted from [27]
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4 1 Introduction

Fig.1.3 Laueimages of ‘regular’ (cubic) ZnS along three major crystallographic directions, directly
visualizing their 4-, 3- and 2-fold symmetry. Adapted from [41]

K. Bddeker—preparation of metal (e.g. Cd, Cu) oxides and sulfides and also Cul from
metal layers using a vapor phase transport method [31].> Cul is reported transparent
(~200nm thick films) with a specific resistivity of p = 4.5 x 1072 Qcm, the first
transparent conductor.®> Also CdO (films of thickness 100-200nm) is reported to
be highly conductive, p = 1.2 x 1073 Qcm, and orange-yellow in color, the first
reported TCO (transparent conductive oxide).

1909
K. Bddeker—discovery of doping. Controlled variation of the conductivity of Cul
by dipping into iodine solutions (e.g. in chloroform) of different concentrations [34].

1910
W.H. Eccles—negative differential resistance of contacts with galena (PbS), con-
struction of crystal oscillators [38].4

1911

The term ‘Halbleiter’ (semiconductor) is introduced for the first time by J. Weiss [39]
and J. Konigsberger and J. Weiss [40]. Konigsberger preferred the term ‘Variabler
Leiter’ (variable conductor).

1912
M. von Laue—X-ray diffraction of bulk crystals including ZnS (Fig. 1.3) [41, 42].

2This work was conducted as Habilitation in the Physics Institute of Universitit Leipzig. Bideker
became subsequently professor in Jena and fell in WW L. His scientific contribution to semiconductor
physics is discussed in [32, 33].

3Cul is actually a p-type transparent conductor; at that time the positive sign of the Hall effect
[34, 35] could not be interpreted as hole conduction yet.

“4Historical remarks on Eccles’ contributions to radio technology can be found in [36, 37].
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Fig. 1.4 Sketch of a
field-effect transistor, 1926.
From [46]

1925

J.E. Lilienfeld>—proposal of the metal-semiconductor field-effect transistor (MES-
FET) [46], with suggested copper sulfide thin film channel and aluminum gate.®
(Fig. 1.4). Lilienfeld was also awarded patents for a depletion mode MOSFET
[48] with proposed copper sulfide, copper oxide or lead oxide channel and current
amplification with nppn- and pnnp-transistors [49]. Due to the lack of other pub-
lications of Lilienfeld on transistors, it is under discussion whether Lilienfeld just
patented ideas or also build working devices with mounting evidence for the latter
[44, 47, 50].

1927

A. Schleede, H. Buggisch—synthesis of pure, stoichiometric PbS, influence of sul-
phur excess and impurities [51].

A. Schleede, E. Kérner—activation of luminescence of ZnS [52, 53].

1928

F. Bloch—quantum mechanics of electrons in a crystal lattice, ‘Bloch functions’ [54].
0.V. Losev—description of the light emitting diode’ (SiC) [58]; light emission was
observed in forward direction and close to breakdown (Fig. 1.5a). Also current mod-
ulation of LED light output was reported (Fig. 1.5b) [58].

1929
R. Peierls—explanation of positive (anomalous) Hall effect with unoccupied electron
states [59, 60].

3 After obtaining his PhD in 1905 from the Friedrich-Wilhelms-Universitit Berlin, Julius Edgar
Lilienfeld joined the Physics Department of Universitidt Leipzig and worked on gas liquefaction
and with Lord Zeppelin on hydrogen-filled blimps. In 1910 he became professor at the Universitét
Leipzig where he mainly researched on X-rays and vacuum tubes [43]. To the surprise of his
colleagues he left in 1926 to join a US industrial laboratory [44, 45].

SIn [44] it is suggested that the device works as a npn transistor, in [47] it is suggested to be a JFET.

TThe historic role of Losev regarding the invention of the LED and oscillators is discussed in
[55-57].
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Fig. 1.5 (a) I-V characteristic of SiC/steel wire light emitting diode. The dotted curve is the
flipped curve for negative voltage (3rd quadrant). (b) Recording of current modulated (at 500 Hz)
LED on moving photographic plate. Adapted from [58]

Fig. 1.6 First band structure VE
calculation (§ = k a).
Adapted from [62]

4

1930

R. Peierls—first calculation of a band structure and band gap® (Fig. 1.6) [62].

1931

W. Heisenberg—theory of hole (‘Locher’) states [63].

R. de L. Kronig and W.G. Penney—properties of periodic potentials in solids [64].
A.H. Wilson’—development of band-structure theory [67, 68].

8Peierls performed this work at suggestion of W. Pauli at ETH Ziirich. The mathematical problem
of Schrodinger’s equation with a sinusoidal potential had been already treated by M.J.O Strutt in
1928 [61].

9Wilson was theoretical physicist in Cambridge, who spent a sabbatical with Heisenberg in
Leipzig and applied the brand new field of quantum mechanics to issues of electrical conduction,
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1933

C. Wagner—excess (‘Elektroneniiberschuss-Leitung’, n-type) and defect
(‘Elektronen-Defektleitung’, p-type) conduction [69]. Anion deficiency in ZnO
causes conducting behavior [70].

1934

C. Zener—Zener tunneling [71].

1936

J. Frenkel—description of excitons [72].
1938

B. Davydov—theoretical prediction of rectification at pn-junction [73] and in
Cu,O [74].

W. Schottky—theory of the boundary layer in metal-semiconductor contacts [75],
being the basis for Schottky contacts and field-effect transistors.

N.F. Mott—metal-semiconductor rectifier theory [76, 77].

R. Hilsch and R.W. Pohl—three-electrode crystal (KBr) [78].

1940

R.S. Ohl—Silicon-based photoeffect (solar cell, Fig.1.7) [79] from a pn-junction
formed within a slab of polycrystalline Si fabricated with directed solidification due
to different distribution coefficients of p- and n-dopants (boron and phosphorus, cmp.
Fig.4.6b) (J. Scaff and H. Theurer) [80, 81].

1941

R.S. Ohl—Silicon rectifier with point contact [82, 83] (Fig. 1.8), building on work
from G.W. Pickard (1906) and using metallurgically refined and intentionally doped
silicon (J. Scaff and H. Theurer) [80].

1942

K. Clusius, E. Holz and H. Welker—rectification in germanium [84].
1945

H. Welker—patents for JFET and MESFET [85].

1947

W. Shockley, J. Bardeen and W. Brattain fabricate the first transistor in the AT&T

(Footnote 9 continued)

first in metals and then in semiconductors. When he returned to Cambridge, Wilson urged that
attention be paid to germanium but, as he expressed it long afterward, ‘the silence was deafening’ in
response. He was told that devoting attention to semiconductors, those messy entities, was likely to
blight his career among physicists. He ignored these warnings and in 1939 brought out his famous
book ‘Semiconductors and Metals’ [65] which explained semiconductor properties, including the
much-doubted phenomenon of intrinsic semiconductivity, in terms of electronic energy bands.
His academic career seems indeed to have been blighted, because despite his great intellectual
distinction, he was not promoted in Cambridge (he remained an assistant professor year after year)
[66]. Compare the remark of W. Pauli (p. 205).


http://dx.doi.org/10.1007/978-3-319-23880-7_4
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Fig.1.7 (a)Optical image of directionally solidified silicon. The lower part contains predominantly
boron, the upper part contains predominantly phosphorous. First the growth is porous and subse-
quently columnar. Adapted from [80]. (b) Spectral response of silicon pn-junction photoelement,
1940. The inset depicts schematically a Si slab with built-in pn-junction formed during directed
solidification as shown in panel (a). The arrow denotes the direction of solidification (cmp. Fig. 4.6).
Adapted from [79]

Fig. 1.8 Characteristics of a
silicon rectifier, 1941.
Adapted from [82]

Current (A)

Voltage (V)

Bell Laboratories, Holmdel, NJ in an effort to improve hearing aids [86].'° Strictly
speaking the structure was a point-contact transistor. A 50-pm wide slit was cut with
a razor blade into gold foil over a plastic (insulating) triangle and pressed with a
spring on n-type germanium (Fig. 1.9a) [87]. The surface region of the germanium
is p-type due to surface states and represents an inversion layer. The two gold con-

10Subsequently, AT&T, under pressure from the US Justice Department’s antitrust division, licensed
the transistor for $25,000. This action initiated the rise of companies like Texas Instruments, Sony
and Fairchild.


http://dx.doi.org/10.1007/978-3-319-23880-7_4
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Fig. 1.9 (a) The first transistor, 1947 (length of side of wedge: 32 mm). (b) Cutaway model of a
1948 point contact transistor (‘Type A’) based on n-type bulk Ge (n = 5 x 10'*cm~3) and common
base circuit diagram. The surface region (~100nm depth) of the Ge is p-type due to surface states
and represents an inversion layer. The two wires are made from phosphor bronze. Adapted from [88]

tacts form emitter and collector, the large-area back contact of the germanium the
base contact [88]. For the first time, amplification was observed [89]. Later models
use two close point contacts made from wires with their tips cut into wedge shape
(Fig. 1.9b) [88]."" More details about the history and development of the semicon-
ductor transistor can be found in [90], written on the occasion of the 50th anniversary
of its invention.

1948
W. Shockley—invention of the bipolar (junction) transistor [91].

1952
H. Welker—fabrication of III-V compound semiconductors!'? [94-97]
W. Shockley—description of today’s version of the (J)FET [98].

"'The setup of Fig. 1.9b represents a common base circuit. In a modern bipolar transistor, current
amplification in this case is close to unity (Sect.24.2.2). In the 1948 germanium transistor, the
reversely biased collector contact is influenced by the emitter current such that current amplification
dlc/dIg for constant Uc was up to 2-3. Due to the collector voltage being much larger than the
emitter voltage, a power gain of ~125 was reported [88].

12 An early concept for III-V semiconductors was developed in [92, 93].


http://dx.doi.org/10.1007/978-3-319-23880-7_24
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Fig. 1.10 (a) The first integrated circuit, 1958 (germanium, 11 x 1.7 mm?). (b) The first planar
integrated circuit, 1959 (silicon, diameter: 1.5 mm)

1953

G.C. Dacey and I.M. Ross—first realization of a JFET [99].

D.M. Chapin, C.S. Fuller and G.L. Pearson—invention of the silicon solar cell at Bell
Laboratories [100]. A single 2cm? photovoltaic cell from Si, Si:As with an ultra-
thin layer of Si:B, with about 6 % efficiency generated SmW of electrical power.'?
Previously existing solar cells based on selenium had very low efficiency (<0.5 %).

1958

J.S. Kilby made the first integrated circuit at Texas Instruments. The simple 1.3 MHz
RC-oscillator consisted of one transistor, three resistors and a capacitor on a
11 x 1.7mm? Ge platelet (Fig. 1.10a). J.S. Kilby filed in 1959 for a US patent for
miniaturized electronic circuits [101]. At practically the same time R.N. Noyce from
Fairchild Semiconductors, the predecessor of INTEL, invented the integrated circuit
on silicon using planar technology [102]. A detailed and (very) critical view on the
invention of the integrated circuit can be found in [103].

Figure 1.10b shows a flip-flop with four bipolar transistors and five resistors.
Initially, the invention of the integrated circuit'* met scepticism because of concerns
regarding yield and the achievable quality of the transistors and the other components
(such as resistors and capacitors).

13 A solar cell with 1 W power cost $300 in 1956 ($3 in 2004). Initially, ‘solar batteries’ were only
used for toys and were looking for an application. H. Ziegler proposed the use in satellites in the
‘space race’ of the late 1950s.

14The two patents led to a decade-long legal battle between Fairchild Semiconductors and Texas
Instruments. Eventually, the US Court of Customs and Patent Appeals upheld R.N. Noyce’s claims
on interconnection techniques but gave J.S. Kilby and Texas Instruments credit for building the first
working integrated circuit.
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base
contact

~ emitter

“contact

emitter

Fig. 1.11 (a) Optical image of planar pnp silicon transistor (2N1613 [110]), 1959. The contacts
are Al surfaces (not bonded). (b) Housing of such transistor cut open

1959
J.Hoerni'> and R. Noyce—first realization of a planar transistor (in silicon) (Fig. 1.11)
[105-109].

1960
D. Kahng and M.M. Atalla—first realization of a MOSFET [111, 112].

1962

The first semiconductor laser on GaAs basis at 77 K at GE [113, 114] (Fig. 1.12) and
at IBM [115] and MIT [116].

First visible laser diode [117].1°

1963

Proposal of a double heterostructure laser (DH laser) by Zh.I. Alferov [120] and
H. Kroemer [121].

J.B. Gunn—discovery of the Gunn effect, the spontaneous microwave oscillations in
GaAs and InP at sufficiently large applied electric field (due to negative differential
resistance) [122].

1966
C.A. Mead—yproposal of the MESFET (‘Schottky Barrier Gate FET”) [123].

I5The Swiss born Jean Hoerni also contributed $12000 for the building of the first school in
the Karakoram Mountain area in Pakistan and has continued to build schools in Pakistan and
Afghanistan as described in [104].

16Remarks on the discovery and further development of the laser diode can be found in [118, 119].
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Fig. 1.12 Schematics of
GaAs-based laser diode. The
active layer is highlighted in
red. Adapted from [114]

1967
Zh.1. Alferov—report of the first DH laser on the basis of GaAsP at 77K [124, 125].
W.W. Hooper and W.I. Lehrer—first realization of a MESFET [126].

1968

DH laser on the basis of GaAs/AlGaAs at room temperature, independently devel-
oped by Zh.I. Alferov [127] and 1. Hayashi [128].

GaP:N LEDs with yellow-green emission (550nm) and 0.3 % efficiency [129].

1968
SiC blue LED with efficiency of 0.005 % [130].

1975
First monolithic microwave integrated circuit (MMIC) (Fig. 1.13) [131]

1992

S. Nakamura—growth of high-quality group-III-nitride thin films [132], blue nitride
heterostructure LED with efficiency exceeding 10% (1995) [133] (Fig. 1.14a).
Later the white LED was built by combining a blue LED with yellow phosphors
(Fig. 1.14b, c).

1.2 Nobel Prize Winners

Several Nobel Prizes!” have been awarded for discoveries and inventions in the field
of semiconductor physics (Fig. 1.15).

1909

Karl Ferdinand Braun

‘in recognition of his contributions to the development of wireless telegraphy’

17www.nobel.se.
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[0}0] 2pF o002 pF 6050
035n 25nH 792°

Fig. 1.13 Equivalent circuit and optical image of first monolithic microwave integrated circuit
(exhibiting gain (4.5 &+ 0.9dB) in the frequency range 7.0-11.7 GHz). Adapted from [131]

(c)

Fig. 1.14 (a) Blue LED (standard housing). 50 W, 4000 Im (b) warm white and (c) cold white LED
(45 x 45mm?)

1914
Max von Laue ‘for his discovery of the diffraction of X-rays by crystals’

1915

Sir William Henry Bragg

William Lawrence Bragg

“for their services in the analysis of crystal structure by means of X-rays’
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1946

Percy Williams Bridgman

‘for the invention of an apparatus to produce extremely high pressures, and for the
discoveries he made therewith in the field of high pressure physics’

1953

William Bradford Shockley

John Bardeen

Walter Houser Brattain

“for their researches on semiconductors and their discovery of the transistor effect’

1973
Leo Esaki
“for his experimental discoveries regarding tunneling phenomena in semiconductors’

1985
Klaus von Klitzing
“for the discovery of the quantized Hall effect’

1998

Robert B. Laughlin

Horst L. Stérmer

Daniel C. Tsui

“for their discovery of a new form of quantum fluid with fractionally charged exci-
tations’

2000

Zhores 1. Alferov

Herbert Kroemer

‘for developing semiconductor heterostructures used in high-speed and optoelec-
tronics’

Jack St. Clair Kilby

“for his part in the invention of the integrated circuit’

2009

Willard S. Boyle

George E. Smith

“for the invention of an imaging semiconductor circuit—the CCD sensor’
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1909 1914 1915 1915
Karl Ferdinand Braun Max von Laue Sir William Henry Bragg  William Laurence Bragg
(1850-1918) (1879-1960) (1862-1942) (1890-1971)

1946 1953 1953 1953
Percy Williams Bridgman William B. Shockley John Bardeen Walter Hauser Brattain
(1882-1961) (1910-1989) (1908-1991) (1902-1987)

1973 1985 1998 1998
Leo Esaki Klaus von Klitzing Robert B. Laughlin Horst L. Stormer
(*1925) (*1943) (*1930) (*1949)

1998 2000 2000 2000
Daniel C. Tsui Zhores 1. Alferov Herbert Kroemer Jack St. Clair Kilby
(*1939) (*1938) (*1928) (1923-2005)

Fig. 1.15 Winners of Nobel Prize in Physics and year of award with great importance for semi-
conductor physics
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2009 2009 2010 2010
Willard S. Boyle George E. Smith Andre Geim Konstantin Novoselov
(1924-2011) (*1930) *1958 *1974

2014 2014 2014
Isamu Akasaki Hiroshi Amano Shuji Nakamura
(*1929) (*1960) (*1954)

Fig. 1.15 (continued)

2010

Andre Geim

Konstantin Novoselov

‘for groundbreaking experiments regarding the two-dimensional material graphene’

2014

Isamu Akasaki

Hiroshi Amano

Shuji Nakamura

‘for the invention of efficient blue light-emitting diodes which has enabled bright
and energy-saving white light sources’.
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1.3 General Information

In Fig. 1.16, the periodic table of elements is shown.
In Table 1.1 the physical properties of various semiconductors are summarized.

Data on semiconductors can be found in [134-146].



Part I
Fundamentals



Chapter 2
Bonds

Protons give an atom its identity, electrons its personality.
B. Bryson [148]

Abstract A little bit of solid state physics... The schemes of covalent, ionic and
mixed bonds are explained which are the basis for the atomic arrangement and
crystal structures of semiconductors.

2.1 Introduction

The positively charged atomic nuclei and the electrons in the atomic shells of the
atoms making up the semiconductor (or any other solid) are in a binding state. Several
mechanisms can lead to such cohesiveness. First, we will discuss the homopolar,
electron-pair or covalent bond, then the ionic bond and subsequently the mixed
bond. We will only briefly touch on the metallic bond and the van-der-Waals bond.
A classical book on bonds in semiconductors is [149, 150].

2.2 Covalent Bonds

Covalent bonds are formed due to quantum-mechanical forces. The prototype cova-
lent bond is the bonding of the hydrogen molecule due to overlapping of the atomic
shells. If several electron pairs are involved, directional bonds can be formed in
various spatial directions, eventually making up a solid.

© Springer International Publishing Switzerland 2016 25
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
DOI 10.1007/978-3-319-23880-7_2
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Energy (Ryd)
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Fig. 2.1 Binding of the hydrogen molecule. (a) Dashed line: classical calculation (electrostatics),
‘S’, ‘A’: quantum-mechanical calculation taking into account Pauli’s principle (S: symmetric orbital,
antiparallel spins, A: antisymmetric orbital, parallel spins). The distance of the nuclei (protons) is
given in units of the Bohr radius ag = 0.053 nm, the energy is given in Rydberg units (13.6eV).
(b) Schematic contour plots of the probability distribution (¥ *¥) for the S and A states

2.2.1 Electron-Pair Bond

The covalent bond of two hydrogen atoms in a H, molecule can lead to a reduction of
the total energy of the system, compared to two single (distant) atoms (Fig.2.1). For
fermions (electrons have spin 1/2) the two-particle wavefunction of the two (indis-
tinguishable) electrons A and B must be antisymmetric, i.e. ¥ (A, B) = —W (B, A)
(Pauli principle). The wavefunction of each electron has degrees of freedom in real
space (r) and spin (o), ¥ (A) = ¥ (A) ¥,(A). The two-particle wavefunction of
the molecule is nonseparable and has the form ¥ (A, B) = W, (ra, rg) ¥,(04, 0p).
The binding state has a wavefunction with a symmetric orbital and antiparallel spins,
ie. Ur(ra, rg) = ¥ (rp,ra) and ¥, (o4, 0p) = —¥,(0p, 04). The antisymmetric
orbital with parallel spins is antibinding for all distances of the nuclei (protons).

2.2.2 sp? Bonds

Elements from group IV of the periodic system (C, Si, Ge, . . .) have 4 electrons on the
outer shell. Carbon has the electron configuration 1s>2s22p?. For an octet configura-
tion bonding to four other electrons would be optimal (Fig. 2.2). This occurs through
the mechanism of sp? hybridization.! First, one electron of the ns>np® configuration

1t is debated in femtosecond chemistry whether the bond really forms in this way. However, it is
a picture of overwhelming simplicity.
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Fig. 2.2 Octet, the favorite card game of the ‘Atomis’ (trying to reach octet configuration in a bond
by swapping wavefunctions). The bubble says: ‘Do you have a 2p?’. Reprinted with permission
from [151], © 2002 Wiley-VCH

1
f
2p,

; ;
(e)
)~

2s

M l

Fig. 2.3 (a) s orbital, (b, ¢, d) p,, py and p, orbital, (e) hybridization, (f, g, h, i) orbitals of
the sp3 hybridization: (f) (s+px +Py +Pz)/2, (8) (s+px — Py —Pz)/2, (h) (s —px +py —Pz)/2, i)
(S—px — Py +pz)/2

is brought into a p orbital, such that the outermost shell contains one s, py, py, and
p. orbital each (Fig.2.3a—e). The energy necessary for this step is much less than
regained in the subsequent formation of the covalent bonds. The four orbitals can be
reconfigured into four other wavefunctions, the sp? hybrids (Fig.2.3f-i), i.e.
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Fig. 2.4 (a) Energy per atom in silicon for various crystal structures. Adapted from [152]. (b)
Electron energy levels in (diamond structure) carbon as a function of the distance of the atomic
nuclei (schematic). Adapted from [153, 154]

Yy =6 +pe+py+p)/2 (2.1a)
¥ = (s+px—py —P:)/2 (2.1b)
Y3 = (s—px+Py —Pz)/2 (2.1¢)
Yy =(s—px — Py +P2)/2. (2.1d)

These orbitals have a directed form along tetrahedral directions. The binding energy
(per atom) of the covalent bond is large, for H-H 4.5¢eV, for C-C 3.6¢eV, for Si-Si
1.8eV, and for Ge-Ge 1.6eV. Such energy is, for neutral atoms, comparable to the
ionic bond, discussed in the next section.

In Fig.2.4a the energy of a crystal made up from silicon atoms is shown for
various crystal structures® or phases (cf. Chap.3). We note that the crystal energy
of further silicon structures are discussed in [155]. The lattice constant with the
lowest total energy determines the lattice spacing for each crystal structure. The
thermodynamically stable configuration is the phase with the lowest overall energy
for given external conditions.

The covalent bond of a group-IV atom to other group-IV atoms has a tetrahedral
configuration with electron-pair bonds, similar to the hydrogen molecule bond. In
Fig.2.4b the energy states of the n = 2 shell for tetrahedrally bonded carbon (dia-
mond, see Sect. 3.4.3) are shown as a function of the distance from the nuclei. First,
the energetically sharp states become a band due to the overlap and coupling of the
atomic wavefunctions (cf. Chap. 6). The mixing of the states leads to the formation
of the filled lower valence band (binding states) and the empty upper conduction
band (antibinding states).

2Hexagonal diamond is wurtzite structure with two identical atoms in the base.
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conduction bands from
antibinding p-orbitals

conduction bands from
antibinding s-orbitals p

valence band frt;rn S
binding p-orbitals
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binding s-orbitals

Fig. 2.5 Schematic of the origin of valence and conduction band from the atomic s and p orbitals.
The band gap Eg and the position of the Fermi level Ef are indicated

(a) (b)

B L) (R KR

Fig. 2.6 Schematic representation of (a) bonding and (b) antibinding p orbitals. The signs denote
the phase of the wavefunction

Fig. 2.7 Schematic representation of (a, ¢) bonding and (b, d) antibinding symmetric (a, b) and
nonsymmetric (c, d) sp3 orbitals

This principle is valid for most semiconductors and is shown schematically also in
Fig.2.5. The configuration of bonding and antibinding p orbitals is depicted schemat-
ically in Fig. 2.6. The bonding and antibinding sp? orbitals are depicted in Figs. 2.7a,b
and 2.13. We note that the energy of the crystal does not only depend on the distance
from the nuclei but also on their geometric arrangement (crystal structure).

Per carbon atom there are (in the second shell) four electrons and four unoccupied
states, altogether eight. These are redistributed into four states (filled) per atoms in
the valence band and four states per atom (empty) in the conduction band. Between
the top of the valence band and the bottom of the conduction band there is an energy
gap, later called the band gap (cf. Chap. 6).

2.2.3 sp? Bonds

Organic semiconductors (see Chap. 17) are made up from carbon compounds. While
for inorganic semiconductors the covalent (or mixed, cf. Sect.2.4) bond with sp
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Fig. 2.8 Schematic representation of the (a) o and (b) 7 bonds in benzene, (c¢) schematic symbol
for benzene

hybridization is important, the organic compounds are based on the sp? hybridization.
This bonding mechanism, which is present in graphite, is stronger than the sp*-bond
present in diamond. The prototype organic molecule is the benzene ring® (C¢Hg),
shown in Fig. 2.8. The benzene ring is the building block for small organic molecules
and polymers.

In the benzene molecule neighboring carbon atoms are bonded within the ring
plane via the binding o states of the sp? orbitals (Fig.2.8a). The wavefunctions
(Fig.2.9) are given by (2.2a—c).

¥ = (s+2py)/V3 (2.22)
¥ = (s—1/2p: +/3/2p)/V3 (2.2b)
W = (s —/1/2p: —/3/2p,) /3. (2.2¢)

The ‘remaining’ p, orbitals do not directly take part in the binding (Fig. 2.8b) and
form bonding (7, filled) and antibinding (7*, empty) orbitals (see Fig.2.10). The 7
and 7* states are delocalized over the ring. Between the highest populated molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) is typically
an energy gap (Fig.2.11). The antibinding o* orbitals are energetically above the 7*
states.

3Supposedly, the chemist Friedrich August Kekulé von Stadonitz had a dream about dancing carbon
molecules and thus came up with the ring-like molecule structure [156]. Kekulé remembered:
‘During my stay in Ghent, I lived in elegant bachelor quarters in the main thoroughfare. My study,
however, faced a narrow side-alley and no daylight penetrated it. ... I was sitting writing on my
textbook, but the work did not progress; my thoughts were elsewhere. I turned my chair to the fire
and dozed. Again the atoms were gamboling before my eyes. This time the smaller groups kept
modestly in the background. My mental eye, rendered more acute by the repeated visions of the
kind, could now distinguish larger structures of manifold conformation; long rows sometimes more
closely fitted together all twining and twisting in snake-like motion. But look! What was that? One
of the snakes had seized hold of its own tail, and the form whirled mockingly before my eyes. As
if by a flash of lightning I awoke; and this time also I spent the rest of the night in working out the
consequences of the hypothesis.’



2.2 Covalent Bonds 31

Fig. 2.9 (a) s orbital, (b, ¢, d) py, py and p, orbital, (e) hybridization, (f, g, h) orbitals of
the sp? hybridization: (f) (s+~/2px)/+/3, (8) (s — v/T1/2px + /372py)/+/3, (h) (s — /1/2px —
V3723

2000120

2, OOQ o,, (bonding)

8 6 n (antibonding)
& 8
- N
2p, 2p, @ m,, (bonding)

O
I
wz n5 (antibonding)

Pl 9
-

2p, 2p, . . m,, (bonding)

Fig. 2.10 Orbitals due to binding and antibinding configurations of various 7 orbitals
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Fig. 2.11 Schematic energy o*
terms of the benzene
molecule } ]
~— LUMO
6x p,
HOMO
T
18x sp,
(¢}

2.3 Ionic Bonds

Tonic crystals are made up from positively and negatively charged ions. The heteropo-
lar or ionic bond is the consequence of the electrostatic attraction between the ions.
However, the possibly repulsive character of next neighbors has to be considered.

For I-VII compounds, e.g. LiF or NaCl, the shells of the singly charged ions are
complete: Li: 1s?2s' — Li*: 1s?, F: 15?2s22p> — F~: 15*2s22p®. Compared to ions
in a gas, a Na—Cl pair in the crystal has a binding energy of 7.9 eV that mostly stems
from the electrostatic energy (Madelung energy). Van-der-Waals forces (cf. Sect. 2.6)
only contribute 1-2 %. The ionization energy of Na is 5.14 eV, the electron affinity of
Clis 3.61eV. Thus the energy of the NaCl pair in the solid is 6.4 (= 7.9—-5.14-3.6)eV
smaller than in a gas of neutral atoms.

The interaction of two ions with distance vector r;; is due to the Coulomb inter-
action )
c_4¢ L _ e 1
g 47 €0 Tij

(2.3)

47T€0 r,'j

and a repulsive contribution due to the overlap of (complete) shells. This contribution
is typically approximated by a radially symmetric core potential

U™ = A exp(=A/p) 2.4)

that only acts on next neighbors. A describes the strength of this interaction and p
parameterizes its range.

The distance of ions is denoted as r;; = p;; R, where R denotes the distance of
next neighbors and the p;; are suitable coefficients. The electrostatic interaction of
an ion with all its neighbors is then written as

e 1
47T60 R7

U = —a (2.5)
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(a) (b)

Na

Na Cl Na

Fig. 2.12 (a) Experimental and (b) theoretical charge distribution in the (100) plane of NaCl. The
lowest contour in the interstitial region corresponds to a charge density of 7e/nm® and adjacent
contours differ by +/2. Differences are mainly due to the fact that the X-ray experiments have been
made at room temperature. Adapted from [157]

where « is the Madelung constant. For an attractive interaction (as in a solid), « is
positive. It is given (calculated for the i-th ion) as

+1
pij‘

o=

(2.6)

ij

For a one-dimensional chain o = 21n2. For the rocksalt (NaCl) structure (cf.
Sect.3.4.1)itis a & 1.7476, for the CsCl structure (see Sect.3.4.2) itis o ~ 1.7627,
and for the zincblende structure (see Sect.3.4.4) it is o ~ 1.6381. This shows that
ionic compounds prefer the NaCl or CsCl structure. The charge distribution for NaCl
is shown in Fig.2.12. For tetragonal and orthorhombic structures, the Madelung
constant has been calculated in [158].

2.4 Mixed Bonds

The group-IV crystals are of perfectly covalent nature, the [-VII are almost exclu-
sively ionically bonded. For III-V (e.g. GaAs, InP) and II-VI compounds (e.g. CdS,
Zn0) we have a mixed case.

The (screened) Coulomb potentials of the A and B atoms (in the A B compound)
shall be denoted V4 and V. The origin of the coordinate system is in the center of the
A and B atom (i.e. for the zincblende structure (cf. Sect.3.4.4) at (1/8, 1/8, 1/8)a.
The valence electrons then see the potential
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Fig. 2.13 Schematic representation of (a) bonding and (b) antibinding sp® orbitals. From [149]

Vcrystal = Z Valr —ry) + Z Va(r — I"g), 2.7
a B

where the sum « () runs over all A (B) atoms. This potential can be split into a
symmetric (V,, covalent) and an antisymmetric (V;, ionic) part (2.8b), i.e. Virystar =
Ve + Vi

Ve =% {Z vA<r—ra)+§:vB<r—ra)

+ > Vs —rp) + D Valr —1p) (2.82)
B B

V=3 [Za;vA(r—m—;vB(r—rQ)

+D Ve —rp) = > Valr—rp) . (2.8b)
B B

For homopolar bonds V; = 0 and the splitting between bonding and antibinding
states is Eyp, which mainly depends on the bond length /45 (and the related overlap
of atomic wavefunctions). In a partially ionic bond the orbitals are not symmet-
ric along A-B, but the center is shifted towards the more electronegative material
(Figs.2.7c, d and 2.13).

The band splitting* between the (highest) bonding and (lowest) antibinding state
Ey, is then written as

4This energy should not be confused with the band gap AE.y, the energy separation of the highest
valence-band state and the lowest conduction-band state. The energy splitting Ey, is the energy
separation between the centers of the valence and conduction bands. Mostly, the term Ej is used
for AE.,.
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Evy = En +1iC, (2.9)

where C denotes the band splitting due to the ionic part of the potential and depends
only on V4 — V. C is proportional to the difference of the electronegativities X
of the A and B atoms, C(A, B) = 5.75(X4 — Xp). A material thus takes a point
in the (Ey,,C) plane (Fig.2.14). The absolute value for the band splitting is given as
E}, = E} + C%.

The ionicity of the bond is described with the ionicity (after Phillips) f;, defined
as [160, 161]

CZ

©E}+CY

fi (2.10)

The covalent part is 1 — f;. In Table 2.1 the ionicity is given for a number of binary
compounds. The ionicity can also be interpreted as the angle tan(¢) = C/E}, in the
(Ej,C) diagram. The critical value of f; = 0.785 for the ionicity separates quite
exactly (for about 70 compounds) the 4-fold (diamond, zincblende and wurtzite)
from the 6-fold (rocksalt) coordinated substances (f; = 0.785 is indicated by a
dashed line in Fig.2.14).

For ionic compounds, an effective ionic charge e¢* is defined connecting the
displacement u of negative and positive ions and the resulting polarization P =
(e*/2a*) u [162]. Connected with the ionicity is the so-called s-parameter, describ-
ing the change of the charge upon change of bond length b from its equilibrium value
by [163]

b s
e*(b) = e*(by) (b_o) ~ej(l+se), (2.11)

€ being the strain of the bond length, b/by = 1 + €. It seems justified to assume
that e*(bg) is always positive at the metal atom in I[II-V and II-VI compounds.
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Table 2.1 lonicity f; (2.10) c |00 |AlAs (027 [BeO 060 |cuct 075
for various binary compounds Si 00 |BeS 029 ZnTe 061 CuF | 0.77
Ge (00 AP 031 ZnO 062 |Agl 077
Sn 00 | GaAs 031 ZnS 062 MgS 0.79
BAs | 0.002 InSb 032 ZnSe 0.63 | MgSe 0.79
BP 0.006 GaP 033 HgTe 065  CdO 0.79
BeTe |0.17 |InAs 036 |HgSe 0.68 |HgS |0.79
SiC (018 WP 042 (CdS 0.69 MgO 0.84
AISb (025 |AIN 045 Cul |0.69 | AgBr 0.85
BN 026 GaN 050 CdSe 0.70 |LiF 092
GaSb 026 'MgTe 055 |CdTe 0.72 | NaCl 0.94
BeSe 026 InN 058 CuBr 074 |RbF 0.96
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The relation of s with the ionicity f; is shown in Fig.2.15 for various compound
semiconductors.

2.5 Metallic Bonding

In a metal, the positively charged atomic cores are embedded in a more or less homo-
geneous sea of electrons. The valence electrons of the atoms become the conduction
electrons of the metal. These are freely moveable and at 7 = 0K there is no energy
gap between filled and empty states. The bonding is mediated by the energy reduc-
tion for the conduction electrons in the periodic potential of the solid compared to
free atoms. This will be clearer when the band structure is discussed (Chap.6). In
transition metals the overlap of inner shells (d or f) can also contribute to the bonding.


http://dx.doi.org/10.1007/978-3-319-23880-7_6
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2.6 van-der-Waals Bonds

The van-der-Waals bond is a dipole bond that leads to bonding in the noble-gas
crystals (at low temperature). Ne, Ar, Kr and Xe crystallize in the densely packed
fcc lattice (cf. Sect. 3.3.5). He?® and He* represent an exception. They do not solidify
at zero pressure at 7 = 0 K due to the large zero-point energy. This quantum-
mechanical effect is especially strong for oscillators with small mass.

When two neutral atoms come near to each other (distance of the nuclei R), an
attractive dipole—dipole interaction —A R~° arises (London interaction) the van-der-
Waals interaction. The quantum-mechanical overlap of the (filled) shells leads to
a strong repulsion +BR~!2. Altogether, a binding energy minimum results for the
Lennard—Jones potential Vi (see Fig.2.16)

A B
VLi(R) = ~R6 + R’ (2.12)
The energy minimum E;, = —A%/(2B)isat R = (2B/A)'/S.

The origin of the attractive dipole—dipole interaction can be understood from a one-
dimensional (1D) model as follows: Two atoms are modeled by their fixed positively
charged nuclei in a distance R and their negatively charged electron shells that are
polarizable, i.e. can be displaced along one direction x. Additionally, we assume (two
identical) 1D harmonic oscillators for the electron motion at the positions 0 and R.
Then, the Hamilton operator Hj of the system without interaction (R is very large)

Hozip%+Cx%+ip§+Cx§. (2.13)
2m 2m

The indices 1 and 2 denote the two electrons of atoms. x| and x; are the displacements

of the electrons. Both harmonic oscillators have a resonance frequency wy = +/C/m,

and the zero-point energy is fuwvy/2.

Fig. 2.16 Lennard-Jones 6 —— T T T T T
potential (2.12) for A =1 '

\
and two values of B ". —_— gﬂ/z
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Taking into account the Coulomb interaction of the four charges, an additional
term H, arises

&2 &2 &? &2 262

H =—+ — — N ——— X1 X 2.14
'""R " R+xi+m R+x R-x, RT (19

The approximation is valid for small amplitudes x; < R. A separation of variables
can be achieved by transformation to the normal modes

X1 +x X=X

’xa -
V2 V2

(2.15)

Xy =

Then we find
H = Hy + H,
1, 1 202\ 1, 1 2¢2
| — 2= )2+ | —p2r-(c- 2.16
[2mp‘+2( R3)x":|+|:2mp"+2 s - (2.16)

This equation is the Hamiltonian of two decoupled harmonic oscillators with the
normal frequencies

c+), pe b2y 12 2+ 2.17)
Wt = —_— m X w — - = LI I .
= R3 0 2\cr?) s\cm

The coupled system thus has a lower (zero-point) energy than the uncoupled. The
energy difference per atom is (in lowest order) proportional to R~°.

1 ( 2e A
AU = hwo——(w+—w)~—mo (CR3) = 5" (2.18)

The interaction is a true quantum-mechanical effect, i.e. the reduction of the zero-
point energy of coupled oscillators.

2.7 Hamilton Operator of the Solid
The total energy of the solid, including kinetic and potential terms, is

_ N P 2,2y
H_Zi:z_nl,-Jr;zz\/][ Z47reo|R —R;|

5 e S @19
2 = dmeg r; — 1| Y d7eg |Rj—ri|’ '




2.7 Hamilton Operator of the Solid 39

where r; and R; are the position operators and p; and P; are the momentum operators
of the electrons and nuclei, respectively. The first term is the kinetic energy of the
electrons, the second term is the kinetic energy of the nuclei. The third term is the
electrostatic interaction of the nuclei, the fourth term is the electrostatic interaction
of the electrons. In the third and fourth terms the summation over the same indices
is left out. The fifth term is the electrostatic interactions of electrons and nuclei.

In the following, the usual approximations in order to treat (2.19) are discussed.
First, the nuclei and the electrons tightly bound to the nuclei (inner shells) are united
with ion cores. The remaining electrons are the valence electrons.

The next approximation is the Born—Oppenheimer (or adiabatic) approximation.
Since the ion cores are much heavier than the electrons (factor & 10°) they move
much slower. The frequencies of the ion vibrations are typically in the region of
several tens of meV (phonons, cf. Sect.5.2), the energy to excite an electron is
typically 1eV. Thus, the electrons always ‘see’ the momentary position of the ions,
the ions, however, ‘see’ the electron motions averaged over many periods. Thus, the
Hamiltonian (2.19) is split into three parts:

H = Hipns(Rj) + He(r;, Rj) + He_ion (ri, 6R;). (2.20)

The first term contains the ion cores with their potential and the time-averaged
contribution of the electrons. The second term is the electron motion around the
ion cores at their averaged positions R ;. The third term is the Hamiltonian of the
electron—phonon interaction that depends on the electron positions and the deviation
of the ions from their average position 6R; = R; — R};. The electron—phonon inter-
action is responsible for such effects as electrical resistance and superconductivity.
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Chapter 3
Crystals

La science cristallographique ne consiste donc point a décrire
scrupuleusement tous les accidens des formes cristallines; mais
a spécifier, en décrivant ces formes, les rapports plus ou moins
immédiats qu’elles ont entre elles.
Crystallographic science does not consist in the scrupulous
description of all the accidents of crystalline form, but in
specifying, by the description of these forms, the more or less
close relationship they have with each other.

J.-B. Romé de I'Isle, 1783 [165]

Abstract A little bit of crystallography... The concepts of the direct and reciprocal
lattice, point and space groups, unit and elementary cells and the Wigner—Seitz cell are
laid out. The important crystal structures for semiconductors (diamond, sphalerite,
wurtzite, chalcopyrite,...) are discussed in some detail. Also alloys and ordering are
covered.

3.1 Introduction

The economically most important semiconductors have a relatively simple atomic
arrangement and are highly symmetric. The symmetry of the atomic arrangement
is the basis for the classification of the various crystal structures. Using group
theory [166], basic and important conclusions can be drawn about the physical prop-
erties of the crystal, such as its elastic and electronic properties. The presence of
highly symmetric planes is obvious from the crystal shape of the minerals and their
cleavage behavior.

Polycrystalline semiconductors consist of grains of finite size that are structurally
perfect but have various orientations. The grain boundaries are a lattice defect (see
also Sect.4.4.3). Amorphous semiconductors are disordered on the atomic scale, see
Sect.3.3.7.

© Springer International Publishing Switzerland 2016 41
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Fig. 3.1 (a) Two-dimensional lattice. It can be generated by various pairs of translation vectors.
(b) Elementary cells of the lattice. Primitive elementary cells are shaded

3.2 Crystal Structure

A crystal is built up by the (quasi-) infinite periodic repetition of identical building
blocks. This lattice (Bravais lattice) is generated by the three fundamental translation
vectors ai, a; and a3. These three vectors may not lie in a common plane. The lattice
(Fig.3.1) is the set of all points R

R =nia; +nya; + n3a;s. (3.1

The crystal structure is made up by the lattice and the building block that is attached
to each lattice point. This building block is called the base (Fig.3.2). In the simplest
case, e.g., for crystals like Cu, Fe or Al, this is just a single atom (monoatomic base).
In the case of C (diamond), Si or Ge, it is a diatomic base with two identical atoms
(e.g., Si—Si or Ge—Ge), in the case of compound semiconductors, such as GaAs or
InP, it is a diatomic base with nonidentical atoms such as Ga—As or In—P. There exist
far more involved structures, e.g., NaCd, where the smallest cubic cell contains 1192
atoms. In protein crystals, the base of the lattice can contain 10000 atoms.

In summary: Crystal structure = Lattice x Base.

""Base

Fig. 3.2 Crystal structure, consisting of a lattice and a base
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3.3 Lattice

As described in Sect. 3.2 the lattice is spanned by three vectors a;. The lattice sym-
metry is decisive for the physical properties of the semiconductor. It is described by
the appropriate groups of the symmetry operations.

3.3.1 Unit Cell

The choice of the vectors a; making up the lattice is not unique (Fig. 3.1). The volume
that is enclosed in the parallelepiped spanned by the vectors a;, a, and a3 is called the
elementary cell. A primitive elementary cell is an elementary cell with the smallest
possible volume (Fig.3.1b). In each primitive elementary cell there is exactly one
lattice point. The coordination number is the number of next-neighbor lattice points.
A primitive cubic (pc) lattice, e.g., has a coordination number of 6.

The typically chosen primitive elementary cell is the Wigner—Seitz (WS) cell that
reflects the symmetry of the lattice best. The Wigner—Seitz cell around a lattice point
Ry contains all points that are closer to this lattice point than to any other lattice point.
Since all points fulfill such a condition for some lattice point R;, the Wigner—Seitz
cells fill the volume completely. The boundary of the Wigner—Seitz cell is made up
by points that have the same distance to Ry and some other lattice point(s). The
Wigner—Seitz cell around Ry is constructed by drawing lines from Ry to the next
neighbors R, taking the point at half distance and erecting a perpendicular plane at
(R; + Rp)/2. The WS cell is the smallest polyhedra circumscribed by these planes.
A two-dimensional construction is shown in Fig.3.3.

3.3.2 Point Group

Besides the translation there are other operations under which the lattice is invariant,
i.e. the lattice is imaged into itself. These are:

Identity. The neutral element of any point group is the identity that does not change
the crystal. It is denoted as 1 (E) in international (Schonflie3) notation.

Fig. 3.3 (a) Construction of a two-dimensional Wigner—Seitz cell, (b) filling of space with WS
cells
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Fig. 3.4 Two-dimensional objects with perpendicular rotation axis C,. Note that the circles do not
exhibit o, symmetry with respect to the paper plane, i.e. they are different on the fop and bottom
side

Rotation. The rotation around an axis may have a rotation angle of 27, 27/2, 27/3,
27/4 or 27/6 or their integer multiples. The axis is then called n = 1-, 2-, 3-, 4- or
6-fold, respectively,1 and denoted as n (international notation) or C,, (Schonflief3).
Objects with C,, symmetry are depicted in Fig.3.4.

Mirror operation with respect to a plane through a lattice point. Different mirror
planes are discerned (Fig. 3.5) (after Schonflie3) o,: a mirror plane perpendicular to
a rotational axis, o,: a mirror plane that contains a rotational axis, and o4: a mirror
plane that contains a rotational axis and bisects the angle between two C, axes. The
international notation is 2.

Inversion. All points around the inversion center r are replaced by —r. The inver-
sion is denoted 1 (i) in international (SchénflieB) notation.

Improper rotation. The improper rotation S,, is arotation C,, followed immediately
by the inversion operation i denoted as 7 in international notation. There are 3, 4
and 6 and their powers. Only the combined operation 72 is a symmetry operation,
while the individual operations C,, and i alone are not symmetry operations. In the
Schonflief notation the improper rotation is defined as S, = o,C,,, with o}, being a
mirror operation with a plane perpendicular to the axis of the C, rotation, denoted
as S,. There are S3, Sy and Sg and 3 = S3, 4 = S; and 6 = S3. For successive
applications, the S, yield previously known operations, e.g., Sf = Cy, ij =E,
Sé = Cjs, Sg =1, S§ = C%, S33 = oy, S;‘ = Cs, S36 = E. We note that formally S;
is the inversion i and S, is the mirror symmetry o. Objects with S, symmetry are
schematically shown in Fig.3.6.

These symmetry operations form 32 point groups. These groups are shown (with
their different notations and elements) in Table B.2. The highest symmetry is the
cubic symmetry O, = O X i. The tetraeder group 7; (methane molecule) is a
subgroup of O, lacking the inversion operation.

Important for surface symmetries, there are ten two-dimensional point groups
(Sect. 11.2 and Table B.1).

15-fold periodic symmetry is geometrically impossible. However, quasicrystals with aperiodic five-
fold symmetry exist [167, 168], some of them possibly being semiconducting [169, 170].


http://dx.doi.org/10.1007/978-3-319-23880-7_11

3.3 Lattice 45

Oy

Fig. 3.5 Mirror planes: (a) o, (at HyO molecule), (b) o, (at F;H, molecule) and (¢) oy

AL L0

Fig.3.6 Two-dimensional objects with perpendicular improper rotation axis S, . Note that the white
and black circles do not exhibit o, symmetry with respect to the paper plane, i.e. they are white on
the top and black on the bottom. The circles with a dot in the center exhibit o, symmetry, i.e. they
look the same from fop and bottom

3.3.3 Space Group

The space group is formed by the combination of the elements of the point group with
translations. The combination of a translation along a rotational axis with a rotation
around this axis creates a screw axis n,,. In Fig.3.7a, a so-called 4; screw axis is
shown. The first index n indicates the rotation angle, i.e. 27/n, the second index
indicates the translation, i.e. ¢ m/n, c being the periodicity along the axis. There are
eleven crystallographically allowed screw rotations.”

The combination of the mirror operation at a plane that contains a rotational axis
with a translation along this axis creates a glide reflection (Fig.3.7b). For an axial
glide (or b-glide) the translation is parallel to the reflection plane. A diagonal glide
(or d-glide) involves translation in two or three directions. A third type of glide
is the diamond glide (or d-glide). There are 230 different space groups, listed in
Appendix B. A detailed treatment can be found in [171].?

Important for surface symmetries, there are 17 two-dimensional space groups
(Sect. 11.2).

221,31, 32,41, 42,43, 61, 62, 63, 64, 65.
30ne should in particular consider the pitfalls pointed out in Appendix 10 of this reference.


http://dx.doi.org/10.1007/978-3-319-23880-7_11
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Fig. 3.7 (a) Schematic drawing of a 4| and 4, screw axis. (b) Schematic drawing of an axial glide
reflection. The mirror plane is shown with dashed outline. Opposite faces of the cube have opposite
color. For comparison a 2| screw axis is shown

Fig. 3.8 The
two-dimensional Bravais
lattices with the primitive
unit cells: (a) square lattice
(a = b, =90°), (b)
hexagonal lattice (a = b,

¢ = 60°), (¢) rectangular
lattice (a # b, ¢ = 90°), (d)
centered-rectangular lattice
(a # b, ¢ =90°, for the
(nonprimitive) rectangular
unit cell shown on the right)

(@) g2

g

3.3.4 2D Bravais Lattices
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There are five two-dimensional (2D) Bravais lattices (Fig.3.8) which are distinct
and fill all (2D) space. These are very important for the description of symmetries at
surfaces. The 2D Bravais lattices are the square, hexagonal, rectangular and centered-

rectangular lattice.

3.3.5 3D Bravais Lattices

In three dimensions, the operations of the point group results in fourteen 3D Bravais
lattices (Fig. 3.9), that are categorized into seven crystal classes (trigonal, monoclinic,
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B
i

cubic, sc bcc fcc

=
=]

tetragonal bc tetragonal
<7 &
— e
orthorhombic ¢ orthorhombic bc orthorhombic fc orthorhombic

1]
E8

monoclinic cmonoclinic triclinic

<S>

rhombohedral hexagonal

Fig. 3.9 The 14 three-dimensional Bravais lattices: cubic (sc: simple cubic, bcc: body-centered
cubic, fcc: face-centered cubic), tetragonal (simple and body-centered), orthorhombic (simple, cen-
tered, body-centered and face-centered), monoclinic (simple and centered), triclinic, rhombohedral
and hexagonal

rhombic, tetragonal, cubic, rhombohedral and hexagonal). These classes are dis-
cerned by the conditions for the lengths and the mutual angles of the vectors that
span the lattice (Table3.1). Some classes have several members. The cubic crystal
can have a simple (sc), face-centered (fcc) or body-centered (bcc) lattice.

In the following, some of the most important lattices, in particular those most
relevant to semiconductors, will be treated in some more detail.
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Table 3.1 Conditions for lengths and angles for the 7 crystal classes

System

Triclinic
Monoclinic

Orthorhombic
Tetragonal

Cubic
Trigonal
(Rhombohedral)

Hexagonal

Lattice symbol

s, C

s, ¢, be, fc
s, bc

s, be, fc

3 Crystals

Conditions for the
usual unit cell

None
a=v=90°or
a=[0F=90°

a=L0=v=90°
a=b,
a=p[=v=90°
a=b=c,
a=p[=v=90°

a=b,a=[0(=90°,

v = 120°
a=b=c,

a=b,a=[p3=90°

v = 120°

Note that only the positive conditions are listed. The rhombohedral system is a special case of the
trigonal class. Conditions for the trigonal and hexagonal classes are the same, however, trigonal
symmetry includes a single C3 or Sg axis, while hexagonal symmetry includes a single C¢ or Sg

axis

Cubic fcec and bece Lattices

The primitive translation vectors for the cubic face-centered (fcc) and the cubic body-
centered (bcc) lattice are shown in Figs.3.10 and 3.11, respectively. Many metals
crystallize in these lattices, e.g., copper (fcc) and tungsten (bcc).

In the fcc lattice, one lattice point sits in the center of each of the six faces of the
usual cubic unit cell. The vectors spanning the primitive unit cell are

a =

a =

a3 —=

QIR

(1,1,0)
0,1, 1)

(1,0,1).

(3.2)

In the bec lattice, one extra lattice point sits at the intersection of the three body
diagonals at (a; + a, + a3)/2. The vectors spanning the primitive unit cell are

aj

a

a3

QIR

1,1,-1)
(-1,1,1)

(1, -1,1).

(3.3)
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Fig. 3.10 Primitive
translations of the fcc lattice.
These vectors connect the
origin with the face-center
points. The primitive unit
cell is the rhombohedron
spanned by these vectors.
The primitive translations a’,
b’ and ¢’ are given in (3.2).
The angle between the
vectors is 60°

Fig. 3.11 Primitive
translations of the bcc lattice.
These vectors connect the
origin with the lattice points
in the cube centers. The
primitive unit cell is the
rhombohedron spanned by
these vectors. The primitive
translations a’, b’ and ¢’ are
given in (3.3). The angle
between the vectors is
~70.5° e

Hexagonally Close Packed Lattice (hcp)

The 2D hexagonal Bravais lattice fills a plane with spheres (or circles) with maximum
filling factor. There are two ways to fill space with spheres and highest filling factor.
One is the fcc lattice, the other is the hexagonally close packed (hcp) structure. Both
have a filling factor of 74 %.

For the hcp, we start with a hexagonally arranged layer of spheres (A), see
Fig.3.12. Each sphere has six next-neighbor spheres. This could, e.g., be a plane
in the fcc perpendicular to the body diagonal. The next plane B is put on top in such
a way that each new sphere touches three spheres of the previous layer. The third
plane can now be added in two different ways: If the spheres of the third layer are
vertically on top of the spheres of layer A, a plane A’ identical to A has been created
that is shifted from A along the stacking direction (normally called the c-axis) by

Chep = v 8/3a ~ 1.633a. (3.4
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(a) (b)

S @B
SS9 B

hcp fcc
Fig. 3.12 Structure of the (a) hcp and (b) fcc lattice. For hep the stacking (along the c-axis) is
ABABAB. . ., for fcc (along the body diagonal) it is ABCABCABC. ..

The vectors spanning the primitive unit cell are

a, = ‘5’ (1, —3, 0) (3.5)
a, = ‘5’ (1, V3, 0)
as = ¢ (0,0, 1).

The hcp stacking order is ABABAB. . . for hep, the coordination number is 12. In
the fcc structure, the third layer is put on the thus far unfilled positions and forms a
new layer C. Only the forth layer is again identical to A and is shifted by

Cree = V6a ~245a. (3.6)

The fcc stacking order is ABCABCABC. ..

In the hexagonal plane of the fcc lattice (which will later be called a {111} plane)
the distance between lattice points is @ = ag/+/2, where ay is the cubic lattice
constant. Thus ¢ = +/3 ag, just what is expected for the body diagonal.
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(a)

Fig. 3.13 Transmission electron micrographs of polycrystalline silicon (poly-Si). (a) As-deposited
material from low-pressure chemical vapor deposition (LPCVD) at about 620°C, grain size is
about 30nm. (b) After conventional processing (annealing at 1150 °C), average grain size is about
100 nm. (c¢) After annealing in HCI that provides enhanced point defect injection (and thus increased
possibility to form larger grains), average grain size is about 250 nm. Adapted from [172]

For real materials with hexagonal lattice the ratio c¢/a deviates from the ideal value
given in (3.4). Helium comes very close to the ideal value, for Mg it is 1.623, for Zn
1.861. Many hcp metals exhibit a phase transition to fcc at higher temperatures.

3.3.6 Polycrystalline Semiconductors

A polycrystalline material consists of crystal grains that are randomly oriented with
respect to each other. Between two grains a (large-angle) grain boundary (see also
Sect.4.4.3) exists. An important parameter is the grain size and its distribution. It can
be influenced via processing steps such as annealing. Polycrystalline semiconduc-
tors are used in cheap, large-area applications such as solar cells (e.g., polysilicon,
CulnSe;) or thin-film transistors (poly-Si) or as n-conducting contact material in
MOS diodes (poly-Si) as shown in Fig.3.13 (see also Fig.21.28). Polycrystalline
material can be fabricated from amorphous material using annealing procedures as
discussed in Sect. 24.6.1 for silicon.

3.3.7 Amorphous Semiconductors

An amorphous material lacks the long-range order of the direct lattice. It is disordered
on the atomic scale. Historically, amorphous Se (a-Se) has been investigated first;
since the 1950s amorphous chalcogenides and a-Ge [173] and since the late 1960s
a-Si [174] are researched. The field of amorphous oxides started in the mid 1950s


http://dx.doi.org/10.1007/978-3-319-23880-7_4
http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_24
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(b) Ge T T T T

Probability

0.1 0.2 0.3 0.4 0.5 0.6
Atom distance (nm)

Fig. 3.14 (a) A continuous random network model of amorphous silicon containing a dangling
bond in the center of the figure. Reprinted with permission from [178]. (b) Calculated radial atomic
distribution functions of amorphous Ge (solid lines) for three different values of the disorder para-
meter « (3.7) as labeled and experimental result (dashed line). The positions of next, second-next
and third-next neighbors are indicted by vertical bars with numbers of their multiplicity (4, 12, and
12). Adapted from [177]

with vanadates [175] and is currently very active with mixed-metal-based oxides
[176] (cmp. Chap. 20).

The local quantum mechanics provides almost rigorous requirements for the bond
length to next neighbors. The constraints for the bond angle are less strict. Covalently
bonded atoms arrange in an open network with correlations up to the third and fourth
neighbors. The short-range order is responsible for the observation of semiconductor
properties such as an optical absorption edge and also thermally activated conduc-
tivity. In Fig.3.14a a model of a continuous random network (with a bond-angle
distortion of less than about 20 %) of a-Si is depicted. The diameter dsg of the short-
range order region is related to the disorder parameter « via [177]

a
dsg = —, 3.7
SR =5 3.7

where a is the next-neighbor interatomic distance. For a diamond structure it is
related to the lattice constant by a = V3 ap/4.

Typically, a significant number of dangling bonds exists. Bonds try to pair but if an
odd number of broken bonds exists locally, an unsaturated, dangling bond remains.
This configuration can be passivated by a hydrogen atom. Thus, the hydrogenation
of amorphous semiconductors is very important, in particular for a-Si. A hydrogen
atom can also break an overlong (and therefore weak) bond, saturate one side and
eventually leave a dangling bond.


http://dx.doi.org/10.1007/978-3-319-23880-7_20
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Amorphous material can be (re-)crystallized into crystalline, mostly polycrys-
talline material upon annealing. This is technologically very important for a-Si (see
Sect.24.6.1).

3.4 Important Crystal Structures

Now the crystal structures that are important for semiconductor physics will be
discussed. These are mainly the rocksalt (PbS, CdO, ...), diamond (C, Si, Ge),
zincblende (GaAs, InP, .. .) and wurtzite (GaN, ZnO, . ..) structures.

3.4.1 Rocksalt Structure

The rocksalt (rs, NaCl, space group 225, Fm3m) structure (Fig.3.15a) consists of a
fcc lattice with the period a and a diatomic base in which the CI atom is positioned
at (0, 0, 0) and the Na atom at (1/2, 1/2, 1/2)a with a distance /3 a /2. Materials that
crystallize (under normal conditions) in the rocksalt lattice are, e.g., KCI, KBr, PbS
(galena), PbSe, PbTe, AgBr, MgO, CdO, MnO. AIN, GaN and InN undergo, under
high pressure, a phase transition from the wurtzite into the rocksalt structure.

3.4.2 CsClI Structure

The CsCl structure (space group 221, Pm3m) (Fig. 3.15b) consists of a simple cubic
lattice. Similar as for the rocksalt structure, the base consists of different atoms

(b)

Fig. 3.15 (a) Rocksalt (NaCl) structure, (b) CsCl structure


http://dx.doi.org/10.1007/978-3-319-23880-7_24
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at (0, 0, 0) and (1/2, 1/2, 1/2)a. Typical crystals with CsCl-structure are TIBr, TII,
CuZn ((3-brass), AINi.

3.4.3 Diamond Structure

The diamond structure (C, space group 227, Fd3m) (Fig.3.16a) has the fcc lattice.
The base consists of two identical atoms at (0, 0, 0) and (1/4, 1/4, 1/4)a. Each atom
has a tetrahedral configuration. The packing density is only about 0.34. The ABC-
type stacking along the [111]-direction is visualized in Fig. 3.17a. The materials that
crystallize in the diamond lattice are C, Ge, Si and a-Sn. Silicon as the most important
semiconductor is particularly well researched [179].

The diamond structure (point group O) has an inversion center, located between
the two atoms of the base, i.e. at (1/8, 1/8, 1/8)a. The radii of the wavefunctions for
various group-IV elements increases with the order number (Table 3.2), and accord-
ingly the lattice constant increases.

Fig.3.16 (a) Diamond structure and (b) zincblende structure (red spheres: A atoms, green spheres:
B atoms). The tetragonal bonds are indicated

Fig. 3.17 HRTEM images diamond
of (a) diamond structure (Si, [111]
{110} cross section) and (b)

wurtzite structure (GaN, T
(10.0) azimuth). The ABC

and AB stacking is indicated

C
AB
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Table 3.2 Radii of the wavefunctions in the diamond structure, ry and ), are related to s! p3, rq to
s!p2d! and lattice constant ag

ry (nm) rp (nm) rq (nm) ap (nm)
C 0.121 0.121 0.851 0.3567
Si 0.175 0.213 0.489 0.5431
Ge 0.176 0.214 0.625 0.5646

(b)
V3a,

_Y_

A BC BB-ABT H T A-AB
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Fig. 3.18 (a) Unit cell of the zincblende structure with the indication of tetragonal symmetries.
The position of the small yellow (blue) sphere is the tetrahedrally configured unoccupied positions
of the A (B) sublattice, denoted with “T” in part (b). (b) Line along [111] in the zincblende structure.
The positions of the A and B atoms are denoted by red and green circles as labeled. Other positions
are called the bond center (‘BC’), antibonding (‘AB’) relative to A and B atoms (‘A—AB’, ‘B—-AB’),
hexagonal (‘H’) and tetrahedral position (‘T’, blue and yellow circles)

In Fig. 3.18a the unit cell with tetragonal symmetry of three places along the (111)
direction is shown. In Fig.3.18b the arrangement of atoms along (111) is depicted.
The symmetry along this line is at least C3,. At the atoms sites it is Oj. The bond
center (BC) and the hexagonal (H) position are a center of inversion and have D3,
symmetry. The unoccupied ‘T’ positions have T; symmetry. High-pressure phases
of silicon are already found in indentation experiments [180].

We note that «-Sn has little current importance. The diamond structure a—Sn
phase is stable below 13.2°C. The addition of Ge inhibits the retransformation to
metallic tin up to higher temperatures (e.g., 60 °C for 0.75 weight percent Ge). The
properties of gray tin are reviewed in [181].

3.4.4 Zincblende Structure

The zincblende (sphalerite,* ZnS, space group 216, F43m) structure (Fig.3.16b)
has a fcc lattice with a diatomic base. The metal (A) atom is at (0, 0, 0) and the

4Zincblende technically means the material ZnS which occurs in sphalerite (cubic) and wurtzite
(hexagonal) phase. However, in the literature the term ‘zincblende’ for the sphalerite structure is
common and used throughout this book.
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nonmetal (B) atom is at (1/4, 1/4, 1/4)a. Thus the cation and anion sublattices are
shifted with respect to each other by a quarter of the body diagonal of the fcc lattice.
The atoms are tetrahedrally coordinated, a Zn atom is bonded to four S atoms and
vice versa. However, no inversion center is present any longer (point group 7). In the
zincblende structure the stacking order of diatomic planes along the body diagonal
is aAbBcCaAbBcC. ..

Many important compound semiconductors, such as GaAs, InAs, AlAs, InP, GaP
and their alloys (cf. Sect. 3.7), but also the II-VI compounds ZnS, ZnSe, ZnTe, HgTe
and CdTe and halides, including Agl, CuF, CuCl, CuBr, and Cul, crystallize in the
zincblende structure.

Four-fold coordinated materials (zincblende and wurtzite) typically undergo a
phase transition into 6-fold coordinated structures upon hydrostatic pressure [182].
For GaAs under pressure see [183].

3.4.5 Wurtzite Structure

The wurtzite structure (ZnS, space group 186, P6;mc) is also called the hexagonal
ZnS structure (because ZnS has both modifications). It consists (Fig.3.19) of a hep
lattice with a diatomic base. The c/a ratio typically deviates from the ideal value
Co = +/8/3 A~ 1.633 (3.4) as listed in Table 3.3. The c-axis is a 63 screw axis.

The Zn atom is located at (0, 0, 0), the S atom at (0, 0, »/3/8)a. This corresponds
to a shift of 3/8 ¢ along the c-axis. This factor is called the cell-internal parameter
u. For real wurtzite crystals u# deviates from its ideal value ug = 3/8 = 0.375,
e.g., for group-1II nitrides u > ug. The diatomic planes have a stacking order of
aAbBaAbB. .. along the [00.1]-direction as visualized in Fig.3.17b.

InFig. 3.20 the different local structural environment of the atoms in the zincblende
and wurtzite structure is shown.

Many important semiconductors with large band gap crystallize in the wurtzite
structure, such as GaN, AIN, InN, [185] ZnO, [186] SiC, [187], CdS und CdSe.

Table 3.3 c/a ratio of various wurtzite semiconductors

Material | & (%) Material | £(%) Material | £ (%) Material | & (%)
AIN —2.02 Cds —0.61 CuBr 0.43 BeO —0.61
GaN —-0.49 CdSe —0.18 CuCl 0.55 Zn0O -19

InN —1.35 CdTe 0.25 Cul 0.74 6H-SiC 0.49
ZnS 0.25 MgS —0.80 Agl 0.12 BN 0.74
ZnSe 0.06 MgSe —0.67 ZnTe 0.74 MgTe —0.67

Listed is £ = (c/a — (p)/{o. Data based on [184]
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(a)

Fig. 3.19 (a) Top view (along the c-axis) and (b) side view of the wurtzite structure with the
tetragonal bonds indicated. The top (bottom) surface of the depicted structure is termed the Zn-face,

(00.1) (O-face, (00.1))

Fig. 3.20 Comparison of the (a) [111] (b) [0001]
tetragonal bonds in the (a)
zincblende and (b) wurtzite
structure (i: inversion center,
m: symmetry plane)

3.4.6 Chalcopyrite Structure

The chalcopyrite [188] (ABC,, named after ‘fool’s gold” CuFeS,, space group 122,
142d) structure is relevant for I-III-VI, (with chalcogenide anions) and II-IV-V,
(with pnictide anions) semiconductors such as, e.g., (Cu,Ag)(Al,Ga,In)(S,Se,Te),
and (Mg,Zn,Cd)(Si,Ge,Sn)(As,P,Sb),. A nonmetallic anion atom (‘C’) is tetrahe-
drally bonded to two different types of cation atoms (‘A’ and ‘B’) as shown in
Fig.3.21. The local surrounding of each anion is identical, two of both the A and
B atoms. The structure is tetragonal. The aspect ratio n = c¢/(2a) deviates from its
ideal value 1; typically n < 1 [189, 190].

If the C atom is in the tetrahedral center of the two A and two B atoms, the bond
lengths Rac and Rpc of the A—C and B—C bonds, respectively, are equal. Since the
ideal A—C and B—C bond lengths dac and dpc are typically unequal, this structure
is strained. The common atom C is therefore displaced along [100] and [010] such
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Fig. 3.21 Chalcopyrite
structure, red and yellow
spheres denote the metal
species. The bigger green
spheres represent the
nonmetal anion

that it is closer (if dac < dpc) to the pair of A atoms and further away from the B
atoms. The displacement parameter is

(3.8)

and it deviates from the ideal value uy = 1/4 for the zincblende structure as listed
in Table 3.4 for a number of chalcopyrite compounds. In the chalcopyrite structure

1+ 2
Rac =a,|u? + Jlr677 (3.92)
1\> 1+
Rpc = - = . 3.9b
BC =0 ('4 2) + 6 (3.9b)
The minimization of the microscopic strain yields (in first order) [191]
1 3 d3.—d:
w=— 4> A5C (3.10)
4 8djc +dic

Compounds with u > u., u. = 0.265 being a critical displacement parameter, (or
u < 1/2 —u, = 0.235) are stable with regard to cation disorder [190]. In Fig.3.22
the correlation of the calculated value for u# according to (3.10) and the experimental
values is shown.
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Table 3.4 Lattice nonideality parameters 7 and u (from (3.10)) of various chalcopyrite compounds
and their experimentally observed disorder stability (4-/— indicates compound with/without order—
disorder (D-O) transition, respectively)

n u D-O n u D-O
CuGaSe, | 0.983 0.264 + ZnSiAs; | 0.97 0.271 —
CulnSe; 1.004 0.237 + ZnGeAs, |0.983 0.264 +
AgGaSe; 0.897 0.287 - CdSiAs; [0.92 0.294 —
AgInSe, | 0.96 0.261 + CdGeAs, | 0.943 0.287
CuGaS; |0.98 0.264 ZnSiP; 0.967 0.272 —
CulnS, 1.008 0.236 + ZnGeP, | 0.98 0.264 +
AgGaS, | 0.895 0.288 - CdSiP; 0.92 0.296
AglnS; 0.955 0.262 CdGeP, |0.939 0.288 —
Data from [190]
T T T Tcasip, T ®AgGas,
0.30 |- ) L 2
CdSlAsZAI/, MgASiP,
// AAls,
0.28 | CdGeAsi<§(’3dGePz _
CuGas, / @®AgGaSe,
CuAlISy CuAISe,//.CuFesz
Znoan ko Z Zsr‘lﬁipz
g 0.26 |- CdSHAZS?A}/Zn(?eI;z =
> ,’/.CuGaS, AginSe,
e :> ® AginS,
// CuGaSe,
0.24 - ,Z'n/San 7
,7Znsnsb, Sy pZnSnAs, e VI,
7 CulnSe, A VY,
022 L L7 cuins, B VIV, |
il ! ! ! ! !
0.22 0.24 0.26 0.28 0.30
u
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Fig. 3.22 Experimental values uexp of the displacement parameter for various chalcopyrites versus
the calculated value ucyc according to (3.10). The dashed line indicates uexp = Ucalc. Adapted
from [191]

3.4.7 Spinel Structure

A large variety of ternary compounds of type A"TB™,CV1, crystallize in the cubic
spinel structure (spinel, MgAl, Oy, space group 227, Fd3m). Typical elements are A:
Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Sn, B: Al, Ga, In, Ti, V, Cr, Mn, Fe, Co, Rh,
Ni, and C: O, S, Se, Te.

As an example ZnGa,; Oy, (zinc gallate) has received attention as interfacial layer
in ZnO/GaAs epitaxy [192], luminescent material [193], and as ferromagnetic semi-
conductor [194]. Also the (unwanted) appearance of zinc gallate inclusions is in
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Fig. 3.23 Spinel AB>Cy
crystal structure, the cations
are depicted as yellow (A
atoms) and silver (B atoms)
spheres, the anions (C
atoms) as blue spheres

competition with the formation of highly doped wurtzite ZnO:Ga; in the (normal)
spinel cubic structure of ZnGa, O, the Zn>* ions still occupy tetrahedral sites, but
the Ga3* ions occupy octahedral sites instead of tetrahedral sites in doped wurtzite
Zn0:Ga. (Sc,Al)MgO, (SCAM) is available as substrate material. Also AV'B,CVy
compounds exist, e.g., GeB,04 (with B = Mg, Fe, Co, Ni)

The anion atoms (C27) sit on a fcc lattice. The A atoms fill 1/8 of all tetraeder
spaces and the B atoms fill half of all octaeder places (Fig.3.23). Often the cations
are charged A>* and B3**, e.g., in ZnAl,04, MgCr,04 or ZnCo,04. Also A®" and
B!~ exists, e.g., in WNa,Oy.

The cubic lattice constant is denoted as a. In real spinels, the anions deviate
from the ideal fcc array which is accounted for by the parameter u, measuring the
displacement of anions along the [111]-direction [195]; if the A-site cation is at
(0,0,0), an anion is at (u, u, u). The cation-anion distances are given by [196]

Rac = a3 — 1/8), (3.11a)
Rec = a+/3u2 —2u —3/8. (3.11b)

The ideal value is u = 1/4; examples are u = 0.2624 for MgAl,O4, u = 0.2617 for
7ZnGa,04 and u = 0.2409 for SiFe,O4 [196].

In the inverted spinel structure, for ATB™,CV!, compounds, the cations are dis-
tributed like B(AB)C4, i.e. the B cations occupy tetraeder and octaeder places, e.g.,
in Mg>t(Mg>*Ti*")02~ or Fe*+(Ni2*Fe?+)02~. Examples are magnetite (Fe30,),
a material with high spin polarization, or MgFe,04. Also AV'B",CY!; compounds
exist in this structure, e.g., SnB,04 (with B = Mg, Mn, Co, Zn), TiB,04 (with B =
Mg, Mn, Fe, Co, Zn), and VB,0,4 (with B = Mg, Co, Zn).
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Fig. 3.24 Fluorite crystal
structure, the cations are
depicted as red spheres, the
anions as blue spheres

3.4.8 Fluorite Structure

Named after the minerale fluorite (CaF,, space group 225, Fm3m), this structure for
binary ionic compounds occurs when the cation valence is twice the anion valence,
e.g., for (cubic) ZrO, (zirconia) or HfO,. The lattice is fcc with a triatomic base. At
(0,0,0) is the cation (e.g., Zr**), the anions (e.g., 0*7) are at (1/4, 1/4, 1/4) a (as in
the zincblende structure) and (3/4, 3/4, 3/4) a (Fig.3.24). The anion atom positions
are on a simple cubic lattice with lattice constant a/2. Zirconia can crystallize in
various phases [197], the most prominent being the monoclinic, tetragonal and cubic
phases. The cubic phase can be extrinsically stabilized using yttrium [198, 199]
(YSZ, yttria-stabilized zirconia). Hafnium oxide has the remarkable property that
the HfO,/Si interface is stable and allows the fabrication of transistor gate oxides
with high dielectric constant (see Sect.24.5.5).

3.4.9 Delafossite Structure

The I-III-O, materials crystallize in the trigonal delafossite (CuFeO,, space group
166, R3m) structure (Fig.3.25). This structure is also called caswellsilverite
(NaCrS,). In Table3.5 the lattice parameters of some delafossite compounds are
given. The (Cu, Ag) (Al, Ga, In)O, materials are transparent conductive oxides
(TCO). We note that Pt and Pd as group-I component create metal-like compounds
because of the d° configuration as opposed to the d'° configuration of Cu and Ag.

3.4.10 Perovskite Structure

The perovskite structure for ABO: 3 materials (calcium titanate, CaTiOs3, space group
62, Pnma) (Fig.3.26) is relevant for ferroelectric semiconductors (cf. Sect. 15.3).
It is cubic with the Ca (or Ba, Sr) ions (charge state 24) on the corners of the
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Fig. 3.25 Hexagonal unit cell of delafossite CuGaO,. Oxygen atoms are bonded to the Cu in a
dumbbell (‘DB’) configuration. In the edge-sharing (‘ES’) layer the Ga atoms are octahedrally
configured as GaOg

Table 3.5 Lattice parameters a, c, and u of some delafossite compounds

a (nm) ¢ (nm) u (nm)
CuAlO; 0.2858 1.6958 0.1099
CuGaO, 0.2980 1.7100 0.1073*
CulnO; 0.3292 1.7388 0.1056*

Theoretical values are shown with asterisk. Data from [200]

cube, the O ions (2—) on the face centers and the Ti (4+) in the body center. The
lattice is simple cubic, the base is Ca at (0, 0, 0), O at (1/2, 1/2, 0), (1/2, 0, 1/2)
and (0, 1/2, 1/2) and Ti at (1/2, 1/2, 1/2). The ferroelectric polarization is typically
evoked by a shift of the negatively and positively charged ions relative to each other.
LaAlOj; (lanthanium aluminate) is available as substrate material (space group 226,
Fm3c [201]). Perovskites are also important for high temperature superconductivity.

3.4.11 NiAs Structure

The NiAs structure (space group 194, P63/mmc) (Fig. 3.27) is relevant for magnetic
semiconductors, such as MnAs, and also occurs in the formation of Ni/GaAs Schottky
contacts [202]. The structure is hexagonal. The arsenic atoms form a hcp structure
and are trigonal prismatically configured with six nearest metal atoms. The metal
atoms form hcp planes and fill all octahedral holes of the As lattice. For a cubic close
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Fig. 3.26 Perovskite structure (BaTiO3), (a) A cell with 12-fold (cuboctahedrally) configured Ba,
(b) B cell with octahedrally configured Ti

Fig. 3.27 NiAs structure, metal atoms: dark grey, chalcogenide atoms: light grey

packed, i.e. fcc, structure this would correspond to the rocksalt crystal. The stacking
is ABACABAC... (A: Ni, B,C: As).

3.4.12 Further Structures

There are many other crystal structures that have relevance for semiconductor mate-
rials. Among them are the

e corundum structure (Al,O3, space group 167, R3c) occurring, e.g., for sapphire
substrates used in epitaxy or for gallium oxide a-Ga,03 (Ga, O3 is a multiphase
material [203])

e bixbyite structure (In,O3, §-Ga, 03, space group 206, Ia3) (see Fig.20.3)

e (3-Ga, 03 monoclinic structure (space group 12, C2/m)

e quartz (SiO,) structures, a-quartz (space group 154, P3,21) and (3-quartz (space
group 180, P6,22)
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Space does not permit to discuss these and other structures in more detail here.
The reader should refer to textbooks on crystallography, e.g., [204-206], and space
groups [171, 207]. A good source for information and images of crystal structures
on the web is [208].

3.5 Polytypism

In polytype materials the stacking order is not only hcp or fcc but takes different
sequences, such as, e.g., ACBCABAC as the smallest unit cell along the stacking
direction. A typical example is SiC, for which in addition to hcp and fcc 45 other
stacking sequences are known. The largest primitive unit cell of SiC [187] contains
594 layers. Some of the smaller polytypes are sketched in Fig. 3.28. In Fig. 3.29 cubic

zincblende

>W>0W0O0>»0>WOT>O

Fig. 3.28 (a) Polytypes of the zincblende and wurtzite lattice (found in SiC), the letters A, B and C
denote the three possible positions of the diatomic layers (see Fig.3.12). (b) High resolution TEM
image of 6H-SiC. For the enlarged view on the /eft, the unit cell and the stacking sequence are
indicated. Adapted from [209]



3.5 Polytypism 65

Fig. 3.29 Polytypes of diamond found in crystallites (metastable phases in silicon). (a) cubic
type (3C) with stacking ABC, inset shows a diffractogram and the alignment of the C and Si
lattice, (b) rhombohedral 9R crystallite with ABCBCACABA stacking, (¢) 9R phase with interface
to a hexagonal 2H (AB stacking) phase. Reprinted with permission from Nature [210], © 2001

Macmillan Magazines Limited
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Fig.3.30 (a)Hexagonality index « (3.12) of Zn;_, Cd, S for various ternary compositions. Dashed
line is a guide to the eye. (b) Regions of different polytypes in ZnSe,S|_,. Adapted from [211]

diamond crystallites and metastable hexagonal and orthorhombic phases (in silicon)
are shown.

For the ternary alloy (cf. Sect.3.7) Zn;_,Cd, S the numbers n} of diatomic layers
with hexagonal stacking (AB) and n. of layers with cubic stacking (ABC) have been
investigated. CdS has wurtzite structure and ZnS mostly zincblende structure. The
hexagonality index « as defined in (3.12) is shown in Fig.3.30 for Zn,_,Cd,S

a=_—"0 (.12)
ny + n¢
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3.6 Reciprocal Lattice

The reciprocal lattice is of utmost importance for the description and investigation
of periodic structures, in particular for X-ray diffraction [212], surface electron dif-
fraction, phonons and the band structure. It is the quasi-Fourier transformation of the
crystal lattice. The crystal lattice is also called the direct lattice, in order to distinguish
it from the reciprocal lattice.

3.6.1 Reciprocal Lattice Vectors

When R denotes the set of vectors of the direct lattice, the set G of the reciprocal
lattice vectors is given by the condition’

exp(iG-R) =1 (3.13)

forall R € R and G € G. Therefore, for all vectors r and a reciprocal lattice vector
G
expiG-(r+R)) =exp(iG-r). (3.14)

Each Bravais lattice has a certain reciprocal lattice. The reciprocal lattice is also
a Bravais lattice, since when G, and G, are two reciprocal lattice vectors, then this
is obviously true also for G| + G;. For the primitive translation vectors a;, a, and
a; of the direct lattice, the vectors by, b, and bs that span the reciprocal lattice can
be given directly as

27

b, = v (ar x a3) (3.15a)
27

b2 = 7 (33 X 31) (3151‘))
27

b; = v (a; x ap), (3.15¢)

a

where V, = a; - (ap x a3) is the volume of the unit cell spanned by the vectors a;.
The volume of the unit cell in the reciprocal space is V. = (2m)3/ V.
The vectors b; fulfill the conditions

a; - b_,‘ =27 5,‘]‘. (316)

Thus, it is clear that (3.13) is fulfilled. For an arbitrary reciprocal lattice vector
G = kib; + kb, + k3bs and a vector R = nja; 4 nja, + nsa; in direct space

>The dot product a - b of two vectors shall also be denoted as ab.
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we find
G-R=271 (nlk]—{-nzkg—i-ngkg) (317)

The number in brackets is an integer. Additionally, we note that the reciprocal lattice
of the reciprocal lattice is again the direct lattice. The reciprocal lattice of the fcc is
bce and vice versa. The reciprocal lattice of hep is hep (rotated by 30° with respect
to the direct lattice).

For later, we note two important theorems. A (sufficiently well behaved) function
f(r) that is periodic with the lattice, i.e. f(r) = f(r 4+ R) can be expanded into a
Fourier series with the reciprocal lattice vectors according to

@) =>"ac exp(G ), (3.18)

where ag denotes the Fourier component of the reciprocal lattice vector G, ag =
fv f@)exp (—=iG - r)d’r. If f(r) is lattice periodic, the integral given in (3.19) is
zero unless G is a reciprocal lattice vector.

. 3.._ )ac
/Vf(r) exp(—iG-r) d’r = [O,Ggég . 3.19)

3.6.2 Miller Indices

A lattice plane is the set of all lattice points in a plane spanned by two independent
lattice vectors R; and R;. The lattice points on that plane form a two-dimensional
Bravais lattice. The entire lattice can be generated by shifting the lattice plane along
its normal n = (R; x R)/|R; x Ry|. The plane belongs to the reciprocal lattice
vector G, = 27n/d , d being the distance between planes.

This correspondence between reciprocal lattice vectors and sets of planes allows
the orientation of planes to be described in a simple manner. The shortest reciprocal
lattice vector perpendicular to the plane is used. The coordinates with respect to
the primitive translation vectors of the reciprocal space b; form a triplet of integer
numbers and are called Miller indices [213].

The plane described by Gy, - r = A fulfills the condition for a suitable value of
A. The plane intersects the axes a; at the points x; a;, x, a; and x3 as. Thus we find
Gnx;a; = A for all i. From (3.17) follows G, - a; = 27 h, G, - a, = 27k and
Gy a3 = 2nl, where h, k and [ are integers. The triplet of integer numbers (hkl), the
reciprocal values of the axis intersections in the direct lattice, are the Miller indices.
An example is shown in Fig.3.31.

Planes are denoted as (hkl) with parentheses. The (outward) normal direction
is denoted with [hkl] (square brackets). A set of equivalent planes is denoted with
curly brackets as {hkl}. For example, in the simple cubic lattice (100), (010), (001),
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Fig. 3.31 The plane
intersects the axes at 3, 2, 3
and 2. The inverse of these
numbers is 1/3, 1/2, and 1/2.
The smallest integer
numbers of this ratio form
the Miller indices (233)

(—100), (0—10) are (00—1) equivalent and are denoted by {100}. (—100) can also
be written as (100). A set of equivalent directions is denoted with (hkl).

In a cubic lattice the faces of the cubic unit cell are {001} and the planes perpen-
dicular to the area (body) diagonals are {110} ({111}) (Fig.3.32a). In the zincblende
lattice the {111} planes consist of diatomic planes with Zn and S atoms. It depends
on the direction whether the metal or the nonmetal is on top. These two cases are
denoted by A and B. We follow the convention that the (111) plane is (111)A and
the metal is on top (as in Fig. 3.16b). For each change of sign the type changes from
A to B and vice versa, e.g., (111)A, (11 1)B and (11 1)B. In Fig.3.32b the in-plane
directions for the (001), (110) and (111) planes are visualized.

In the wurtzite lattice the Miller indices are denoted as [hklm] (Fig.3.33). Within
the (0001) plane three indices Akl are used that are related to the three vectors ay, a;
and a3 (see Fig. 3.33a) rotated with respect to each other by 120°. Of course, the four
indices are not independent and / = —(h + k). The third (redundant) index can be
denoted as a dot. The c-axis [0001] is then denoted as [00.1]. Wurtzite (and trigonal,
e.g., sapphire) substrates are available typically with a ((11.0)), r ((01.2)), m ({01.0))
and c ([00.1]) surface orientations (Fig.3.33b).

The distance of lattice planes d = 27 /|G| can be expressed via the Miller indices
for cubic (3.20a), tetragonal (3.20b) and hexagonal (3.20c) crystals as

¢ _ a
I = rr—r (3.20a)
a
dy = (3.20b)
I+ 2 (afc)?
dh, = a (3.20¢)

VA (B2 + hk +k2)/3 + 2 (a/c)?
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(100)
" (100) " (200) C a2
(b) (001) (110) (111)

ftol, 0101 p110] 7y, [001] [112] (112]

[111]  [121] [211]
[100] [100]  [170] [110] [i10]%§[110]
(1101 1007 i) (1] o7 011 11 59 01211

Fig. 3.32 (a) Miller indices of important planes for the simple cubic (and fcc, bee) lattice. (b)
Directions within three low index planes of cubic crystals

(@) [0001]
(0001) A
A
ay
(0110)  (b) (00.1)
% ch (3110 [1100] (7270
(1100) a _ Lio10] [0170]
[0110] [1120] [1120]
[0110] [1010]
[2?170] [1150] [1210] [1100] [2110]
()
a r m c

Fig. 3.33 (a, b) Miller indices for the wurtzite (or hcp) structure. (¢) Orientation of the a-, r-, m-,
and c-plane in the wurtzite structure
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Table 3.6 High symmetry points and directions from I"-point in the Brillouin zone of the fcc lattice

Point k Direction O=<Ax<)
r (0,0,0)

X 21.(0,1,0) A 210, X, 0)
K 31.(1,1,0) b)) 31 (AN, 0)
L T(1,1,1) A TN
w 2T.(1,1/2,0)

U 1T (1,1/4,1/4)

Table 3.7 High symmetry points and directions from I"-point in the Brillouin zone of the hcp
lattice

Point k Direction O=<\A<)
r (0,0,0)
A 27(0,0, 2L) A (0,0,
L 270, 70 70)
M 27 (0, 17, 0) b F(0.0,0)
1
H 27‘—(_@7 3(4’ Zc)
1 1 A
K 271'(—@’@»0) T 2w (= 3a, 3”50)

Useful formulas for the angle 6 between a (hk.1)-plane and the [00.1]-direction in
the cubic, tetragonal and wurtzite structures are:

cos° = ; (3.21a)
Vh? + k> + 12
cosf' = ! (3.21b)
VE+ S+ k)
l
cos 0" = ) (3.21¢c)

\/12+§;—§(h2+hk+k2)

3.6.3 Brillouin Zone

The Wigner—Seitz cell in reciprocal space is called the (first) Brillouin zone. In
Fig.3.34, the Brillouin zones for the most important lattices are shown. Certain
points in the Brillouin zone are labeled with dedicated letters. The I point always
denotes k = 0 (zone center). Certain paths in the Brillouin zone are labeled with
dedicated Greek symbols.
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Fig. 3.34 Brillouin zones and special k points for the (a) primitive cubic (pc), (b) fcc, (¢) bece,
and (d) hep lattice. (e) Brillouin zone for chalcopyrite structure with fcc Brillouin zone shown as
dashed outline. (f) Brillouin zone for orthorhombic lattice with one quadrant shown with dashed

lines.
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In the Brillouin zone of the fcc lattice (Si, Ge, GaAs, ...) the X point denotes
the point at the zone boundary in (001)-directions (at distance 2 7/a from I"), K for
(110)-directions (at distance 3 7/ /2 a from I') and L for the (111)-directions (at
distance v/3 m/a from I") (see Table 3.6). The straight paths from I" to X, K, and L
are denoted as A, X, and A, respectively. High symmetry points and directions of
the Brillouin zone of the hcp lattice are given in Table 3.7.

3.7 Alloys

When different semiconductors are mixed various cases can occur:

e The semiconductors are not miscible and have a so-called miscibility gap. They
will tend to form clusters that build up the crystal. The formation of defects is
probable.

e They form an ordered (periodic) structure that is called a superlattice.

e They form a random alloy.

3.7.1 Random Alloys

Alloys for which the probability to find an atom at a given lattice site is given by
the fraction of these atoms (i.e. the stoichiometry), independent of the surrounding,
are called random alloys. Deviations from the random population of sites is termed
clustering.

For a Ge, Si;_, alloy this means that any given atom site has the probability x to
have a Ge atom and 1 — x to have a Si atom. The probability p, that a Si atom has
n next-neighbor Ge atoms is

pn = (i) X" (1 —x)*", (3.22)

and is depicted in Fig.3.35 as a function of the alloy composition. The symmetry
of the Si atom is listed in Table3.8. If it is surrounded by four of the same atoms
(either Ge or Si), the symmetry is 7. If one atom is different from the other three
next neighbors, the symmetry is reduced to Cs, since one bond is singled out. For
two atoms each the symmetry is lowest (Cy,).

In an alloy from binary compound semiconductors such as Al, Ga, _, As the mixing
of the Al and Ga metal atoms occurs only on the metal (fcc) sublattice. Each As atom
is bonded to four metal atoms. The probability that it is surrounded by n Al atoms
is given by (3.22). The local symmetry of the As atom is also given by Table3.8.
For AlAs,P;_, the mixing occurs on the nonmetal (anion) sublattice. If the alloy
contains three atom species it is called a ternary alloy. In Fig. 3.36 the (110) surface
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Fig. 3.35 Probability that a 1.0
Si atom has n next-neighbor
Ge atoms in a random
Ge, Sij—y alloy 0.8
£ 06
=
@
Qo
o
o 04
0.2
0.0 T
0.0 0.5 1.0
Composition
Table 3.8 Probability p, n Pn Symmetry
(3.22) and symmetry of an A Y
atom being surrounded by n 0 X Ta
B atoms in a tetrahedrally 1 4x3(1—x) Cy
configured By A|_, random 2 6x2 (1 —x)? Cay
alloy 3 4x(1—x)? Ca
4 1—x)* T,

(UHV cleave) of an Ing9sGag gsAs alloy is shown. Indium atoms in the first layer
show up as brighter round dots [214]. Along the [001]-direction the positions are
uncorrelated, along [110] an anti-correlation is found, corresponding to an effective
repulsive pair interaction energy of 0.1 eV for the nearest neighbor In—In pairs along
the [110]-direction due to strain effects [215].

If the binary end components have different crystal structure, the alloy shows a
transition (or compositional transition range) from one structure to the other at a
particular concentration. An example is the alloy between wurtzite ZnO and rocksalt
MgO. Mg, Zn,_, O alloy thin films exhibits wurtzite structure up to about x = 0.5
and rocksalt structure for x > 0.6 [216] (cmp. Fig.3.39).

If the alloy contains four atom species it is called quaternary. A quaternary
zincblende alloy can have the mixing of three atom species on one sublattice, such
as Al,Ga,In;_,_,As or GaAs,P,Sb;_,_, or the mixing of two atom species on both
of the two sublattices, such as In,Ga;_,As,N;_,.

The random placement of different atoms on the (sub)lattice in an alloy represents
a perturbation of the ideal lattice and causes additional scattering (alloy scattering). In
the context of cluster formation, the probability of an atom having a direct neighbor
of the same kind on its sublattice is important. Given a A, B, _, C alloy, the probability
ps to find a single A atom surrounded by B atoms is given by (3.23a). The probability
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o 1st layer As

o 1st layer Ga
= 2nd layer As
s 2nd layer Ga

@ 1stlayer In

Fig. 3.36 (a) STM empty-state image (17.5 x 17.5 nm?) of the (110) surface of an MBE-grown
Ing 05Gag 95As alloy on GaAs, (b) curvature-enhanced image. (¢) Schematic atomic arrangement
of the first and second atomic layer. Adapted from [215]

pp! to find a cluster of two neighbored A atoms surrounded by B atoms is given by
(3.23Db).

ps=(1—-x" (3.232)
por = 12x (1 —x)'8. (3.23b)

These formulas are valid for fcc and hep lattices. For larger clusters [217, 218],
probabilities in fcc and hep structures differ.

3.7.2 Phase Diagram

The mixture A, B|_, with average composition x between two materials A and B can
result in a single phase (alloy), a two-phase system (phase separation) or a metastable
system. The molar free enthalpy AG of the mixed system is approximated by

AG=R2x1—x)+kT [x In(x) + (1 —x) In(1 — x)]. (3.24)

The first term on the right-hand side of (3.24) is the (regular solution) enthalpy of
mixing with the interaction parameter §2, which can depend on x. The second term
is the ideal configurational entropy based on a random distribution of the atoms. The
function is shown for various ratios of k7' /£2 in Fig.3.37a. In an equilibrium phase
diagram (see Fig.3.37b) the system is above the binodal curve in one phase (misci-
ble). On the binodal line 7} (x) in the (x, T') diagram the A- and B-rich disordered
phases have equal chemical potentials, i.e. 0G/0x = 0. For §2 independent of x the
temperature Ty, is given by (3.25a). A critical point is at the maximum temperature
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Fig. 3.37 (a) Free enthalpy AG of mixed binary system (3.24) in units of §2 for £2 = const.
and various values of k7 /S2 as labeled. (b) Schematic phase diagram for binary mixture. The

temperature is given in units of §2/k. The solid (dashed) denotes the binodal (spinodal) line
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Fig. 3.38 Calculated phase diagrams for (a) Al,Ga;_,As and (b) GaP, As;_,. The binodal (spin-
odal) curve is shown as solid (dashed) line. Adapted from [219]

Tng and concentration xpe of the miscibility gap. For £2 independent of x it is given
by Ting = §2/2 and xpyg = 1/2. In the region below the spinodal boundary, the system
is immiscible and phases immediately segregate (by spinodal decomposition). On
the spinodal line 7y, (x) the condition 9*G/9x* = 0 is fulfilled. For £2 independent
of x the temperature Ty, is given by (3.25b). The region between the binodal and
spinodal curves is the metastable region, i.e. the system is stable to small fluctuations
of concentration or temperature but not for larger ones.

2x — 1

In(x) — In(1 — x)
kTp(x) =282 x (1 —x).

kTy(x) = 2 (3.25a)

(3.25b)

In Fig. 3.38 calculated diagrams for GaAs-AlAs and GaAs-GaP [219] are shown.
The arrows denote the critical point. These parameters and the interaction parameters
for a number of ternary alloys are given in Table 3.9. For example, for Al,Ga;_,As
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Table 3.9 Calculated interaction parameter £2(x) (at 7 = 800K, 1kcal/mol= 43.39meV),
miscibility-gap temperature Ty,g and concentration xpg for various ternary alloys

Alloy Tmg (K) Xmg £2(0) £2(0.5) (1)
(kcal/mol) (kcal/mol) (kcal/mol)
Al Gaj_,As 64 0.51 0.30 0.30 0.30
GaP,As|_y 277 0.603 0.53 0.86 1.07
GayIn;_,P 961 0.676 2.92 3.07 4.60
GaSb,As;—, | 1080 0.405 4.51 3.96 3.78
Hg,Cd;_,Te 84 0.40 0.45 0.80 0.31
ZnHg;_,Te | 455 0.56 2.13 1.88 2.15
Zn,Cdi_As | 605 0.623 2.24 2.29 2.87
In,Ga;_xN 1505 0.50 6.32 5.98 5.63

Data for (In,Ga)N from [220], other data from [219]

complete miscibility is possible for typical growth temperatures (>700K), but for
In,Ga;_,N the In solubility at a typical growth temperature of 1100K is only
6 % [220].

The alloy system (Al,Ga,In)(As,P,Sb) always crystallizes in the zincblende struc-
ture and (Al,Ga,In)N always in the wurtzite structure. If the binary end components
of a ternary alloy have a different crystal structure things become more complicated
and the crystal phase has to be determined experimentally (and modelled) for each
composition. As an example the energy of the wurtzite, hexagonal and rocksalt struc-
ture of Mg, Zn;_,O has been calculated [221] as depicted in Fig. 3.39 (cmp. Fig.2.4
for silicon). The transition between wurtzite and rocksalt structure is predicted for
x =0.33.

Fig. 3.39 Calculated energy
versus volume of the formula
unit for Mg, Zn|_, O in the
wurtzite (WZ), hexagonal
(HX) and rocksalt phase
(RS). The separations
between the three phase are
denoted by straight bold
lines. Adapted from [221]

Mg-concentration x
Energy (eV)

Volume (A%
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3.7.3 Virtual Crystal Approximation

In the virtual crystal approximation (VCA) the disordered alloy AB, C;_, is replaced
by an ordered binary compound AD with D being a ‘pseudoatom’ with properties
that are configuration averaged over the properties of the B and C atoms, e.g., their
masses or charges. Such an average is weighted with the ternary composition, e.g.,
the mass is Mp = xMp + (1 — x) M. For example, the A-D force constant would
be taken as the weighted average over the A—B and A—C force constants.

3.7.4 Lattice Parameter

In the VCA for an alloy a new sort of effective atom is assumed that has an averaged
bond length that depends linearly on the composition. Typically, Vegard’s law (3.26),
which predicts that the lattice constant of a ternary alloy A,B,_,C depends linearly
on the lattice constants of the binary alloys AC and BC, is indeed fulfilled

ao(AxB1—xC) = ap(BC) + x [ag(AC) — ap(BO)]. (3.26)

Inreality, the bond length of the AC and BC bonds changes rather little (Fig. 3.40a)
such that the atoms in the alloy suffer a displacement from their average position and
the lattice is deformed on the nanoscopic scale. In a lattice of the type In,Ga;_,As
the anions suffer the largest displacement since their position adjusts to the local
cation environment. For In,Ga;_,As a bimodal distribution, according to the As—
Ga—As and As-In—As configurations, is observed (Fig.3.40b). The cation—cation
second-neighbor distances are fairly close to the VCA.

While the average lattice parameter in alloys changes linearly with composition,
the cell-internal parameter u (for wurtzite structures, see Sect. 3.4.5) exhibits a non-
linear behavior as shown in Fig.3.41. Therefore physical properties connected to u,
such as the spontaneous polarization, will exhibit a bowing.

3.7.5 Ordering

Some alloys have the tendency for the formation of a superstructure [225]. Growth
kinetics at the surface can lead to specific adatom incorporation leading to ordering.
For example, in Ing sGag sP the In and Ga atoms can be ordered in subsequent (111)
planes (CuPt structure) instead of being randomly mixed (Fig.3.42). This impacts
fundamental properties such as the phonon spectrum or the band gap. CuPt ordering
on(111)and (111) planes is called CuPt4, on (111) and (111) planes CuPtg ordering.
In Fig.3.43, a TEM image of a Cdg ¢3Zny 3, Te epilayer is shown with simultaneous
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Fig. 3.40 (a) Near-neighbor distance (v/3 ag/4) of In,Gaj_,As as measured by standard X-ray
diffraction (Bragg reflection, solid squares) and VCA approximation (dash-dotted line). Near-
neighbor Ga—As and In—As distances as determined by EXAFS (extended X-ray absorption fine
structure, solid squares). Dashed lines are guides to the eye. Data from [222]. (b) Second-neighbor
distances for In,Gaj_yAs as determined from EXAFS, top: anion—anion distance (for As—As),
bottom: cation—cation distance (for In-In, Ga—Ga, and Ga-In). Solid lines in both plots are the
VCA (ap/+/2). Data from [223]
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Fig. 3.41 Theoretical values (T = 0K) for the cell-internal parameter u as a function of the
composition for group-III nitride alloys. The solid lines are quadratic curves (bowing parameter b
is shown) through the points for x = 0, 0.5, and 1.0. Data from [224]
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Disordered or

“random” alloy CuPt ordered

Fig. 3.42 CuPt-ordered ternary alloy Ing 5Gag 5P; the lattice symmetry is reduced from 7 to C3,

L » . .
IE.

D ®220

Fig. 3.43 (a) Cross-sectional transmission electron microscope image along the [110] zone axis
of a Cdy 68Zng 32 Te epilayer on GaAs showing ordered domains having a doublet periodicity on
the {111} and {001} lattice planes. Two different {111} variants are labeled ‘a’ and ‘b’. The doublet
periodicity in the [001] is seen in the ‘c’ region. (b) Selected-area diffraction pattern along the [110]
zone. Strong peaks are fundamental peaks of the zincblende crystal, weak peaks are due to CuPt
ordering, labeled A and B, and CuAu-I ordering, labeled C and D. The latter are the weakest due
to a small volume fraction of CuAu-ordered domains. Adapted from [226]
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Fig.3.44 Schematic diagrams of zincblende Cd,Zn|_ Te along [110] with (a) CuAu-I type order-
ing and (b,¢) two types of the CuPtg type ordering. Doublet periodicity is along (a) [001] and [110],
(b) [111] and (c) [111]. Adapted from [226]

ordering in the CuPt structure (doublet periodicity along [111] and [111]) and in the
CuAu-I structure® (doublet periodicity along [001] and (1107 (Fig.3.44).

%The CuAu-I structure has tetragonal symmetry. There exists also the CuAu-II structure that is
orthorhombic.



Chapter 4
Defects

Abstract No crystal is perfect. Various point defects and their thermodynamics,
diffusion and distribution effects are discussed. Also dislocations and extended
defects such as cracks, stacking faults, grain boundaries and antiphase domains are
covered.

4.1 Introduction

In an ideal lattice each atom is at its designated position. Deviations from the ideal
structure are called defects. In the following, we will briefly discuss the most common
defects. The electrical activity of defects will be discussed in Sects.7.5 and 7.7.
For the creation (formation) of a defect a certain free enthalpy GfD is necessary. At
thermodynamical equilibrium a (point) defect density o< exp (—G]fD / kT) will always
be present (cf. Sect. 4.2.2).

Point defects (Sect. 4.2) are deviations from the ideal structure involving essen-
tially only one lattice point. The formation energy for line defects (Sect. 4.3) or area
defects (Sect. 4.4) scales with N'/3 and N?/3, respectively, N being the number of
atoms in the crystal. Therefore, these defects are not expected in thermodynamic
equilibrium. However, the path into thermodynamical equilibrium might be so slow
that these defects are metastable and must be considered quasi-frozen. There may also
exist metastable point defects. By annealing the crystal, the thermodynamic equilib-
rium concentration might be re-established. The unavoidable two-dimensional defect
of the bulk structure is the surface, discussed in Chap. 11.

4.2 Point Defects

4.2.1 Point Defect Types

The simplest point defect is a vacancy V, a missing atom at a given atomic position.
If an atom is at a position that does not belong to the crystal structure an interstitial I

© Springer International Publishing Switzerland 2016 81
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
DOI 10.1007/978-3-319-23880-7_4


http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_11

82 4 Defects

Fig. 4.1 Images of occupied (upper frames) and empty (lower frames) density of states of typical
defects on Si-doped GaAs (110) surfaces. (al, a2) show a Ga vacancy, (b1, b2) a Sig, donor, (cl,
c2) a Sias acceptor and (d1, d2) a Siga—Vga complex. Adapted from [227]

(or Frenkel defect) is formed. Depending on the position of the interstitial different
types are distinguished. An interstitial atom that has the same chemical species as
the crystal is called ‘self-interstitial’.

If an atom site is populated with an atom of different order number Z, an impurity
is present. An impurity can also sit on interstitial position. If the number of valence
electrons is the same as for the original (or correct) atom, then it is an isovalent impu-
rity and quasi fits into the bonding scheme. If the valence is different, the impurity
adds extra (negative or positive) charge to the crystal bonds, which is compensated
by the extra, locally fixed charge in the nucleus. This mechanism will be discussed
in detail in the context of doping (Chap. 7). If in an AB compound an A atom sits on
the B site, the defect is called an antisite defect Ap.

A Ga vacancy, a silicon impurity atom on Ga- and As-site and a Sig,-vacancy
complex at the (110) surface of Si doped GaAs are shown in Fig. 4.1 as observed
with STM [227, 228]. Also antisite defects in GaAs can be observed with STM [229,
230].

A point defect is typically accompanied by a relaxation of the surrounding host
atoms. As an example, we discuss the vacancy in Si (Fig. 4.2a). The missing atom
leads to a lattice relaxation with the next neighbors moving some way into the void
(Fig. 4.2b). The bond lengths of the next and second-next neighbor Si atoms around
the neutral vacancy are shown in Fig. 4.2c. The lattice relaxation depends on the
charge state of the point defect (Jahn—Teller effect) which is discussed in more detail
in Sect. 7.7. In Fig. 4.2d the situation for the positively charged vacancy with one
electron missing is shown. One of the two bonds is weakened since it lacks an electron.
The distortion is therefore different from that for V°. Also the (self-)interstitial is
accompanied with a lattice relaxation as shown in Fig. 4.3 for a silicon interstitial
at tetrahedral place. Self-interstitials in silicon and germanium are reviewed and
compared in [231] for their various charge states.
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(a) (b)

0.367 0.385

Fig. 4.2 (a) Schematic diamond lattice with vacancy, i.e. a missing Si atom without relaxation.
(b) Si with neutral vacancy (V9), lattice relaxation and formation of two new bonds. (¢) Schematic
diagram showing the (inward) relaxation of the neighbors around the neutral Si vacancy defect site
(empty circle) calculated by an ab initio method. The distances of the outer shell of atoms (red
circles) from the vacant site is labeled (in nm). The bond lengths of the two new bonds and the
second-neighbor (blue circles) distance are also indicated. The bond length in bulk Si is 0.2352 nm,
the second-neighbor distance 0.3840 nm. Adapted from [232]. (d) Si unit cell with positively charged
vacancy (V7T). Parts (a, b, d) reprinted with permission from [233]

Fig. 4.3 Silicon tetrahedral
interstitial SiiT and its next
atoms in ideal (white
spheres) and relaxed (black
spheres) position. Adapted
from [155]

—ideal
W’ — relaxed

4.2.2 Thermodynamics

For a given temperature, the free enthalpy G of a crystal (a closed system with regard
to particle exchange)
G=H-TS 4.1)
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is minimum. H is the enthalpy and S the entropy. The enthalpy H = E + pV is the
thermodynamic potential for a system whose only external parameter is the volume
V. It is used when the independent variables of the system are the entropy S and
pressure p. The free enthalpy is used when the independent parameters are 7" and
p. G (Hp) is the free energy (enthalpy) of the perfect crystal. H' is the formation
enthalpy of an isolated defect. This could be, e.g., the enthalpy of a vacancy, created
by bringing an atom from the (later) vacancy site to the surface, or an interstitial,
created by bringing an atom from the surface to the interstitial site. In the limit that
the n defects do not interact with each other, i.e. their concentration is sufficiently
small, they can be considered independent and the enthalpy is given by

H=H,+nH" 4.2)

The increase of entropy due to increased disorder is split into the configurational
disorder over the possible sites, denoted as S, and the formation entropy Sy due to
localized vibrational modes. The total change AG of the free energy is

AG=G-Gy=nH'—TSH—-T8=nG' — TS, (4.3)

where G' = H' — T ST denotes the free enthalpy of formation of a single isolated
defect. In Table 4.1 experimental values for the formation entropy and enthalpy
are given for several defects. Surprisingly, despite their fundamental importance in
semiconductor defect physics, these numbers are not very well known and disputed
in the literature.

The defect concentration is obtained by minimizing AG, i.e.

OAG ds4
=G'-T—=0. 4.4
On on @4
The entropy S¢ due to disorder is given as
S'=kgnW, 4.5)

where W is the complexion number, usually the number of distinguishable ways to
distribute n defects on N lattice sites

Table 4.1 Formation enthalpy H' and entropy S of the interstitial (/) and vacancy (V) in Si and
the Ga vacancy in GaAs

Material Defect Hf (eV) SF(kg)
Si I 3.2 4.1
Si 1% 2.8 ~1
GaAs VGa 3.2 9.6

Data for Si from [234, 235], for GaAs from [236]
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WZ(N)Z—N’ . (4.6)
n!' (N —n)!

With Stirling’s formula In x! ~ x(Inx — 1) for large x we obtain

0S4 N N N —n
() () e

Ifn <« N,ON/On = 0 and the right side of (4.7) reduces to kg In(N/n). The
condition (4.4) reads G' + kgT In(n/N), or

n_ (_G_f) (4.8)
N exp 7 ) .

In the case of several different defects i with a degeneracy Z;, e.g. a spin degree
of freedom or several equivalent configurations, (4.8) can be generalized to

T G; (4.9)
= €X - 1. .
zZN TP\ Tkr

In [237] the equilibrium concentration of interstitials C;" in silicon has been given
as

. 3.8¢V
€ = (1.0 x 107 em™) exp (— k;j ) , (4.10)

about 10" cm™3 at 1200°C. The vacancy concentration has been investigated
in [238]. Around a temperature of 1200°C it is in the 10'*~10'> cm~ range. Due to
the reaction

0=1+V, 4.11)
a mass action law holds for the concentrations of interstitials and vacancies

C;Cy =C)icy. (4.12)

4.2.3 Diffusion

The diffusion of point defects is technologically very important, in particular for
silicon as host material. Typically a dopant profile should be stable under follow-
ing technological processing steps and also during device performance. Also defect
annihilation is crucial after implantation processes. Diffusion of an interstitial / and a
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Fig. 4.4 The temperature Temperature (°C)
dependent diffusion 1400 1200 1100 1000 900
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vacancy V to the same site is prerequisite for recombination of defects (so called bulk
process) according to the scheme I +V — 0. We note that the process 0 — 1+ V is
called Frenkel pair process." Also the self-diffusion of silicon has been studied, e.g.
using radioactively marked isotopes [237]. The diffusion of point defects including
dopants in silicon has been reviewed in [239, 240]. Usually Fick’s law is applied,
stating how the flux J depends on the concentration gradient, for an interstitial it
reads:

Ji=—-D;VC(Cy, (4.13)

D being the interstitial diffusion coefficient. For interstitials in Si it was found [237]
that

D, =02 L2eV 2/ (4.14)
=02exp|— m-/s. .

I exp T cm-/s

The diffusion of neutral vacancies occurs with [241]

0.45eV )
Dy =0.0012 exp| ———— ) cm“/s. 4.15)
kT
The temperature dependent diffusion coefficients of point defects and dopants in
silicon are shown in Fig. 4.4.
The self-diffusion coefficient of silicon has been determined from the annealing
of isotope superlattices (Sect. 12.5) of sequence 28Si,/*°Si,, n = 20 to be [242]

At higher temperatures a silicon atom can occasionally acquire sufficient energy from lattice
vibrations to leave its lattice site and thus an interstitial and a vacancy are generated.
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Fig. 4.5 Configurations of boron in Si: (a) Substitutional boron and Si self-interstitial at “T” site
(Bs—SiiT). Interstitial boron at (b) ‘H’ (BiH) and (¢) ‘T’ site (BiT), each with the Si atoms on the Si
lattice sites. The large bright ball represents the boron atom, large and small dark balls represent
Si atoms. (d) Lowest energy barrier diffusion paths for positively charged and neutral B-Si states,
total energy versus configuration. (e) Two diffusion pathways for positively charged B-Si, kick-out
(dashed line) and pair diffusion (solid line); the activation energy is labeled. Adapted from [245]

4.95eV
kT

3.6eV
kT

D3P = [2175.4 exp (— ) + 0.0023 exp (— )} cm?/s,  (4.16)

the first (second) term being due to interstitial (vacancy) mechanism, dominant for
temperatures larger (smaller) than 900°C. The enthalpy in the exponent, e.g. Hy =
3.6107 eV [242], consists of the formation and migration enthalpies,

Hy = Hj, + H}'. (4.17)

Using the experimental value H‘f, = 2.8 £ 0.3eV [235] from Table 4.1, for the
migration enthalpy a value around Hy' ~ 0.8¢eV is obtained.

As an example for a dopant diffusion process that has been understood microscop-
ically, we discuss here boron in silicon. In Fig. 4.5a the lowest-energy configuration
of a boron-related defect in silicon is depicted, Bs—SiiT, i.e. boron on a substitutional
site and a self-interstitial Si on the ‘T’ place with highest symmetry” (see Fig. 3.18).

2The positive charge state is stable, the neutral charge state is metastable since the defect is a
negative-U center (see Sect. 7.7.5).
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Due to its importance as an acceptor in Si, the configuration and diffusion of B in
Si has found great interest [243—245]. The diffusion depends on the charge state
of boron. The diffusion of positively charged boron has been suggested [245] to
occur via the following route: The boron leaves its substitutional site and goes to the
hexagonal site (‘H’) (Fig. 4.5b) with an activation energy of about 1eV (Fig. 4.5d).
It can then relax (~0.1eV) without barrier to the tetrahedral ‘T’ position (Fig. 4.5¢).
The direct migration Bs—SiiTJr — BiTJr has a higher activation energy of 1.12eV
and is thus unlikely. The boron atom can then diffuse through the crystal by going
from ‘H’ to ‘T’ to ‘H’ and so on (Fig. 4.5¢). However, long-range diffusion seems
to be not possible in this way because the kick-in mechanism will bring back the
boron to its stable configuration. The pair diffusion mechanism for neutral boron
B,-Sif — BF — B-Si! via the hexagonal site has an activation energy of about
0.5eV (Fig. 4.5d) while the path via BiT has alarger 0.9 eV barrier. The concentration
dependence of the diffusion mechanism has been discussed in [246].

Similarly, indium diffusion in silicon has been investigated suggesting a minimum
energy Ini~Sil — In! — InSi' diffusion pathway via the tetrahedral site with
0.8eV activation energy [247]. Microscopic modeling has been reported also for
diffusion of phosphorus [248].

4.2.4 Dopant Distribution

The introduction of impurities into a semiconductor (or other materials such as
glasses) is termed doping. The unavoidable incorporation of impurities in the nom-
inally pure (nominally undoped) material is called unintentional doping and leads
to a residual or background impurity concentration. Several methods are used for
doping and the creation of particular doping profiles (in depth or lateral). All doping
profiles underly subsequent diffusion of dopants (Sect. 4.2.3).

Various methods of doping are used. A straightforward method of doping is the
incorporation during crystal growth or epitaxy. For semiconductor wafers a homoge-
neous doping concentration is targeted, both laterally and along the rod from which
the wafer is cut (Sect. 12.2.2). When a crystal is grown from melt, containing a
concentration ¢y of the impurity, the concentration in the solid is given by (‘normal
freezing’ case [249-251])°

c(x) = cok (1 —x)F 1, (4.18)

where c(x) is the impurity concentration in the crystal at the freezing interface, x is the
frozen melt fraction (ratio of solid mass to total mass, 0 < x < 1). k is the distribution

3Mass preservation of the impurities can be written at any time ¢y, (1 — x) + fg c(x)dx" = co,
where cp, is the (remaining) concentration in the melt. At the beginning ¢y, (0) = ¢p. At the interface
c(x) = kcp(x). Putting this into the mass preservation, building ¢’(x) and solving the resulting
differential equation ¢’ = ¢(1 — k) /(1 — x) with ¢(0) = k ¢¢ leads to (4.18).
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Fig. 4.6 (a) Relative concentration of indium along a CZ-grown germanium crystal. Absolute
concentration is in the 10'% cm—3 range. Solid line follows (4.19) with k = 1.2 x 1073. Symbols
are experimental data from [254]. (b) Impurity distribution (relative concentration c(x)/cq) for CZ
(4.18) (solid lines) and FZ (4.20) (dashed lines, z = 0.01) silicon crystals for B (blue), P (red), and
Al (green). Distribution coefficients have been taken from Table 4.2. Note crossing of B and P lines
and possibly associated change from p-type to n-type (cmp. Fig. 1.7)

coefficient (or segregation coefficient) which is the fraction of impurities that is built
into the crystal at the liquid—solid interface. Since the melt volume reduces during
the solidification, the impurity concentration rises over time. For small distribution
coefficients (4.18) can be approximated to

c(x) ~cp

T—5° (4.19)
An experimental example for Ge:In is shown in Fig. 4.6a.

In Table 4.2 the distribution coefficients for various impurities in Si, Ge and GaAs
is given. The modification of distribution coefficients in SiGe alloys is discussed
in [252]. Equilibrium values (k.q) are obtained for ‘slow’ crystal growth. For finite
growth rates, k becomes a function of the growth rate and is then called the effective
distribution coefficient. For k < 1, keft > keq. kefr approaches 1 for high growth
rates, i.e. all impurities at the rapidly moving interface are incorporated.

Equation (4.18) applies to Czrochalski growth where the crystal is pulled out of
the melt [257]. In float-zone (FZ) growth [257] a polycrystalline rod is transformed
into a crystalline one while a RF-heated and liquid ‘float” zone is moved through the
crystal. In this case the impurity distribution is given by*

4When the float zone moves through the crystal, the change of mass of impurities ny = ¢z in the
liquid is m}, = co—kcm. The first term stems from the melting of the polycrystalline part, the second
from the solidification of the crystal. Solving the resulting differential equation ¢, = (co —kem)/z
with ¢ (0) = ¢o and using c(x) = ke (x) yields (4.20).
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Table 4.2 Equilibrium distribution coefficients (at melting point) of various impurities in silicon,

germanium and GaAs

Impurity Si Ge GaAs

C 0.07 >1.85 0.8

Si 55 0.1

Ge 0.33 0.03

N 7 x 10*

0 ~1 0.3

B 0.8 12.2

Al 2.8 x 1073 0.1 3

Ga 8 x 1073 0.087

In 4x10™* 1.2 x 1073 0.1

p 0.35 0.12 2

As 0.3 0.04

Sb 0.023 3.3 %1073 <0.02

S 1073 >5x 1073 0.3

Fe 6.4 x107° 3%x107° 2% 1073
Ni ~3x 1073 2.3 x107° 6 x10~*
Cu 8 x 1074 1.3 x 1072 2x 1073
Ag ~1x107° 1074 0.1

Au 2.5x 1073 1.5x 1073

Zn 2.5 % 1073 6x 107 0.1

Data for Si from [251, 253], for Ge from [146, 254-256] and for GaAs from [146]

c(x) = ¢ |:1 — (1 —k) exp (—]%):| , (4.20)

where x is the ratio of the crystal mass to the total mass, i.e. crystal, liquid and feed
rod. z is the relative mass of the (liquid) float zone, i.e. the ratio of liquid mass to the
total mass. The impurity distribution for CZ and FZ crystals is compared in Fig. 4.6b.
Obviously the FZ process can create much more homogeneous profiles.’

Using epitaxy arbitrary doping profiles along the growth directions can be cre-
ated by varying the impurity supply during growth. Impurities can be introduced
through the surface of the material by diffusion from a solid or gas phase. In ion
implantation [258] the impurity atoms are accelerated towards the semiconductor
and deposited with a certain depth profile due to multiple scattering and energy
loss events, depending on the acceleration voltage (increasing deposition depth with
increasing voltage, Fig. 4.7a and ion mass (decreasing deposition depth with increas-
ing mass, Fig. 4.7b. The depth profile is often investigated using secondary ion mass

SWe note that during directed solidification of Si:(B,P) a pn-junction forms due to the different
distribution coefficients of boron and phosphorus. This has been used in [79].
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Fig. 4.7 (a) Depth of peak concentration of boron implanted in silicon for various acceleration
voltages U . Data from various sources, for U < 1keV from [264]. Dashed line is linear dependence.
(b) Simulated depth profiles of impurity concentration for B, P, As, and Sb implanted into crystalline
silicon with U = 100keV and a dose of 10'> cm~2. Adapted from [265]

Fig. 4.8 Simulated mean 40 -
path length as a function of

implantation direction 30
(azimuthal angle ¢ and polar €

angle 6) near [001] for S5keV £ 20
boron in silicon. The [001] °
channeling peak appears as a 10
ridge at the left side of the

plot (9 = 0, any value of ¢). 0 -

Adapted from [261]

spectrometry (SIMS) [259]. The profile also depends on the matrix material whose
stopping power depends on its density and atomic mass. While an implantation depth
of about 50nm is reached for boron in silicon (A & 28) for 10keV, 20keV are nec-
essary in germanium (A &~ 72.6) [260]. The mean path length® d,, depends also
on the crystallographic direction (channeling effects, Fig. 4.8) [261]. A simulation

of the interaction of ions and solids can be performed using the SRIM software
[262, 263].

5The mean path length is the distance integrated along the ion trajectory until its direction deviates
by more than 4° from the incident direction.
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4.2.5 Large Concentration Effects

Lattice Constant

At high doping concentration, a noticeable effect on the lattice constant ay is found.
For silicon the atom density’ is Ns; = 5 x 10*2cm™. A doping level of N =
10" cm~3 corresponds thus to a dopant fraction of 0.02 %. Such crystal could also
be considered a very dilute alloy. About each (Ns;/N)!'/?> &~ 17th atom in a given
direction is a dopant.

The effect of high doping on the lattice constant is due to different ionic radius of
the dopant and the hydrostatic deformation potential of the band edge occupied by
the free carriers [266]. In a linear approach, the effect is summarized in the coefficient

0 via

1 Aao
8= N @ (4.21)
The effect due to charge carriers on (3 is negative (positive) for p-doping (n-doping).
Experimental data for Si, Ge, GaAs and GaP are compiled in [267, 268] and theo-
retically discussed. The effect is in the order of § = £(1 — 10) x 10~2*cm?. For
example, in the case of Si:B, the shrinkage of the lattice constant is mostly due to
the charge carrier effect, for Si:P both effects almost cancel. In [269] it is shown that
boron incorporation in silicon changes the lattice constant in various directions quite
differently, e.g. d333 is shrunk by 0.4 % for a doping level of 10'°cm™ while the
{620} lattice constant remains constant.

Clustering

Point defects can cluster, i.e. several point defects aggregate at neighboring sites.
An example the configuration of five nearby vacancies in silicon, the so-called Vs
cluster is shown in Fig. 4.9a. In [270] the ring-like hexavacancy in silicon is predicted
a very stable defect. A large number of clustered vacancies is equivalent to a void. An
example is depicted in Fig. 4.9b for an In,O; crystal which has locally ‘decomposed’
into an indium particle and a void as revealed by TEM [271]. Also impurities can
exhibit clustering (see Sect. 4.2.5).

Typically a random distribution of dopants in the host is assumed (cmp. Sect. 3.7.1
on random alloys). The introduction of several impurities can lead to pairing effects,
e.g. described for Se and B, Ga, Al or In in silicon [273]. A high concentration of a
single impurity makes the existence of clusters, i.e. two or more neighboring dopant
atoms, more probable. This effect has been extensively studied for B in Si [274],
showing that several boron atoms with interstitials I form thermodynamically stable
clusters, e.g. B3I,. This cluster forms from B,I and BI with only 0.2eV activation
barrier [275] as shown in Fig. 4.10. The formation is limited by diffusion of the
smaller clusters to the same site. The number of free carriers (here holes) released

7Eight atoms per cubic unit cell of length ag = 0.543 nm.
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(a) (b) R

indium

10 nm

Fig. 4.9 (a) Predicted configuration of the Vs-cluster (five vacancies) in silicon. Yellow spheres
indicate more distorted atoms than the rest of the lattice atoms (white spheres). Adapted from [272].
(b) Indium particle with adjacent void embedded in InpO3 (STEM image revealing Z-contrast in
[001]). Adapted from [271]
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path for the breakup of a
Bl cluster into B, and BI.
Silicon (boron) atoms are
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spheres. Adapted from [275]
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from such cluster is smaller than the number of boron atoms since it forms a deep
acceptor [274]. This autocompensation mechanism is thus limiting the maximum
achievable free carrier concentration due to doping and is technologically unfavor-
able. Reactions between boron atoms and silicon self-interstitials often lead to boron
clustering in the peak region of an implantation profile and require detailed opti-
mization of the annealing process [276].

Solubility Limit

The steady-state impurity solubility can be defined as the maximum concentration of
impurity atoms in a crystal allowing thermodynamic balance between the crystal and
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Table 4.3 Maximum solubility N of some impurities in silicon
Impurity N (1029 cm™3)
B 4
P 5
As 4
Sb 0.7
Al 0.13
Cu 1.4 x 1072
Au 12x 1073
Fe 3x 1074
Data for B, P, As, Sb from [278], other data from [281]
Fig. 4.11 Solubility limit 102 r
for various impurities in Si
s C e \ As
silicon versus their ionization ” \\C@
energy. Adapted from [279] — 0 N T
e B\
S b sb N |
2 Ga\\
3 b & N
2 el Al \ 4 i
8 10 \\NEi
IS AN
\ Cu
g 100 N0 ¢
= S
[ \
= N Au
107 |- N O O
()¢
@) O 00
10" | Fe \\
0.01 0.1 1.0

lonization Energy E, (eV)

another phase, e.g. a liquid phase, an extended defect or a precipitate. Precipitates
are small inclusions of a second phase in a crystal, exhibiting a high concentration
of ‘gathered’ impurities that cannot be solved in the crystal. Solubility limits for
impurities in silicon have been first determined in [277] with a bulk of subsequent
research [278] due to its practical relevance in device fabrication. The solubility limits
for a few impurities in silicon are listed in Table 4.3. It is related to the ionization
energy of the defect (cmp. Sect. 7.4) as shown in Fig.4.11.

The temperature dependence of the solubility for a few dopants is depicted in
Fig. 4.12a. The solubility depends also on the present strain [280]. The simple empir-
ical relation x; = 0.1 k (Fig. 4.12b) between the maximum molar solubility x; and
the distribution coefficient k in silicon and germanium has been pointed out in [281].

A typical example for the formation of precipitates is Fe in InP, used for compen-
sation of shallow donors in order to produce semi-insulating material (Sect. 7.7.8).
The solubility of Fe in InP is fairly low, about 10'” cm~ at growth temperature [282].
In Fig. 4.13 a high-resolution TEM image of a precipitate in InP doped with
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Fig. 4.12 (a) Steady-state solubility of impurities (P, As, B and Sb as labeled) in silicon. Solid
lines are theoretical model matching various experimental data. Arrow denotes the melting point of
silicon (1410°). Adapted from [278]. (b) Maximum molar solid solubility xs versus the distribution
coefficient for various impurities in crystalline silicon and germanium. Solid line follows x; = 0.1 k.
Adapted from [281]

Fig. 4.13 High resolution
TEM image of a FeP
precipitate in iron-doped InP.
Adapted from [283]

3 x 10" cm~—> Fe is shown. The precipitate exhibits a lattice constant of dj;; =
0.240nm in [111]-direction, much different from that of InP (d[}} = 0.339nm). The
angle between the [101] and [111] direction is 50° instead of 35° for InP. This is
consistent with orthorhombic FeP [283]. Typically FeP and FeP, precipitates are
found in highly Fe-doped InP [284].
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4.3 Dislocations

Dislocations are line defects along which the crystal lattice is shifted by a certain
amount. The vector along the dislocation line is called line vector L. A closed path
around the dislocation core differs from that in an ideal crystal. The difference vector
is called the Burger’s vector b. Dislocations for which the Burger’s vector is a vector of
the lattice are called full dislocations. In contrast, dislocations with Burger’s vectors
that are not translation vectors of the lattice are called partial dislocations. The history
of dislocation theory is described in [285].

Since the energy of a dislocation is proportional to b?, only dislocations with the
shortest Burger’s vector are stable. The plane spanned by L and b is called the glide
plane. In Fig. 4.14 a high-resolution image of the atoms around a dislocation and the
phase and amplitude of the (111) reflection are shown. The phase corresponds to the
atomic columns, the amplitude to the displacement of the atoms at the dislocation
core (see also Fig. 5.34).

4.3.1 Dislocation Types

Edge Dislocations

For an edge dislocation (Fig. 4.15a) b and L are perpendicular to each other. An extra
half-plane spanned by L and b x L is inserted (Fig.4.16).

Screw Dislocations

For a screw dislocation (Fig. 4.15b) b and L are collinear. The solid has been cut
along a half-plane up to the dislocation line, shifted along L by the amount b and
reattached.

Around the intersection of a screw dislocation with a surface, the epitaxial growth
occurs, typically in the form of a growth spiral that images the lattice planes around
the defect.

60° Dislocations

The most important dislocations in the zincblende lattice (Fig. 4.17) have the line
vector along (110). With the Burger’s vector a/2 (110) three different types of dislo-
cations can be formed: edge, screw and 60° dislocations. The vicinity of the core of
the latter is shown in more detail in Fig. 4.17d. We note that the atomistic structure
of 60° dislocations is different for L along [110] and [—1 10]; depending on whether
the cations or anions are in the core, they are labeled « or 3 dislocations.

Misfit Dislocations

When materials with different lattice constants are grown on top of each other, the
strain can plastically relax via the formation of misfit dislocations. A typical network
of such dislocations is shown in Fig. 4.18 for SiGe on Si.


http://dx.doi.org/10.1007/978-3-319-23880-7_5
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(a)

EZnTe/CdTe

Fig. 4.14 (a) High-resolution transmission electron microscopy image (HRTEM) in the (110)
projection of a network of misfit dislocations at a GaAs/CdTe/ZnTe interface. Substrate: GaAs
(001), 2° off (110), ZnTe buffer layer is 2 monolayers thick. (b) Fourier transform with round
mask around the (111) Bragg reflection. (¢) Phase and (d) amplitude images for the mask from (b).
From [286]

Fig. 4.15 Model of (a) an edge and (b) a screw dislocation. The line vector L and the Burger’s
vector b are indicated
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(b)

Fig. 4.16 (a) Atomic force microscopy image of growth spiral around a screw dislocation on a
silicon surface; image width: 4 wm. (b) STM image (width: 75 nm) of a screw-type dislocation with
a Burgers vector of [000-1] on the N-face of GaN. The reconstruction is c¢(6 x 12). The c(6 x 12)
row directions correspond to (1100). Reprinted with permission from [287], © 1998 AVS
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Fig. 4.17 Dislocations in the zincblende structure. The line vector is along [100]. The Burger’s
vectora/2 (110) can create an (a) edge dislocation, a (b) screw dislocation, and (¢) a 60° dislocation.
(d) Atomistic structure of a 60° dislocationeps

Partial Dislocations

Partial dislocations, i.e. the Burger’s vector is not a lattice vector, must necessarily
border a two-dimensional defect, usually a stacking fault (Sect. 4.4.2). A typical
partial dislocation in diamond or zincblende material is the Shockley partial dislo-
cation (or just Shockley partial) with Burger’s vector b = (ap/6) (112). Another
important partial is the Frank partial with b = (ay/3) (111). A perfect dislocation
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Fig. 4.18 Plan-view transmission electron microscopy image of a network of (110) dislocation
lines in InGaAs on InP (001) with a lattice mismatch of about 0.1 %. The TEM diffraction vector

is g = [220]. Adapted from [288]
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Fig. 4.19 (a) Graphical representation of the dislocation reaction of (4.22). (b) TEM image of
the interface of a Ge/Si heterostructure with a [il 1] /6 Shockley partial dislocation. The image is
overlayed with empty rod positions (as schematically shown in the lower left part of the figure)
colored according to the stacking position (A: blue, B: red, C: green). The arrows labeled ‘I’ denote
the position of the interface. Based on [289]
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can be dissociated into two partials. This is energetically favorable. As an example
we consider the reaction (Fig. 4.19a)

1 - 1 -- 1 -
= 1101 — 112+ = [211]. 4.22
S [101] > £ [1T2] + ¢ [211] @22)
The length of the full dislocation is ag/+/2. The length of the Shockley partial is
ap/+/6. Thus the energy E = G b? of the full dislocation is E; = Ga2/2 and the
sum of the energies of the partials is smaller, E, = 2Ga3 /6 = Gag /3. In Fig. 4.19b
a TEM image of a Ge/Si interface with a Shockley partial is shown.

4.3.2 Visualization of Dislocations by Etching

Defects can be made visible using etching techniques. This is particularly popular
for finding dislocations. Many etches are anisotropic, i.e. the etch velocity varies for
different crystal directions. As an example the result of etching a silicon sphere in
molten KOH and a germanium sphere in a HNO3/HF solution are shown in Fig. 4.20.
The remaining bodies exhibit those planes with low etching velocity. The etch veloc-
ity of various etch solutions has been investigated in detail in particular for silicon
(Fig. 4.21).

In a planar geometry, etch pits indicate the presence of dislocations, as shown in
Fig. 4.22 for Ge of different orientation. The anisotropic etch prepares {111} planes.
The dislocation core is at the intersection of the planes. In Fig. 4.23 hexagonal etch
pits stretched along [110] are developed by molten KOH [292, 293]. The sides of the
base are along [110], (130) and (310). The depth and width of the pits increases with
increasing etching time. On the (001) surface, the orientation of the pits is rotated
by 90° because of the polar [111]-axis of the zincblende structure [292]. Such etch

(@ (b)

Fig. 420 (a) Resulting shape of Si sphere (‘Losungskorper’) after 3h at 100°C in molten KOH.
(b) Resulting shape of Ge sphere after etching in HNO3:HF:CH3COOH, 35:30:35 weight percent.
The octaedric form indicates {111} faces. Markers are 1 mm. Adapted from [290]
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Fig. 4.21 (a) Etch rate of silicon for tetramethyl-ammonium-hydroxide (TMAH) water solution
(25 %) at 86°C and 40 % KOH at 70°C as a function of crystallographic direction. (b) Detail of the
anisotropy around the (111) direction for TMAH solutions with three different concentrations and
40 % KOH, all at 86 °C. Adapted from [291]
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Fig. 4.22 Etch pits on germanium with (a) (001) and (b) (111) surface orientation. In both cases
{111} facets are prepared by the etch. As etch in (b) a HNO3/HF/CH3 COOH solution with AgNO3
additive has been used. Width of the triangular etch pits is about 100 wm. Adapted from [296]

pit develops at a dislocation with Burger’s vector a/2[011] (inclined to the (001)
surface) [294]. Other types of etch pits indicate dislocations with other Burger’s
vectors [294, 295]. Recipies how to wet chemically etch various semiconductors can
be found in [290, 296-299]. Other etching techniques include dry processes such as
plasma etching or reactive ion etching (RIE) [300-303].

4.3.3 Impurity Hardening

It has been found that the addition of impurities can lead to a substantial reduction
of the dislocation density. This effect is known as impurity hardening and is caused
by a hardening of the lattice due to an increase of the so-called critical resolved
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Fig. 4.23 Etch pits on GaAs (001) after (a) 3min and (b) 10min etch time in molten KOH at
300°C. Adapted from [292]
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Fig.4.24 Dislocation density (as revealed by etch pits) for GaAs and InP as a function of the carrier
concentration for various concentrations of impurities (S, Te, and Zn). Adapted from [305]

shear stress [304]. In Fig. 4.24 the dependence of the dislocation density in GaAs
and InP is shown as a function of the carrier density that is induced by the incorpo-
ration of (electrically active) group-II or group-VI atoms (acceptors or donors, cf.
Sect. 7.5). The high carrier concentration is unwanted when semi-insulating sub-
strates (cf. Sect. 7.7.8) or low optical absorption (cf. Sect. 9.8.1) are needed. Thus
the incorporation of isovalent impurities, such as In, Ga or Sb in GaAs and Sb, Ga
or As in InP, has been investigated and found to be remarkably effective. Material
containing such impurities in high concentration (>10'” cm~?) must be considered
a low-concentration alloy. The lattice constant is thus slightly changed, which can
cause problems in the subsequent (lattice-mismatched) epitaxy of pure layers.
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4.4 Extended Defects

4.4.1 Micro-cracks

If the stress in a material becomes too big to be accommodated by dislocations,
cracks may form to release strain energy.® In Fig. 4.25 an example is shown. In
this case, micro-cracks have formed in a bulk mercury indium telluride crystal upon
incorporation of residual stress and thermal stress during cooling of the material
from growth temperature (about 1000K) to room temperature. See also Fig. 12.19
for micro-cracks in an epitaxial layer.

4.4.2 Stacking Faults

The ideal stacking of (111) planes in the zincblende structure, ABCABC.. ., can
be disturbed in various ways and creates area defects. If one plane is missing, i.e.
the stacking is ABCACABC, an intrinsic stacking fault is present. If an additional
plane is present, the defect is called an extrinsic stacking fault, i.e. ABCABACABC.
An extended stacking fault in which the order of stacking is reversed is called a
twin lamella, e.g. ABCABCBAC BABCABC. If two regions have inverted stacking
order they are called twins and their joint interface is called a twin boundary, e.g.
...ABCABCABCBACBACBA. .. (Fig. 4.28). The various types of stacking faults
are shown in Fig. 4.26. In Fig. 4.27 a cross-sectional image of stacking faults in GaAs
on Si is shown. They block each other and thus partially annihilate with increasing
thickness.

Fig. 4.25 Micro-cracks in a
mercury indium telluride
crystal. Adapted from [306]

8We note that in elasticity theory a confinuous deformation is assumed. Obviously the separation
(fracture) into two unstrained blocks is the lowest strain energy state of a stressed piece of material.
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Fig.4.26 HRTEM images of (a) thin-film silicon with intrinsic (labeled ‘ISF’) and extrinsic (‘ESF’)
stacking faults and twin boundary (‘Twin’). (b) Six monolayer thick hexagonal (wurtzite) CdTe
layer in cubic (zincblende) CdTe. Stacking order (from bottom to top) is: ABCABABABABC...
Reprinted with permission from [307]

Fig. 4.27 Cross-sectional TEM image showing stacking faults in heteroepitaxial GaAs on Si.
Adapted from [308]

Fig. 4.28 High resolution TEM image of ZnS nanowire exhibiting periodical twin structures.
Adapted from [309]
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Fig. 4.29 Reduced stacking fault energy (stacking fault energy per bond) ' for various compound
semiconductors plotted as a function of the s-parameter. Dashed line is guide to the eye. Data
from [164]

A stacking fault is bounded by two partial dislocations (Sect. 4.3.1) formed by the
dissociation of a perfect dislocation. A full (or perfect) dislocation with Burger’s vec-
tor a/2[110] in a III-V compound is dissociated into two Shockley partials according
to (4.22) [310]. Since the dislocation energy is proportional to |b|?, the dissociation
is energetically favored (see Sect. 4.3.1).

The stacking-fault energy in pure silicon is ¥ = 47mJm~2 [311]. A similar value
is found for Ge, v = 60mJ m~2 [312] and undoped GaAs, v = 45m] m~2[313]. In
diamond a much larger value is found, v = 285 mJ m~2 [314]. Impurity incorporation
typically reduces the stacking fault energy. The systematics of stacking fault energy
for various III-V and II-VI compounds has been discussed [164, 315, 316]. It can
be correlated with the s-parameter (2.11) as depicted in Fig. 4.29.

4.4.3 Grain Boundaries

The boundaries of crystal grains are called grain boundaries. They are defined by five
parameters, three rotation angles (e.g. Euler angles) to describe how the orientation
of grain II results from grain I and two parameters to define the boundary plane of
the two grains in the coordinate system of reference grain I.

Such defects can have a large impact on the electric properties. They can collect
point defects and impurities, act as barriers for transport (Sect. 8.3.8) or as carrier
sinks due to (nonradiative) recombination. Details of their structure and proper-
ties can be found in [317, 318]. The two crystal grains meet each other with a
relative tilt and/or twist. The situation is shown schematically in Fig. 4.30a for a
small angle between the two crystals. A periodic pattern of dislocations forms at
the interface that is called a small-angle grain boundary (SAGB) (Fig. 4.30b). In
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(@ (b)

(d) (e)

Fig. 4.30 Schemes of (a, b, ¢) pure tilt and (d, e, f) pure twist boundary, dislocation formation in
(c) pure tilt and (f) twist boundaries

Fig. 4.31, experimental results for pure tilt SAGB are shown. The dislocation spac-
ing is inversely proportional to the tilt angle 6. An image of a twist SAGB is shown
in Fig. 4.32.

Special large angle boundaries possess (for a certain angle) a coincident site lattice
(CSL). Some of these grain boundaries have a low energy and are thus commonly
observed. The ratio of lattice points of the CSL and the lattice unit cell is an odd
integer number #n; the corresponding grain boundary is then labeled ¥n. SAGB
are also termed X'1. X'3 grain boundaries are always twin boundaries. An example
with (111) grain boundary is schematically shown in an example in Fig. 4.33a. A
X3 (twin) boundary in silicon with {112} grain boundary [319, 320] is depicted
in Fig. 4.34 together with the atomic arrangement of the grain boundary itself. A
X5 (001) grain boundary is schematically shown in Fig. 4.33b; the special angle is
0 = arctan 3/4 ~ 36.87°.

Real grain boundaries may not be flat, contain impurities or precipitates and even
consist of a thin amorphous layer.

4.4.4 Antiphase and Inversion Domains

Antiphase domains occur when one part of the crystal is shifted with respect to
another by an antiphase vector p. This does not form a twin. If the polar direction
changes between two domains they are called inversion domains.

In the zincblende structure the [110] and [110] directions are not equivalent. In
one case there is a Zn-S lattice and in the other a S-Zn lattice. Both lattices vary
by a 90° rotation or an inversion operation (which is not a symmetry operation of
the zincblende crystal). If, e.g., a zincblende crystal is grown on a Si surface with
monoatomic steps (Fig. 4.35, cmp. Fig. 11.6), adjoint regions have a different phase;
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Fig. 4.31 (a) Scheme of a small-angle (pure tilt) grain boundary. (b) Model of edge dislocations
in a {110} plane in Ge. (c) Relation of dislocation distance d and tilt angle 6 for various small-angle
grain boundaries in Ge. Solid line is relation d = 4.0 x 1078/6. (d) Optical image of an etched
(CP—4 etch) Ge sample with a small-angle grain boundary. Adapted from [321]. () HRTEM image
of a small-angle grain boundary in Si with dislocations highlighted. From [322]

they are called antiphase domains (APD). The antiphase vector is (0, 0, 1) ap/4. At
the boundaries a two-dimensional defect, an antiphase domain boundary, develops.
The APD boundary contains bonds between identical atom species. In Fig. 4.36,
intertwining APD boundaries are shown on the surface of InP layers on Si. The
antiphase domains can be visualized with an anisotropic etch.

In Fig. 4.37a, inversion domains in iron-doped ZnO are shown. Between domains
the direction of the c-axis is reversed. The iron is found preferentially in the inversion
domain boundary (IDB) (Fig. 4.37b) and plays an important role in its formation [326,
327].
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Fig. 4.32 Bright-field TEM image of pure twist boundary with network of pure twist dislocations
fabricated by wafer bonding of two Si (001) surfaces with a relative twist. Adapted from [323]

$o
%
@,

%e?

S
.....Q ° .o.

o.f.o‘o °
2% o % 4
0 ¢ 0% o

e
L)
%% o
4

K

Fig. 4.33 (a) Schematic of X3 (111) twin boundary in a diamond or zincblende structure (cmp.
Fig. 4.28). The grain boundary is marked by a dashed line shown in side-view. The hexagonal and
rectangular grey boxes have the same area. The lattice points of the coincident site lattice (CSL) are
shown with black circles in the lower part of the figure. The unit cell of the CSL has three times the
volume of the unit cell of the fcc lattice. (b) Schematic of a ¥'5 (001) grain boundary in a (simple)
cubic crystal shown in plane-view. The blue and the red lattice are rotated by 36.86°, the lattice
points of the CSL are shown in black. The unit cell of the CSL lattice (dark grey) has five times the
volume of the cubic unit cell (light grey)
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Fig. 4.34 TEM images in two magnifications of a '3 {112} boundary in silicon together with a
schematic of the atomic arrangement. Adapted from [320]

Oln

monoatomic step — [170]

Fig. 4.35 Monoatomic step on the Si (001) surface and subsequent formation of an antiphase
boundary in InP (zincblende)

antiphase domains APDs + HCl etch no APDs + HCl etch  HCI etch pattern

Fig. 4.36 Antiphase domains in InP on Si. HCI etchs InP anisotropically and prepares (111)A
planes. The etch patterns of layers with (without) APDs are cross-hatched (linear). Adapted
from [324]
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Fig.4.37 Transmission electron microscopy of inversion domains in ZnO:Fe. (a) Inversion domains
in iron-doped ZnO (ZnO:Fe,O3 = 100:1). Arrows denote the orientation of the c-axis in the
respective domains. (b) Top: bright field TEM, bottom Fe distribution from energy-filtered image.
Adapted from [325]

4.5 Disorder

Disorder is a general term for deviations from the ideal structure on a microscopic
scale. Apart from the various structural defects discussed in the previous chapters,
further examples of disorder are

e The presence of various isotopes of an element. This introduces disorder with
regard to the mass of the atoms and impacts mostly phonon properties (see
Fig. 8.24).

e The occupation of lattice sites in alloys (Sect. 3.7) ranging from a random alloy,
clustering to (partially) ordered phases.

e The thermal and zero-point motion of atoms around their equilibrium position.
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Chapter 5
Mechanical Properties

Abstract Lattice vibrations and phonons are treated with one-dimensional mod-
els and examples for real phonon dispersions for several semiconductors including
phonons in alloys and disordered materials are given. Then the theory of linear elas-
ticity and its application to semiconductors with regard to epitaxial strain, substrate
bending and sheet-scrolling is given. Finally plastic relaxation effects such as critical
thickness and wafer breakage are discussed.

5.1 Introduction

The atoms making up the solid have an average position from which they can deviate
since they are elastically bonded. The typical atomic interaction potential looks like
the one shown in Fig.2.1. The atoms thus perform a vibrational motion (including
zero point fluctuations) and the solid is elastic. The potential is essentially asymmet-
ric, being steeper for small distances due to quantum-mechanical overlap of orbitals.
However, for small amplitudes around the minimum a harmonic oscillator can be
assumed (harmonic approximation). Beyond the elastic regime, plastic deformation
occurs such as generation of defects, e.g. dislocations. Eventually also the crystal
can break.

5.2 Lattice Vibrations

In the following we will discuss the dispersion relations for lattice vibrations, i.e.
the connection between the frequency v (or energy hv = hw) of the wave and its
wavelength A (or k-vector k = 27t/ ). Acoustic and optical vibrations are introduced
in one-dimensional models. A detailed treatment of the physics of lattice vibrations
is given in [328].

© Springer International Publishing Switzerland 2016 111
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5.2.1 Monoatomic Linear Chain

The essential physics of lattice vibrations can best be seen from a one-dimensional
model that is called the linear chain. The mechanical vibrations will also be called
phonons, although technically this term is reserved for the quantized lattice vibrations
resulting from the quantum-mechanical treatment.

In the monoatomic linear chain the atoms of mass M are positioned along a line
(x-axis) with a period (lattice constant) a at the positions x,, = na. This represents
a one-dimensional Bravais lattice. The Brillouin zone of this system is [—7/a, 7/a].

The atoms will interact with a harmonic potential, i.e. the energy is proportional to
the displacement u,, = x, — x,, to the second power. The total (mechanical) energy
of the system is then:

1
U=3¢C Zn}un — 1)’ (5.1)

The model assumes that the mass points are connected via massless, ideal springs
with a spring constant C. If ¢(x) is the interaction energy between two atoms, C
is given by C = ¢”(a). Again, the harmonic approximation is only valid for small
displacements, i.e. u, < a. The displacement of the atoms can be along the chain
(longitudinal wave) or perpendicular to the chain (transverse wave), see Fig.5.1. We
note that for these two types of waves the elastic constant C must not be the same.

When the sum in (5.1) has a finite number of terms (n = 0,...,N — 1),
the boundary conditions have to be considered. There are typically two possibili-
ties: The boundary atoms are fixed, i.e. ug = uy—; = 0, the boundary conditions are
periodic (Born—von Karman), i.e. u; = uy4;. If N > 1, the boundary conditions
play no significant role anyway, thus those with the greatest ease for subsequent
math are chosen. In solid-state physics typically periodic boundary conditions are

Fig. 5.1 Visualization of a
transverse (‘T”) and k=1/4 1/a
longitudinal (‘L") waves in a ® o ° °
linear monoatomic chain at L L4 T
different wavevectors
L
k=1/2 n/a o % o
o ® e g e e oo T

k=n/a
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used. Boundary phenomena, such as at surfaces, are then treated separately (see
Sect. 11.6.1).
The equations of motion derived from (5.1) are

. ou
Miu, = F, = _6 =—C Quy — up—1 — Upg1)- (5.2)
Uy

We solve for solutions that are periodic in time (harmonic waves), i.e. u, (x, t) =

u, exp(—iwt). Then the time derivative can be executed immediately as ii, = —wlu,
and we obtain:

Mw?u, = C Quy — Up_1 — Uny1). (5.3)

If, also, the solution is periodic in space, i.e. is a (one-dimensional) plane wave,
ie. u,(x,t) = vyexp(i(kx —wt)) with x = na, we find from the periodic boundary
condition exp(ikNa) = 1 and thus

2
k=1 hen. (5.4)
a N

It is important that, when k is altered by a reciprocal space vector, i.e. k' =
k + 2mn/a, the displacements u, are unaffected. This property means that there
are only N values for k that generate independent solutions. These can be chosen as
k= —m/a,...,mw/a,sothatk lies in the Brillouin zone of the lattice. In the Brillouin
zone there is a total number of N k-values, i.e. one for each lattice point. The distance

between adjacent k-values is
2w 2w

- =, 5.5
Na L (5
L being the lateral extension of the system.
The displacements at the lattice points n and n + m are now related to each other
via

Uptm = Vo exp(ik(n + m)a)

v exp(ikna) exp(ikma) = exp(ikma) u,,. (5.6)
Thus, the equation of motion (5.3) reads
Mw?u, = C [2 — exp(—ika) — exp(ika)] Uy,. 5.7

Using the identity exp(ika) + exp(—ika) = 2cos(ka), we find the dispersion
relation of the monoatomic linear chain (Fig.5.2):

4C 1 — 4
wz(k) — _C M — _C sin? ]2 . (5.8)
M 2 M 2
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Fig. 5.2 Dispersion relation
for a monoatomic linear

chain
NA4C I M

o (k)

0 1 1
- 0 Kk @wa)

The solutions describe plane waves that propagate in the crystal with a phase velocity
¢ = w/k and a group velocity v, = dw/dk

v =,/4—Cﬁcos lkﬁ . (5.9)
g M 2 2

In the vicinity of the I" point, i.e. k < 7/a the dispersion relation is linear in k

c
w(k) =a\/;|k|. (5.10)

We are used to such linear relations for sound (and also light) waves. The phase
and group velocity are the same and do not depend on k. Thus, such solutions are
called acoustic. The sound velocity of the medium is given by vy = a/C/M.

It is characteristic of the nonhomogeneous medium that, when k approaches the
boundary of the Brillouin zone, the behavior of the wave is altered. For k = 7/a the
wavelength is just A = 27/ k = 2a, and thus samples the granularity of the medium.
The maximum phonon frequency wy, is

4c
wy = /ﬁ' (5.11)

The group velocity is zero at the zone boundary, thus a standing wave is present.

Since the force constants of the longitudinal and transverse waves can be different,
the dispersion relations are different. The transverse branch of the dispersion relation
is 2-fold degenerate, unless the two directions that are perpendicular to x are not
equivalent.



5.2 Lattice Vibrations 115

5.2.2 Diatomic Linear Chain

Now we consider the case that the system is made up from two different kinds of
atoms (Fig. 5.3). This will be a model for semiconductors with a diatomic base, such
as zincblende. We note that the diamond structure also needs to be modeled in this
way, although both atoms in the base are the same.

The lattice will be the same and the lattice constant will be a. Alternating atoms
of sort 1 and 2 with a relative distance of a/2 are on the chain. The displacements of
the two atoms are labeled u) and u?2, both belonging to the lattice point n. The atoms
have the masses M; and M,. The force constants are C; (for the 1-2 bond within the
base) and C; (for the 2—1 bond between different bases).

The total energy of the system is then given as

1 2 1 2
U=5C ;(u; —u?)" + 5 G ;(ui —ul ). (5.12)

The equations of motion are

Myiiy, = —Cy (u, —u3) = Cy (uy — 1) (5.13a)
My iy = —Ci (uy —uy) = Ca (4 —uyyy) (5.13b)
With the plane-wave ansatz u!(x,t) = v exp (i(kna —wt)) and u2(x,t) =

vy exp (i(kna — wt)) and periodic boundary conditions we find

0=—-M v +C (v; — 1) + C [v; — vy exp(—ika)] (5.14a)

0=-M, w? vy + Cy (v2 — v1) + Gy [V, — vy exp(ika)]. (5.14b)
Fig. 5.3 Visualization of a
. . . - >
acoustic and optical waves in |
a diatomic linear chain - o0 8 0 © 0 8 g o -

k=1/4 rt/a
_._" @ L C ® C T @ B B TO

*— & —0_ —0 —o —80—0 |0
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These equations for v; and v, can only be solved nontrivially if the determinant
vanishes, i.e.

M W? — Ci+C) Ci+ e~k C,
Ci+e*C, Myw?—(Ci+Cy)
= MMy w* — (M + My)(C) + Cy) w? +2C,C, [1 — cos(ka)].

0= (5.15)

Using the substitutions C. = (C; 4+ C1)/2, Cx = /C;C,, the arithmetic and
geometrical averages, and accordingly for M, and M, the solution is

2Cy 1 — cos(ka
Wwi(k) = 1+ 1—72# , (5.16)
¥ My 2
with
CX MX
= <1 (5.17)
C.M,

The dispersion relation, as shown in Fig. 5.4, now has (for each longitudinal and
transverse mode) two branches. The lower branch (‘—’ sign in (5.16)) is related to
the acoustic mode; neighboring atoms have similar phase (Fig. 5.3). For the acoustic
mode w = 0 at the I" point and the frequency increases towards the zone boundary.
The maximum phonon frequency wy, is in the upper branch (‘4 sign in (5.16)) at

the zone center
4C cC. M
v =2/ ;/12*. (5.18)

The upper branch is called the optical mode (since it can interact strongly with light,
see Sect. 9.9) and neighboring atoms have opposite phase. In the vicinity of the I”
point the dispersion of optical phonons is parabolic with negative curvature:

Wm =

Fig. 5.4 Dispersion relation T T
for a diatomic linear chain
with acoustic (blue) and i | _ 3
optical (green) branch /\ ®, =+J4C.M_ /M
<t 1,2
3

k (n/a)
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~ 1 rya\? ,
w(k)_wm[l—E(T) k] (5.19)

Thus, four different vibrations exist that are labeled TA, LA, TO, and LO. Both
the TA and TO branches are degenerate.
At the zone boundary (X point) a frequency gap exists. The gap center is at

Wm
wx = —, (5.20)
X NG
and the total width of the gap is
Ci M. —Cy M,
wazwmw/l—fy=2\/%. (5.21)

The group velocity is zero for optical and acoustic phonons at k = 7/a and for
optical phonons at the I" point.

Usually two cases are treated explicitly: (i) atoms with equal mass (M = M| =
M>) and different force constants or (ii) atoms with unequal mass and identical force
constants C = C; = C,. For the case C; = C; and M| = M, v = 1 and thus
Awyx = 0. Then the dispersion relation is the same as for the monoatomic chain,
except that the k space has been folded since the actual lattice constant is now a /2.

M; =M,

In this case, M, = M, = M and the dispersion relation is

2 21— cos(k
=2 e 1o C—§—°OS( @ | (5.22)
M 2 2

At the zone boundary the frequencies for the acoustic and the optical branch are
wx.1 = +/2C1/M with v| = v and wy» = +/2C,/M with v| = —v,, respectively
(assuming C, > C;). The motion for k = 7 /a is phase shifted by 180° for adjacent
bases. Additionally, for the acoustic branch the atoms of the base are in phase, while
for the optical branch the atoms of the base are 180° out of phase. The vibration
looks as if only one of the springs is strained.

C=0(C;

In this case, C; = Cx = C and the dispersion relation is

2CM M2 1 —cos(k
2o ZEM )y [y M L costka) (523)
M2 M2 2

At the zone boundary the frequencies for the acoustic and the optical branch are
wx,1 = +/2C/M; with v, = 0 and wx» = +/2C/M, with v; = 0, respectively
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(assuming M, < M)). In the vibration for k = 7/a thus only one atom species
oscillates, the other does not move. Close to the I" point the atoms are in phase in the
acoustic branch, i.e. v; = v,. For the optical branch, the frequency at the I" point is
given by w = /2C/M, (with the reduced mass M~' = M;' + M;' =2M, /M?)
and the amplitude ratio is given by the mass ratio: v, = —(M/M;) vy, i.e. the heavier
atom has the smaller amplitude.

5.2.3 Lattice Vibrations of a Three-Dimensional Crystal

When calculations are executed for a three-dimensional crystal with a monoatomic
base, there are 3N equations of motion. These are transformed to normal coordinates
and represent 3 acoustic branches (1 LA phonon mode and 2 TA phonon modes) of
the dispersion relation. In a crystal with a base with p atoms, there are also 3 acoustic
branches and 3(p — 1) optical branches. For a diatomic base (as in the zincblende
structure) there are 3 optical phonon branches (1 LO phonon mode and 2 TO phonon
modes). The total number of modes is 3 p. The dispersion w(k) now has to be cal-
culated for all directions of k.

In Figs.5.5 and 5.6, the phonon dispersion in silicon, GaAs and GaP is shown
along particular lines in the Brillouin zone (cf. Fig.3.34b). The degeneracy of the
LO and TO energies at the I" point for the covalent group-IV semiconductor is lifted
for the III-V semiconductors due to the ionic character of the bond and the macro-
scopic electric field connected with the long-wavelength LO phonon (see Sect. 5.2.9).
Comparing GaAs [329] and GaP [330], the quite different mass of Ga- and P-atoms
(M4 /M, =~ 0.92) leads to the formation of a clear gap between the acoustic and
optical branches, while for GaAs M /M. ~ 0.9994 is close to 1 and no gap forms.

We note that the degeneracy of the TA phonon is lifted for propagation along the
(110) directions (X) because the two transverse directions (001) and (110) are not
equivalent.
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Fig. 5.6 Phonon dispersion
in (a) GaP and (b) GaAs.
Experimental data (symbols)
and theory (solid lines,
14-parameter shell model).
‘L’ and ‘T’ refer to
longitudinal and transverse
modes, respectively. ‘I” and
‘I’ (along [(, ¢, 0]) are
modes whose polarization is
in the (1, 1, 0) plane. The
grey area in (a) denotes the
gap between acoustical and
optical states. (a) Adapted
from [331], (b) adapted
from [329]
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In boron nitride the masses of the two constituents are so similar that no gap
exists between acoustical and optical branches (Fig.5.7). Also the density of states
(averaged over the entire Brillouin zone) is depicted (see next Sect.).

The displacement of atoms is shown in Fig.5.8 for the different phonon modes
present in zincblende crystals and in Fig.5.9 for wurtzite crystals. The modes are
labeled with their symmetry (in molecular notation) according to group theory (see

remark in Sect. 6.2.5).

150F

100

Energy (meV)

50

L

X wQlL U

Density of States

Fig. 5.7 Phonon dispersion in BN (left panel), experimental data (symbols) and theory (solid lines,
first principles pseudopotential model). In the right panel the density of states is depicted. Adapted

from [332]
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Fig. 5.8 Displacement of atoms for various phonon modes in zincblende crystals. Adapted
from [333]
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Fig.5.9 Displacement of atoms for various phonon modes in wurtzite crystals. Adapted from [334]

The dependence of the phonon frequency on the mass of the atoms (o 1/+/M)
can be demonstrated with the isotope effect, visualized for GaAs in Fig.5.10. The
dependence of the phonon frequencies on the stiffness of the spring can be seen from
Fig.5.11; the smaller lattice constant provides the stiffer spring.
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Fig.5.10 (a)Raman spectra of GaAs with different isotope content as labeled. (b) Energy of optical
phonons in GaAs with different isotope content [using the Raman spectra shown in (a)]. Reprinted
with permission from [335], © 1999 APS
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5.2.4 Density of States

The density of states (DOS) tells how many of the total 3p N modes are in a given
energy interval. The states are spaced equally in k-space but not on the energy scale
(see also Sect. 6.11).
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(a) 1.0 T ] (b) 10 T

Density of states (N/E )
(]

.t
W o5t ]
L
~ 0 %I—/
O'00.0 0.5 1.0 0.0 0.5 1.0
k (n/a) E(Ep)

Fig. 5.12 (a) Phonon dispersion for the diatomic linear chain model for v = 1 (black line) and
v = 0.9 (blue lines). (b) Corresponding density of states (in units of N/Ep,)

For the monoatomic linear chain model, the number of states N (E’) from E = 0
up to E = hw = E’(k’) for the dispersion of the acoustic phonons (5.8) is given as

, , N L,
NE)=k — = —k'. (5.24)
mw/a ™

Using (5.8), we find for one polarization (Ey, = hwp,)

2N . ( E )
N(E) = — arcsin|{ — ). (5.25)
us E

m
The DOS D(E) is given by

dN(E) 2N 1

DB = 35 = E e

(5.26)

Often the density of states is scaled by the (irrelevant) system size and given per
atom (D/N) or per volume (D/L?), per area (D/L?) or per length (D/L) for three-,
two- or one-dimensional systems, respectively.

In the diatomic linear chain model, additionally the optical phonons contribute to
the density of states. In Fig.5.12 the phonon density of states is shown for v = 0.9
and for comparison for v = 1 (gapless phonon dispersion). For small wavevector,
the density of states is 4N /(w E,).! Within the gap the density of states vanishes.
At the edges of the band gap the density of states is enhanced. The total number of
states for both dispersions is the same.

I The factor 2 compared to (5.26) stems from the folded Brillouin zone compared to the monoatomic
chain model.
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In a three-dimensional solid, (5.24) is modified to (for three degenerate polariza-
tions)
4 3 ’

NE) == Qn/Ly3 "

(5.27)

taking into account all states within a sphere in k-space of radius k’. Assuming a
linear dispersion w = v k, we obtain

vV E?
N(E) = 722 T g (5.28)
Thus the density of states is proportional to E2,
3V E?
D(E) = 32 130 (5.29)

This dependence is the base for Debye’s law for the T3 temperature dependence of
the heat capacity. As realistic example the phonon density of states for BN is depicted
next to the dispersion in Fig.5.7.

5.2.5 Phonons

Phonons are the quantized quasi-particles of the lattice vibrations (normal modes).
The energy of a phonon can take the discrete values of a harmonic oscillator

1
Ep = (n + 5) huw, (5.30)

where n denotes the quantum number of the state, which corresponds to the number
of energy quanta /uw in the vibration. The amplitude of the vibration can be connected
to n via the following discussion. For the classical oscillation u = ug expi(kx — wt)
the space and time average for the kinetic energy yields

1 o> 1 5
Ekin=§PV E = - pVw ug, (5.31)

where p is the density and V the volume of the (homogeneous) solid. The energy of
the oscillation is split in half between kinetic and potential energy. From 2 Ey;, = Epp

we find
u = n+l _an (5.32)
o~ 2) pVuw ’
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The number of phonons with which a vibrational mode is populated is thus directly
related to the classical amplitude square.

Phonons act with a momentum 7k, the so-called crystal momentum. When
phonons are created, destroyed or scattered the crystal momentum is conserved,
except for an arbitrary reciprocal-space vector G. Scattering with G = 0 is called a
normal process, otherwise (for G # 0) it is called an umklapp process.

5.2.6 Localized Vibrational Modes

A defect in the crystal can induce localized vibrational modes (LVM). The defect can
be a mass defect, i.e. one of the masses M is replaced by My, or the force constants
in the neighborhood are modified to Cq4. A detailed treatment can be found in [337].
LVM are discussed, e.g., in [338-340].

First we consider the LVM for the one-dimensional, monoatomic chain. If the
mass at lattice point i = 0 is replaced by My = M + AM (eyy = AM /M), the
displacements are given by u; = AK'l, A being an amplitude, with

1+€M

K = , (5.33)
1— €M
and the defect phonon frequency wy is
1
W4 = Wn T 6%4' (5.34)

A real frequency is obtained for |ep| < 1. wq is then higher than the highest
frequency of the bulk modes wy, = /4C/M (5.11). For ey < 0, i.e. the mass of the
defect is smaller than the mass of the host atoms, K is negative and |K| < 1. Thus,
the displacement can be written as

uj o (=KD" = (=DM exp (+i|log |K]) . (5.35)

The numerical value of the exponent is negative, thus the amplitude decreases
exponentially from the defect and indeed makes a localized vibrational mode. For
small mass My < M (5.34) yields approximately wq = +/2C/My. This approx-
imation is the so-called one-oscillator model. Since typically the extension of the
localized mode is only a few lattice constants, the picture of LVM remains correct
for impurity concentrations up to ~10'® — 10’ cm~=3. For higher concentrations the
concept of alloy modes has to be invoked (cf. Sect. 5.2.7).

For the case of group-III or -V substitutional impurities in group-IV semiconduc-
tors the change in force constants (treated below) can be neglected to some extent.
For silicon (M = 28) and germanium (M = 73) the effect of various substitutions
is shown in Fig.5.13.
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Fig. 5.13 Energy of local
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Now, additionally the force constants left and right of the defect are replaced by
Cq = C+ AC (ec = AC/C). The displacements are still given by u; = AK I, now
with
C(tean+e)

1—€M—2€C

K= (5.36)

An exponential decrease of the LVM amplitude occurs for negative K that is
ensured for ey + 2ec < 0 (and ey > —1 and ¢ > —1). The defect frequency is
given by

(5.37)

\/(1 +e0) 2+ ec B+ ew)
Wd = Wnm .
2(1 +em) Qec + 1 —em)

‘We note that for ec = 0 (5.33) and (5.34) are recovered.
For a given mass defect, the change of frequency with AC is (in linear order, i.e.
forec < 1)

Qwalem, €c) 1 —dey —ey

5 = ec. (5.38)
cc 4(1—em) /1 — €4

The linear coefficient diverges for ey — —1. For ey between —0.968 and 0
the linear coefficient varies between 2 and 1/4. Therefore, a larger force constant
(ec > 0) increases the LVM frequency of the defect, as expected for a stiffer spring.

In a binary compound the situation is more complicated. We assume here that the
force constants remain the same and only the mass of the substitution atom My is
different from the host. The host has the atom masses M, and M, with M| < M,.
Substitution of the heavy atom with a lighter one creates a LVM above the optical
branch for My < M,. Additionally, a level in the gap between the optical and acoustic
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Fig. 5.14 (a) Numerical simulation of a linear chain model for GaP (M| = 31, M, = 70). Energy
of local vibrational modes (dashed (solid) line): substitution on P (Ga) site in units of the optical
phonon frequency at I" (wy, = 45.4meV). The grey areas indicate the acoustic and optical phonon
bands. Solid squares are experimental data (from [337]), scaled to the theoretical curve for the
27 Alga LVM frequency. (b) Differential transmission spectrum of GaP structure (nitrogen-doped
layer on zinc-doped compensated substrate) against pure crystal (7' = 77 K). Data from [342]

branch is induced. Such LVM is called a gap mode. Substitution of the lighter atom
of the binary compound induces a LVM above the optical branch for My < M;. A
gap mode is induced for My > M. The situation for GaP is depicted in Fig.5.14.
LVM in GaAs have been reviewed in [338].

The energy position of a local vibrational mode is sensitive to the isotope mass of
the surrounding atoms. In Fig.5.15, a high-resolution (0.03cm™!) spectrum of the
12¢, LVM in GaAs is shown together with a theoretical simulation. The various the-
oretical peak positions are given as vertical bars, their height indicating the oscillator

Fig. 5.15 Experimental
(Exp., T = 4.2K, resolution GaAs
0.03cm™!) and theoretical
(Th., artificial Lorentzian
broadening) infrared spectra
of LVM of '2Cy; in GaAs.
The positions and oscillator
strengths of the theoretical
transitions involving
different configurations with
%Ga and 7! Ga isotopes are
shown as vertical bars. Data
from [338]

Absorbance (arb. units)

Th /0l [, lh .
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Energy (cm™)
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strength. Five experimental peaks are obvious that are due to a total of nine different
transitions. The C atom can experience five different surroundings (see Table 3.8)
with the four neighbors being ®*Ga or 7'Ga. The natural isotope mix is an ‘alloy’
9Ga,”'Ga;_,As with x = 0.605. The configurations with T, symmetry contribute
one peak each, the lowest ("' Ga surrounding) and highest (**Ga surrounding) energy
transitions. The configurations with Cs3, and C,, symmetry contribute each with 2
and 3 nondegenerate modes, respectively.
The vibrations of impurity complexes have been discussed in [343].

5.2.7 Phonons in Alloys

In an alloy of the type AB;_,C, the phonon frequencies will depend on the ternary
composition. For the binary end materials AB and AC clearly TO and LO frequencies
exist. The simplest behavior of the alloy is the one-mode behavior (Fig. 5.16d) where
the mode frequencies vary continuously (and approximately linearly) with the com-
position. The oscillator strength (LO-TO splitting, (9.74)) remains approximately
constant. In many cases, the two-mode behavior is observed where the LO-TO gap
closes (accompanied by decreasing oscillator strength) and a localized vibrational
mode and a gap mode occur for the binary end materials (Fig. 5.16a). Also, a mixed-
mode behavior (Fig.5.16b, ¢) can occur.

The masses of the three constituent atoms will be M4, Mg, and M. Without lim-
iting the generality of our treatment, we assume Mp < Mc. From the considerations
in Sect. 5.2.6 on LVM and gap modes, the condition

(a) (b) (© d
T T T T
localized localized
LO, mode \ LO, mode \ LO,
LO
>
g TO, Lo, TO, Lo, TO, Lo,
()
>
g TO
-
gap TO, TO, gap TO,
mode mode
1 1 1 1
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
Composition Composition Composition Composition

Fig.5.16 Schematic behavior of phonon modes in an alloy. (a) Two-mode behavior with gap mode
and localized mode, (b, ¢) mixed-mode behavior, (b) only localized mode allowed, (c) only gap
mode allowed, (d) one-mode behavior with neither localized mode nor gap mode allowed
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Table 5.1 Atomic masses of the constituents of various ternary compounds, reduced mass pac
(5.40), fulfillment of the relation from (5.40) (‘+’: fulfilled, ‘—’: not fulfilled) and experimental
mode behavior (2’: two-mode, ‘1’: one-mode)

Alloy A B C Ma My Mc HAC Rel. Modes
GaPj_,As;y Ga P As 69.7 31.0 74.9 36.1 + 2
GaAs|_,Sby Ga As Sb 69.7 74.9 121.8 44.3 — 1
CdSi_,Sey Cd S Se 1124 32.1 79.0 46.4 + 2
Cd,Zn;_,S S Zn Cd 32.1 65.4 112.4 25.0 — 1
Mg.Zn;_,O (@) Mg Zn 16.0 243 65.4 12.9 — 1

MB < MA, MC (539)

for two-mode behavior can be deduced. This ensures a LVM of atom B in the com-
pound AC and a gap mode of atom C in the compound AB. However, it turns out that
this condition is not sufficient, e.g. Na;_, K, Cl fulfills (5.39) but exhibits one-mode
behavior. From a modified REI? model (for k ~ 0 modes) it has been deduced that

MB < pac = ——— < MA, MC (540)

is a necessary and sufficient condition (unless the force constants between A—B and
A-C are significantly different) for two-mode behavior [344]. A detailed discussion
is given in [345]. Equation (5.40) is a stronger condition than the previous one
(5.39). If (5.40) is not fulfilled the compound exhibits one-mode behavior. As an
example, we show the mass relations for CdS;_,Se, and Cd,Zn;_,S in Table5.1
and the experimental phonon energies in Fig.5.17. Also in Table 5.1 the masses for
GaP;_,As, (GaAs;_,Sb,) exhibiting two- (one-) mode behavior are shown.

If the binary end components of a ternary alloy have different crystal structure, a
transition between the two occurs which is reflected in the phonon structure (energies
and mode symmetries). As an example, the optical phonon energies of Mg, Zn;_, O
are depicted in Fig.5.18 (cmp. Fig.3.39).

5.2.8 Disorder

An example of ‘small’ disorder are the localized vibrational modes due to a single
defect. Here we consider in our one-dimensional model random fluctuations of the
model parameters. To that avail we set up a numerical implementation of an one-
dimensional chain with masses M| = M, and spring constants C; # C,, here
C, = 2C;. Now each spring constant varies randomly by ¢ percent. The density

2Random element isodisplacement.
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Fig.5.17 Phonon energies of Cd,Zn;_, S and CdS|_, Se, as a function of the ternary composition.
Experimental data (solid circles) are from [344], dashed lines are guides to the eye
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of states is displayed for £ = 10, 20, 40 and 60 %. The effects as shown in Fig.5.19
are broadening of peaks in the DOS, broadening of the band edges, the development
of band tails into the gap and eventually a closing of the gap. This is a typical behavior
that also exists for electronic states (cmp. Fig. 6.46).

5.2.9 Electric Field Created by Optical Phonons

Adjacent atoms oscillate with opposite phase in an optical phonon. If the bond has
(partial) ionic character, this leads to a time-dependent polarization and subsequently
to a macroscopic electric field. This additional field will influence the phonon fre-
quencies obtained from a purely mechanical approach. We consider in the following
the case k &~ 0. The phonon frequency for TO and LO vibrations is given by
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Fig. 5.19 Density of states versus energy (in units of maximum phonon energy Ey, = hwy,) for
diatomic linear chain model (M} = M, C, =21, 29 atoms, average over 27 configurations) for
various levels of random relative variations of the spring constants (solid lines). As dashed lines the
density of states of the perfect chain is depicted (cmp. Fig. 5.12b) with the forbidden energy ranges
shown in light grey

2C
M;

wo = , (5.41)

where M, is the reduced mass of the two different atoms (cf. Sect. 5.2.2). u is
the relative displacement u; — u, of the two atoms in a diatomic base. When the
interaction with the electric field E (which will be calculated self-consistently in
the following) is considered, the Hamiltonian for the long-wavelength limit is given
by [347]:

. 1/ 1
H(p,u) = 3 (ﬁ p>+bu+2bpu-E+by E2> . (5.42)

The first term is the kinetic energy (p stands for the momentum of the relative
motion of the atoms 1 and 2in the base, p = M), the second the potential energy,
the third the dipole interaction and the fourth the electric-field energy. The equation
of motion for a plane wave u = ug exp [—i(wt — k - r)] (ii = —w?u) yields

M,w?*u=b;u+bpE. (5.43)
Thus, the electric field is

E—(wz—wz)%u (5.44)
- TO b12 . .

Here, the substitution w%o = by1/M; was introduced that is consistent with (5.41)
and b;; = 2C. wro represents the mechanical oscillation frequency of the atoms
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undisturbed by any electromagnetic effects. Already now the important point is

visible. If w approaches wrg, the system plus electric field oscillates with the fre-

quency it has without an electric field. Therefore the electric field must be zero. Since

the polarization P = (e — 1)¢E is finite, the dielectric constant € thus diverges.
The polarization is

P=—-VgH = — (bpu+bnE). (5.45)

The displacement field is

b3,/ M,
D=60E+P:60E— b22—2—2 E=€0€(OJ)E. (546)
Wi — W
Therefore, the dielectric function is
0) —
W) = e(oo) + W Z &) (5.47)

1 — (w/wro)?’

Here, e(00) = 1 — by /ep is the high-frequency dielectric constant and €(0) =
€(00) + b%z /(b11€p) the static dielectric constant. The relation (5.47) is shown in
Fig.5.20.

From the Maxwell equation V - D = 0 for zero free charge we obtain the relation

cew)V-E=0. (5.48)

Thus, either e(w) = 0or V - E = 0, i.e. u is perpendicular to k. In the latter case
we have a TO phonon and, neglecting retardation effects, using V x E = 0 we find

Fig. 5.20 Dielectric T
function according to (5.47)
with €(0) = 3 and e(oc0) =2 y
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oL —&(0)
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_3L 4
Il
0 1 2

Frequency (o / ®;)



132 5 Mechanical Properties

E = 0 and therefore w = wro, justifying our notation. In the case of e(w) = 0, we
call the related frequency wi o and find the so-called Lyddane—Sachs—Teller (LST)
relation

‘Ufo _€0)

2 oo (5.49)

This relation holds reasonably well for optically isotropic, heteropolar materials
with two atoms in the basis, such as Nal and also GaAs. Since at high frequencies,
i.e. w > wro, only the individual atoms can be polarized, while for low frequencies
the atoms can also be polarized against each other, €(0) > €(oco) and therefore also
wLo > wro. For GaAs, the quotient of the two phonon energies is 1.07. Using the
LST relation (5.49), we can write for the dielectric function

2 0
(W) = €(c0) (Zgo—w) . (5.50)

_ 2
To — W

The (long-wavelength) TO-phonon does not create a long-range electric field.
Using V - D = 0 and (5.46) and looking at the longitudinal fields, we have

coE=bpu+bnE. 5.51)

This can be rewritten as

E=—-uwpo % : —Luoc—u. (5.52)
e \ €(oc0) €(0)

The (long-wavelength) LO-phonon thus creates a long-range electric field acting
against the ion displacement and represents an additional restoring force; this is
consistent with the fact that wi o > wro.

5.3 Elasticity

The elastic properties of the semiconductor are important if the semiconductor is
subjected to external forces (pressure, temperature) or to lattice mismatch during
heteroepitaxy.

5.3.1 Thermal Expansion

The lattice constant depends on temperature. The (linear) thermal expansion coeffi-

cient is defined as
Oao(T)

T |r—y,

a(Ty) = (5.53)
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and is temperature dependent. The temperature dependence of « for silicon and
germanium is shown in Fig. 5.21. o is approximately proportional to the heat capacity
(Cy) except at low temperatures. The negative values are due to negative Griineisen
parameters [348]. These anharmonicity effects are discussed in detail in [328].

5.3.2 Stress—Strain Relation

In this section, we recall the classical theory of elasticity [349]. The solid is treated
as a continuous medium (piecewise homogeneous) and the displacement vector is
thus a continuous function u(r) of the spatial coordinates. When the spatial variation
Vu of u is small, the elastic energy can be written as

1[0 O,
U=- / A Comn 221 By, (5.54)
8xk

where C is the (macroscopic) tensor of the elastic coefficients. 21 components of
this tensor can be independent. For crystals with cubic symmetry the number of
independent constants is reduced to 3. An exchange k <> [/ and m < n does not
matter, only six indices have to be considered (xx, yy, zz, ¥z, xz, and xy). The strain
components ¢;; are symmetrized according to

1 614] 814,»
g= o (22 5.55
ij 2(8)(,‘ +6xj) ( )
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&) (b) (c) (d)

Fig. 5.22 Deformation of a square (a). (b) Pure hydrostatic deformation (exx = €y, = 0.2,
€xy = 0), (c) pure shear deformation (exy = €,y = 0, €xy = 0.2), and (d) mixed deformation
(exx = €yy = 0.1, 64y = 0.1)

The strains €., are along the main axes of the crystal as visualized in Fig.5.22.
The stresses® oy, are then given by
ot = Crimn €mn- (5.56)
The inverse relation is mediated by the stiffness tensor S.
€1 = Skimn Omn- (5.57)

Typically, the strain components e;; or e; are used with the convention xx — 1,
yy = 2,zz — 3, yz = 4,xz — 5, and xy — 6 (Voigt notation):

€jj = €jj (2 — 5ij)' (558)
Then, 0,, = C,e, with the C;; being the elastic constants. The x, y, and z

directions are the main axes of the cubic solid, i.e. the (100) directions.
For zinchblende material, the stress—strain relation reads®

o1 CiCpCi2 0 0 O e
o) CoCiuCpp 0 0 O e
o3| _ | C2Ci2Ci1 0 0 O e3
T4 o 0 0 0 C44 0 0 €y (5'59)
g5 0 0 0 0 C44 0 es
06 0 0 0 0 0 C44 €6

Values of the compliances for several semiconductors are given in Table. 5.2. The
inverse relation is given by the matrix

3The stress is a force per unit area and has the dimensions of a pressure.
4
Ci1 = Ciii1, Ci2 = Criz and Cay = Ci212 = Ci221 = Co121 = Cain2.
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Table 5.2 Elastic constants Material | Cy; Ci Cu Ik
(in GPa) of some cubic

semiconductors at foom C 10764 1252 5774 1005
temperature. I refers to the Si 165.8 63.9 79.6 1.004
Keating criterion (5.63) Ge 128.5 48.3 66.8 1.08
BN 820 190 480 1.11
GaAs 119 534 59.6 1.12
InAs 83.3 45.3 39.6 1.22
AlAs 120.5 46.86 594 1.03
ZnS 104.6 65.3 46.3 1.33
MgO 297 156 95.3 0.80
Si1 8282 0 0 0
S2828: 0 0 0
12 912 311 ’ (5.60)
0 0 0 S4 O O
0 0 0 0 Sy O
0 0 0 0 0 Sy
with the stiffness coefficients in this notation given by
Cih+C
Sii = nr-ne (5.61a)
(C11 — C12) (C11 +2C12)
C
Sp=—3 12 5 (5.61b)
—C” —C11Cipp + 2C12
1
S44 = —-—. (5610)
Cu

We emphasize that in this convention (also called the engineering convention), e.g.

e = €xx and e4 = 2 €,,. There is also another convention (the physical convention)

without this factor of two; in this case the matrix in (5.59) contains the elements
2C44. We introduce

Co=2Cyu+Cip—Cyy, (5.62)

and note that Cy = 0 for an isotropic material. The relation

2C4 (Ci + Cr2)

IK = =
(C11 = C12) (C11 + 3C12)

(5.63)

known as the Keating criterion [350, 351], stems from the consideration of bending
and stretching of the tetrahedral bonds in the valence force field (VFF) model. It is
closely fulfilled (Table5.2) for many tetrahedrally bonded semiconductors, in par-
ticular for the covalent ones. For MgO, the Keating criterion is not fulfilled because
it has (six-fold coordinated) rocksalt structure and is thus not tetrahedrally bonded.
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The Young’s modulus Y,
Onn = Y (M) €y, (5.64)

generally depends on the normal direction n of a strain. It is equivalent to 1/S;; of
(5.61a).

For isotropic material Y and the Poisson ratio v are related to the elastic constants
of cubic material by

2C}
Ci+Ci2
Ci
v=—=
Ci+Cn

Y =Cy — (5.65a)

(5.65b)

For isotropic materials also Lamé’s constants A and p are used. They are given by?
Ci1 = A+ 2u, Cip = XA and Cyy = p (note that Cy according to (5.62) is zero).
The bulk modulus B (inverse of the compressibility),

1 1 oV

= 5.66
B V Op (5.66)
for the zincblende crystal is given as
C 2C
B= % (5.67)

We note that Y, v and C;; of typical materials are both positive. Materials with
negative Poisson ratio are called auxetic [352-354]. Also materials with negative
compressibility are possible [355].

Beyond the dependence of the elastic constants on the bond length (as materialized
in the phonon frequencies in Fig.5.11), they depend on the ionicity. In Fig.5.23, the
elastic constants of various zincblende semiconductors are shown as a function of
the ionicity f;. The values for the elastic constants are normalized by e? /a*, a being
the average nearest-neighbor distance.

For wurtzite crystals, five elastic constant are necessary for the stress—strain rela-
tion that reads®

CiCpCi3 0 O
CoCiuCiz 00

0
0
Ci3Ci3Cs3 0 0 0
0
0

Cij = (5.68)

0 0 0 Cyu O
0 0 0 0 Cy
0 0 0 0 0 3(Cii—Cn)

SFor an isotropic material, Cjjx = A d;j Ok + p (0ik 81 + it 6 k).
8(C11 = C12)/2 = Ci212, Caa = Ci313 = Ca33.
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Fig. 5.23 Elastic constants as a function of ionicity for various semiconductors with dia-
mond or zincblende (circles) and wurtzite (squares) structure. Constants are normalized by
the modulus Cy = e2/d*, d being the average nearest-neighbor distance. (a) Bulk modulus,
B* = (Ci1 4+ 2C12)/(3Co), (b, ¢) shear moduli, (b) Cg = (Ci1 — C12)/Co, (¢) Cjy = Ca4/Co.
Solid lines are a simple model as discussed in [356]. Adapted from [357]

Table 5.3 Elastic constants

Material C C C C Cy4 | Reference
(in GPa) of some wurtzite = 12 1 3 s

cemiconductars GaN 391 | 143 108 | 399 | 103 | [359]
AN 410 | 149 | 99 | 389 | 125 [360]
Zn$ 124 | 60.2 | 45.5) 140 | 28.6 [361]
Zno 206 | 118 | 118 | 211 | 44 | [362]

Experimental values for wurtzite materials are given in Table 5.3. The relation of the
elastic tensor of wurtzite and zincblende materials, in particular viewed along the
(111)-direction has been discussed in [357, 358].

The bulk modulus of the wurtzite crystal is given by

C Cpp) Cs3 — 2 C?
B (Ci1+ Cp)Cx3 EN (5.69)
Cii+Cin+2C3535—4C3

5.3.3 Biaxial Strain

In heteroepitaxy (cf. Sect. 12.2.6), a biaxial strain situation arises, i.e. layered material
is compressed (or expanded in the case of tensile strain) in the interface plane and
is expanded (compressed) in the perpendicular direction. Here, we assume that the
substrate is infinitely thick, i.e. that the interface remains planar. Substrate bending
is discussed in Sect. 5.3.5.

The simplest case is epitaxy on the (001) surface, i.e. e = e, = ¢. The component
e3 is found from the condition o3 = 0 (no forces in the z direction). All shear strains
are zero. For zincblende material it follows


http://dx.doi.org/10.1007/978-3-319-23880-7_12
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Fig. 5.24 Ratio —e /¢ for GaAs under symmetric biaxial strain. The angle 6 denotes the surface
normal in the (110)-azimuth (¢ = 0: [001], & = 90°: [110], the maximum of €, /¢ is for [111]).
(b) Is a three-dimensional visualization

C 2C
61¢00=€3=—C—i(61+€2)=— Clz

€. (570)

In Fig.5.24 the ratio € /¢ is depicted for GaAs and various crystal orientations;
the formulas for other orientations are more involved [363]:

2C1p — Cy/2

110

€ =———— € 5.71

+ Ci1+ Co/2 : 67D
2C1, —2Cy/3

= _2Cn — 26/ . (5.72)
Cn +2Cy/3

For wurtzite crystals and pseudomorphic growth along [00.1] the strain along the
epitaxial direction (c-axis) is given by

Ci3 2Cy3
€L = Can (e1 +er) = C

€a> (5.73)
33

where €| = e, = (¢ — ¢g)/co and €, = (a — ap)/ay. For symmetric biaxial in-plane
strain, the ratio €, /¢ is shown in Fig.5.25 for GaN and varying angle 6 of the c-
axis against the epitaxy direction. For the growth of wurtzite on wurtzite for 6 # 0,
the epitaxial strain is actually asymmetric in the interface plane. For = 90°, e.g.
the epitaxy on m-plane substrate (cmp. Fig.3.33) (c-axis lies in-plane), the in-plane
strains are e; = €, and e, = ¢.. For 8 = 90°, we find

_Cna+t+Cie

(5.74)
Cn

€] =


http://dx.doi.org/10.1007/978-3-319-23880-7_3

5.3 Elasticity 139

@

-0.50
-0.55
-0.60

-0.65

e g
L Il

-0.70

-0.75

-0.80

0 (deg)

Fig. 5.25 Ratio —e /¢ for GaN under symmetric biaxial strain. In (a) ¢ denotes the angle of
the c-axis with respect to the surface normal, (b) is a three-dimensional visualization, showing the
in-plane isotropy

Fig. 5.26 Strains €. (dashed T T T T T T T -
lines) and € (solid lines) for 0.61- Mg, .Zn .O/ZnO L7
Alg.17Gag.g3N/GaN (blue) a — e A
and Mg 3Gap 70/Zn0O (red)
as a function of the interface
tilt angle 6 with respect to
[00.1]

& (%)

The situation for pseudomorphic growth in the (Al,Ga,In)N system has been dis-
cussed for various interface orientations in [364] (cmp. also Fig.15.14). The strains €
along the epitaxy direction and ¢, along the c-direction are depicted for Aly 17Gag g3
N/GaN and Mg 3Gay70/Zn0O in Fig. 5.26. The different behavior of the nitride and
the oxide system, e.g. regarding the sign change of ¢, is due to the fact that ¢, is
negative (positive) for Al,Ga;_,N/GaN (Mg, Ga;_,0/Zn0O) (e, < O for both cases)
[365].

5.3.4 Three-Dimensional Strain

The strain distribution in two-dimensional or three-dimensional objects such as quan-
tum wires and dots (see also Sect. 14) is more complicated.


http://dx.doi.org/10.1007/978-3-319-23880-7_15
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A simple analytical solution for the problem of a strained inclusion is only possible
for isotropic material parameters [366].

The solution for a sphere can be extended to yield the strain distribution of an
inclusion of arbitrary shape. This scheme applies only for isotropic materials and
identical elastic properties of the inclusion and the surrounding matrix. The solution
will be given in terms of a surface integral of the boundary of the inclusion, which is
fairly easy to handle. Several disconnected inclusions can be treated by a sequence
of surface integrals.

The strain distribution for the inner and outer parts of a sphere with radius py is
given (in spherical coordinates) by

A T
fn = L T n (5.75)
op 3 11—y 06 (033
w2 1+v(m) " u
o0 3910 (?) = 26 = =2 70

where p denotes the radius, v the Poisson ratio, and ¢ the relative lattice mismatch
of the inclusion and the matrix. The radial displacements are

: 2 1-2
u' = =€ Y (5.77)
P T30 ,P
N (5.78)
p 30—y o '

Dividing the displacement by the sphere’s volume, we obtain the displacement
per unit volume of the inclusion. From the displacement we can derive the stress a?j
per unit volume.

Ulol:i Y60 2xi2—xj—xk (579)
4 1—v p°
31 7Y i X
o0 =2 0Ny (5.80)
24 1—v P

where i, j and k are pairwise unequal indices. Due to the linear superposition of
stresses, the stress distribution Ui‘j/. for the arbitrary inclusion of volume V can be
obtained by integrating over V

of = / o0 (r = 1) d°r. (5.81)
1%

The strains can be calculated from the stresses.

When ¢ is constant within V, the volume integral can be readily transformed
into an integral over the surface OV of V using Gauss’ theorem. With the ‘vector
potentials” A;; we fulfill divA;; = o;;.
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Fig. 5.27 Strain Eo €y
components in an InAs (a) 0.088 (b)

pyramid (quantum dot with
{101} faces), embedded in
GaAs. The cross section is e 0 0
through the center of the
pyramid. The lattice

mismatch between InAs and -0.088
GaAs amounts to ~ —7 %. € €
Reprinted with permission e 0.037 - 0.109
from [367], © 1995 APS () (d)
J/ \‘. -G ~ 0
-0.037 -0.109
1 Y €y X;€;
A = —— hed 5.82
! dr 1—v p? (5:82)
11 Ye xie;+x;¢€
Ajj=—c—— I (5.83)

g 247 1 —v 0

Equation (5.83) is valid for the case i # j. e; is the unit vector in the i th direction.
However, special care must be taken at the singularity r = ry if ry lies within V
because the stress within the ‘d-inclusion’ is not singular (in contrast to the electro-
static analog of a §-charge). Thus, we find

Y
ol (rp) = f A dS + 6; — / 5(r — o) dr. (5.84)
av l-v )y

As an example, we show in Fig.5.27 the numerically calculated strain compo-
nents [367] (taking into account the different elastic properties of the dot and matrix
materials) in the cross section of a pyramidal InAs quantum dot in a GaAs matrix on
top of a two-dimensional InAs layer. The strain component €, is positive in the 2D
layer, as expected from (5.70). However, in the pyramid €., exhibits a complicated
dependence and even takes negative values at the apex.

5.3.5 Substrate Bending

If a lattice-mismatched layer is pseudomorphically grown on top of a substrate it
suffers biaxial strain. For finite substrate thickness part of the strain will relax via
substrate bending. If the substrate is circular, a spherical cap is formed. If the lattice
constant of the film is larger (smaller) than that of the substrate, the film is under
compressive (tensile) strain and the curvature is convex (concave) with respect to
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(b) &

(a) compressive tensile

— ) —

Fig.5.28 (a) Schematic bending of a film/substrate system for compressive (left) and tensile (right)
film strain. (b) Schematic deformation of curved film of thickness d. The lattice constants at the
inner and outer surface are g; and a,, respectively

the outward normal given by the growth direction (Fig.5.28a). Substrate bending
can also be induced by a mismatch of the thermal expansion coefficients oy and
oy, of the film and substrate, respectively. If a film/substrate system is flat at a given
temperature, e.g. growth temperature, a decrease of temperature, e.g. during cooling,
will lead to compressive (tensile) strain if o, is smaller (larger) than o .

In a curved structure, the lattice constant in the tangential direction increases from
a! at the inner surface (r = R = k Dto a! at the outer surface (r = R + d). Thus,
the tangential lattice constant varies with the radial position

a'(ry=a (1+rk), (5.85)

where d is the layer thickness (Fig.5.28b). Therefore a, = a;(1 4+ d/R). We note
that (5.85) holds in all layers of a heterostructure, i.e. the film and the substrate.

The lattice constant in the radial direction a’, however, depends on the lattice
constant ag of the local material and is calculated from the biaxial strain condition,
such as (5.70). The in-plane strain is ¢; = (a' — ag)/ao (we assume a spherical
cap with € = €g9 = €44). For an isotropic material we find a" = ag (1 + €, ) with
€, = —2ve;/(1 — v). The local strain energy density U is given by

Y

U=——¢
1—v

(5.86)

The total strain energy per unit area U’ of a system of two layers with lattice
constants aj, a;, Young’s moduli Y}, Y, and thickness d;, d, (we assume the same
Poisson constant v in both layers) is

d, d
U’ =/ U, dr+/ U, dr. (5.87)
0 d

The total strain energy needs to be minimized with respect to a; and R in order to
find the equilibrium curvature . We find
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Fig. 5.29 Curvature of the epitaxy
middle of a Si wafer during 1100 T T T
GaN growth on an AIN

interlayer grown at low 1090
temperatures on GaN and
subsequent cooling. During
growth the decrease in
curvature indicates convex
bowing due to compressive
stress; during cooling the
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adi Y +aViYo+aldy Yy
o =ajaydids [—a2d1 (2dy + 3dy) + al(6d12 +9d,d> + 4d22)] .

For a; = a; (1 + €) we develop & to first order of € and find (x = Y»/Y)) [368,
369]
6xdi dy (d1 + d»)

R = €.
di +4xdidy +6xd}d: +4xd d; + x2dy

(5.89)

In the case of a substrate (ds) with a thin epitaxial layer (df < ds), the radius of
curvature is approximately (Stoney’s formula [370])

dr Y

K=06€— —.
‘a2,

(5.90)

Conversely, if the radius of curvature is measured [371], e.g. optically, the film
curvature (and through models also the film strain) can be determined during epitaxy
as depicted in Fig.5.29.

5.3.6 Scrolling

In some cases cylindrically scrolled structures are important, e.g. for thin-film flexible
electronics, nanotubes, nanoscrolls or nanohelixes. The scrolling of thin layers must
be avoided by suitable strain management for thin layers that are lifted off from
their substrate for transfer to another flat substrate. If the film remains attached to
its substrate, a scroll can be fabricated as schematically shown in Fig.5.30. Such
structures were first reported in [373], a review can be found in [374]. The shape of
such scroll is investigated in [375] without a priori assumptions on its shape.



144 5 Mechanical Properties

(@) (b) (c)

Fig. 5.30 Schematic representation of nanoscroll formation. (a) Strained heterostructure
(blue/green) that is planar due to large substrate thickness, (b) starting removal of sacrificial layer
(black), (c) release of thin film into nanoscroll geometry

If bending strain occurs only in one of the tangential directions, the energy density
is given by
U= @+ tmeae) (5.9
_2(1_1/2) € Ey VEr€y), .

where ¢, is the strain in the unbent direction (cylinder axis) as shown in Fig.5.31a.
For a strained heterostructure made up from two layers the curvature is given by
(calculated analogous to (5.89), x = Y»/Y; [369])

6(1+v)xdi dy(d + dy)
=5 3 2 2 3 2 4
[ +axdidy +6xdids +4xdid; + x*d;

€, (5.92)

which differs from (5.89) only by the factor 1 + v in the nominator.
For cubic material and a (001) surface the energy is given as

Uioo = —=————[C11 (€ + &+ Cna+e))] (5.93)

Fig.5.31 (a) Schematic representation of a cylindrically rolled sheet with radial direction r, tangen-
tial direction ¢ and direction along the cylinder axis y. (b) SEM images of multiwall InGaAs/GaAs
nanoscroll rolled up over about 50 wm. Part (b) from [376]
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Fig. 5.32 (a) Strain energy (in units of the strain energy of the flat pseudomorphic layers) of a
scroll of a 4-layer SiGe structure (Sip.3Geg.7, Sip.6Geo.4 and Sip gGep 2, each 3nm thick and a 1-nm
Si cap) as a function of radius for winding directions along (100) and (110). Top (bottom) curves
without (with complete) strain relaxation along the cylinder axis. Vertical lines indicate the positions
of the respective energy minima [369]. (b) SEM image of curled InGaAs/GaAs nanoscroll rolled
¢ = 14° off (100). The stripe from which the film was rolled off is indicated by white dashed lines.
Part (b) from [379]

for a scrolling direction along (100). When the (001)-oriented film winds up along a
direction (hk0) having an angle ¢ with the [100] direction (¢ = 45° for (110)), the
strain energy is given by (Cy is given by (5.62))

2
Uy = Usgo + Co (Et . 6y) sin?(26). (5.94)

The strain energy versus bending radius (= ~~') is shown for a SiGe nanoscroll in
Fig.5.32. First, the relaxation along the cylinder axis plays a minor role. The smallest
strain energy is reached for scrolling along (100), also yielding the smaller bending
radius (larger curvature). Therefore, the film preferentially scrolls along (100). This
explains the observed ‘curl’ behavior of scrolls winding up for ¢ # 0 [373, 377]
(Fig.5.32b). The effect of surface strain needs to be included to yield improved
quantitative agreement with experimental values of x (e, d) [378].

5.4 Plasticity

5.4.1 Critical Thickness

Strained epitaxial films are called pseudomorphic when they do not contain defects
and the strain relaxes elastically, e.g. by tetragonal distortion. When the layer thick-
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(a)

x=0.1

(b)

Fig. 5.33 (a) Series of cross-sectional TEM images of 100-nm thick Ge, Sij—, layers on Si(001)
with different ternary compositions x = 0.1, 0.2, 0.5, and 1.0. The growth temperature was 550°C.
The transition from commensurate to incommensurate growth is obvious. Adapted from [380]. (b)
Plan view (022) TEM bright field image of a 250-nm Geg 15Si0.g5 layer on Si (001), annealed
at about 700°C. The arrow denotes the position of a dislocation loop. Reprinted with permission
from [381], © 1989 AVS

ness increases, however, strain energy is accumulated that will lead at some point
to plastic relaxation via the formation of defects. In many cases, a grid of misfit
dislocations forms at the interface (Figs.4.18 and 5.33).

In Fig.5.34 the strain around misfit dislocations at a GaAs/CdTe heterointerface,
as calculated from a TEM image (Fig.4.14), is shown.

i)

e e e

Fig. 5.34 Components (i“‘ o ) of the strain tensor (with respect to the GaAs lattice constant) of
X 2z

the dislocation array shown in Fig.4.14, red/blue: positive/negative value, white: zero. From [286]


http://dx.doi.org/10.1007/978-3-319-23880-7_4
http://dx.doi.org/10.1007/978-3-319-23880-7_4
http://dx.doi.org/10.1007/978-3-319-23880-7_4
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@ (b) . C

Fig. 5.35 Schematic formation of misfit dislocations by (a) elongation of a grown-in threading
dislocation and (b) by the nucleation and growth of dislocation half-loops. (a) depicts a threading
dislocation. Initially, for thickness /| the interface is coherent ‘a’, for larger thickness /1, the interface
is critical and the force of the interface on the dislocation is equal to the tension in the dislocation
line, ‘b’. For larger thickness, e.g. /13, the dislocation line is elongated in the plane of the interface,
‘c’. In (b) ‘a’ denotes a subcritical dislocation half-loop, ‘b’ depicts a half-loop being stable under
the misfit stress and for ‘c’ the loop has grown under the misfit stress into a misfit dislocation line
along the interface

The average distance p of the dislocations is related to the misfit f = (a1 —a»)/a»
and the edge component b, of the Burger’s vector (for a 60° dislocation b, = ag/~/8)

by

f

Two mechanisms have been proposed for the formation of misfit dislocations
(Fig.5.35), the elongation of a grown-in threading dislocation [382] and the nucle-
ation and growth of dislocation half-loops [383]. For the modeling of such systems a
mechanical approach based on the forces on dislocations [382] or an energy consider-
ation based on the minimum strain energy necessary for defect formation [383—-386]
can be followed. Both approaches have been shown to be equivalent [387] (if a peri-
odic array of dislocations is considered). In [388] it was pointed out that the finite
speed of plastic flow also has to be considered to explain experimental data. Tempera-
ture affects the observed critical thickness and a kinetic model is needed. Another way
of introducing dislocations is the plastic relaxation at the edge of coherent strained
islands (cmp. Fig. 14.26).

In the following, isotropic materials and identical elastic constants of substrate
and thin film are assumed, following [387]. The interface plane is the (x,y)-plane,
the growth direction is z. The energy Eq4 of a periodic dislocation array with period
p and Burgers vector b = (b, by, b3) is

» (5.95)

Y
Eg=—— @
d 877(1—1/2)5

52

p |1 —exp(—4mh/p)
[bf+(1—u)b§+b§]1n([ ra ])
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2 o\ 4mh exp(—4mh/p)
=) S T A/ )
2
_%(bf+b§) (@) xp(—4mh/p)
P [1 —exp(—47h/p)]
2h  exp(—27mh/p)

b ,
e p 1 —exp(—27h/p)

(5.96)

where £ is the film thickness and g denotes the cutoff length for the dislocation core,
taken as ¢ = b. The misfit strain including the relaxation due to dislocations with
Burger’s vectors b and b in the two orthogonal interface (110) directions n and fi. We
chose the coordinate system such thatn = (1, 0, 0) and fi = (0, 1, 0) (the z direction
remains). With respect to these axes the Burger’s vectors are (:tl, %, \/%) ao/ V2.
The misfit strain e?} is reduced due to the dislocation formation to the ‘relaxed’ misfit
strain €; i with

binj—i—bjn,- + b,‘ﬁj +bjﬁi

, 5.97
2 2 (5.97)

with an associated stress o;;. The strain energy E; of the layer due to the relaxed
misfit is then

1
ES = Eho’,‘j thj (598)
Y(l
lim E, =25 LT 2 (5.99)
p—>00 1—v

The total strain energy E is given by

pE = 2Eq +2E. + p E, (5.100)
E. = lim E, (5.101)
p—>00

with the core energy E.. of the dislocation that needs to be calculated with an atomistic
model (not considered further here). This energy is shown in Fig. 5.36a for the mater-
ial parameters of Gey 1 Sig.9/Si(001) (misfit —0.4%) for various layer thicknesses as a
function of 1/ p. This plot looks similar to that for a first-order phase transition (with
1/p as the order parameter). For a certain critical thickness & the energy of the
layer without any dislocation and the layer with a particular dislocation density p;
are identical (E — Eo, = 0) and additionally 0E /0p|,=,, = 0. However, between
p — oo and p = pg there is an energy barrier. The critical thickness 4., is reached
when

OE/0p |p—oo =0, (5.102)
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Fig. 5.36 (a) Theoretical calculation for the strain energy versus inverse dislocation density for
various thicknesses of Geg 1Sip9 layers on Si (001). The ordinate is b/2p, b/2 being the edge
component of the Burgers vector and p being the dislocation spacing. The abscissa is the strain
energy E scaled with E (5.101). (b) Critical thickness for Ge, Sij—, layers on Si (001). The solid
line is theory (h¢y) according to (5.103). Data points are from [389] (squares, growth temperature
of 750°C) and from [380] (triangles for growth temperature of 550°C)

i.e. the energy decreases monotonically for increasing dislocation density up to
the global energy minimum at a certain equilibrium dislocation spacing p,. Equa-
tion (5.102) leads to the following implicit equation for the determination of A.;:

_ b[-16+3b> + 8 (—4 + 1) In (2her/q)]

h
< 128 fr (1 +v)

, (5.103)

with the length of the Burgers vector b = ag/+/2.

The theoretical dependence of A, for Ge, Si;_,/Si(001) with varying composition
is shown in Fig.5.36b together with experimental data. The critical thickness for a
fairly high growth temperature is much closer to the energetic equilibrium than that
deposited at lower temperature. This shows that there are kinetic limitations for the
system to reach the mechanical equilibrium state. Also, the experimental determi-
nation of the critical thickness is affected by finite resolution for large dislocation
spacing, leading generally to an overestimate of /..

In zincblende materials two types of dislocations are possible, « and (3, with
Ga- and As-based cores, respectively. They have [110] and [110] line directions for
a compressively strained interface. The « dislocation has the larger glide velocity.
Therefore, strain relaxation can be anisotropic with regard to the (110) directions for
zincblende material, e.g. InGaAs/GaAs [390, 391].
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5.4.2 Cleaving

The cleavage planes of the diamond structure are {111} planes (Fig.5.37a). It is
easiest to break the bonds connecting the double layers in the (111) directions.

The cleavage planes of the zincblende structure are {110} planes (Fig.5.37b).
Due to the ionic character, breaking the bonds connecting the double layers in
the (111) directions would leave charged surfaces, which is energetically unfavor-
able. The {100} planes contain only one sort of atom and would also leave highly
charged surfaces. The {110} planes contain equal amounts of A and B atoms and
are neutral. Ideally, the cleaving plane is atomically flat (Fig. 5.38a) or exhibits large
mono-atomically flat terraces. However, certain dopants in high concentrations, e.g.
GaAs:Te, can induce a rough surface due to lattice distortion [392].

The natural cleavage planes of wurtzite (GaN) are {11.0} (m-type) planes [393].

Fig. 5.38 Scanning tunneling microscopy images of a cleaved GaAs (110) surface with (a) good
cleave and (b) bad cleave with defects dominating. Adapted from [394]
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5.4.3 Wafer Breakage

The thickness and thus strength of wafers for semiconductor production (cmp.
Sect. 12.2.2) is an important issue. The wafer should be as thin as possible for saving
expensive materials but thick enough to avoid loss due to stress during handling, in
particular during the later steps in a process since the value of a wafer increases with
number of process steps it has undergone.

Reasons for wafer breakage is the mechanical handling (pick, place, trans-
port) [395], stress loads due to processing (dielectrics, metals, asymmetric structures)
and stress during processing for example due to thermal loads in annealing or depo-
sition steps and cutting/dicing. The problem is less important in microelectronics
but especially severe in photovoltaics (PV) industry, handling large total areas; on
the other hand the profit loss per broken wafer is much higher in microelectronics
industry. An additional problem poses the grain structure of multicrystalline silicon
wafers used for PV [396] and the effect of surface cracks and irregularities at wafer
edges and corners. Just going from a wafer thickness of 270 to 250 pm can more than
double the breakage rate at certain process steps [397]. The minimum strength of a
wafer with surface cracks is about 100 MPa, while the strength of wafers with cracks
at the edge can reach rather low values around 20 MPa. Also the careful shaping of
the wafer edge is important to avoid breakage [398].


http://dx.doi.org/10.1007/978-3-319-23880-7_12

Chapter 6
Band Structure

Silicon is a metal.
A.H. Wilson, 1931 [67]

Abstract A treatment of electron states in one-dimensional potentials introduces
into the concepts of band gap and effective mass. The band structures of various
semiconductors are reviewed. The systematics of band gaps, symmetry considera-
tions, band gaps in alloys, amorphous semiconductors and the effect of strain and
temperature are discussed. Electron and hole dispersions are treated and the density
of states in various dimensions is derived.

6.1 Introduction

Valence electrons that move in the crystals feel a periodic potential
Ur)=Ur+R) 6.1)

for all vectors R of the direct lattice. The potential' is due to the effect of the ion cores
and all other electrons. Thus a serious many-body problem is present. In principle,
the band structure can be calculated from the periodic arrangements of the atoms
and their atomic order number. We note that for some problems, e.g. the design
of optimal solar cells, a certain band structure is known to be ideal and a periodic
atomic arrangement, i.e. a material, needs to be found that generates the optimal
band structure. This problem is called the inverse band structure problem.

'In this book the form of the potential will never be explicitly given.

© Springer International Publishing Switzerland 2016 153
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
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6.2 Electrons in a Periodic Potential

6.2.1 Bloch’s Theorem

First, we will deduce some general conclusions about the structure of the solution as
a consequence of the periodicity of the potential. We first investigate the solution of
a Schrodinger equation of the type

2
HW(r) = [—Z}i—mvz + U(r)i| U(r) = EW¥(r) (6.2)

for an electron. U will be periodic with the lattice, i.e. it will obey (6.1).
Bloch’s theorem says that the eigenstates ¥ of a one-particle Hamiltonian as in
(6.2) can be written as the product of plane waves and a lattice-periodic function, i.e.

Yk(r) = A exp(iKr) i (r). (6.3)

The normalization constant A is often omitted. If u,(r) is normalized, A =
1/4/V, where V is the integration volume. The wavefunction is indexed with a
quantum number n and the wavevector k. The key is that the function u,k(r), the
so-called Bloch function, is periodic with the lattice, i.e.

Upk (l‘) = Upk (l‘ + R) (64)

for all vectors R of the direct lattice. The proof is simple in one dimension and more
involved in three dimensions with possibly degenerate wavefunctions, see [399].

If E,x is an energy eigenvalue, then E,x ¢ is also an eigenvalue for all vectors G
of the reciprocal lattice, i.e.

E,(k) = E, k+G). (6.5)

Thus the energy values are periodic in reciprocal space. The proof is simple,
since the wavefunction (for k + G) exp (i(k + G)r) u,k+c)(r) is for u,xk+c)(r) =
exp (—iGr) u,k(r) obviously an eigenfunction to k.

A band structure along one k-direction can be displayed in various zone schemes
as depicted in Fig. 6.1. The most frequently used scheme is the reduced zone scheme.
In three dimensions, the band structure is typically shown along particular paths in
the Brillouin zone, as depicted, e.g., in Fig. 6.2c.
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Fig. 6.2 Dispersion of free electrons (empty lattice calculation, U = 0, shown in the first Brillouin
zone) in (a) a one-dimensional lattice (G = n 27 /a), (b) a simple cubic lattice (G = (h, k, 1) 27 /a)
and (c) in a fcc lattice. The energy is measured in units of the energy at the X-point, Ex =
(R?/2m)(27/a)?. The shaded circle in (¢) represents the region where the band gap develops for
finite periodic potential U # 0

6.2.2 Free-Electron Dispersion

If the entire wavefunction (from (6.3)) obeys the Schrédinger equation (6.2), the
Bloch function u,y fulfills the equation

1
[% (p+hk)* + U(r)} unk () = Epk unk (1), (6.6)

which is easy to see from p = —iAV.
First, we discuss the simplest case of a periodic potential, U = 0. This calculation
is also called the empty lattice calculation. The solution of (6.6) is then just constant,
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ie. ux = c¢ and Y (r) = cexp (ikr). The dispersion of the free electron is then
given by
hZ
E(k) = 7 K2, (6.7)

m

where K is an arbitrary vector in the reciprocal space. k' is a vector from the Brillouin
zone such that k = k' + G with a suitable reciprocal lattice vector G. Because of
(6.5) the dispersion relation can be written also as

hz ’ 2
E(k) = m k' +G)7, (6.8)

where k' denotes a vector from the Brillouin zone. Thus, many branches of the
dispersion relation arise from using various reciprocal lattice vectors in (6.8).

The resulting dispersion relation for the free electron is shown in Fig. 6.2a for a
one-dimensional system (k’ and G are parallel) and in Fig. 6.2b for the simple cubic
lattice (in the so-called reduced zone scheme). In Fig. 6.2c, the (same) dispersion of
the free electron is shown for the fcc lattice.

6.2.3 Non-Vanishing Potential

Now the effect of a non-vanishing periodic potential on electron motion will be dis-
cussed. A simple, analytically solvable model that visualizes the effect of a periodic
potential on the dispersion relation of the electrons and the formation of a (one-
dimensional) band structure with gaps is the Kronig—Penney model [64] which is
discussed in the Appendix F.

General Wave Equation

In this section, we will discuss the solution of a general wave equation for electrons
in a periodic potential. The solution is investigated particularly at the zone boundary.
The potential U is periodic with the lattice (6.1). It can be represented as a Fourier
series with the reciprocal lattice vectors (lattice vector expansion, cf. (3.18)):

Ur)=> U exp(iGr). (6.9)
G

Since U is areal function, U_ = U¢. The deeper reason for the success of such
an approach is that for typical crystal potentials, the Fourier coefficients decrease
rapidly with increasing G, e.g. for the unscreened Coulomb potential Ug o< 1/G>.
The wavefunction is expressed as a Fourier series (or integral) over all allowed
(Bloch) wavevectors K,
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W (r) = ZCK exp(iKr). (6.10)
K

The kinetic and potential energy terms in the Schrédinger equation (6.6) are

Vg = —ZKZ Ck exp iKr) (6.11a)
K
U¥ => > UsCk exp(i(G+K)r). (6.11b)
G K

With K’ = K + G, (6.11b) can be rewritten as

U¥ =>" > UgCkc exp (iK'r). (6.12)
G K

Now, the Schrodinger equation can be written as an (infinite) system of algebraic
equations:

Ok = B) Ck + D Ug Ck—¢ =0, (6.13)
G

with Ak = R? K2/ (2m).
Solution for One Fourier Coefficient

The simplest (non-trivial) potential energy has only one important Fourier coefficient
U for the shortest reciprocal lattice vector G. Also, we have U_g = Ug. Thus, the
(one-dimensional) potential has the form U (x) = 2 U cos(Gx). Then the equation
system (6.13) has only two equations for Cx and Ck_g, leading to the condition

Mk — E U _
U M- E‘ =0. (6.14)
‘We find two solutions
Ak + Ak Ak — kg )’
E. = K+2KGj:\/(K 2KG) + U2 6.15)

Solution at the Zone Boundary

We consider the solution at the zone boundary, i.e. at K = G/2. The kinetic energy
is then the same for K = +G/2, i.e. \x = Ak—g = (h?/2m) (G?/4) = \. The
determinant (6.14) reads then

A\—E)Y—-U*=0. (6.16)
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Fig. 6.3 Periodic potential T T T
U (one-dimensional cosine,
black) and the squares of the g2
wavefunctions ¥_ (red) and g2
V. (blue) for the wavevector *
at the zone boundary,
K=G/2=m/a

Thus the energy values at the zone boundary are

2 2
Eiz)\:tUzh—G—:I:U. (6.17)

2m 4
At the zone boundary, a splitting of the size E; — E_ = 2U occurs. The center
of the energy gap is given by the energy Ak of the free-electron dispersion. The
ratio of the coefficients is Cg/2/C_g2 = F1. The ‘—’ solution of (6.17) (lower
energy) is a standing cosine wave (¥_), the ‘4’ solution (¥,) is a standing sine
wave as visualized in Fig. 6.3. For the lower-energy (binding) state the electrons are
localized at the potential minima, i.e. at the atoms, for the upper state (antibinding)
the electrons are localized between the atoms. Both wavefunctions have the same
periodicity since they belong to the same wavevector K = G/2. We note that the
periodicity of ¥ is 2a, while the periodicity of ¥? is equal to the lattice constant a.

Gap States

For energies within the gap, solutions with a complex wavevector K = G/2 +iq
exist. Solving (6.16) results (in terms of g> = (h*/2m) ¢?) to

Ei=A—qg" £/ -4xq?+ U2 (6.18)

For energies E = A + € with —U < e < U, the complex part of the wavevector is
given by

g7 = —(e+2)\) + Va4 (e + )\) + U2 (6.19)

The maximum value of ¢ is in the center of the band gap (e = 0); for |U| < 2 A, it
is q/rznax ~ U?/(4)\). Atthe band edges (e = £U), g = 0. g is the characteristic length
of an exponentially decaying wave function. Such solutions occur at surfaces or
interfaces. For larger band gaps, the localization length is smaller (larger ¢) (Fig. 6.4).
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Fig. 6.4 Complex band 0.25 - - - - - T
structure g’(€) according to L

(6.19) for two different
values of \/U

Complex wavevector q'

e/ U

Solution in the Vicinity of the Zone Boundary

For K in the vicinity of the zone boundary the solutions (6.15) can be developed.
Therefore, we use the (small) distance from the zone boundary K = K — G/2. With
A = (h?/2m) (G*/4) we rewrite still exactly (6.15):

_ (1 _ K2 12
Ei(K) = — (ZG2 + K2) + (4>\ + U2) ) (6.20)

- 2m 2m

For small K with % & |U|, the energy is then approximately given by

o R2K?2 2\
E: (K)S AU+ s+ ) (6.21)

Thus the energy dispersion in the vicinity of the zone boundary is parabolic.
The lower state has a negative curvature, the upper state a positive curvature. The

curvature is :

= —%:I: —_—,
"Txayu Mo

*

m (6.22)

and will be later related to the effective mass. The approximation in (6.22) is valid for
|U| < 2X. We note that in our simple model m* increases linearly with increasing
band gap 2U (see Fig.6.28 for experimental data).

6.2.4 Kramer’s Degeneracy

E, (k) is the dispersion in a band. The time-reversal symmetry (Kramer’s degeneracy)
implies
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Fig. 6.5 Theoretical
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En (k) = Ey (—k), (6.23)

where the arrow refers to the direction of the electron spin. If the crystal is symmetric
under inversion, we have additionally

Enr(K) = Epp(—K). (6.24)
With both time reversal and inversion symmetry the band structure fulfills
En (k) = Eq (k). (6.25)

The inversion symmetry is particularly important for the spin-orbit interaction. In
the absence of inversion symmetry, e.g. in (non-centrosymmetric) zincblende crys-
tals (Fig.3.16b) or in heterostructures (Fig. 12.34b), a spin splitting, e.g. Ens (K) #
E,;(k), is present. It can be thought of as provoked by an effective magnetic field.
Bulk inversion asymmetry (BIA) leads to the Dresselhaus spin splitting [400, 401]
that is shown in Fig. 6.5 for GaAs (cmp. Fig. 6.7a). The spin splitting due to structural
inversion asymmetry (SIA) is described by the Bychkov-Rashba Hamiltonian [402,
403]. A review on these topics can be found in [404].

6.2.5 Symmetry Considerations

In general the symmetry of the lattice is a symmetry of the system’s Hamiltonian
and thus transfers into the electronic (and other) properties of the semiconductor.
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The means to formulate this mathematically is group theory. At a given reciprocal
lattice point, the wave function must fulfill the given spatial symmetry. Additional
symmetry due to spin and spin-orbit interaction enters via the double-group scheme.
This problem has been treated for the 32 point groups (cmp. Table B.2) in [405]
and in [406] particularly for the pc, fcc, bee and hep lattices. A detailed treatment
for the zincblende structure has been given in [407]. The symmetry at particular
lattice points is denoted by the irreducible representations of the symmetry group,
e.g. by the I';-symbols used in Figs. 6.6, 6.7 or also Fig.6.38. As an example base
functions with the symmetry of the irreducible representations of tetraeder group

(@) (b) 4

Energy (eV)
Energy (eV)

® &»® A M O N A~ O

-
—

X UK r

Fig. 6.6 Band structure of (a) silicon (indirect) and (b) germanium (indirect). In Si, the minima
of the conduction band are in the (100) direction, for germanium in the (111) direction. Adapted
from [146], based on [409]
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Fig. 6.7 Band structure of (a) GaAs (direct) and (b) GaP (indirect). For GaAs the minimum of the
conduction band is at I”, for GaP in the (100) direction. Adapted from [146], based on [409]
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Energy (eV)
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Fig. 6.8 Band structure of GaN (direct) in zincblende (zb) modification (left) and wurtzite (w)
modification (right), both displayed in the wurtzite Brillouin zone to facilitate comparison

Table 6.1 Representations of the tetraeder group (zincblende structure) in molecular, BSW [408]
and Koster [405] notation and corresponding base functions (c.p.: cyclic permutations)

Molecular BSW Koster Base functions

A I I xXyz

Ay Ip) Ip) (2 =22 +cp.

E I r 222 = (P 4y, 2 =)
T, Is Iy X, ¥,z

T, Is I} z (x2 — y2) and c.p.

are listed in Table 6.1. With the knowledge of the wave functions at the points of
high symmetry, it is possible to deduce the general nature of the energy bands in the
vicinity of such symmetry points.

6.3 Band Structures of Selected Semiconductors

In the following, the band structures of various important and prototype semicon-
ductors are discussed. The band below the energy gap is called the valence band; the
band above the gap is the conduction band. The band gap AE.,, mostly denoted as
E,, is the energy separation between the highest valence-band state and the lowest
conduction-band state. The maximum of the valence band is for most semiconductors
at the I” point.
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6.3.1 Silicon

For silicon, an elemental semiconductor, (Fig. 6.6a) the minimum of the conduction
band is located close to the X point at 0.857/a in the (100) direction. Thus, it is not
at the same point in k space as the top of the valence band. Such a band structure is
called indirect. Since there are six equivalent (100) directions, there are six equivalent
minima of the conduction band.

6.3.2 Germanium

Germanium, another elemental semiconductor, (Fig.6.6b) also has an indirect band
structure. The conduction minima are at the L point in the (111) direction. Due to
symmetry there are eight equivalent conduction-band minima.

6.3.3 GaAs

GaAs (Fig. 6.7a) is a compound semiconductor with a direct band gap since the top
of the valence band and the bottom of the conduction band are at the same position
in k space (at the I" point). The next highest (local) minimum in the conduction band
is close to the L point.

6.3.4 GaP

GaP (Fig.6.7b) is an indirect compound semiconductor. The conduction-band min-
ima are along the (100) directions.

6.3.5 GaN

GaN (Fig. 6.8) is a direct semiconductor that has wurtzite structure but can also occur
in the metastable cubic (zincblende) phase.

6.3.6 Lead Salts

The band gap of PbS (Fig.6.9), PbSe and PbTe is direct and located at the L point.
The lead chalcogenide system shows the anomaly that with increasing atomic weight
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Fig. 6.9 Calculated band
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the band gap does not decrease monotonically. At 300 K, the band gaps are 0.41, 0.27
and 0.31eV for PbS, PbSe and PbTe, respectively.

6.3.7 MgO, Zn0O, CdO

Cadmium oxide is a cubic semiconductor in the rocksalt structure. Due to symmetry
considerations, coupling (repulsion) of oxygen 2p- and cadmium 3d-orbitals does
not occur at the zone center in the rocksalt structure. Repulsion occurs though away
from the I"-point and therefore the valence band maximum is not located at the zone
center (Fig.6.10). Thus CdO is an indirect semiconductor. A similar effect would
occur in rs-ZnO due to zinc 3d orbitals; however, ZnO has wurtzite structure for

Fig. 6.10 Calculated e /

indirect band structure of 12 \ \/ \‘\
CdO. The rop of the valence P b = / A
band is at £ = 0. Adapted or Cdo W *
from [412] 8

Energy (eV)
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which p—d coupling at the I"-point is allowed; thus ZnO is direct. In MgO, Mg of
course only possesses populated s- and p-orbitals and no such repulsion is present;
thus MgO even with its rocksalt structure is also direct [411].

6.3.8 Chalcopyrites

The experimental band gaps of a number of chalcopyrite semiconductors are listed
in Table 6.2. The band structures of CuAlS,, CuAlSe;, and CuGaSe, are compared
in Fig.6.11.

Table 6.2 Band gaps of various chalcopyrite semiconductors

Material Eg (eV) Eg (eV) Eg (eV)
CuAlS; 35 CuGaS; 2.5 CulnS; 1.53
CuAlSe; 2.71 CuGaSe, 1.7 CulnSe; 1.0
CuAlTe, 2.06 CuGaTe, 1.23 CulnTe; 1.0-1.15
AgAIS; 3.13 AgGa$S; 2.55 AgInS; 1.87
AgAlSe, 2.55 AgGaSe; 1.83 AglInSe; 1.24
AgAlTe, 22 AgGaTe; 1.1-1.3 AglnTe; 1.0
ZnSiP; 2.96 ZnGeP, 2.34 ZnSnP, 1.66
7ZnSiAsy 2.12 ZnGeAs) 1.15 ZnSnAs; 0.73
CdSiP; 2.45 CdGeP, 1.72 CdSnP; 1.17
CdSiAs; 1.55 CdGeAs; 0.57 CdSnAs; 0.26

CuAlS, CuGaSe,
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Fig. 6.11 Calculated band structures of CuAlS;, CuAlSe,, and CuGaSe;. The absolute values of
the gap energies are incorrect due to LDA calculation. Adapted from [413]
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Fig. 6.12 Calculated (within LDA) band structures of ZnGeN; and its related III-V compound
GaN, both displayed in the chalcopyrite (orthorhombic) Brillouin zone to facilitate comparison.
Adapted from [414]

In Fig. 6.12, the theoretical band structure of GaN and its closest related chalcopy-
rite ZnGeN, are compared, both shown in the chalcopyrite (orthorhombic) Brillouin
zone. The band gap of ZnGeN; is smaller than that of GaN and the difference of
0.4eV is fairly well reproduced by the calculation® (giving 0.5eV).

6.3.9 Spinels

The band structure of spinels (in particular CdIn,S4) has been discussed in [415],
the band structure of ZnM;,0O, has been calculated in [412] for (M = Co, Rh, Ir)
(Fig.6.13) and in [416] for (M = Al, Ga, In).

6.3.10 Delafossites

In Fig. 6.14, the theoretical band structures of the delafossites CuAlO,, CuGaO,, and
CulnO, are shown. The maximum of the valence band is not at I” but near the F point.
The direct band gap at I" decreases for the sequence Al — Ga — In, similar to the
trend for AlAs, GaAs and InAs. The direct band gap at F and L, causing the optical
absorption edge, increases, however (experimental values are 3.5, 3.6, and 3.9eV).

2Due to the local density approximation (LDA) the absolute values of the band gaps are too small
by about 1eV.
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Fig. 6.13 Calculated band structures of ZnCo,04 and Znlr,O4. Adapted from [412]
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Fig. 6.14 Band structures of CuAlO,, CuGaO,, and CulnO,, calculated with LDA (underestimat-
ing the absolute value of the band gaps). The arrows denote the maximum of the valence band that
has been set to zero energy for each material. Adapted from [200]

6.3.11 Perovskites

The calculated band structure of BaTiOs in the tetragonal phase is shown in Fig. 6.15.
The minimum of the conduction band is at the I" point. The maximum of the valence
band is not at the I" point but at the M point. The band gap of the LDA? calculation
is too small (2.2eV) compared to the experimental value ~3.2eV.

3local density approximation.
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Energy (eV)

Fig. 6.15 Calculated energy band structure of BaTiO3 along the major symmetry directions. The
Fermi level (EF) is set at zero energy. Adapted from [417]

6.4 Systematics of Semiconductor Band Gaps

The trends with regard to the size of the band gap for elemental, III-V and I1I-VI
semiconductors can essentially be understood in terms of the bond strength and
ionicity. In Fig.6.16, the band gaps of many important semiconductors are shown
as a function of the lattice constant. For elemental semiconductors, the band gap
decreases with reduced bond strength, i.e. lattice constant (C— Si— Ge). A similar
trend exists both for the III-V and the II-VI semiconductors.
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Fig. 6.16 Band gaps as a function of the lattice constant for various elemental, III-V and II-VI
semiconductors. The lattice constant of wurtzite semiconductors has been recalculated for a cubic
cell
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For the same lattice constant, the band gap increases with increasing ionicity,
i.e. IV-IV—III-V—II-VI—I-VIL A typical example is the sequence Ge— GaAs—
ZnSe— CuBr, for which all materials have almost the same lattice constant, and the
band gaps increase 0.66eV—1.42eV—2.7eV—2.91eV.

This behavior can be understood within the framework of a modified Kronig—
Penney model [418] (Appendix F). Double potential wells (b/a = 3) are chosen
to mimic the diatomic planes along the (111) direction in the zincblende structure
(Fig.6.17a). Symmetric wells (depth Py) are chosen to model covalent semiconduc-
tors and asymmetric wells with depths Py == AP to model partially ionic semicon-
ductors. Results are shown in Fig.6.17a for Py = —3. With increasing asymmetry,
i.e. ionicity, the band gap increases, mostly due to a downward shift of the valence
band. The case of III-V (II-VI) semiconductors is reached for AP ~ 2 (4).

Fig. 6.17 Kronig—Penney (a)
model (along (111), \V/
b/a = 3) for a (a) IV-IV

semiconductor and (b) for a | |<—>|

-V (or II-VI) X
semiconductor, (c) resulting
band structure (Py = —3). d p-1-

0

is the lattice constant
(b + a). Adapted from [418] (b)
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GaAs GaP GaN

Fig. 6.18 Optical image of two inch wafers of GaAs (left), GaP (center) and ZnO (right). A GaN
wafer would look like the ZnO wafer

Table 6.3 Comparison of band gap, lattice constant and ionicity of gallium—group V semiconduc-
tors for various anions

Anion E; (eV) ap (nm) fi

N 34 0.45 0.50
P 2.26 0.545 0.33
As 1.42 0.565 0.31
Sb 0.72 0.61 0.26

Lattice constant for GaN has been recalculated for a cubic cell

In Fig. 6.18, the visual impression of 2 wafers of GaAs, GaP and GaN on white
paper is shown. GaAs (and GaSb) is opaque since the band gap is below the visible
spectral range. GaP has a band gap in the green and appears red, GaN has a band gap
in the ultra-violet and thus appears transparent. As can be seen from Table 6.3, the
anion sequence Sb, As, P, and N leads to smaller lattice constant and higher ionicity.
A notable deviation from this rule is InN whose band gap (0.7eV) is much smaller
than that of InP [419].

6.5 Alloy Semiconductors

In alloy semiconductors, the size of the band gap and the character of the band gap
will depend on the composition. The dependence of the band gap on the ternary com-
position is mostly nonlinear and can usually be expressed with a bowing parameter
b that is mostly positive. For a compound A,B,_,C the band gap is written as

Ey(AcB|_C) = E4(BC) + x [E,(AC) — E,(BC)| —bx (1 —x).  (6.26)

Even on the virtual crystal approximation (VCA) level (Sect. 3.7.3) a nonzero bowing
parameter b is predicted. However, a more thorough analysis shows that the bowing
cannot be treated adequately within VCA and is due to the combined effects of volume
deformation of the band structure with the alloy lattice constant, charge exchange in
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the alloy with respect to the binary end components, a structural contribution due to
the relaxation of the cation—anion bond lengths in the alloy and a small contribution
due to disorder [420]. The discussion of Sect.6.11.3 is related.

The Si,Ge,_, alloy has diamond structure for all concentrations and the position
of the conduction-band minimum in k-space switches from L to X at about x =
0.15 (Fig. 6.19a). However, for all concentrations the band structure is indirect. The
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Fig. 6.19 (a) Band gap of Si,Ge|_y alloy (T = 296 K) with a change from the conduction-band
minimum at L (Ge-rich) to X. The inset depicts the transition energy of the indirect (/"-L) and direct
(I"'-I") absorption edge for low Si content. Adapted from [424]. (b) Band gap (at room temperature)
of In,Gaj_,As. The solid line is an interpolation with bowing (b = 0.6eV) and the dashed line is
the linear interpolation. Data from [421]. (¢) Band gap (at room temperature) in the ternary system
Al,Gaj_,As. For x < 0.4 the alloy is a direct, for x > 0.4 an indirect, semiconductor. E4q denotes
the energy position of a deep donor (cf. Sect.7.7.6). Adapted from [425]. (d) Band gap (at room
temperature) in the ternary system Mg, Zn_, O. Data (from spectroscopic ellipsometry [426, 427])
are for hexagonal wurtzite phase (circles), and Mg-rich cubic rocksalt phase (squares). Dashed
lines are fits to data with a different bowing parameter for each phase
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In,Ga;_,As alloy has zincblende structure for all compositions. The band gap is
direct and decreases with a bowing parameter of b = 0.6eV [421] (Fig. 6.19b). This
means that for x = 0.5 the band gap is 0.15eV smaller than expected from a linear
interpolation between GaAs and InAs, as reported by various authors [422].

If one binary end component has a direct band structure and the other is indi-
rect, a transition occurs from direct to indirect at a certain composition. An example
is Al,Ga;_,As where GaAs is direct and AlAs is indirect. For all concentrations
the crystal has zincblende structure. In Fig.6.19c, the I, L and X conduction-band
minima for ternary Al,Ga;_,As are shown. Up to an aluminum concentration of
x = 0.4 the band structure is direct. Above this value the band structure is indi-
rect with the conduction-band minimum being at the X point. The particularity of
Al,Ga;_, As is that the lattice constant is almost independent of x. For other alloys
lattice match to GaAs or InP substrates is only obtained for specific compositions,
as shown in Fig. 6.20.

Bowing in the group-III-nitride system has been discussed in [423].

If the two binary end components have different crystal structure, a phase transition
occurs at a certain composition (range). An example is Mg,Zn;_,O, where ZnO
has wurtzite structure and MgO has rocksalt structure. The band gap is shown in
Fig.6.19d. In this case, each phase has its own bowing parameter.

All alloys of Fig.6.19b—d have mixed cations. The band gap also varies upon
anion substitution in a similar way as shown in Fig. 6.21 for ternary alloys with the
cation Zn and the chalcogenides S, Se, Te and O.

Fig. 6.20 Band gap versus 2.8 T T T T T T T
lattice constant for 2.6l
Ga,Inj_,P and Al In;_,P 24k -500
(lattice matched to GaAs) as
well as for In, Al;_,As and 22 1600
In,Ga;_,As alloys (lattice . 2.0 R
matched to InP) > 18 4700 £
a 1.6 1800 ;an
o g4 &
2 . -1000 F>)
g 1.2 T
1.0+ -1200 =
0.8k ] 1400
0.6 ! 42000
0.4 InAs
0.2 L L L L L ] 4000

L L
0.55 0.56 0.57 0.58 0.59 0.60 0.61
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Fig. 6.21 Band gap of various Zn-based alloys. The lines are fits with (6.26), the bowing parameter
b is labeled. Data for Zn(S,Se,Te) from [428], for Zn(O,Se/Te) from [429]

6.6 Amorphous Semiconductors

Since the crystal lattice in an amorphous semiconductor is not periodic, the concept
of k-space and the related concepts such as band structure E (k) break down at least
partially. The density of states, however, remains a meaningful and useful quantity
(Sect.6.12.2).

(@ J[L)%

Energy (eV)

X L

Fig. 6.22 (a) Calculated band structure of crystalline silicon. (b) Calculated band structure of
amorphous silicon with o = 0.05 (cf. (3.7)). The solid lines denote the real part of the energy, the
shaded areas denote the regions with a width of twice the imaginary part of the energies centered
around the real part. Adapted from [431]
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In a perfectly crystalline semiconductor the eigenenergies of the states in the bands
are real. An amorphous semiconductor can be modeled using a spectrum of complex
energies [430]. In Fig. 6.22 the band structure of crystalline silicon is shown next to
that calculated for amorphous silicon with o = 0.05.

6.7 Temperature Dependence of the Band Gap

The band gap typically decreases with increasing temperature (see Fig.6.23 for Si
and GaAs). The reasons for this are the change of electron—phonon interaction and
the expansion of the lattice. The temperature coefficient may be written as

() () 5), e
or ), or ), pB\op)r

where « is the volume coefficient of thermal expansion and 3 is the volume com-
pressibility. A recommendable discussion of the thermodynamic role of the band gap
as chemical potential for the mass action law (7.12), entropy contributions and its
temperature dependence can be found in [432].

An anomaly is present for the lead salts (PbS, PbSe, PbTe) for which the tempera-
ture coefficient is positive (Fig. 6.24a). Theoretical calculations [434] show that both
terms in (6.27) are positive for the lead salts. The Lg“ and L¢ levels (see Fig. 6.9) shift
as a function of temperature in such a way that their separation increases (Fig. 6.24b).

Also in copper and silver halides [435, 436] (Fig.6.25a) and chalcopyrites [437]
(Fig. 6.25b) the increase of band gap with increasing temperature has been found,
sometimes only for a certain temperature range. This effect is attributed to the p-d
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Fig. 6.23 Temperature dependence of the band gap of (a) Si (data from [433]) and (b) ZnO
(experimental data from photoluminescence (triangles) and ellipsometry (circles)). The solid lines
are fits with (6.30) and the parameters given in Table 6.4
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Fig. 6.24 (a) Band gap versus temperature for PbS. (b) Theoretical position of L6+ and L¢ asa
function of temperature for PbTe. Adapted from [410]
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sitions x (including binary Cul and CuBr) as labeled. Dashed lines are guide to the eyes. Adapted
from [435]. (b) Band gap versus temperature for chalcopyrite AgGaSe,. Solid line is fit with two-
oscillator Bose-Einstein model. Adapted from [437]

electron hybridization in the valence band with Cu 3d electrons and to even stronger
effect with Ag 4d electrons.

For many semiconductors the temperature dependence can be described with the
empirical, three-parameter Varshni formula [438],

Ey(T) = E4(0) —

aT
T+p3

2

(6.28)
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Table 6.4 Parameters for the temperature dependence of the band gap (6.29) and (6.30) for various
semiconductors

a (1074 eV/K) O (K) A ap (107%eV/K) O (K)
Si 3.23 446 0.51 2.82 351
Ge 4.13 253 0.49
GaAs 477 252 0.43 5.12 313
InP 3.96 274 0.48
InAs 2.82 147 0.68
ZnSe 5.00 218 0.36
ZnO 3.8 659 0.54

where E,(0) is the band gap at zero temperature. A more precise and physically
motivated formula (based on a Bose—Einstein phonon model) has been given in [439]

Ey(T) = E4(0) — 2 Op |:c0th (;)_;) - 1} , (6.29)

where «p is a coupling constant and k@ is a typical phonon energy; typical values are
given in Table 6.4. This model reaches a better description of the fairly flat dependence
at low temperatures.

The more elaborate model of [440] takes into account a more variable phonon
dispersion, including optical phonons, and proposes the four-parameter formula

1-3A42 342 /.,
Eg(T)zEg(())—a@[exp(zm_ﬁ : (‘/1+ﬁ—1)] (6.30)

2 2
o , 3A2—1 5, 8 ,
5—3(1+A2)7+ A ]
y=2T/O,

where « is the high-temperature limiting magnitude of the slope (of the order of
several 107 eV/K), @ is an effective average phonon temperature and A is related
to the phonon dispersion. A takes typically values between zero (Bose—Einstein
model) and 3/4 [440].

6.8 Isotope Dependence of the Band Gap

The band edge slightly depends on the isotope composition of semiconductor, as
shown for GaAs in Fig. 6.26. The effect is discussed in detail in [441].
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6.9 Electron Dispersion

6.9.1 Equation of Electron Motion

The equation of motion for the electron in the band structure is no longer given by
Netwon’s law F = d(mv)/d¢ as in vacuum. Instead, the propagation of quantum-
mechanical electron wave packets has to be considered. Their group velocity is given
by (vg = Ow/0k)

v= %VkE(k), (6.31)

where Vi is the gradient with respect to k. Through the dispersion relation the
influence of the crystal and its periodic potential on the motion enters the equation.

An electric field £ acts on an electron during the time ¢ the work 0 E = —e&v, 0t.
This change in energy is related to achange in k via0 E = dE /dk 6k = hv, k. Thus,
we arrive at hdk/dt = —e&. For an external force we thus have

dk
h— = —eE =F. (6.32)
dr

Thus, the crystal momentum p = hk takes the role of the momentum. A more
rigorous derivation can be found in [399].
In the presence of a magnetic field B the equation of motion is:

p Ik _ B=—S(V.E)xB (6.33)
dt_ ev X = h k X D. .

The motion in a magnetic field is thus perpendicular to the gradient of the energy,
i.e. the energy of the electron does not change. It oscillates therefore on a surface of
constant energy perpendicular to B.
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6.9.2 Effective Mass of Electrons

From the free-electron dispersion E = h*k?/(2m) the mass of the particle is inversely
proportional to the curvature of the dispersion relation, i.e. m = h?/(d>E /dk?). This
relation will now be generalized for arbitrary dispersion relations. The tensor of the
effective mass is defined as

1 O*E

— 34
2 ok; ok; (634

m* 1 =

The equation F = m* v must be understood as a tensor equation, i.e. for the
components of the force F; = mj; a;. Force and acceleration must no longer be
collinear. In order to find the acceleration from the force, the inverse of the effective-
mass tensor must be used, a = (m*)~' F.

In Fig.6.27 the energy dispersion of the (lowest) conduction band in a typi-
cal semiconductor, the related electron velocity and the effective mass are shown
schematically.

In (6.22) the ratio of the effective mass and the free-electron mass is of the order
of m*/m = U/, the ratio of the free particle energy and the band gap. For typical
semiconductors, the width of the (valence) band is of the order of 20 eV, and the gap
is about 0.2-2eV. Thus, the effective mass is expected to be 10-100 times smaller
than the free-electron mass. Additionally, the relation m* oc E is roughly fulfilled
(Fig.6.28).

Fig. 6.27 Schematic
diagram of the electron
dispersion E (k) in a typical
semiconductor (blue) and
corresponding carrier
velocity (o< OE /0k) (red)
and effective mass

(x 1/(0*E|dk?)) (green)

>
=
[}
Ko}
o
>

Effective Mass
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From so-called k - p theory [442] (see Appendix G) the effective electron mass is
predicted to be related to the momentum matrix element py

Pov = {c|p|v) =/ Ul () pue (r) d’r, (6.35)
2

with £2¢ being the unit cell volume and the Bloch functions |c) and |v) of the con-
duction and valence band, respectively, given as

lc) = uck (r) exp (ikcr) (6.36a)
[v) = Uy, (r) exp (ik,r). (6.36b)

Typically, the k-dependence of the matrix element is small and neglected. The
momentum matrix element will also be important for optical transitions between the
valence and conduction bands (Sect. 9.5). Other related quantities that are often used
are the energy parameter Ep

2 |pey|?
Ep = 21Pal” (6.37)
my

and the bulk momentum matrix element M{ that is given by

1 m
Mg = Ipol® = -2 Ep. (6.38)
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(a) (b)

Fig. 6.29 Energy isosurfaces in k-space in the vicinity of the conduction-band minima for (a) GaAs
with isotropic (spehrical) minimum at I” point, (b) ZnO with anisotropic (ellipsoidal) minimum at
I’ point (anisotropy exaggerated), (c) silicon with six equivalent anisotropic minima (m;/m; = 5
not to scale) along (100) and (d) germanium with eight equivalent anisotropic minima along (111).
The cube indicates the (100) directions for the cubic materials. For the wurtzite material (part b)
the vertical direction is along [00.1]

The electron mass is given by*

m_ (2 (6.39)
mi 3 \E; E,+ A '
Eq+240/3 E E
4 E e +240/3 P P

Eo (Eq+A0) | Eg+4A9/3  Eg

Comparison with the fit from Fig. 6.28 yields that Ep is similar for all semicon-
ductors [443] and of the order of 20eV (InAs: 22.2¢eV, GaAs: 25.7¢V, InP: 20.4¢V,
ZnSe: 23eV, CdS: 21eV).

In silicon there are six conduction-band minima. The surfaces of equal energy
are schematically shown in Fig. 6.29c. The ellipsoids are extended along the (100)

4 Ay is the spin-orbit splitting discussed in Sect.6.10.2.
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Table 6.5 Longitudinal direction of effective mass ellipsoid, longitudinal and transverse effective
electron mass in several semiconductors

Long. dir. m mq my/my md.e References
C (100) 14 0.36 39 1.9 [446]
Si (100) 0.98 0.19 5.16 1.08 [447]
Ge (111) 1.59 0.082 19.4 0.88 [447]
ZnO [00.1] 0.21 0.25 0.88 [448]
CdS [00.1] 0.15 0.17 0.9 [449]

Mass values in units of the free electron mass m. For the density of states mass mq . see (6.68)

direction because the longitudinal mass (along the A path) is larger than the transverse
mass in the two perpendicular directions (Table6.5). For example, the dispersion
relation around the [100] minimum is then given as (kfg denotes the position of the
conduction-band minimum)

_7.0y2 k2 4+ k2
E(k):fﬂ((k‘ k) + o * Z). (6.40)

2m1 Zm[

For germanium surfaces of constant energy around the eight conduction-band
minima in the (111) directions are depicted in Fig. 6.29d. The longitudinal and the
transverse masses are again different. For GaAs, the conduction-band dispersion
around the I" point is isotropic, thus the surface of constant energy is simply a
sphere (Fig. 6.29a). In wurtzite semiconductors the conduction-band minimum is at
the I" point. The mass along the c-axis is typically smaller than the mass within the
(00.1) plane [444] (m;/m. ~ 0.8 for ZnO [445]), see Fig.6.29b. In [444] also an
anisotropy within the (00.1) plane is predicted.

The directional dependence of the mass can be measured with cyclotron resonance
experiments with varying direction of the magnetic field. In Fig. 6.30, the field B is
in the (110) plane with different azimuthal directions. When the (static) magnetic
field makes an angle # with the longitudinal axis of the energy surface, the effective
mass is given as [450]

2 in2
1 _ [cos 0 n sin“ 0 6.41)

m* m? memy

6.9.3 Nonparabolicity of Electron Mass

The dispersion around the conduction-band minimum is only parabolic for small
k. The further away the wavevector is from the extremum, the more the actual dis-
persion deviates from the ideal parabola (see, e.g., Fig.6.7). This effect is termed
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Fig. 6.30 Effective electron mass from cyclotron resonance experiments (at 7 = 4 K) on (a) Si and
(b) Ge for the magnetic field in the (110) plane and various azimuthal directions 6. Experimental data
and fits (solid lines) using (6.41) with (a) m; = 0.98, m; = 0.19 and (b) m; = 1.58, m¢ = 0.082.
Data from [447]

nonparabolicity. Typically, the energy increases less quickly with k than in the par-
abolic model. This can be described in a so-called two-level model with the dispersion

relation
LS =FE(1+ E (6.42)
2mg o Ej ’ ’

where Ej > 0 parameterizes the amount of nonparabolicity (a parabolic band corre-
sponds to Ej = o0o). The nonparabolic dispersion for GaAs is shown in Fig. 6.31a.
The curvature is reduced for larger k and thus the effective mass is energy depen-
dent and increases with the energy. Equation (6.42) leads to the energy-dependent
effective mass

2FE
0

where mj denotes here the effective mass at k = 0. Theory and experimental data
for the effective electron mass of GaAs are shown in Fig.6.31b.
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Fig. 6.31 (a) Dispersion relations for the conduction band of GaAs. The solid line is parabolic
dispersion (constant effective mass). The dashed (dash-dotted) line denotes the dispersion for k
along [001] ([111]) from a five-level k - p model (SLM). (b) Cyclotron resonance effective mass
of electrons in GaAs as a function of the Fermi level (upper abscissa) and the corresponding
electron concentration (lower abscissa). The dashed line is from a 2LM according to (6.43) with
Ej§ = 1.52¢V. The solid lines are for a SLM for the three principal directions of the magnetic field.
The symbols represent experimental data from different sources. Data from [451]

6.10 Holes

6.10.1 Hole Concept

Holes are missing electrons in an otherwise filled band. A Schrodinger-type wave-
equation for holes (unoccupied electron states) was derived by Heisenberg [63] to
interpret Hall effect data. The hole concept is useful to describe the properties of
charge carriers at the top of the valence band. The hole is a new quasi-particle whose
dispersion relation is schematically shown in Fig.6.32 in relation to the dispersion
of electrons in the valence band.

Fig. 6.32 Hole dispersion E
(dashed line) in relation to . b ,
the electron dispersion in the N ,/
valence band (solid line) AN ,/
N 7
ke? S . /f
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The wavevector of the hole (filled circle in Fig.6.32) is related to that of the
‘missing’ electron (empty circle in Fig. 6.32) by k;, = —k.. The energy is Ep(ky) =
—E.(k.), assuming that Ey = 0, otherwise Ep(ky) = —Ec(k.) + 2Ev. The hole
energy is larger for holes that are further away from the top of the valence band,
i.e. the lower the energy state of the missing electron. The velocity of the hole,
vy = A~ dEy/dky, is the same, vy, = v., and the charge is positive, +e. The effective
mass of the hole is positive at the top of the valence band, m}; = —m}. Therefore,
the drift velocities of an electron and hole are opposite to each other. The resulting
current, however, is the same.

6.10.2 Hole Dispersion Relation

The valence band at the I" point is 3-fold degenerate. The band developed from the
atomic (bonding) p states; the coupling of the spin s = 1/2 electrons with the orbital
angular momentum [ = 1 leads to a total angular momentum j = 1/2 and j = 3/2.
The latter states are degenerate at I" in zincblende bulk material and are called
heavy holes (hh) for m; = 43/2 and light holes (lh) for m; = £1/2 due to their
different dispersion (Fig. 6.33a). The two (m; = +/2) states of the j = 1/2 state are
split-off from these states by an energy Ag due to spin-orbit interaction and are called
split-off (s-0) holes. The spin-orbit interaction increases with increasing atomic order
number Z of the anion since the electrons are located preferentially there (Fig. 6.34).

(a) E
electrons (b) !
E.=E,+E,
E, k
} heavy
Ey\lrglgs holes
split-off
holes

Fig. 6.33 (a) Simplified band structure with conduction band and three valence bands and (b)
three-dimensional visualization (E vs. (kx, ky)) of the valence bands of Ge (including warping).
Part (b) from [453]
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A detailed discussion of the spin-orbit splitting in zincblende semiconductors is given
in [452].

All three holes have different mass. In the vicinity of the I" point the dispersion
for heavy and light holes can be described with (+:hh, —:1h)

E(k)=AK> + \/32 k4 c? (k,% K2+ 1212+ K2 kg). (6.44)
For heavy and light holes there is a dependence of the dispersion, i.e. the mass, in
the (001) plane. This effect, sketched in Fig. 6.33Db, is called warping. The warping
at the GaAs valence-band edge is shown in Fig.6.35. Equation (6.44) can also be
expressed in terms of angular coordinates [454].
The s-o holes have the dispersion
E(K) = —Ag + AK>. (6.45)
Values for A, B, C? and A, for a number of semiconductors are given in Table 6.6.

The valence-band structure is often described with the Luttinger parameters i, 7,
and 3 that can be represented through A, B, and C via

h2

h? B

h? VB*+C?/3

— = VB3 (6.46¢)
2Wl0 2

The mass of holes in various directions can be derived from (6.44). The mass
along the [001] direction, i.e. h?/ (82E (k)/ 3]{%) for ky = 0and k; =0, is
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Fig. 6.35 Dispersion at the valence band edge of GaAs for (a, b) heavy holes and (c, d) light holes.
(a, ¢) Constant energy surfaces and (b, d) isolines in the (ky, ky)-plane ((b) and (d) have different
energy scales)

Table 6.6 Valence-band parameters (for (6.44)) A and B in units of (R /2my), C? in units of
(h%/2mg)?, and Ag in eV

Material A B c? Ao

C —4.24 —1.64 95 0.006
Si —4.28 —0.68 24 0.044
Ge —13.38 -85 173 0.295
GaAs —6.9 —4.4 43 0.341
InP —5.15 -1.9 21 0.11
InAs —20.4 —16.6 167 0.38
ZnSe —2.75 -1.0 75 0.43

From [146, 455, 456]
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Fig. 6.36 Effective hole masses from cyclotron resonance experiments (7 = 4 K) for heavy and
light holes in (a) Si and (b) Ge for the magnetic field in the (110) plane and various azimuthal
directions 6. Experimental data (symbols) and fits (solid lines) using (6.48). Adapted from [447]

1 2
— = _—(A+B 6.47
o = 7 ¢ ) (6.47a)
L _2 (A—B) (6.47b)
i~ |

The anisotropy of hole masses has been investigated with cyclotron resonance
experiments (Fig.6.36). For # being the angle between the magnetic field and the
[001] direction, the effective heavy hole (upper sign) and light hole (lower sign) mass
in cubic semiconductors is given by [447]

R 1
_r (6.48)
2 A+,/B*+C%/4

C? (1 — 3 cos? 9)?

¥
64 /BZ+ C2/4 [A + /B + 02/4]

*

X

For C? = 0 the hole bands are isotropic, as is obvious from (6.44). In this case
72 = 73, the so-called spherical approximation. The average of the hole masses over
all directions is
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Fig. 6.37 Luttinger parameters for various III-V semiconductors versus their band gap. (a) Inverse
values of v; (squares) and 72 (diamonds). Dashed lines are guides to the eyes. (b) 73 — 2 versus
band gap

L_2 (A +B [1 + 2_c2]) (6.49)
miy R 15 B2

! =£(A—B|:1+ 2C ]) (6.49b)
my 2 15 B2

Similar to the correlation of the electron mass with the band gap (Fig. 6.28), the
Luttinger parameters are correlated with the band gap as shown in Fig.6.37. The
parameters 1/v; and 1/, increase about linearly with E,. The parameter v; — 72,
which is responsible for the valence band warping, decreases with increasing band

gap.

6.10.3 Valence-Band Fine Structure

In Fig. 6.38, the schematic structure of the band edges for zincblende structure semi-
conductors is shown. The s-o holes in the zincblende structure are split-off due to
the spin-orbit interaction Ag,, the I'y band is degenerate (heavy and light holes).
Degeneracies for the holes are removed in the wurtzite and chalcopyrite structures
by the additional crystal field splitting A s due to the anisotropy between the a- and
c-axes. Typically, e.g. for CdS, the topmost valence band in the wurtzite structure has
I'y symmetry (allowed optical transitions only for E L ¢); an exception is ZnO for
which the two upper bands are believed to be reversed. In the chalcopyrite structure
optical transitions involving the Iy band are only allowed for E L c¢. The three hole
bands are usually labeled A, B, and C from the top of the valence band.

The energy positions of the three bands (with respect to the position of the I's
band) in the presence of spin-orbit interaction and crystal field splitting are given
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Fig. 6.38 Schematic band structure of zincblende and the valence-band splitting due to spin-orbit
interaction Ag, and crystal field splitting Ar for chalcopyrites (typically Ags < 0, see Fig.6.39)
and wurtzites. For the wurtzites the situation is schematically shown for CdS (Ag, = 67meV, Acs =
27meV) (or GaN) and ZnO (Ag, = —8.7meV, A = 41 meV)

within the quasi-cubic approximation [457] by

Ag + At
E, = Aso + Act (6.50a)
2
Ao+ A\ 2
Ers = i\/ (%) = 3 A At (6.50b)

In chalcopyrites the crystal field splitting is typically negative (Fig.6.39). It is
approximately linearly related to 1 — n (for n = c¢/2a see Sect.3.4.6).

6.10.4 Band Inversion

In certain compounds the band gap can shrink to zero (zero-gap semiconductor,
cf. Sect.18.1.2) and even become negative in the sense that the s-orbital type I
symmetry (conduction) band is inverted below the valence-band edge. HgTe is a
classical example for such material as shown in Fig. 6.40, but similar effects are also
present in other semiconductors, for example various chalcopyrites [459].

For the zero-gap case, the dispersion of some bands is linear (cmp. Sect. 18.1.2);
this corresponds to a very strong non-parabolicity. The dielectric function of zero-gap
semiconductors is discussed in [460].


http://dx.doi.org/10.1007/978-3-319-23880-7_3
http://dx.doi.org/10.1007/978-3-319-23880-7_18
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6.11 Strain Effects on the Band Structure

A mechanical strain (or equivalently stress) causes changes in the bond lengths.
Accordingly, the band structure is affected. These effects have been exhaustively
treated in [461, 462]. For small strain, typically ¢ < 0.01 the shift of the band
edges is linear with the strain, for large strain it becomes nonlinear [463]. Often
homogeneous strain is assumed, the effect of inhomogeneous strain is discussed
in [464].
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6.11.1 Strain Effect on Band Edges

In a direct-gap zincblende material the position of the conduction-band edge is only
affected by the hydrostatic component of the strain

Ec = EQ +ac (exx + €y + €22) = E& + a. Tr(e), (6.51)

where a; < 0 is the conduction-band hydrostatic deformation potential and EQ is the
conduction-band edge of the unstrained material. Similarly, the valence-band edge is

Ey = EY +a, Tr(e), (6.52)

where a, > 0 is the valence-band hydrostatic deformation potential. Therefore the
band gap increases by

AE, =aTr(e) =a (exx + €y + ezz) , (6.53)

with a = ac —ay. Such linear behavior upon hydrostatic pressure has been found for
many semiconductors and is shown in Fig. 6.41a for Gag 9;Ing ogAs. The anomaly for
N-doping is discussed below in Sect. 6.11.3. In Fig. 6.42 the dependence of the direct
and indirect gaps of GaAs is shown. The dependence of the direct gap on pressure
is non-linear, that on the density is linear [465].
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Fig. 6.41 (a) Dependence of the band gap of Gag 92Ing 0gAs alloy (squares) and nitrogen-doped
(Ga,In)As on (compressive) hydrostatic pressure, determined by photomodulated transmission at
T = 295K. (b) Pressure dependence of band gap for two (Ga,In)(As,N) samples together with
model calculation (6.58). The coupling parameter is V = 0.12eV (0.4eV) for a nitrogen content
of 0.9 % (2.3 %). Adapted from [466]
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Energy (eV)
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Fig. 6.42 Dependence of the direct [ 1\5’—1" IC and indirect I l\g—X IC band gap of GaAs (T = 300K)
on pressure. Solid lines are interpolations of experimental data, dashed line is extrapolation to
p = 0. The crossing of the direct and indirect band gap occurs at 4.2 GPa. The arrow denotes
the pressure of the phase transition from zincblende to an orthorhomic structure around 17 GPa.
Adapted from [465]

Biaxial and shear strains affect the valence bands and lead to shifts and splitting
of the heavy and light holes at the I" point:

Eypmn = EX+ E,, (6.54a)

Ee=b/2 [(6“ — ) (eyy =€)+ (e 6zz)z] +d I:Giy +e, + efz] :

where EY denotes the bulk valence-band edge. b and d are the optical deformation
potentials. For compressive strain the heavy-hole band is above the light-hole band.
For tensile strain there is strong mixing of the bands (Fig.6.43). In Table6.7 the
deformation potentials for some III-V semiconductors are listed. Typical values are
in the eV regime.

In a wurtzite crystal, seven (or eight) deformation potentials are needed that are
termed a (for the change of band gap with hydrostatic strain, again a = ac — ay)
and D—Dg (for the valence band structure) [467, 468].

In Si and Ge, three deformation potentials, termed a, b, d, are needed for the
valence band and two for each conduction band minimum, E, and E4 [469]. The
energy position of the ith conduction-band edge (with unit vector a; pointing to the
valley) is

Ec;=EQ; + EqTr(e) + Eya; €a, (6.55)

where Eg ; denotes the energy of the unstrained conduction-band edge. The defor-
mation potentials for Si and Ge are given in Table 6.8.
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Fig. 6.43 Schematic band structure of GaAs in unstrained state (center) and under compressive
and tensile biaxial strain as labeled. Dashed lines indicate shift of band edges due to hydrostatic
part of strain

Table 6.7 Deformation potentials for some III-V semiconductors

Material a b d
GaAs -9.8 —1.7 —4.6
InAs —6.0 —1.8 -3.6

All values in eV

Table 6.8 Deformation potentials for silicon and germanium

Material ESA) E&A) Eg“) E,(JL) a b d
Si 1.1 10.5 -17.0 18.0 2.1 —2.33 —4.75
Ge 4.5 9.75 —4.43 16.8 2.0 —-2.16 —6.06

All values in eV from [470]

6.11.2 Strain Effect on Effective Masses

In the presence of strain the band edges are shifted (cf. Sect. 6.11). Since the electron
mass is related to the band gap, it is expected that the mass will also be effected.
In the presence of hydrostatic strain ey the electron mass is [471] (cf. to (6.39) for

€H — O)

mo _ gy L [1 (2+ 3 )] (6.56)

— = — |1 —c — |, .
m Eq+ Ao/3 " Eq + Ao/3

with a being the hydrostatic deformation potential and ey = Tr(e). In[471], formulas
are also given for biaxial and shear strain and also for hole masses. Since the effective
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mass enters the mobility, the electrical conductivity depends on the stress state of the
semiconductor (piezoresistivity, see Sect. 8.3.11).

6.11.3 Interaction with a Localized Level

The normal dependence of the band gap on hydrostatic pressure is linear and given
by (6.53). (Ga,In)As containing nitrogen exhibits a remarkable deviation from this
behavior as shown in Fig. 6.4 1a. This is due to the interaction of the continuum states
of the conduction band with the electron level of the isoelectronic nitrogen impurity
(Sect.7.7.9) EN, being within the conduction band. For GaAs it is 0.2eV above
the conduction band edge Ec. This phenomenon has been investigated theoretically
within microscopic detail [472]. Within a simple ‘band anticrossing’ two-level model,
the coupling of the pressure-dependent conduction band edge E¢ and the nitrogen
level can be obtained from the Eigenwert equation

E—Ec V

‘ V O E—Ey| = 0, (6.57)

V being the coupling constant. The determinant vanishes for

1
E.= 3 (Ec + Exn £ V(Ec — Ex)? + 4V2) . (6.58)

Here the weak pressure dependence of EY is neglected for simplicity. This model can
explain the pressure dependence of the band gap of (Ga,In)As:N fairly well [466]
(Fig.6.41b). The coupling parameter V is in the order of a few 0.1eV for small

Fig. 6.44 Bandgap of
GaAs| Ny, experimental
data from various sources
(symbols) and model (curve)
according to (6.58) with

V = Vo /x for Vo =2.7¢eV.
Adapted from [473]

Energy (eV)

0 1 2 3 4 5
Nitrogen concentration x (%)
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nitrogen content. In photomodulated reflection also the E levels can be observed
[473]. The anticrossing model can also model the dependence of the GaAs;_, N,
bandgap on the nitrogen concentration [473] (Fig. 6.44).

6.12 Density of States

6.12.1 General Band Structure

The dispersion relation yields how the energy of a (quasi-) particle depends on
the k vector. Now we want to know how many states are at a given energy. This
quantity is called the density of states (DOS) and is written as D(E). It is defined
in an infinitesimal sense such that the number of states between E and E + JE is
D(E)JE. In the vicinity of the extrema of the band structure many states are at the
same energy such that the density of states is high.

The dispersion relation of a band will be given as E = E (k). If several bands
overlap, the densities of state of all bands need to be summed up. The density of
states at the energy E for the given band is

D(E)dE =2 ek S(E — E(k 6.59
()_/W(_())’ 6.59)

where, according to (5.5), 27/ L)3 is the k-space volume for one state. The factor
2 is for spin degeneracy. The integral runs over the entire k-space and selects only
those states that are at E. The volume integral can be converted to a surface integral
over the isoenergy surface S (E) with E(k) = E. The volume element d*k is written
as d®S dk, . The vector dk; is perpendicular to S (E ) and proportional to Vg E(Kk),
ie. dE = |VkEK)|dk}.

. dzs 1
D(E)=2 . 6.60
£ /s@) @7/L7 VRE®)| (0:60)

In this equation, the dispersion relation is explicitly contained. At band extrema
the gradient diverges, however, in three dimensions the singularities are integrable
and the density of states takes a finite value. The corresponding peak is named a
van-Hove singularity. The concept of the density of states is valid for all possible
dispersion relations, e.g. for electrons, phonons or photons.

The density of states for the silicon band structure (see Fig.6.6a) is shown in
Fig.6.45.


http://dx.doi.org/10.1007/978-3-319-23880-7_5
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Fig. 6.45 Density of states N e o o e o e e e e e e e B e e e
in the silicon valence- (blue) i
and conduction-band (red) as
obtained from theoretical
calculation using empirical
pseudopotentials. Grey
regions denotes the band
gap. Critical points

(cf. Fig. 6.6a) are labeled. In
the lower three graphs, the
DOS is decomposed into
contributions from different
angular momentum states 0
(s (green), p (orange) and d

(purple)). Top part adapted 1.0
from [474], bottom part
adapted from [155]
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6.12.2 Amorphous Semiconductors

If disorder is introduced, the density of states is modified as shown in Fig. 6.46 for
amorphous germanium using a calculation with complex eigenenergies. The defects,
as compared to the perfect lattice, introduced states in the band gap and generally
wash out the sharp features from the crystalline DOS.

Several models exist for the defect level distributions within the band gap. The
first model was the Mott model which has band tails at the valence and conduction
band edges [475]. In the Cohen-Fritzsche-Ovshinsky (CFO) model [476], the band
tails are more severe and overlap; the Fermi energy lies at the minimum of the
density of states. In the Davis—Mott model [477] deep states were added in the gap
and eventually the Marshall-Owen model [478] assumes band tails and donor- and
acceptor-like deep states. The four models are schematically shown in Fig.6.47.
These model densities of states allow also the interpretation of carrier transport
in amorphous semiconductors, taking into account localized and delocalized states
(see Sect. 8.8).

The density of states for an amorphous semiconductor is best calculated from
atomistic models, possibly averaging over many configurations. The typical features,
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Density of states
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Energy (eV)
Fig. 6.46 Theoretical calculation for the density of states of amorphous Ge models as obtained for

various degrees of disorder « (3.7). a = 0.09 corresponds to a mean short-range order distance of
about 2.4 lattice constants (cmp. Fig.3.14b). Adapted from [177]
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Fig. 6.47 Model density of states in amorphous semiconductors (solid lines) according to
Mott [475], Cohen-Fritzsche-Ovshinsky [476], Davis—Mott [477] and Marshall-Owen [478].
Dashed lines represent the DOS of the same material without disorder

compared to the clear band gap of a similar ordered material, are band tails due
to disorder (cmp. Sect.5.2.8) and deep levels within the gap due to specific atomic
arrangements not present in ordered bulk. The most investigated system is amorphous
silicon; in Fig. 6.48 a numerical calculation of the density of states is shown together
with charge distribution of four states at selected energies [479]. The further the
states are in the band tail, the stronger their localization is. The two most right states
shown in Fig. 6.48 are not conducting.
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Fig. 6.48 Theoretical calculation of the density of electronic states of amorphous silicon. The
charge distribution in four selected states at the indicated energies is shown, from right to left with
decreasing localization. Adapted from [479]

As another example, simulations of ZnSnO; are shown in Fig. 6.49. The band tail
between 0 and 0.5 eV is due to disorder of oxygen 2p orbitals [480]. At 0.9eV alevel
due to under-coordinated oxygen appears. Deep levels are due to metal-metal bonds.
Band tails due to chemically disordered oxygen have been experimentally observed

for amorphous GIZO [481].

Fig. 6.49 Theoretical
calculation for the density of
states of crystalline (dashed
lines, conduction and
valence bands indicated by
greay areas) and amorphous
ZnSnOs3 with different
configurations (solid lines).
States due to
under-coordinated oxygen
(Oyc) and metal-metal binds
are labelled. Adapted

from [480]
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6.12.3 Free-Electron Gas

In M dimensions, the energy states of a free-electron gas are given as

R” o,
Ek) = k. 6.61
k)= — ; ; (6.61)
The k; can take the values +=7n/L (in the first Brillouin zone) withn < N, N
being the number of unit cells in one dimension. These values are equidistant in
k-space. Each M-dimensional k-point takes a volume of (27/L)™. The number of
states N (Ep) up to the energy Ep = zh—mk% (later used as Fermi energy Er and Fermi
vector kg) is
2 |K|=kp I
N(Ep) = —/ d"k. (6.62)
Qr/LM Jy=o
The factor 2 is for spin degeneracy, the integration runs over M dimensions. The
density of states is the derivative

dN
D(E) = i (6.63)

In the following, the density of states for M = 3,2, 1 and zero dimensions is
derived. A visualization is given in Fig. 14.1.
M=3

This case relates to bulk material in which electrons are free to move in all three
dimensions. Performing the integral (6.62) for M = 3 yields for an isotropic mass,

1% V (2mEp\"?
NP = _—i3=— ("2 ) 6.64
3w2 F T 3p2 ( h? ) (6.64)

Therefore, kp and Ef are given by

37N 173
kp = ( ) (6.65)
\%
R (3m2 N\
Er = P ( v ) , (6.66)

and the density of states in three dimensions is

wepy Y (2m)”
DP(E) = 5 ( - ) VE. (6.67)
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Mostly the density of states is used as density of states per volume, then the factor
V in (6.67) is omitted.

If a conduction-band minimum is degenerate, a factor g, (valley degeneracy) must
be included in the density of states, i.e. g, = 6 for Si and g, = 8 for Ge (g, = 1 for
GaAs). This factor is typically included in the mass used in (6.67) that then becomes
the density of states mass mgq .. If the conduction-band minimum has cylindrical
symmetry in k-space, such as for Si and Ge, the mass that has to be used is

2/3 1/3

Mye = Gy (m[2 ml) (6.68)
In the case of a degeneracy of the valence band, the states of several bands need to be
summed. In bulk material, typically the heavy and light hole bands are degenerate at
the I" point. If the split-off band is not populated because of insufficient temperature,
the valence-band edge density of states is expressed by the density of states hole mass

2/3
3/2 3/2) (6.69)

mgp = (mhh + my,

The density of states (per volume) at the conduction and valence band edges are
thus given by

1 (2 3/2
DX(E) = 5 ( ’;;e) VE — Ec,E > Ec (6.70)
3D 1 Zmd,h 3/2
DP(E) = — | = VEv—E,E < Ey. 6.71)

M=2

This case is important for thin layers in which the electron motion is confined in
one direction and free in a plane. Such structures are called quantum wells (see
Sect. 12.3.2). We find for the 2D density of states (for each subband over which it is
not summed here, including spin degeneracy)

A A m*
NP = —i2=2""_"F, 6.72
20 F T 2 ( )

where A is the area of the layer. The density of states is thus constant and given by

A m*

D™ (E) = )
(E) —

(6.73)

M=1

The case M = 1 describes a quantum wire in which the electron motion is confined
in two dimensions and free in only one dimension. For this case, we find for a wire
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of length L

(6.74)

D L (2m*)1/2 1
D (E):; — — (6.75)

M=0

In this case electrons have no degrees of freedom, as, e.g., in a quantum dot
(Sect. 14.3), and each state has a d-like density of states at each of the quantized
levels.
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Chapter 7
Electronic Defect States

Uber Halbleiter sollte man nicht arbeiten, das ist eine
Schweinerei, wer weif3 ob es iiberhaupt Halbleiter gibt.
One should not work on semiconductors. They are a mess.
Who knows whether semiconductors exist at all.
W. Pauli, 1931 [482]

Abstract After the carrier statistics for intrinsic conduction and general doping
principles, donors and acceptors, compensation and high doping effects are treated
in detail. The concept of quasi-Fermi levels is introduced. Finally for deep levels and
their thermodynamics general remarks and several examples are given.

7.1 Introduction

One centimeter cube of a semiconductor contains about 5 x 10?? atoms. It is prac-
tically impossible to achieve perfect purity. Typical low concentrations of impurity
atoms are in the 10'>~10'3 cm ™3 regime. Such a concentration corresponds to a purity
of 107'°, corresponding to about one alien in the world’s human population. In the
beginning of semiconductor research the semiconductors were so impure that the
actual semiconducting properties could only be used inefficiently. Nowadays, thanks
to large improvements in high-purity chemistry, the most common semiconductors,
in particular silicon, can be made so pure that the residual impurity concentration
plays no role in the physical properties. However, the most important technological
step for semiconductors is doping, the controlled incorporation of impurities, in order
to manage the semiconductor’s conductivity. Typical impurity concentrations used
in doping are 10"°-10**cm~3. A milestone in the understanding of doping and the
spreading of semiconductor technology was the 1950 textbook by Shockley [483].

© Springer International Publishing Switzerland 2016 203
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
DOI 10.1007/978-3-319-23880-7_7



204 7 Electronic Defect States

7.2 Carrier Concentration

Generally, the density of electrons in the conduction band is given by
[o.¢]
n =/ De(E) fe(E) dE, (7.1)
Ec

and accordingly the density of holes in the valence band is

Evy
P :/ Dn(E) fu(E)dE. (7.2)

o0

The energy of the top of the valence band is denoted by Ey, the bottom of the
conduction band as E¢. The distribution function for holes is f, = 1 — f.. Thus,

1 1

M = S EE 1 ep(CEE) 41

(7.3)

If several hole bands (hh, lh, so) are considered, the same distribution is valid for all
hole bands in thermal equilibrium.

We assume parabolic band edges, i.e. effective masses m. and my, for electrons
and holes, respectively. The density of states (per volume) in the conduction and
valence bands is given by (6.70) and (6.71).

In thermodynamic equilibrium, the distribution function f.(E) for electrons is
given by the Fermi—Dirac distribution (Fermi function) f.(E) (E.22)

1

(E)= ——— 74
Je(E) oxp (EE) 11 (7.4)

If the Boltzmann distribution (E.23) is a good approximation, the carrier distribution
is called nondegenerate. If the Fermi distribution needs to be invoked, the carrier
ensemble is called degenerate. If the Fermi level is within the band, the ensemble is
highly degenerate.

If the Boltzmann approximation (E.23) cannot be applied, i.e. at high temperatures
or for very small band gaps, the integral over Df cannot be analytically evaluated.
In this case the Fermi integral is needed that is defined! as

n

T S
Fn(x)—ﬁ/o 1+exp(y_x)dy. (1.5)

lEquation(7.5) is restricted to n > —1. A form without restriction is F,(x) = ﬁ fooo

n

mdy. The factor 2//7 is often omitted but must be then added explicitly in, e.g. (7.6).
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Fig. 7.1 Fermi integral Fy /2 = (/7/2)Fy > with approximations in three regions of the argu-
ment: Ay (x) = (/7/2) exp(x) for x < 2, Az(x) = (V/7/2)(1/4 + exp(—x))~! for =2 < x < 2,
Az(x) =2/ 3x3/2 for x > 2. (a) linear, (b) semilogarithmic plot

In the present case of bulk materials n = 1/2. For large negative argument, i.e.
x <0 and |x| > 1, Fi/2(x) ~ exp(x), which is the Boltzmann approximation.
F1,2(0) = 0.765 ...~ 3/4. For large argument, i.e. x 3> 1, F»(x) ~ (2//m)(2/3)
x3/2. Such fairly simple approximations are plotted in Fig.7.1 in comparison with
the Fermi integral. For computations, analytical [484—486] or numerical approxima-
tions [487, 488] are used.

The derivative of the Fermi integral is given by F,(x) = nF,_;(x), n > 0. For
n = 0,1.e. atwo-dimensional system, the integral can be executed explicitly, Fy(x) =
(2//7) In[1 + exp(x)].

With the Fermi integral Fy,, (7.10) and (7.11) the free-carrier densities can be

written as
n= NcFip (%) (7.6)
p =Ny Fip (—%) , (7.7)
with
sy
ez

where Nc¢ (Ny) is called the conduction-band (valence-band) edge density of states.
The masses in (7.8) and (7.9) are the density of states masses given in (6.68) and
(6.69). Values of N vy for Si, Ge and GaAs are given in Table7.1.

Now, we assume that the Boltzmann approximation (Appendix E) can be used,
i.e. the probability that a band state is populated is < 1. Then, the integral (7.1) can
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Table7.1 Bandgap, Eg@V) mi(em™) Ne@em™) Ny(em™)

1ntrinsic carrier concentration, 6

conduction band and InSb 0.18 1.6 x 10

valence-band edge density of InAs 0.36 8.6 x 1014

states at 7 = 300K for Ge 0.67 24 %1018 1.04 x 10 6.0x10'8

various semiconductors Si 1124 1.0x 100 728x 10" 1.05x 10!

GaAs| 143 1.8 x 106  4.35x 107 533 x 10'8
GaP 2.26 2.7 x 100
GaN 3.3 «l1

be executed analytically and the concentration n of electrons in the conduction band
is given as

mek T\ Er — E Er — E
n=2 ( 2:'('h2 ) eXp (%) = NC eXp (%) . (710)

For the Boltzmann approximation and a parabolic valence band, the density of holes
is given by

kT \"? Er— E Er— E
p=2(r;};h2) exp (—%):N\/ exp(—%). (7.11)

The product of the electron and hole density is

Ec—E E
np=NyNcexp(———-"Y)=NyNcexp(——2 (7.12)
kT kT

kT X E
_ 3/2 g
4 (27rﬁ2) (maemap)™" exp ( kT) ’

Thus, the product np is independent of the position of the Fermi level, as long as the
Boltzmann approximation is fulfilled, i.e. the Fermi level is not in the vicinity of one
of the band edges within several kT':

Ev +4kT < Er < Ec — 4kT. (7.13)

The relation (7.12) is called the mass-action law.

InFig. 7.2, the product np is shown for silicon over a wide range of Fermi energies.
If Ef is within the band gap, np is essentially constant. If the Fermi level is in the
valence or conduction band, np decreases exponentially.
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Fig. 7.2 (a) np for silicon at 7 = 300K as a function of the position of the Fermi level. The
valence-band edge Ev is chosen as E = 0. np is constant for the range of Fermi energies given by
(7.13) (4kT =~ 0.1eV). (b) n, p and ,/np as a function of the Fermi level

7.3 Intrinsic Conduction

First, we consider the conductivity of the intrinsic, i.e. an ideally pure, semiconductor.
AtT = Oall electrons are in the valence band, the conduction band is empty and thus
the conductivity is zero (a completely filled band cannot conduct current). Only at
finite temperatures the electrons have a finite probability to be in a conduction-band
state and to contribute to the conductivity. Due to neutrality, the electron and hole
concentrations in the intrinsic semiconductors are the same, i.e. each electron in the
conduction band comes from the valence band,

—n+p=0, (7.14)
or nj = p;. Therefore
/ Eq
ni = p = NV Nc exXp _Zk_T
kT \*? s E
_ /4 _ Lg
=2 (27rh2) (memy)™™ exp ( _2kT) . (7.15)
The mass-action law
np =n; p; = nj = p; (7.16)

will be essential also for light and moderately doped semiconductors. The intrinsic
carrier concentration is exponentially dependent on the band gap. Thus, in thermo-
dynamic equilibrium intrinsic wide-gap semiconductors have much smaller electron
concentrations than intrinsic small-gap semiconductors (see Table 7.1). The intrinsic
carrier concentration of Si (in cm™3) has been determined to be (within 1%, T in K)
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Fig. 7.3 (a) Band gap of silicon versus temperature. (b) Intrinsic carrier concentration of sili-
con versus temperature. Solid line is (7.17) using E; = 1.204eV — (2.73 x 1074 eV/K) T [491],
symbols are experimental data from [492]

nd = 1.640 x 10'5 717 exp (—%) (7.17)
for temperatures between 77 and 400K [489, 490] (Fig.7.3).

As we will see later in Part II, many semiconductor devices rely on regions
of low conductivity (depletion layers) in which the carrier concentration is small.
Since the carrier concentration cannot be smaller than the intrinsic concentration
(n 4+ p = 2n;), an increase of temperature leads to increasing ohmic conduction in
the depletion layers and thus to a reduction or failure of device performance. The
small band gap of Ge leads to degradation of bipolar device performance already
shortly above room temperature. For silicon, intrinsic conduction limits operation
typically to temperatures below about 300 °C. For higher temperatures, as required
for devices in harsh environments, such as close to motors or turbines, other semi-
conductors with wider band gaps need to be used, such as GaN, SiC or even diamond.

From the neutrality condition for the intrinsic semiconductor (7.14), (7.10) and
(7.11), the Fermi level of the intrinsic semiconductor can be determined as

Ev + Ec kT Ny Ev + Ec 3 np
Ek=Fi=——+—In{—)=——4+-kTIn{—). (7.18
rmamtge () B e p () o

Since the hole mass is perhaps a factor of ten larger than the electron mass, the
second term has the order of kT'. Thus, for typical semiconductors where Eg > kT,
the intrinsic Fermi level, denoted by Ej, is close to the middle of the band gap, i.e.
E; =~ (Ec + Ev)/2.

The situation for an intrinsic semiconductor is schematically shown in Fig.7.4b.
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Fig. 7.4 Density of states
(left column), Fermi
distribution (center column)
and carrier concentration
(right column) for (a) n-type,
(b) intrinsic and (c¢) p-type
semiconductors in thermal
equilibrium

7.4 Doping

7.4.1 Concept
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The modification of the conductivity of a semiconductor using point defects is termed
doping. In 1930 electrical conduction of semiconductors was attributed solely to
impurities [493]. However ‘chemically pure’ substances become conductive upon
deviation from stoichiometry, e.g. historically found for changes in the anion con-
centration and conductivity in Cul [31] (p-type) and ZnO [70] (n-type). The modifi-
cation of Cul by exposure to different partial pressure of iodine in organic solutions
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with different iodine concentration [34] and subsequently various concentrations of
copper vacancies [494] can be considered the first doping of a semiconductor (1909).

The electronic levels of a defect or an impurity can exist within the forbidden
gap of the bulk host material. These levels can lie close to the band edges or in the
vicinity of the middle of the band gap. In a simplified approach, the first stem from
shallow defects (Sect.7.5), the latter from deep defects (Sect.7.7).

7.4.2 Doping Principles

In [495] various doping principles are formulated. Essentially, the amount of impu-
rities that lead to electrically active dopants is limited by the increasingly probable
formation of compensating defects. In the case of donors, these are electron killers,
e.g. n-type doping of Si:As is limited by the formation of Vg; [496]. In the case of
acceptors, the compensating defects are hole killers. The so-called n-type pinning
energy Ef™" is the Fermi level at which such killer defect (e.g. a cation vacancy)
forms. When the Fermi level reaches the pinning energy, no further progress in n-type
doping can be made, since the spontaneously generated electron killers will negate
the introduced (impurity) donors. As a tendency, materials with low lying conduction
band, i.e. large electron affinity (difference between vacuum level and conduction
band) can be doped n-type. Similarly, p-type doping by acceptors, shifting the Fermi
level towards the valence band, will meet at some point EE™", called p-type pinning
energy, when native hole killers, such as anion vacancies or cation interstitials form
spontaneously. At this point, further p-type doping is no longer possible. p-type dop-
ing is facilitated by materials whose valance band maximum is close to the vacuum
level [495].

A comparison of the wide gap materials ZnO, NiO and MgO is depicted in Fig. 7.5.
The position of the pinning levels is marked on a common energy scale. From the
position of Ep™" it can be understood, that ZnO can be highly n-doped while NiO

— znO }—{ Nio | MgO }——

4o iz
41 i n.pin
s3] |Ect06f12  Ec-33 [EFj
s ? Ec-16
w1
. (1’ 0.9 Ev-08 |0.9
1 [&oi S Ev- .
ol \ v \Ev 1_1| oo

Fig. 7.5 Comparison of ZnO, NiO and MgO on a common energy scale, comparing conduction
band and valence band edges and n-type (red) and p-type (blue) pinning energies (determined for
metal-rich and oxygen-rich conditions, respectively). Adapted from [497]
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and MgO cannot [497]. From EE™", NiO can be doped p-type, while MgO cannot
be doped at all.

For dopability, generally, it is also important that the ionized charges from impu-
rities are free and thus contribute to the free charge carrier density and do not form
localized states, e.g. due to polaronic effects (Sect. 8.6).

7.5 Shallow Defects

In Fig. 7.6, the positions of the energy levels of a variety of impurities are shown for
Ge, Si and GaAs. An impurity for which the long-range Coulomb part of the ion-core
potential determines the energetic level is termed a shallow impurity. The extension
of the wavefunction is given by the Bohr radius. This situation is in contrast to a
deep level where the short-range part of the potential determines the energy level.
The extension of the wavefunction is then of the order of the lattice constant. A view
on the history of the science of shallow impurity states is given in [498, 499].

We will consider first a group-IV semiconductor, Si, and (impurities) dopants
from the groups III and V of the periodic system. When these are incorporated on a
lattice site (with tetrahedral bonds), there is one electron too few (group III, e.g. B)
or one electron too many (group V, e.g. As). The first case is called an acceptor, the
latter a donor. The doping of III-V semiconductors is detailed in [501].

7.5.1 Donors

Silicon doped with arsenic is denoted as Si:As. The situation is schematically shown
in Fig.7.7. The arsenic atom has, after satisfying the tetrahedral bonds, an extra
electron. This electron is bound to the arsenic atom via the Coulomb interaction
since the ion core is positively charged compared to the silicon cores. If the electron
is ionized, a fixed positive charge remains at the As site.

Without being in the silicon matrix, an arsenic atom has an ionization energy of
9.81eV. However, in the solid the Coulomb interaction is screened by the dielec-
tric constant of the material, typically ¢, is of the order of 10 for typical semi-
conductors. Additionally, the mass is renormalized (effective mass) by the periodic
potential to a value that is smaller than the free electron mass. Within effective-
mass theory (Appendix H) Bohr’s theory of the hydrogen problem is scaled with the
(isotropic) effective mass m} and the dielectric constant €, the binding energy (ion-
ization energy) E]}S of the electron to the shallow donor is (relative to the continuum
given by the conduction-band edge E¢)

o _me L meet (7.19)
D™ mo €2 2 (4meg h)? ’
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Fig. 7.6 Energetic position (ionization energy labeled in meV) of various impurities (A: acceptor,
D: donor) in (a) Ge, (b) Si and (¢) GaAs. Based on [500]

Fig. 7.7 Arsenic impurity in @ @ @
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The absolute energy position of the level is Ep = Ec — Eg. The first factor in
the right side of (7.19) is the ratio of effective and free-electron mass, typically 1/10,
the second factor is typically 1/100. The third factor is the ionization energy of the
hydrogen atom, i.e. the Rydberg energy of 13.6eV. Thus, the binding energy in the
solid is drastically reduced by a factor of about 1073 to the 10meV regime. The
excited states of the hydrogen-like spectrum can also be investigated experimentally
(Sect.9.7).

The extension of the wavefunction of the electron bound to the fixed ion is given
by the Bohr radius

my
ap = — €. dg, (7.20)
m*

[

where ag = 0.053 nm denotes the hydrogen Bohr radius. For GaAs ap = 10.3 nm.
A similar value has been determined for InP [502]. For semiconductors with a non-
isotropic band minimum, such as Si, Ge or GaP, an ‘elliptically deformed’ hydrogen
problem with the masses m; and m has to be treated [503].

An impurity that fulfills (7.19) is called an effective-mass impurity. For GaAs, the
effective-mass donor has a binding energy of 5.715 meV, which is closely fulfilled for
several chemical species (Table7.3). In GaP, experimental values deviate consider-
ably from the effective-mass donor (59 meV). For silicon, considering the anisotropic
tensor of the effective masses, the result for the effective-mass donor binding energy
is 29 meV [503]. Some experimentally observed values are summarized in Table 7.2.

Table 7.2 Binding energies EB of Li and group-V donors in elemental semiconductors

Li N P As Sb
C 1700 ~500
Si 33 45 49 39
Ge 9.3 12.0 12.7 9.6

Data for carbon from [505]. All values in meV

Table 7.3 Binding energies EB of donors in GaAs (data from [506]), GaP (data from [507]) and
GaN (low concentration limits, data from [508, 509])

V site 11T site
GaAs S 5.854 C 5913
Se 5.816 Si 5.801
Te 5.786 Ge 5.937
GaP (0] 897 Si 85
S 107 Ge 204
Se 105 Sn 72
Te 93
GaN (0] 39 Si 22
Ge 19

All values in meV
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Fig. 7.8 Electron spin
resonance signal from As
and P in Ge with the
magnetic field H parallel to
[100], T ~ 1.3K. Adapted
from [504]
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Deviations from the effective-mass theory are due to modification of the potential
in the immediate vicinity of the impurity atom and breakdown of the effective-mass
formalism.

Different impurities can have quite similar binding energies. They can be distin-
guished, e.g. by electron spin resonance (ESR). At low temperatures the electron
is localized on the impurity and the hyperfine interaction with the nucleus can be
resolved in ESR. In Fig. 7.8 data are shown for As and P in germanium. The multiplets
distinguish the nuclear spins I = 3/2 for arsenic ("> As) and I = 1/2 for phosphorus
('P) [504].

The donors are typically distributed statistically (randomly) in the solid. Otherwise
their distribution is called clustered. The concentration of donors is labeled Np and
usually given in cm—3.

The concentration of donors populated with an electron (neutral donors) is denoted
by NJ, the concentration of ionized donors (positively charged) is N . Other con-
ventions in the literature label the concentrations N; and N, respectively:

Ny = Nj = Np f(Ep) (7.21a)
No = Nj = Np (1 — f.(Ep)), (7.21b)

with f.(Ep) = [1 + exp(Ep — EF)]_I. For the sum of these quantities the condition

Np = Nj + N} (7.22)
holds.
The ratio of the two concentrations is first given as (caveat: this formula will be
modified below)
NS N Er— E
—Ez—lszexp L= (7.23)
Np N 1-—7f kT

Now, the degeneracy of the states has to be considered. The donor charged with
one electron has a 2-fold degeneracy g; = 2 since the electron can take the spin up and



7.5 Shallow Defects 215

down states. The degeneracy of the ionized (empty) donor is gy = 1. Additionally,
we assume here that the donor cannot be charged with a second electron (cmp.
Sect.7.7.2). Due to Coulomb interaction, the energy level of the possible Ny state is
in the conduction band. Otherwise, a multiply charged center would be present. We
also do not consider excited states of N that might be in the band gap as well. In the
following, we will continue with §p = g1/go = 2 as suggested in [510].2 We note that
the definition of the degeneracy factor for donors (and acceptors, see (7.39)) is not
consistent in the literature as summarized in [511]. Considering now the degeneracy,
(7.23) is modified to

Ny N1 (EF - ED) (7.24)

— = — =(p ex
NS TN, PP\ Tar
This can be understood from thermodynamics (cf. Sect.4.2.2), a rate analysis or
simply the limit 7 — oo.
The probabilities f' and f° for a populated or empty donor, respectively, are

fl= M ! (7.25a)
Np 5" exp (B25Er) 41 '
N 1

o= (7.25b)

No  gp exp (—E=Fe) 417

First, we assume that no carriers in the conduction band stem from the valence
band (no intrinsic conduction). This will be the case at sufficiently low temperatures
when Np > n;. Then the number of electrons in the conduction band is equal to the
number of ionized donors, i.e.

No o
1+ gp exp (B2E2)  1+n/m

n:fOND:N():

D>

with ny = (Nc/gp) exp (—Ep/kT). The neutrality condition (its general from is
given in (7.41)) is
—n+ NI =—-n+Ny=0, (7.26)

leading to the equation (n is given by (7.10))

=0. (7.27)

Er — E N
Ncexp( F c) D

i) T e (B

2We do not agree with the treatment of the conduction band valley degeneracy in [510] for the donor
degeneracy factor for Ge and Si.
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Fig. 7.9 (a) Position of the Fermi level in Si:P (Np = 105 ecm—3, E{; = 45meV, no acceptors)
as a function of temperature without consideration of intrinsic carriers. Zero energy refers to the
(temperature-dependent, Table 6.4) conduction-band edge Ec with approximative solutions for low
(dashed line, (7.29)) and high (dash-dotted line, (7.30)) temperatures. (b) Corresponding density
of conduction-band electrons as a function of temperature

Solving this equation will yield the Fermi level (as a function of temperature T,
doping level Ep and doping concentration Np).? The solution is

172
[1 + 44p x—zexp (%)] -1

Ep = Ec — E2+ kT In
P S Bo 2p

(7.28)

For T — 0 the Fermi level is, as expected, in the center between the populated and
unpopulated states, i.e. at Er = Ec — ES/Z. In Fig.7.9a the position of the Fermi
is shown for a donor with 45meV binding energy in Si. For low temperatures the
solution can be approximated as (dashed curve in Fig.7.9b)

1 1 Np
Er = Ec— - E2+ kT 1 ) 7.29
F €72 D+2 n(ﬁDNC) ( )

The freeze-out of carriers in n-type silicon has been discussed in detail in [512],
taking into account the effects of the fine structure of the donor states. We note that
the fairly high donor binding energy in silicon leads to freeze-out of carriers at about
40K and is thus limiting for the low-temperature performance of devices. Ge has
smaller donor ionization energies and subsequently a lower freeze-out temperature of
20K. For n-type GaAs, conductivity is preserved down to even lower temperatures.

3 As usual, the Fermi level is determined by the global charge neutrality, see also Sect.4.2.2.
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We note that the freeze-out of carriers involves the recombination of free electrons
with the ionized donors. This aspect is considered in Sect. 10.9. Microscopically this
process is equal to the emission of a (far infrared) photon [513, 514]. Similarly the
release of an electron from the donor is due to the absorption of a photon.

For higher temperatures, when the electron density saturates towards Np, the
approximate solution is (dash-dotted curve in Fig.7.9a)

N
Ep = Ec + kT In (—D) . (7.30)
Nc

The electron density 7 is given (still in the Boltzmann approximation) by

R 22\ 712
E]g [1+4gD%—2 exp(ﬁ)] —1
kT 2 dp
2 N,
= D - (7.31)
A Np E} /
1+ [1 +49p Fo exp (ﬁ)]

n = Nc exp (—

The theoretical electron density as a function of temperature is shown in Fig. 7.9b. It
fits very well to experimental data for arsenic doped germanium [515] as shown in
Fig.7.10 (Arrhenius plot, Inn vs. 1/T).

For low temperatures, the solution (7.31) is close to

12

NpN, E?
n DC exp (——D) = /n Np. (7.32)
gp

Fig. 7.10 Electron Temperature (K)
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For high temperatures, n = Np. This regime is called exhaustion or saturation
since all possible electrons have been ionized from their donors. We note that even
in this case np = n;p; holds, however, n > p.

While the characteristic energy for the ionization of electrons from donors is EZ,
at high enough temperatures electrons are transferred also from the valence band
into the conduction band. Thus, in order to make the above consideration valid for
all temperatures, the intrinsic conduction also has to be considered. The neutrality
condition (still in the absence of any acceptors) is

Using (7.10) and p = ”12 /n, the equation reads:

Er—E 2 N
Ncexp ( F C) _ 2 =0, (134
kT Ncexp( kT ) 1+9D6Xp( kT )
The solution is
NZ—1
Ep = Ec — Eb,+ kT In [M} , (1.35)
39p
with
13
~NEa+ [/ (NEa)? — 4N )
= : (7.36a)
E 2F
B = N& +3gpNcNp exp (ﬁ) + 3g3n? exp (k_YP) (7.36b)

a = 2N + 94 Nc Np exp Eo) _ 1853 n2 exp ZEp (7.36¢)
¢ kT DT kT )’ '

The temperature-dependent position of the Fermi level is shown in Fig.7.11. The
carrier concentration is given by

E_]%) ﬂ/'}/‘i'r)//Né_l' (7.37)

n = Nc exp (_kT 300
The three important regimes are the intrinsic conduction at high temperatures when
n; 3> Np, the exhaustion at intermediate temperatures when n; << Np and kT > Ep,
and finally the freeze-out regime for kT < Ep at low temperatures when the elec-
trons condense back into the donors. The three regimes can be seen in the experi-
mental data of Fig.7.10 for donors (n-Ge) and Fig.7.15 for acceptors (p-Ge).
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Fig. 7.11 (a) Position of the Fermi level in Si:P (Np = 105 ecm—3, E{S = 45meV, no acceptors)
as a function of temperature. The temperature dependence of the band gap (as given in Table 6.4)
has been taken into account. Zero energy refers to the conduction-band edge for all temperatures.
The dotted curve shows Eg/2. The dashed (dash-dotted) line shows the low- (high-) temperature
limit according to (7.29) and (7.18), respectively. (b) Corresponding electron concentration as a
function of temperature. The dashed line shows the intrinsic carrier density

Fig. 7.12 Fermi level in
silicon as a function of
temperature for various
doping levels (n-type (blue
lines) and p-type (red lines))
of 1012, 10%3, ...,

10'8 cm—3. The intrinsic
Fermi level is chosen as zero
energy for all temperatures.
The (temperature-dependent)
conduction and valence band I 108
edges are shown as dashed
lines
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A similar plot as in Fig.7.11a is shown in Fig. 7.12. With increasing temperature
the Fermi level shifts from close to the band edge towards the band center. At higher
doping the shift begins at higher temperatures.

The electronic states of individual donors can be directly visualized by scanning
tunneling microscopy (STM) as shown in Fig. 7.13 for Si:P. For small negative bias,
tunneling occurs through the charged dopant that is located within the first three
monolayers. At high negative bias the large contribution from the filled valence band
masks the effect of the donor. This image, however, shows that the contrast attributed
to the dopant atom is not due to surface defects or absorbates.
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low negative bias high negative bias

Fig. 7.13 Filled-state image of a phosphorus atom underneath a Si (001) surface at a tunneling
current of 110pA. The doping level is 5 x 107 cm™3. (a) Sample bias —0.6V, (b) sample bias
—1.5V between Si:P and tip. Image sizes are 22 x 22nm?. Reprinted with permission from [516],
© 2004 APS. Lower row Schematic band diagrams for the two bias situations

7.5.2 Acceptors

A group-III atom in Si has one electron too few for the tetrahedral bond. Thus, it
‘borrows’ an electron from the electron gas (in the valence band) and thus leaves a
missing electron (termed hole) in the valence band (Fig.7.14). The energy level of
the impurity is in the gap close to the valence-band edge. The latter consideration
is made in the electron picture. In the hole picture, the acceptor ion has a hole and
the hole ionizes (at sufficient temperature) into the valence band. After ionization
the acceptor is charged negatively. Also, for this system a Bohr-like situation arises
that is, however, more complicated than for donors because of the degeneracy of the
valence bands and their warping.

In Table 7.4 the acceptor binding energies E§ for group-III atoms in C, Ge and
Si are listed. The absolute acceptor energy is given as E = Ey + EX. In Table7.5
acceptor binding energies are listed for GaAs, GaP and GaN. While in GaAs some
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Fig. 7.14 Boron impurity in @ @ @
silicon. Boron accepts one

electron and a fixed negative

charge remains -

Table 7.4 Binding energies ER of group-III acceptors in elemental semiconductors

B Al Ga In
C 369
Si 45 57 65 16
Ge 10.4 10.2 10.8 11.2

Data for diamond from [517, 518]. All values in meV

Table 7.5 Binding energies ER of acceptors in GaAs, GaP and GaN (low concentration values,
data from [519, 520])

V site 11T site
GaAs C 27 Be 28
Si 34.8 Mg 28.8
Ge 40.4 Zn 30.7
Sn 167 Cd 34.7
GaP C 54 Be 57
Si 210 Mg 60
Ge 265 Zn 70
Cd 102
GaN C 230 Mg 220
Si 224 Zn 340
Cd 550

All values in meV

acceptors are close to the effective mass value of 27 meV, in GaP the deviation from
the effective-mass value ~50meV is large.

When the conductivity is determined by holes or electrons, the material is called
p-type or n-type, respectively. We note that some metals also show hole conduc-
tion (e.g. Al). However, for metals the conductivity type is fixed, while the same
semiconductor can be made n- or p-type with the appropriate doping.

The acceptor concentration is denoted by N . The concentration of neutral accep-
tors is N9, the concentration of charged acceptors is N . Of course

Na = N§ + Nj. (7.38)
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The ratio of the degeneracy of the (singly) filled and empty acceptor level is g . In
Ge ga = 4 since the localized hole wave function may be formed in EMA with four
Bloch wave functions (heavy and light holes) [521]. For Si with its small split-off
energy (Table 6.6) g, = 6 according to [522]. For doubly ionized acceptors, e.g. Zn in
Si and Ge (see Sect. 7.7.3), the more shallow level (Zn~ — Zn°) has ga = 6/4 = 1.5
in Ge [522]. A more general discussion of the degeneracy factor for multiply charged
acceptors can be found in [510, 523]. Similar to the considerations for electrons and
donors we have

NS Er — Ea
—= = -—). 7.39
N, N eXp( T (7.39)
The population of the acceptor levels is given by
N
Ny A (7.40)

- 1+ ga exp (——EF,:TEA) '

The formulas for the position of the Fermi level and the hole density are analo-
gous to those obtained for electrons and donors and will not be explicitly given here.
The analogue to Fig.7.11b is shown for data on p-doped Ge [524, 525] in Fig.7.15.
The acceptor activation energy is 11 meV which could be due to various impurities
(cf. Table7.4). The different impurities (B, Al, Ga) can be distinguished by pho-
tothermal ionization spectroscopy [525] (cmp. Sect.9.7).

In Fig. 7.12, the temperature dependence of the Fermi level is included for p-type
Si. With increasing temperature the Fermi level shifts from the valence-band edge
(ForT =0, Er = Ey + EZ /2) towards the middle of the band gap (intrinsic Fermi
level).

Also, the wavefunction at acceptors can be imaged using scanning tunneling
microscopy [526]. In [527] images of ionized and neutral Mn in GaAs have been

Fig. 7.15 Carrier 10" .
concentration as a function — Ge
12
of temperature for p-type Ge. e 10
The net shallow level o 107
concentration is s
2 x 101%cm™3. Solid line is = 10!
fit to the data, the dashed line = i
indicates the intrinsic hole g 10°1
concentration pj. Adapted & .. i ES=11meV
o 10°h
from [525] P ': P,
£ 1070
10° :

0 2‘0 4.0 6.0 8‘0 160 1é0 14‘10 1é0
1000/T (K™)
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Fig. 7.16 (a) Tunneling /-V characteristic of GaAs:Mn sample. Solid (dashed) line is for pure
GaAs (subsurface Mn on Ga site). Urp denotes the simulated flat-band voltage. Adapted from [527].
(b, ¢) STM images of a Mn atom underneath a GaAs (110) surface. The doping level is 3 x
108 cm=3. (b) Sample bias —0.7V, (c¢) sample bias +0.6 V. Below the images are schematic band
diagrams of GaAs:Mn and tip. Image sizes are (b) 8 x 8nm? and (c) 5.6 x 5nm?2. Reprinted with
permission from [527], ©2004 APS. Lower row under parts (a, b): Schematic band diagrams for
the two bias situations

reported (Fig.7.16b). The tunneling /—V characteristics are shown in Fig.7.16a. At
negative bias, the acceptor is ionized and appears spherically symmetric due to the
effect of the A~ ion Coulomb potential on the valence-band states. At intermediate
positive voltages, tunneling is through the neutral state. The wavefunction of A°
looks like a bow-tie due to the admixture of d-wavefunctions [528]. The Mn atom
is presumably in the third subsurface atomic layer. At even higher positive bias the
contrast due to the dopant is lost because the image is dominated by a large tunneling
current from the tip to the empty conduction band.

7.5.3 Compensation

When donors and acceptors are simultaneously present, some of the impurities will
compensate each other. Electrons from donors will recombine with holes on the
acceptors. Depending on the quantitative situation the semiconductor can be n- or p-
type. This situation can be invoked by intentional doping with donors or acceptors or
by the unintentional background of donors (acceptors) in p-doped (n-doped) material.
Also the formation of pairs, exhibiting a new defect level different from the single
donor or single acceptor, has been described, e.g. for Se and B in silicon [273].
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The charge-neutrality condition (now finally in its most general form) reads
—n+p—Ny+Ng =0. (7.41)

We will now discuss the case of the presence of donors and acceptors, but limit
ourselves to sufficiently low temperatures (or wide band gaps) such that the intrin-
sic carrier density can be neglected. We assume Boltzmann statistics and assume
here Np > Na. Then it is a very good approximation to use N, = N, since there
are enough electrons from the donors to recombine with (and thus compensate) all
acceptors. Under the given assumptions regarding the temperature p = 0 and the
material is n-type. Thus, in order to determine the position of the Fermi level, the
charge-neutrality condition

n+Na—Nj=0 (7.42)

must be solved (compare to (7.27))

Er—E N
Nc exp (F—C)+NA b =0 (7.43)
kT 1+ g exp(EER)

We rewrite (7.42) and find Np — Ny —n = NJ = N gp exp (Z-22) using
(7.24). Using again (7.42) and also (7.10), (7.43) can be written as

N N E}
M = A_C exp|——=2), (7.44)
Np—Npo—n  gp kT
a form given in [529]. Analogously for compensated p-type material
N N ER
plptNo) My exp( ) (7.45)
Na—Np—p ga kT
holds.
The solution of (7.43) is
PAYLE
[a + 4gp D Aexp( )] -
Ep = Ec — E5 +kT In - , (7.46)

29p
with

NA Eb NA
=1 = =14+4—= 7.47
a=1+gp Ne exp (kT) + (7.47a)
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Nc EY
- _¢ =D} 7.47b
0 o T ( kT) ( )
The carrier density is best obtained from (7.44),
Na +
nz\/(NA_ﬁ)2+4ND6_ATﬂ~ (7.48)

For No = O we have o = 1 and (7.28) is reproduced, as expected. For T = 0 (and
Na # 0) the Fermi energy lies at Er = Ep since the donor level is partially filled
(N]g = Np — N,). For low temperatures the Fermi level is approximated by

(7.49)

Np/Na — 1
EFEEC—Eg—f—len(—D/AA )

(%))

The corresponding carrier density at low temperatures is

N, Eb N,
n=-Sexp(--2)(2-1). (7.50)
gp kT NA

For higher temperatures (7.32) holds approximately for n > N,; the slope is
now given by E]’S /2 as in the uncompensated case (Fig. 7.17b). For sufficiently high
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Fig. 7.17 (a) Position of Fermi level in partially compensated Si:P,B (Np = 10" em =3, E} =
45 meV, EZ = 45meV, solid line No = 1013 cm™3, dashed line Na = 0, dash-dotted line Na =
1012 cm™3, short-dashed line Na = 10'* cm™3, dash-double dotted line N = 5 x 10'4cm*3) as
a function of temperature. (b) Corresponding electron concentration for Nao = 103 cm=3 as a
function of temperature (neglecting intrinsic carriers), dashed line for No = 0 according to (7.31),
dash-dotted line approximation for n < Ny as in (7.50)
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temperatures in the exhaustion regime (but still n; < n) the electron density is
given by

n = Np — Na. (7.51)

Ateven higher temperatures the electron density will be determined by the intrinsic
carrier concentration. Only in this case p # 0!

An experimental example is shown in Fig.7.18 for partially compensated p-Si
(with Np < Np). The change of slope around p ~ Np, is obvious.

If donors are added to a p-type semiconductor, first the semiconductor remains
p-conducting as long as Np < Nj. If the donor concentration becomes larger than
the acceptor concentration, the conductivity type switches from p- to n-conduction.
If the impurities are exhausted at room temperature, the lowest carrier concentration
is reached for Np = N4. Such a scenario is shown for p-type In,Ga;_,As;_,N,
doped with various concentrations of Si in Fig.7.19. At high Si incorporation, the
number of charge carriers saturates due to autocompensation (see Sect. 7.5.5) and the
formation of Si precipitates. Since the ionization energies of donors and acceptors
are typically different, the situation for Np & N needs, in general, to be investigated
carefully and will depend on the temperature.

7.5.4 Multiple Impurities

If more than one donor species is present, (7.43) can be generalized, e.g. for the case
of two donors D1 and D2 in the presence of compensating acceptors,

Npy Np»

1+ g1 exp(EzEe) 1+ gy exp(Efoe)

n+ Ny — =0. (7.52)
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Fig. 7.19 Carrier concentration and conductivity type (red circles p, blue squares n) for MOVPE-
grown InyGaj_yAs;_yNy layers on GaAs (001) (layer thickness ~ 1pum, x ~ 5%, y ~ 1.6%)
doped with different amounts of silicon. The ordinate is the ratio of the partial pressures of disilane
and the group-I1I precursors (TMIn and TMGa) in the gas phase entering the MOVPE reactor. Lines
are guides to the eye. Experimental data from [531]
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Fig. 7.20 (a) Electron concentration versus temperature as determined from Hall effect for a CdTe
sample doped with indium. (b) —k7T drn/d EF, as determined from the experimental Hall data (sym:-
bols). The solid line is theory for three donor levels (Ep; = Ec — 0.37eV, Np; = 2.5 x 102 cm—3;
Epy = Ec — 0.24eV, Npp = 7.0 x 10" em™3; Ep3 = Ec —0.18eV, Np3 = 2.5 x 10! cm™3)
whose energy positions are indicated by dashed lines. Adapted from [533]

This case is treated in [532]. Simple high and low temperature approximations can
be found where the trap with the larger and smaller activation energy, respectively,
dominates. The case for multiple acceptors (and compensating donors) is treated anal-
ogously. As detailed in [533], the function dn/d Er has a maximum at the donor level
position; this can be used to visualize the contribution of several donors (with suffi-
ciently different binding energies) from n(7') as measured by Hall effect (Fig.7.20).
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7.5.5 Amphoteric Impurities

If an impurity atom can act as a donor and acceptor it is called amphoteric. This can
occur if the impurity has several levels in the band gap (such as Au in Ge or Si).
In this case, the nature of the impurity depends on the position of the Fermi level.
Another possibility is the incorporation on different lattice sites. For example, carbon
in GaAs is a donor if incorporated on the Ga-site. On the As-site carbon acts as an
acceptor.

Thus, e.g. crystal growth kinetics can determine the conductivity type. In Fig. 7.21
the conductivity due to carbon background is shown for GaAs grown using MOVPE
under various growth conditions. At high (low) arsine partial pressure incorporation
of carbon on As-sites is less (more) probable, thus the conductivity is n-type (p-type).
Also, growth on different surfaces can evoke different impurity incorporation, e.g.
n-type on (001) GaAs and p-type on (311)A GaAs, since the latter is Ga-stabilized.

The charge density at an impurity nucleus can be investigated via the isomer
shift as determined by Mossbauer spectroscopy [535, 536]. The incorporation of
the isotope ''°Sn can be controlled in III-V compounds to be on cation or anion
site as donor or acceptor, respectively. This is accomplished by introducing ''°In or
119Sb on group-III and group-V site, respectively, both decaying into ''”Sn without
leaving their lattice site. The isomer shifts of '?Sn in various III-V compounds
are shown in Fig.7.22. In [536] it is concluded from these data that the tin donor
is formed by a positive tin ion and the electron charge transfer to its neighboring
(group-V) atoms is rather small. For tin as an acceptor, for the present conditions an
ionized, i.e. negatively charged acceptor, the isomer shift follows closely the trend
from substitution in group-IV semiconductors. Therefore four electrons form the
tetrahedral bond, while the extra electron is located rather at the (positively charged)

group-III next neighbors and not in the impurity cell. The difference to the point
charge Coulomb distribution is called central-cell correction.

Fig. 7.21 Background 10"
doping of GaAs due to C ]
carbon in MOVPE for
different ratios of the partial
pressures of AsHz and TMG
(trimethylgallium). The
conductivity type (blue
squares n-type, red circles
p-type) depends on the
incorporation of C from CH3
radicals on Ga- or As-site. |

Lines are guides to the eye. GaAs ,5

Experimental data (001) :

from [534] 10'® Ll Lo
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Deviation from the ideal stoichiometry introduces point defects that can be elec-
trically active and change conductivity type and carrier concentration. In the case of
CulnSe,, excess Cu could go on interstitial positions or promote selenium vacancies,
both leading to n-type behavior. This material is particularly sensitive to deviations
from ideal stoichiometry for both Cu/In ratio (Fig.7.23) and Se deficiency [537].

7.5.6 Autodoping

If intrinsic defects such as vacancies or interstitials, possibly as a result of non-
stoichiometry, or anti-site defects cause electronic levels relevant for conductivity
one speaks of autodoping. An example is the role of A-B antisites in AB,Oy spinels
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Fig. 7.24 Schematic comp. p_type n-type s.i.
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(Sect.3.4.7). In the perfect crystal the A (B) atoms occupy tetraeder (octaeder) places.
Typical charges are A>* and B3*. Thus (without charge transfer) the A atom on
octaeder site (Aop) acts like a donor and the B atom on a tetraeder site (Btq) as an
acceptor. Such defects have been classified in [538] as being able to create compen-
sated, semi-insulating, n-type or p-type material depending on the defect formation
energies and the position of the electronic levels of the Ag and B, defects in the
band gap (Fig.7.24). An example for a p-type spinel oxide is ZnCo, 04 [539].

7.5.7 High Doping

For low doping concentrations, the impurity atoms can be considered to be decoupled.
At low temperature, only hopping from one impurity to the next is possible due to
thermal emission or tunneling and the semiconductor becomes an insulator.

With increasing concentration, the distance between impurities decreases and
their wavefunctions can overlap. Then, an impurity band develops (Fig.7.25). A
periodic arrangement of impurity atoms would result in well-defined band edges as
found in the Kronig—Penney model. Since the impurity atoms are randomly dis-
tributed, the band edges exhibit tails. For high doping, the impurity band over-
laps with the conduction band. In the case of compensation, the impurity band
is not completely filled and contains (a new type of) holes. In this case, conduc-
tion can take place within the impurity band even at low temperature, making
the semiconductor a metal. This metal-insulator transition has been discussed by
Mott [540]. Examples for highly doped semiconductors are transparent conductive
oxides (Chap. 20), the contact layer for an ohmic contact (Sect.21.2.6) or the active
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layers in a tunneling diode (Sect.21.5.9). The physics, properties and preparation of
highly doped semiconductors are treated in detail in [541].

The formation of the impurity band leads to a reduction of the impurity ionization
energy as known from (7.19). Typical results are shown in Fig.7.26a for n-type
Ge [515] and Fig.7.26b for p-type ZnTe [542]. At the critical doping concentration
of N, = 1.5 x 10'7, the activation energy for the carrier concentration disappears.
Similar effects have been observed for Si [543] and GaAs [544]. The freeze-out
of the carrier concentration (see Fig.7.9) disappears as shown in Fig.7.27. Critical
doping concentrations are listed in Table 7.6. The decrease of the ionization energy
EP (donor or acceptor) follows the dependence [515, 543]
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Fig. 7.26 (a) Donor ionization energy in n-type Ge for various doping concentrations. Dashed
line is a guide to the eye. The arrow labeled EB denotes the low-concentration limit (cf. Table 7.2).
Experimental data from [515]. (b) Acceptor ionization energy for ZnTe:Li and ZnTe:P as a function
of the third root of the ionized acceptor concentration. Data from [542]
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Fig. 7.27 Electron
concentration versus inverse
temperature for Si:P for three
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concentrations ((i):
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Table 7.6 Critical doping
concentration for various
semiconductors (at room
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Alg23Gag 77N:Si n 3.5 x 1018 [549]
ZnTe:Li p 4 %108 [542]
ZnTe:P p 6 x 1018 [542]
Zn0:Al n 8 x 10'8 [550]
1/3
N.
—aN'"P=E)|1- (—) , (1.53)
N

where N; is the concentration of ionized dopants. A refined theory, considering
screening, shift and tails of the conduction band and most importantly broadening
of the donor level has been presented in [545].

The critical density can be estimated from the Mott criterion when the distance
of the impurities becomes comparable to their Bohr radius (7.20)

5 3
ap = —
D 2w

NI,

(7.54)
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Table‘ 7.7 Ma.’dmum. Material Type Ne(em™3) Ref.

electrically active doping 5

concentration for GaAs GaAs:Te n 2.6 x 10 [554]
GaAs:Si n 1.8 x 101 [555]
GaAs:C P 1.5 x 10 [556]
GaAs:Be p 2 x 1020 [557]

The pre-factor 3/(27) stems from the random distribution of impurities and disap-
pears for a periodic arrangement. The Mott criterion is (rewriting (7.54))

ap N3 ~0.24. (7.55)

For GaAs with ap = 10.3nm, the criterion yields N, = 1.2 x 10'®cm™3, in agree-
ment with experiment.

The achievable maximum concentration of electrically active dopants is limited
by the concentration dependence of the diffusion coefficient, Coulomb repulsion,
autocompensation and the solubility limit [S01]. In Table7.7 the maximum carrier
concentrations for GaAs with various dopants are listed.

As an example we show the Ga-doping of epitaxial ZnO layers on sapphire
in Fig.7.28. Under slightly Zn-rich (O-polar) conditions the growth mode is two-
dimensional and the carrier concentration increases linearly with the Ga concentra-
tion, 7 & cgy, up to high values in the 10%° cm =3 range [551]. For O-rich (Zn-polar)
conditions the growth mode changes to three-dimensional growth and the activation
ratio of Ga donors becomes low [552]. Above a gallium content of 2 %, the octahe-
dral coordination of gallium and thus the partial segregation into a parasitic ZnGa;O4
spinel phase is observed for [Ga] = 4 % [553].

The random distribution of dopants essentially makes a doped semiconductor a
disordered system. The physics of electronic states in disordered systems has been
reviewed in [558]. A metal-insulator transition is observed at a certain value of

Fig. 7.28 Electron 10" E
concentration as a function 'S F ZnO n/[Ga]=1
of gallium concentration in g 10% r
MBE grown ZnO:Ga on =
sapphire for the two different kel L =
polarities. Adapted E 10"k O-faca ey
from [551, 552] 5
o -
§ 1 DI 8 :E
. X
g 10"k Zn-face
s |
10" i sk

il

10" 107 10" 10" 10" 10
Ga concentration (cm™)
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Fig. 7.29 Zero temperature 10° ; . .
conductivity of Si:P for Si:P B
various (donor) doping 5 Y S -
. : 10%F - .
concentrations. Experimental — Gl
data (symbols) and guide to g ,',
the eye (dashed line). @ 10" i ]
Adapted from [559 —~ i
p [559] | | |
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5 |
10 i
insulator i metal
1 0-2 L ‘I 1
0 2 4 6 8

doping (Np = 3.8 x 10'"® cm™3), as shown in Fig.7.29 for Si:P [559]. For a certain
value of disorder all states become localized (Anderson localization [560], cmp.
Sect. 8.8).

7.6 Quasi-Fermi Levels

The carrier concentrations were given by (7.6) and (7.7). So far, we have only con-
sidered semiconductors in thermodynamic equilibrium for which np = n?. In a non-
equilibrium situation, e.g. for external excitation or carrier injection in a diode, the
electron and hole densities can each take arbitrary values, in principle. In particular,
np will no longer be equal to nl2 and there is no Fermi level constant throughout the
structure. In this case, however, quasi-Fermi levels F,, and F, for electrons and holes,
respectively, are defined via

n(r) = Nc Fip (%) (7.56a)
F, —FE
p(r) = Ny Fi» (—%) . (7.56b)

A quasi-Fermi level is sometimes called imref* and can also be denoted as Ef,
or Er,. We emphasize that the quasi-Fermi levels are only a means to describe the
local carrier density in a logarithmical way. The quasi-Fermi levels can be obtained
from the density via

4W. Shockley had asked E. Fermi for permission to use his name reversed. Fermi was not too
enthusiastic but granted permission.
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Fo = Ec + kT In (i) (7.57a)
Nc
p

Fy=Ey—kT In (—) . (1.57b)
Ny

The quasi-Fermi levels do not imply that the carrier distribution is actually a Fermi
distribution. This is generally no longer the case in thermodynamical nonequilibrium.
However, in ‘well-behaved’ cases the carrier distribution in nonequilibrium can be
approximated locally as a Fermi distribution using a local quasi-Fermi level and a

local temperature, i.e.
1

fe(r, E) = . (7.58)
oo () 1
Using the quasi-Fermi levels, np is given by
F,(r) — F,(r
n(r) p(r) = n exp (%) . (7.59)

‘We note that for an inhomogeneous semiconductor or a heterostructure (cf. Chap. 12),
n; may also depend on the spatial position. In the case of thermodynamic equilibrium
the difference of the quasi-Fermi levels is zero, i.e. F, — F, = 0and F, = F, = EF.

7.7 Deep Levels

For deep levels the short-range part of the potential determines the energy level. The
long-range Coulomb part will only lead to a correction. The term ‘deep level” implies
that the level is within the band gap and far from the band edges. However, some deep
levels (in the sense of the potential being determined by the ion core) have energy
levels close to the band edges or even within a band. Details can be found in [233,
561-564].

The wavefunction is strongly localized. Thus, it cannot be composed of Bloch
functions, as has been done for the shallow levels for the effective-mass impurity.
The localization in r space leads to a delocalization in k space. Examples are Si:S,
Si:Cu or InP:Fe, GaP:N, ZnTe:O. Deep levels can also be due to intrinsic defects
such as vacancies or antisite defects.

Due to the larger distance to the band edges, deep levels are not efficient at provid-
ing free electrons or holes. Quite the opposite, they rather capture free carriers and
thus lead to a reduction of conductivity. Centers that can capture electrons and holes
lead to nonradiative recombination of electrons through the deep level into the valence
band (see also Chap. 10). This can be useful for the fabrication of semi-insulating
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layers with low carrier concentration and fast time response of, e.g. switches and
photodetectors.

While the electronic properties of deep levels can be readily characterized, the
microscopic origin is not immediately apparent. Next to theoretical modeling of
defects and correlation with experimental results, paramagnetic hyperfine interac-
tions have proven useful to identify the microscopic nature of various defects [S565].

7.7.1 Charge States

The deep level can have different charge states depending on the occupancy with
electrons. The energy position within the gap varies with the charge state due to the
Coulomb interaction. Also, the lattice relaxation around the defect depends on the
charge state and modifies the energy level.

The localized charge g4 at the defect is the integral over the change Ap of the
charge density compared to the perfect crystal over a sufficiently large volume Vi,
around the defect

qa = / Ap(r)dr = 25, (7.60)
S €

Voo T

In semiconductors, the charge gqe; is an integer multiple of the elementary charge.
The defect is said to be in the nth charge state. Each charge state has a certain stable
atomic configuration R,,. Each charge state has a ground state and excited states that
can each have different stable atomic configurations.

Now, we discuss how the concentration of the various charge states depends on
the position of the Fermi level. The overall constraint of global charge neutrality
determines the chemical potential of the electron, i.e. the Fermi level in Fermi—Dirac
statistics. We use the approximation that the concentration of defects is so small that
the mutual interaction of defects becomes negligible.

As an example, we treat the possible reaction V? = V* + ¢, where V° denotes
a neutral vacancy and V' is a positively charged vacancy, created by the ionization
of an electron from the vacancy into the conduction band. The free energy G depends
on the numbers n( of neutral and n of positively charged vacancies. The minimum

condition is met by

oG 0G
4G = 2 dng+ 2 dny =0, (7.61)
ano 8n+

The neutrality constraint is dny + dn = 0 and therefore the minimum condition
reads
oG oG

—— = . 7.62
5'71() (9n+ ( )
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For noninteracting defects and using (4.9) we write

8G no

— =GV +kT In| — 7.63
dng (VK n (No) (o3
oG OG(V*Y) 0G(e) £ ny

- = =Gys +kT In| — e » 7.63b
3n+ 8n+ + 3n+ v + n (N+) + H ( )

where No = NZy and Ny = NZ, are the number of available sites, given by the
number N of atomic sites and including possible internal degeneracies Zy and Z,
respectively. Degeneracy factors of deep levels are not a simple subject [522] and,
e.g. the degeneracy factors of Au donor and acceptor levels in Si are under discus-
sion [566-568]. G¢ denotes the free enthalpy of formation of the respective defect,
as in (4.3). We have written the free enthalpy of the separated pair V* and e~ as the
sum G(V*') + G(e™). - = OG(e™)/On, is (by definition) the chemical potential
of the electron, i.e. the Fermi energy Eg of Fermi-Dirac statistics.’ From (7.63a,b)
we find for the ratio of the concentrations of defects ¢y = no/N and ¢, =n /N

@ _Ze (_wa -Gl + EF) _Ze (M) ek
Cy Z() kT Z() kT

where the trap level energy (for the particular charge transition), E(V?) = Gﬁ,o -
G§,+, is the free enthalpy of ionization of V°. We note that ¢y can be obtained from
(4.9) and Ef is determined by the charge-neutrality condition.

As example experimental data on the charge transition Fe’ = Fe™ + e~ of inter-
stitial iron (in tetrahedral position, Fig.7.30a, cmp. Fig.3.18) in silicon is shown.
The concentration of Fe is tracked via the EPR signal from the neutral S = 1 state®
with g-factor g = 2.07 [569]. For n-type samples the iron is in neutral state and the
maximum EPR signal is found. For strongly p-type samples, the Fermi energy is
below the trap level and all iron is in Fe* state, yielding no EPR signal at the given
g-factor. From the investigation of various silicon samples with different doping
levels and consequently different position of the Fermi level, the trap (deep donor)
energy is found to be Ey + 0.375eV as indicated in Fig.7.30b.

5The chemical potential in a one-component system is 1 = G /On = G /n. In a multicomponent
system it is, for the ith component, u; = 0G/0n; # G/n;.

The electron configuration is 3d® with two paramagnetic electrons. Under uniaxial stress along
[100] the EPR line splits into a doublet. [569] Further details can be found in [570].


http://dx.doi.org/10.1007/978-3-319-23880-7_4
http://dx.doi.org/10.1007/978-3-319-23880-7_4
http://dx.doi.org/10.1007/978-3-319-23880-7_4
http://dx.doi.org/10.1007/978-3-319-23880-7_3

238 7 Electronic Defect States

b Fe°
( ) 1.2_| T T T T i
————————— oAl |--- ----|Ee
S| eB | S
1.0F e P | _ % |
|u, 2.07
0.8F Ee— e -
< ®
2 g5}l i
>
y I
w04k e ____ w00 ___ __® 0o __ Ao
0.2f i
[°]
R L
0 20 40 60

EPR signal (arb. units)

Fig. 7.30 (a) Silicon cubic unit cell with an interstitial iron atom (red) at tetrahedral site. (b)
EPR intensity (at 7 = 95K from interstitial iron in neutral state, Fe with S = 1) versus Fermi
level position for iron-doped silicon with varying Fermi level due to different amounts of shallow
impurity levels from to Al, B and P as labeled. The shaded areas indicate the valence and conduction
band. The dashed line at E; = Ev + 0.375eV indicates the trap level. The inset shows a typical
EPR spectrum of Fe?. Adapted from [571], inset adapted from [572]

7.7.2 Double Donors

An impurity that has two extra electrons available after bonding in the matrix may
give rise to a double donor. Typical examples are substitutional chalcogenide atoms
(S, Se or Te) in silicon [573] and germanium [574], interstitial impurities such as
Mg; in Si [575], or group-V atoms on a group-III site in a III-V compound (antisite
defect), such as Pg, in GaP [576] or Asg, in GaAs [577].

The double donor is electronically similar to a helium atom. Due to the repulsive
Coulomb interaction of the two electrons on the neutral double donor, the (single)
ionization energy E; (also often labeled E (0, 1) or E(0, +)) of D° is smaller than
that of Dt (E,, also labeled E(1,2) or E(4, ++)). For He and He" the ratio of
ionization energies is 0.45; for chalcogenides in Si and Ge similar ratios have mostly
been found (Table7.8).

The carrier statistics and the degeneracy factors for a double donor have been
discussed in [510, 578]. Typically, the degeneracy factor for the ionization of the
double donor D® — D¥ is §p = ¢»/g1 = 1/2 and for the ionization D* — D*™ is
9o =g1/g0 =2/1=2.

For the probabilities to find a neutral, single and double ionized donor we find
following the treatment in [578]
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Table 7.8 Binding energies (to conduction band) of double donor chalcogenide impurities in Si

and Ge

Host State

Si DO
D+

Ge Do
D+

All energies in meV, data from [573, 574]

318
612
280
590

2Eg

exXp 7+ T

Se

307
589
268
512

exp

E1+E2
kT

+ exp £ 2EF + 2 exp Btie E‘+EF

oM
- ND eXp E1+E2
d+ _ N_];r —
- Np - exp E1+E2
d++ — N]-D‘r

+exp F ZEF + 2 exp = =F
2 exp = =F

E1+EF

E1+EF

ND exp E1+E2 + exp 2E]: + 2 exp Litke E1+EF

Te
199
411
93
330

(7.65a)

(7.65b)

(7.65¢)

The probabilities are depicted in Fig. 7.31a. The maximum of d* is at the energy

(E1 + E»)/2. Tts value is

1

p (E1 + E;

(a) E(1,2) E(0.1)

Population

r 1 1 h
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—_
=
~

Electrons per donor

)" e

E(1,2) E(0,1)

(7.66)
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Fig. 7.31 (a) Population of states of a double donor (neutral: black, single ionized: red, double
ionized: blue) according to (7.65a—c) as a function of the Fermi level. The ionization energies have
beenchosenas E1 = —0.2eV and E; = —0.4eV and are indicated by dashed lines (kT = 25meV);
these energies are similar to Si:Te (cmp. Table 7.8). The conduction band edge is taken as zero energy.
(b) depicts the according number of electrons 7 ionized from the donor.
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Fig. 7.32 Temperature dependent electron concentration (from Hall data) for Si:Te. (a) Exper-
imental data and fit with double donor model using Nt. = 5 % 10 cm—3, E; = 200meV and
Ey = 440meV (solid line). Single donor models would fail (Ne = 5 x 10" cm™3 and Ny =
2 x 107 em™3, dashed lines). (b) Second ionization step in more detail with fits using different
values for E;; the solid line is for E; = 440 meV, the other dashed lines for E, = 420 and 460 meV.
Adapted from [579]

and reaches a value close to one for (E; — E»)/kT >> 1. In Fig.7.31b the number
of electrons per donor 71 = (N + 2 N3 *)/Np is shown as a function of the Fermi
level; at (E| 4+ E;)/2,exactly n = 1. In Fig.7.32 the temperature dependent electron
concentration in Si:Te is depicted. Up to 570K the single ionization is visible (other
shallow impurities present in the sample in lower concentrations < 10'*cm= play
norole). From the fit E; = 200 % 2.7 meV is determined [579]. Single donor models
would fail. The second ionization step is somewhat masked by the onset of intrinsic
conduction. According to (7.15), the slope of n; is E,/2 ~ 500meV which is similar
to E; ~ 440 meV.

7.7.3 Double Acceptors

In analogy to double donor defects, double acceptors can introduce up to two holes
into the valence band. A typical example is Zn in silicon [580], exhibiting its ‘normal’
acceptor level (Zn°/Zn~) at Ey + 0.31eV. In moderately n-doped silicon another
level (Zn=/Zn?) is observed at Ec — 0.55eV, when the n-doping is sufficient to
partially compensate the Zn and supply one electron for each Zn atom but not
two (2Nz, > Np > Nz,). A similar situation has been observed for Zn in germa-
nium, exhibiting the levels Ey + 0.03eV and Ey + 0.09eV [581]. In Fig.7.33 three
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different Ge:Zn samples are compared. If the additional Sb donor concentration
(Np ~ 3.4 x 10" cm™) is larger than 2Nz, (Nz, ~ 1.2 x 10'®cm™3), the sample
is n-type (upper curve). The slope is similar to the Ge:Sb donor binding energy
(Table7.2). If compensation with donors is weak (Nz, > Np, middle curve) first
the shallow donor level with 0.03 eV activation energy is activated and subsequently
the deeper one with 0.09eV activation energy, creating p-conduction with a satu-
rated hole density of p &~ 2Ny — Np > Nz, (negative Hall coefficient). The two
individual activation processes are sketched as dashed lines in Fig.7.33. If the Sb
concentration is larger than Nz, but smaller than 2Nz,, the shallow acceptor level
is filled with electrons, leaving still the only partially filled deeper acceptor level
available for ionization (lower curve). In this case the sample is still p-type, but the
saturation hole density is p & 2Np — Np < Nz,. The degeneracy factors for Zn in
Si and Ge have been discussed in [522].

7.7.4  Jahn-Teller Effect

The lattice relaxation can reduce the symmetry of the defect. Many defects, such
as a vacancy, a tetrahedral interstitial or an impurity, occupy initially tetrahedral
sites in the zincblende structure. The lattice relaxation reduces the symmetry, e.g.
to tetragonal or trigonal, and therefore causes initially degenerate levels to split.
Such splitting is called the static Jahn—Teller effect [561, 582]. The energy change in
terms of the atomic displacement Q can be denoted (using perturbation theory for the
simplest, nondegenerate case) as —I Q (I > 0). Including the elastic contribution
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with a force constant C, the energy of a configuration Q is
1 2
E:—1Q+§CQ. (7.67)

The stable configuration Q iy, for which the energy is minimal ( Eyy;y ), is therefore
given by
1
Omin = E (7.68a)
IZ

Emin = T~
2C

(7.68b)

Several equivalent lattice relaxations may exist, e.g. a 3-fold minimum for remain-
ing C3, symmetry. The energy barrier between them has a finite height. Therefore,
e.g. at sufficient temperature, the defect can switch between different configurations
and eventually again becomes isotropic (dynamic Jahn-Teller effect). The experi-
mental observation depends on the relation between the characteristic time of the
experiment and the reorientation time constant of the defect.

7.7.5 Negative-U Center

We explain the principle of a so-called negative-U center [583] for the Si vacancy
[584] (cf. Fig.4.2). It was first proposed by Anderson to explain the properties
of amorphous chalcogenide glasses [585]. Many defects in semiconductors exhibit
negative-U behavior, e.g. also the boron interstitial in Si [584, 586]. Coulomb energy
and the Jahn-Teller effect compete for the position of the occupancy level for dif-
ferent charge states. U refers to the additional energy upon charging of the defect
with an additional electron. The Coulomb repulsion of electrons leads to an increase
of the energy, i.e. positive U, which has been calculated to be 0.25eV for the Si
vacancy [587] for all charge states. The occupation level (cf. Sect.4.2.2) Ey(1, 2)
(the index 0 indicates effects only due to many-electron Coulomb interaction), sepa-
rating the domination of V** and V' (Fig.7.34) is 0.32¢€V above the valance-band
edge. Therefore, the occupation level E((0, 1) is expected to lie at about 0.57eV
about Evy.

The Jahn-Teller effect may lead to a splitting of the otherwise 4-fold degenerate
states of the vacancy. A detailed experimental study using hyperfine interactions can
be found in [588]. The schematic level diagram for the Jahn—Teller splitting is shown
in Fig.7.35. The V*7 state (A is always populated with two electrons) is resonant
with the valence band. The 7, state lies in the band gap. When the Jahn—Teller effect
(now on the 7; state) is included, the energies of the different charge states depend
on the configuration coordinate (a mostly tetragonal distortion in the case of the Si
vacancy).
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Fig.7.34 Charge states of the vacancy in silicon. Left level scheme without lattice relaxation, right
level scheme including the Jahn-Teller effect. For a Fermi level below (above) E (0, 2) the charge
state V1 (V0) is dominant
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Fig. 7.35 Jahn-Teller splitting for different charge states of the vacancy. A and 7 refer to irre-
ducible representations of the 7, point symmetry group. A; is nondegenerate and therefore does
not exhibit a Jahn—Teller effect. 7, is triply degenerate. The arrows represent electrons and their
spin orientation

Eyo=E@0,Q) =E@0,Q=0)—-2I10+ %CQZ (7.69a)
Evy+ =E(1,Q)=E(1,Q=O)—IQ+%CQ2 (7.69b)
Eyi+ =EQ2,0)=E2,0=0)+ %CQZ. (7.69¢)

For the n = 2 state the 7, gap state is empty and thus no degeneracy and Jahn—
Teller term arises. For n = 1 there is a linear Jahn—Teller term. The occupation with
two electrons (V) causes an approximately twice as large Jahn—Teller splitting for
the n = O state. The force constant is assumed to be independent of the charge state.

The energies for the minimum configurations Q" . are therefore

min

2

E, Q)) = E(0, 0 =0) —4 2I—C (7.70a)
12
1 = _— _——
E, Q) = E(1,0=0) 5C (7.70b)
EQ2, 0k =EQ2,0=0). (7.70¢)



244 7 Electronic Defect States

The Jahn—Teller energy Ejr = I*/2C lowers the position of the occupancy levels
E calculated with Coulomb terms only. The occupancy levels including the Jahn—
Teller contribution are therefore given as

E(1,2) = Eo(1,2) — Eyr (7.71a)
E©.1) = Eo(0. 1) — 3 Eyp. (7.71b)

For the vacancy in silicon the Jahn—Teller energy Ejr is about 0.19eV. Thus the
E(1, 2)levelislowered from 0.32to 0.13 eV. The E(0,1) occupancy level, however, is
reduced from 0.57 to 0.05eV [584, 589] (see Fig. 7.34). The occupancy level E(0, 2)
is in the middle between E (0, 1) and E(1, 2) (E(0,2) = (E(0, 1) + E(1,2))/2)and
indicated in Fig.7.36a. At this energy, c(V?) = ¢(V*7) and the value of c(V ™) is
small (~ exp £2£2) since E(0, 1) < E(1,2) (cmp. (7.66)).

The relative concentrations of the three charge states are determined by (7.64)
(degeneracy and entropy terms have been neglected)

c(Vtt) E(1,2) — Ex

—C(V+) = exp (—kT ) (7723)
cVH  (EQ.1)—E
) =W (T) . (7.72b)

They are depicted in Fig.7.36a in a plot related to Fig.7.31a. Therefore, V*t*
dominates if Er < E(0, 1) and V° dominates for Er > E(1, 2). In the intermediate
range E(0,1) < Er < E(1,2) we know from (7.72a,b) that VT is dominated by
V0 and V**. However, at this point it is not clear whether V*+ or V° dominates
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Fig.7.36 (a) Population of states of a negative-U defect (neutral: black, single ionized: red, double
ionized: blue) according to (7.65a—c) as a function of the Fermi level. The ionization energies have
beenchosenas £; = —0.4eV and E; = —0.2eV (cmp. Fig. 7.31) and are indicated by dashed lines
(kT = 25meV). The occupancy level E (0, 2) is indicated with a dash-dotted line. The conduction
band edge is taken as zero energy. (b) depicts the according number of electrons ionized from the
defect.
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overall. The ratio of the concentrations of V** and V? is given by

c(V*th) E(1,2)+ E(0,1) —2E¢ 2 oy E(0,2) — Ep (7.73)
P =e —_— ). .
(V) kT P kT
The occupancy level E (0, 2) is thus again given as
EO, )+ E(1,2
£©,2) = LODTELD (7.74)

2

and is shown in Fig.7.34. V** dominates if Er < E(0,2) and V° dominates for
Er > E(0,2). V1 is, for no position of the Fermi level, the dominating charge state
of the Si vacancy. We note that for n-doped Si the V~ and V=~ can also be populated.
The population of the V° state with an extra electron introduces another Jahn—Teller
splitting (Fig. 7.35) that has trigonal symmetry.

Generally, the Jahn—Teller effect can make the addition of an electron cause an
effectively negative charging energy; in this case the center is termed a negative-U
center. We note that the single vacancy in germanium is not a negative-U center due
to smaller Jahn—Teller distortion and smaller electron-lattice coupling [590].

7.7.6 DX Center

The DX center is a deep level that was first investigated for n-doped (e.g. Si-doped)
Al,Ga;_,As. It dominates the transport properties of the alloy for x > 0.22. For
smaller Al concentrations and GaAs the DX level lies in the conduction band. DX-
type deep levels have also been found for other alloys and dopants, e.g. GaAsP:S.
It is experimentally found that the capture process of electrons into the DX
center is thermally activated. The capture energy E. depends on the AlAs mole
fraction (Fig.7.37). The (average) barrier for electron capture has a minimum of
0.21eV for x ~ 0.35, near the crossover point between direct and indirect band gap

Fig. 7.37 Energy barrier for 0.5 T T T T
electron capture E. at the Al Ga, As:Si
Si-DX center in ~
AlyGaj_,As for various Q2 0.4+ ® 7
compositions. Experimental 3 \ .
data from [591] o) °

g 0.3 . ° A

o R
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O
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(cf. Fig.6.19). For lower Al concentrations, the capture barrier increases to 0.4eV
for x = 0.27; for x > 0.35 the capture barrier increases to about 0.3 eV for x around
0.7 [591]. The barrier for thermally releasing carriers from the DX center has been
determined to be about 0.43 eV, independent of the Al mole fraction [591].

Carriers can be removed from the DX center by optical absorption of photons
with energy larger than about 1.2 eV. If carriers are removed by optical excitation at
low temperatures the (re-)capture is so slow (¢ < 1073 cm?) that the carriers remain
in the conduction band and cause persistent photoconductivity (PPC). The PPC is
only reduced upon increasing the sample temperature. The concentration of the DX
center is about the same as the net doping concentration.

The properties of the DX center are reviewed in [592, 593]. So far, no definite
microscopic model of the DX center has been agreed on. Lang [594] proposed that the
DX center involves a donor and an unknown defect (probably a vacancy). It probably
involves large lattice relaxation as in the configuration coordinates model of Fig. 7.38
where the donor binding energy E with respect to the conduction-band minimum,
the barrier for electron capture E., the barrier for electron emission E. and the optical
ionization energy E, are labeled. The donor binding energy is measured with Hall
effect (cf. Sect. 13.2.1) at temperatures sufficient to overcome the capture and emis-
sion barriers, the emission barrier is measured with deep level transient spectroscopy
(DLTS). The capture barrier manifests itself in PPC experiments. We note that the
DX center is related to the L-conduction band. For small Al mole fraction, the DX
level is degenerate with the I"-related conduction band (see Fig.7.38b).

Theoretical models and experimental evidence hint at a vacancy-interstitial model
for the Si-DX center [595]. The donor (Si) is displaced along the (111) direction
from the Ga substitution site. The displacement is predicted to be 0.117 nm and the

(@ (b)
E E

E
Ech Eg Eox
Epxl D : Ecl 1
: »q : »q
qo qt qO qt

Fig.7.38 (a) Schematic configuration coordinate diagram for the DX level with large lattice relax-
ation. g is the configuration of the empty defect, g is the configuration of the filled defect. The
donor binding energy Eg, the barrier for electron capture E., the barrier for electron emission
E. and the optical ionization energy E, are labeled. Ec denotes the conduction-band edge. We
note that in AlGaAs the DX level is associated with the L conduction band (see Fig.6.19). (b)
Schematic configuration coordinate diagram for the DX level in Alp 14Gag g¢As with the DX level
being degenerate with the (I"-related) conduction band


http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_13
http://dx.doi.org/10.1007/978-3-319-23880-7_6

7.7 Deep Levels 247

Fig. 7.39 Absorption
spectrum of GaAs at low
temperatures (7 = 10K)
when cooled in the dark
(solid line). The dashed
(dash-dotted) line is the
absorption after illuminating
the sample for 1 min (10 min)
with white light, leading to
quenching of the EL2-related
absorption. Adapted

from [597]

Absorption coefficient (cm™)

0.8 1.0 1.2 1.4
Energy (eV)

distorted geometry can be viewed as a Ga vacancy and a Si interstitial. The charge
state of the (filled) DX center is proposed to be a two-electron negative-U state.

7.7.7 EL2 Defect

The EL2 defect is a deep donor in GaAs. It is not related to impurities but occurs
for intrinsic material, in particular grown under As-rich conditions. It has physical
properties similar to the DX center. The bleaching of absorption due to EL2, i.e. the
optical removal of electrons from the defect at low temperatures, is shown in Fig. 7.39.
The microscopic model [596] describes the EL2 defect as an arsenic antisite defect,
i.e. an arsenic atom on a Ga site, Asg,. In the charged state the arsenic atom is
displaced from the lattice position and a complex of a Ga vacancy (symmetry 73;)
and an interstitial As (symmetry C3,) with 0.14 nm displacement along (111) forms
(VGa-Asi). The charged state is filled with two electrons.

7.7.8 Semi-insulating Semiconductors

Semiconductors with high resistivity (10’-10° Qcm) are called semi-insulating
(‘s.i.” or ‘si’). Semi-insulating substrates are needed for high-speed devices. The high
resistivity should stem from a small free-carrier density at finite temperature and not
from a small mobility due to poor crystal quality. For sufficiently wide band gap, the
intrinsic carrier concentration is small and such pure material is semi-insulating, e.g.
GaAs with nj = 1.47 x 10°cm—3 and 5.05 x 10® 2cm [598]. Since shallow impuri-
ties are hard to avoid, another route is used technologically. Impurities that form deep
levels are incorporated in the semiconductor in order to compensate free carriers. For
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Fig.7.40 (a) Schematic band diagram of InP with levels of Fe impurities in the 3+ and 2+ charge
states at low temperature. All energies are given in eV. The arrow denotes capture of an electron
(from the conduction band or a shallow donor) on the deep acceptor. Compare this figure also with
Figs.9.33 and 10.25. (b) Depth profile of electron concentration in an InP:Sn/InP:Sn,Fe/InP:Sn
structure. The change An ~ 4.5 x 10'% cm™3 of electron concentration is due to the compensation
by Fe and corresponds to the chemical iron concentration determined by SIMS, [Fe] = 4.9 x
10'% cm 3. Part (b) adapted from [610]

example, a deep acceptor compensates all electrons if Ny > Np. Since the acceptor
is deep (E} > kT), it does not release holes for reasonable temperatures. Examples
of suitable impurities for compensation of electrons are Si:Au [599], GaAs:Cr [600]
and InP:Fe [601]. A deep donor, e.g. InP:Cr [602], is necessary to compensate p-type
conductivity.

Figure 7.40a shows the terms of Fe in InP [603, 604]. An overview of transition
metals in III-V semiconductors can be found in [605]. The electron configuration
of neutral Fe atoms is 3d%4s? (cf. Table 16.2). The Fe is incorporated on the In site
and thus has a Fe?™ state as a neutral acceptor (AY). The Fe?* state has the electron
configuration 3d>. The arrow in Fig. 7.40a represents the capture of an electron from
the conduction band or from a shallow donor. The charge state of the Fe becomes
Fe?* (charged acceptor, A~) with the electron configuration 3d®. The cubic crystal
field (T; symmetry) splits this D Fe state’ into two terms [606] that exhibit further
fine structure [604]. The large thermal activation energy of 0.64 eV found in the Hall
effect on semi-insulating InP:Fe [601] corresponds to the energy separation of the
3E level and the conduction band.

The maximum electron concentration that can be compensated in this way is lim-
ited by the solubility of Fe in InP [607], about 1 x 10'7 cm?. Higher Fe incorporation
leads to the formation of Fe (or FeP) precipitates and degrades the crystal quality.
Only a fraction of the incorporated Fe may then be electrically active and contribute
to the compensation. The maximum electrically active Fe concentration is found

"The notation is 25*!J (multiplicity), with S being the total spin and J being the total angular
momentum.
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to be 5-6x10'cm=3 [608]. The compensation can be directly visualized via the
depth profile of the electron concentration in a n-si-n structure (Fig. 7.40b). The poor
thermal stability of Fe, i.e. high diffusion coefficient, has evoked proposals for more
stable dopants such as InP:Ru [609].

7.7.9 Isoelectronic Impurities

Isoelectronic impurities, generally represent a deep level with a short range potential.
The isoelectronic trap introduces a bound state for an electron or a hole. Once a
carrier has been captured, the defect becomes charged. The other carrier type is then
easily trapped, forming a bound exciton (Sect. 10.3.2). The theory of isoelectronic
impurities is outlined in [611]. A detailed theoretical treatment of N in GaAs and
GaP is given in [472].

In GaP:N, an electron is spatially localized on the N impurity. Most of the wave
function is at the X-point. The nitrogen-bound electron level in GaP (A| symmetry) is
close to the conduction band edge and within the band gap. Important for the energy
position is the lattice relaxation, leading to an inward relaxation of the surrounding Ga
atoms (Fig. 7.42). Due to the spatial localization of the wave function it is delocalized
in k-space (Fig.7.41a) and obtains a sizeable component at the I"-point, facilitating
zero-phonon absorption from the valence band. This effect is present only when
the lattice relaxation around the impurity is considered; without relaxation the I"-
component is zero, with relaxation about 1 % [472]. The I"-component of the wave-
function is larger for localization at an isoelectronic impurity than at a shallow donor
such as sulfur [612]. This way a large oscillator strength for optical transitions occurs
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Fig. 7.41 (a) Model calculation of the wave-vector dependence of the probability density of an
electron bound to a 10meV deep isoelectronic trap (N) and to a 100meV deep shallow donor (S) in
GaP. Adapted from [612]. (b) Wavefunction (isosurface at 20 % of maximum) of isolated nitrogen
(N) and neighboring N-N pair (NN ) in GaP. Adapted from [472]
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Fig. 7.42 Energy levels of nitrogen impurity states in GaP (left) and GaAs (right). The energy
scale is relative to the bulk GaP valence band maximum, the conduction band minima (CBM) are
thus shown relative to the vacuum level. The conduction band is shown in grey. For both materials,
(a) denotes the isolated N impurity level calculated without lattice relaxation (dashed line), and (b)
with lattice relaxation. (c) denotes the position of N-N pair levels, m denoting the neighbor. (d)
shows selected experimental data. NN; denotes the direct neighbor NN-pair. The other NN,, follow
the usual nomenclature as in [616]. Data taken from [472] (color figure online)
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Fig. 7.43 Pressure dependence of the energy of excitons bound to isolated nitrogen impurities in
GaAs (circles), measured from the top of the GaAs valence band. The dashed lines are the pressure
dependent GaAs bulk band gaps (cmp. Fig. 6.42). The solid (dash-dotted) line is a theoretical model
for the nitrogen-bound exciton (electron) level. Adapted from [615]

(Sects.9.6.9 and 10.3.2). The wavefunction of an isolated single N impurity and a
neighboring N—-N pair (NN ) in GaP are shown in Fig. 7.41b.

Isolated nitrogen impurities in (unstrained) GaAs introduce states only within
the conduction band (Fig.7.42). The reason is that the GaAs conduction band edge
is further from the vacuum level than that of GaP (see Fig.12.21). Only the NN,
and NNy pair levels are theoretically expected to be within the GaAs band gap. The
index denotes the n-th neighbor position. The NN, level has been experimentally
observed [613, 614]. The isolated nitrogen impurity level is forced into the GaAs
band gap upon hydrostatic pressure [614, 615] (Fig.7.43). Further levels deeper
within the band gap are due to clusters containing more than two nitrogen atoms.
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Fig. 7.44 Image of (a) topography (Az = 2.8 nm) and (b) work function (A¢ = 4.21-4.26¢eV) of
a surface step along [111] on a n-GaP(110) surface cleaved in UHV. Adapted from [618]. (¢) and
(d) show the corresponding linescans. Adapted from [618]

7.7.10 Surface States

The investigation of (semiconductor) surfaces is a large field with sophisticated
methods that allow real-space imaging with atomic resolution by scanning probe
microscopy and highly depth resolved electronic studies. The surface represents
first of all a break in the periodic crystal potential and thus a defect of the bulk
crystal. The unsatisfied bonds partly rearrange, e.g. by building dimers, forming a
surface reconstruction or remain as dangling bonds. The surface exhibits a surface
density of states. Such states can lie in the band gap and capture electrons, leading
to recombination and a depletion layer. For a brief introduction on semiconductor
surface physics see Chap. 11; for more details we refer to [617].

As an example of the formation of electronic states at surface defects we show
in Fig.7.44 the comparison of topography and work function (measured by Kelvin
probe force microscopy [618]) at a surface step on a GaP(110) surface that has been
prepared by cleaving in-situ in ultrahigh vacuum (UHV). The depletion-type band
bending of the surface is about 0.4eV. The further increase of the position of the
vacuum level at the step edge shows the presence of trap states in the band gap
causing the conduction band to bend upwards (cf. Sect.21.2.1). Modeling of the
effect shows that the charge density at the surface is 6 x 10'' cm™2 and at the step
edge 1.2 x 106cm™!.

7.8 Hydrogen in Semiconductors

The role of hydrogen in semiconductors was first recognized in studies of ZnO [619].
It is now clear that hydrogen plays an important role in the passivation of defects.
As a ‘small’ atom, it can attach easily to dangling bonds and form an electron-pair
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bond. Thus, surfaces, grain boundaries, dislocations and shallow (donor and acceptor)
and deep impurity levels become passivated. A good overview and many details
of the physics and technological use of hydrogen in semiconductors can be found
in [620, 621]. The hydrogen must be typically introduced as atomic species into
semiconductors, e.g. from a plasma in the vicinity of the surface or by ion irradiation.

With regard to silicon it is important to note that the Si—H bond is stronger than the
Si—Si bond. Thus a silicon surface under atomic hydrogen exhibits Si—H termination
rather than Si—Si dimers [622]. Due to the stronger bond, the hydrogenation leads to
an increase of the silicon band gap, which can be used for surface passivation [623],
leading to reduced reverse diode current.

The hydrogen concentration in amorphous Si (a-Si) can be as high as 50 % [624].
Electronic grade a-Si contains typically 10-30 atomic % hydrogen and is thus rather
a silicon—hydrogen alloy.

Hydrogen in crystalline silicon occupies the bond-center interstitial position (see
Fig.3.18b) as shown in Fig.7.45a. The complexes formed by hydrogen with shal-
low acceptors and donors have been studied in detail. It is now generally accepted
that for acceptors (e.g. boron) in silicon the hydrogen is located close to the bond-
center position of the Si-B pair (BM, bond minimum) as sketched in Fig.7.46a.
The boron atom forms an electron-pair bond with three silicon atoms of the tetra-
hedra, the fourth silicon bonds to the hydrogen atom. The complex therefore no
longer acts as an acceptor. The silicon atoms and the acceptor relax their positions.
The adiabatic potential energy surface of hydrogen in Si:B is shown in Fig.7.45b.
The hydrogen can sit on four equivalent sites (BM) along the (111) directions of the
initial B—Siy tetrahedron. This reduces the symmetry, e.g. of H-B vibrations [626].

(@) si Si/B (b) \\7 C

0.5 T T T

-1.0F

Energy (eV)

15 AB  ---H'inSi
—H in Si:B

BM
-2.0

1 1 1
-0.5 -0.25 0.0 0.25 i i
Coordinate u along <111> g W e

P S, |

Fig. 7.45 (a) Energy for positions u of the hydrogen atom along the (111) direction for H' in pure
Si (Si atom at u = —0.25) and neutral hydrogen (B atom at u = —0.25). u is measured in units of
+/3ay. For all positions of the hydrogen atom the positions of the other atoms have been relaxed in
the calculation. Data from [625]. (b) Adiabatic potential energy in the (110) plane for hydrogen in
Si:B. ‘BM’ denotes the bond minimum site (high valence electron density), C and C’ are equivalent
for pure Si. Reprinted with permission from [625], ©1989 APS
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Fig. 7.46 Schematic model for hydrogen in silicon forming a complex with (a) a shallow acceptor
(boron, empty orbital) and (b) a shallow donor (phosphorus, double-filled orbital)
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Fig. 7.47 (a) Structure of the V-O complex (A center) in silicon. The black sphere represents the
oxygen atom. Reprinted with permission from [628], ©2004 APS. (b) Calculated ground-state
structure for the V-O-Hj center in silicon. Oxygen is over the C, axis, and the two white spheres
represent hydrogen. Reprinted with permission from [629], ©2000 APS

The energetic barrier for the hydrogen orientation has been determined to be 0.2eV
theoretically [625] for a hydrogen motion along the path BM—C-BM in Fig. 7.45b.
Stress (along [100] and [112]) reduces the symmetry and leads to splitting of the local
vibrational modes, now showing axial symmetry [627]. However, this preferential
orientation disappears with an activation energy of 0.19eV, close to the theoretical
value.

Hydrogen has experimentally been found to also passivate shallow donors. The
microscopic configuration is sketched in Fig. 7.46b. The hydrogen atom sits on the Si—
AB (antibonding) position and forms an electron-pair bond with the silicon atom. The
donor, e.g. phosphorus, is left with a double-filled p-orbital (lone pair) whose level is
in the valence band and thus no longer contributes to conductivity. Molecular hydro-
gen can passivate the so-called A center in Si, an oxygen—vacancy complex [629].
The atomistic configuration of the V-O-H, complex is shown in Fig. 7.47. The deep
double donor S in Si with a level at 0.3 eV below the conduction-band edge can also
be passivated by two hydrogen atoms [630].



Chapter 8
Transport

Abstract The physics of transport in semiconductors is treated foremost for charge
transport. Band transport and scattering, mobility, low field and high field effects as
well as polarons and hopping transport are covered. A short section mentions ionic
transport before heat conduction and coupled heat and charge transport including
thermopower and Peltier effect are discussed.

8.1 Introduction

Charge and heat energy can be transported through the semiconductor in the pres-
ence of appropriate (generalized) forces. Such a force can be an electric field or a
temperature gradient. Both transport phenomena are coupled since electrons trans-
port energy and charge simultaneously through the crystal. First, we will treat the
charge transport as a consequence of a gradient in the Fermi level, then the heat trans-
port upon a temperature gradient and finally the coupled system, i.e. the Peltier and
Seebeck effects. Detailed treatments of carrier transport can be found in [631, 632].

Practically all important semiconductor devices are based on the transport of
charge, such as diode, transistor, photodetector, solar cell and laser.

Carriers move in the semiconductor driven by a gradient in the Fermi energy. We
distinguish

e drift, as a consequence of an electric field E,
e diffusion, as a consequence of a concentration gradient Vn or V p.

In inhomogeneous semiconductors for which the position of the band edges is a
function of position, another force occurs. This will not be treated here, since later
(cf. Chap. 12) it will be included as an additional, internal electric field.

In Sects. 8.2-8.5 we treat band conductivity, i.e. the transport of charge carriers
in extended states, the conduction and valence bands characterized by an effective
mass. Conductivity is then determined by the carrier concentration (free electrons
and holes) and scattering mechanisms (mobility). In disordered semiconductors such
as amorphous material, the charge transport due to hopping between localized states
close to the Fermi level dominates the conductivity which is discussed in Sect. 8.7.
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Many semiconductor properties, such as the carrier concentration and the band
gap, depend on the temperature. Thus, device properties will also depend on temper-
ature. During operation of a device typically heat is generated, e.g. by Joule heating
due to finite resistivity. This heat leads to an increase of the device temperature that
subsequently alters the device performance, mostly for the worse. Ultimately, the
device can be destroyed. Thus cooling of the device, in particular of the active area
of the device, is essential. Mostly the thermal management of device heating limits
the achievable performance (and lifetime) of the device. In high-power devices quite
high energy densities can occur, e.g. the facet of a high-power semiconductor laser
has to withstand an energy density beyond 10 MW cm 2.

8.2 Conductivity

Under the influence of an electric field the electrons accelerate according to

(cf. (6.32))

d dk
Fem' S =SS —gE=—¢E. 8.1)

In the following, ¢ denotes a general charge, while e is the (positive) elementary
charge. We also consider an isotropic effective mass m™ at first. After the time ¢ the
k vector of all conduction electrons (and the center of the Fermi sphere) has been
shifted by 0k

¢eE
0k = —— ¢r. 8.2
5ot (8.2)

In the absence of scattering processes this goes on further (similar to an electron
in vacuum). This regime is called ballistic transport. In a (periodic) band structure,
the electron will perform a closed cycle as indicated in Fig.8.1. Such motion is
called a Bloch oscillation. However, in a bulk crystal the period T of such an oscil-
lation eET /h = 27 /ay is of the order of 10~'%s for E = 10* V/cm. This time is
much longer than a typical scattering time of 10~'*s. Thus, in bulk material the
Bloch electron cannot reach the zone boundary. However, in artificial superlattices
(cf. Chap. 12) with larger periodicity (10 nm), high electric fields (*~10° V/cm) and
high quality (reduced collision time) such motion is possible. We note that in the
absence of scattering, electrons also perform a periodic oscillation in a magnetic field
(cyclotron motion).

In a real semiconductor, at finite temperatures, impurities, phonons and defects
(finally also the surface) will contribute to scattering. In the relaxation-time approx-
imation it is assumed that the probability for a scattering event, similar to friction,
is proportional to the (average) carrier velocity. The average relaxation time 7 is
introduced via an additional term v = —v/7 that sums up all scattering events.!

!Going beyond the relaxation time approximation is discussed in Sect. I.
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Thus, the maximum velocity that can be reached in a static electric field is given by

(steady-state velocity)
eET
v=— . (8.3)

m*

The current density per unit area is then linear in the field, i.e. fulfills Ohm’s law

2
E
j:nqv:—ne 7-:O'E. (8.4)
m*

The conductivity o in the relaxation-time approximation is given by

1’1627'

1
- = . (8.5)
p  m

g =

In the case of a cylindrically symmetric mass such as for electrons in silicon or
germanium, for the effective mass in (8.5) the effective conductivity mass must be

used,
1 1 (2 1
—=z\—+—) (8.6)
m¥ 3 \me my
The specific resistivity is the inverse of the conductivity. Metals have a high con-
ductivity (see Table8.1), e.g. for Cu at room temperature 0 = 5.8 x 10°Q~'em™!.
At low temperatures (4 K) the conductivity is even a factor of 10° higher. The mean

free path d = 7 v is

%
o m*vg
d:

(8.7)

ne?

vg being the Fermi velocity (Ep = m* v% /2). For copper, d = 3mm at low temper-
ature (and thus susceptible to the sample geometry) while at room temperature the
mean free path is only about 40 nm. However, this becomes an issue when the metal
line width and height of interconnects in integrated circuits approaches this length
scale [633] (see Sect.24.5.5).

In semiconductors, the carrier concentration depends strongly on the temperature.
At zero temperature the conductivity is zero. Also, the scattering processes and thus
the relaxation time constant exhibit a temperature dependence. The conductivity
spans a large range from insulating to almost metallic conduction (see Table 8.1).
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Table 8.1 Conductivity at
room temperature for various
metals, semiconductors,
insulators and liquids

Material

Ag

Al

Au

Cu

Fe

Pt

Ge pure (Np ~ 10183 cm—3)
Ge (Np ~ 1013 cm™3)

Ge (Np ~ 107 cm™3)

Ge (Np ~ 1018cm—3)

Si pure

Si:As (Np ~ 3 x 10" cm—3)
Si:B (Na ~ 1.5 x 10" cm™3)
GaAs pure

ZnO:Al (highly doped)
Pentacene

SiO;

Al O3

H,O pure

Hexane

8.3 Low-Field Transport

o(Q 'em™)
6.25 x 10°
3.6 x 103
435 x 10°
5.62 x 10°
1.1 x 10°
1.02 x 10°
102

1

2 x 10!

2 x 102
4.5 %1076
4 x 10?
1.2 x 102
1.4 x 1077
~1 x 10*
10~8-10—4
~10715
~10716
4x1078
~10718

8 Transport

First we consider only small electric fields. The real meaning of this will only become
clear in Sect. 8.4 on high-field transport. In the low-field regime the velocity is pro-

portional to the electric field.

8.3.1 Mobility

The mobility is defined (scalar terms) as

M=E-

(8.8)

By definition, it is a negative number for electrons and positive for holes. However,
the numerical value is usually given as a positive number for both carrier types. In
an intrinsic semiconductor the mobility is determined by scattering with phonons.
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Table 8.2 Mobilities of Material —jin(cm?/Vs) i (cm2/Vs)
electrons and holes at room -
temperature for various Si 1300 500
semiconductors Ge 4500 3500

GaAs 8800 400

GaN 300 180

InSb 77000 750

InAs 33000 460

InP 4600 150

ZnO 230 8

Further scattering is introduced by impurities, defects or alloy disorder. The conduc-
tivity is (8.4)
o=qnp (8.9)

for each carrier type. Using (8.5) the mobility in the relaxation time approximation

1S
qT

m*’

" (8.10)

In the presence of both electrons and holes,
0=0c+0on=—enpy,+eppp, (8.11)

where pi, and p, are the mobilities for electrons and holes, respectively. These are
given by py = —ey/mg and pp = e 7p/my.

As the unit for mobility, usually cm?/Vs is used. While Cu at room temperature
has a mobility of 35cm?/Vs, semiconductors can have much higher values. In two-
dimensional electron gases (cf. Chap. 12), the mobility can reach several 107 cm?/V's
at low temperature (Fig. 12.36). In bulk semiconductors with small band gap, a high
electron mobility is caused by its small effective mass. Some typical values are given
in Table 8.2.

8.3.2 Microscopic Scattering Processes

The relaxation time constant summarizes all scattering mechanisms. If the relaxation
times 7; of various processes are independent, the Matthiesen rule can be used to
obtain the mobility (u; = g 7;/m™)

1 1
—=> - (8.12)
H T Mi
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The various scattering mechanisms have quite different temperature dependences
such that the mobility is a rather complicated function of temperature. In [634]
the mechanisms determining the low and high-field transport properties of (cubic)
semiconductors are reviewed.

8.3.3 Ionized Impurity Scattering

Theoretically, this problem is treated similar to Rutherford scattering. A screened
Coulomb potential is assumed, as the scattering potential

Ze 1 r
Vi) =— — exp (_Z_) , (8.13)

dreger 1 )

where [ is the screening length. The problem has been treated classically by Conwell
and Weisskopf [635] and quantum mechanically by Brooks [636] and Herring. An
expression for the mobility that encompasses the Conwell-Weisskopf and Brooks—
Herring results is derived in [637]. Further details are given in [638, 639]. For the
mobility it is found that

2712 (4meper)? (KT 1
732 72¢3 /m*  Nien In(14b)—1/(1+1/b)’

(8.14)

Mion.imp. =

with b = 4 (k/Ip)> = 8m* E (Ip/h)?. In the Thomas- Fermi screening model

eZ

I3 =4r (8.15)

3\ 4m*e?
NEp) == — '3,
€0€r ™ €o€r h?
The formula (8.14) is valid only for b >> 1, i.e. small carrier densities. A similar

formula from [638] is

(8.16)

Mion.imp. =

12827 (e0e))? (kTY/? [ 24m* epe, (kT)2 7"
m*1/2 72 Niy, €3 ne? h? '

For large ionized impurity (and carrier) density (b < 1), the mobility is given by

[483]
4e 2
S T
Hion.imp. = 33725, n s (8.17)

the value of the pre-factor being about 3 x 10'* (Vs)~!.

The scattering time depends like 7 o« (E/kT)* on the kinetic energy; for moderate
or weak scattering s = 3/2, for very strong scattering, s = —1/2 [632].

For typical substitutional impurities, the charge of the scattering center is | Z| = 1;
in oxides, oxygen vacancies may have Z = 2. At high impurity densities, impurity
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Fig. 8.2 (a) Electron mobility in highly doped silicon. Experimental data (symbols) from various
sources and modeling with ionized impurity scattering with (solid line) and without (dashed line)
considering impurity clustering. (b) Effective impurity cluster charge Zp. Adapted from [640]

clusters may form with | Z| > 1; this will have a strong influence on the scattering rate
since it proportional to Z2. The decrease of mobility for Np > 10?° cm™ (Fig. 8.2a) is
attributed to such effect which can be described with an effective impurity clustering
charge Zp (Fig.8.2b) [640, 641].

8.3.4 Deformation Potential Scattering

Acoustic phonons with small wavevector, i.e. a wavelength large compared to the
unit cell, can have TA or LA character. The TA phonons represent a shear wave (with
zero divergence), the LA phonons are a compression wave (with zero rotation). The
LA is a plane wave of displacement §R parallel to the k-vector q,

R=Asin(q-R—wt). (8.18)

The strain tensor is given by

1
eijzz(inj+qui) cos (QR — wt). (8.19)

It has a diagonal form ¢;; = q;A; for q and w — 0. Therefore, the LA phonon
creates an oscillatory volume dilatation (and compression) with amplitude q - A.
This volume modulation affects the position of the band edges. For the conduction-
band edge the energy change is related to the volume change by the hydrostatic
deformation potential E,c 4o, = VOEc/OV . Since the modulation is small compared
to the energy of the charge carriers, it is mostly an elastic scattering process. The
Hamilton operator for the LA scattering is
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I:I = Eqc.def. (Cl -A). (8.20)

The size of the LA amplitude is given by the number of phonons in the mode that
is given by the Bose—Einstein distribution, Np, (fw) = [exp (z—;)]_l The mobility
due to acoustic deformation potential scattering is found to be

22w e Bt ¢

-3/2
ac.def.

Hac.def. =

where ¢; = pclA, p being the density and ¢, being the sound velocity. The scattering
time increases like 7 o E~!/? with the kinetic energy [632].

The acoustical deformation potential scattering is important at high temperatures.
It is dominating in nonpolar semiconductors (Ge, Si) at high temperatures (typically
at and above room temperature).

8.3.5 Piezoelectric Potential Scattering

In piezoelectric crystals (see Sect. 15.4), i.e. crystals that show an electric polarization
upon strain, certain acoustic phonons lead to piezoelectric fields. In GaAs, with
(111) being the piezoelectric directions, this is the case for shear waves. In strongly
ionic crystals, e.g. II-VI semiconductors, the piezoelectric scattering can be stronger
than the deformation potential scattering. The mobility due to piezoelectric potential

scattering is
16 /27 heper

—-1/2
T, KD (8.22)

Upz.el. =

2
e/c
coerte/c

with K = , ep being the piezoelectric coefficient.

8.3.6 Polar Optical Scattering

LO phonons are connected with an electric field antiparallel to the displacement
(5.52). In the scattering mechanism the absorbed or emitted phonon energy Awy is
comparable to the thermal energy of the carriers. Therefore, the scattering is inelastic
and the relaxation-time approximation does not work. The general transport theory is
complicated. If the temperature is low compared to the Debye temperature, T << &p

1% = —— &Xp\ —+ (8 23)
pol.opt. s .
Lopt 2m a Wo 1
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_ 1 m* 1?2 1 1 . . .
where o = 5=,/ 3ton ( ) is the dimensionless polar constant.

ec0) €0

8.3.7 Dislocation Scattering

Dislocations can contain charge centers and thus act as scattering centers [642].
This has been first demonstrated for n-Ge crystals that have been deformed [643,
644]. The deformation has introduced acceptor-type defects reducing the mobility in
particular at low temperatures (similar to ionized impurity scattering). The mobility
due to dislocation scattering in an n-type semiconductor is given by [645, 646]

3027 2d2 (kT2 Jn
x
Naig €3 2 Lp /m* Nl

fhdisl, = T, (8.24)

d being the average distance of acceptor centers along the dislocation line, f their
occupation rate, Ngis the area density of dislocations and Lp = (ekT'/ (€*n))'/? the
Debye screening length. The relation 1 o< v/n/Ngis has been confirmed for various
n-type GaN samples [647].

8.3.8 Grain Boundary Scattering

The lowering of mobility due to transport across grain boundaries is an important
effectin polycrystalline materials, such as poly-silicon for solar cells or thin film tran-
sistors [648—651]. Grain boundaries contain electronic traps whose filling depends on
the doping of the bulk of the grains. Charges will be trapped in the grain boundaries
and a depletion layer will be created.> At low doping the grains are fully depleted
and all free carriers are trapped in the grain boundaries. This means low conductiv-
ity, however, no electronic barrier to transport exists. At intermediate doping, traps
are partially filled and the partial depletion of the grain leads to the creation of an
electronic barrier AE}, (Fig. 8.3a) hindering transport since it must be overcome via
thermionic emission. At high doping the traps are completely filled and the barrier
vanishes again. Accordingly the mobility goes through a minimum as a function of
the doping concentration (Fig. 8.3b) [648]. In [652] these data have been modeled
with a 20nm grain size, the value found in [648] from TEM analysis.

2The following arguments may only be followed once the concept of depletion layers and band
bending is understood, see Sect.21.2.1.
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Fig. 8.3 (a) Electronic barrier (AE},) for (hole) transport at a grain boundary (GB). (b) Average
hole mobility in poly-silicon, experimental data (symbols) and theoretical model (solid line). The
dependence for monocrystalline silicon is shown for comparison as dashed line. Adapted from
[648]

The expression for the limitation of the mobility due to scattering at grain bound-
aries is given by [651, 653]

e LG -1 AEb
=——— T 2ex (——) , (8.25)
fian 8m*k P kT

where L is the grain size.

8.3.9 Temperature Dependence

The sum of all scattering processes leads to a fairly complicated temperature depen-
dence of the mobility x(7"). In covalent semiconductors (Si, Ge) the most important
processes are the ionized impurity scattering (1 o< T3/?) at low temperatures and
the deformation potential scattering (; o< T~>/2) at high temperatures (Fig. 8.4a). In
polar crystals (e.g. GaAs) at high temperatures the polar optical scattering is dominant
(Fig. 8.4b).

In Fig. 8.5 the electron mobility of bulk and thin-film ZnO is compared. Since
ZnO is polar the mobility at room temperature is limited by polar optical phonon
scattering. In the thin film, grain-boundary scattering (Sect. 8.3.8) additionally occurs
and limits the mobility.

Since the carrier concentration increases with increasing temperature and
the mobility decreases, the conductivity has a maximum, typically around 70K
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Fig. 8.4 (a) Temperature dependence of the electron mobility in n-doped Ge (for various doping
levels from Np ~ 108 for sample A to 10'3 cm™3 for sample F in steps of a factor of ten). Dashed
line indicates T3/ dependence of deformation potential scattering, solid lines are guides to the
eye. Adapted from [515]. (b) 1 (T) for n-type GaAs (Np ~ 5 x 1083 em™3, Ny ~ 2 x 1083 ecm™3).
Solid lines are theoretical mobilities for various scattering mechanisms and combined mobility
according to (8.12). Adapted from [654]
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Fig. 8.5 Temperature dependence of the electron mobility in n-type (a) bulk ZnO and (b) a PLD-
grown ZnO thin film on sapphire. In the latter, grain-boundary scattering is limiting the mobility.
Squares are experimental data, solid lines are theoretical mobilities for various scattering mecha-
nisms and combined mobility according to (8.12). Experimental data from [655]

(see Fig. 8.6). At very high temperature, when intrinsic conduction starts, o shows a
strong increase due to the increase in .

At low temperature, the disorder due to doping (random positions of the impu-
rity atoms) leads to a temperature driven metal—insulator transition as depicted in
Fig.7.29.


http://dx.doi.org/10.1007/978-3-319-23880-7_7
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Fig. 8.6 (a) Carrier concentration and (b) conductivity of n-type Ge as a function of temperature.
The doping level varies from Np & 10'3-10'8 (samples A—F as in Fig. 8.4a where the mobility of
the same samples is shown). The dashed lines are for intrinsic Ge. The solid lines are guides to the
eye. Adapted from [515]

8.3.10 Doping Dependence

The mobility decreases with increasing dopant concentration as already shown in
Figs. 8.2 and 8.4a. In Fig. 8.7a the low doping limit is due to deformation potential
scattering; the decrease with doping is due to ionized impurity scattering. At high
doping level, it becomes more important at room temperature than (acoustical or
optical) phonon scattering [656]. The mobility of carriers in n- and p-type silicon
with very high carrier concentrations is depicted in Fig. 8.7b.

Thus, for bulk material high carrier density and high mobility are contrary targets
and cannot be achieved simultaneously. A solution will be provided with the concept
of modulation doping where the dopants and the (two-dimensional) carrier gas will
be spatially separated in a heterostructure (cf. Sect. 12.3.4).

At high doping, the substitutional character of the impurities may be lost and
secondary phases can arise, e.g. as observed for highly doped ZnO:Ga, exhibiting
octahedral coordination of gallium in a parasitic ZnGa, Oy spinel phase for [Ga]=4 %
[553]. The onset of such segregation phenomena is accompanied with the decrease
of mobility and conductivity.
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Fig. 8.7 (a) Electron mobility in Si:P at room temperature over a wide range of carrier concentra-
tions. (b) Electron mobility in Si:P and hole mobility in Si:B for various high carrier concentrations.
Adapted from [657]

8.3.11 Piezoresistivity

The dependence of resistivity on stress or strain is known as piezoresistive effect,
first described in [658]. It is a consequence of the modification of the band structure
upon stress and the change of effective masses (Sect. 6.10.2). In a cubic material, the
resistivity p; for transport in cartesian direction i changes compared to the unstrained
state in a phenomenological description according to

491

0 = TijOj, (826)

where 7 is the piezoresistivity tensor (8.27) and the o ; form the six-component stress
tensor (5.59),

272 0 0 0
w2 0 0 0
272w 0 0 0
0 0 0 T44 0 0
0 0 0 0 m O
0 0 0 0 0 T44

(8.27)

Values for the piezoelectric coefficients are given in Table 8.3 for Si, Ge and GaAs.

The piezoelectric effect has been discussed in detail [659] and modeled for
p-type Si [660]. We shall only give a simple example which is particularly rele-
vant for advanced CMOS design (Sect.24.5.5); the directional dependence of the
piezoresistive coefficient of silicon is shown for uniaxial stress within in the (001)
plane in Fig. 8.8. Uniaxial tensile stress increases hole resistivity along (110) stress
directions, compressive stress thus increases hole conductivity.


http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_5
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Table 8.3 Piezoresistivity coefficients (in 10~ Pa~1) for Si, Ge and GaAs at room temperature

Material p (cm) T T2 T44 Reference
p-Si 7.8 6.6 —1.1 138.1 [658]
n-Si 11.7 —102.2 534 —13.6 [658]
p-Ge (Ge:Ga) 15.0 —10.6 5.0 98.6 [658]
n-Ge (Ge:As) 9.9 —4.7 -5.0 —137.9 [658]
p-GaAs ~1073 -12.0 —0.6 46 [662]
n-GaAs ~1073 —-3.2 —54 -2.5 [662, 663]
(@) ) (b) )
Si [100] [100]

[010] [010]

(001)

p-type n-type

Fig. 8.8 Piezoresistive coefficient for current parallel (perpendicular) to the stress | as blue lines
(7, red lines) for uniaxially stressed Si (001) at room temperature, (a) for p-type Si, (b) for n-type
Si. The upper (lower) halves of the graphs show positive (negative) values of the piezoresistive
coefficient, i.e. resistivity increases (decreases) with tensile stress. The solid circle indicates the
value of |7| = 10~2 Pa~!, the dashed circle half that value. Adapted from [661]

8.4 High-Field Transport

In the case of small electric fields the scattering events are elastic. The drift velocity
is linearly proportional to the electric field. The average thermal energy is close to
its thermal value 3kT /2 and the carriers are close to their band edges (Fig. 8.9a). The
scattering efficiency, however, is reduced already at moderate fields. Then, the elec-
tron temperature [664] becomes larger than the lattice temperature. With increasing
electrical field the carriers can gain more and more energy and will on average popu-
late higher states, assuming a non-Boltzmann (and non-Fermi) statistical distribution
[665]. The electron distribution in k-space is depicted for silicon for three different
electric fields in Fig. 8.9b,c. Hot carriers suffer additional scattering processes that are
discussed in the following, namely optical phonon emission, intervalley scattering
and impact ionization.
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Fig. 8.9 Distribution of electrons in silicon in momentum space (cmp. Fig. 6.29¢) for electric fields
of (a) 10kV/cm, (b) 10?kV/cm and (¢) 103 kV/em. Adapted from [665]

8.4.1 Drift-Saturation Velocity

If the carrier energy is large enough it can transfer energy to the lattice by the emission
of an optical phonon. This mechanism is very efficient and limits the maximum drift
velocity. Such behavior is non-ohmic. The limiting value for the drift velocity is
termed the drift-saturation velocity. It is given by [666]

8 tho
=./—,/ . 8.28
Us 3r e ( )

This relation can be obtained from an energy-balance consideration. The energy
gain per unit time in the electric field is equal to the energy loss by the emission of
an optical phonon.

gv-E= , (8.29)

where 7 is the typical relaxation time constant for LO phonon emission. Together with
(8.3) we find (8.29) except for the pre-factor, which is close to 1. The exact pre-factor
results from a more exact quantum-mechanical treatment. For Ge the drift-saturation
velocity at room temperature is 6 x 10 cm/s, for Si it is 1 x 107 cm/s (Fig.8.10a).
The carrier velocity also depends on the crystallographic direction [667].

8.4.2 Negative Differential Resistivity

In GaAs there is a maximum drift velocity of about 2 x 107 cm/s and following
a reduction in velocity with increasing field (1.2 x 107 cm/s at 10kV/cm, 0.6 x
107 cm/s at 200kV/cm) as shown in Fig.8.10a. This regime, above the threshold
field of Ew = 3.2kV/cm in GaAs, is called negative differential resistivity (NDR)
and was predicted in [673]. This phenomenon can be used in microwave oscillators,
e.g. the Gunn element (Sect.21.5.11).
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Fig. 8.10 Dirift velocity at room temperature as a function of applied electric field for (a) high-
purity Si, Ge, and GaAs on a double-logarithmic plot and (b) on linear plots for Si [668], Ge [669],
GaAs [598], InP [670], InGaAs [671], GaN and ZnO [672]

Table 8.4 Material parameters for multivalley bandstructure of GaAs and InP

Material| Eq (eV) AE (eV) Ewr vp Lower valley (1) Upper valley (L)
(kV/em) (107 cm/s)

m* (mo)  pn m* (mo)  fin
(cm?/Vs) (cm?/Vs)
GaAs | 1.42 0.36 32 22 0.068 ~8000 | 1.2 ~180
InP 1.35 0.53 10.5 2.5 0.08 ~5000 0.9 ~100

AE denotes the energetic separation of the two lowest valleys of the conduction band, E,, the
threshold field for NDR and vp the peak velocity (at E,r). Most values from [675]

The effect occurs in a multivalley band structure (see Fig.8.11, for values cf.
Table 8.4), e.g. in GaAs or InP, when the carrier energy is high enough to scatter
(Fig.8.11c, d) from the I" minimum (small mass and high mobility) into the L valley
(large mass and low mobility) [674].

The temperature dependence of the saturation velocity is shown in Fig. 8.12. With
increasing temperature the saturation velocity decreases since the coupling with the
lattice becomes stronger.

8.4.3 Velocity Overshoot

When the electric field is switched on, the carriers are at first in the I” minimum
(Fig.8.11a). Only after a few scattering processes are they scattered into the L mini-
mum. This means that in the first moments transport occurs with the higher mobility
of the lowest minimum (Fig. 8.11e). The velocity is then larger than the (steady-state)
saturation velocity in a dc field. This phenomenon is called velocity overshoot and is
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a purely dynamic effect (Fig. 8.13). Velocity overshoot in GaN is discussed in [678].
It is an important effect in small transistors.

8.4.4 Impact lonization

If the energy gain in the field is large enough to generate an electron-hole pair, the
phenomenon of impact ionization occurs. The kinetic energy is oc v2. Momentum and
energy conservation apply. Thus, at small energies (close to the threshold for impact
ionization) the vectors are short and collinear to fulfill momentum conservation. At
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higher energy, larger angles between the velocity vectors of the impact partners can
also occur. If the process is started by an electron (Fig. 8.14a) the threshold energy
is given by [679]

v =1+ " ) E. 8.30
¢ ( +me+mhh ¢ ( )

If the process starts with a heavy hole, the threshold [679],

Eir — (1 + &) E,. 831
hh Me +mhh g ( )

is larger because of the larger hole mass.
The threshold for impact ionization triggered by a split-off hole (shown schemat-
ically in Fig. 8.14b) is [680]

(1= Ao/Ey)
Eir — (1 4 Do ¢ ) E,. 8.32
h 2mpp + me — myo £ ( )

Thus so-holes have typically the smaller threshold.? At energies where impact ioniza-
tion occurs, non-parabolicities are typically important, thus (8.30)—(8.32) are only
indicative. The threshold behavior and the dependence of the scattering rate as a
function of the primary carrier energy in Si, calculated considering the detailed band
structure, is shown in Fig. 8.15.

3 Assuming mso = me, me << mpn and Ag K Eg, EN/EP ~ 1 — (me/mpn)(1 + A/Eg)/2 < 1.



8.4 High-Field Transport 273

Fig. 8.14 Electron and hole (a)
transitions for impact
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is triggered by (a) an
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The generation rate G of electron—hole pairs during impact ionization is given by
G =apnv, +ap pup, (8.33)

where o, is the electron ionization coefficient. It describes the generation of electron—
hole pairs per incoming electron per unit length. «, denotes the hole ionization
coefficient. The coefficients depend strongly on the applied electric field. They are
shown in Fig. 8.16. They also depend on the crystallographic direction.

The impact ionization initiated by electrons and holes in silicon has been cal-
culated considering the full band structure using a Monte Carlo technique in [681]
and [682], respectively. In both cases the impact ionization rate is anisotropic for
excess energies smaller than 3 eV and become isotropic above. The average energies
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Fig. 8.16 Impact ionization 10° : : :
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at the moment of generation of secondary generated carriers depends linearly on the
primary electron or hole energy.

The energy dependence of the electron initiated impact ionization rate has been
calculated for GaAs, GaN and ZnS considering details and anisotropy of the band
structure in [683]. The rates averaged over the Brillouin zone are compared in
Fig.8.17. Because of the large band gap of GaN, impact ionization can only be
generated by electrons in higher conduction bands. The sharp increase of ionization
rate for GaN around 5.75eV correlates with a large valence band DOS from hole
states at the zone boundary.
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8.5 High-Frequency Transport

The above consideration pertained to dc (or slowly varying) fields. Now, we consider
an ac field. It accelerates the carriers but at the same time the dissipative force in the
relaxation-time approximation is present, i.e. (for electrons)

*

m*v = —eE —m* <. (8.34)
T

For a harmonic field E o exp(—iwt) the complex conductivity (j = oE = ngv)is

ne*r 1 ne? i

o= - (8.35)

m* 1 —iwr m* w—+iy’

with v = 1/7 being the damping constant. Splitting into real and imaginary parts

yields
netr 1 . wT
o= o T +11 T (8.36)

For small frequencies (w — 0) the dc conductivity from (8.5) is recovered, i.e.
o = ne*r/m*. For high frequencies (w7 > 1)

ne’r 1 1
o= —+i—). (8.37)

m* \w?r? wT

8.6 Polarons

In an ionic lattice, the electron polarizes the ions and causes a change of their equilib-
rium position. Depending of the severity of this effect, the lattice polarization leads
to a modification of carrier (electron or hole) mass during band transport (Sect. 8.6.1)
(large polarons) or the lattice deformation is so strong that it leads to carrier localiza-
tion on the length scale of the lattice constant. Such self-trapped carriers are termed
small polarons and discussed in Sect. 8.6.1. Reviews are given in [684, 685].

8.6.1 Large Polarons

When the electron moves through the ionic crystal and must drag an ion displacement
with it, the effective electron mass changes to the ‘polaron mass’ mp,4

“For the calculation, many-particle theory and techniques are needed; the best solution is still given
by Feynman’s path integral calculation [686-688].
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Table 8.5 Frohlich coupling constant « for various semiconductors

GaSb GaAs GaP GaN InSb InAs InP InN
0.025 0.068 0.201 0.48 0.022 0.045 0.15 0.24
3C-SiC ZnO 7ZnS ZnSe ZnTe CdS CdSe CdTe
0.26 1.19 0.63 0.43 0.33 0.51 0.46 0.35

Data from [691]

mpzm*(l+%+0.025a2+~~), (8.38)

for o < 1, with m* being the band mass as defined in Sect. 6.8.2 and « the Frohlich

coupling constant’
1 e [2m* 1 1
= - — ———). 8.39
@ 2 h tho (Eoo 60) ( )

This process it called the polaronic effect and requires additional energy [686,
689]. Often, the polaron mass is given as m, = m*/(1 — o/6) which is the result of
perturbation theory [689] and an approximation to (8.38) for small a.

For large coupling parameter, o 3> 1, the polaron mass is given by [687]

(8.40)

The energy of the electron is lowered due to the interaction with the lattice. The
energy Eq for k = 0 is given, relative to the uncoupled case, by

Eg=—(a+0.00980% + ) hwy , <1 (8:41a)
Eo=—(2.83+0.1060%) hwy ,a > 1 (8.41b)

Numerical results are reported in [690].

Polarons in semiconductors are typically ‘large’ or Frohlich-type polarons, i.e.
the coupling constant is small (Table8.5). The dressing with phonons (as the ion
displacement is called in a quantum-mechanical picture) is then only a perturbative
effect and the number of phonons per electron (=a/2) is small. If o becomes large
(o > 1, a ~ 6), as is the case for strongly ionic crystals such as alkali halides, the
polaron becomes localized by the electron—phonon interaction® and hopping occurs
infrequently from site to site.

SThis constant is part of the matrix element in the Hamiltonian of the electron—phonon interaction
and is related to the electric field created by LO phonons, as given in (5.52).

%0ne can think about it in the way that the electron strongly polarizes the lattice and digs itself a
potential hole out of which it can no longer move.


http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_5
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Fig. 8.18 Hole from Nb acceptor localized on Ti site (small polaron) in rutile TiO;. Adapted from
[694]

simulation experiment

R B B R N
- LR B B B B
R B B

L B N

I EE R T
SRR en
T U EEEEE T

Fig. 8.19 Simulated and experimental TEM images of (3-Ga; O3 in (101) projection. The arrow
denotes the position of a polaron. Adapted from [693]

8.6.2 Small Polarons

In a polaron, the charge carrier (electron or hole) sits in a potential well resulting
from the ionic displacements it created. In some materials, the shape and strength of
this potential well is such that the charge is confined to a volume of approximately
one unit cell or less. In this case, the polaron is called a small polaron. An example
of a hole polaron in rutile TiO,:Nb is depicted in Fig. 8.18. In oxides often the hole
from an acceptor is bound to oxygen, e.g. in BaTiO3:Na, as reviewed in [692]. In
Fig.8.19 the lattice relaxation due to a hole bound to oxygen in the monoclinc unit
cell of 3-Ga,05 is depicted directly using aberration corrected TEM. The bonding
of the hole to the oxygen atom breaks the bond to a Ga atom which moves by 0.1 nm
from its equilibrium position [693].

A proper theoretical analysis of a small polaron requires ab initio techniques that
account for the motion of each atom in the few unit cells nearest the electron.’

The transport of small polarons occurs generally via thermally-activated hopping
(cmp. Sect. 8.7). Under certain conditions the following mobilities for drift and Hall

This paragraph has been taken from the concise tutorial by S.J.F. Byrnes [695].
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effect have been given [684]:

pa o< T~1exp(—W/(2kT)), (8.42)
pg o T~Y% exp(—W/(6kT)), (8.43)

W being the polaron binding energy. Generally, materials with small polar on trans-
port exhibit high carrier density, often due to structural defects, and low mobility.

8.7 Hopping Transport

Disordered solids such as amorphous semiconductors, films containing quantum dots
or material with many defects are characterized by a large density of localized states
which can form band tails or a large density of states within the band gap. Hopping
conduction is the tunneling between localized states and has been treated with various
models [696-698].
A commonly observed phenomenon is the variable range hopping with a conduc-
tivity given by
o =09 exp(—(To/T)") (8.44)

withs = 1/4. Such law is fulfilled for amorphous silicon (Fig. 8.20). Mott has derived
[700] and the exponent s = 1/4 using the following argument: The probability p to

Fig. 8.20 Temperature Temperature (K)
dependence of t.he planar 300 200 100
resistance for Si films T T
deposited at room a-Si

temperature. Solid line is
linear fit with

To = 8 x 107 K according to
(8.44) (s = 1/4). Adapted
from [699]

Resistance R (Q2)

10° 1 1 1 1 1 1
0.25 0.27 0.29 0.31 0.33 0.35

T (K-1/4)
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hop from one localized site to another is proportional to
p x exp(—2aR — W/kT). (8.45)

The first term stems from the probability to find the electron within radius R from its
initial site, « being the decay constant of its wave function, ¥ () & exp(—ar). The
second term is the Boltzmann factor for bridging the energy mismatch W between
localized states with a phonon-assisted process, assuming a low temperature limit
(kT <« W). There is a trade-off between hopping to levels closer in energy but
spatially further away (on average), preferred at low temperature and the hopping
to energy levels with larger W but spatially closer at higher temperatures. Thus the
hopping range changes with temperature, giving the mechanism its name.

D(EF) shall be the (constant) density of localized states around the Fermi level.
Within aradius R, there is on average one state of energy between 0 and W (R) when
(for three-dimensional bulk material)

1

VR = DED G B

(8.46)

Substituting (8.46) in (8.44) and searching for the maximum yields the most probable
hopping distance
R ~ (akT D(Eg))~'/*, (8.47)

showing again, the varying range of hopping with temperature. Thus we find for 7
in (8.44),

ol

To~" ———.
k D(EF)

(8.48)

Other types of hopping mechanisms are the Efros—Shklovskii variable range
hopping (s = 1/2), emerging for an energy dependent density of states D(E)
(E — Eg)? due to Coulomb interaction between hopping sites [701], or the next
neighbor hopping (s = 1).

From (8.44) one can rewrite for £ = d(Ino(T))/dIn T,

InéE=Ins+sInTy—sInT. (8.49)

Thus in a plot of In £ versus In T, the exponent s can be determined from the slope.
As can be seen in Fig. 8.21, for the conductivity of a hydrogenated amorphous silicon
thin film the transition of hopping mechanism from Efros—Shklovskii variable range
hopping (s &~ 1/2) to next neighbor hopping (s ~ 1) takes place around 7' = 220K,
as discussed in detail in [702].
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Fig. 8.21 Temperature Temperature (K)
dependence of conductivity 100 150 200 250 300
of a hydrogenated 0.0 T T T T
amorphous Si thin film, a-Si:H
plotted as In & versus In T’ 02 A 7
(8.49). Solid lines are linear §=0.54=0.05
fits for constant s according 0.4 -
to (8.49) as labelled.
Adapted from [702] wp 06 7
£
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8.8 Transport in Amorphous Semiconductors

Many models have been presented for the carrier transport in amorphous semicon-
ductors [178]. The most important concept is that of a mobility edge, an energy
separating localized from delocalized states [475, 476, 703]. This is schematically
depicted in Fig. 8.22. The carrier transport between localized states is mediated via
tunneling (hopping) which has been described in the previous section (Sect. 8.7). The
localization of carriers in random lattices has been treated by Anderson [560] and
reviewed in [558]. If the degree of disorder surpasses a certain value, diffusion is sup-
pressed (at 7 = 0) and conductivity vanishes altogether (Anderson metal—insulator
transition).

Fig. 8.22 Schematic density delocalized localized delocalized
of states of amorphous
semiconductor with band
tails and deep levels. The
localized (delocalized) states
are shown in dark (light)
grey. The mobility edges for

indicated by dashed lines \_/I\_/

electrons and holes are
Ey Er Ec

Energy

DOS (arb. units)
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The transport in delocalized states is similar to band transport. The conductivity
(for electrons) is given as

o=—e /oo De(E) p1e(E) fe(E)dE. (8.50)
E

C

If the Fermi energy is close to the middle of the gap, pinned to deep states, the
Fermi-Dirac distribution can be replaced by the Boltzmann factor. Assuming a con-
stant density of states and mobility for the delocalized states,

Ec—E
0 = —e De(Ec) pe(Ec) kT exp (%) . (8.51)

Charge carriers from localized states in the tails can be thermally excited into
delocalized states and contribute to conductivity (thermally activated hopping). The
mobility then contains an exponential thermal activation term [178].

8.9 Ionic Transport

Ionic transport is the movement of ions upon application of a voltage. Here, we dis-
cuss only solid electrolytes. The transport can include the motion of one or several
of the constituents of the lattice and the transport of other ions (e.g. hydrogen ions
(protons), oxygen ions) through the crystal. Related to this is the diffusive ionic move-
ment of impurities or defects through the crystal (cmp. Sect. 4.2.3). Ionic conduction
of the lattice constituents under dc voltage will eventually destroy the crystal.

In typical semiconductors like silicon or gallium arsenide, the conductivity is
entirely due to electronic conduction. A typical solid electrolyte is zirconia (ZrO,)
doped with yttria, so-called yttria-stabilized zirconia (YSZ) that takes on a cubic
fluorite lattice (see Sect. 3.4.8). It can conduct oxygen ions via the mobility of oxygen
vacancies for use in solid-oxide fuel cells (SOFC) [704]. The conductivity is about
0.01 S/cm at a temperature around 1000K, almost entirely due to ionic transport.
Doping with calcium oxide results in an oxygen conductor that is used in oxygen
sensors in automobiles (lambda sensor). The ionic conductivity can be significantly
increased, compared to bulk material, along interfaces [705, 706].

Other typical solid electrolytes are cuprous iodide (Cul) [494] and also Agl. In
the high temperature cubic phase (a-polymorph), the iodide ions form a fairly rigid
cubic framework and the metal ions are mobile; the copper diffusion pathways have
been discussed [707, 708]. The temperature dependence of conductivity of Cul is
shown in Fig. 8.23.


http://dx.doi.org/10.1007/978-3-319-23880-7_4
http://dx.doi.org/10.1007/978-3-319-23880-7_3
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Fig. 8.23 Total (circles) and Temperature (°C)

electronic (squares) 405 369 350 300 275
conductivity of Cul cees | [ ' '
coexisting with copper. "... Cul
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to polycrystalline (single S
crystal) samples. The o B Y
different structural phases («
(cubic), [ (wurtzite), v
(zincblende)) are indicated
by shaded areas as labeled.
Dashed lines are guides to
the eyes. Adapted from [709]
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8.10 Diffusion

A gradient of a particle concentration n leads to a particle current proportional to
—Vn. This diffusion law (Fick’s law) corresponds microscopically to a random walk.
The gradients of the semiconductor carrier densities Vn or V p thus lead to electron
and hole currents, respectively:

jn=eD,Vn (8.52a)
Jp = —eD,Vp. (8.52b)

The coefficients D, and D,, are called the electron and hole diffusion coefficient,
respectively. Thus the total electron and hole currents in the presence of an electric
field E and diffusion are

jn=—eunnE+eD, Vn (8.53a)
Jp=epppE—eD,Vp. (8.53b)

This relation can also be deduced more generally from the gradient of the Fermi
level as

jn = —eunn E —nu, VEg (8.54a)
Jo=-euppE — pu, VEE. (8.54b)
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Using (7.6) and (7.7) for the concentrations (valid also in the case of degeneracy)
and using dF; (x)/dx = F;_;(x) we obtain

F
in = —epan E — kT2 g, (8.55a)
F_i(n)

Fi2(0)

Vp, 8.55b
PF_12(0) P ( )

Jbp=ewpE—kTp

withn = (Er — Ec)/kT and ( = —(Er — Ev)/kT. If the pre-factor of the density
gradient is identified as the diffusion coefficient we find the (generalized) so-called
‘Einstein relations’ (8 = e/(kT)) [529, 710]:

Fi2(n)

Dy = —f g —"—— 8.56
in F_1,2() (8.562)
4 Fip©
D, = 37y, —= . 8.56b
=0 uprl/Z(C) ( )

Useful analytical approximations have been discussed in [711]. We note that, e.g.,
(8.56a) can also be written as [712, 713]

Dy=—0"pan %. (8.57)

In the case of nondegeneracy, i.e. when the Fermi level is within the band gap and
not closer than about 4kT to the band edges, 7 = In(n/N¢). Then 9n/0n = 1/n,
and the equation simplifies to D = (kT /q) , i.e. the ‘regular’ Einstein-relations,

Dy =—3"in (8.58a)
D, = 3" pp. (8.58Db)

In this case, (8.53a,b) read
o= —eunE — kT p, Vn (8.59a)
Jop=epuppE—kTp,Vp. (8.59b)

We recall that both diffusion coefficients are positive numbers, since i, is negative.
Generally, the diffusion coefficient depends on the density. A Taylor series of the
Fermi integral yields

2
Dy =—3"p, [1 +0.35355 (Ni) -99x107° (Ni) + - } . (8.60)

C C
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8.11 Continuity Equation

The balance equation for the charge is called the continuity equation. The temporal
change of the charge in a volume element is given by the divergence of the current and
any source (generation rate G), e.g. an external excitation, or drain (recombination
rate U). Details about recombination mechanisms are discussed in Chap. 10. Thus,
we have

On 1_ . I_ .

a—=Gn—Un——V-Jn=Gn—Un+—V-Jn (8.61a)
t q e

ap 1

X G —U, —=-V.i.. 8.61b

o1 P PT Jp ( )

In the case of nondegeneracy we find, using (8.53a,b)

on

N =G, —U,—puyn V-E— u, EVn + Dy An (8.62a)
dp
5=Gp—Up—uppV-E—upEVp+DpAp. (8.62b)

In the case of zero electric field these read

B

a_’: = Gy — Uy + DyAn (8.63a)
dp

5 = Go = Up + Dy, (8.63b)

and if the stationary case also applies:

DyAn = =G, + U, (8.64a)
DyAp = =G, + U, (8.64b)

8.12 Heat Conduction

We consider here the heat transport [714] due to a temperature gradient. The heat
flow q, i.e. energy per unit area per time in the direction q, is proportional to the local
gradient of temperature. The proportionality constant « is called, heat conductivity,

q=—-kVT. (8.65)
In crystals, the heat conductivity can depend on the direction and thus « is gen-

erally a tensor of rank 2. In the following, x will be considered as a scalar quantity.
The quite generally valid Wiedemann—Franz law connects the thermal and electrical
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conductivities

2 2
K= (’f) To. (8.66)

Viq=——=—pC — + A, (8.67)

where p denotes the density of the solid and C the heat capacity. A denotes a source
or drain of heat, e.g. an external excitation. Combining (8.65) and (8.67), we obtain
the equation for heat conductivity

AT = — — — —, (8.68)

which simply reads AT = O for a stationary situation without sources.

The random mixture of various atoms in natural elements represents a perturbation
of the perfectly periodic lattice. Since the mass of the nuclei varies, in particular lattice
vibrations will be perturbed. Thus we expect an effect on the heat conductivity. In
Fig.8.24, the thermal conductivity of crystals from natural Ge and enriched "*Ge
are compared [715], the latter having, as expected, the higher heat conductivity, i.e.
less scattering. The thermal conductivity of isotopically pure >*Si thin films has been
measured to be 60 % greater than natural silicon at room temperature and at least
40 % greater at 100°C, a typical chip operating temperature [716, 717].

Fig. 8.24 Thermal 100 T T T T T T T
conductivity of Ge versus T
temperature. The enriched 50 / ) 74 -
Ge consists of 96 % *Ge / enriched “Ge
while the natural isotope mix
is 20 % "°Ge, 27 % "*Ge, 8 % 20~ .
3Ge, 27% " Ge and 8 % .
75Ge. The dashed line shows e 101 T
the x o T3 dependence at o
) E 5| i
low temperatures (Debye’s )
law). Adapted from [715] = natural Ge
¥ 2 a
1- . -
05 -
0.2 1 1 1 1 1 1 1
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Temperature (K)
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8.13 Coupled Heat and Charge Transport

The standard effect of coupled charge and heat transport is that a current heats its
conductor via Joule heating. However, more intricate use of thermoelectric effects can
also be employed to cool certain areas of a device. For further details see [718, 719].

For the analysis of coupled charge and heat transport we first sum the electric
field and the concentration gradient to a new field E=E + VEg/e. Then, the heat
flow and charge current are

j=cE+LVT (8.69)
q=ME+ N VT, (8.70)

where E and V7 are the stimulators for the currents. From the experimental point
of view there is interest to express the equations in j and VT since these quantities
are measurable. With new coefficients they read

E=pj+SVT (8.71)
q=1Ij—rVT, (8.72)

where p, S and [T are the specific resistance, thermoelectric power and Peltier
coefficient (transported energy per unit charge), respectively. The relations with the
coefficients o, L, M, and N are given by

1
p=— (8.73a)
g
L
§=-= (8.73b)
g
M
m=— (8.73¢)
g
ML
Kk = — —N. (8.73d)
g

8.13.1 Thermopower and Seebeck Effect

A semiconductor shall have two ends at different temperatures 7 and 7} and a
temperature gradient in between in an open circuit, i.e. j = 0. Then a field E=SVT
and a voltage U = S/(T, — T;) will arise. This effect is called the thermoelectric
or Seebeck effect. S is termed the Seebeck coefficient or the thermoelectric power,
often also denoted as Q in the literature. The voltage can be measured and used to
determine the temperature at one end if the temperature at the other end is known,
forming a thermometer. The Seebeck coefficient is positive if the electric field is in
the same direction as the temperature gradient.
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A famous relation from irreversible thermodynamics connects it to the Peltier

coefficient via
S = T (8.74)

The Seebeck coefficient is related to the energy transport by charge carriers. The
heat (energy) flow is obviously from the hot to the cold end (assuming here 7, > T}),
so is the flow of charge carriers. In a simple picture, if the energy is carried by (hot)
holes, the current (by definition the direction of positive charge carriers) is from the
hot to the cold end (2 — 1); if the energy flow is carried by electrons, the current
flows from the cold to the hotend (1 — 2). Accordingly, energy transport by electrons
and holes gives rise to different signs of the thermoelectric coefficient (Fig. 8.25). If
the cold (unheated) substrate is grounded, the sign of the voltage at a hot solder tip
pressed (carefully) on the surface of the semiconductor yields the conductivity type,
n-type (p-type) for a negative (positive) voltage.

However, the semiconductor should not be heated so strongly that intrinsic con-
duction arises. In this case the conductivity and the thermoelectric power is deter-
mined by the carrier type with the higher mobility; typically, and for the case of
silicon shown in Fig. 8.25, these are the electrons thus yielding a negative Seebeck
coefficient in the intrinsic regime.

For band conduction the thermopower (1.29) is given for electrons (S,) and holes
(Sp) by [722] (for a derivation see Sect.1.4)

0.9 ——r==1 T T T T T T 0.6 T T T T T T T

2 Si
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Fig. 8.25 (a) Seebeck coefficient S for n- and p-doped germanium. Experimental data (symbols)
and theory (lines). No — Np is 5.7 x 1015 ecm—3 (white circles), 1.7 x 1017 ecm™3 (grey) and 7.2 x
1018 cm =3 (black); Np — Na is 3.3 x 1015 cm™3 (white squares), 1.1 x 1017 cm™3 (grey) and 6.2 x
10'7 cm™3 (black) Adapted from [720]. (b) Thermoelectric force IT of lowly doped n- and p-silicon
as a function of temperature. Solid line is from simple model calculation and symbols represent
data from silicon samples with the approximate doping of circles: 1 x 1015 cm™3 B, 2 x 10'%cm—3
donors, squares 4 x 10 cm™3 P, 9 x 10'3 cm~3 acceptors. Adapted from [721]
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S K(Ee—Er 4 (8.752)
hn=—7— J15a

kT ¢

s =k (Er=Ev , (8.75b)
P kT V) ’

where A; are constants (I.31a) depending on the energy dependence of the density of
states and the mobility. The sign of the thermopower tells whether conduction takes
place above (negative sign) or below (positive sign) the Fermi level.

If the Fermi level is fixed and both electrons and holes contribute (two-band
conduction), the thermopower is (evaluating (1.32), b = 0,,/0, and the gap center
energy Ey = (Ec — Ev)/2)

e

k(l—b E, EF—EM+AV—bAC) (.76

140 2kT kT 1+b

In the case of intrinsic conduction from (7.18) Ex — Eyq = (kKT /2) In(Ny/Nc).
The thermoelectric power from some highly doped n-type silicon samples is
depicted in Fig.8.26a. At low temperature the (low) conductivity is due to con-
duction in a donor impurity band (cmp. Sect.7.5.7). At high compensation of about
90 % (grey data points in Fig.8.26a), the band is only 10% filled and acts like a
valence band with positive thermopower at sufficiently low temperature when the
free carrier density is small. Without compensation, the thermopower remains nega-
tive since the almost completely filled impurity band acts conduction band like. The
dependence of thermopower on doping has been simulated in [723] (Fig. 8.26); the
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Fig. 8.26 (a) Thermoelectric power S of highly doped n-type silicon as a function of temperature.
Circles are experimental data and dashed lines guides to the eyes. The approximate doping of the
samples is white 2.7 x 101 cm™3 As, grey 2.2 x 1018 cm™3 As, black 1.1 x 108 cm™3 As and
1.0 x 10" cm=3 B with Np — Np = 1.25 x 107 cm—? at room temperature. Adapted from [721].
(b) Thermopower of doped n-type silicon at room temperature as a function of doping concentration.
Experimental data (symbols) from [721] and theory (solid line) from [723]
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decrease with increasing doping is mostly attributed to the reduced mobility due to
ionized impurity scattering. The increase of thermopower at low temperatures is due
to the phonon-drag effect which is discussed for the samples from [721] in [724].

As a figure of merit for the production of thermoelectric power the ZT -value is
used, ZT =0 S2 T /k.

8.13.2 Peltier Effect

In a semiconductor with a temperature difference at its ends a current flow will be
allowed now (short circuit). The current leads via the charge transport also to a heat
(or energy) transport. This effect is called the Peltier effect. The Peltier coefficient
is negative (positive) for electrons (holes). The total amount of energy P that is
transported consists of the generation term and the loss due to transport:

P=j-E-V.q. (8.77)
With (8.71) and (8.72) we find

P=3d  Sj. VT —IV.q+rAT. (8.78)
g

The first term is Joule heating, the second term is Thomson heating. The third
exists only when carriers are generated or when they recombine. The fourth term
is the heat conduction. In the Thomson term S j - VT heat is generated in an n-type
semiconductor if j and VT are in the same direction. This means that electrons that
move from the hotter to the colder part transfer energy to the lattice. The effect can
be used to construct a thermoelectric cooler, as shown in Fig. 8.27, that generates a
temperature difference due to a current flow. For optimal performance o should be
large to prevent excess Joule heating and x should be small such that the generated
temperature difference is not rapidly equalized.

Fig. 8.27 Schematic Peltier
cooler. The heat sinks (grey)
and the cold junction (black) heat
on the left are metals that sink
make ohmic contacts with
the semiconductors. The
current flow is such that
electrons move through the
n-type semiconductor from heat
right to left sink




Chapter 9
Optical Properties

Abstract After introduction of the complex dielectric function, reflection, diffrac-
tion are briefly discussed. The focus lies on absorption mechanisms; several transition
types (direct and indirect band-band transitions, impurity-related transitions, lattice
absorption) are discussed including the effects of excitons, polaritons and high carrier
density. Also the various effects of the presence of free carriers are given.

9.1 Spectral Regions and Overview

The interaction of semiconductors with light is of decisive importance for photonic
and optoelectronic devices as well as for the characterization of semiconductor prop-
erties. When light hits a semiconductor, reflection, transmission and absorption are
considered, as for any dielectric material. The response of the semiconductor largely
depends on the photon energy (or wavelength) of the light and various processes
contribute to the dielectric function.

An overview of the electromagnetic spectrum in the optical range is given in
Table9.1. The energy and wavelength of a photon are related by! E = hv = hc/ ),
i.e.

1240

E eVl = o ©.1)

In the infrared regime, energy is often measured in wave numbers (cm™!) for
which the conversion 1 meV = 8.056cm™! holds.

I'The more exact numerical value in (9.1) is 1239.84.
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Table 9.1 Spectral ranges with relevance to semiconductor optical properties

Range Wavelengths Energies

Deep ultraviolet DUV <250nm >5eV
Ultraviolet uv 250—-400nm 3-5eV

Visible VIS 400-800nm 1.6-3eV

Near infrared NIR 800nm-2 wm 0.6-1.6eV
Mid-infrared MIR 2-20pm 60meV-0.6eV
Far infrared FIR 20-80 wm 1.6-60 meV
THz region THz >80 pm <1.6meV

9.2 Complex Dielectric Function

The dielectric function e fulfills
D=c¢E+P=¢y¢E, 9.2)

and is generally a rank 2 tensor since D and E must not be collinear. This is the case,
e.g. for birefringence as discussed in Sect. 13.2.2. The general form of the dielectric
tensor for various crystal symmetries is compiled in Table 9.2. In most cases in the
following e will be used as scalar. The dielectric function is frequency dependent
€(w) due to the various oscillators playing a role and decreases (non-monotonically)
from its static value (forw = 0) to 1 forw — c0. In some cases also its k-dependence
is important, known as spatial dispersion (cmp. Sect.9.6.8). The dielectric function
is generally complex and written as

e=¢€¢ +i€. (9.3)
The real and the imaginary part of the dielectric function are related to each other

via the Kramers—Kronig relations (Appendix C).
The complex index of refraction is

n*=n+ik = /e 9.4)

From n*? follows
¢ =n? — K? 9.5)
€ =2n. K. (9.6)

From ee = (nf + k%)% and (9.5) follows
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Table 9.2 General form of the dielectric tensor for various crystals

crystal system optical symmetry examples
a00
cubic isotropic 0a 0| Si, GaAs, MgO, ZnSe, Cul
00a
tetragonal a0
hexagonal uniaxial 0 a 0 | CuGaSe;, GaN, BiySes
trigonal 00c
a00
orthorhombic biaxial 0b0 | SbySe3
00c
ad0
monoclinic  biaxial d b 0| [-GayOs, anthracene
00c
ad e
triclinic biaxial d b f | tetracene
e fc

€+l +e?
= 9.7)

=N

6//

= . 9.8
K 2 9.8)

The real part of the complex index of refraction n, is responsible for the dispersion,
the imaginary part x is named extinction coefficient and is related to the absorption
coefficient of the plane wave (damping of E?) by

4
a:2£n=—wﬁ=2k/<o. 9.9
¢ A

Here, k and A denote the respective values in vacuum.

9.3 Reflection and Diffraction

From Maxwell’s equations and the boundary conditions at a planar interface between
two media with different index of refraction for the components of the electric and
magnetic fields the laws for reflection and diffraction are derived. We denote the
index of refraction as n and also n, in the following. The interface between two
media with refractive indices n; and n, is depicted in Fig.9.1. In the following we
assume first that no absorption occurs.
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Snellius’ law for the angle of diffraction is
nysin ¢ = np sin . (9.10)

When the wave enters the denser medium, it is diffracted towards the normal. If
the wave propagates into the less-dense medium (reversely to the situation shown in
Fig.9.1), a diffracted wave occurs only up to a critical angle of incidence

n»

sin grr = —=. ©.11)
n

For larger angles of incidence, total internal reflection occurs and the wave remains
in the denser medium. Thus, the angle in (9.11) is called the critical angle for total
reflection. For GaAs and air the critical angle is rather small, ¢tg = 17.4°.

The reflectance depends on the polarization (Fresnel formulas). The index ‘p’
(‘s’) denotes parallel polarized/TM (perpendicular polarized/TE) waves.

_ (tan(¢ — )\’

= (tan(¢+¢)) O12
_ (sin@o =)\’

R = (—sin(¢+1p)) ) (9.13)

The situation for GaAs and air is shown for both polarization directions and
unpolarized radiation in Fig.9.2 for a wave going into and out of the GaAs.

normal

reflected
wave

incident
wave

medium 1 interface

medium 2

diffracted
wave

Fig. 9.1 Reflection and diffraction of an electromagnetic wave at the transition between medium
‘1’ and ‘2’, np > nj. The polarization plane is defined by the surface normal and the k-vector of
the light (plane of incidence). The parallel (‘p’) polarized wave (TM-wave, electric field vector
oscillates in the plane) is shown as ‘<>’; perpendicular (‘s’) polarization (TE-wave, electric field
vector is perpendicular to plane) is depicted as -’
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vacuum  GaAs GaAs vacuum
. N

TR

Reflectance

n=3.347 |
R R B (i AT R P E N A B N

10 20 30 40 50 60 70 80 90 O 10 20 30 40 50 60 70 80 90
Angle (deg) Angle (deg)

Fig.9.2 Reflectance of the GaAs/vacuum interface (close to the band gap, n, = 3.347) for radiation
from vacuum/air (left panel) and from the GaAs (right panel), respectively, as a function of incidence
angle and polarization

When the reflected and the diffracted wave are perpendicular to each other, the
reflectance of the p-polarized wave is zero. This angle is the Brewster angle ¢g,

tan ¢ = Z—2 (9.14)
1

If a wave has vertical incidence from vacuum on a medium with index of refraction
n., the reflectance is given (both polarizations are degenerate) as

ne—1 2
R= parr I 9.15)

For GaAs, the reflectance for vertical incidence is 29.2 %.

9.4 Absorption

In the absorption process, energy is transferred from the electromagnetic field to the
semiconductor. In the case of a linear absorption process, when the probability of
light absorption is proportional to the incoming intensity, the decrease of intensity
in the absorbing medium is exponential (Lambert—Beer’s law [725, 726)),2

I(x) =1(0) exp(—ax). (9.16)

2In [726], the absorption coefficient ;¢ was defined via 1 (d)/1(0) = ,ud ,l.e. p=exp—a.
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Fig. 9.3 Schematic absorption spectrum of a typical semiconductor. From [727]

The quantity « is the absorption coefficient, its reverse the absorption depth. The
spectral dependence a(E), the absorption spectrum, contains the information of
the possible absorption processes, their energy, momentum and angular momentum
selection rules, and their oscillator strength.

In Fig.9.3 a schematic absorption spectrum of a semiconductor is depicted. The
transition of electrons from the valence to the conduction band begins at the band gap
energy. The band gaps of Si, Ge, GaAs, InP, InAs, InSb are in the IR, those of AlAs,
GaP, AIP, InN in the VIS, those of GaN and ZnO in the UV, MgO and AIN are in the
deep UV. The Coulomb correlation of electrons and holes leads to the formation of
excitons that leads to absorption below the band gap. The typical exction binding
energy is in the range of 1-100meV (see Fig.9.16). Optical transitions from valence-
band electrons into donors and from electrons on acceptors into the conduction band
lead to band—impurity absorption. In the region from 10-100meV the interaction
with lattice vibrations (phonons) leads to absorption if the phonons are infrared
active. Further in the FIR lie transitions from impurities to the closest band edge
(donor to conduction and acceptor to valence band). A continuous background is
due to free-carrier absorption.

If absorption is considered, the reflectance (9.15) needs to be modified. Using the
complex index of refraction n* = n, + ik, it is given as
nt—1

n*+1

_ (nr — 1)2 +/€2
e+ D24 R

(9.17)
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9.5 Electron-Photon Interaction

The absorption process is quantum mechanically described by the coupling of elec-
trons and photons. The process is described with time-dependent perturbation theory.
If He,, is the perturbation operator (electromagnetic field), the transition probability
per time wg for electrons from (unperturbed) state ‘i’ (initial) to state ‘f’ (final) is
given (with certain approximations) by Fermi’s golden rule

2
wy(hw) = = \H|? 6(Er — Ei — hw), (9.18)

where 7w is the photon energy, E; (Ey) is the energy of the initial (final) state. HY, is
the matrix element

Hf = (¥ [H'| &%), (9.19)

where ¥; (¥;) are the wavefunctions of the unperturbed initial (ﬁna}) state.

A is the vector potential for the electromagnetic field, i.e. E = —A, yH = V x A,
V - A = 0 (Coulomb gauge). The Hamiltonian of an electron in the electromagnetic
field is

1
H=— (hk — gA)>. (9.20)
2m

When terms in A? are neglected (i.e. two-photon processes), the perturbation
Hamiltonian is thus

i
Hon= -2 Ap="2A.Vrgr E 9.21)
m m

The latter approximation is valid for small wavevectors of the electromagnetic
wave and is termed the electric dipole approximation.

In order to calculate the dielectric function of the semiconductor from its band
structure we assume that A is weak and we can apply (9.18). The transition probability
R for the photon absorption rate at photon energy hw is then given by?

R(hw) = 2% /k /k [(c|Hem|v)1? 0 (Ec(ke) — Ey(ky) — hw) d’k. d’ky,  (9.22)

with the Bloch functions |c¢) and |v) of the conduction and valence band, respectively,
as given in (6.36b).

The vector potential is written as A = A€ with a unit vector € parallel to A. The
amplitude is connected to the electric-field amplitude E via

3Here we assume that the valence-band states are filled and the conduction-band states are empty.
If the conduction-band states are filled and the valence-band states are empty, the rate is that of
stimulated emission.
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298
(9.23)

[exp (i(gr — w?)) + exp (—i(gr — wi))].

2w
In the electric-dipole approximation the momentum conservation q + k, = K.,
q being the momentum of the light wave is approximated by k, = k.. The matrix

element is then given by
? (9.24)

s

. AR
|{¢|Hem|v) > = —5— [{c|é - p|v)

(9.25)

with
2 1 2 2
‘ = g [Pev|” = My,

{c|e-plv)

and the momentum matrix element p.y given in (6.35). A k-independent matrix
element |p,|? is often used as an approximation. In Fig. 9.4 the matrix elements for

valence to conduction band transitions in GaN are shown as a function of k.

30 60 T
Elc GaN Ele | | | |- c
. == B
' —A
S ] 40 i
Q2 d .Jl A ."'\', 1
« i | H Al \ A
= ! /| /| I i A3
[ i ) | ) ] u HE k |
2 10 /| H ’; 20 5 !
N A ] _.l:’ : ¥ Y 1 FETE A |
A B wﬁVLJ ol "“ J A L AN R
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Fig. 9.4 Theoretical momentum matrix elements |pcy|? along high-symmetry directions in the
Brillouin zone (see Fig.3.34d) for transitions between valence and conduction bands in GaN and
light polarized perpendicular (left panel) and parallel (right panel) to the c-axis. The transitions are
A: I'y(A)— I, B: I7(B)— I3, C: I'7(C)— Iy (see Fig.6.38). Adapted from [728]

In terms of the electric-field amplitude E(w) the transition probability is

2
2 (L)z @‘ |pCV|2/5(EC(k) ~E,k) — fw) &k, (9.26)
k

R(hw) = =~
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If the integration over Kk is restricted to those values allowed in unit volume, the
power that is lost from the field in unit volume is given by R fw, leaving a 1/ E factor.
The dielectric function € = ¢ + i¢; is given by

2
6 = 1 (27T_e) |Pcv|2/5 (E.(K) — Ey(K) — hw) d°k (9.27a)
4dmeg K

mw
e 2pel 1
=1 d’k, 9.27b
o +/k eomw2, mhwe 1 —w?/w2 ( )

with iwey = E¢(K)— E, (k). The second equation has been obtained via the Kramers—
Kronig relations* (see Appendix C).

Comparison with (D.7) yields that the oscillator strength of the band—band absorp-
tion is given by

er 2|pul?
= , 9.28
! €om w2, m hwey (©.28)
with
2 |pel?
Ny = 9.29
¢ m hwey ( )

being the classical ‘number’ of oscillators with the frequency wyy.

9.6 Band-Band Transitions

9.6.1 Joint Density of States

The strength of an allowed optical transitions between valence and conduction bands
is proportional to the joint density of states (JDOS) Dj(Ecy) (cf. (6.59), (6.60) and
(9.27a)) ,

Dy(Eey) =2 / ) % o (9.30)
sy 2m/L)° |VkEe|
where E., is an abbreviation for E.(k) — E,(k) and d?S is a surface element of
the constant energy surface with E = E.,. The spin is assumed to generate doubly
degenerate bands and accounts for the pre-factor 2. Singularities of the JDOS (van-
Hove singularities or critical points) appear where Vi E., vanishes. This occurs
when the gradient for both bands is zero or when both bands are parallel. The latter
generates particularly large JDOS because the condition is valid at many points in
k-space.

“The real and imaginary parts of the dielectric function are generally related to each other via the
Kramers—Kronig relations.
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Table 9.3 Functional dependence of the joint density of states for critical points in 3, 2 and 1
dimensions

Dim. Label Type Dj for E < Ey Dj for E > Ey
3D My Min. 0 E—Ey
M, Saddle C—-JVE - E C
M Saddle C C—-JVE—-Ey
M3 Max. VEy—E 0
2D Moy Min. 0 C
M Saddle —In(Eg — E) —In(E — Ep)
M> Max. C 0
1D Moy Min. 0 VE—Eg
M, Max. JEy—E 0

E( denotes the energy (band separation) at the critical point, C stands for a constant value. The type
of critical point is given (min.: minimum, saddle: saddle point, max.: maximum)

Generally, the (three-dimensional) energy dispersion E(k) around a three-
dimensional critical point (here developed at k = 0) can be written as

RkE Pk B2
E(k)=EQ© x z,
) ()+2mx+2my+2mz

(9.31)

The singularities are classified as My, M|, M, and M3 with the index being the
number of masses m; in (9.31) that are negative. My (M3) describes a minimum (max-
imum) of the band separation. M; and M, are saddle points. For a two-dimensional
k-space there exist My, M| and M, points (minimum, saddle point and maximum,
respectively). For a one-dimensional k-space there exist M and M| points (minimum
and maximum, respectively). The functional dependence of the JDOS at the critical
points is summarized in Table9.3. The resulting shape of the dielectric function is
visualized in Fig.9.5.

9.6.2 Direct Transitions

Transitions between states at the band edges at the I” point are possible (Fig. 9.6). The
k conservation requires (almost) vertical transitions in the E (k) diagram because the
length of the light k vector, kK = 27/, is much smaller than the size of the Brillouin
zone |k| < 7/ap. The ratio of the lengths of the k vectors is of the order ap/\ and
typically about 10~ for NIR wavelengths.
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2D

1D

Fig. 9.5 Shape of the real (left panel) and imaginary (right panel) parts of the dielectric function
in the vicinity of critical points in 3, 2 and 1 dimensions (for labels see Table 9.3). The dashed line
in each graph indicates the energy position of the critical point Ey. Adapted from [729]

(a) (b)

ho

Fig. 9.6 (a) Direct optical transition and (b) indirect optical transitions between valence and con-
duction bands. The indirect transition involves a phonon with energy Awpn (index a: phonon absorp-
tion, e: phonon emission) and wavevector kpp

For isotropic parabolic bands the band-band transition energy versus wavevector
relation is
(1 1 )
Ewk)=E;+— |—+— )k (9.32)
2 \mf my
When the energy dependence of the matrix element is neglected, the absorption
coefficient is determined by the corresponding square-root joint density of states (M
critical point):

JE—E
(E) x Y- ~ o \/E — E,. (9.33)

E
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The approximation is valid if the considered energy interval, e.g. around a band edge,
is small.

Absorption spectra of (In,Ga;_,),03 alloy thin films at room temperature are
shown in Fig.9.7a. The o versus photon energy plots shows a linear dependence
with broadening and additional states at the band edge due to disorder effects. The
extrapolation of the linear parts yields the absorption edge (Fig.9.7b).

Absorption spectra of GaAs are shown in Fig. 9.8a for photon energies close to the
band gap at various temperatures. The rapid increase, typical for direct semiconduc-
tors, is obvious. In particular at low temperatures, however, the absorption lineshape
close to the band gap is dominated by an excitonic feature, discussed in Sect.9.6.6.

Due to the increasing density of states, the absorption increases with the photon
energy (Fig.9.8c). At 1.85eV there is a step in the absorption spectrum of GaAs
due to the beginning of the contribution of transitions between the s-o hole band
and the conduction band (see Ey + Ay transition in Fig.9.8¢). When bands run in
parallel, i.e. with the same separation, in the E (k) diagram, the absorption processes
accumulate at the same transition energy. In this way higher peaks in the absorption
spectrum due to the E; or E| transitions originate as indicated in the band structure
in Fig.9.8e.

The selection rules for transitions from valence to conduction band must take into
account the angular momentum and spin states of the wavefunctions. The optical
transitions for circularly polarized light are shown in Fig. 9.9a, fulfilling the selection
rule Am; = £1. Alifting of the energetic degeneracies of these states occurs, e.g. by
magnetic fields or spatial confinement (cmp. Fig. 12.29). For two-photon absorption
(Sect.9.6.14), the selection rule is Am; = £2 as shown in Fig. 9.9b [732].

We note that in some materials the direct transition between certain bands is
forbidden. An example is SnO, where the direct transition from the topmost valence

(a) (b)
4 . r 5.1 L e L E
(InGa, ),0 . (InGa, ),0,
s = _50¢ g
> "
| ——o0.0038 o .
o —0.021 9 49l .
C}E’ ——0.038 %’ "
% 2f——0.055 c
Z | —o0073 2 48l . |
“3 [ ——0.090 s
——0.107 2 "
< 47t g
n
. ! 1 ! 1 1
0 4.5 5.0 55 4"60 2 4 6 8 10 12
Energy (eV) X (%)

Fig. 9.7 (a) Absorption spectra of (InyGa;j_,)20O3 alloy thin films on Al,Os, plotted as o? versus
photon energy. (b) Band edge determined from extrapolation of linear parts
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Fig. 9.8 (a) Absorption of GaAs close to the band gap at different temperatures. Adapted
from [730]. (b) High-resolution absorption spectrum of highly pure GaAs at 7 = 1.2 K in the exci-
ton region. Dashed line is theory without excitonic correlation. Adapted from [731]. (¢) Absorption
spectrum of GaAs at T = 21 K in the vicinity of the band gap. Adapted from [730]. (d) Complex
dielectric function of GaAs at T = 300K, dashed (solid) line real (imaginary) part of dielectric
constant. Peak labels relate to transitions shown in part (e). (e) Band structure of GaAs with band
gap transition (Eg) and higher transitions (Eg + Ao, E1, E1 + Ay, E(’), and E») indicated
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(a) (b)
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Fig. 9.9 Optical selection rules for band—band transitions in bulk material for (a) single photon
transitions and (b) two-photon transitions (with photon energy equal to half the transition energy)

band into the lowest conduction band (at I") is forbidden (cmp. Fig.9.46). If the
matrix element increases linearly with E — E¢, the absorption coefficient varies like

a(E) o« (E — Eg)*2. (9.34)

9.6.3 Indirect Transitions

In an indirect band structure the missing k difference (across the Brillouin zone)
between valence- and conduction-band state needs to be provided by a second quan-
tum. A phonon can provide the necessary momentum and additionally contributes
a small amount of energy Awpy. There are several steps in the absorption spectrum
due to various involved phonons (or combinations of them). At low temperature
(T = 1.6K, Fig.9.10) phonons can only be generated and the absorption starts at
energies above the band gap. At higher temperatures (typically above 40K [733],
Fig.9.10), acoustical phonons assisting the optical absorption transition can also be
absorbed from the crystal; in this case due to energy conservation the absorption starts
already at an energy E; — fwp, below the band gap. At even higher temperatures
(>200K, Fig.9.10), also optical phonons can be absorbed.

The perturbation calculation yields an absorption coefficient with a quadratic
dependence on energy (9.35a) [734]. Essentially, for the absorption into a specific
(empty) conduction band state (with square-root density of states) various initial
(filled) valence band states (also with square-root density of states) are possible,
making the probability depend on the product of the DOS and thus on the energy to
the first power. Integrating over all energy states with energy separation E & fuwpp,
yields an E>-dependence.’ Considering the temperature dependent population of

3 A flat optical phonon dispersion is assumed.
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Fig.9.10 Absorption edge of GaP (,/« vs. E) at various temperatures. The index ‘e’ (‘a’) indicates
phonon emission (absorption) during the optical absorption process. The theoretical excitonic gap
(Egx) at T = 77K is indicated. Adapted from [733]

the phonon density of states (Bose statistics, (E.3)) the absorption coefficients for
transitions with phonon emission (a,) and phonon absorption (a,) are:

(E - (Eg + h/-Uph))z
1 — exp(—hwpn/kT)
(E - (Eg - hwph))z
exp(Awpn/kT) — 1

ae(E)

(9.35a)

@, (E) (9.35b)

The two-particle process is less probable than the direct absorption that only involves
one photon. The strength of indirect absorption close to the band gap is about 1073
smaller than for the direct transition.

An 11-parameter formula based on terms like (9.35a) can describe the room
temperature absorption spectrum of silicon in the visible with a precision of a few
percent [735].

The absorption spectra close to the absorption edge are shown for GaP (Fig.9.10)
and Si (Fig. 9.11a). According to (9.35a), the plot of ./« versus energy (Macfarlane—
Roberts plot [736]) yields a straight line beyond the spectral region of phonon effects.
The complicated form close to the (indirect) gap energy is due to the contribution of
different phonons. The phonon energies found to contribute to the silicon absorption
edge [737] agree with the TA and TO energy at the X minimum [738] (Fig.9.11b).
Also multiple phonons can contribute (Fig.9.10). The momentum conservation can
also be achieved by impurity scattering or electron-electron scattering [739].

We note also that the indirect semiconductors have an optical transition between
I" valence- and conduction-band states. However, this transition is at higher energies
than the fundamental band gap, e.g. for Si (E, = 1.12eV) at 3.4€V (see Fig. 6.6a). In
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Fig.9.11 (a) Absorption edge of Si at two different temperatures. Adapted from [737]. (b) Phonon
energies in silicon along [001] obtained from neutron scattering (black unidentified, green TA,
purple LA, blue LO, red TO). The vertical grey bar indicates the position of the conduction band
minimum, the horizontal grey bars the energies of the phonons observed at the indirect optical
absorption edge. The dark grey overlap areas indicate that TO and TA phonons contribute. Adapted
from [738]
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Fig.9.12 (a) Scheme of indirect and direct optical transitions starting at the top of the valence band
in Ge. Vertical solid lines represent the involved photon, the horizontal dashed line the involved
phonon. (b) Experimental absorption spectrum of Ge (T = 20K). Adapted from [737]

Fig.9.12, the absorption scheme for indirect and direct absorbtion processes starting
with an electron at the top of the valence band is shown together with an experimental
absorption spectrum for Ge with the direct transition (I3 — I7) at 0.89¢eV, 0.136eV
above the fundamental band gap.

In Fig.9.13, the absorption edge of BaTiOs3 is shown. An indirect transition with
an increase of (weak) absorption o« E? and an indirect gap of E; = 2.66eV and a
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Fig. 9.13 Absorption of BaTiO3 at room temperature. Experimental data (circles) from [740] with
fits (dashed lines) o« E* and o< E'/2, respectively

direct transition with an increase of (strong) absorption o< E'/? and a direct gap of
E4 = 3.05eV are observed. These transitions could be due to holes at the M (indirect
gap) and I" (direct gap) points (cf. Sect. 6.3.11), respectively.

9.6.4 Urbach Tail

Instead of the ideal (E — E,)!/? dependence of the direct band-edge absorption, often
an exponential tail is observed (see Fig. 9.14). This tail is called the Urbach tail [741]
and follows the functional dependence (for £ < E,)

a(E)  exp (E ; Eg) , (9.36)
0

where E is the characteristic width of the absorption edge, the so-called Urbach
parameter.

The Urbach tail is attributed to transitions between band tails below the band
edges. Such tails can originate from disorder of the perfect crystal, e.g. from defects
or doping, and the fluctuation of electronic energy bands due to lattice vibrations.
The temperature dependence of the Urbach parameter Ej is thus related to that of
the band gap as discussed in [742, 743].
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Fig. 9.14 (a) Experimental absorption spectrum (circles) of GaAs at room temperature on a semi-
logarithmic plot. The exponential tail below the band gap is called the Urbach tail (the dash-dotted
line corresponds to Ep = 10.3meV in (9.36)). The dashed line is the theoretical dependence from
(9.33). Adapted from [744]. (b) Temperature dependence of Urbach parameter E for two GaAs
samples. Experimental data for undoped (solid circles) and Si-doped (n = 2 x 10'8 cm™3, empry
circles) GaAs and theoretical fits (solid lines) with one-phonon model. Adapted from [742]

9.6.5 Amorphous Semiconductors

The sharp features in the dielectric function due to critical points in the band structure
of crystalline semiconductors are washed out in amorphous material. As an example
the spectra of the imaginary part of the dielectric function for crystalline (trigonal)
and amorphous selenium are shown in Fig. 9.15.

Fig. 9.15 Imaginary part of
the dielectric function of 20 |'\,~ Se
amorphous (solid line) and I \
crystalline (trigonal) | |
selenium (dash-dotted lines | i1tr|gonal

|

|

I

for two different polarization 151 \
directions). From [745] |
« \
j o
Al 10F
5k
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9.6.6 Excitons

An electron in the conduction band and a hole in the valence band form a hydrogen-
like state due to the mutual Coulomb interaction. Such a state is called an exciton.
The center-of-mass motion is separated and has a dispersion £ = %Kz, where
M = m. + my, is the total mass and 7K is the center-of-mass momentum

K =K. + k. (9-37)

The relative motion yields hydrogen-like quantized states E, o n2m=>1):

n __ v — v
Ex = mo €2 2(4mwegh)? n?’ 9-38)

where m* denotes the reduced effective mass ! = m*~' 4 m;~". The third factor
is the atomic Rydberg energy (13.6eV). The exciton binding energy E% = —E is
scaled by (m*/mg) €, ~ 1073. A more detailed theory of excitons beyond the simple
hydrogen model presented here, taking into account the valence-band structure, can
be found in [746] for direct and [747] for indirect cubic and in [748] for wurtzite
semiconductors. The exciton binding energies for various semiconductors are listed
in Table 9.4 and shown in Fig.9.16a versus the band gap.
The radius of the exciton is

rg = n> — ¢ ag, (9.39)
m

where ag = 0.053 nm denotes the hydrogen Bohr radius.® The Bohr radius of the
exciton is ax = r>1( (14.6nm for GaAs, ~2nm for ZnO). The exciton moves with
the center-of-mass K-vector through the crystal. The complete dispersion is (see
Fig.9.16b)

Table 9.4 Exciton (E?() and biexciton (E;J(X, see Sect.9.6.10) binding energies in various bulk
semiconductors

Material EY (meV) EYy (meV) ES/EY
GaAs 4.2

GaAs QW 9.2 2.0 0.22
ZnSe 17 3.5 0.21
GaN 25 5.6 0.22
Cds 27 5.4 0.20
ZnS 37 8.0 0.22
ZnO 59 15 0.25

Values for 10nm GaAs/15nm Al 3Gag 7As quantum well (QW) are taken from [749]

6Cf. (7.20); an electron bound to a donor can be considered as an exciton with an infinite hole mass.
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Fig. 9.16 (a) Exciton binding energy versus band gap for various semiconductors. (b) Schematic
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2

R
E=E,+ E} + —K>~ 9.40
¢+ X+2M (9.40)

The oscillator strength of the exciton states decays o< n~>. The absorption due to
excitons is visible in Fig. 9.8a for GaAs at low temperatures. If inhomogeneities are
present, typically only the n = 1 transition is seen. However, under special conditions
also higher transitions of the exciton Rydberg series are seen (e.g. n = 2 and 3 in
Fig.9.8b).

The exciton concept was introduced first for absorption in Cu,O [750]. The J =
1/2 absorption spectrum (‘yellow series’) is shown in Fig.9.17. In this particular

Fig. 9.17 One-photon (top) (a)
and two-photon (bottom) - ]
absorption spectra of CupO § Cu,0 1|5 2p 3P 4PSPEP
at T = 4.2K. Arrows denote = ]L I ]
theoretical peak positions. o . " . LN ___J N~
Adapted from [752] (b) S 29

-‘2 P n=3

St (S-D)
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Fig. 9.18 (One photon) Absorption spectrum of CupO (thickness 34 um) at 7 = 1.2K with
transitions labelled n = 2. ..25. Adapted from [751]

material both the valence and conduction bands have s character, thus the 1s transition
of the exciton is forbidden and the np transitions are observed in normal (one-
photon) absorption. With two-photon absorption also the s (and d) transitions can
be excited. On a piece of natural Cu,0O, the Rydberg series has been measured
up to n = 25 [751] (Fig.9.18a). The peak energy and the oscillator strength follow
the n=2 (E¥ = 92meV, E, = 2.17208¢V) and n~* laws, respectively, expected
from a hydrogen model (Fig. 9.18b). The deviation from the n~3-dependence for the
oscillator strength at large » is due to interaction effects of excitons with large radius
at finite exciton density.

The scattering (unbound) states of the exciton [753] for E > E, contribute to
absorption above the band gap. The factor by which the absorption spectrum is
changed is called the Sommerfeld factor. For bulk material it is

_exp(n)
Sty =n o’ (9.41)

with n = 7 [E%/(E — Ey)] "2 The change of the absorption spectrum due to the
Coulomb correlation is shown in Fig. 9.19. There is a continuous absorption between
the bound and unbound states. At the band gap there is a finite absorption (S(E —
Ey) — 00). The detail to which exciton peaks can be resolved depends on the spectral
broadening.
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Table 9.5 Phonon broadening parameters (FWHM) of various bulk semiconductors

Material hwro (meV) Iy (meV) Yac (neV/K) YLo (meV)
GaAs 36.8 0 4+2 16.8 2
ZnSe 30.5 1.9 0x7 84+ 8
GaN 92 10 15+4 408 £ 30
ZnO 33 1.2 32 +26 96 +24

Values from fits with (9.42) to experimental data for GaAs [759], ZnSe [757], GaN [756], ZnO [760]
(phonon energy fitted) as shown in Fig.9.22b

In Fig.9.20 the energy separations of the A-, B-, and C-excitons in GaN are
shown [468]. Thus, the ordering of the valence bands depends on the strain state of
the semiconductor.

9.6.7 Phonon Broadening

The scattering with phonons and the related dephasing leads to homogeneous broad-
ening I}, of absorption (and recombination) lines. Acoustic and optical phonons
contribute to the broadening according to the dependence [755]

1
exp(hwro/kT) — 17

Thom(T) = To+vac T + 110 (9.42)

where hwy o is the optical phonon energy and the last factor is the Bose function
(E.24). I is a temperature-independent contribution, Iy = I'(T = 0). The increas-
ing broadening with increasing temperature is obvious, e.g., in absorption spectra
(Fig.9.21a). In Fig. 9.21b experimental data for GaAs, ZnSe and GaN are assembled.
The data have been fitted with (9.42); the resulting phonon broadening parameters are
listed in Table 9.5.7 The optical transitions in polar semiconductors exhibit stronger
coupling to optical phonons. The phonon coupling parameters from different mea-
surements on GaN are discussed and compared in [758].

9.6.8 Exciton Polariton

Electrons and holes are particles with spin 1/2. Thus, the exciton can form states
with total spin § = 0 (para-exciton, singlet) and S = 1 (ortho-exciton, triplet). The

7Such parameter can be directly determined from spectroscopic broadening (as in [756]) or a time-
resolved measurement of the decay of the coherent polarization (four-wave mixing) as in [757]. In
the latter, the decay constant of the dephasing 7 is related to the decay constant 7 of the FWM-signal
by 7> = 27 for homogeneous broadening. The Fourier transform of exp —¢/(27) is a Lorentzian
of the type o ((E — Eg)? + I'?/4)~! with I = 1/7 being the FWHM.
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Fig. 9.21 (a) Absorption spectra of GaN bulk (0.38 wm thick epilayer on sapphire) for various
temperatures 7 = 100, 200, 300, 350, 400, 450, and 475 K. Adapted from [756]. (b) Homogeneous
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Table 9.5

exchange interaction leads to a splitting of these states, the singlet being the ener-
getically higher. The singlet state splits into the longitudinal and transverse exciton
with respect to the orientation of the polarization carried by the Bloch functions
and the center-of-mass motion K of the exciton. Dipole transitions are only possible
for singlet excitons (bright excitons). The triplet excitons couple only weakly to the
electromagnetic field and are thus also called dark excitons.

The coupling of these states to the electromagnetic field creates new quasi-
particles, the exciton polaritons [761, 762]. The dielectric function of the exciton
(with background dielectric constant e,) is

e(w)=6b|:l+L:|§€b|:l+ b :I,

1 — (W?/wx)? 1 — (W?/wr)* + hK?/(M wr)
(9.43)

where (3 is the oscillator strength and the energy is fiwx = hwr + h* K?/2M. hwr
is the energy of the transverse exciton at K = 0. With this dispersion the wave
dispersion must be fulfilled, i.e.
Ak = e(w), (9.44)
where k is the k-vector of the light that needs tobe k = K due to momentum conserva-

tion. The dependence of the dielectric function on k is called spatial dispersion [763].
Generally, up to terms in k? it is written as

B 8
e(Ww) = & [1 + 1 @ w) + Dkz] . (9.45)
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The term k> with curvature D (for the exciton polariton D = //(M wr)) plays a
role in particular when w% —w? = 0. For k # 0 even a cubic material is anisotropic.
The dimensionless curvature D = Dk should fulfill D = h/ (Mo) <1 in order to
make k* terms unimportant. For exciton polaritons® typically D = hwr /(mc?) ~
2 x 1073 for Aiwr = 1eV and m* = 0.1.
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Fig. 9.22 (a) Schematic dispersion of exciton polaritons. The lower polariton branch (‘LPB’) is at
small k photon-like, at large k exciton-like. The upper branch (‘UPB’) is exciton-like at small k£ and
photon-like at larger k. The limit of the UPB for k — 0 is the energy of the longitudinal exciton.
The dashed lines represent the pure exciton dispersions. (b) Theoretical effect of spatial dispersion
on the reflectance at the fundamental exciton resonance at normal incidence for ZnSe material
parameters (hwr = 2.8eV, § = 1.0 x 1073 and a background dielectric constant of ¢, = 8.1,
damping was set to I = 107 wr). The arrow denotes the position of wy . The solid (dashed) line
is with (without) spatial dispersion for D =0.6x 1075 (13 = 0). Data from [763]

From (9.44) together with (9.45) two solutions result:

2w* = kA 4+ (1 + B + Dk*)w}

+ [~4c3(1 + DRAwR + (K2 + (1+ 6+ DEAwd)?] .

(9.46)

The two branches are shown schematically in Fig. 9.22a. Depending on the k value
they have a photonic (linear dispersion) or excitonic (quadratic dispersion) character.
The anticrossing behavior at X’ & wr/c (for hwr = 1eV, k' ~ 0.5 x 10> cm™")
creates a bottleneck region in the lower polariton branch. This name stems from the
small emission rate of acoustic phonons (i.e. cooling) in that region, as predicted
in [764] and experimentally found, e.g. in CdS [765]. The polaritons decay into a

8The dependence of the optical-phonon energies onk is typically too small to make spatial dispersion
effects important. According to (5.19) D = — (apwto/ 40)2 4 x 10711 for typical material
parameters (lattice constant agp = 0.5 nm, TO phonon frequency wto = 15THz).
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photon when they hit the surface. The effect of the oscillator strength of the dispersion
is shown in Fig. 9.23 for two-exciton resonance. In the case of several excitons (9.45)
reads

B n /81
W) = e {1 + ; /D, k2] . (9.47)

Energy

Fig. 9.23 Schematic polariton dispersion for a two-exciton resonance (curvature of exciton dis-
persion greatly exaggerated, D =102 atwr; = 1and wt,2 = 1.5 for three different oscillator
strengths (a) f = 1073, (b) f = 1072, (¢) f = 10~!. The dashed lines in (c) represent the pure
exciton dispersions

For k = 0 either w = 0 (lower polariton branch) or e(wr) = 0. For the latter we
find from (9.45)
wr, = 1 + ﬂwT. (948)

Therefore, the energy splitting AEyr, mostly denoted as Ayr, between the L- and
T-exciton energy given by

1
AEpr = h(wy, — wr) = [w/l ¥5— 1] ot ~ 2 B hur (9.49)

is proportional to the exciton oscillator strength (for experimental values see
Table 9.6). We note that if (D.9) is used for the dielectric function, 3 in (9.49) needs
to be replaced by [3/¢p.

The effect of spatial dispersion on the reflection at the fundamental exciton reso-
nance is depicted in Fig. 9.22b. For non-normal incidence an additional feature due
to the longitudinal wave is observed for p-polarization [763]. For a detailed discus-
sion additional effects due to anisotropy in wurtzite crystals, an exciton free layer
at the semiconductor surface, additional boundary conditions and damping need to
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Table 9.6 Exciton energy (low temperature), LT splitting and exciton polariton oscillator strength
for various semiconductors

CdSA CdSB ZnOA ZnOB ZnSe GaN A GaNB GaAs
hwt (eV) 2.5528 2.5681 3.3776 3.3856 2.8019 3.4771 3.4816 1.5153
Arr (meV) |2.2 1.4 1.45 5 1.45 1.06 0.94 0.08
I5) 1073 1.7 1.1 0.9 3.0 1.0 0.6 0.5 0.11
Values for ZnO from [766], values for GaAs from [767], all other values from [768]
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Fig. 9.24 (a) Exciton polariton dispersion (k L ¢) of ZnO with experimental data (T = 1.8K).
Solid (dotted) lines are for polaritons with E || ¢ (E L c¢). The dashed lines refer to excitons.

Adapted from [771]. (b) Exciton polariton dispersion (7" = 2K) in GaN (on sapphire) for E L c.
Adapted from [772]

be considered [769, 770]. The polariton dispersions of ZnO and GaN are shown in
Fig.9.24.

9.6.9 Bound-Exciton Absorption

Excitons can localize at impurities or inhomogeneities. Such excitons are called
bound excitons. Here, the absorption due to such complexes is discussed. The recom-
bination is discussed in Sect. 10.3.2. In GaP:N excitons are bound to isoelectronic
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Fig. 9.25 (a) Transmission spectrum of GaP:N with a nitrogen concentration of about 10'° cm~=3
at 1.6K (thickness: 1.1 mm). n is indicated for the first eight transitions due to excitons bound to
nitrogen pairs. NN,,” indicate phonon replica. The ‘A’ line denotes the position of the transition
due to excitons bound to a single nitrogen atom (observable for samples with low N doping). The
‘B’ line is forbidden and due to the J = 2 exciton. Adapted from [616]. (b) Absorption spectra of
N-doped (Ny = 7 x 10'8 cm™3) and intrinsic GaP (7' = 2K). Adapted from [612]

N impurities (substituting P), resulting in the ‘A’ line at 2.3171eV (at T = 4.2K).”
The absorption due to A excitons is well resolved in the spectrum of Fig.9.25b. At
sufficiently high nitrogen doping, there exist nitrogen pairs, i.e. a complex where a
nitrogen impurity has a second nitrogen impurity in the vicinity. The pairs are labeled
NN,,. It was believed that the second nitrogen atom is in the n-th shell around the first
one. However, the proper level asignment is probably different in the view of modern
theory [472]. Also clusters with more than two nitrogen atoms may exist. NN is
a prominent level and relates to a N-Ga—N complex having 12 equivalent sites for
the second N atom on the next neighbor anion site. The transitions due to excitons
bound to NN,,, as shown in Fig.9.25a, give a series of lines (see Table 9.7) that fulfill
lim, ., NN, = A. Although GaP has an indirect band structure, the absorption
coefficient of N-related transitions is large, about 10° cm™! for a nitrogen doping

9The A line is due to excitons with J = 1, resulting of coupling of the electron spin 1/2 with the
hole angular momentum of 3/2. The B-line is a dipole forbidden line due to ‘dark’ excitons with
J=2.
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Table 9.7 Index of nitrogen pairs NN,, and energy separation AE of bound-exciton transitions
from the free-exciton line forn = 1... 10 and the ‘A’ line

n 1 2 3 4 5 6 7 8 9 10 00 (A)

AE 143 138 64 39 31 25 22 20 18 17 11
(meV)

level of 10" cm™3.!% This is due to the fact that the electron spatially localized at
the nitrogen isoelectronic trap (Sect.7.7.9) has a sizeable k = 0-component of its
wave-function (Fig.7.41), leading to a large transition probability for I"-point holes
with an oscillator strength of 0.09 [773].

9.6.10 Biexcitons

Similar to two hydrogen atoms forming a hydrogen molecule, two excitons can also
form a bound complex, the biexciton involving two electrons and two holes. The
biexciton binding energy is defined as

EY%y =2 Ex — Exx. (9.50)

Biexcitons are binding in bulk material. Accordingly, the biexciton recombination
or absorption occurs at lower energy than that of the exciton. Values of the biexciton
binding energy are listed in Table 9.4 for various semiconductors. The ratio of biexci-
ton and exciton binding energies is fairly constant about 0.2. In semiconductors with
small exciton binding energy, such as GaAs, biexcitons are hard to observe in bulk
material but show up in heterostructures that provide additional carrier confinement
(see also Sect.14.3.4). While the exciton density increases linearly with external
excitation, the density of biexcitons increases quadratically.

9.6.11 Trions

The complexes ‘eeh’ and ‘ehh’ are called trions. Also, the notation X~ and X is
common. X is typically stable in bulk material but hard to observe. In quantum wells
or dots, trions are easier to observe. In quantum dots excitons with higher charge,
e.g. X*>~, have also been observed (see Fig. 14.34).

10A]50 the recombination (Sect. 10.3.2) is efficient and allows green GaP:N and yellow GaAsP:N
light emitting diodes.
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9.6.12 Band Gap Renormalization

The band structure theory has been developed so far for small carrier densities. If
the carrier density is large the interaction of free carriers has to be considered. The
first step was exciton formation. However, at high temperatures (ionization) and at
large carrier density (screening) the exciton is not stable. Exchange and correlation
energy leads to a decrease of the optical absorption edge that is called band gap
renormalization (BGR).

An effect due to significant carrier density is to be expected when the density is
of the order of the exciton volume, i.e. n ~ ag 3. For ag ~ 15nm (GaAs) this means
n ~ 3 x 10”7cm—3. The dimensionless radius r; is defined via

—r)=—. (9.51)
The sum of exchange and correlation energies E. is found to be mostly indepen-
dent of material parameters [774] (Fig.9.26a) and follows the form

b
Ey= —2020 (9.52)
c+drs+r;

®

o Ge
a Sl
o model system

E.(Ry)
Energy (Ryd)

-10 1 L -5

Fig. 9.26 (a) Theoretical exchange and correlation energies in units of the exciton Rydberg energy
as a function of the dimensionless variable r¢ for Ge, Si and a model system (with one isotropic
conduction and valence band each). The solid line is a fit according to (9.52). Adapted from [774].
(b) Band gap renormalization in terms of the excitonic Rydberg for various II-VI semiconductors.
Solid line is the relation according to (9.52), dashed line is the dependence predicted in [775] for
T = 30K. Data are compiled in [776]
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Fig. 9.27 Absorption of LN L L O O B B B
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T = 10K) as a function of g B f 7
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with a = —4.8316, b = —5.0879, ¢ = 0.0152 and d = 3.0426. Thus the density
dependence of the band gap at small carrier density is o< n!/3. Experimental data for
a number of II-VI semiconductors roughly follow such a dependence (Fig.9.26b).

In Fig.9.27, a theoretical calculation of the absorption spectrum of bulk GaAs
for various carrier densities (n = p) [777] is shown. With increasing density, the
excitonic resonance broadens and vanishes. The shape approaches the electron—hole
plasma shape. The absorption edge shifts to smaller energies. At high carrier density,
the absorption becomes negative in a spectral range before absorption sets in. In this
spectral region, the material exhibits gain and an incoming light wave is amplified
(cmp. Sect. 10.2.6).

9.6.13 Electron—-Hole Droplets

At low temperature and high density, electron—hole pairs in Ge and Si can undergo
a phase transition into a liquid state. This electron-hole liquid (EHL) was suggested
in [778] and is a Fermi liquid exhibiting the high conductivity of a metal and the
surface and density of a liquid. The condensation is due to exchange interaction
and correlation. The formation is fostered by the band structure of Ge [779] and the
long lifetime of carriers in the indirect band structure. In unstressed Ge typically
a cloud of electron—hole droplets with diameter in the p.m range exists. The phase
diagram is shown in Fig.9.28a. In suitably stressed Ge electron—hole droplets with
several hundred pm diameter form around the point of maximum shear strain in
inhomogeneously strained crystals, as shown in Fig. 9.28b. The pair density in such
a liquid is of the order of 10'7 cm™3.

We note that the metallic EHL state hinders observation of the Bose—Einstein
condensation (BEC) of (bosonic) excitons. The light-exciton mass offers a high
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Fig. 9.28 (a) Temperature—density phase diagram of electrons and holes in Ge. The regions of
electron-hole gas (EHG) and liquid (EHL) and the droplet phase are labeled. Solid line is theo-
retical calculation, symbols are experimental data from [780]. The dash-dotted line denoted pyp, is
the experimentally obtained temperature dependence of the liquid density due to single-particle
excitations. pg ¥ and T, denote the experimental critical density and temperature, respectively.
Adapted from [781]. (b) Photographic image of radiative recombination (at 1.75 wm wavelength)
from a 300-pm diameter droplet of electron—hole liquid (EHL) in a stressed (001) Ge disk (diameter
4 mm, thickness 1.8 mm) at 7 = 2 K. The stress is applied from the top by a nylon screw along a
(110) direction. Adapted from [782], reprinted with permission, © 1977 APS

condensation temperature in the 1K range (compared to the mK range for atoms).
Recent experiments with spatially indirect excitons in coupled quantum wells lead
towards BEC [783, 784]. A sufficiently long lifetime ensures cooling of the excitons
close to the lattice temperature. Another potential candidate for BEC are long-living
excitons (ms-range) in Cu,O [785]. The condensation of polaritons (cf. Sect.9.6.8)
in microcavities to well-defined regions of k-space has been discussed in [786] and
compared to bosonic condensation in bulk.

9.6.14 Two-Photon Absorption

So far, only absorption processes that involve one photon have been considered. The
attenuation of the intensity / of a light beam (of frequency wy) along the z direction

can be written as dI
a1 (9.53)
dz
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Fig. 9.29 Experimental
two-photon absorption
spectrum of GaAs (T = 4K)
(dots) plotted as a function
of the difference of the
double-photon energy 2hw
from the GaAs band edge
E,. The solid line is a
theoretical calculation, the
dashed lines represent slopes
with exponent 1/2 and 3/2,
respectively. Adapted

from [789]

Transition rate (W/V)

2ho - E, (eV)

where « is due to the (linear) absorption coefficient (and possibly scattering) and
( is the two-photon absorption coefficient. A two-photon process can occur in two
steps, e.g. via a midgap level, which is not considered any further here. Here, we
consider two-photon absorption (TPA) via the population of a state at 2Awg higher
energy than the initial state with a nonlinear optical process. The TPA coefficient is
related to the nonlinear third-order electric dipole susceptibility tensor [787] x; k-
Within the two-band approximation theory predicts [788]

B o (2w — Eg)*7. (9.54)

The exponent 3/2 is indeed found experimentally, as shown in Fig. 9.29 for GaAs.
The strength of absorption depends on the relative orientation of the light polarization
with respect to the main crystallographic directions, e.g. TPA for polarization along
(110) is about 20 % larger than for the (100) orientation.

9.7 Impurity Absorption
9.7.1 Shallow Levels

For charge carriers bound to shallow impurities long range Coulomb forces are most
important and they exhibit a hydrogen-like term scheme

m*1 1
E,=——— x13.6eV, (9.55)

mo €2 n?
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Fig. 9.30 (a) Term scheme of phosphorus donor in silicon, all energies in meV. After [791]. (b)
Schematic sequence for photothermal ionization, here absorption of a photon with Aw = E3p — Es
and subsequent absorption of a phonon with energy fwph > Eco — E3p

with the ionization limit E, being the conduction (valence) band edge for donors
(acceptors), respectively. They can be excited by light to the nearest band edge. Such
absorption is typically in the FIR region and can be used for photodetectors in this
wavelength regime. The optical absorption cross section of impurity absorption can
be related to the carrier capture cross section [513, 514].

The actual transition energies can deviate from (9.55) due to deviation of the
potential close to the impurity from the pure Coulomb potential. Such an effect is
known as the chemical shift or central cell correction (cf. Sect.7.5.5) and is charac-
teristic of the particular impurity. In GaAs such shifts are small (~100peV) [790].

The term scheme for P in Si is shown in Fig. 9.30a. The ground state (1s) is split
because of a reduction of the tetrahedral symmetry due to intervalley coupling. The
anisotropic mass at the X-valley in Si causes the p states (and states with higher orbital
momentum) to split into pg and p4 states. Such an effect is absent in a direct semi-
conductor with an isotropic conduction-band minimum such as GaAs (Fig.9.31).
Optical transitions between the 1s and various p states can be directly observed in
absorption, e.g. for Si:P in [792]. These transitions are also observed in photocon-
ductivity because the missing energy to the ionization into the continuum is supplied
by a phonon at finite temperature (photothermal ionization) (Fig.9.30b) [791]. The
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Fig.9.31 (a)Far-infrared photoconductivity response (Lyman-type s— p series) of not intentionally
doped GaAs with residual donors Pb, Sn, and Si, Ny = 2.6 x 1083 ecm™3, Np—Np = 8x102cm™2.
The upper (lower) curve is for a magnetic field of 0 (1.9) T. Measurement temperature is 4.2 K.
(b) Photoconductive response of a (different) GaAs sample with the same impurities (Np = 1 x
10'3 ecm™3) with (upper curve) and without (lower curve) illumination with above-bandgap light
(B=19T, T =4.2K). Adapted from [793]
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Fig. 9.32 Low-temperature (T = 1.35K) absorption spectra of highly doped n-type GaAs:Te
with doping concentrations as labeled (circles Np = 2.1 x 1010 cm™3, stars 6.7 x 10'4, triangles
1.0 x 10'%). A sharp photoconductivity spectrum (in arbitrary units) from low-doped GaAs:Te
(crosses, Np = 1.0 x 10" ecm™3) is shown for comparison (cf. Fig.9.31a). The energy of the
1s—2p transition and the donor binding energy (onset of continuum absorption) are indicated.
Adapted from [794]

splitting of the 2p transition in Fig. 9.31a is the chemical shift due to different donors
incorporated in the GaAs (Si, Sn, and Pb). Peak broadening is mostly due to Stark
broadening due to neighboring charged impurities. The application of a magnetic
field induces Zeeman-like splittings and increases the sharpness of the peaks. The
peak width can be further increased by illuminating the sample with light having a
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higher energy than the band gap. The additional charge carriers neutralize charged
impurities and allow higher resolution (Fig.9.31b).

In Fig. 9.32 absorption spectra of highly doped n-type GaAs are shown. For doping
concentrations larger than the critical concentration of ~1 x 10'® cm =3 (cf. Table 7.6)
significant broadening is observed due to the formation of an impurity band.

9.7.2 Deep Levels

The absorption of deep levels is typically in the infrared. In Fig. 9.33a the possible
optical absorption processes involving the Fe levels in InP (cf. Sect.7.7.8) during
the charge transfer Fe’* — Fe?* are shown. These transitions and their fine struc-
ture (Fig. 9.33b) have been observed in calorimetric absorption spectroscopy (CAS)
experiments [604].

In Fig. 9.34 the photoconductivity of is shown. The sharp peaks are due to transi-
tions of interstitial, singly ionized Mg, Mgfr [795]. Mg in Si is a double donor [575]
(see Sect.7.7.2). Above the ionization limit of about 256 meV, the peaks are repli-
cated, shifted by the LO phonon energy of 59.1 meV. However, now they rather appear
as dips. This behavior is typical for a discrete state interacting with a continuum, also
called Fano resonance [796, 797] with its characteristic lineshape, going below the
continuum level.

The absorption spectra due to various deep acceptors in GaAs are compared
in Fig.9.35. The density of states in the band increases with k (proportional to
v E — E_). The carrier on the impurity is strongly localized and described with
a wave packet centered around I, its k-components decreasing with increasing k.
Thus the maximum absorption will be at an intermediate k-value and an associ-
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Fig. 9.33 (a) Schematic band diagram of InP with levels of Fe impurities in the 3+ and 2+ charge
states at low temperature. All energies are given in eV. The arrows denote the optical transition
of a valence-band electron to the Fe center, Fe3t + hAw — Fe?t + h. (b) Calorimetric absorption
spectra (at 7 = 1.3K) of InP:Fe, [Fe] =5 x 1016 cm=3. Part (b) adapted from [604]
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Fig. 9.34 Photocurrent spectrum of Si:Mg. Transitions are due to Mgi+ from its 1s state to excited
states as labeled and indicated by vertical lines. CB denotes the conduction band edge (ionization
limit). Above the CB edge (shaded area) phonon-assisted absorption occurs (Fano resonances).
For comparison the absorption spectrum below CB is shown shifted by the phonon energy (dashed
line). Above the plot, the transition mechanisms (photothermal ionization and Fano resonance) are
schematically shown. Adapted from [795]

Fig. 9.35 Absorption
spectra (o = «/ p) due to
various deep impurities in
GaAs as labeled. The dashed
line is a theoretical lineshape
assuming a hole bound to a
o-potential. The energy axis
is scaled by the ionization
energy. The kink for Mn at
3.5 Ej ~ 450meV is due to
the onset of absorption into
the split-off valence band.
Adapted from [279]
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ated energy larger than the ionization energy E; (lowest transition to continuum at
for k = 0). The lineshapes in Fig.9.35 fit to a model with a d-potential (zero range
model, neglecting long range Coulomb terms) [798] with maximum absorption close
to2 E;,

E/?(E - E)¥?

a(E) =

(9.56)

9.8 Absorption in the Presence of Free Charge Carriers

In the presence of charge carriers, various absorption processes can occur. First, the
dissipative motion of carriers leads to infrared absorption, termed the free carrier
absorption (Sect.9.8.1). Filling of a band with carriers leads to a shift of the band-
band absorption edge, the Burstein—Moss shift (Sect.9.8.2). Besides the free-carrier
absorption, free carriers present in the semiconductor can lead to further absorption
processes with transition energies below the band gap. These processes are due to
transitions within the band structure and can be

e inter-valence 