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Preface

Semiconductor electronics is commonplace in every household. Semiconductor
devices have enabled economically reasonable fiber-based optical communication,
optical storage, and high-frequency amplification and have recently revolutionized
photography, display technology, and lighting. By now solar energy harvesting
with photovoltaics contributes a significant portion to the energy mix. Along with
these tremendous technological developments, semiconductors have changed the
way we work, communicate, entertain, and think. The technological progress of
semiconductor materials and devices is evolving continuously with a large
worldwide effort in human and monetary capital. For students, semiconductors offer
a rich and exciting field with a great tradition, offering diverse fundamental and
applied topics [1] and a bright future.

This book introduces students to semiconductor physics and semiconductor
devices. It brings them to the point where they can specialize and enter supervised
laboratory research. It is based on the two-semester semiconductor physics course
taught at Universität Leipzig in its Master of Science physics curriculum. Since the
book can be followed with little or no pre-existing knowledge in solid-state physics
and quantum mechanics, it is also suitable for undergraduate students. For the
interested reader several additional topics are included in the book that can be cov-
ered in subsequent, more specialized courses. The material is selected to provide a
balance between aspects of solid-state and semiconductor physics, the concepts of
various semiconductor devices and modern applications in electronics and photonics.

The first semester contains the fundamentals of semiconductor physics (Part I,
Chaps. 1–10) and selected topics from Part II (Chaps. 11–20). Besides important
aspects of solid-state physics such as crystal structure, lattice vibrations, and band
structure, semiconductor specifics such as technologically relevant materials and
their properties, doping and electronic defects, recombination, surfaces, and hetero-
and nanostructures are discussed. Semiconductors with electric polarization and
magnetization are introduced. The emphasis is put on inorganic semiconductors,
but a brief introduction to organic semiconductors is given in Chap. 17. Dielectric
structures (Chap. 19) serve as mirrors, cavities, and microcavities and are a vital
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part of many semiconductor devices. Other chapters give introduction to
carbon-based nanostructures and transparent conductive oxides (TCOs). The third
part (Part III, Chaps. 21–24) is dedicated to semiconductor applications and devices
that are taught in the second semester of the course. After a general and detailed
discussion of various diode types, their applications in electrical circuits, pho-
todetectors, solar cells, light-emitting diodes, and lasers are treated. Finally, bipolar
and field-effect transistors including thin-film transistors are discussed.

In the present text of the third edition, a few errors and misprints of the second
edition have been corrected. Several topics have been extended and are treated in
more depth, e.g., double donors and double acceptors, negative-U centers,
Boltzmann transport equation, ionic conductivity, hopping conductivity, impact
ionization, thermopower, polarons, intra-band transitions, amorphous semicon-
ductors, disorder effects, heteroepitaxy on mismatched, curved and patterned sub-
strates, and noise. A chapter on semiconductor surfaces has been added.

The list of references has been augmented by almost 400 quotations with respect
to the list in the second edition. All references now include title and complete page
numbers. The references have been selected to (i) cover important historical and
milestone papers, (ii) direct to reviews and topical books for further reading and
(iii) give access to current literature and up-to-date research. In Fig. 1, the original
papers within the more than 1800 references in this book are shown by year.
Roughly three phases of semiconductor physics and technology can be seen. Before
the realization of the first transistor in 1947, only a few publications are noteworthy.
Then an intense phase of understanding the physics of semiconductors and
developing semiconductor technology and devices based on bulk semiconductors
(mostly Ge, Si, GaAs) followed. At the end of the 1970s, a new era began with the
advent of quantum wells and heterostructures, and later nanostructures (nanotubes,
nanowires, and quantum dots) and new materials (e.g., organic semiconductors,
nitrides or graphene). Also several very recent references to emerging topics such as
2D materials, topological insulators or novel amorphous semiconductors are given.
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I would like to thank many colleagues for their various contributions to this
book, in alphabetical order (if no affiliation is given, at the time at Universität
Leipzig): Gabriele Benndorf, Klaus Bente, Rolf Böttcher, Matthias Brandt,
Christian Czekalla, Christof Peter Dietrich, Pablo Esquinazi, Heiko Frenzel, Volker
Gottschalch, Helena Franke (née Hilmer), Axel Hoffmann (TU Berlin), Alois

Krosty (Otto-von-Guericke Universität Magdeburg), Michael Lorenz, Stefan
Müller, Thomas Nobis, Rainer Pickenhain, Hans-Joachim Queisser
(Max-Planck-Institut für Festkörperforschung, Stuttgart), Bernd Rauschenbach
(Leibniz-Institut für Oberflächenmodifizierung, Leipzig), Bernd Rheinländer,
Heidemarie Schmidt, Mathias Schmidt, Rüdiger Schmidt-Grund, Matthias
Schubert, Jan Sellmann, Oliver Stier (TU Berlin), Chris Sturm, Florian Tendille
(CNRS-CRHEA), Gerald Wagner, Eicke Weber (UC Berkeley), Holger von
Wenckstern, Michael Ziese, and Gregor Zimmermann. This book has benefitted
from their comments, proof reading, experimental data, and graphic material. Also,
numerous helpful comments from my students on my lectures and previous editions
of this book are gratefully acknowledged.

I am also indebted to many other colleagues, in particular to (in alphabetical
order) Gerhard Abstreiter, Zhores Alferov, Martin Allen, Levon Asryan, Günther
Bauer, Manfred Bayer, Friedhelm Bechstedt, Dieter Bimberg, Otto Breitenstein,
Len Brillson, Fernando Briones, Immanuel Brosery, Jean-Michel Chauveau, Jürgen
Christen, Philippe De Mierry, Steve Durbin, Laurence Eaves, Klaus Ellmer, Guy
Feuillet, Elvira Fortunato, Ulrich Göseley, Alfred Forchel, Manus Hayne, Frank
Heinrichsdorff, Fritz Hennebergery, Detlev Heitmann, Robert Heitzy, Evamarie
Hey-Hawkins, Detlef Hommel, Evgeni Kaidashev, Eli Kapon, Nils Kirstaedter,
Claus Klingshirn, Fred Kochy, Jörg Kotthaus, Nikolai Ledentsov, Peter Littlewood,
Dave Look, Axel Lorke, Anupam Madhukar, Ingrid Mertig, Bruno Meyery, David
Mowbray, Hisao Nakashima, Jörg Neugebauer, Michael Oestreich, Louis Piper,
Mats-Erik Pistol, Fred Pollaky, Volker Riede, Bernd Rosenow, Hiroyuki Sakaki,
Lars Samuelson, Darrell Schlom, Vitali Shchukin, Maurice Skolnick, Robert Suris,
Volker Türck, Konrad Ungery, Victor Ustinov, Leonid Vorob’jev, Richard
Warburton, Alexander Weber, Peter Werner, Wolf Widdra, Ulrike Woggon, Roland
Zimmermann, Arthur Zrenner, Alex Zunger, and Jesús Zúñiga-Pérez, with whom I
have worked closely, had enjoyable discussions with and who have posed questions
that stimulated me. It is my distinct privilege and joy that this list becomes longer as
I pursue studies in semiconductor physics but sadly the number of y-symbols
increases too rapidly from edition to edition.

Leipzig Marius Grundmann
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Chapter 1
Introduction

The proper conduct of science lies in the pursuit of Nature’s
puzzles, wherever they may lead.

J.M. Bishop [2]

Abstract Important dates and events in the history of semiconductors are chronolog-
ically listed, from the early days (Volta, Seebeck and Faraday) to the latest achieve-
ments like the blue and white LED. Many known and not so well known scientists
are mentioned. Also a list of semiconductor related Nobel prizes and their winners
is given.

The historic development of semiconductor physics and technology began in the
second half of the 19th century. Interesting discussions of the history of the physics
and chemistry of semiconductors can be found in [3–5]. The development of crystal
growth is covered in [6]. The history of semiconductor industry can be followed in
[7, 8]. In 1947, the commercial realization of the transistor was the impetus to a fast-
paced development that created the electronics and photonics industries. Products
founded on the basis of semiconductor devices such as computers (CPUs, mem-
ories), optical-storage media (lasers for CD, DVD), communication infrastructure
(lasers and photodetectors for optical-fiber technology, high frequency electronics
for mobile communication), displays (thin film transistors, LEDs), projection (laser
diodes) and general lighting (LEDs) are commonplace. Thus, fundamental research
on semiconductors and semiconductor physics and its offspring in the formof devices
has contributed largely to the development of modern civilization and culture.

© Springer International Publishing Switzerland 2016
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
DOI 10.1007/978-3-319-23880-7_1
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2 1 Introduction

1.1 Timetable and Key Achievements

In this section early important milestones in semiconductor physics and technology
are listed.

1782
A. Volta—coins the phrase ‘semicoibente’ (semi-insulating) which was translated
then into English as ‘semiconducting’ [9].

1821
T.J. Seebeck—discovery of thermopower (electrical phenomena upon temperature
difference) in metals and PbS, FeS2, CuFeS2 [10].

1833
M. Faraday—discovery of the temperature dependence of the conductivity of Ag2S
(sulphuret of silver, negative dR/dT ) [11].

1834
J. Peltier—discovery of the Peltier effect (cooling by current) [12].

1873
W. Smith—discovery of photoconductivity in selenium [13]. Early work on photo-
conductivity in Se is reviewed in [14, 15].

1874
F. Braun1—discovery of rectification in metal–sulfide semiconductor contacts [17],
e.g. for CuFeS2 and PbS. The current through a metal–semiconductor contact is
nonlinear (as compared to that through a metal, Fig. 1.1), i.e. a deviation fromOhm’s
law. Braun’s structure is similar to a MSM diode.

1876
W.G. Adams and R.E. Day—discovery of the photovoltaic effect in selenium [18].

W. Siemens—large response from selenium photoconductor [19], made by winding
two thin platinumwires to the surface of a sheet ofmica, and then covering the surface
with a thin film of molten selenium. Resistance ratio between dark and illuminated
by sunlight was larger than ten [19] and measured to 14.8 in [20].

1879
E.H. Hall—measurement of the transverse potential difference in a thin gold leaf on
glass [21, 22]. Experiments were continued by his mentor H.A. Rowland [23]. A
detailed account of the discovery of the Hall efect is given in [24, 25].

1883
Ch. Fritts—first solar cell, based on an gold/selenium rectifier [20]. The efficiency
was below 1%.

1F. Braun made his discoveries on metal–semiconductor contacts in Leipzig while a teacher at the
Thomasschule zu Leipzig [16]. He conducted his famous work on vacuum tubes later as a professor
in Strasbourg, France.
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Fig. 1.1 Current through a
silver–CuFeS2–silver
structure as a function of the
current through the metal
only, 1874. Data points are
for different applied
voltages. Experimental data
from [17]

1901
J.C. Bose—point contact detector for electromagnetic waves based on galena
(PbS) [26]. At the time, the term semiconductor was not introduced yet and Bose
speaks about ‘substances of a certain class (...) presenting a decreasing resistance to
the passage of the electric current with an increasing impressed electromotive force’.

1906
G.W. Pickard—rectifier based on point contact (cat’s whisker) diode on silicon [27-
29]. Erroneously, the rectifying effect was attributed to a thermal effect, however, the
drawing of the ‘thermo-junction’ (TJ in Fig. 1.2) developed into the circuit symbol
for a diode (cmp. Fig. 21.61a).

1907
H.J. Round—discovery of electroluminescence investigating yellow and blue light
emission from SiC [30].

Fig. 1.2 Circuit diagram for
a radio receiver with a
point-contact diode (TJ).
Adapted from [27]

http://dx.doi.org/10.1007/978-3-319-23880-7_21
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(001) (111) (110)

Fig. 1.3 Laue images of ‘regular’ (cubic)ZnSalong threemajor crystallographic directions, directly
visualizing their 4-, 3- and 2-fold symmetry. Adapted from [41]

K. Bädeker—preparation ofmetal (e.g. Cd, Cu) oxides and sulfides and alsoCuI from
metal layers using a vapor phase transport method [31].2 CuI is reported transparent
(∼200nm thick films) with a specific resistivity of ρ = 4.5 × 10−2 �cm, the first
transparent conductor.3 Also CdO (films of thickness 100–200nm) is reported to
be highly conductive, ρ = 1.2 × 10−3 �cm, and orange-yellow in color, the first
reported TCO (transparent conductive oxide).

1909
K. Bädeker—discovery of doping. Controlled variation of the conductivity of CuI
by dipping into iodine solutions (e.g. in chloroform) of different concentrations [34].

1910
W.H. Eccles—negative differential resistance of contacts with galena (PbS), con-
struction of crystal oscillators [38].4

1911
The term ‘Halbleiter’ (semiconductor) is introduced for the first time by J.Weiss [39]
and J. Königsberger and J. Weiss [40]. Königsberger preferred the term ‘Variabler
Leiter’ (variable conductor).

1912
M. von Laue—X-ray diffraction of bulk crystals including ZnS (Fig.1.3) [41, 42].

2This work was conducted as Habilitation in the Physics Institute of Universität Leipzig. Bädeker
became subsequently professor in Jena and fell inWWI.His scientific contribution to semiconductor
physics is discussed in [32, 33].
3CuI is actually a p-type transparent conductor; at that time the positive sign of the Hall effect
[34, 35] could not be interpreted as hole conduction yet.
4Historical remarks on Eccles’ contributions to radio technology can be found in [36, 37].
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Fig. 1.4 Sketch of a
field-effect transistor, 1926.
From [46]

1925
J.E. Lilienfeld5—proposal of the metal-semiconductor field-effect transistor (MES-
FET) [46], with suggested copper sulfide thin film channel and aluminum gate.6

(Fig. 1.4). Lilienfeld was also awarded patents for a depletion mode MOSFET
[48] with proposed copper sulfide, copper oxide or lead oxide channel and current
amplification with nppn- and pnnp-transistors [49]. Due to the lack of other pub-
lications of Lilienfeld on transistors, it is under discussion whether Lilienfeld just
patented ideas or also build working devices with mounting evidence for the latter
[44, 47, 50].

1927
A. Schleede, H. Buggisch—synthesis of pure, stoichiometric PbS, influence of sul-
phur excess and impurities [51].
A. Schleede, E. Körner—activation of luminescence of ZnS [52, 53].

1928
F.Bloch—quantummechanics of electrons in a crystal lattice, ‘Bloch functions’ [54].
O.V. Losev—description of the light emitting diode7 (SiC) [58]; light emission was
observed in forward direction and close to breakdown (Fig. 1.5a). Also current mod-
ulation of LED light output was reported (Fig. 1.5b) [58].

1929
R. Peierls—explanation of positive (anomalous)Hall effect with unoccupied electron
states [59, 60].

5After obtaining his PhD in 1905 from the Friedrich-Wilhelms-Universität Berlin, Julius Edgar
Lilienfeld joined the Physics Department of Universität Leipzig and worked on gas liquefaction
and with Lord Zeppelin on hydrogen-filled blimps. In 1910 he became professor at the Universität
Leipzig where he mainly researched on X-rays and vacuum tubes [43]. To the surprise of his
colleagues he left in 1926 to join a US industrial laboratory [44, 45].
6In [44] it is suggested that the device works as a npn transistor, in [47] it is suggested to be a JFET.
7The historic role of Losev regarding the invention of the LED and oscillators is discussed in
[55–57].
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Fig. 1.5 (a) I–V characteristic of SiC/steel wire light emitting diode. The dotted curve is the
flipped curve for negative voltage (3rd quadrant). (b) Recording of current modulated (at 500Hz)
LED on moving photographic plate. Adapted from [58]

Fig. 1.6 First band structure
calculation (ξ = k a).
Adapted from [62]

1930
R. Peierls—first calculation of a band structure and band gap8 (Fig. 1.6) [62].
1931
W. Heisenberg—theory of hole (‘Löcher’) states [63].
R. de L. Kronig and W.G. Penney—properties of periodic potentials in solids [64].
A.H. Wilson9—development of band-structure theory [67, 68].

8Peierls performed this work at suggestion of W. Pauli at ETH Zürich. The mathematical problem
of Schrödinger’s equation with a sinusoidal potential had been already treated by M.J.O Strutt in
1928 [61].
9Wilson was theoretical physicist in Cambridge, who spent a sabbatical with Heisenberg in
Leipzig and applied the brand new field of quantum mechanics to issues of electrical conduction,
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1933
C. Wagner—excess (‘Elektronenüberschuss-Leitung’, n-type) and defect
(‘Elektronen-Defektleitung’, p-type) conduction [69]. Anion deficiency in ZnO
causes conducting behavior [70].

1934
C. Zener—Zener tunneling [71].

1936
J. Frenkel—description of excitons [72].

1938
B. Davydov—theoretical prediction of rectification at pn-junction [73] and in
Cu2O [74].
W. Schottky—theory of the boundary layer in metal–semiconductor contacts [75],
being the basis for Schottky contacts and field-effect transistors.
N.F. Mott—metal–semiconductor rectifier theory [76, 77].
R. Hilsch and R.W. Pohl—three-electrode crystal (KBr) [78].

1940
R.S. Ohl—Silicon-based photoeffect (solar cell, Fig. 1.7) [79] from a pn-junction
formed within a slab of polycrystalline Si fabricated with directed solidification due
to different distribution coefficients of p- and n-dopants (boron and phosphorus, cmp.
Fig. 4.6b) (J. Scaff and H. Theurer) [80, 81].

1941
R.S. Ohl—Silicon rectifier with point contact [82, 83] (Fig. 1.8), building on work
from G.W. Pickard (1906) and using metallurgically refined and intentionally doped
silicon (J. Scaff and H. Theurer) [80].

1942
K. Clusius, E. Holz and H. Welker—rectification in germanium [84].

1945
H. Welker—patents for JFET and MESFET [85].

1947
W. Shockley, J. Bardeen and W. Brattain fabricate the first transistor in the AT&T

(Footnote 9 continued)
first in metals and then in semiconductors. When he returned to Cambridge, Wilson urged that
attention be paid to germanium but, as he expressed it long afterward,‘the silence was deafening’ in
response. He was told that devoting attention to semiconductors, those messy entities, was likely to
blight his career among physicists. He ignored these warnings and in 1939 brought out his famous
book ‘Semiconductors and Metals’ [65] which explained semiconductor properties, including the
much-doubted phenomenon of intrinsic semiconductivity, in terms of electronic energy bands.
His academic career seems indeed to have been blighted, because despite his great intellectual
distinction, he was not promoted in Cambridge (he remained an assistant professor year after year)
[66]. Compare the remark of W. Pauli (p. 205).

http://dx.doi.org/10.1007/978-3-319-23880-7_4
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Fig. 1.7 (a) Optical image of directionally solidified silicon. The lower part contains predominantly
boron, the upper part contains predominantly phosphorous. First the growth is porous and subse-
quently columnar. Adapted from [80]. (b) Spectral response of silicon pn-junction photoelement,
1940. The inset depicts schematically a Si slab with built-in pn-junction formed during directed
solidification as shown in panel (a). The arrow denotes the direction of solidification (cmp. Fig. 4.6).
Adapted from [79]

Fig. 1.8 Characteristics of a
silicon rectifier, 1941.
Adapted from [82]

Bell Laboratories, Holmdel, NJ in an effort to improve hearing aids [86].10 Strictly
speaking the structure was a point-contact transistor. A 50-µmwide slit was cut with
a razor blade into gold foil over a plastic (insulating) triangle and pressed with a
spring on n-type germanium (Fig. 1.9a) [87]. The surface region of the germanium
is p-type due to surface states and represents an inversion layer. The two gold con-

10Subsequently, AT&T, under pressure from theUS JusticeDepartment’s antitrust division, licensed
the transistor for $25,000. This action initiated the rise of companies like Texas Instruments, Sony
and Fairchild.

http://dx.doi.org/10.1007/978-3-319-23880-7_4
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(b)(a)

Fig. 1.9 (a) The first transistor, 1947 (length of side of wedge: 32mm). (b) Cutaway model of a
1948 point contact transistor (‘Type A’) based on n-type bulk Ge (n = 5×1014 cm−3) and common
base circuit diagram. The surface region (∼100nm depth) of the Ge is p-type due to surface states
and represents an inversion layer. The twowires aremade from phosphor bronze. Adapted from [88]

tacts form emitter and collector, the large-area back contact of the germanium the
base contact [88]. For the first time, amplification was observed [89]. Later models
use two close point contacts made from wires with their tips cut into wedge shape
(Fig. 1.9b) [88].11 More details about the history and development of the semicon-
ductor transistor can be found in [90], written on the occasion of the 50th anniversary
of its invention.

1948
W. Shockley—invention of the bipolar (junction) transistor [91].

1952
H. Welker—fabrication of III–V compound semiconductors12 [94–97]
W. Shockley—description of today’s version of the (J)FET [98].

11The setup of Fig. 1.9b represents a common base circuit. In a modern bipolar transistor, current
amplification in this case is close to unity (Sect. 24.2.2). In the 1948 germanium transistor, the
reversely biased collector contact is influenced by the emitter current such that current amplification
∂ IC/∂ IE for constant UC was up to 2–3. Due to the collector voltage being much larger than the
emitter voltage, a power gain of ∼125 was reported [88].
12An early concept for III–V semiconductors was developed in [92, 93].

http://dx.doi.org/10.1007/978-3-319-23880-7_24
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Fig. 1.10 (a) The first integrated circuit, 1958 (germanium, 11 × 1.7mm2). (b) The first planar
integrated circuit, 1959 (silicon, diameter: 1.5mm)

1953
G.C. Dacey and I.M. Ross—first realization of a JFET [99].
D.M. Chapin, C.S. Fuller andG.L. Pearson—invention of the silicon solar cell at Bell
Laboratories [100]. A single 2cm2 photovoltaic cell from Si, Si:As with an ultra-
thin layer of Si:B, with about 6% efficiency generated 5mW of electrical power.13

Previously existing solar cells based on selenium had very low efficiency (<0.5%).

1958
J.S. Kilby made the first integrated circuit at Texas Instruments. The simple 1.3MHz
RC-oscillator consisted of one transistor, three resistors and a capacitor on a
11 × 1.7mm2 Ge platelet (Fig. 1.10a). J.S. Kilby filed in 1959 for a US patent for
miniaturized electronic circuits [101]. At practically the same time R.N. Noyce from
Fairchild Semiconductors, the predecessor of INTEL, invented the integrated circuit
on silicon using planar technology [102]. A detailed and (very) critical view on the
invention of the integrated circuit can be found in [103].

Figure1.10b shows a flip-flop with four bipolar transistors and five resistors.
Initially, the invention of the integrated circuit14 met scepticism because of concerns
regarding yield and the achievable quality of the transistors and the other components
(such as resistors and capacitors).

13A solar cell with 1W power cost $300 in 1956 ($3 in 2004). Initially, ‘solar batteries’ were only
used for toys and were looking for an application. H. Ziegler proposed the use in satellites in the
‘space race’ of the late 1950s.
14The two patents led to a decade-long legal battle between Fairchild Semiconductors and Texas
Instruments. Eventually, the US Court of Customs and Patent Appeals upheld R.N. Noyce’s claims
on interconnection techniques but gave J.S. Kilby and Texas Instruments credit for building the first
working integrated circuit.
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emitter

base

collector

emitter
contact

base
contact

base

(a) (b)

Fig. 1.11 (a) Optical image of planar pnp silicon transistor (2N1613 [110]), 1959. The contacts
are Al surfaces (not bonded). (b) Housing of such transistor cut open

1959
J.Hoerni15 andR.Noyce—first realizationof a planar transistor (in silicon) (Fig. 1.11)
[105–109].

1960
D. Kahng and M.M. Atalla—first realization of a MOSFET [111, 112].

1962
The first semiconductor laser on GaAs basis at 77K at GE [113, 114] (Fig. 1.12) and
at IBM [115] and MIT [116].
First visible laser diode [117].16

1963
Proposal of a double heterostructure laser (DH laser) by Zh.I. Alferov [120] and
H. Kroemer [121].
J.B. Gunn—discovery of the Gunn effect, the spontaneous microwave oscillations in
GaAs and InP at sufficiently large applied electric field (due to negative differential
resistance) [122].

1966
C.A. Mead—proposal of the MESFET (‘Schottky Barrier Gate FET’) [123].

15The Swiss born Jean Hoerni also contributed $12000 for the building of the first school in
the Karakoram Mountain area in Pakistan and has continued to build schools in Pakistan and
Afghanistan as described in [104].
16Remarks on the discovery and further development of the laser diode can be found in [118, 119].
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Fig. 1.12 Schematics of
GaAs-based laser diode. The
active layer is highlighted in
red. Adapted from [114]

1967
Zh.I. Alferov—report of the first DH laser on the basis of GaAsP at 77K [124, 125].
W.W. Hooper and W.I. Lehrer—first realization of a MESFET [126].

1968
DH laser on the basis of GaAs/AlGaAs at room temperature, independently devel-
oped by Zh.I. Alferov [127] and I. Hayashi [128].
GaP:N LEDs with yellow-green emission (550nm) and 0.3% efficiency [129].

1968
SiC blue LED with efficiency of 0.005% [130].

1975
First monolithic microwave integrated circuit (MMIC) (Fig. 1.13) [131]

1992
S. Nakamura—growth of high-quality group-III–nitride thin films [132], blue nitride
heterostructure LED with efficiency exceeding 10% (1995) [133] (Fig. 1.14a).
Later the white LED was built by combining a blue LED with yellow phosphors
(Fig. 1.14b, c).

1.2 Nobel Prize Winners

Several Nobel Prizes17 have been awarded for discoveries and inventions in the field
of semiconductor physics (Fig. 1.15).
1909
Karl Ferdinand Braun
‘in recognition of his contributions to the development of wireless telegraphy’

17www.nobel.se.

www.nobel.se
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Fig. 1.13 Equivalent circuit and optical image of first monolithic microwave integrated circuit
(exhibiting gain (4.5 ± 0.9dB) in the frequency range 7.0–11.7GHz). Adapted from [131]

Fig. 1.14 (a) Blue LED (standard housing). 50W, 4000 lm (b) warm white and (c) cold white LED
(45 × 45mm2)

1914
Max von Laue ‘for his discovery of the diffraction of X-rays by crystals’

1915
Sir William Henry Bragg
William Lawrence Bragg
‘for their services in the analysis of crystal structure by means of X-rays’
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1946
Percy Williams Bridgman
‘for the invention of an apparatus to produce extremely high pressures, and for the
discoveries he made therewith in the field of high pressure physics’

1953
William Bradford Shockley
John Bardeen
Walter Houser Brattain
‘for their researches on semiconductors and their discovery of the transistor effect’

1973
Leo Esaki
‘for his experimental discoveries regarding tunneling phenomena in semiconductors’

1985
Klaus von Klitzing
‘for the discovery of the quantized Hall effect’

1998
Robert B. Laughlin
Horst L. Störmer
Daniel C. Tsui
‘for their discovery of a new form of quantum fluid with fractionally charged exci-
tations’

2000
Zhores I. Alferov
Herbert Kroemer
‘for developing semiconductor heterostructures used in high-speed and optoelec-
tronics’
Jack St. Clair Kilby
‘for his part in the invention of the integrated circuit’

2009
Willard S. Boyle
George E. Smith
‘for the invention of an imaging semiconductor circuit—the CCD sensor’
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1909 1914 1915 1915

Karl Ferdinand Braun Max von Laue Sir William Henry Bragg William Laurence Bragg

(1850–1918) (1879–1960) (1862–1942) (1890–1971)

1946 1953 1953 1953

Percy Williams Bridgman William B. Shockley John Bardeen Walter Hauser Brattain

(1882–1961) (1910–1989) (1908–1991) (1902–1987)

1973 1985 1998 1998

Leo Esaki remrötS.LtsroHnilhguaL.BtreboRgniztilKnovsualK

(*1925) (*1943) (*1930) (*1949)

1998 2000 2000 2000

Daniel C. Tsui Zhores I. Alferov Herbert Kroemer Jack St. Clair Kilby

(*1939) (*1938) (*1928) (1923–2005)

Fig. 1.15 Winners of Nobel Prize in Physics and year of award with great importance for semi-
conductor physics
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2009 2009 2010 2010

Willard S. Boyle George E. Smith Andre Geim Konstantin Novoselov

(1924–2011) (*1930) *1958 *1974

2014 2014 2014

Isamu Akasaki Hiroshi Amano Shuji Nakamura

(*1929) (*1960) (*1954)

Fig. 1.15 (continued)

2010
Andre Geim
Konstantin Novoselov
‘for groundbreaking experiments regarding the two-dimensional material graphene’

2014
Isamu Akasaki
Hiroshi Amano
Shuji Nakamura
‘for the invention of efficient blue light-emitting diodes which has enabled bright
and energy-saving white light sources’.
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1.3 General Information

In Fig. 1.16, the periodic table of elements is shown.
In Table1.1 the physical properties of various semiconductors are summarized.

Data on semiconductors can be found in [134–146].
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Chapter 2
Bonds

Protons give an atom its identity, electrons its personality.
B. Bryson [148]

Abstract A little bit of solid state physics... The schemes of covalent, ionic and
mixed bonds are explained which are the basis for the atomic arrangement and
crystal structures of semiconductors.

2.1 Introduction

The positively charged atomic nuclei and the electrons in the atomic shells of the
atomsmaking up the semiconductor (or any other solid) are in a binding state. Several
mechanisms can lead to such cohesiveness. First, we will discuss the homopolar,
electron-pair or covalent bond, then the ionic bond and subsequently the mixed
bond. We will only briefly touch on the metallic bond and the van-der-Waals bond.
A classical book on bonds in semiconductors is [149, 150].

2.2 Covalent Bonds

Covalent bonds are formed due to quantum-mechanical forces. The prototype cova-
lent bond is the bonding of the hydrogen molecule due to overlapping of the atomic
shells. If several electron pairs are involved, directional bonds can be formed in
various spatial directions, eventually making up a solid.

© Springer International Publishing Switzerland 2016
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
DOI 10.1007/978-3-319-23880-7_2
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A

S

(a) (b)

Fig. 2.1 Binding of the hydrogen molecule. (a) Dashed line: classical calculation (electrostatics),
‘S’, ‘A’: quantum-mechanical calculation taking into account Pauli’s principle (S: symmetric orbital,
antiparallel spins, A: antisymmetric orbital, parallel spins). The distance of the nuclei (protons) is
given in units of the Bohr radius aB = 0.053nm, the energy is given in Rydberg units (13.6eV).
(b) Schematic contour plots of the probability distribution (Ψ ∗Ψ ) for the S and A states

2.2.1 Electron-Pair Bond

The covalent bond of two hydrogen atoms in a H2 molecule can lead to a reduction of
the total energy of the system, compared to two single (distant) atoms (Fig. 2.1). For
fermions (electrons have spin 1/2) the two-particle wavefunction of the two (indis-
tinguishable) electrons A and B must be antisymmetric, i.e. Ψ (A, B) = −Ψ (B, A)

(Pauli principle). The wavefunction of each electron has degrees of freedom in real
space (r) and spin (σ), Ψ (A) = Ψr(A) Ψσ(A). The two-particle wavefunction of
the molecule is nonseparable and has the form Ψ (A, B) = Ψr(rA, rB) Ψσ(σA,σB).
The binding state has a wavefunction with a symmetric orbital and antiparallel spins,
i.e. Ψr(rA, rB) = Ψr(rB, rA) and Ψσ(σA,σB) = −Ψσ(σB,σA). The antisymmetric
orbital with parallel spins is antibinding for all distances of the nuclei (protons).

2.2.2 sp3 Bonds

Elements from group IV of the periodic system (C, Si, Ge, . . .) have 4 electrons on the
outer shell. Carbon has the electron configuration 1s22s22p2. For an octet configura-
tion bonding to four other electrons would be optimal (Fig. 2.2). This occurs through
the mechanism of sp3 hybridization.1 First, one electron of the ns2np2 configuration

1It is debated in femtosecond chemistry whether the bond really forms in this way. However, it is
a picture of overwhelming simplicity.
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Fig. 2.2 Octet, the favorite card game of the ‘Atomis’ (trying to reach octet configuration in a bond
by swapping wavefunctions). The bubble says: ‘Do you have a 2p?’. Reprinted with permission
from [151], © 2002 Wiley-VCH
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Fig. 2.3 (a) s orbital, (b, c, d) px , py and pz orbital, (e) hybridization, (f, g, h, i) orbitals of
the sp3 hybridization: (f) (s+px +py +pz)/2, (g) (s+px − py − pz)/2, (h) (s− px +py − pz)/2, (i)
(s− px − py +pz)/2

is brought into a p orbital, such that the outermost shell contains one s, px , py , and
pz orbital each (Fig. 2.3a–e). The energy necessary for this step is much less than
regained in the subsequent formation of the covalent bonds. The four orbitals can be
reconfigured into four other wavefunctions, the sp3 hybrids (Fig. 2.3f–i), i.e.
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(a) (b)
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conduction band

6 states
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Fig. 2.4 (a) Energy per atom in silicon for various crystal structures. Adapted from [152]. (b)
Electron energy levels in (diamond structure) carbon as a function of the distance of the atomic
nuclei (schematic). Adapted from [153, 154]

Ψ1 = (s + px + py + pz)/2 (2.1a)

Ψ2 = (s + px − py − pz)/2 (2.1b)

Ψ3 = (s − px + py − pz)/2 (2.1c)

Ψ4 = (s − px − py + pz)/2. (2.1d)

These orbitals have a directed form along tetrahedral directions. The binding energy
(per atom) of the covalent bond is large, for H–H 4.5eV, for C–C 3.6eV, for Si–Si
1.8eV, and for Ge–Ge 1.6eV. Such energy is, for neutral atoms, comparable to the
ionic bond, discussed in the next section.

In Fig. 2.4a the energy of a crystal made up from silicon atoms is shown for
various crystal structures2 or phases (cf. Chap. 3). We note that the crystal energy
of further silicon structures are discussed in [155]. The lattice constant with the
lowest total energy determines the lattice spacing for each crystal structure. The
thermodynamically stable configuration is the phase with the lowest overall energy
for given external conditions.

The covalent bond of a group-IV atom to other group-IV atoms has a tetrahedral
configuration with electron-pair bonds, similar to the hydrogen molecule bond. In
Fig. 2.4b the energy states of the n = 2 shell for tetrahedrally bonded carbon (dia-
mond, see Sect. 3.4.3) are shown as a function of the distance from the nuclei. First,
the energetically sharp states become a band due to the overlap and coupling of the
atomic wavefunctions (cf. Chap.6). The mixing of the states leads to the formation
of the filled lower valence band (binding states) and the empty upper conduction
band (antibinding states).

2Hexagonal diamond is wurtzite structure with two identical atoms in the base.

http://dx.doi.org/10.1007/978-3-319-23880-7_3
http://dx.doi.org/10.1007/978-3-319-23880-7_3
http://dx.doi.org/10.1007/978-3-319-23880-7_6
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Fig. 2.5 Schematic of the origin of valence and conduction band from the atomic s and p orbitals.
The band gap Eg and the position of the Fermi level EF are indicated

Fig. 2.6 Schematic representation of (a) bonding and (b) antibinding p orbitals. The signs denote
the phase of the wavefunction
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Fig. 2.7 Schematic representation of (a, c) bonding and (b, d) antibinding symmetric (a, b) and
nonsymmetric (c, d) sp3 orbitals

This principle is valid for most semiconductors and is shown schematically also in
Fig. 2.5. The configuration of bonding and antibinding p orbitals is depicted schemat-
ically in Fig. 2.6. The bonding and antibinding sp3 orbitals are depicted in Figs. 2.7a, b
and 2.13. We note that the energy of the crystal does not only depend on the distance
from the nuclei but also on their geometric arrangement (crystal structure).

Per carbon atom there are (in the second shell) four electrons and four unoccupied
states, altogether eight. These are redistributed into four states (filled) per atoms in
the valence band and four states per atom (empty) in the conduction band. Between
the top of the valence band and the bottom of the conduction band there is an energy
gap, later called the band gap (cf. Chap.6).

2.2.3 sp2 Bonds

Organic semiconductors (see Chap.17) are made up from carbon compounds. While
for inorganic semiconductors the covalent (or mixed, cf. Sect. 2.4) bond with sp3

http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_17
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Fig. 2.8 Schematic representation of the (a) σ and (b) π bonds in benzene, (c) schematic symbol
for benzene

hybridization is important, the organic compounds are based on the sp2 hybridization.
This bonding mechanism, which is present in graphite, is stronger than the sp3-bond
present in diamond. The prototype organic molecule is the benzene ring3 (C6H6),
shown in Fig. 2.8. The benzene ring is the building block for small organic molecules
and polymers.

In the benzene molecule neighboring carbon atoms are bonded within the ring
plane via the binding σ states of the sp2 orbitals (Fig. 2.8a). The wavefunctions
(Fig. 2.9) are given by (2.2a–c).

Ψ1 = (s + √
2 px )/

√
3 (2.2a)

Ψ2 = (s − √
1/2 px + √

3/2 py)/
√
3 (2.2b)

Ψ3 = (s − √
1/2 px − √

3/2 py)/
√
3. (2.2c)

The ‘remaining’ pz orbitals do not directly take part in the binding (Fig. 2.8b) and
form bonding (π, filled) and antibinding (π*, empty) orbitals (see Fig. 2.10). The π
and π* states are delocalized over the ring. Between the highest populated molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) is typically
an energy gap (Fig. 2.11). The antibinding σ∗ orbitals are energetically above the π*
states.

3Supposedly, the chemist Friedrich August Kekulé von Stadonitz had a dream about dancing carbon
molecules and thus came up with the ring-like molecule structure [156]. Kekulé remembered:
‘During my stay in Ghent, I lived in elegant bachelor quarters in the main thoroughfare. My study,
however, faced a narrow side-alley and no daylight penetrated it. . . . I was sitting writing on my
textbook, but the work did not progress; my thoughts were elsewhere. I turned my chair to the fire
and dozed. Again the atoms were gamboling before my eyes. This time the smaller groups kept
modestly in the background. My mental eye, rendered more acute by the repeated visions of the
kind, could now distinguish larger structures of manifold conformation; long rows sometimes more
closely fitted together all twining and twisting in snake-like motion. But look! What was that? One
of the snakes had seized hold of its own tail, and the form whirled mockingly before my eyes. As
if by a flash of lightning I awoke; and this time also I spent the rest of the night in working out the
consequences of the hypothesis.’
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Fig. 2.9 (a) s orbital, (b, c, d) px , py and pz orbital, (e) hybridization, (f, g, h) orbitals of
the sp2 hybridization: (f) (s+

√
2px )/

√
3, (g) (s− √

1/2px + √
3/2py)/

√
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1/2px −√
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√
3

Fig. 2.10 Orbitals due to binding and antibinding configurations of various π orbitals
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Fig. 2.11 Schematic energy
terms of the benzene
molecule

pz

sp2

6

18

HOMO

LUMO

2.3 Ionic Bonds

Ionic crystals aremade up frompositively and negatively charged ions. The heteropo-
lar or ionic bond is the consequence of the electrostatic attraction between the ions.
However, the possibly repulsive character of next neighbors has to be considered.

For I–VII compounds, e.g. LiF or NaCl, the shells of the singly charged ions are
complete: Li: 1s22s1 → Li+: 1s2, F: 1s22s22p5 → F−: 1s22s22p6. Compared to ions
in a gas, a Na–Cl pair in the crystal has a binding energy of 7.9eV that mostly stems
from the electrostatic energy (Madelung energy). Van-der-Waals forces (cf. Sect. 2.6)
only contribute 1–2%. The ionization energy of Na is 5.14eV, the electron affinity of
Cl is 3.61eV. Thus the energy of theNaCl pair in the solid is 6.4 (= 7.9−5.1+3.6) eV
smaller than in a gas of neutral atoms.

The interaction of two ions with distance vector ri j is due to the Coulomb inter-
action

UC
i j = qi q j

4πε0

1

ri j
= ± e2

4πε0

1

ri j
(2.3)

and a repulsive contribution due to the overlap of (complete) shells. This contribution
is typically approximated by a radially symmetric core potential

U core
i j = λ exp(−λ/ρ) (2.4)

that only acts on next neighbors. λ describes the strength of this interaction and ρ
parameterizes its range.

The distance of ions is denoted as ri j = pi j R, where R denotes the distance of
next neighbors and the pi j are suitable coefficients. The electrostatic interaction of
an ion with all its neighbors is then written as

UC
i j = −α

e2

4πε0

1

R
, (2.5)
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(a)

NaNa

NaNa Cl

Cl

Cl

Cl

(b)

NaNa

NaNa Cl

Cl

Cl

Cl

Fig. 2.12 (a) Experimental and (b) theoretical charge distribution in the (100) plane of NaCl. The
lowest contour in the interstitial region corresponds to a charge density of 7e/nm3 and adjacent
contours differ by

√
2. Differences are mainly due to the fact that the X-ray experiments have been

made at room temperature. Adapted from [157]

where α is the Madelung constant. For an attractive interaction (as in a solid), α is
positive. It is given (calculated for the i-th ion) as

α =
∑

i j

±1

pi j
. (2.6)

For a one-dimensional chain α = 2 ln 2. For the rocksalt (NaCl) structure (cf.
Sect. 3.4.1) it is α ≈ 1.7476, for the CsCl structure (see Sect. 3.4.2) it is α ≈ 1.7627,
and for the zincblende structure (see Sect. 3.4.4) it is α ≈ 1.6381. This shows that
ionic compounds prefer the NaCl or CsCl structure. The charge distribution for NaCl
is shown in Fig. 2.12. For tetragonal and orthorhombic structures, the Madelung
constant has been calculated in [158].

2.4 Mixed Bonds

The group-IV crystals are of perfectly covalent nature, the I–VII are almost exclu-
sively ionically bonded. For III–V (e.g. GaAs, InP) and II–VI compounds (e.g. CdS,
ZnO) we have a mixed case.

The (screened) Coulomb potentials of the A and B atoms (in the AB compound)
shall be denoted VA and VB . The origin of the coordinate system is in the center of the
A and B atom (i.e. for the zincblende structure (cf. Sect. 3.4.4) at (1/8, 1/8, 1/8)a.
The valence electrons then see the potential

http://dx.doi.org/10.1007/978-3-319-23880-7_3
http://dx.doi.org/10.1007/978-3-319-23880-7_3
http://dx.doi.org/10.1007/978-3-319-23880-7_3
http://dx.doi.org/10.1007/978-3-319-23880-7_3
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Fig. 2.13 Schematic representation of (a) bonding and (b) antibinding sp3 orbitals. From [149]

Vcrystal =
∑

α

VA(r − rα) +
∑

β

VB(r − rβ), (2.7)

where the sum α (β) runs over all A (B) atoms. This potential can be split into a
symmetric (Vc, covalent) and an antisymmetric (Vi, ionic) part (2.8b), i.e. Vcrystal =
Vc + Vi

Vc = 1

2

{
∑

α

VA(r − rα) +
∑

α

VB(r − rα)

+
∑

β

VB(r − rβ) +
∑

β

VA(r − rβ)

⎫
⎬

⎭
(2.8a)

Vi = 1

2

{
∑

α

VA(r − rα) −
∑

α

VB(r − rα)

+
∑

β

VB(r − rβ) −
∑

β

VA(r − rβ)

⎫
⎬

⎭
. (2.8b)

For homopolar bonds Vi = 0 and the splitting between bonding and antibinding
states is Eh, which mainly depends on the bond length lAB (and the related overlap
of atomic wavefunctions). In a partially ionic bond the orbitals are not symmet-
ric along A–B, but the center is shifted towards the more electronegative material
(Figs. 2.7c, d and 2.13).

The band splitting4 between the (highest) bonding and (lowest) antibinding state
Eba is then written as

4This energy should not be confused with the band gap ΔEcv, the energy separation of the highest
valence-band state and the lowest conduction-band state. The energy splitting Eba is the energy
separation between the centers of the valence and conduction bands. Mostly, the term Eg is used
for ΔEcv.
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Fig. 2.14 Values of Eh and
C for various AN B8−N

compounds. The dashed line
fi = 0.785 separates 4-fold
from 6-fold coordinated
structures. Most data taken
from [159]

Eba = Eh + iC, (2.9)

where C denotes the band splitting due to the ionic part of the potential and depends
only on VA − VB . C is proportional to the difference of the electronegativities X
of the A and B atoms, C(A, B) = 5.75(X A − X B). A material thus takes a point
in the (Eh,C) plane (Fig. 2.14). The absolute value for the band splitting is given as
E2
ba = E2

h + C2.
The ionicity of the bond is described with the ionicity (after Phillips) fi, defined

as [160, 161]

fi = C2

E2
h + C2

. (2.10)

The covalent part is 1 − fi. In Table2.1 the ionicity is given for a number of binary
compounds. The ionicity can also be interpreted as the angle tan(φ) = C/Eh in the
(Eh ,C) diagram. The critical value of fi = 0.785 for the ionicity separates quite
exactly (for about 70 compounds) the 4-fold (diamond, zincblende and wurtzite)
from the 6-fold (rocksalt) coordinated substances ( fi = 0.785 is indicated by a
dashed line in Fig. 2.14).

For ionic compounds, an effective ionic charge e∗ is defined connecting the
displacement u of negative and positive ions and the resulting polarization P =
(e∗/2a3) u [162]. Connected with the ionicity is the so-called s-parameter, describ-
ing the change of the charge upon change of bond length b from its equilibrium value
b0 [163]

e∗(b) = e∗(b0)
(

b

b0

)s

≈ e∗
0 (1 + s ε), (2.11)

ε being the strain of the bond length, b/b0 = 1 + ε. It seems justified to assume
that e∗(b0) is always positive at the metal atom in III–V and II–VI compounds.
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Table 2.1 Ionicity fi (2.10)
for various binary compounds

C 0.0 AlAs 0.27 BeO 0.60 CuCl 0.75

Si 0.0 BeS 0.29 ZnTe 0.61 CuF 0.77

Ge 0.0 AlP 0.31 ZnO 0.62 AgI 0.77

Sn 0.0 GaAs 0.31 ZnS 0.62 MgS 0.79

BAs 0.002 InSb 0.32 ZnSe 0.63 MgSe 0.79

BP 0.006 GaP 0.33 HgTe 0.65 CdO 0.79

BeTe 0.17 InAs 0.36 HgSe 0.68 HgS 0.79

SiC 0.18 InP 0.42 CdS 0.69 MgO 0.84

AlSb 0.25 AlN 0.45 CuI 0.69 AgBr 0.85

BN 0.26 GaN 0.50 CdSe 0.70 LiF 0.92

GaSb 0.26 MgTe 0.55 CdTe 0.72 NaCl 0.94

BeSe 0.26 InN 0.58 CuBr 0.74 RbF 0.96

Fig. 2.15 s-Parameter as
defined in (2.11) as a
function of the ionicity fi
(2.10) for various compound
semicondcutors. Dashed
lines are guides to the eye.
Data from [164], value for
CuCl from [163]

The relation of s with the ionicity fi is shown in Fig. 2.15 for various compound
semiconductors.

2.5 Metallic Bonding

In a metal, the positively charged atomic cores are embedded in a more or less homo-
geneous sea of electrons. The valence electrons of the atoms become the conduction
electrons of the metal. These are freely moveable and at T = 0K there is no energy
gap between filled and empty states. The bonding is mediated by the energy reduc-
tion for the conduction electrons in the periodic potential of the solid compared to
free atoms. This will be clearer when the band structure is discussed (Chap. 6). In
transitionmetals the overlap of inner shells (d or f) can also contribute to the bonding.

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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2.6 van-der-Waals Bonds

The van-der-Waals bond is a dipole bond that leads to bonding in the noble-gas
crystals (at low temperature). Ne, Ar, Kr and Xe crystallize in the densely packed
fcc lattice (cf. Sect. 3.3.5). He3 and He4 represent an exception. They do not solidify
at zero pressure at T = 0 K due to the large zero-point energy. This quantum-
mechanical effect is especially strong for oscillators with small mass.

When two neutral atoms come near to each other (distance of the nuclei R), an
attractive dipole–dipole interaction −AR−6 arises (London interaction) the van-der-
Waals interaction. The quantum-mechanical overlap of the (filled) shells leads to
a strong repulsion +B R−12. Altogether, a binding energy minimum results for the
Lennard–Jones potential VLJ (see Fig. 2.16)

VLJ(R) = − A

R6
+ B

R12
. (2.12)

The energy minimum Emin = −A2/(2B) is at R = (2B/A)1/6.
Theorigin of the attractive dipole–dipole interaction canbeunderstood fromaone-

dimensional (1D) model as follows: Two atoms are modeled by their fixed positively
charged nuclei in a distance R and their negatively charged electron shells that are
polarizable, i.e. can be displaced along one direction x . Additionally, we assume (two
identical) 1D harmonic oscillators for the electron motion at the positions 0 and R.
Then, the Hamilton operator H0 of the system without interaction (R is very large)

H0 = 1

2m
p2
1 + C x2

1 + 1

2m
p2
2 + C x2

2 . (2.13)

The indices 1 and 2 denote the two electrons of atoms. x1 and x2 are the displacements
of the electrons. Both harmonic oscillators have a resonance frequencyω0 = √

C/m,
and the zero-point energy is �ω0/2.

Fig. 2.16 Lennard–Jones
potential (2.12) for A = 1
and two values of B

http://dx.doi.org/10.1007/978-3-319-23880-7_3


38 2 Bonds

Taking into account the Coulomb interaction of the four charges, an additional
term H1 arises

H1 = e2

R
+ e2

R + x1 + x2
− e2

R + x1
− e2

R − x2
≈ −2e2

R3
x1 x2. (2.14)

The approximation is valid for small amplitudes xi � R. A separation of variables
can be achieved by transformation to the normal modes

xs = x1 + x2√
2

, xa = x1 − x2√
2

. (2.15)

Then we find

H = H0 + H1

=
[

1

2m
p2

s + 1

2

(
C− 2e2

R3

)
x2

s

]
+

[
1

2m
p2

a + 1

2

(
C − 2e2

R3

)
x2

a

]
. (2.16)

This equation is the Hamiltonian of two decoupled harmonic oscillators with the
normal frequencies

ω± =
√(

C ± 2e2

R3

)
/m ≈ ω0

[

1 ± 1

2

(
2e2

C R3

)
− 1

8

(
2e2

C R3

)2

+ · · ·
]

. (2.17)

The coupled system thus has a lower (zero-point) energy than the uncoupled. The
energy difference per atom is (in lowest order) proportional to R−6.

ΔU = �ω0 − 1

2
(ω+ − ω−) ≈ −�ω0

1

8

(
2e2

C R3

)2

= − A

R6
. (2.18)

The interaction is a true quantum-mechanical effect, i.e. the reduction of the zero-
point energy of coupled oscillators.

2.7 Hamilton Operator of the Solid

The total energy of the solid, including kinetic and potential terms, is

H =
∑

i

p2
i

2mi
+

∑

j

P2
j

2M j
+ 1

2

∑

j, j ′

Z j Z j ′ e2

4πε0 |R j − R j ′ |

+1

2

∑

i,i ′

e2

4πε0 |ri − ri ′ | −
∑

i, j

Z j e2

4πε0 |R j − ri | , (2.19)
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where ri and Ri are the position operators and pi and Pi are the momentum operators
of the electrons and nuclei, respectively. The first term is the kinetic energy of the
electrons, the second term is the kinetic energy of the nuclei. The third term is the
electrostatic interaction of the nuclei, the fourth term is the electrostatic interaction
of the electrons. In the third and fourth terms the summation over the same indices
is left out. The fifth term is the electrostatic interactions of electrons and nuclei.

In the following, the usual approximations in order to treat (2.19) are discussed.
First, the nuclei and the electrons tightly bound to the nuclei (inner shells) are united
with ion cores. The remaining electrons are the valence electrons.

The next approximation is the Born–Oppenheimer (or adiabatic) approximation.
Since the ion cores are much heavier than the electrons (factor ≈ 103) they move
much slower. The frequencies of the ion vibrations are typically in the region of
several tens of meV (phonons, cf. Sect. 5.2), the energy to excite an electron is
typically 1eV. Thus, the electrons always ‘see’ the momentary position of the ions,
the ions, however, ‘see’ the electron motions averaged over many periods. Thus, the
Hamiltonian (2.19) is split into three parts:

H = Hions(R j ) + He(ri , R j0) + He−ion(ri , δR j ). (2.20)

The first term contains the ion cores with their potential and the time-averaged
contribution of the electrons. The second term is the electron motion around the
ion cores at their averaged positions R j0 . The third term is the Hamiltonian of the
electron–phonon interaction that depends on the electron positions and the deviation
of the ions from their average position δR j = R j − R j0 . The electron–phonon inter-
action is responsible for such effects as electrical resistance and superconductivity.

http://dx.doi.org/10.1007/978-3-319-23880-7_5


Chapter 3
Crystals

La science cristallographique ne consiste donc point à décrire
scrupuleusement tous les accidens des formes cristallines; mais
à spécifier, en décrivant ces formes, les rapports plus ou moins
immédiats qu’elles ont entre elles.
Crystallographic science does not consist in the scrupulous
description of all the accidents of crystalline form, but in
specifying, by the description of these forms, the more or less
close relationship they have with each other.

J.-B. Romé de l’Isle, 1783 [165]

Abstract A little bit of crystallography… The concepts of the direct and reciprocal
lattice, point and spacegroups, unit and elementary cells and theWigner–Seitz cell are
laid out. The important crystal structures for semiconductors (diamond, sphalerite,
wurtzite, chalcopyrite,…) are discussed in some detail. Also alloys and ordering are
covered.

3.1 Introduction

The economically most important semiconductors have a relatively simple atomic
arrangement and are highly symmetric. The symmetry of the atomic arrangement
is the basis for the classification of the various crystal structures. Using group
theory [166], basic and important conclusions can be drawn about the physical prop-
erties of the crystal, such as its elastic and electronic properties. The presence of
highly symmetric planes is obvious from the crystal shape of the minerals and their
cleavage behavior.

Polycrystalline semiconductors consist of grains of finite size that are structurally
perfect but have various orientations. The grain boundaries are a lattice defect (see
also Sect. 4.4.3). Amorphous semiconductors are disordered on the atomic scale, see
Sect. 3.3.7.

© Springer International Publishing Switzerland 2016
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
DOI 10.1007/978-3-319-23880-7_3
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(a) (b)

Fig. 3.1 (a) Two-dimensional lattice. It can be generated by various pairs of translation vectors.
(b) Elementary cells of the lattice. Primitive elementary cells are shaded

3.2 Crystal Structure

A crystal is built up by the (quasi-) infinite periodic repetition of identical building
blocks. This lattice (Bravais lattice) is generated by the three fundamental translation
vectors a1, a2 and a3. These three vectors may not lie in a common plane. The lattice
(Fig. 3.1) is the set of all points R

R = n1 a1 + n2 a2 + n3 a3. (3.1)

The crystal structure ismadeupby the lattice and the buildingblock that is attached
to each lattice point. This building block is called the base (Fig. 3.2). In the simplest
case, e.g., for crystals like Cu, Fe or Al, this is just a single atom (monoatomic base).
In the case of C (diamond), Si or Ge, it is a diatomic base with two identical atoms
(e.g., Si–Si or Ge–Ge), in the case of compound semiconductors, such as GaAs or
InP, it is a diatomic base with nonidentical atoms such as Ga–As or In–P. There exist
far more involved structures, e.g., NaCd2 where the smallest cubic cell contains 1192
atoms. In protein crystals, the base of the lattice can contain 10000 atoms.

In summary: Crystal structure = Lattice × Base.

Base

Fig. 3.2 Crystal structure, consisting of a lattice and a base



3.3 Lattice 43

3.3 Lattice

As described in Sect. 3.2 the lattice is spanned by three vectors ai . The lattice sym-
metry is decisive for the physical properties of the semiconductor. It is described by
the appropriate groups of the symmetry operations.

3.3.1 Unit Cell

The choice of the vectors ai making up the lattice is not unique (Fig. 3.1). The volume
that is enclosed in the parallelepiped spanned by the vectors a1, a2 and a3 is called the
elementary cell. A primitive elementary cell is an elementary cell with the smallest
possible volume (Fig. 3.1b). In each primitive elementary cell there is exactly one
lattice point. The coordination number is the number of next-neighbor lattice points.
A primitive cubic (pc) lattice, e.g., has a coordination number of 6.

The typically chosen primitive elementary cell is the Wigner–Seitz (WS) cell that
reflects the symmetry of the lattice best. TheWigner–Seitz cell around a lattice point
R0 contains all points that are closer to this lattice point than to any other lattice point.
Since all points fulfill such a condition for some lattice point Ri , the Wigner–Seitz
cells fill the volume completely. The boundary of the Wigner–Seitz cell is made up
by points that have the same distance to R0 and some other lattice point(s). The
Wigner–Seitz cell around R0 is constructed by drawing lines from R0 to the next
neighbors R j , taking the point at half distance and erecting a perpendicular plane at
(R j + R0)/2. The WS cell is the smallest polyhedra circumscribed by these planes.
A two-dimensional construction is shown in Fig. 3.3.

3.3.2 Point Group

Besides the translation there are other operations under which the lattice is invariant,
i.e. the lattice is imaged into itself. These are:

Identity. The neutral element of any point group is the identity that does not change
the crystal. It is denoted as 1 (E) in international (Schönfließ) notation.

(a) (b)

Fig. 3.3 (a) Construction of a two-dimensional Wigner–Seitz cell, (b) filling of space with WS
cells
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C3 C4 C6C1 C2

Fig. 3.4 Two-dimensional objects with perpendicular rotation axis Cn . Note that the circles do not
exhibit σh symmetry with respect to the paper plane, i.e. they are different on the top and bottom
side

Rotation. The rotation around an axis may have a rotation angle of 2π, 2π/2, 2π/3,
2π/4 or 2π/6 or their integer multiples. The axis is then called n = 1-, 2-, 3-, 4- or
6-fold, respectively,1 and denoted as n (international notation) or Cn (Schönfließ).
Objects with Cn symmetry are depicted in Fig. 3.4.

Mirror operation with respect to a plane through a lattice point. Different mirror
planes are discerned (Fig. 3.5) (after Schönfließ) σh : a mirror plane perpendicular to
a rotational axis, σv: a mirror plane that contains a rotational axis, and σd : a mirror
plane that contains a rotational axis and bisects the angle between two C2 axes. The
international notation is 2̄.

Inversion. All points around the inversion center r are replaced by −r. The inver-
sion is denoted 1̄ (i) in international (Schönfließ) notation.

Improper rotation. The improper rotation Sn is a rotationCn followed immediately
by the inversion operation i denoted as n̄ in international notation. There are 3̄, 4̄
and 6̄ and their powers. Only the combined operation n̄ is a symmetry operation,
while the individual operations Cn and i alone are not symmetry operations. In the
Schönfließ notation the improper rotation is defined as Sn = σhCn , with σh being a
mirror operation with a plane perpendicular to the axis of the Cn rotation, denoted
as Sn . There are S3, S4 and S6 and 3̄ = S5

6 , 4̄ = S3
4 and 6̄ = S5

3 . For successive
applications, the Sn yield previously known operations, e.g., S2

4 = C2, S4
4 = E ,

S2
6 = C3, S3

6 = i , S2
3 = C2

3 , S3
3 = σh, S4

3 = C3, S6
3 = E . We note that formally S1

is the inversion i and S2 is the mirror symmetry σ. Objects with Sn symmetry are
schematically shown in Fig. 3.6.

These symmetry operations form 32 point groups. These groups are shown (with
their different notations and elements) in Table B.2. The highest symmetry is the
cubic symmetry Oh = O × i . The tetraeder group Td (methane molecule) is a
subgroup of Oh , lacking the inversion operation.

Important for surface symmetries, there are ten two-dimensional point groups
(Sect. 11.2 and Table B.1).

15-fold periodic symmetry is geometrically impossible. However, quasicrystals with aperiodic five-
fold symmetry exist [167, 168], some of them possibly being semiconducting [169, 170].

http://dx.doi.org/10.1007/978-3-319-23880-7_11


3.3 Lattice 45

(a)
v

HH

O

C2

v

(b)

FH

HF

C2

(c)

C2

d

C4

C2

Fig. 3.5 Mirror planes: (a) σv (at H2O molecule), (b) σh (at F2H2 molecule) and (c) σd

S6 S4 S3S1 S2

Fig. 3.6 Two-dimensional objects with perpendicular improper rotation axis Sn . Note that thewhite
and black circles do not exhibit σh symmetry with respect to the paper plane, i.e. they are white on
the top and black on the bottom. The circles with a dot in the center exhibit σh symmetry, i.e. they
look the same from top and bottom

3.3.3 Space Group

The space group is formed by the combination of the elements of the point groupwith
translations. The combination of a translation along a rotational axis with a rotation
around this axis creates a screw axis nm . In Fig. 3.7a, a so-called 41 screw axis is
shown. The first index n indicates the rotation angle, i.e. 2π/n, the second index
indicates the translation, i.e. c m/n, c being the periodicity along the axis. There are
eleven crystallographically allowed screw rotations.2

The combination of the mirror operation at a plane that contains a rotational axis
with a translation along this axis creates a glide reflection (Fig. 3.7b). For an axial
glide (or b-glide) the translation is parallel to the reflection plane. A diagonal glide
(or d-glide) involves translation in two or three directions. A third type of glide
is the diamond glide (or d-glide). There are 230 different space groups, listed in
Appendix B. A detailed treatment can be found in [171].3

Important for surface symmetries, there are 17 two-dimensional space groups
(Sect. 11.2).

221, 31, 32, 41, 42, 43, 61, 62, 63, 64, 65.
3One should in particular consider the pitfalls pointed out in Appendix 10 of this reference.

http://dx.doi.org/10.1007/978-3-319-23880-7_11
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(a)

c

c/4

41 42

c/2

(b)

c/2

21glide

Fig. 3.7 (a) Schematic drawing of a 41 and 42 screw axis. (b) Schematic drawing of an axial glide
reflection. The mirror plane is shown with dashed outline. Opposite faces of the cube have opposite
color. For comparison a 21 screw axis is shown

Fig. 3.8 The
two-dimensional Bravais
lattices with the primitive
unit cells: (a) square lattice
(a = b, φ = 90◦), (b)
hexagonal lattice (a = b,
φ = 60◦), (c) rectangular
lattice (a �= b, φ = 90◦), (d)
centered-rectangular lattice
(a �= b, φ = 90◦, for the
(nonprimitive) rectangular
unit cell shown on the right)

a

b

a

b

a

b
a

b

a

b

(b)(a)

(d)(c)

3.3.4 2D Bravais Lattices

There are five two-dimensional (2D) Bravais lattices (Fig. 3.8) which are distinct
and fill all (2D) space. These are very important for the description of symmetries at
surfaces. The 2DBravais lattices are the square, hexagonal, rectangular and centered-
rectangular lattice.

3.3.5 3D Bravais Lattices

In three dimensions, the operations of the point group results in fourteen 3D Bravais
lattices (Fig. 3.9), that are categorized into seven crystal classes (trigonal,monoclinic,
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fcccubic, sc bcc

tetragonal

c orthorhombic

monoclinic

rhombohedral

bc tetragonal

fc orthorhombicorthorhombic bc orthorhombic

tricliniccmonoclinic

hexagonal

Fig. 3.9 The 14 three-dimensional Bravais lattices: cubic (sc: simple cubic, bcc: body-centered
cubic, fcc: face-centered cubic), tetragonal (simple and body-centered), orthorhombic (simple, cen-
tered, body-centered and face-centered), monoclinic (simple and centered), triclinic, rhombohedral
and hexagonal

rhombic, tetragonal, cubic, rhombohedral and hexagonal). These classes are dis-
cerned by the conditions for the lengths and the mutual angles of the vectors that
span the lattice (Table3.1). Some classes have several members. The cubic crystal
can have a simple (sc), face-centered (fcc) or body-centered (bcc) lattice.

In the following, some of the most important lattices, in particular those most
relevant to semiconductors, will be treated in some more detail.
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Table 3.1 Conditions for lengths and angles for the 7 crystal classes

System # Lattice symbol Conditions for the
usual unit cell

Triclinic 1 None

Monoclinic 2 s, c α = γ = 90◦ or
α = β = 90◦

Orthorhombic 4 s, c, bc, fc α = β = γ = 90◦

Tetragonal 2 s, bc a = b ,
α = β = γ = 90◦

Cubic 3 s, bc, fc a = b = c ,
α = β = γ = 90◦

Trigonal 1 a = b , α = β = 90◦,
γ = 120◦

(Rhombohedral) 1 a = b = c ,
α = β = γ

Hexagonal 1 a = b , α = β = 90◦,
γ = 120◦

Note that only the positive conditions are listed. The rhombohedral system is a special case of the
trigonal class. Conditions for the trigonal and hexagonal classes are the same, however, trigonal
symmetry includes a single C3 or S6 axis, while hexagonal symmetry includes a single C6 or S5

6
axis

Cubic fcc and bcc Lattices

The primitive translation vectors for the cubic face-centered (fcc) and the cubic body-
centered (bcc) lattice are shown in Figs. 3.10 and 3.11, respectively. Many metals
crystallize in these lattices, e.g., copper (fcc) and tungsten (bcc).

In the fcc lattice, one lattice point sits in the center of each of the six faces of the
usual cubic unit cell. The vectors spanning the primitive unit cell are

a1 = a

2
(1, 1, 0) (3.2)

a2 = a

2
(0, 1, 1)

a3 = a

2
(1, 0, 1) .

In the bcc lattice, one extra lattice point sits at the intersection of the three body
diagonals at (a1 + a2 + a3)/2. The vectors spanning the primitive unit cell are

a1 = a

2
(1, 1,−1) (3.3)

a2 = a

2
(−1, 1, 1)

a3 = a

2
(1,−1, 1) .
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Fig. 3.10 Primitive
translations of the fcc lattice.
These vectors connect the
origin with the face-center
points. The primitive unit
cell is the rhombohedron
spanned by these vectors.
The primitive translations a′,
b′ and c′ are given in (3.2).
The angle between the
vectors is 60◦ a'

b'

c'

a

Fig. 3.11 Primitive
translations of the bcc lattice.
These vectors connect the
origin with the lattice points
in the cube centers. The
primitive unit cell is the
rhombohedron spanned by
these vectors. The primitive
translations a′, b′ and c′ are
given in (3.3). The angle
between the vectors is
≈70.5◦

a'

b'a c'

Hexagonally Close Packed Lattice (hcp)

The 2Dhexagonal Bravais lattice fills a planewith spheres (or circles) withmaximum
filling factor. There are two ways to fill space with spheres and highest filling factor.
One is the fcc lattice, the other is the hexagonally close packed (hcp) structure. Both
have a filling factor of 74%.

For the hcp, we start with a hexagonally arranged layer of spheres (A), see
Fig. 3.12. Each sphere has six next-neighbor spheres. This could, e.g., be a plane
in the fcc perpendicular to the body diagonal. The next plane B is put on top in such
a way that each new sphere touches three spheres of the previous layer. The third
plane can now be added in two different ways: If the spheres of the third layer are
vertically on top of the spheres of layer A, a plane A’ identical to A has been created
that is shifted from A along the stacking direction (normally called the c-axis) by

chcp = √
8/3 a ≈ 1.633 a. (3.4)
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Fig. 3.12 Structure of the (a) hcp and (b) fcc lattice. For hcp the stacking (along the c-axis) is
ABABAB. . ., for fcc (along the body diagonal) it is ABCABCABC. . .

The vectors spanning the primitive unit cell are

a1 = a

2

(
1,−√

3, 0
)

(3.5)

a2 = a

2

(
1,

√
3, 0

)

a3 = c (0, 0, 1) .

The hcp stacking order is ABABAB. . . for hcp, the coordination number is 12. In
the fcc structure, the third layer is put on the thus far unfilled positions and forms a
new layer C. Only the forth layer is again identical to A and is shifted by

cfcc = √
6 a ≈ 2.45 a. (3.6)

The fcc stacking order is ABCABCABC. . .

In the hexagonal plane of the fcc lattice (which will later be called a {111} plane)
the distance between lattice points is a = a0/

√
2, where a0 is the cubic lattice

constant. Thus c = √
3 a0, just what is expected for the body diagonal.
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150nm 150nm 150nm

(a) (b) (c)

Fig. 3.13 Transmission electron micrographs of polycrystalline silicon (poly-Si). (a) As-deposited
material from low-pressure chemical vapor deposition (LPCVD) at about 620 ◦C, grain size is
about 30nm. (b) After conventional processing (annealing at 1150 ◦C), average grain size is about
100nm. (c) After annealing in HCl that provides enhanced point defect injection (and thus increased
possibility to form larger grains), average grain size is about 250nm. Adapted from [172]

For real materials with hexagonal lattice the ratio c/a deviates from the ideal value
given in (3.4). Helium comes very close to the ideal value, for Mg it is 1.623, for Zn
1.861. Many hcp metals exhibit a phase transition to fcc at higher temperatures.

3.3.6 Polycrystalline Semiconductors

A polycrystalline material consists of crystal grains that are randomly oriented with
respect to each other. Between two grains a (large-angle) grain boundary (see also
Sect. 4.4.3) exists. An important parameter is the grain size and its distribution. It can
be influenced via processing steps such as annealing. Polycrystalline semiconduc-
tors are used in cheap, large-area applications such as solar cells (e.g., polysilicon,
CuInSe2) or thin-film transistors (poly-Si) or as n-conducting contact material in
MOS diodes (poly-Si) as shown in Fig. 3.13 (see also Fig. 21.28). Polycrystalline
material can be fabricated from amorphous material using annealing procedures as
discussed in Sect. 24.6.1 for silicon.

3.3.7 Amorphous Semiconductors

An amorphousmaterial lacks the long-range order of the direct lattice. It is disordered
on the atomic scale. Historically, amorphous Se (a-Se) has been investigated first;
since the 1950s amorphous chalcogenides and a-Ge [173] and since the late 1960s
a-Si [174] are researched. The field of amorphous oxides started in the mid 1950s

http://dx.doi.org/10.1007/978-3-319-23880-7_4
http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_24
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(a) (b)

Fig. 3.14 (a) A continuous random network model of amorphous silicon containing a dangling
bond in the center of the figure. Reprinted with permission from [178]. (b) Calculated radial atomic
distribution functions of amorphous Ge (solid lines) for three different values of the disorder para-
meter α (3.7) as labeled and experimental result (dashed line). The positions of next, second-next
and third-next neighbors are indicted by vertical bars with numbers of their multiplicity (4, 12, and
12). Adapted from [177]

with vanadates [175] and is currently very active with mixed-metal-based oxides
[176] (cmp. Chap.20).

The local quantummechanics provides almost rigorous requirements for the bond
length to next neighbors. The constraints for the bond angle are less strict. Covalently
bonded atoms arrange in an open network with correlations up to the third and fourth
neighbors. The short-range order is responsible for the observation of semiconductor
properties such as an optical absorption edge and also thermally activated conduc-
tivity. In Fig. 3.14a a model of a continuous random network (with a bond-angle
distortion of less than about 20%) of a-Si is depicted. The diameter dSR of the short-
range order region is related to the disorder parameter α via [177]

dSR = a

2α
, (3.7)

where a is the next-neighbor interatomic distance. For a diamond structure it is
related to the lattice constant by a = √

3 a0/4.
Typically, a significant number of dangling bonds exists. Bonds try to pair but if an

odd number of broken bonds exists locally, an unsaturated, dangling bond remains.
This configuration can be passivated by a hydrogen atom. Thus, the hydrogenation
of amorphous semiconductors is very important, in particular for a-Si. A hydrogen
atom can also break an overlong (and therefore weak) bond, saturate one side and
eventually leave a dangling bond.

http://dx.doi.org/10.1007/978-3-319-23880-7_20
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Amorphous material can be (re-)crystallized into crystalline, mostly polycrys-
talline material upon annealing. This is technologically very important for a-Si (see
Sect. 24.6.1).

3.4 Important Crystal Structures

Now the crystal structures that are important for semiconductor physics will be
discussed. These are mainly the rocksalt (PbS, CdO, . . .), diamond (C, Si, Ge),
zincblende (GaAs, InP, . . .) and wurtzite (GaN, ZnO, . . .) structures.

3.4.1 Rocksalt Structure

The rocksalt (rs, NaCl, space group 225, Fm3̄m) structure (Fig. 3.15a) consists of a
fcc lattice with the period a and a diatomic base in which the Cl atom is positioned
at (0, 0, 0) and the Na atom at (1/2, 1/2, 1/2)a with a distance

√
3 a/2. Materials that

crystallize (under normal conditions) in the rocksalt lattice are, e.g., KCl, KBr, PbS
(galena), PbSe, PbTe, AgBr, MgO, CdO, MnO. AlN, GaN and InN undergo, under
high pressure, a phase transition from the wurtzite into the rocksalt structure.

3.4.2 CsCl Structure

The CsCl structure (space group 221, Pm3̄m) (Fig. 3.15b) consists of a simple cubic
lattice. Similar as for the rocksalt structure, the base consists of different atoms

Fig. 3.15 (a) Rocksalt (NaCl) structure, (b) CsCl structure

http://dx.doi.org/10.1007/978-3-319-23880-7_24
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at (0, 0, 0) and (1/2, 1/2, 1/2)a. Typical crystals with CsCl-structure are TlBr, TlI,
CuZn (β-brass), AlNi.

3.4.3 Diamond Structure

The diamond structure (C, space group 227, Fd3̄m) (Fig. 3.16a) has the fcc lattice.
The base consists of two identical atoms at (0, 0, 0) and (1/4, 1/4, 1/4)a. Each atom
has a tetrahedral configuration. The packing density is only about 0.34. The ABC-
type stacking along the [111]-direction is visualized in Fig. 3.17a. The materials that
crystallize in the diamond lattice areC,Ge, Si andα-Sn. Silicon as themost important
semiconductor is particularly well researched [179].

The diamond structure (point group Oh) has an inversion center, located between
the two atoms of the base, i.e. at (1/8, 1/8, 1/8)a. The radii of the wavefunctions for
various group-IV elements increases with the order number (Table3.2), and accord-
ingly the lattice constant increases.

Fig. 3.16 (a) Diamond structure and (b) zincblende structure (red spheres: A atoms, green spheres:
B atoms). The tetragonal bonds are indicated

Fig. 3.17 HRTEM images
of (a) diamond structure (Si,
{110} cross section) and (b)
wurtzite structure (GaN,
〈10.0〉 azimuth). The ABC
and AB stacking is indicated

diamond wurtzite

A B
ABC

(b)(a) [00.1][111]
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Table 3.2 Radii of the wavefunctions in the diamond structure, rs and rp are related to s1p3, rd to
s1p2d1 and lattice constant a0

rs (nm) rp (nm) rd (nm) a0 (nm)

C 0.121 0.121 0.851 0.3567

Si 0.175 0.213 0.489 0.5431

Ge 0.176 0.214 0.625 0.5646

(a)

(b)

Fig. 3.18 (a) Unit cell of the zincblende structure with the indication of tetragonal symmetries.
The position of the small yellow (blue) sphere is the tetrahedrally configured unoccupied positions
of the A (B) sublattice, denoted with ‘T’ in part (b). (b) Line along [111] in the zincblende structure.
The positions of the A and B atoms are denoted by red and green circles as labeled. Other positions
are called the bond center (‘BC’), antibonding (‘AB’) relative to A and B atoms (‘A–AB’, ‘B–AB’),
hexagonal (‘H’) and tetrahedral position (‘T’, blue and yellow circles)

In Fig. 3.18a the unit cell with tetragonal symmetry of three places along the 〈111〉
direction is shown. In Fig. 3.18b the arrangement of atoms along 〈111〉 is depicted.
The symmetry along this line is at least C3v . At the atoms sites it is Oh . The bond
center (BC) and the hexagonal (H) position are a center of inversion and have D3d

symmetry. The unoccupied ‘T’ positions have Td symmetry. High-pressure phases
of silicon are already found in indentation experiments [180].

We note that α-Sn has little current importance. The diamond structure α–Sn
phase is stable below 13.2 ◦C. The addition of Ge inhibits the retransformation to
metallic tin up to higher temperatures (e.g., 60 ◦C for 0.75 weight percent Ge). The
properties of gray tin are reviewed in [181].

3.4.4 Zincblende Structure

The zincblende (sphalerite,4 ZnS, space group 216, F4̄3m) structure (Fig. 3.16b)
has a fcc lattice with a diatomic base. The metal (A) atom is at (0, 0, 0) and the

4Zincblende technically means the material ZnS which occurs in sphalerite (cubic) and wurtzite
(hexagonal) phase. However, in the literature the term ‘zincblende’ for the sphalerite structure is
common and used throughout this book.
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nonmetal (B) atom is at (1/4, 1/4, 1/4)a. Thus the cation and anion sublattices are
shifted with respect to each other by a quarter of the body diagonal of the fcc lattice.
The atoms are tetrahedrally coordinated, a Zn atom is bonded to four S atoms and
vice versa. However, no inversion center is present any longer (point group Td ). In the
zincblende structure the stacking order of diatomic planes along the body diagonal
is aAbBcCaAbBcC. . .

Many important compound semiconductors, such as GaAs, InAs, AlAs, InP, GaP
and their alloys (cf. Sect. 3.7), but also the II–VI compounds ZnS, ZnSe, ZnTe, HgTe
and CdTe and halides, including AgI, CuF, CuCl, CuBr, and CuI, crystallize in the
zincblende structure.

Four-fold coordinated materials (zincblende and wurtzite) typically undergo a
phase transition into 6-fold coordinated structures upon hydrostatic pressure [182].
For GaAs under pressure see [183].

3.4.5 Wurtzite Structure

The wurtzite structure (ZnS, space group 186, P63mc) is also called the hexagonal
ZnS structure (because ZnS has both modifications). It consists (Fig. 3.19) of a hcp
lattice with a diatomic base. The c/a ratio typically deviates from the ideal value
ζ0 = √

8/3 ≈ 1.633 (3.4) as listed in Table3.3. The c-axis is a 63 screw axis.
The Zn atom is located at (0, 0, 0), the S atom at (0, 0,

√
3/8)a. This corresponds

to a shift of 3/8 c along the c-axis. This factor is called the cell-internal parameter
u. For real wurtzite crystals u deviates from its ideal value u0 = 3/8 = 0.375,
e.g., for group-III nitrides u > u0. The diatomic planes have a stacking order of
aAbBaAbB. . . along the [00.1]-direction as visualized in Fig. 3.17b.

InFig. 3.20 thedifferent local structural environment of the atoms in the zincblende
and wurtzite structure is shown.

Many important semiconductors with large band gap crystallize in the wurtzite
structure, such as GaN, AlN, InN, [185] ZnO, [186] SiC, [187], CdS und CdSe.

Table 3.3 c/a ratio of various wurtzite semiconductors

Material ξ (%) Material ξ(%) Material ξ (%) Material ξ (%)

AlN −2.02 CdS −0.61 CuBr 0.43 BeO −0.61

GaN −0.49 CdSe −0.18 CuCl 0.55 ZnO −1.9

InN −1.35 CdTe 0.25 CuI 0.74 6H-SiC 0.49

ZnS 0.25 MgS −0.80 AgI 0.12 BN 0.74

ZnSe 0.06 MgSe −0.67 ZnTe 0.74 MgTe −0.67

Listed is ξ = (c/a − ζ0)/ζ0. Data based on [184]
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(a) (b)

Fig. 3.19 (a) Top view (along the c-axis) and (b) side view of the wurtzite structure with the
tetragonal bonds indicated. The top (bottom) surface of the depicted structure is termed the Zn-face,
(00.1) (O-face, (00.1̄))

Fig. 3.20 Comparison of the
tetragonal bonds in the (a)
zincblende and (b) wurtzite
structure (i : inversion center,
m: symmetry plane)

(a) (b)

3.4.6 Chalcopyrite Structure

The chalcopyrite [188] (ABC2, named after ‘fool’s gold’ CuFeS2, space group 122,
I4̄2d) structure is relevant for I–III–VI2 (with chalcogenide anions) and II–IV–V2

(with pnictide anions) semiconductors such as, e.g., (Cu,Ag)(Al,Ga,In)(S,Se,Te)2
and (Mg,Zn,Cd)(Si,Ge,Sn)(As,P,Sb)2. A nonmetallic anion atom (‘C’) is tetrahe-
drally bonded to two different types of cation atoms (‘A’ and ‘B’) as shown in
Fig. 3.21. The local surrounding of each anion is identical, two of both the A and
B atoms. The structure is tetragonal. The aspect ratio η = c/(2a) deviates from its
ideal value 1; typically η < 1 [189, 190].

If the C atom is in the tetrahedral center of the two A and two B atoms, the bond
lengths RAC and RBC of the A–C and B–C bonds, respectively, are equal. Since the
ideal A–C and B–C bond lengths dAC and dBC are typically unequal, this structure
is strained. The common atom C is therefore displaced along [100] and [010] such
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Fig. 3.21 Chalcopyrite
structure, red and yellow
spheres denote the metal
species. The bigger green
spheres represent the
nonmetal anion

that it is closer (if dAC < dBC) to the pair of A atoms and further away from the B
atoms. The displacement parameter is

u = 1

4
+ R2

AC − R2
BC

a2
(3.8)

and it deviates from the ideal value u0 = 1/4 for the zincblende structure as listed
in Table3.4 for a number of chalcopyrite compounds. In the chalcopyrite structure

RAC = a

√

u2 + 1 + η2

16
(3.9a)

RBC = a

√(
u − 1

2

)2

+ 1 + η2

16
. (3.9b)

The minimization of the microscopic strain yields (in first order) [191]

u ∼= 1

4
+ 3

8

d2
AC − d2

BC

d2
AC + d2

BC

. (3.10)

Compounds with u > uc, uc = 0.265 being a critical displacement parameter, (or
u < 1/2 − uc = 0.235) are stable with regard to cation disorder [190]. In Fig. 3.22
the correlation of the calculated value for u according to (3.10) and the experimental
values is shown.
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Table 3.4 Lattice nonideality parameters η and u (from (3.10)) of various chalcopyrite compounds
and their experimentally observed disorder stability (+/− indicates compound with/without order–
disorder (D–O) transition, respectively)

η u D–O η u D–O

CuGaSe2 0.983 0.264 + ZnSiAs2 0.97 0.271 −
CuInSe2 1.004 0.237 + ZnGeAs2 0.983 0.264 +
AgGaSe2 0.897 0.287 − CdSiAs2 0.92 0.294 −
AgInSe2 0.96 0.261 + CdGeAs2 0.943 0.287

CuGaS2 0.98 0.264 ZnSiP2 0.967 0.272 −
CuInS2 1.008 0.236 + ZnGeP2 0.98 0.264 +
AgGaS2 0.895 0.288 − CdSiP2 0.92 0.296 −
AgInS2 0.955 0.262 CdGeP2 0.939 0.288 −
Data from [190]

Fig. 3.22 Experimental values uexp of the displacement parameter for various chalcopyrites versus
the calculated value ucalc according to (3.10). The dashed line indicates uexp = ucalc. Adapted
from [191]

3.4.7 Spinel Structure

A large variety of ternary compounds of type AIIBIII
2CVI

4 crystallize in the cubic
spinel structure (spinel, MgAl2O4, space group 227, Fd3m). Typical elements are A:
Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Sn, B: Al, Ga, In, Ti, V, Cr, Mn, Fe, Co, Rh,
Ni, and C: O, S, Se, Te.

As an example ZnGa2O4 (zinc gallate) has received attention as interfacial layer
in ZnO/GaAs epitaxy [192], luminescent material [193], and as ferromagnetic semi-
conductor [194]. Also the (unwanted) appearance of zinc gallate inclusions is in
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Fig. 3.23 Spinel AB2C4
crystal structure, the cations
are depicted as yellow (A
atoms) and silver (B atoms)
spheres, the anions (C
atoms) as blue spheres

competition with the formation of highly doped wurtzite ZnO:Ga; in the (normal)
spinel cubic structure of ZnGa2O4 the Zn2+ ions still occupy tetrahedral sites, but
the Ga3+ ions occupy octahedral sites instead of tetrahedral sites in doped wurtzite
ZnO:Ga. (Sc,Al)MgO4 (SCAM) is available as substrate material. Also AVIBII

2CVI
4

compounds exist, e.g., GeB2O4 (with B = Mg, Fe, Co, Ni)
The anion atoms (C2−) sit on a fcc lattice. The A atoms fill 1/8 of all tetraeder

spaces and the B atoms fill half of all octaeder places (Fig. 3.23). Often the cations
are charged A2+ and B3+, e.g., in ZnAl2O4, MgCr2O4 or ZnCo2O4. Also A6+ and
B1− exists, e.g., in WNa2O4.

The cubic lattice constant is denoted as a. In real spinels, the anions deviate
from the ideal fcc array which is accounted for by the parameter u, measuring the
displacement of anions along the [111]-direction [195]; if the A-site cation is at
(0,0,0), an anion is at (u, u, u). The cation-anion distances are given by [196]

RAC = a
√
3 (u − 1/8), (3.11a)

RBC = a
√
3 u2 − 2 u − 3/8. (3.11b)

The ideal value is u = 1/4; examples are u = 0.2624 for MgAl2O4, u = 0.2617 for
ZnGa2O4 and u = 0.2409 for SiFe2O4 [196].

In the inverted spinel structure, for AIIBIII
2CVI

4 compounds, the cations are dis-
tributed like B(AB)C4, i.e. the B cations occupy tetraeder and octaeder places, e.g.,
in Mg2+(Mg2+Ti4+)O2−

4 or Fe3+(Ni2+Fe3+)O2−
4 . Examples are magnetite (Fe3O4),

a material with high spin polarization, or MgFe2O4. Also AVIBII
2CVI

4 compounds
exist in this structure, e.g., SnB2O4 (with B = Mg, Mn, Co, Zn), TiB2O4 (with B =
Mg, Mn, Fe, Co, Zn), and VB2O4 (with B = Mg, Co, Zn).
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Fig. 3.24 Fluorite crystal
structure, the cations are
depicted as red spheres, the
anions as blue spheres

3.4.8 Fluorite Structure

Named after the minerale fluorite (CaF2, space group 225, Fm3m), this structure for
binary ionic compounds occurs when the cation valence is twice the anion valence,
e.g., for (cubic) ZrO2 (zirconia) or HfO2. The lattice is fcc with a triatomic base. At
(0,0,0) is the cation (e.g., Zr4+), the anions (e.g., O2−) are at (1/4, 1/4, 1/4) a (as in
the zincblende structure) and (3/4, 3/4, 3/4) a (Fig. 3.24). The anion atom positions
are on a simple cubic lattice with lattice constant a/2. Zirconia can crystallize in
various phases [197], the most prominent being the monoclinic, tetragonal and cubic
phases. The cubic phase can be extrinsically stabilized using yttrium [198, 199]
(YSZ, yttria-stabilized zirconia). Hafnium oxide has the remarkable property that
the HfO2/Si interface is stable and allows the fabrication of transistor gate oxides
with high dielectric constant (see Sect. 24.5.5).

3.4.9 Delafossite Structure

The I–III–O2 materials crystallize in the trigonal delafossite (CuFeO2, space group
166, R3̄m) structure (Fig. 3.25). This structure is also called caswellsilverite
(NaCrS2). In Table3.5 the lattice parameters of some delafossite compounds are
given. The (Cu, Ag) (Al, Ga, In)O2 materials are transparent conductive oxides
(TCO). We note that Pt and Pd as group-I component create metal-like compounds
because of the d9 configuration as opposed to the d10 configuration of Cu and Ag.

3.4.10 Perovskite Structure

Theperovskite structure forABO: 3materials (calcium titanate, CaTiO3, space group
62, Pnma) (Fig. 3.26) is relevant for ferroelectric semiconductors (cf. Sect. 15.3).
It is cubic with the Ca (or Ba, Sr) ions (charge state 2+) on the corners of the

http://dx.doi.org/10.1007/978-3-319-23880-7_24
http://dx.doi.org/10.1007/978-3-319-23880-7_15
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O

a

2uc

c

ES

DB

Ga

Cu

ES

Fig. 3.25 Hexagonal unit cell of delafossite CuGaO2. Oxygen atoms are bonded to the Cu in a
dumbbell (‘DB’) configuration. In the edge-sharing (‘ES’) layer the Ga atoms are octahedrally
configured as GaO6

Table 3.5 Lattice parameters a, c, and u of some delafossite compounds

a (nm) c (nm) u (nm)

CuAlO2 0.2858 1.6958 0.1099

CuGaO2 0.2980 1.7100 0.1073∗

CuInO2 0.3292 1.7388 0.1056∗

Theoretical values are shown with asterisk. Data from [200]

cube, the O ions (2−) on the face centers and the Ti (4+) in the body center. The
lattice is simple cubic, the base is Ca at (0, 0, 0), O at (1/2, 1/2, 0), (1/2, 0, 1/2)
and (0, 1/2, 1/2) and Ti at (1/2, 1/2, 1/2). The ferroelectric polarization is typically
evoked by a shift of the negatively and positively charged ions relative to each other.
LaAlO3 (lanthanium aluminate) is available as substrate material (space group 226,
Fm3̄c [201]). Perovskites are also important for high temperature superconductivity.

3.4.11 NiAs Structure

The NiAs structure (space group 194, P63/mmc) (Fig. 3.27) is relevant for magnetic
semiconductors, such asMnAs, and also occurs in the formation ofNi/GaAsSchottky
contacts [202]. The structure is hexagonal. The arsenic atoms form a hcp structure
and are trigonal prismatically configured with six nearest metal atoms. The metal
atoms form hcp planes and fill all octahedral holes of the As lattice. For a cubic close
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Ba
O

Ti

Ba2+

O2-

Ti4+

(a) (b)

Fig. 3.26 Perovskite structure (BaTiO3), (a) A cell with 12-fold (cuboctahedrally) configured Ba,
(b) B cell with octahedrally configured Ti

Fig. 3.27 NiAs structure, metal atoms: dark grey, chalcogenide atoms: light grey

packed, i.e. fcc, structure this would correspond to the rocksalt crystal. The stacking
is ABACABAC… (A: Ni, B,C: As).

3.4.12 Further Structures

There are many other crystal structures that have relevance for semiconductor mate-
rials. Among them are the

• corundum structure (Al2O3, space group 167, R3̄c) occurring, e.g., for sapphire
substrates used in epitaxy or for gallium oxide α-Ga2O3 (Ga2O3 is a multiphase
material [203])

• bixbyite structure (In2O3, δ-Ga2O3, space group 206, Ia3̄) (see Fig. 20.3)
• β-Ga2O3 monoclinic structure (space group 12, C2/m)
• quartz (SiO2) structures, α-quartz (space group 154, P3221) and β-quartz (space
group 180, P6222)

http://dx.doi.org/10.1007/978-3-319-23880-7_20
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Space does not permit to discuss these and other structures in more detail here.
The reader should refer to textbooks on crystallography, e.g., [204–206], and space
groups [171, 207]. A good source for information and images of crystal structures
on the web is [208].

3.5 Polytypism

In polytype materials the stacking order is not only hcp or fcc but takes different
sequences, such as, e.g., ACBCABAC as the smallest unit cell along the stacking
direction. A typical example is SiC, for which in addition to hcp and fcc 45 other
stacking sequences are known. The largest primitive unit cell of SiC [187] contains
594 layers. Some of the smaller polytypes are sketched in Fig. 3.28. In Fig. 3.29 cubic
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Fig. 3.28 (a) Polytypes of the zincblende and wurtzite lattice (found in SiC), the letters A, B and C
denote the three possible positions of the diatomic layers (see Fig. 3.12). (b) High resolution TEM
image of 6H-SiC. For the enlarged view on the left, the unit cell and the stacking sequence are
indicated. Adapted from [209]
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Fig. 3.29 Polytypes of diamond found in crystallites (metastable phases in silicon). (a) cubic
type (3C) with stacking ABC, inset shows a diffractogram and the alignment of the C and Si
lattice, (b) rhombohedral 9R crystallite with ABCBCACABA stacking, (c) 9R phase with interface
to a hexagonal 2H (AB stacking) phase. Reprinted with permission from Nature [210], © 2001
Macmillan Magazines Limited

(a) (b)

Fig. 3.30 (a) Hexagonality indexα (3.12) of Zn1−xCdxS for various ternary compositions.Dashed
line is a guide to the eye. (b) Regions of different polytypes in ZnSexS1−x . Adapted from [211]

diamond crystallites and metastable hexagonal and orthorhombic phases (in silicon)
are shown.

For the ternary alloy (cf. Sect. 3.7) Zn1−xCdxS the numbers nh of diatomic layers
with hexagonal stacking (AB) and nc of layers with cubic stacking (ABC) have been
investigated. CdS has wurtzite structure and ZnS mostly zincblende structure. The
hexagonality index α as defined in (3.12) is shown in Fig. 3.30 for Zn1−xCdxS

α = nh

nh + nc
. (3.12)
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3.6 Reciprocal Lattice

The reciprocal lattice is of utmost importance for the description and investigation
of periodic structures, in particular for X-ray diffraction [212], surface electron dif-
fraction, phonons and the band structure. It is the quasi-Fourier transformation of the
crystal lattice. The crystal lattice is also called the direct lattice, in order to distinguish
it from the reciprocal lattice.

3.6.1 Reciprocal Lattice Vectors

When R denotes the set of vectors of the direct lattice, the set G of the reciprocal
lattice vectors is given by the condition5

exp (iG · R) = 1 (3.13)

for all R ∈ R and G ∈ G. Therefore, for all vectors r and a reciprocal lattice vector
G

exp (iG · (r + R)) = exp (iG · r) . (3.14)

Each Bravais lattice has a certain reciprocal lattice. The reciprocal lattice is also
a Bravais lattice, since when G1 and G2 are two reciprocal lattice vectors, then this
is obviously true also for G1 + G2. For the primitive translation vectors a1, a2 and
a3 of the direct lattice, the vectors b1, b2 and b3 that span the reciprocal lattice can
be given directly as

b1 = 2π

Va
(a2 × a3) (3.15a)

b2 = 2π

Va
(a3 × a1) (3.15b)

b3 = 2π

Va
(a1 × a2), (3.15c)

where Va = a1 · (a2 × a3) is the volume of the unit cell spanned by the vectors ai .
The volume of the unit cell in the reciprocal space is V ∗

a = (2π)3/Va .
The vectors bi fulfill the conditions

ai · b j = 2π δi j . (3.16)

Thus, it is clear that (3.13) is fulfilled. For an arbitrary reciprocal lattice vector
G = k1b1 + k2b2 + k3b3 and a vector R = n1a1 + n2a2 + n3a3 in direct space

5The dot product a · b of two vectors shall also be denoted as ab.
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we find
G · R = 2π (n1 k1 + n2 k2 + n3 k3) . (3.17)

The number in brackets is an integer. Additionally, we note that the reciprocal lattice
of the reciprocal lattice is again the direct lattice. The reciprocal lattice of the fcc is
bcc and vice versa. The reciprocal lattice of hcp is hcp (rotated by 30◦ with respect
to the direct lattice).

For later, we note two important theorems. A (sufficiently well behaved) function
f (r) that is periodic with the lattice, i.e. f (r) = f (r + R) can be expanded into a
Fourier series with the reciprocal lattice vectors according to

f (r) =
∑

aG exp (iG · r), (3.18)

where aG denotes the Fourier component of the reciprocal lattice vector G, aG =∫
V f (r) exp (−iG · r) d3r. If f (r) is lattice periodic, the integral given in (3.19) is
zero unless G is a reciprocal lattice vector.

∫

V
f (r) exp (−iG · r) d3r =

{
aG

0, G /∈ G . (3.19)

3.6.2 Miller Indices

A lattice plane is the set of all lattice points in a plane spanned by two independent
lattice vectors R1 and R2. The lattice points on that plane form a two-dimensional
Bravais lattice. The entire lattice can be generated by shifting the lattice plane along
its normal n = (R1 × R2)/|R1 × R2|. The plane belongs to the reciprocal lattice
vector Gn = 2πn/d , d being the distance between planes.

This correspondence between reciprocal lattice vectors and sets of planes allows
the orientation of planes to be described in a simple manner. The shortest reciprocal
lattice vector perpendicular to the plane is used. The coordinates with respect to
the primitive translation vectors of the reciprocal space bi form a triplet of integer
numbers and are called Miller indices [213].

The plane described by Gn · r = A fulfills the condition for a suitable value of
A. The plane intersects the axes ai at the points x1 a1, x2 a2 and x3 a3. Thus we find
Gn xi ai = A for all i . From (3.17) follows Gn · a1 = 2π h, Gn · a2 = 2π k and
Gn ·a3 = 2π l, where h, k and l are integers. The triplet of integer numbers (hkl), the
reciprocal values of the axis intersections in the direct lattice, are the Miller indices.
An example is shown in Fig. 3.31.

Planes are denoted as (hkl) with parentheses. The (outward) normal direction
is denoted with [hkl] (square brackets). A set of equivalent planes is denoted with
curly brackets as {hkl}. For example, in the simple cubic lattice (100), (010), (001),
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Fig. 3.31 The plane
intersects the axes at 3, 2,
and 2. The inverse of these
numbers is 1/3, 1/2, and 1/2.
The smallest integer
numbers of this ratio form
the Miller indices (233)

(−100), (0−10) are (00−1) equivalent and are denoted by {100}. (−100) can also
be written as (1̄00). A set of equivalent directions is denoted with 〈hkl〉.

In a cubic lattice the faces of the cubic unit cell are {001} and the planes perpen-
dicular to the area (body) diagonals are {110} ({111}) (Fig. 3.32a). In the zincblende
lattice the {111} planes consist of diatomic planes with Zn and S atoms. It depends
on the direction whether the metal or the nonmetal is on top. These two cases are
denoted by A and B. We follow the convention that the (111) plane is (111)A and
the metal is on top (as in Fig. 3.16b). For each change of sign the type changes from
A to B and vice versa, e.g., (111)A, (11̄ 1)B and (1̄ 1̄ 1̄)B. In Fig. 3.32b the in-plane
directions for the (001), (110) and (111) planes are visualized.

In the wurtzite lattice the Miller indices are denoted as [hklm] (Fig. 3.33). Within
the (0001) plane three indices hkl are used that are related to the three vectors a1, a2
and a3 (see Fig. 3.33a) rotated with respect to each other by 120◦. Of course, the four
indices are not independent and l = −(h + k). The third (redundant) index can be
denoted as a dot. The c-axis [0001] is then denoted as [00.1]. Wurtzite (and trigonal,
e.g., sapphire) substrates are available typically with a (〈11.0〉), r (〈01.2〉), m (〈01.0〉)
and c ([00.1]) surface orientations (Fig. 3.33b).

The distance of lattice planes d = 2π/|G| can be expressed via the Miller indices
for cubic (3.20a), tetragonal (3.20b) and hexagonal (3.20c) crystals as

dc
hkl = a√

h2 + k2 + l2
(3.20a)

d t
hkl = a

√
h2 + k2 + l2 (a/c)2

(3.20b)

dh
hkl = a

√
4 (h2 + hk + k2)/3 + l2 (a/c)2

(3.20c)
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Fig. 3.32 (a) Miller indices of important planes for the simple cubic (and fcc, bcc) lattice. (b)
Directions within three low index planes of cubic crystals
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Fig. 3.33 (a, b) Miller indices for the wurtzite (or hcp) structure. (c) Orientation of the a-, r-, m-,
and c-plane in the wurtzite structure
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Table 3.6 High symmetry points and directions fromΓ -point in the Brillouin zone of the fcc lattice

Point k Direction (0 ≤ λ ≤ 1)

Γ (0,0,0)

X 2π
a (0, 1, 0) Δ 2π

a (0,λ, 0)

K 3π
2 a (1, 1, 0) Σ 3π

2 a (λ, λ, 0)

L π
a (1, 1, 1) Λ π

a (λ, λ, λ)

W 2π
a (1, 1/2, 0)

U 2π
a (1, 1/4, 1/4)

Table 3.7 High symmetry points and directions from Γ -point in the Brillouin zone of the hcp
lattice

Point k Direction (0 ≤ λ ≤ 1)

Γ (0,0,0)

A 2 π (0, 0, 1
2 c ) Δ π

c (0, 0,λ)

L 2 π (0, 1√
3 a

, 1
2 c )

M 2 π (0, 1√
3 a

, 0) Σ 2π√
3 a

(0,λ, 0)

H 2 π (− 1
3 a , 1√

3 a
, 1
2 c )

K 2 π (− 1
3 a , 1√

3 a
, 0) T 2 π (− λ

3 a , λ√
3 a

, 0)

Useful formulas for the angle θ between a (hk.l)-plane and the [00.1]-direction in
the cubic, tetragonal and wurtzite structures are:

cos θc = l√
h2 + k2 + l2

(3.21a)

cos θt = l
√

l2 + c2
a2 (h2 + k2)

(3.21b)

cos θh = l
√

l2 + 4
3

c2
a2 (h2 + hk + k2)

. (3.21c)

3.6.3 Brillouin Zone

The Wigner–Seitz cell in reciprocal space is called the (first) Brillouin zone. In
Fig. 3.34, the Brillouin zones for the most important lattices are shown. Certain
points in the Brillouin zone are labeled with dedicated letters. The Γ point always
denotes k = 0 (zone center). Certain paths in the Brillouin zone are labeled with
dedicated Greek symbols.
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Fig. 3.34 Brillouin zones and special k points for the (a) primitive cubic (pc), (b) fcc, (c) bcc,
and (d) hcp lattice. (e) Brillouin zone for chalcopyrite structure with fcc Brillouin zone shown as
dashed outline. (f) Brillouin zone for orthorhombic lattice with one quadrant shown with dashed
lines.
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In the Brillouin zone of the fcc lattice (Si, Ge, GaAs, …) the X point denotes
the point at the zone boundary in 〈001〉-directions (at distance 2 π/a from Γ ), K for
〈110〉-directions (at distance 3π/

√
2 a from Γ ) and L for the 〈111〉-directions (at

distance
√
3π/a from Γ ) (see Table3.6). The straight paths from Γ to X, K, and L

are denoted as Δ, Σ , and Λ, respectively. High symmetry points and directions of
the Brillouin zone of the hcp lattice are given in Table3.7.

3.7 Alloys

When different semiconductors are mixed various cases can occur:

• The semiconductors are not miscible and have a so-called miscibility gap. They
will tend to form clusters that build up the crystal. The formation of defects is
probable.

• They form an ordered (periodic) structure that is called a superlattice.
• They form a random alloy.

3.7.1 Random Alloys

Alloys for which the probability to find an atom at a given lattice site is given by
the fraction of these atoms (i.e. the stoichiometry), independent of the surrounding,
are called random alloys. Deviations from the random population of sites is termed
clustering.

For a GexSi1−x alloy this means that any given atom site has the probability x to
have a Ge atom and 1 − x to have a Si atom. The probability pn that a Si atom has
n next-neighbor Ge atoms is

pn =
(
4
n

)
xn (1 − x)4−n, (3.22)

and is depicted in Fig. 3.35 as a function of the alloy composition. The symmetry
of the Si atom is listed in Table3.8. If it is surrounded by four of the same atoms
(either Ge or Si), the symmetry is Td . If one atom is different from the other three
next neighbors, the symmetry is reduced to C3v since one bond is singled out. For
two atoms each the symmetry is lowest (C2v).

In an alloy frombinary compound semiconductors such asAlxGa1−xAs themixing
of the Al and Gametal atoms occurs only on the metal (fcc) sublattice. Each As atom
is bonded to four metal atoms. The probability that it is surrounded by n Al atoms
is given by (3.22). The local symmetry of the As atom is also given by Table3.8.
For AlAsxP1−x the mixing occurs on the nonmetal (anion) sublattice. If the alloy
contains three atom species it is called a ternary alloy. In Fig. 3.36 the (11̄0) surface
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Fig. 3.35 Probability that a
Si atom has n next-neighbor
Ge atoms in a random
GexSi1−x alloy

Table 3.8 Probability pn
(3.22) and symmetry of an A
atom being surrounded by n
B atoms in a tetrahedrally
configured BxA1−x random
alloy

n pn Symmetry

0 x4 Td

1 4 x3 (1 − x) C3v

2 6 x2 (1 − x)2 C2v

3 4 x (1 − x)3 C3v

4 (1 − x)4 Td

(UHV cleave) of an In0.05Ga0.95As alloy is shown. Indium atoms in the first layer
show up as brighter round dots [214]. Along the [001]-direction the positions are
uncorrelated, along [110] an anti-correlation is found, corresponding to an effective
repulsive pair interaction energy of 0.1eV for the nearest neighbor In–In pairs along
the [110]-direction due to strain effects [215].

If the binary end components have different crystal structure, the alloy shows a
transition (or compositional transition range) from one structure to the other at a
particular concentration. An example is the alloy between wurtzite ZnO and rocksalt
MgO. MgxZn1−xO alloy thin films exhibits wurtzite structure up to about x = 0.5
and rocksalt structure for x > 0.6 [216] (cmp. Fig. 3.39).

If the alloy contains four atom species it is called quaternary. A quaternary
zincblende alloy can have the mixing of three atom species on one sublattice, such
as AlxGayIn1−x−yAs or GaAsxPySb1−x−y or the mixing of two atom species on both
of the two sublattices, such as InxGa1−xAsyN1−y .

The random placement of different atoms on the (sub)lattice in an alloy represents
a perturbation of the ideal lattice and causes additional scattering (alloy scattering). In
the context of cluster formation, the probability of an atom having a direct neighbor
of the same kind on its sublattice is important. Given aAxB1−xC alloy, the probability
pS to find a single A atom surrounded by B atoms is given by (3.23a). The probability
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(a) (b) (c)

Fig. 3.36 (a) STM empty-state image (17.5 × 17.5nm2) of the (11̄0) surface of an MBE-grown
In0.05Ga0.95As alloy on GaAs, (b) curvature-enhanced image. (c) Schematic atomic arrangement
of the first and second atomic layer. Adapted from [215]

pD1 to find a cluster of two neighbored A atoms surrounded by B atoms is given by
(3.23b).

pS = (1 − x)12 (3.23a)

pD1 = 12 x (1 − x)18. (3.23b)

These formulas are valid for fcc and hcp lattices. For larger clusters [217, 218],
probabilities in fcc and hcp structures differ.

3.7.2 Phase Diagram

Themixture AxB1−x with average composition x between twomaterials A and B can
result in a single phase (alloy), a two-phase system (phase separation) or a metastable
system. The molar free enthalpy ΔG of the mixed system is approximated by

ΔG = Ω x (1 − x) + kT [x ln(x) + (1 − x) ln(1 − x)] . (3.24)

The first term on the right-hand side of (3.24) is the (regular solution) enthalpy of
mixing with the interaction parameter Ω , which can depend on x . The second term
is the ideal configurational entropy based on a random distribution of the atoms. The
function is shown for various ratios of kT/Ω in Fig. 3.37a. In an equilibrium phase
diagram (see Fig. 3.37b) the system is above the binodal curve in one phase (misci-
ble). On the binodal line Tb(x) in the (x , T ) diagram the A- and B-rich disordered
phases have equal chemical potentials, i.e. ∂G/∂x = 0. For Ω independent of x the
temperature Tb is given by (3.25a). A critical point is at the maximum temperature
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(a) (b)

Fig. 3.37 (a) Free enthalpy ΔG of mixed binary system (3.24) in units of Ω for Ω = const.
and various values of kT/Ω as labeled. (b) Schematic phase diagram for binary mixture. The
temperature is given in units of Ω/k. The solid (dashed) denotes the binodal (spinodal) line

100

90

80

70

60

50

40

T
em

pe
ra

tu
re

 (
K

)

AlAs

Al Ga As1-xx

(a) 350

300

250

200

150

100

GaP As1-xx

GaPGaAs

(b)

spinodal

T
em

pe
ra

tu
re

 (
K

)

x=0.5

binodal

GaAs x=0.5

Fig. 3.38 Calculated phase diagrams for (a) AlxGa1−xAs and (b) GaPxAs1−x . The binodal (spin-
odal) curve is shown as solid (dashed) line. Adapted from [219]

Tmg and concentration xmg of the miscibility gap. For Ω independent of x it is given
by Tmg = Ω/2 and xmg = 1/2. In the region below the spinodal boundary, the system
is immiscible and phases immediately segregate (by spinodal decomposition). On
the spinodal line Tsp(x) the condition ∂2G/∂x2 = 0 is fulfilled. For Ω independent
of x the temperature Tsp is given by (3.25b). The region between the binodal and
spinodal curves is the metastable region, i.e. the system is stable to small fluctuations
of concentration or temperature but not for larger ones.

kTb(x) = Ω
2x − 1

ln(x) − ln(1 − x)
(3.25a)

kTsp(x) = 2Ω x (1 − x). (3.25b)

In Fig. 3.38 calculated diagrams for GaAs-AlAs and GaAs-GaP [219] are shown.
The arrows denote the critical point. These parameters and the interaction parameters
for a number of ternary alloys are given in Table3.9. For example, for AlxGa1−xAs
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Table 3.9 Calculated interaction parameter Ω(x) (at T = 800K, 1kcal/mol= 43.39meV),
miscibility-gap temperature Tmg and concentration xmg for various ternary alloys

Alloy Tmg (K) xmg Ω(0)
(kcal/mol)

Ω(0.5)
(kcal/mol)

Ω(1)
(kcal/mol)

AlxGa1−xAs 64 0.51 0.30 0.30 0.30

GaPxAs1−x 277 0.603 0.53 0.86 1.07

Gax In1−xP 961 0.676 2.92 3.07 4.60

GaSbxAs1−x 1080 0.405 4.51 3.96 3.78

HgxCd1−xTe 84 0.40 0.45 0.80 0.31

ZnxHg1−xTe 455 0.56 2.13 1.88 2.15

ZnxCd1−xAs 605 0.623 2.24 2.29 2.87

InxGa1−xN 1505 0.50 6.32 5.98 5.63

Data for (In,Ga)N from [220], other data from [219]

complete miscibility is possible for typical growth temperatures (>700K), but for
InxGa1−xN the In solubility at a typical growth temperature of 1100K is only
6% [220].

The alloy system (Al,Ga,In)(As,P,Sb) always crystallizes in the zincblende struc-
ture and (Al,Ga,In)N always in the wurtzite structure. If the binary end components
of a ternary alloy have a different crystal structure things become more complicated
and the crystal phase has to be determined experimentally (and modelled) for each
composition. As an example the energy of the wurtzite, hexagonal and rocksalt struc-
ture of MgxZn1−xO has been calculated [221] as depicted in Fig. 3.39 (cmp. Fig. 2.4
for silicon). The transition between wurtzite and rocksalt structure is predicted for
x = 0.33.

Fig. 3.39 Calculated energy
versus volume of the formula
unit for MgxZn1−xO in the
wurtzite (WZ), hexagonal
(HX) and rocksalt phase
(RS). The separations
between the three phase are
denoted by straight bold
lines. Adapted from [221]
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3.7.3 Virtual Crystal Approximation

In the virtual crystal approximation (VCA) the disordered alloyABxC1−x is replaced
by an ordered binary compound AD with D being a ‘pseudoatom’ with properties
that are configuration averaged over the properties of the B and C atoms, e.g., their
masses or charges. Such an average is weighted with the ternary composition, e.g.,
the mass is MD = x MB + (1 − x)MC. For example, the A–D force constant would
be taken as the weighted average over the A–B and A–C force constants.

3.7.4 Lattice Parameter

In the VCA for an alloy a new sort of effective atom is assumed that has an averaged
bond length that depends linearly on the composition. Typically, Vegard’s law (3.26),
which predicts that the lattice constant of a ternary alloy AxB1−xC depends linearly
on the lattice constants of the binary alloys AC and BC, is indeed fulfilled

a0(AxB1−xC) = a0(BC) + x [a0(AC) − a0(BC)]. (3.26)

In reality, the bond length of theAC andBCbonds changes rather little (Fig. 3.40a)
such that the atoms in the alloy suffer a displacement from their average position and
the lattice is deformed on the nanoscopic scale. In a lattice of the type InxGa1−xAs
the anions suffer the largest displacement since their position adjusts to the local
cation environment. For InxGa1−xAs a bimodal distribution, according to the As–
Ga–As and As–In–As configurations, is observed (Fig. 3.40b). The cation–cation
second-neighbor distances are fairly close to the VCA.

While the average lattice parameter in alloys changes linearly with composition,
the cell-internal parameter u (for wurtzite structures, see Sect. 3.4.5) exhibits a non-
linear behavior as shown in Fig. 3.41. Therefore physical properties connected to u,
such as the spontaneous polarization, will exhibit a bowing.

3.7.5 Ordering

Some alloys have the tendency for the formation of a superstructure [225]. Growth
kinetics at the surface can lead to specific adatom incorporation leading to ordering.
For example, in In0.5Ga0.5P the In and Ga atoms can be ordered in subsequent (111)
planes (CuPt structure) instead of being randomly mixed (Fig. 3.42). This impacts
fundamental properties such as the phonon spectrum or the band gap. CuPt ordering
on (111) and (1̄1̄1) planes is called CuPtA, on (1̄11) and (11̄1) planes CuPtB ordering.
In Fig. 3.43, a TEM image of a Cd0.68Zn0.32Te epilayer is shown with simultaneous



78 3 Crystals

Fig. 3.40 (a) Near-neighbor distance (
√
3 a0/4) of InxGa1−xAs as measured by standard X-ray

diffraction (Bragg reflection, solid squares) and VCA approximation (dash-dotted line). Near-
neighbor Ga–As and In–As distances as determined by EXAFS (extended X-ray absorption fine
structure, solid squares). Dashed lines are guides to the eye. Data from [222]. (b) Second-neighbor
distances for InxGa1−xAs as determined from EXAFS, top: anion–anion distance (for As–As),
bottom: cation–cation distance (for In–In, Ga–Ga, and Ga–In). Solid lines in both plots are the
VCA (a0/

√
2). Data from [223]

Fig. 3.41 Theoretical values (T = 0K) for the cell-internal parameter u as a function of the
composition for group-III nitride alloys. The solid lines are quadratic curves (bowing parameter b
is shown) through the points for x = 0, 0.5, and 1.0. Data from [224]
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In

Ga

P

CuPt ordered
Disordered or
“random” alloy

Td C3v

Fig. 3.42 CuPt-ordered ternary alloy In0.5Ga0.5P; the lattice symmetry is reduced from Td to C3v

Fig. 3.43 (a) Cross-sectional transmission electron microscope image along the [110] zone axis
of a Cd0.68Zn0.32Te epilayer on GaAs showing ordered domains having a doublet periodicity on
the {111} and {001} lattice planes. Two different {111} variants are labeled ‘a’ and ‘b’. The doublet
periodicity in the [001] is seen in the ‘c’ region. (b) Selected-area diffraction pattern along the [110]
zone. Strong peaks are fundamental peaks of the zincblende crystal, weak peaks are due to CuPt
ordering, labeled A and B, and CuAu-I ordering, labeled C and D. The latter are the weakest due
to a small volume fraction of CuAu-ordered domains. Adapted from [226]
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(a)

Cd
Zn
Se[110]

[001]

(b) (c)

Fig. 3.44 Schematic diagrams of zincblende CdxZn1−xTe along [110] with (a) CuAu-I type order-
ing and (b,c) two types of the CuPtB type ordering. Doublet periodicity is along (a) [001] and [1̄10],
(b) [11̄1] and (c) [1̄11]. Adapted from [226]

ordering in the CuPt structure (doublet periodicity along
[
11̄1

]
and

[
1̄11

]
) and in the

CuAu-I structure6 (doublet periodicity along [001] and [1̄10]) (Fig. 3.44).

6The CuAu-I structure has tetragonal symmetry. There exists also the CuAu-II structure that is
orthorhombic.



Chapter 4
Defects

Abstract No crystal is perfect. Various point defects and their thermodynamics,
diffusion and distribution effects are discussed. Also dislocations and extended
defects such as cracks, stacking faults, grain boundaries and antiphase domains are
covered.

4.1 Introduction

In an ideal lattice each atom is at its designated position. Deviations from the ideal
structure are called defects. In the following,wewill briefly discuss themost common
defects. The electrical activity of defects will be discussed in Sects. 7.5 and 7.7.
For the creation (formation) of a defect a certain free enthalpy Gf

D is necessary. At
thermodynamical equilibrium a (point) defect density∝ exp

(−Gf
D/kT

)
will always

be present (cf. Sect. 4.2.2).
Point defects (Sect. 4.2) are deviations from the ideal structure involving essen-

tially only one lattice point. The formation energy for line defects (Sect. 4.3) or area
defects (Sect. 4.4) scales with N 1/3 and N 2/3, respectively, N being the number of
atoms in the crystal. Therefore, these defects are not expected in thermodynamic
equilibrium. However, the path into thermodynamical equilibrium might be so slow
that these defects aremetastable andmust be considered quasi-frozen. Theremay also
exist metastable point defects. By annealing the crystal, the thermodynamic equilib-
rium concentrationmight be re-established. The unavoidable two-dimensional defect
of the bulk structure is the surface, discussed in Chap.11.

4.2 Point Defects

4.2.1 Point Defect Types

The simplest point defect is a vacancy V, a missing atom at a given atomic position.
If an atom is at a position that does not belong to the crystal structure an interstitial I

© Springer International Publishing Switzerland 2016
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
DOI 10.1007/978-3-319-23880-7_4
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Fig. 4.1 Images of occupied (upper frames) and empty (lower frames) density of states of typical
defects on Si-doped GaAs (110) surfaces. (a1, a2) show a Ga vacancy, (b1, b2) a SiGa donor, (c1,
c2) a SiAs acceptor and (d1, d2) a SiGa–VGa complex. Adapted from [227]

(or Frenkel defect) is formed. Depending on the position of the interstitial different
types are distinguished. An interstitial atom that has the same chemical species as
the crystal is called ‘self-interstitial’.

If an atom site is populated with an atom of different order number Z , an impurity
is present. An impurity can also sit on interstitial position. If the number of valence
electrons is the same as for the original (or correct) atom, then it is an isovalent impu-
rity and quasi fits into the bonding scheme. If the valence is different, the impurity
adds extra (negative or positive) charge to the crystal bonds, which is compensated
by the extra, locally fixed charge in the nucleus. This mechanism will be discussed
in detail in the context of doping (Chap. 7). If in an AB compound an A atom sits on
the B site, the defect is called an antisite defect AB .

A Ga vacancy, a silicon impurity atom on Ga- and As-site and a SiGa-vacancy
complex at the (110) surface of Si doped GaAs are shown in Fig. 4.1 as observed
with STM [227, 228]. Also antisite defects in GaAs can be observed with STM [229,
230].

A point defect is typically accompanied by a relaxation of the surrounding host
atoms. As an example, we discuss the vacancy in Si (Fig. 4.2a). The missing atom
leads to a lattice relaxation with the next neighbors moving some way into the void
(Fig. 4.2b). The bond lengths of the next and second-next neighbor Si atoms around
the neutral vacancy are shown in Fig. 4.2c. The lattice relaxation depends on the
charge state of the point defect (Jahn–Teller effect) which is discussed in more detail
in Sect. 7.7. In Fig. 4.2d the situation for the positively charged vacancy with one
electronmissing is shown.Oneof the twobonds isweakened since it lacks an electron.
The distortion is therefore different from that for V 0. Also the (self-)interstitial is
accompanied with a lattice relaxation as shown in Fig. 4.3 for a silicon interstitial
at tetrahedral place. Self-interstitials in silicon and germanium are reviewed and
compared in [231] for their various charge states.

http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_7
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(a) (b)

(c) (d)

Fig. 4.2 (a) Schematic diamond lattice with vacancy, i.e. a missing Si atom without relaxation.
(b) Si with neutral vacancy (V 0), lattice relaxation and formation of two new bonds. (c) Schematic
diagram showing the (inward) relaxation of the neighbors around the neutral Si vacancy defect site
(empty circle) calculated by an ab initio method. The distances of the outer shell of atoms (red
circles) from the vacant site is labeled (in nm). The bond lengths of the two new bonds and the
second-neighbor (blue circles) distance are also indicated. The bond length in bulk Si is 0.2352nm,
the second-neighbor distance 0.3840nm.Adapted from [232]. (d) Si unit cellwith positively charged
vacancy (V +). Parts (a, b, d) reprinted with permission from [233]

Fig. 4.3 Silicon tetrahedral
interstitial SiTi and its next
atoms in ideal (white
spheres) and relaxed (black
spheres) position. Adapted
from [155]

4.2.2 Thermodynamics

For a given temperature, the free enthalpy G of a crystal (a closed systemwith regard
to particle exchange)

G = H − TS (4.1)
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is minimum. H is the enthalpy and S the entropy. The enthalpy H = E + pV is the
thermodynamic potential for a system whose only external parameter is the volume
V . It is used when the independent variables of the system are the entropy S and
pressure p. The free enthalpy is used when the independent parameters are T and
p. G0 (H0) is the free energy (enthalpy) of the perfect crystal. H f is the formation
enthalpy of an isolated defect. This could be, e.g., the enthalpy of a vacancy, created
by bringing an atom from the (later) vacancy site to the surface, or an interstitial,
created by bringing an atom from the surface to the interstitial site. In the limit that
the n defects do not interact with each other, i.e. their concentration is sufficiently
small, they can be considered independent and the enthalpy is given by

H = H0 + n H f . (4.2)

The increase of entropy due to increased disorder is split into the configurational
disorder over the possible sites, denoted as Sd, and the formation entropy Sf due to
localized vibrational modes. The total change ΔG of the free energy is

ΔG = G − G0 = n (H f − T Sf) − T Sd = n Gf − T Sd, (4.3)

where Gf = H f − T Sf denotes the free enthalpy of formation of a single isolated
defect. In Table 4.1 experimental values for the formation entropy and enthalpy
are given for several defects. Surprisingly, despite their fundamental importance in
semiconductor defect physics, these numbers are not very well known and disputed
in the literature.

The defect concentration is obtained by minimizing ΔG, i.e.

∂ΔG

∂n
= Gf − T

∂Sd

∂n
= 0. (4.4)

The entropy Sd due to disorder is given as

Sd = kB ln W, (4.5)

where W is the complexion number, usually the number of distinguishable ways to
distribute n defects on N lattice sites

Table 4.1 Formation enthalpy H f and entropy Sf of the interstitial (I ) and vacancy (V ) in Si and
the Ga vacancy in GaAs

Material Defect H f (eV) Sf (kB)

Si I 3.2 4.1

Si V 2.8 ∼ 1

GaAs VGa 3.2 9.6

Data for Si from [234, 235], for GaAs from [236]
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W =
(

N
n

)
= N !

n! (N − n)! . (4.6)

With Stirling’s formula ln x ! ≈ x(ln x − 1) for large x we obtain

∂Sd

∂n
= kB

[
N

n
ln

(
N

N − n

)
+ ln

(
N − n

n

)]
. (4.7)

If n � N , ∂N/∂n = 0 and the right side of (4.7) reduces to kB ln(N/n). The
condition (4.4) reads Gf + kBT ln(n/N ), or

n

N
= exp

(
− Gf

kT

)
. (4.8)

In the case of several different defects i with a degeneracy Zi , e.g. a spin degree
of freedom or several equivalent configurations, (4.8) can be generalized to

ni

Zi N
= exp

(
− Gf

i

kT

)
. (4.9)

In [237] the equilibrium concentration of interstitialsCeq
I in silicon has been given

as

Ceq
I = (

1.0 × 1027 cm−3) exp

(
−3.8 eV

kT

)
, (4.10)

about 1014 cm−3 at 1200 ◦C. The vacancy concentration has been investigated
in [238]. Around a temperature of 1200 ◦C it is in the 1014–1015 cm−3 range. Due to
the reaction

0 � I + V, (4.11)

a mass action law holds for the concentrations of interstitials and vacancies

CI CV = Ceq
I Ceq

V . (4.12)

4.2.3 Diffusion

The diffusion of point defects is technologically very important, in particular for
silicon as host material. Typically a dopant profile should be stable under follow-
ing technological processing steps and also during device performance. Also defect
annihilation is crucial after implantation processes. Diffusion of an interstitial I and a
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Fig. 4.4 The temperature
dependent diffusion
coefficient of Si interstitials
I , vacancies V and various
impurities in silicon. Also
the self-diffusion coefficient,
labeled with ‘Si’ is shown.
Based on data from [239]

vacancy V to the same site is prerequisite for recombination of defects (so called bulk
process) according to the scheme I +V → 0.We note that the process 0 → I +V is
called Frenkel pair process.1 Also the self-diffusion of silicon has been studied, e.g.
using radioactively marked isotopes [237]. The diffusion of point defects including
dopants in silicon has been reviewed in [239, 240]. Usually Fick’s law is applied,
stating how the flux J depends on the concentration gradient, for an interstitial it
reads:

JI = −DI ∇CI , (4.13)

DI being the interstitial diffusion coefficient. For interstitials in Si it was found [237]
that

DI = 0.2 exp

(
−1.2 eV

kT

)
cm2/s. (4.14)

The diffusion of neutral vacancies occurs with [241]

DV = 0.0012 exp

(
−0.45 eV

kT

)
cm2/s. (4.15)

The temperature dependent diffusion coefficients of point defects and dopants in
silicon are shown in Fig. 4.4.

The self-diffusion coefficient of silicon has been determined from the annealing
of isotope superlattices (Sect. 12.5) of sequence 28Sin/30Sin , n = 20 to be [242]

1At higher temperatures a silicon atom can occasionally acquire sufficient energy from lattice
vibrations to leave its lattice site and thus an interstitial and a vacancy are generated.

http://dx.doi.org/10.1007/978-3-319-23880-7_12
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(a) (b) (c)

(d) (e)

Fig. 4.5 Configurations of boron in Si: (a) Substitutional boron and Si self-interstitial at ‘T’ site
(BS–SiTi ). Interstitial boron at (b) ‘H’ (BH

i ) and (c) ‘T’ site (BT
i ), each with the Si atoms on the Si

lattice sites. The large bright ball represents the boron atom, large and small dark balls represent
Si atoms. (d) Lowest energy barrier diffusion paths for positively charged and neutral B–Si states,
total energy versus configuration. (e) Two diffusion pathways for positively charged B–Si, kick-out
(dashed line) and pair diffusion (solid line); the activation energy is labeled. Adapted from [245]

DSD
Si =

[
2175.4 exp

(
−4.95 eV

kT

)
+ 0.0023 exp

(
−3.6 eV

kT

)]
cm2/s, (4.16)

the first (second) term being due to interstitial (vacancy) mechanism, dominant for
temperatures larger (smaller) than 900 ◦C. The enthalpy in the exponent, e.g. HV =
3.6+0.3

−0.1 eV [242], consists of the formation and migration enthalpies,

HV = H f
V + Hm

V . (4.17)

Using the experimental value H f
V = 2.8 ± 0.3eV [235] from Table 4.1, for the

migration enthalpy a value around Hm
V ≈ 0.8eV is obtained.

As an example for a dopant diffusion process that has been understoodmicroscop-
ically, we discuss here boron in silicon. In Fig. 4.5a the lowest-energy configuration
of a boron-related defect in silicon is depicted, Bs–SiTi , i.e. boron on a substitutional
site and a self-interstitial Si on the ‘T’ place with highest symmetry2 (see Fig. 3.18).

2The positive charge state is stable, the neutral charge state is metastable since the defect is a
negative-U center (see Sect. 7.7.5).

http://dx.doi.org/10.1007/978-3-319-23880-7_3
http://dx.doi.org/10.1007/978-3-319-23880-7_7
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Due to its importance as an acceptor in Si, the configuration and diffusion of B in
Si has found great interest [243–245]. The diffusion depends on the charge state
of boron. The diffusion of positively charged boron has been suggested [245] to
occur via the following route: The boron leaves its substitutional site and goes to the
hexagonal site (‘H’) (Fig. 4.5b) with an activation energy of about 1eV (Fig. 4.5d).
It can then relax (∼0.1eV) without barrier to the tetrahedral ‘T’ position (Fig. 4.5c).
The direct migration Bs–Si

T+
i → BT+

i has a higher activation energy of 1.12eV
and is thus unlikely. The boron atom can then diffuse through the crystal by going
from ‘H’ to ‘T’ to ‘H’ and so on (Fig. 4.5e). However, long-range diffusion seems
to be not possible in this way because the kick-in mechanism will bring back the
boron to its stable configuration. The pair diffusion mechanism for neutral boron
Bs–SiTi → BH

i → Bs–SiTi via the hexagonal site has an activation energy of about
0.5eV (Fig. 4.5d) while the path via BT

i has a larger 0.9eV barrier. The concentration
dependence of the diffusion mechanism has been discussed in [246].

Similarly, indium diffusion in silicon has been investigated suggesting aminimum
energy Ins–SiTi → InTi → Ins–SiTi diffusion pathway via the tetrahedral site with
0.8eV activation energy [247]. Microscopic modeling has been reported also for
diffusion of phosphorus [248].

4.2.4 Dopant Distribution

The introduction of impurities into a semiconductor (or other materials such as
glasses) is termed doping. The unavoidable incorporation of impurities in the nom-
inally pure (nominally undoped) material is called unintentional doping and leads
to a residual or background impurity concentration. Several methods are used for
doping and the creation of particular doping profiles (in depth or lateral). All doping
profiles underly subsequent diffusion of dopants (Sect. 4.2.3).

Various methods of doping are used. A straightforward method of doping is the
incorporation during crystal growth or epitaxy. For semiconductor wafers a homoge-
neous doping concentration is targeted, both laterally and along the rod from which
the wafer is cut (Sect. 12.2.2). When a crystal is grown from melt, containing a
concentration c0 of the impurity, the concentration in the solid is given by (‘normal
freezing’ case [249–251])3

c(x) = c0 k (1 − x)k−1, (4.18)

where c(x) is the impurity concentration in the crystal at the freezing interface, x is the
frozenmelt fraction (ratio of solidmass to totalmass, 0 ≤ x ≤ 1). k is the distribution

3Mass preservation of the impurities can be written at any time cm(1 − x) + ∫ x
0 c(x ′) dx ′ = c0,

where cm is the (remaining) concentration in the melt. At the beginning cm(0) = c0. At the interface
c(x) = k cm(x). Putting this into the mass preservation, building c′(x) and solving the resulting
differential equation c′ = c(1 − k)/(1 − x) with c(0) = k c0 leads to (4.18).

http://dx.doi.org/10.1007/978-3-319-23880-7_12
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(a) (b)

Fig. 4.6 (a) Relative concentration of indium along a CZ-grown germanium crystal. Absolute
concentration is in the 1016 cm−3 range. Solid line follows (4.19) with k = 1.2 × 10−3. Symbols
are experimental data from [254]. (b) Impurity distribution (relative concentration c(x)/c0) for CZ
(4.18) (solid lines) and FZ (4.20) (dashed lines, z = 0.01) silicon crystals for B (blue), P (red), and
Al (green). Distribution coefficients have been taken from Table 4.2. Note crossing of B and P lines
and possibly associated change from p-type to n-type (cmp. Fig. 1.7)

coefficient (or segregation coefficient) which is the fraction of impurities that is built
into the crystal at the liquid–solid interface. Since the melt volume reduces during
the solidification, the impurity concentration rises over time. For small distribution
coefficients (4.18) can be approximated to

c(x) ≈ c0
k

1 − x
, (4.19)

An experimental example for Ge:In is shown in Fig. 4.6a.
In Table 4.2 the distribution coefficients for various impurities in Si, Ge and GaAs

is given. The modification of distribution coefficients in SiGe alloys is discussed
in [252]. Equilibrium values (keq) are obtained for ‘slow’ crystal growth. For finite
growth rates, k becomes a function of the growth rate and is then called the effective
distribution coefficient. For k < 1, keff > keq. keff approaches 1 for high growth
rates, i.e. all impurities at the rapidly moving interface are incorporated.

Equation (4.18) applies to Czrochalski growth where the crystal is pulled out of
the melt [257]. In float-zone (FZ) growth [257] a polycrystalline rod is transformed
into a crystalline one while a RF-heated and liquid ‘float’ zone is moved through the
crystal. In this case the impurity distribution is given by4

4When the float zone moves through the crystal, the change of mass of impurities mm = cmz in the
liquid ism′

m = c0−kcm. The first term stems from themelting of the polycrystalline part, the second
from the solidification of the crystal. Solving the resulting differential equation c′

m = (c0 − kcm)/z
with cm(0) = c0 and using c(x) = kcm(x) yields (4.20).

http://dx.doi.org/10.1007/978-3-319-23880-7_1
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Table 4.2 Equilibrium distribution coefficients (at melting point) of various impurities in silicon,
germanium and GaAs

Impurity Si Ge GaAs

C 0.07 >1.85 0.8

Si 5.5 0.1

Ge 0.33 0.03

N 7 × 10−4

O ≈1 0.3

B 0.8 12.2

Al 2.8 × 10−3 0.1 3

Ga 8 × 10−3 0.087

In 4 × 10−4 1.2 × 10−3 0.1

P 0.35 0.12 2

As 0.3 0.04

Sb 0.023 3.3 × 10−3 <0.02

S 10−5 > 5 × 10−5 0.3

Fe 6.4 × 10−6 3 × 10−5 2 × 10−3

Ni ≈ 3 × 10−5 2.3 × 10−6 6 × 10−4

Cu 8 × 10−4 1.3 × 10−5 2 × 10−3

Ag ≈ 1 × 10−6 10−4 0.1

Au 2.5 × 10−5 1.5 × 10−5

Zn 2.5 × 10−5 6 × 10−4 0.1

Data for Si from [251, 253], for Ge from [146, 254–256] and for GaAs from [146]

c(x) = c0

[
1 − (1 − k) exp

(
−k x

z

)]
, (4.20)

where x is the ratio of the crystal mass to the total mass, i.e. crystal, liquid and feed
rod. z is the relative mass of the (liquid) float zone, i.e. the ratio of liquid mass to the
total mass. The impurity distribution for CZ and FZ crystals is compared in Fig. 4.6b.
Obviously the FZ process can create much more homogeneous profiles.5

Using epitaxy arbitrary doping profiles along the growth directions can be cre-
ated by varying the impurity supply during growth. Impurities can be introduced
through the surface of the material by diffusion from a solid or gas phase. In ion
implantation [258] the impurity atoms are accelerated towards the semiconductor
and deposited with a certain depth profile due to multiple scattering and energy
loss events, depending on the acceleration voltage (increasing deposition depth with
increasing voltage, Fig. 4.7a and ion mass (decreasing deposition depth with increas-
ing mass, Fig. 4.7b. The depth profile is often investigated using secondary ion mass

5We note that during directed solidification of Si:(B,P) a pn-junction forms due to the different
distribution coefficients of boron and phosphorus. This has been used in [79].
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(a) (b)

Fig. 4.7 (a) Depth of peak concentration of boron implanted in silicon for various acceleration
voltagesU . Data from various sources, forU < 1keV from [264].Dashed line is linear dependence.
(b) Simulated depth profiles of impurity concentration for B, P, As, and Sb implanted into crystalline
silicon with U = 100keV and a dose of 1015 cm−2. Adapted from [265]

Fig. 4.8 Simulated mean
path length as a function of
implantation direction
(azimuthal angle φ and polar
angle θ) near [001] for 5keV
boron in silicon. The [001]
channeling peak appears as a
ridge at the left side of the
plot (θ = 0, any value of φ).
Adapted from [261]
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spectrometry (SIMS) [259]. The profile also depends on the matrix material whose
stopping power depends on its density and atomicmass.While an implantation depth
of about 50nm is reached for boron in silicon (A ≈ 28) for 10keV, 20keV are nec-
essary in germanium (A ≈ 72.6) [260]. The mean path length6 dm depends also
on the crystallographic direction (channeling effects, Fig. 4.8) [261]. A simulation
of the interaction of ions and solids can be performed using the SRIM software
[262, 263].

6The mean path length is the distance integrated along the ion trajectory until its direction deviates
by more than 4◦ from the incident direction.
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4.2.5 Large Concentration Effects

Lattice Constant

At high doping concentration, a noticeable effect on the lattice constant a0 is found.
For silicon the atom density7 is NSi = 5 × 1022 cm−3. A doping level of N =
1019 cm−3 corresponds thus to a dopant fraction of 0.02%. Such crystal could also
be considered a very dilute alloy. About each (NSi/N )1/3 ≈ 17th atom in a given
direction is a dopant.

The effect of high doping on the lattice constant is due to different ionic radius of
the dopant and the hydrostatic deformation potential of the band edge occupied by
the free carriers [266]. In a linear approach, the effect is summarized in the coefficient
β via

β = 1

N

Δa0

a0
. (4.21)

The effect due to charge carriers on β is negative (positive) for p-doping (n-doping).
Experimental data for Si, Ge, GaAs and GaP are compiled in [267, 268] and theo-
retically discussed. The effect is in the order of β = ±(1 − 10) × 10−24 cm3. For
example, in the case of Si:B, the shrinkage of the lattice constant is mostly due to
the charge carrier effect, for Si:P both effects almost cancel. In [269] it is shown that
boron incorporation in silicon changes the lattice constant in various directions quite
differently, e.g. d333 is shrunk by 0.4% for a doping level of 1019 cm−3 while the
{620} lattice constant remains constant.

Clustering

Point defects can cluster, i.e. several point defects aggregate at neighboring sites.
An example the configuration of five nearby vacancies in silicon, the so-called V5

cluster is shown in Fig. 4.9a. In [270] the ring-like hexavacancy in silicon is predicted
a very stable defect. A large number of clustered vacancies is equivalent to a void. An
example is depicted in Fig. 4.9b for an In2O3 crystal which has locally ‘decomposed’
into an indium particle and a void as revealed by TEM [271]. Also impurities can
exhibit clustering (see Sect. 4.2.5).

Typically a random distribution of dopants in the host is assumed (cmp. Sect. 3.7.1
on random alloys). The introduction of several impurities can lead to pairing effects,
e.g. described for Se and B, Ga, Al or In in silicon [273]. A high concentration of a
single impurity makes the existence of clusters, i.e. two or more neighboring dopant
atoms, more probable. This effect has been extensively studied for B in Si [274],
showing that several boron atoms with interstitials I form thermodynamically stable
clusters, e.g. B3I2. This cluster forms from B2I and BI with only 0.2eV activation
barrier [275] as shown in Fig. 4.10. The formation is limited by diffusion of the
smaller clusters to the same site. The number of free carriers (here holes) released

7Eight atoms per cubic unit cell of length a0 = 0.543nm.

http://dx.doi.org/10.1007/978-3-319-23880-7_3
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[001]

[110]

[110]
void

indium

In O2 3
(a) (b)

Fig. 4.9 (a) Predicted configuration of the V5-cluster (five vacancies) in silicon. Yellow spheres
indicate more distorted atoms than the rest of the lattice atoms (white spheres). Adapted from [272].
(b) Indium particle with adjacent void embedded in In2O3 (STEM image revealing Z -contrast in
[001]). Adapted from [271]

Fig. 4.10 Minimum energy
path for the breakup of a
B3I2 cluster into B2I and BI.
Silicon (boron) atoms are
shown as yellow (blue)
spheres. Adapted from [275]

from such cluster is smaller than the number of boron atoms since it forms a deep
acceptor [274]. This autocompensation mechanism is thus limiting the maximum
achievable free carrier concentration due to doping and is technologically unfavor-
able. Reactions between boron atoms and silicon self-interstitials often lead to boron
clustering in the peak region of an implantation profile and require detailed opti-
mization of the annealing process [276].

Solubility Limit

The steady-state impurity solubility can be defined as the maximum concentration of
impurity atoms in a crystal allowing thermodynamic balance between the crystal and
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Table 4.3 Maximum solubility Ns of some impurities in silicon

Impurity Ns (1020 cm−3)

B 4

P 5

As 4

Sb 0.7

Al 0.13

Cu 1.4 × 10−2

Au 1.2 × 10−3

Fe 3 × 10−4

Data for B, P, As, Sb from [278], other data from [281]

Fig. 4.11 Solubility limit
for various impurities in
silicon versus their ionization
energy. Adapted from [279]
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another phase, e.g. a liquid phase, an extended defect or a precipitate. Precipitates
are small inclusions of a second phase in a crystal, exhibiting a high concentration
of ‘gathered’ impurities that cannot be solved in the crystal. Solubility limits for
impurities in silicon have been first determined in [277] with a bulk of subsequent
research [278] due to its practical relevance in device fabrication. The solubility limits
for a few impurities in silicon are listed in Table 4.3. It is related to the ionization
energy of the defect (cmp. Sect. 7.4) as shown in Fig. 4.11.

The temperature dependence of the solubility for a few dopants is depicted in
Fig. 4.12a. The solubility depends also on the present strain [280]. The simple empir-
ical relation xs = 0.1 k (Fig. 4.12b) between the maximum molar solubility xs and
the distribution coefficient k in silicon and germanium has been pointed out in [281].

A typical example for the formation of precipitates is Fe in InP, used for compen-
sation of shallow donors in order to produce semi-insulating material (Sect. 7.7.8).
The solubility of Fe in InP is fairly low, about 1017 cm−3 at growth temperature [282].
In Fig. 4.13 a high-resolution TEM image of a precipitate in InP doped with

http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_7
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(a)

(b)

Fig. 4.12 (a) Steady-state solubility of impurities (P, As, B and Sb as labeled) in silicon. Solid
lines are theoretical model matching various experimental data. Arrow denotes the melting point of
silicon (1410◦). Adapted from [278]. (b) Maximummolar solid solubility xs versus the distribution
coefficient for various impurities in crystalline silicon and germanium. Solid line follows xs = 0.1 k.
Adapted from [281]

Fig. 4.13 High resolution
TEM image of a FeP
precipitate in iron-doped InP.
Adapted from [283]

3 × 1018 cm−3 Fe is shown. The precipitate exhibits a lattice constant of d111 =
0.240nm in [111]-direction, much different from that of InP (d InP

111 = 0.339nm). The
angle between the [101] and [111] direction is 50◦ instead of 35◦ for InP. This is
consistent with orthorhombic FeP [283]. Typically FeP and FeP2 precipitates are
found in highly Fe-doped InP [284].



96 4 Defects

4.3 Dislocations

Dislocations are line defects along which the crystal lattice is shifted by a certain
amount. The vector along the dislocation line is called line vector L. A closed path
around the dislocation core differs from that in an ideal crystal. The difference vector
is called theBurger’s vectorb.Dislocations forwhich theBurger’s vector is a vector of
the lattice are called full dislocations. In contrast, dislocations with Burger’s vectors
that are not translation vectors of the lattice are called partial dislocations. The history
of dislocation theory is described in [285].

Since the energy of a dislocation is proportional to b2, only dislocations with the
shortest Burger’s vector are stable. The plane spanned by L and b is called the glide
plane. In Fig. 4.14 a high-resolution image of the atoms around a dislocation and the
phase and amplitude of the (111) reflection are shown. The phase corresponds to the
atomic columns, the amplitude to the displacement of the atoms at the dislocation
core (see also Fig. 5.34).

4.3.1 Dislocation Types

Edge Dislocations

For an edge dislocation (Fig. 4.15a) b and L are perpendicular to each other. An extra
half-plane spanned by L and b × L is inserted (Fig. 4.16).

Screw Dislocations

For a screw dislocation (Fig. 4.15b) b and L are collinear. The solid has been cut
along a half-plane up to the dislocation line, shifted along L by the amount b and
reattached.

Around the intersection of a screw dislocation with a surface, the epitaxial growth
occurs, typically in the form of a growth spiral that images the lattice planes around
the defect.

60◦ Dislocations

The most important dislocations in the zincblende lattice (Fig. 4.17) have the line
vector along 〈110〉. With the Burger’s vector a/2 〈110〉 three different types of dislo-
cations can be formed: edge, screw and 60◦ dislocations. The vicinity of the core of
the latter is shown in more detail in Fig. 4.17d. We note that the atomistic structure
of 60◦ dislocations is different for L along [110] and [−1 10]; depending on whether
the cations or anions are in the core, they are labeled α or β dislocations.

Misfit Dislocations

When materials with different lattice constants are grown on top of each other, the
strain can plastically relax via the formation of misfit dislocations. A typical network
of such dislocations is shown in Fig. 4.18 for SiGe on Si.

http://dx.doi.org/10.1007/978-3-319-23880-7_5
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Fig. 4.14 (a) High-resolution transmission electron microscopy image (HRTEM) in the 〈110〉
projection of a network of misfit dislocations at a GaAs/CdTe/ZnTe interface. Substrate: GaAs
(001), 2◦ off 〈110〉, ZnTe buffer layer is 2 monolayers thick. (b) Fourier transform with round
mask around the (111) Bragg reflection. (c) Phase and (d) amplitude images for the mask from (b).
From [286]

L

b

Lb

(a) (b)

Fig. 4.15 Model of (a) an edge and (b) a screw dislocation. The line vector L and the Burger’s
vector b are indicated
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Fig. 4.16 (a) Atomic force microscopy image of growth spiral around a screw dislocation on a
silicon surface; image width: 4µm. (b) STM image (width: 75nm) of a screw-type dislocation with
a Burgers vector of [000-1] on the N-face of GaN. The reconstruction is c(6 × 12). The c(6 × 12)
row directions correspond to 〈1̄100〉. Reprinted with permission from [287], © 1998 AVS

L
[110]

=60° =90°=0°

b
L

(a) (b) (c)

(d)

Fig. 4.17 Dislocations in the zincblende structure. The line vector is along [100]. The Burger’s
vector a/2 〈110〉 can create an (a) edge dislocation, a (b) screw dislocation, and (c) a 60◦ dislocation.
(d) Atomistic structure of a 60◦ dislocationeps

Partial Dislocations

Partial dislocations, i.e. the Burger’s vector is not a lattice vector, must necessarily
border a two-dimensional defect, usually a stacking fault (Sect. 4.4.2). A typical
partial dislocation in diamond or zincblende material is the Shockley partial dislo-
cation (or just Shockley partial) with Burger’s vector b = (a0/6) 〈112〉. Another
important partial is the Frank partial with b = (a0/3) 〈111〉. A perfect dislocation
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Fig. 4.18 Plan-view transmission electron microscopy image of a network of 〈110〉 dislocation
lines in InGaAs on InP (001) with a lattice mismatch of about 0.1%. The TEM diffraction vector
is g = [22̄0]. Adapted from [288]

(a)

(b)

Fig. 4.19 (a) Graphical representation of the dislocation reaction of (4.22). (b) TEM image of
the interface of a Ge/Si heterostructure with a

[
2̄11

]
/6 Shockley partial dislocation. The image is

overlayed with empty rod positions (as schematically shown in the lower left part of the figure)
colored according to the stacking position (A: blue, B: red, C: green). The arrows labeled ‘I’ denote
the position of the interface. Based on [289]
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can be dissociated into two partials. This is energetically favorable. As an example
we consider the reaction (Fig. 4.19a)

1

2

[
1̄01

] → 1

6

[
1̄1̄2

] + 1

6

[
2̄11

]
. (4.22)

The length of the full dislocation is a0/
√
2. The length of the Shockley partial is

a0/
√
6. Thus the energy E = G b2 of the full dislocation is E1 = Ga2

0/2 and the
sum of the energies of the partials is smaller, E2 = 2Ga2

0/6 = Ga2
0/3. In Fig. 4.19b

a TEM image of a Ge/Si interface with a Shockley partial is shown.

4.3.2 Visualization of Dislocations by Etching

Defects can be made visible using etching techniques. This is particularly popular
for finding dislocations. Many etches are anisotropic, i.e. the etch velocity varies for
different crystal directions. As an example the result of etching a silicon sphere in
molten KOH and a germanium sphere in a HNO3/HF solution are shown in Fig. 4.20.
The remaining bodies exhibit those planes with low etching velocity. The etch veloc-
ity of various etch solutions has been investigated in detail in particular for silicon
(Fig. 4.21).

In a planar geometry, etch pits indicate the presence of dislocations, as shown in
Fig. 4.22 for Ge of different orientation. The anisotropic etch prepares {111} planes.
The dislocation core is at the intersection of the planes. In Fig. 4.23 hexagonal etch
pits stretched along [11̄0] are developed by molten KOH [292, 293]. The sides of the
base are along [110], 〈130〉 and 〈310〉. The depth and width of the pits increases with
increasing etching time. On the (001̄) surface, the orientation of the pits is rotated
by 90◦ because of the polar [111]-axis of the zincblende structure [292]. Such etch

(a) (b)

Fig. 4.20 (a) Resulting shape of Si sphere (‘Lösungskörper’) after 3h at 100 ◦C in molten KOH.
(b) Resulting shape of Ge sphere after etching in HNO3:HF:CH3COOH, 35:30:35 weight percent.
The octaedric form indicates {111} faces. Markers are 1mm. Adapted from [290]
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(a) (b)

Fig. 4.21 (a) Etch rate of silicon for tetramethyl-ammonium-hydroxide (TMAH) water solution
(25%) at 86 ◦C and 40% KOH at 70 ◦C as a function of crystallographic direction. (b) Detail of the
anisotropy around the (111) direction for TMAH solutions with three different concentrations and
40% KOH, all at 86 ◦C. Adapted from [291]

(a) (b)

Fig. 4.22 Etch pits on germanium with (a) (001) and (b) (111) surface orientation. In both cases
{111} facets are prepared by the etch. As etch in (b) a HNO3/HF/CH3COOH solution with AgNO3
additive has been used. Width of the triangular etch pits is about 100µm. Adapted from [296]

pit develops at a dislocation with Burger’s vector a/2 [011] (inclined to the (001)
surface) [294]. Other types of etch pits indicate dislocations with other Burger’s
vectors [294, 295]. Recipies how to wet chemically etch various semiconductors can
be found in [290, 296–299]. Other etching techniques include dry processes such as
plasma etching or reactive ion etching (RIE) [300–303].

4.3.3 Impurity Hardening

It has been found that the addition of impurities can lead to a substantial reduction
of the dislocation density. This effect is known as impurity hardening and is caused
by a hardening of the lattice due to an increase of the so-called critical resolved
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(a) (b)

Fig. 4.23 Etch pits on GaAs (001) after (a) 3min and (b) 10min etch time in molten KOH at
300 ◦C. Adapted from [292]

Fig. 4.24 Dislocation density (as revealed by etch pits) for GaAs and InP as a function of the carrier
concentration for various concentrations of impurities (S, Te, and Zn). Adapted from [305]

shear stress [304]. In Fig. 4.24 the dependence of the dislocation density in GaAs
and InP is shown as a function of the carrier density that is induced by the incorpo-
ration of (electrically active) group-II or group-VI atoms (acceptors or donors, cf.
Sect. 7.5). The high carrier concentration is unwanted when semi-insulating sub-
strates (cf. Sect. 7.7.8) or low optical absorption (cf. Sect. 9.8.1) are needed. Thus
the incorporation of isovalent impurities, such as In, Ga or Sb in GaAs and Sb, Ga
or As in InP, has been investigated and found to be remarkably effective. Material
containing such impurities in high concentration (>1019 cm−3) must be considered
a low-concentration alloy. The lattice constant is thus slightly changed, which can
cause problems in the subsequent (lattice-mismatched) epitaxy of pure layers.

http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_9
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4.4 Extended Defects

4.4.1 Micro-cracks

If the stress in a material becomes too big to be accommodated by dislocations,
cracks may form to release strain energy.8 In Fig. 4.25 an example is shown. In
this case, micro-cracks have formed in a bulk mercury indium telluride crystal upon
incorporation of residual stress and thermal stress during cooling of the material
from growth temperature (about 1000K) to room temperature. See also Fig. 12.19
for micro-cracks in an epitaxial layer.

4.4.2 Stacking Faults

The ideal stacking of (111) planes in the zincblende structure, ABCABC. . ., can
be disturbed in various ways and creates area defects. If one plane is missing, i.e.
the stacking is ABCACABC, an intrinsic stacking fault is present. If an additional
plane is present, the defect is called an extrinsic stacking fault, i.e. ABCABACABC.
An extended stacking fault in which the order of stacking is reversed is called a
twin lamella, e.g. ABCABCB AC BABCABC. If two regions have inverted stacking
order they are called twins and their joint interface is called a twin boundary, e.g.
. . .ABCABCABCBACBACBA. . . (Fig. 4.28). The various types of stacking faults
are shown in Fig. 4.26. In Fig. 4.27 a cross-sectional image of stacking faults in GaAs
on Si is shown. They block each other and thus partially annihilate with increasing
thickness.

Fig. 4.25 Micro-cracks in a
mercury indium telluride
crystal. Adapted from [306]

8We note that in elasticity theory a continuous deformation is assumed. Obviously the separation
(fracture) into two unstrained blocks is the lowest strain energy state of a stressed piece of material.

http://dx.doi.org/10.1007/978-3-319-23880-7_12
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Fig. 4.26 HRTEMimages of (a) thin-film siliconwith intrinsic (labeled ‘ISF’) and extrinsic (‘ESF’)
stacking faults and twin boundary (‘Twin’). (b) Six monolayer thick hexagonal (wurtzite) CdTe
layer in cubic (zincblende) CdTe. Stacking order (from bottom to top) is: ABCABABABABC. . .

Reprinted with permission from [307]

Fig. 4.27 Cross-sectional TEM image showing stacking faults in heteroepitaxial GaAs on Si.
Adapted from [308]

Fig. 4.28 High resolution TEM image of ZnS nanowire exhibiting periodical twin structures.
Adapted from [309]
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Fig. 4.29 Reduced stacking fault energy (stacking fault energy per bond) γ′ for various compound
semiconductors plotted as a function of the s-parameter. Dashed line is guide to the eye. Data
from [164]

A stacking fault is bounded by two partial dislocations (Sect. 4.3.1) formed by the
dissociation of a perfect dislocation. A full (or perfect) dislocationwith Burger’s vec-
tor a/2[110] in a III–V compound is dissociated into two Shockley partials according
to (4.22) [310]. Since the dislocation energy is proportional to |b|2, the dissociation
is energetically favored (see Sect. 4.3.1).

The stacking-fault energy in pure silicon is γ = 47mJm−2 [311]. A similar value
is found for Ge, γ = 60mJm−2 [312] and undoped GaAs, γ = 45mJm−2 [313]. In
diamond amuch larger value is found, γ = 285mJm−2 [314]. Impurity incorporation
typically reduces the stacking fault energy. The systematics of stacking fault energy
for various III–V and II–VI compounds has been discussed [164, 315, 316]. It can
be correlated with the s-parameter (2.11) as depicted in Fig. 4.29.

4.4.3 Grain Boundaries

The boundaries of crystal grains are called grain boundaries. They are defined by five
parameters, three rotation angles (e.g. Euler angles) to describe how the orientation
of grain II results from grain I and two parameters to define the boundary plane of
the two grains in the coordinate system of reference grain I.

Such defects can have a large impact on the electric properties. They can collect
point defects and impurities, act as barriers for transport (Sect. 8.3.8) or as carrier
sinks due to (nonradiative) recombination. Details of their structure and proper-
ties can be found in [317, 318]. The two crystal grains meet each other with a
relative tilt and/or twist. The situation is shown schematically in Fig. 4.30a for a
small angle between the two crystals. A periodic pattern of dislocations forms at
the interface that is called a small-angle grain boundary (SAGB) (Fig. 4.30b). In

http://dx.doi.org/10.1007/978-3-319-23880-7_2
http://dx.doi.org/10.1007/978-3-319-23880-7_8
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(a) (b) (c)

(d) (e) (f)

Fig. 4.30 Schemes of (a, b, c) pure tilt and (d, e, f) pure twist boundary, dislocation formation in
(c) pure tilt and (f) twist boundaries

Fig. 4.31, experimental results for pure tilt SAGB are shown. The dislocation spac-
ing is inversely proportional to the tilt angle θ. An image of a twist SAGB is shown
in Fig. 4.32.

Special large angle boundaries possess (for a certain angle) a coincident site lattice
(CSL). Some of these grain boundaries have a low energy and are thus commonly
observed. The ratio of lattice points of the CSL and the lattice unit cell is an odd
integer number n; the corresponding grain boundary is then labeled Σn. SAGB
are also termed Σ1. Σ3 grain boundaries are always twin boundaries. An example
with (111) grain boundary is schematically shown in an example in Fig. 4.33a. A
Σ3 (twin) boundary in silicon with {112} grain boundary [319, 320] is depicted
in Fig. 4.34 together with the atomic arrangement of the grain boundary itself. A
Σ5 (001) grain boundary is schematically shown in Fig. 4.33b; the special angle is
θ = arctan 3/4 ≈ 36.87◦.

Real grain boundaries may not be flat, contain impurities or precipitates and even
consist of a thin amorphous layer.

4.4.4 Antiphase and Inversion Domains

Antiphase domains occur when one part of the crystal is shifted with respect to
another by an antiphase vector p. This does not form a twin. If the polar direction
changes between two domains they are called inversion domains.

In the zincblende structure the [110] and [1̄10] directions are not equivalent. In
one case there is a Zn-S lattice and in the other a S-Zn lattice. Both lattices vary
by a 90◦ rotation or an inversion operation (which is not a symmetry operation of
the zincblende crystal). If, e.g., a zincblende crystal is grown on a Si surface with
monoatomic steps (Fig. 4.35, cmp. Fig. 11.6), adjoint regions have a different phase;

http://dx.doi.org/10.1007/978-3-319-23880-7_11
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Fig. 4.31 (a) Scheme of a small-angle (pure tilt) grain boundary. (b) Model of edge dislocations
in a {110} plane in Ge. (c) Relation of dislocation distance d and tilt angle θ for various small-angle
grain boundaries in Ge. Solid line is relation d = 4.0 × 10−8/θ. (d) Optical image of an etched
(CP–4 etch) Ge sample with a small-angle grain boundary. Adapted from [321]. (e) HRTEM image
of a small-angle grain boundary in Si with dislocations highlighted. From [322]

they are called antiphase domains (APD). The antiphase vector is (0, 0, 1) a0/4. At
the boundaries a two-dimensional defect, an antiphase domain boundary, develops.
The APD boundary contains bonds between identical atom species. In Fig. 4.36,
intertwining APD boundaries are shown on the surface of InP layers on Si. The
antiphase domains can be visualized with an anisotropic etch.

In Fig. 4.37a, inversion domains in iron-doped ZnO are shown. Between domains
the direction of the c-axis is reversed. The iron is found preferentially in the inversion
domain boundary (IDB) (Fig. 4.37b) and plays an important role in its formation [326,
327].
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100 nm

Fig. 4.32 Bright-field TEM image of pure twist boundary with network of pure twist dislocations
fabricated by wafer bonding of two Si (001) surfaces with a relative twist. Adapted from [323]

(a) (b)

Fig. 4.33 (a) Schematic of Σ3 (111) twin boundary in a diamond or zincblende structure (cmp.
Fig. 4.28). The grain boundary is marked by a dashed line shown in side-view. The hexagonal and
rectangular grey boxes have the same area. The lattice points of the coincident site lattice (CSL) are
shown with black circles in the lower part of the figure. The unit cell of the CSL has three times the
volume of the unit cell of the fcc lattice. (b) Schematic of a Σ5 (001) grain boundary in a (simple)
cubic crystal shown in plane-view. The blue and the red lattice are rotated by 36.86◦, the lattice
points of the CSL are shown in black. The unit cell of the CSL lattice (dark grey) has five times the
volume of the cubic unit cell (light grey)
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Fig. 4.34 TEM images in two magnifications of a Σ3 {112} boundary in silicon together with a
schematic of the atomic arrangement. Adapted from [320]

Fig. 4.35 Monoatomic step on the Si (001) surface and subsequent formation of an antiphase
boundary in InP (zincblende)

Fig. 4.36 Antiphase domains in InP on Si. HCl etchs InP anisotropically and prepares (111)A
planes. The etch patterns of layers with (without) APDs are cross-hatched (linear). Adapted
from [324]
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(0001)

(2115)

Fe

(a) (b)

Fig. 4.37 Transmission electronmicroscopyof inversiondomains inZnO:Fe. (a) Inversiondomains
in iron-doped ZnO (ZnO:Fe2O3 = 100:1). Arrows denote the orientation of the c-axis in the
respective domains. (b) Top: bright field TEM, bottom Fe distribution from energy-filtered image.
Adapted from [325]

4.5 Disorder

Disorder is a general term for deviations from the ideal structure on a microscopic
scale. Apart from the various structural defects discussed in the previous chapters,
further examples of disorder are

• The presence of various isotopes of an element. This introduces disorder with
regard to the mass of the atoms and impacts mostly phonon properties (see
Fig. 8.24).

• The occupation of lattice sites in alloys (Sect. 3.7) ranging from a random alloy,
clustering to (partially) ordered phases.

• The thermal and zero-point motion of atoms around their equilibrium position.

http://dx.doi.org/10.1007/978-3-319-23880-7_8
http://dx.doi.org/10.1007/978-3-319-23880-7_3


Chapter 5
Mechanical Properties

Abstract Lattice vibrations and phonons are treated with one-dimensional mod-
els and examples for real phonon dispersions for several semiconductors including
phonons in alloys and disordered materials are given. Then the theory of linear elas-
ticity and its application to semiconductors with regard to epitaxial strain, substrate
bending and sheet-scrolling is given. Finally plastic relaxation effects such as critical
thickness and wafer breakage are discussed.

5.1 Introduction

The atoms making up the solid have an average position fromwhich they can deviate
since they are elastically bonded. The typical atomic interaction potential looks like
the one shown in Fig. 2.1. The atoms thus perform a vibrational motion (including
zero point fluctuations) and the solid is elastic. The potential is essentially asymmet-
ric, being steeper for small distances due to quantum-mechanical overlap of orbitals.
However, for small amplitudes around the minimum a harmonic oscillator can be
assumed (harmonic approximation). Beyond the elastic regime, plastic deformation
occurs such as generation of defects, e.g. dislocations. Eventually also the crystal
can break.

5.2 Lattice Vibrations

In the following we will discuss the dispersion relations for lattice vibrations, i.e.
the connection between the frequency ν (or energy hν = �ω) of the wave and its
wavelength λ (or k-vector k = 2π/λ). Acoustic and optical vibrations are introduced
in one-dimensional models. A detailed treatment of the physics of lattice vibrations
is given in [328].

© Springer International Publishing Switzerland 2016
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
DOI 10.1007/978-3-319-23880-7_5
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5.2.1 Monoatomic Linear Chain

The essential physics of lattice vibrations can best be seen from a one-dimensional
model that is called the linear chain. The mechanical vibrations will also be called
phonons, although technically this term is reserved for the quantized lattice vibrations
resulting from the quantum-mechanical treatment.

In the monoatomic linear chain the atoms of mass M are positioned along a line
(x-axis) with a period (lattice constant) a at the positions xn0 = na. This represents
a one-dimensional Bravais lattice. The Brillouin zone of this system is [−π/a,π/a].

The atomswill interact with a harmonic potential, i.e. the energy is proportional to
the displacement un = xn − xn0 to the second power. The total (mechanical) energy
of the system is then:

U = 1

2
C

∑

n

(un − un+1)
2. (5.1)

The model assumes that the mass points are connected via massless, ideal springs
with a spring constant C . If φ(x) is the interaction energy between two atoms, C
is given by C = φ′′(a). Again, the harmonic approximation is only valid for small
displacements, i.e. un � a. The displacement of the atoms can be along the chain
(longitudinal wave) or perpendicular to the chain (transverse wave), see Fig. 5.1. We
note that for these two types of waves the elastic constant C must not be the same.

When the sum in (5.1) has a finite number of terms (n = 0,. . . ,N − 1),
the boundary conditions have to be considered. There are typically two possibili-
ties: The boundary atoms are fixed, i.e. u0 = uN−1 = 0, the boundary conditions are
periodic (Born–von Karman), i.e. ui = uN+i . If N � 1, the boundary conditions
play no significant role anyway, thus those with the greatest ease for subsequent
math are chosen. In solid-state physics typically periodic boundary conditions are

Fig. 5.1 Visualization of
transverse (‘T’) and
longitudinal (‘L’) waves in a
linear monoatomic chain at
different wavevectors
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used. Boundary phenomena, such as at surfaces, are then treated separately (see
Sect. 11.6.1).

The equations of motion derived from (5.1) are

Mün = Fn = − ∂U

∂un
= −C (2un − un−1 − un+1). (5.2)

We solve for solutions that are periodic in time (harmonic waves), i.e. un(x, t) =
un exp(−iωt). Then the time derivative can be executed immediately as ün = −ω2un

and we obtain:
Mω2 un = C (2un − un−1 − un+1). (5.3)

If, also, the solution is periodic in space, i.e. is a (one-dimensional) plane wave,
i.e. un(x, t) = v0 exp(i(kx − ωt)) with x = na, we find from the periodic boundary
condition exp(ik Na) = 1 and thus

k = 2π

a

n

N
, n ∈ N. (5.4)

It is important that, when k is altered by a reciprocal space vector, i.e. k ′ =
k + 2πn/a, the displacements un are unaffected. This property means that there
are only N values for k that generate independent solutions. These can be chosen as
k = −π/a, . . . ,π/a, so that k lies in the Brillouin zone of the lattice. In the Brillouin
zone there is a total number of N k-values, i.e. one for each lattice point. The distance
between adjacent k-values is

2π

Na
= 2π

L
, (5.5)

L being the lateral extension of the system.
The displacements at the lattice points n and n + m are now related to each other

via

un+m = v0 exp(ik(n + m)a)

= v0 exp(ikna) exp(ikma) = exp(ikma) un. (5.6)

Thus, the equation of motion (5.3) reads

Mω2un = C
[
2 − exp(−ika) − exp(ika)

]
un. (5.7)

Using the identity exp(ika) + exp(−ika) = 2 cos(ka), we find the dispersion
relation of the monoatomic linear chain (Fig. 5.2):

ω2(k) = 4C

M

1 − cos(ka)

2
= 4C

M
sin2

(
ka

2

)
. (5.8)

http://dx.doi.org/10.1007/978-3-319-23880-7_11
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Fig. 5.2 Dispersion relation
for a monoatomic linear
chain

The solutions describe plane waves that propagate in the crystal with a phase velocity
c = ω/k and a group velocity vg = dω/dk

vg =
√
4C

M

a

2
cos

( |k|a
2

)
. (5.9)

In the vicinity of the Γ point, i.e. k � π/a the dispersion relation is linear in k

ω(k) = a

√
C

M
|k|. (5.10)

We are used to such linear relations for sound (and also light) waves. The phase
and group velocity are the same and do not depend on k. Thus, such solutions are
called acoustic. The sound velocity of the medium is given by vs = a

√
C/M .

It is characteristic of the nonhomogeneous medium that, when k approaches the
boundary of the Brillouin zone, the behavior of the wave is altered. For k = π/a the
wavelength is just λ = 2π/k = 2a, and thus samples the granularity of the medium.
The maximum phonon frequency ωm is

ωm =
√
4C

M
. (5.11)

The group velocity is zero at the zone boundary, thus a standing wave is present.
Since the force constants of the longitudinal and transversewaves can be different,

the dispersion relations are different. The transverse branch of the dispersion relation
is 2-fold degenerate, unless the two directions that are perpendicular to x are not
equivalent.
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5.2.2 Diatomic Linear Chain

Now we consider the case that the system is made up from two different kinds of
atoms (Fig. 5.3). This will be a model for semiconductors with a diatomic base, such
as zincblende. We note that the diamond structure also needs to be modeled in this
way, although both atoms in the base are the same.

The lattice will be the same and the lattice constant will be a. Alternating atoms
of sort 1 and 2 with a relative distance of a/2 are on the chain. The displacements of
the two atoms are labeled u1

n and u2
n , both belonging to the lattice point n. The atoms

have the masses M1 and M2. The force constants are C1 (for the 1–2 bond within the
base) and C2 (for the 2–1 bond between different bases).

The total energy of the system is then given as

U = 1

2
C1

∑

n

(
u1

n − u2
n

)2 + 1

2
C2

∑

n

(
u2

n − u1
n+1

)2
. (5.12)

The equations of motion are

M1 ü1
n = −C1

(
u1

n − u2
n

) − C2
(
u1

n − u2
n−1

)
(5.13a)

M2 ü2
n = −C1

(
u2

n − u1
n

) − C2
(
u2

n − u1
n+1

)
. (5.13b)

With the plane-wave ansatz u1
n(x, t) = v1 exp (i(kna − ωt)) and u2

n(x, t) =
v2 exp (i(kna − ωt)) and periodic boundary conditions we find

0 = −M1 ω2 v1 + C1 (v1 − v2) + C2 [v1 − v2 exp(−ika)] (5.14a)

0 = −M2 ω2 v2 + C1 (v2 − v1) + C2 [v2 − v1 exp(ika)]. (5.14b)

Fig. 5.3 Visualization of
acoustic and optical waves in
a diatomic linear chain
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These equations for v1 and v2 can only be solved nontrivially if the determinant
vanishes, i.e.

0 =
∣∣∣∣

M1 ω2 − (C1 + C2) C1 + e−ika C2

C1 + eika C2 M2 ω2 − (C1 + C2)

∣∣∣∣ (5.15)

= M1M2 ω4 − (M1 + M2)(C1 + C2)ω2 + 2C1C2 [1 − cos(ka)].

Using the substitutions C+ = (C1 + C2)/2, C× = √
C1C2, the arithmetic and

geometrical averages, and accordingly for M+ and M×, the solution is

ω2(k) = 2C×
γ M×

[
1 ±

√
1 − γ2

1 − cos(ka)

2

]
, (5.16)

with

γ = C× M×
C+M+

≤ 1. (5.17)

The dispersion relation, as shown in Fig. 5.4, now has (for each longitudinal and
transverse mode) two branches. The lower branch (‘−’ sign in (5.16)) is related to
the acoustic mode; neighboring atoms have similar phase (Fig. 5.3). For the acoustic
mode ω = 0 at the Γ point and the frequency increases towards the zone boundary.
The maximum phonon frequency ωm is in the upper branch (‘+’ sign in (5.16)) at
the zone center

ωm =
√

4C×
γ M×

= 2

√
C+ M+

M2×
. (5.18)

The upper branch is called the optical mode (since it can interact strongly with light,
see Sect. 9.9) and neighboring atoms have opposite phase. In the vicinity of the Γ

point the dispersion of optical phonons is parabolic with negative curvature:

Fig. 5.4 Dispersion relation
for a diatomic linear chain
with acoustic (blue) and
optical (green) branch

http://dx.doi.org/10.1007/978-3-319-23880-7_9
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ω(k) ∼= ωm

[
1 − 1

2

(γ a

4

)2
k2

]
. (5.19)

Thus, four different vibrations exist that are labeled TA, LA, TO, and LO. Both
the TA and TO branches are degenerate.

At the zone boundary (X point) a frequency gap exists. The gap center is at

ωX = ωm√
2
, (5.20)

and the total width of the gap is

ΔωX = ωm

√
1 − γ = 2

√
C+ M+ − C× M×

M2×
. (5.21)

The group velocity is zero for optical and acoustic phonons at k = π/a and for
optical phonons at the Γ point.

Usually two cases are treated explicitly: (i) atoms with equal mass (M = M1 =
M2) and different force constants or (ii) atoms with unequal mass and identical force
constants C = C1 = C2. For the case C1 = C2 and M1 = M2, γ = 1 and thus
ΔωX = 0. Then the dispersion relation is the same as for the monoatomic chain,
except that the k space has been folded since the actual lattice constant is now a/2.

M1 = M2

In this case, M+ = M× = M and the dispersion relation is

ω2 = 2C+
M

[
1 ±

√

1 − C2×
C2+

1 − cos(ka)

2

]
. (5.22)

At the zone boundary the frequencies for the acoustic and the optical branch are
ωX,1 = √

2C1/M with v1 = v2 and ωX,2 = √
2C2/M with v1 = −v2, respectively

(assuming C2 > C1). The motion for k = π/a is phase shifted by 180 ◦ for adjacent
bases. Additionally, for the acoustic branch the atoms of the base are in phase, while
for the optical branch the atoms of the base are 180 ◦ out of phase. The vibration
looks as if only one of the springs is strained.

C1 = C2

In this case, C+ = C× = C and the dispersion relation is

ω2 = 2C M+
M2×

[
1 ±

√

1 − M2×
M2+

1 − cos(ka)

2

]
. (5.23)

At the zone boundary the frequencies for the acoustic and the optical branch are
ωX,1 = √

2C/M1 with v2 = 0 and ωX,2 = √
2C/M2 with v1 = 0, respectively
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(assuming M2 < M1). In the vibration for k = π/a thus only one atom species
oscillates, the other does not move. Close to the Γ point the atoms are in phase in the
acoustic branch, i.e. v1 = v2. For the optical branch, the frequency at the Γ point is
given by ω = √

2C/Mr (with the reduced mass M−1
r = M−1

1 + M−1
2 = 2M+/M2×)

and the amplitude ratio is given by themass ratio: v2 = −(M1/M2) v1, i.e. the heavier
atom has the smaller amplitude.

5.2.3 Lattice Vibrations of a Three-Dimensional Crystal

When calculations are executed for a three-dimensional crystal with a monoatomic
base, there are 3N equations of motion. These are transformed to normal coordinates
and represent 3 acoustic branches (1 LA phonon mode and 2 TA phonon modes) of
the dispersion relation. In a crystal with a base with p atoms, there are also 3 acoustic
branches and 3(p − 1) optical branches. For a diatomic base (as in the zincblende
structure) there are 3 optical phonon branches (1 LO phonon mode and 2 TO phonon
modes). The total number of modes is 3p. The dispersion ω(k) now has to be cal-
culated for all directions of k.

In Figs. 5.5 and 5.6, the phonon dispersion in silicon, GaAs and GaP is shown
along particular lines in the Brillouin zone (cf. Fig. 3.34b). The degeneracy of the
LO and TO energies at the Γ point for the covalent group-IV semiconductor is lifted
for the III–V semiconductors due to the ionic character of the bond and the macro-
scopic electric field connectedwith the long-wavelength LOphonon (see Sect. 5.2.9).
Comparing GaAs [329] and GaP [330], the quite different mass of Ga- and P-atoms
(M×/M+ ≈ 0.92) leads to the formation of a clear gap between the acoustic and
optical branches, while for GaAs M×/M+ ≈ 0.9994 is close to 1 and no gap forms.

We note that the degeneracy of the TA phonon is lifted for propagation along the
〈110〉 directions (Σ) because the two transverse directions 〈001〉 and 〈11̄0〉 are not
equivalent.

Fig. 5.5 Phonon dispersion
in Si, experimental data and
theory (solid lines: bond
charge model, dashed lines:
valence force field model).
Adapted from [146]

http://dx.doi.org/10.1007/978-3-319-23880-7_3
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Fig. 5.6 Phonon dispersion
in (a) GaP and (b) GaAs.
Experimental data (symbols)
and theory (solid lines,
14-parameter shell model).
‘L’ and ‘T’ refer to
longitudinal and transverse
modes, respectively. ‘I’ and
‘II’ (along [ζ, ζ, 0]) are
modes whose polarization is
in the (1, 1̄, 0) plane. The
grey area in (a) denotes the
gap between acoustical and
optical states. (a) Adapted
from [331], (b) adapted
from [329]
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In boron nitride the masses of the two constituents are so similar that no gap
exists between acoustical and optical branches (Fig. 5.7). Also the density of states
(averaged over the entire Brillouin zone) is depicted (see next Sect.).

The displacement of atoms is shown in Fig. 5.8 for the different phonon modes
present in zincblende crystals and in Fig. 5.9 for wurtzite crystals. The modes are
labeled with their symmetry (in molecular notation) according to group theory (see
remark in Sect. 6.2.5).

Fig. 5.7 Phonon dispersion in BN (left panel), experimental data (symbols) and theory (solid lines,
first principles pseudopotential model). In the right panel the density of states is depicted. Adapted
from [332]

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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Fig. 5.8 Displacement of atoms for various phonon modes in zincblende crystals. Adapted
from [333]

Fig. 5.9 Displacement of atoms for various phononmodes in wurtzite crystals. Adapted from [334]

The dependence of the phonon frequency on the mass of the atoms (∝ 1/
√

M)

can be demonstrated with the isotope effect, visualized for GaAs in Fig. 5.10. The
dependence of the phonon frequencies on the stiffness of the spring can be seen from
Fig. 5.11; the smaller lattice constant provides the stiffer spring.
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Fig. 5.10 (a) Raman spectra ofGaAswith different isotope content as labeled. (b) Energy of optical
phonons in GaAs with different isotope content [using the Raman spectra shown in (a)]. Reprinted
with permission from [335], © 1999 APS

Fig. 5.11 Optical phonon
frequencies (TO: filled
squares, LO: empty squares)
for a number of III–V
compounds with different
lattice constant a0. 1meV
corresponds to 8.065 wave
numbers (or cm−1). Adapted
from [336]

5.2.4 Density of States

The density of states (DOS) tells how many of the total 3pN modes are in a given
energy interval. The states are spaced equally in k-space but not on the energy scale
(see also Sect. 6.11).

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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(a) (b)

Fig. 5.12 (a) Phonon dispersion for the diatomic linear chain model for γ = 1 (black line) and
γ = 0.9 (blue lines). (b) Corresponding density of states (in units of N /Em)

For the monoatomic linear chain model, the number of states N (E ′) from E = 0
up to E = � ω = E ′(k ′) for the dispersion of the acoustic phonons (5.8) is given as

N (E ′) = k ′ N

π/a
= L

π
k ′. (5.24)

Using (5.8), we find for one polarization (Em = � ωm)

N (E) = 2N

π
arcsin

(
E

Em

)
. (5.25)

The DOS D(E) is given by

D(E) = dN (E)

dE
= 2 N

π Em

1√
1 − (E/Em)2

. (5.26)

Often the density of states is scaled by the (irrelevant) system size and given per
atom (D/N ) or per volume (D/L3), per area (D/L2) or per length (D/L) for three-,
two- or one-dimensional systems, respectively.

In the diatomic linear chain model, additionally the optical phonons contribute to
the density of states. In Fig. 5.12 the phonon density of states is shown for γ = 0.9
and for comparison for γ = 1 (gapless phonon dispersion). For small wavevector,
the density of states is 4N/(π Em).1 Within the gap the density of states vanishes.
At the edges of the band gap the density of states is enhanced. The total number of
states for both dispersions is the same.

1The factor 2 compared to (5.26) stems from the folded Brillouin zone compared to the monoatomic
chain model.
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In a three-dimensional solid, (5.24) is modified to (for three degenerate polariza-
tions)

N (E ′) = 4π

3

3

(2π/L)3
k ′3, (5.27)

taking into account all states within a sphere in k-space of radius k ′. Assuming a
linear dispersion ω = vs k, we obtain

N (E) = V

2π2

E3

�3 v3
s

. (5.28)

Thus the density of states is proportional to E2,

D(E) = 3 V

2π2

E2

�3 v3
s

. (5.29)

This dependence is the base for Debye’s law for the T 3 temperature dependence of
the heat capacity. As realistic example the phonon density of states for BN is depicted
next to the dispersion in Fig. 5.7.

5.2.5 Phonons

Phonons are the quantized quasi-particles of the lattice vibrations (normal modes).
The energy of a phonon can take the discrete values of a harmonic oscillator

E ph =
(

n + 1

2

)
�ω, (5.30)

where n denotes the quantum number of the state, which corresponds to the number
of energy quanta �ω in the vibration. The amplitude of the vibration can be connected
to n via the following discussion. For the classical oscillation u = u0 exp i(kx −ωt)
the space and time average for the kinetic energy yields

Ekin = 1

2
ρ V

(
∂u

∂t

)2

= 1

8
ρ V ω2 u2

0, (5.31)

where ρ is the density and V the volume of the (homogeneous) solid. The energy of
the oscillation is split in half between kinetic and potential energy. From 2Ekin = Eph

we find

u2
0 =

(
n + 1

2

)
4�

ρ V ω
. (5.32)
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The number of phonons with which a vibrational mode is populated is thus directly
related to the classical amplitude square.

Phonons act with a momentum �k, the so-called crystal momentum. When
phonons are created, destroyed or scattered the crystal momentum is conserved,
except for an arbitrary reciprocal-space vector G. Scattering with G = 0 is called a
normal process, otherwise (for G �= 0) it is called an umklapp process.

5.2.6 Localized Vibrational Modes

A defect in the crystal can induce localized vibrational modes (LVM). The defect can
be a mass defect, i.e. one of the masses M is replaced by Md, or the force constants
in the neighborhood are modified to Cd. A detailed treatment can be found in [337].
LVM are discussed, e.g., in [338–340].

First we consider the LVM for the one-dimensional, monoatomic chain. If the
mass at lattice point i = 0 is replaced by Md = M + ΔM (εM = ΔM/M), the
displacements are given by ui = AK |i |, A being an amplitude, with

K = −1 + εM

1 − εM
, (5.33)

and the defect phonon frequency ωd is

ωd = ωm

√
1

1 − ε2M
. (5.34)

A real frequency is obtained for |εM| < 1. ωd is then higher than the highest
frequency of the bulk modes ωm = √

4C/M (5.11). For εM < 0, i.e. the mass of the
defect is smaller than the mass of the host atoms, K is negative and |K | < 1. Thus,
the displacement can be written as

ui ∝ (−|K |)|i | = (−1)|i | exp (+ |i | log |K |) . (5.35)

The numerical value of the exponent is negative, thus the amplitude decreases
exponentially from the defect and indeed makes a localized vibrational mode. For
small mass Md � M (5.34) yields approximately ωd = √

2C/Md. This approx-
imation is the so-called one-oscillator model. Since typically the extension of the
localized mode is only a few lattice constants, the picture of LVM remains correct
for impurity concentrations up to ∼1018 − 1020 cm−3. For higher concentrations the
concept of alloy modes has to be invoked (cf. Sect. 5.2.7).

For the case of group-III or -V substitutional impurities in group-IV semiconduc-
tors the change in force constants (treated below) can be neglected to some extent.
For silicon (M = 28) and germanium (M = 73) the effect of various substitutions
is shown in Fig. 5.13.
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Fig. 5.13 Energy of local
vibrational modes in Si and
Ge. Experimental values at
T = 300K (B in Ge:
T =80K) taken from [337]
and references therein and
from [341] (C in Ge). The
dashed lines are the mass
dependence according to
(5.34) scaled to the
experimental frequency of
the 10B LVM

Now, additionally the force constants left and right of the defect are replaced by
Cd = C +ΔC (εC = ΔC/C). The displacements are still given by ui = AK |i |, now
with

K = − (1 + εM) (1 + εC)

1 − εM − 2εC
. (5.36)

An exponential decrease of the LVM amplitude occurs for negative K that is
ensured for εM + 2εC < 0 (and εM > −1 and εC > −1). The defect frequency is
given by

ωd = ωm

√
(1 + εC) (2 + εC (3 + εM))

2(1 + εM) (2εC + 1 − εM)
. (5.37)

We note that for εC = 0 (5.33) and (5.34) are recovered.
For a given mass defect, the change of frequency with ΔC is (in linear order, i.e.

for εC � 1)

∂ωd(εM, εC)

∂εC
= 1 − 4 εM − ε2M

4 (1 − εM)

√
1 − ε2M

εC. (5.38)

The linear coefficient diverges for εM → −1. For εM between −0.968 and 0
the linear coefficient varies between 2 and 1/4. Therefore, a larger force constant
(εC > 0) increases the LVM frequency of the defect, as expected for a stiffer spring.

In a binary compound the situation is more complicated. We assume here that the
force constants remain the same and only the mass of the substitution atom Md is
different from the host. The host has the atom masses M1 and M2 with M1 < M2.
Substitution of the heavy atom with a lighter one creates a LVM above the optical
branch for Md < M2. Additionally, a level in the gap between the optical and acoustic
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Fig. 5.14 (a) Numerical simulation of a linear chain model for GaP (M1 = 31, M2 = 70). Energy
of local vibrational modes (dashed (solid) line): substitution on P (Ga) site in units of the optical
phonon frequency at Γ (ωm = 45.4meV). The grey areas indicate the acoustic and optical phonon
bands. Solid squares are experimental data (from [337]), scaled to the theoretical curve for the
27AlGa LVM frequency. (b) Differential transmission spectrum of GaP structure (nitrogen-doped
layer on zinc-doped compensated substrate) against pure crystal (T = 77K). Data from [342]

branch is induced. Such LVM is called a gap mode. Substitution of the lighter atom
of the binary compound induces a LVM above the optical branch for Md < M1. A
gap mode is induced for Md > M1. The situation for GaP is depicted in Fig. 5.14.
LVM in GaAs have been reviewed in [338].

The energy position of a local vibrational mode is sensitive to the isotope mass of
the surrounding atoms. In Fig. 5.15, a high-resolution (0.03cm−1) spectrum of the
12CAs LVM inGaAs is shown together with a theoretical simulation. The various the-
oretical peak positions are given as vertical bars, their height indicating the oscillator

Fig. 5.15 Experimental
(Exp., T = 4.2K, resolution
0.03cm−1) and theoretical
(Th., artificial Lorentzian
broadening) infrared spectra
of LVM of 12CAs in GaAs.
The positions and oscillator
strengths of the theoretical
transitions involving
different configurations with
69Ga and 71Ga isotopes are
shown as vertical bars. Data
from [338]

-1

12CAs

GaAs

Exp.

Th.
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strength. Five experimental peaks are obvious that are due to a total of nine different
transitions. The C atom can experience five different surroundings (see Table3.8)
with the four neighbors being 69Ga or 71Ga. The natural isotope mix is an ‘alloy’
69Gax

71Ga1−xAs with x = 0.605. The configurations with Td symmetry contribute
one peak each, the lowest (71Ga surrounding) and highest (69Ga surrounding) energy
transitions. The configurations with C3v and C2v symmetry contribute each with 2
and 3 nondegenerate modes, respectively.

The vibrations of impurity complexes have been discussed in [343].

5.2.7 Phonons in Alloys

In an alloy of the type AB1−xCx the phonon frequencies will depend on the ternary
composition. For the binary endmaterials AB andAC clearly TO and LO frequencies
exist. The simplest behavior of the alloy is the one-mode behavior (Fig. 5.16d) where
the mode frequencies vary continuously (and approximately linearly) with the com-
position. The oscillator strength (LO–TO splitting, (9.74)) remains approximately
constant. In many cases, the two-mode behavior is observed where the LO–TO gap
closes (accompanied by decreasing oscillator strength) and a localized vibrational
mode and a gap mode occur for the binary end materials (Fig. 5.16a). Also, a mixed-
mode behavior (Fig. 5.16b, c) can occur.

The masses of the three constituent atoms will be MA, MB, and MC. Without lim-
iting the generality of our treatment, we assume MB < MC. From the considerations
in Sect. 5.2.6 on LVM and gap modes, the condition
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Fig. 5.16 Schematic behavior of phonon modes in an alloy. (a) Two-mode behavior with gap mode
and localized mode, (b, c) mixed-mode behavior, (b) only localized mode allowed, (c) only gap
mode allowed, (d) one-mode behavior with neither localized mode nor gap mode allowed

http://dx.doi.org/10.1007/978-3-319-23880-7_3
http://dx.doi.org/10.1007/978-3-319-23880-7_9
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Table 5.1 Atomic masses of the constituents of various ternary compounds, reduced mass μAC
(5.40), fulfillment of the relation from (5.40) (‘+’: fulfilled, ‘−’: not fulfilled) and experimental
mode behavior (‘2’: two-mode, ‘1’: one-mode)

Alloy A B C MA MB MC μAC Rel. Modes

GaP1−xAsx Ga P As 69.7 31.0 74.9 36.1 + 2

GaAs1−xSbx Ga As Sb 69.7 74.9 121.8 44.3 − 1

CdS1−xSex Cd S Se 112.4 32.1 79.0 46.4 + 2

CdxZn1−xS S Zn Cd 32.1 65.4 112.4 25.0 − 1

MgxZn1−xO O Mg Zn 16.0 24.3 65.4 12.9 − 1

MB < MA, MC (5.39)

for two-mode behavior can be deduced. This ensures a LVM of atom B in the com-
pound AC and a gap mode of atom C in the compound AB. However, it turns out that
this condition is not sufficient, e.g. Na1−xKxCl fulfills (5.39) but exhibits one-mode
behavior. From a modified REI2 model (for k ∼ 0 modes) it has been deduced that

MB < μAC = MA MC

MA + MC
< MA, MC (5.40)

is a necessary and sufficient condition (unless the force constants between A–B and
A–C are significantly different) for two-mode behavior [344]. A detailed discussion
is given in [345]. Equation (5.40) is a stronger condition than the previous one
(5.39). If (5.40) is not fulfilled the compound exhibits one-mode behavior. As an
example, we show the mass relations for CdS1−xSex and CdxZn1−xS in Table5.1
and the experimental phonon energies in Fig. 5.17. Also in Table5.1 the masses for
GaP1−xAsx (GaAs1−xSbx ) exhibiting two- (one-) mode behavior are shown.

If the binary end components of a ternary alloy have different crystal structure, a
transition between the two occurs which is reflected in the phonon structure (energies
and mode symmetries). As an example, the optical phonon energies of MgxZn1−xO
are depicted in Fig. 5.18 (cmp. Fig. 3.39).

5.2.8 Disorder

An example of ‘small’ disorder are the localized vibrational modes due to a single
defect. Here we consider in our one-dimensional model random fluctuations of the
model parameters. To that avail we set up a numerical implementation of an one-
dimensional chain with masses M1 = M2 and spring constants C1 �= C2, here
C2 = 2C1. Now each spring constant varies randomly by ±ξ percent. The density

2Random element isodisplacement.

http://dx.doi.org/10.1007/978-3-319-23880-7_3
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Fig. 5.17 Phonon energies of CdxZn1−xS and CdS1−xSex as a function of the ternary composition.
Experimental data (solid circles) are from [344], dashed lines are guides to the eye

Fig. 5.18 LO (solid lines)
and TO (dashed lines)
phonon energies of
MgxZn1−xO in the wurtzite
structure (A1 symmetry: blue
lines, E1 symmetry: red
lines) and in the rocksalt
phase (F1u symmetry: black
lines). Experimental data are
shown as symbols. Adapted
from data of [346]

A1

E1

F1u

Mg Zn Ox 1-x700

600

500

400P
ho

no
n 

en
er

gy
 (

cm
)

-1

Mg-concentration  x
0.0 0.2 0.4 0.6 0.8 1.0

of states is displayed for ξ = 10, 20, 40 and 60%. The effects as shown in Fig. 5.19
are broadening of peaks in the DOS, broadening of the band edges, the development
of band tails into the gap and eventually a closing of the gap. This is a typical behavior
that also exists for electronic states (cmp. Fig. 6.46).

5.2.9 Electric Field Created by Optical Phonons

Adjacent atoms oscillate with opposite phase in an optical phonon. If the bond has
(partial) ionic character, this leads to a time-dependent polarization and subsequently
to a macroscopic electric field. This additional field will influence the phonon fre-
quencies obtained from a purely mechanical approach. We consider in the following
the case k ≈ 0. The phonon frequency for TO and LO vibrations is given by

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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Fig. 5.19 Density of states versus energy (in units of maximum phonon energy Em = �ωm) for
diatomic linear chain model (M1 = M2, C2 = 2C1, 29 atoms, average over 27 configurations) for
various levels of random relative variations of the spring constants (solid lines). As dashed lines the
density of states of the perfect chain is depicted (cmp. Fig. 5.12b) with the forbidden energy ranges
shown in light grey

ω0 =
√
2C

Mr
, (5.41)

where Mr is the reduced mass of the two different atoms (cf. Sect. 5.2.2). u is
the relative displacement u1 − u2 of the two atoms in a diatomic base. When the
interaction with the electric field E (which will be calculated self-consistently in
the following) is considered, the Hamiltonian for the long-wavelength limit is given
by [347]:

Ĥ(p, u) = 1

2

(
1

Mr
p2 + b11 u2 + 2b12 u · E + b22 E2

)
. (5.42)

The first term is the kinetic energy (p stands for the momentum of the relative
motion of the atoms 1 and 2 in the base, p = Mru̇), the second the potential energy,
the third the dipole interaction and the fourth the electric-field energy. The equation
of motion for a plane wave u = u0 exp [−i(ωt − k · r)] (ü = −ω2u) yields

Mr ω
2 u = b11 u + b12 E. (5.43)

Thus, the electric field is

E = (ω2 − ω2
TO)

Mr

b12
u. (5.44)

Here, the substitution ω2
TO = b11/Mr was introduced that is consistent with (5.41)

and b11 = 2C . ωTO represents the mechanical oscillation frequency of the atoms
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undisturbed by any electromagnetic effects. Already now the important point is
visible. If ω approaches ωTO, the system plus electric field oscillates with the fre-
quency it has without an electric field. Therefore the electric field must be zero. Since
the polarization P = (ε − 1)ε0E is finite, the dielectric constant ε thus diverges.

The polarization is

P = −∇E Ĥ = − (b12 u + b22 E) . (5.45)

The displacement field is

D = ε0 E + P = ε0 E −
(

b22 − b2
12/Mr

ω2
TO − ω2

)
E = ε0 ε(ω) E. (5.46)

Therefore, the dielectric function is

ε(ω) = ε(∞) + ε(0) − ε(∞)

1 − (ω/ωTO)2
. (5.47)

Here, ε(∞) = 1 − b22/ε0 is the high-frequency dielectric constant and ε(0) =
ε(∞) + b2

12/(b11ε0) the static dielectric constant. The relation (5.47) is shown in
Fig. 5.20.

From the Maxwell equation ∇ · D = 0 for zero free charge we obtain the relation

ε0 ε(ω)∇ · E = 0. (5.48)

Thus, either ε(ω) = 0 or ∇ · E = 0, i.e. u is perpendicular to k. In the latter case
we have a TO phonon and, neglecting retardation effects, using ∇ × E = 0 we find

Fig. 5.20 Dielectric
function according to (5.47)
with ε(0) = 3 and ε(∞) = 2
(without damping). Grey
area denotes the region of
negative ε
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E = 0 and therefore ω = ωTO, justifying our notation. In the case of ε(ω) = 0, we
call the related frequency ωLO and find the so-called Lyddane–Sachs–Teller (LST)
relation

ω2
LO

ω2
TO

= ε(0)

ε(∞)
. (5.49)

This relation holds reasonably well for optically isotropic, heteropolar materials
with two atoms in the basis, such as NaI and also GaAs. Since at high frequencies,
i.e. ω � ωTO, only the individual atoms can be polarized, while for low frequencies
the atoms can also be polarized against each other, ε(0) > ε(∞) and therefore also
ωLO > ωTO. For GaAs, the quotient of the two phonon energies is 1.07. Using the
LST relation (5.49), we can write for the dielectric function

ε(ω) = ε(∞)

(
ω2
LO − ω2

ω2
TO − ω2

)
. (5.50)

The (long-wavelength) TO-phonon does not create a long-range electric field.
Using ∇ · D = 0 and (5.46) and looking at the longitudinal fields, we have

ε0 E = b12 u + b22 E. (5.51)

This can be rewritten as

E = −ωLO

√
Mr

ε0

√
1

ε(∞)
− 1

ε(0)
u ∝ −u. (5.52)

The (long-wavelength) LO-phonon thus creates a long-range electric field acting
against the ion displacement and represents an additional restoring force; this is
consistent with the fact that ωLO > ωTO.

5.3 Elasticity

The elastic properties of the semiconductor are important if the semiconductor is
subjected to external forces (pressure, temperature) or to lattice mismatch during
heteroepitaxy.

5.3.1 Thermal Expansion

The lattice constant depends on temperature. The (linear) thermal expansion coeffi-
cient is defined as

α(T0) = ∂a0(T )

∂T

∣∣∣∣
T =T0

(5.53)



5.3 Elasticity 133

Fig. 5.21 Linear thermal
expansion coefficient of
silicon (solid circles) and
germanium (open circles).
Adapted from [348] based on
experimental data from
various sources. Dashed
lines are guide to the eyes

and is temperature dependent. The temperature dependence of α for silicon and
germanium is shown in Fig. 5.21.α is approximately proportional to the heat capacity
(CV) except at low temperatures. The negative values are due to negative Grüneisen
parameters [348]. These anharmonicity effects are discussed in detail in [328].

5.3.2 Stress–Strain Relation

In this section, we recall the classical theory of elasticity [349]. The solid is treated
as a continuous medium (piecewise homogeneous) and the displacement vector is
thus a continuous function u(r) of the spatial coordinates. When the spatial variation
∇u of u is small, the elastic energy can be written as

U = 1

2

∫
∂ul

∂xk
Cklmn

∂un

∂xm
d3r, (5.54)

where C is the (macroscopic) tensor of the elastic coefficients. 21 components of
this tensor can be independent. For crystals with cubic symmetry the number of
independent constants is reduced to 3. An exchange k ↔ l and m ↔ n does not
matter, only six indices have to be considered (xx , yy, zz, yz, xz, and xy). The strain
components εi j are symmetrized according to

εi j = 1

2

(
∂u j

∂xi
+ ∂ui

∂x j

)
. (5.55)
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(a) (b) (c) (d)

Fig. 5.22 Deformation of a square (a). (b) Pure hydrostatic deformation (εxx = εyy = 0.2,
εxy = 0), (c) pure shear deformation (εxx = εyy = 0, εxy = 0.2), and (d) mixed deformation
(εxx = εyy = 0.1, εxy = 0.1)

The strains εxx are along the main axes of the crystal as visualized in Fig.5.22.
The stresses3 σkl are then given by

σkl = Cklmn εmn. (5.56)

The inverse relation is mediated by the stiffness tensor S.

εkl = Sklmn σmn. (5.57)

Typically, the strain components ei j or ei are used with the convention xx → 1,
yy → 2, zz → 3, yz → 4, xz → 5, and xy → 6 (Voigt notation):

ei j = εi j (2 − δi j ). (5.58)

Then, σm = Cmnen with the Ci j being the elastic constants. The x , y, and z
directions are the main axes of the cubic solid, i.e. the 〈100〉 directions.

For zincblende material, the stress–strain relation reads4

⎛

⎜⎜⎜⎜⎜⎜⎝

σ1

σ2

σ3

σ4

σ5

σ6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

e1
e2
e3
e4
e5
e6

⎞

⎟⎟⎟⎟⎟⎟⎠
. (5.59)

Values of the compliances for several semiconductors are given in Table. 5.2. The
inverse relation is given by the matrix

3The stress is a force per unit area and has the dimensions of a pressure.
4C11 = C1111, C12 = C1122 and C44 = C1212 = C1221 = C2121 = C2112.
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Table 5.2 Elastic constants
(in GPa) of some cubic
semiconductors at room
temperature. IK refers to the
Keating criterion (5.63)

Material C11 C12 C44 IK

C 1076.4 125.2 577.4 1.005

Si 165.8 63.9 79.6 1.004

Ge 128.5 48.3 66.8 1.08

BN 820 190 480 1.11

GaAs 119 53.4 59.6 1.12

InAs 83.3 45.3 39.6 1.22

AlAs 120.5 46.86 59.4 1.03

ZnS 104.6 65.3 46.3 1.33

MgO 297 156 95.3 0.80

⎛

⎜⎜⎜⎜⎜⎜⎝

S11 S12 S12 0 0 0
S12 S11 S12 0 0 0
S12 S12 S11 0 0 0
0 0 0 S44 0 0
0 0 0 0 S44 0
0 0 0 0 0 S44

⎞

⎟⎟⎟⎟⎟⎟⎠
, (5.60)

with the stiffness coefficients in this notation given by

S11 = C11 + C12

(C11 − C12) (C11 + 2C12)
(5.61a)

S12 = C12

−C2
11 − C11C12 + 2C2

12

(5.61b)

S44 = 1

C44
. (5.61c)

We emphasize that in this convention (also called the engineering convention), e.g.
e1 = εxx and e4 = 2 εyz . There is also another convention (the physical convention)
without this factor of two; in this case the matrix in (5.59) contains the elements
2C44. We introduce

C0 = 2C44 + C12 − C11, (5.62)

and note that C0 = 0 for an isotropic material. The relation

IK = 2C44 (C11 + C12)

(C11 − C12) (C11 + 3C12)
= 1 (5.63)

known as the Keating criterion [350, 351], stems from the consideration of bending
and stretching of the tetrahedral bonds in the valence force field (VFF) model. It is
closely fulfilled (Table5.2) for many tetrahedrally bonded semiconductors, in par-
ticular for the covalent ones. For MgO, the Keating criterion is not fulfilled because
it has (six-fold coordinated) rocksalt structure and is thus not tetrahedrally bonded.
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The Young’s modulus Y ,
σnn = Y (n) εnn, (5.64)

generally depends on the normal direction n of a strain. It is equivalent to 1/S11 of
(5.61a).

For isotropic material Y and the Poisson ratio ν are related to the elastic constants
of cubic material by

Y = C11 − 2C2
12

C11 + C12
(5.65a)

ν = C12

C11 + C12
. (5.65b)

For isotropic materials also Lamé’s constants λ and μ are used. They are given by5

C11 = λ + 2μ, C12 = λ and C44 = μ (note that C0 according to (5.62) is zero).
The bulk modulus B (inverse of the compressibility),

1

B
= − 1

V

∂V

∂ p
, (5.66)

for the zincblende crystal is given as

B = C11 + 2C12

3
. (5.67)

We note that Y , ν and Ci j of typical materials are both positive. Materials with
negative Poisson ratio are called auxetic [352–354]. Also materials with negative
compressibility are possible [355].

Beyond the dependence of the elastic constants on the bond length (asmaterialized
in the phonon frequencies in Fig. 5.11), they depend on the ionicity. In Fig. 5.23, the
elastic constants of various zincblende semiconductors are shown as a function of
the ionicity fi. The values for the elastic constants are normalized by e2/a4, a being
the average nearest-neighbor distance.

For wurtzite crystals, five elastic constant are necessary for the stress–strain rela-
tion that reads6

Ci j =

⎛

⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2 (C11 − C12)

⎞

⎟⎟⎟⎟⎟⎟⎠
. (5.68)

5For an isotropic material, Ci jkl = λ δi j δkl + μ (δik δ jl + δil δ jk).
6(C11 − C12)/2 = C1212, C44 = C1313 = C2323.
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(a) (b) (c)

Fig. 5.23 Elastic constants as a function of ionicity for various semiconductors with dia-
mond or zincblende (circles) and wurtzite (squares) structure. Constants are normalized by
the modulus C0 = e2/d4, d being the average nearest-neighbor distance. (a) Bulk modulus,
B∗ = (C11 + 2C12)/(3C0), (b, c) shear moduli, (b) C∗

S = (C11 − C12)/C0, (c) C∗
44 = C44/C0.

Solid lines are a simple model as discussed in [356]. Adapted from [357]

Table 5.3 Elastic constants
(in GPa) of some wurtzite
semiconductors

Material C11 C12 C13 C33 C44 Reference

GaN 391 143 108 399 103 [359]

AlN 410 149 99 389 125 [360]

ZnS 124 60.2 45.5 140 28.6 [361]

ZnO 206 118 118 211 44 [362]

Experimental values for wurtzite materials are given in Table5.3. The relation of the
elastic tensor of wurtzite and zincblende materials, in particular viewed along the
〈111〉-direction has been discussed in [357, 358].

The bulk modulus of the wurtzite crystal is given by

B = (C11 + C12) C33 − 2C2
13

C11 + C12 + 2C33 − 4C13
. (5.69)

5.3.3 Biaxial Strain

In heteroepitaxy (cf. Sect. 12.2.6), a biaxial strain situation arises, i.e. layeredmaterial
is compressed (or expanded in the case of tensile strain) in the interface plane and
is expanded (compressed) in the perpendicular direction. Here, we assume that the
substrate is infinitely thick, i.e. that the interface remains planar. Substrate bending
is discussed in Sect. 5.3.5.

The simplest case is epitaxyon the (001) surface, i.e. e1 = e2 = ε‖. The component
e3 is found from the condition σ3 = 0 (no forces in the z direction). All shear strains
are zero. For zincblende material it follows

http://dx.doi.org/10.1007/978-3-319-23880-7_12
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(b)(a)

Fig. 5.24 Ratio −ε⊥/ε‖ for GaAs under symmetric biaxial strain. The angle θ denotes the surface
normal in the 〈110〉-azimuth (θ = 0: [001], θ = 90◦: [110], the maximum of ε⊥/ε‖ is for [111]).
(b) Is a three-dimensional visualization

ε100⊥ = e3 = −C12

C11
(e1 + e2) = −2C12

C11
ε‖. (5.70)

In Fig. 5.24 the ratio ε⊥/ε‖ is depicted for GaAs and various crystal orientations;
the formulas for other orientations are more involved [363]:

ε110⊥ = −2C12 − C0/2

C11 + C0/2
ε‖ (5.71)

ε111⊥ = −2C12 − 2C0/3

C11 + 2C0/3
ε‖. (5.72)

For wurtzite crystals and pseudomorphic growth along [00.1] the strain along the
epitaxial direction (c-axis) is given by

ε⊥ = −C13

C33
(e1 + e2) = −2C13

C33
εa, (5.73)

where ε⊥ = εc = (c − c0)/c0 and εa = (a − a0)/a0. For symmetric biaxial in-plane
strain, the ratio ε⊥/ε‖ is shown in Fig. 5.25 for GaN and varying angle θ of the c-
axis against the epitaxy direction. For the growth of wurtzite on wurtzite for θ �= 0,
the epitaxial strain is actually asymmetric in the interface plane. For θ = 90◦, e.g.
the epitaxy on m-plane substrate (cmp. Fig. 3.33) (c-axis lies in-plane), the in-plane
strains are e1 = εa and e2 = εc. For θ = 90◦, we find

ε⊥ = −C12 εa + C13 εc

C11
. (5.74)

http://dx.doi.org/10.1007/978-3-319-23880-7_3
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(a) (b)

Fig. 5.25 Ratio −ε⊥/ε‖ for GaN under symmetric biaxial strain. In (a) θ denotes the angle of
the c-axis with respect to the surface normal, (b) is a three-dimensional visualization, showing the
in-plane isotropy

Fig. 5.26 Strains εc (dashed
lines) and ε⊥ (solid lines) for
Al0.17Ga0.83N/GaN (blue)
and Mg0.3Ga0.7O/ZnO (red)
as a function of the interface
tilt angle θ with respect to
[00.1]

The situation for pseudomorphic growth in the (Al,Ga,In)N system has been dis-
cussed for various interface orientations in [364] (cmp. also Fig.15.14). The strains ε⊥
along the epitaxy direction and εc along the c-direction are depicted for Al0.17Ga0.83
N/GaN and Mg0.3Ga0.7O/ZnO in Fig. 5.26. The different behavior of the nitride and
the oxide system, e.g. regarding the sign change of εc, is due to the fact that εa is
negative (positive) for AlxGa1−xN/GaN (MgxGa1−xO/ZnO) (εc < 0 for both cases)
[365].

5.3.4 Three-Dimensional Strain

The strain distribution in two-dimensional or three-dimensional objects such as quan-
tum wires and dots (see also Sect. 14) is more complicated.

http://dx.doi.org/10.1007/978-3-319-23880-7_15
http://dx.doi.org/10.1007/978-3-319-23880-7_14
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A simple analytical solution for the problemof a strained inclusion is only possible
for isotropic material parameters [366].

The solution for a sphere can be extended to yield the strain distribution of an
inclusion of arbitrary shape. This scheme applies only for isotropic materials and
identical elastic properties of the inclusion and the surrounding matrix. The solution
will be given in terms of a surface integral of the boundary of the inclusion, which is
fairly easy to handle. Several disconnected inclusions can be treated by a sequence
of surface integrals.

The strain distribution for the inner and outer parts of a sphere with radius ρ0 is
given (in spherical coordinates) by

εinρρ = 2

3
ε0

1 − 2ν

1 − ν
= εinθθ = εinφφ (5.75)

εoutρρ = 2

3
ε0

1 + ν

1 − ν

(
ρ0

ρ

)3

= −2εoutθθ = −2εoutφφ , (5.76)

where ρ denotes the radius, ν the Poisson ratio, and ε0 the relative lattice mismatch
of the inclusion and the matrix. The radial displacements are

uin
ρ = 2

3
ε0

1 − 2ν

1 − ν
ρ (5.77)

uout
ρ = 2

3
ε0

1 − 2ν

1 − ν
ρ30

1

ρ2
. (5.78)

Dividing the displacement by the sphere’s volume, we obtain the displacement
per unit volume of the inclusion. From the displacement we can derive the stress σ0

i j
per unit volume.

σ0
i i = 1

4π

Y ε0

1 − ν

2x2
i − x j − xk

ρ5
(5.79)

σ0
i j = 3

2

1

4π

Y ε0

1 − ν

xi x j

ρ5
, (5.80)

where i , j and k are pairwise unequal indices. Due to the linear superposition of
stresses, the stress distribution σV

i j for the arbitrary inclusion of volume V can be
obtained by integrating over V

σV
i j =

∫

V
σ0

i j (r − r0) d
3r. (5.81)

The strains can be calculated from the stresses.
When ε0 is constant within V , the volume integral can be readily transformed

into an integral over the surface ∂V of V using Gauss’ theorem. With the ‘vector
potentials’ Ai j we fulfill divAi j = σi j .
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Fig. 5.27 Strain
components in an InAs
pyramid (quantum dot with
{101} faces), embedded in
GaAs. The cross section is
through the center of the
pyramid. The lattice
mismatch between InAs and
GaAs amounts to ≈ −7%.
Reprinted with permission
from [367], © 1995 APS

Ai i = − 1

4π

Y ε0

1 − ν

xi ei

ρ3
(5.82)

Ai j = −1

2

1

4π

Y ε0

1 − ν

xi e j + x j ei

ρ3
. (5.83)

Equation (5.83) is valid for the case i �= j . ei is the unit vector in the i th direction.
However, special care must be taken at the singularity r = r0 if r0 lies within V
because the stress within the ‘δ-inclusion’ is not singular (in contrast to the electro-
static analog of a δ-charge). Thus, we find

σV
i j (r0) =

∮

∂V
Ai j dS + δi j

Y ε0

1 − ν

∫

V
δ(r − r0) d

3r. (5.84)

As an example, we show in Fig. 5.27 the numerically calculated strain compo-
nents [367] (taking into account the different elastic properties of the dot and matrix
materials) in the cross section of a pyramidal InAs quantum dot in a GaAs matrix on
top of a two-dimensional InAs layer. The strain component εzz is positive in the 2D
layer, as expected from (5.70). However, in the pyramid εzz exhibits a complicated
dependence and even takes negative values at the apex.

5.3.5 Substrate Bending

If a lattice-mismatched layer is pseudomorphically grown on top of a substrate it
suffers biaxial strain. For finite substrate thickness part of the strain will relax via
substrate bending. If the substrate is circular, a spherical cap is formed. If the lattice
constant of the film is larger (smaller) than that of the substrate, the film is under
compressive (tensile) strain and the curvature is convex (concave) with respect to
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tensilecompressive
ai

au

R

d
(a)

(b)

Fig. 5.28 (a) Schematic bending of a film/substrate system for compressive (left) and tensile (right)
film strain. (b) Schematic deformation of curved film of thickness d. The lattice constants at the
inner and outer surface are ai and au, respectively

the outward normal given by the growth direction (Fig. 5.28a). Substrate bending
can also be induced by a mismatch of the thermal expansion coefficients αf

th and
αs
th of the film and substrate, respectively. If a film/substrate system is flat at a given

temperature, e.g. growth temperature, a decrease of temperature, e.g. during cooling,
will lead to compressive (tensile) strain if αf

th is smaller (larger) than αs
th.

In a curved structure, the lattice constant in the tangential direction increases from
at
i at the inner surface (r = R = κ−1) to at

u at the outer surface (r = R + d). Thus,
the tangential lattice constant varies with the radial position

at(r) = at
i (1 + r κ) , (5.85)

where d is the layer thickness (Fig. 5.28b). Therefore au = ai(1 + d/R). We note
that (5.85) holds in all layers of a heterostructure, i.e. the film and the substrate.

The lattice constant in the radial direction ar, however, depends on the lattice
constant a0 of the local material and is calculated from the biaxial strain condition,
such as (5.70). The in-plane strain is ε‖ = (at − a0)/a0 (we assume a spherical
cap with ε‖ = εθθ = εφφ). For an isotropic material we find ar = a0 (1 + ε⊥) with
ε⊥ = −2νε‖/(1 − ν). The local strain energy density U is given by

U = Y

1 − ν
ε2‖. (5.86)

The total strain energy per unit area U ′ of a system of two layers with lattice
constants a1, a2, Young’s moduli Y1, Y2 and thickness d1, d2 (we assume the same
Poisson constant ν in both layers) is

U ′ =
∫ d1

0
U1 dr +

∫ d2

d1

U2 dr. (5.87)

The total strain energy needs to be minimized with respect to ai and R in order to
find the equilibrium curvature κ. We find
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Fig. 5.29 Curvature of the
middle of a Si wafer during
GaN growth on an AlN
interlayer grown at low
temperatures on GaN and
subsequent cooling. During
growth the decrease in
curvature indicates convex
bowing due to compressive
stress; during cooling the
wafer flattens and becomes
concave due to thermally
induced tensile stress.
Adapted from [372]
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κ = 6a1a2 (a2 − a1) d1d2 (d1 + d2) Y1Y2

a3
2 d4

1 Y 2
1 + α Y1Y2 + a3

1 d4
2 Y 4

2

(5.88)

α = a1a2 d1d2
[−a2d1(2d1 + 3d2) + a1(6d2

1 + 9d1d2 + 4d2
2 )

]
.

For a2 = a1 (1 + ε) we develop κ to first order of ε and find (χ = Y2/Y1) [368,
369]

κ = 6χ d1 d2 (d1 + d2)

d4
1 + 4χ d3

1 d2 + 6χ d2
1 d2

2 + 4χ d1 d3
2 + χ2 d4

2

ε. (5.89)

In the case of a substrate (ds) with a thin epitaxial layer (df � ds), the radius of
curvature is approximately (Stoney’s formula [370])

κ = 6 ε
df
d2
s

Yf

Ys
. (5.90)

Conversely, if the radius of curvature is measured [371], e.g. optically, the film
curvature (and through models also the film strain) can be determined during epitaxy
as depicted in Fig. 5.29.

5.3.6 Scrolling

In some cases cylindrically scrolled structures are important, e.g. for thin-filmflexible
electronics, nanotubes, nanoscrolls or nanohelixes. The scrolling of thin layers must
be avoided by suitable strain management for thin layers that are lifted off from
their substrate for transfer to another flat substrate. If the film remains attached to
its substrate, a scroll can be fabricated as schematically shown in Fig. 5.30. Such
structures were first reported in [373], a review can be found in [374]. The shape of
such scroll is investigated in [375] without a priori assumptions on its shape.



144 5 Mechanical Properties

(a) (b) (c)

Fig. 5.30 Schematic representation of nanoscroll formation. (a) Strained heterostructure
(blue/green) that is planar due to large substrate thickness, (b) starting removal of sacrificial layer
(black), (c) release of thin film into nanoscroll geometry

If bending strain occurs only in one of the tangential directions, the energy density
is given by

U = Y

2 (1 − ν2)
(ε2t + ε2y + 2ν εt εy), (5.91)

where εy is the strain in the unbent direction (cylinder axis) as shown in Fig. 5.31a.
For a strained heterostructure made up from two layers the curvature is given by
(calculated analogous to (5.89), χ = Y2/Y1 [369])

κ = 6(1 + ν)χ d1 d2 (d1 + d2)

d4
1 + 4χ d3

1 d2 + 6χ d2
1 d2

2 + 4χ d1 d3
2 + χ2 d4

2

ε, (5.92)

which differs from (5.89) only by the factor 1 + ν in the nominator.
For cubic material and a (001) surface the energy is given as

U100 = C11 − C12

2C11

[
C11 (ε2t + ε2y + C12 (εt + εy)

2)
]

(5.93)

y
t

r

(a) (b) (a)

(c)(b)

Fig. 5.31 (a) Schematic representation of a cylindrically rolled sheetwith radial direction r , tangen-
tial direction t and direction along the cylinder axis y. (b) SEM images of multiwall InGaAs/GaAs
nanoscroll rolled up over about 50µm. Part (b) from [376]
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[010]
=14°

[100]

(b)(a)

Fig. 5.32 (a) Strain energy (in units of the strain energy of the flat pseudomorphic layers) of a
scroll of a 4-layer SiGe structure (Si0.3Ge0.7, Si0.6Ge0.4 and Si0.8Ge0.2, each 3nm thick and a 1-nm
Si cap) as a function of radius for winding directions along 〈100〉 and 〈110〉. Top (bottom) curves
without (with complete) strain relaxation along the cylinder axis.Vertical lines indicate the positions
of the respective energy minima [369]. (b) SEM image of curled InGaAs/GaAs nanoscroll rolled
φ = 14◦ off 〈100〉. The stripe from which the film was rolled off is indicated by white dashed lines.
Part (b) from [379]

for a scrolling direction along 〈100〉. When the (001)-oriented film winds up along a
direction 〈hk0〉 having an angle φ with the [100] direction (φ = 45◦ for 〈110〉), the
strain energy is given by (C0 is given by (5.62))

Uφ = U100 + C0

(
εt − εy

2

)2

sin2(2φ). (5.94)

The strain energy versus bending radius (= κ−1) is shown for a SiGe nanoscroll in
Fig. 5.32. First, the relaxation along the cylinder axis plays a minor role. The smallest
strain energy is reached for scrolling along 〈100〉, also yielding the smaller bending
radius (larger curvature). Therefore, the film preferentially scrolls along 〈100〉. This
explains the observed ‘curl’ behavior of scrolls winding up for φ �= 0 [373, 377]
(Fig. 5.32b). The effect of surface strain needs to be included to yield improved
quantitative agreement with experimental values of κ(ε, d) [378].

5.4 Plasticity

5.4.1 Critical Thickness

Strained epitaxial films are called pseudomorphic when they do not contain defects
and the strain relaxes elastically, e.g. by tetragonal distortion. When the layer thick-
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g
002

(a) (b)

Fig. 5.33 (a) Series of cross-sectional TEM images of 100-nm thick GexSi1−x layers on Si(001)
with different ternary compositions x = 0.1, 0.2, 0.5, and 1.0. The growth temperature was 550◦C.
The transition from commensurate to incommensurate growth is obvious. Adapted from [380]. (b)
Plan view 〈022〉 TEM bright field image of a 250-nm Ge0.15Si0.85 layer on Si (001), annealed
at about 700◦C. The arrow denotes the position of a dislocation loop. Reprinted with permission
from [381], © 1989 AVS

ness increases, however, strain energy is accumulated that will lead at some point
to plastic relaxation via the formation of defects. In many cases, a grid of misfit
dislocations forms at the interface (Figs. 4.18 and 5.33).

In Fig. 5.34 the strain around misfit dislocations at a GaAs/CdTe heterointerface,
as calculated from a TEM image (Fig. 4.14), is shown.

Fig. 5.34 Components
(

εxx εxz
εzx εzz

)
of the strain tensor (with respect to the GaAs lattice constant) of

the dislocation array shown in Fig. 4.14, red/blue: positive/negative value, white: zero. From [286]

http://dx.doi.org/10.1007/978-3-319-23880-7_4
http://dx.doi.org/10.1007/978-3-319-23880-7_4
http://dx.doi.org/10.1007/978-3-319-23880-7_4
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h1

h2

h3

ab

b

c

c

a

(a) (b)

Fig. 5.35 Schematic formation of misfit dislocations by (a) elongation of a grown-in threading
dislocation and (b) by the nucleation and growth of dislocation half-loops. (a) depicts a threading
dislocation. Initially, for thickness h1 the interface is coherent ‘a’, for larger thickness h2 the interface
is critical and the force of the interface on the dislocation is equal to the tension in the dislocation
line, ‘b’. For larger thickness, e.g. h3, the dislocation line is elongated in the plane of the interface,
‘c’. In (b) ‘a’ denotes a subcritical dislocation half-loop, ‘b’ depicts a half-loop being stable under
the misfit stress and for ‘c’ the loop has grown under the misfit stress into a misfit dislocation line
along the interface

The average distance p of the dislocations is related to themisfit f = (a1−a2)/a2

and the edge component b⊥of the Burger’s vector (for a 60◦ dislocation b⊥ = a0/
√
8)

p = b⊥
f

. (5.95)

Two mechanisms have been proposed for the formation of misfit dislocations
(Fig. 5.35), the elongation of a grown-in threading dislocation [382] and the nucle-
ation and growth of dislocation half-loops [383]. For the modeling of such systems a
mechanical approach based on the forces on dislocations [382] or an energy consider-
ation based on the minimum strain energy necessary for defect formation [383–386]
can be followed. Both approaches have been shown to be equivalent [387] (if a peri-
odic array of dislocations is considered). In [388] it was pointed out that the finite
speed of plastic flow also has to be considered to explain experimental data. Tempera-
ture affects the observed critical thickness and a kineticmodel is needed.Anotherway
of introducing dislocations is the plastic relaxation at the edge of coherent strained
islands (cmp. Fig. 14.26).

In the following, isotropic materials and identical elastic constants of substrate
and thin film are assumed, following [387]. The interface plane is the (x ,y)-plane,
the growth direction is z. The energy Ed of a periodic dislocation array with period
p and Burgers vector b = (b1, b2, b3) is

Ed = Y

8π (1 − ν2)
β2

β2 = [
b2
1 + (1 − ν) b2

2 + b2
3

]
ln

(
p

[
1 − exp(−4πh/p)

]

2π q

)

http://dx.doi.org/10.1007/978-3-319-23880-7_14
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+ (
b2
1 − b2

3

) 4πh

p

exp(−4πh/p)

1 − exp(−4πh/p)

− 1

2

(
b2
1 + b2

3

) (
4πh

p

)2 exp(−4πh/p)
[
1 − exp(−4πh/p)

]2

+ b2
3
2πh

p

exp(−2πh/p)

1 − exp(−2πh/p)
, (5.96)

where h is the film thickness and q denotes the cutoff length for the dislocation core,
taken as q = b. The misfit strain including the relaxation due to dislocations with
Burger’s vectors b and b̂ in the two orthogonal interface 〈110〉 directions n and n̂. We
chose the coordinate system such that n = (1, 0, 0) and n̂ = (0, 1, 0) (the z direction

remains). With respect to these axes the Burger’s vectors are
(
± 1

2 ,
1
2 ,

1√
2

)
a0/

√
2.

The misfit strain εmi j is reduced due to the dislocation formation to the ‘relaxed’ misfit
strain εri j with

εri j = εmi j + bi n j + b j ni

2p
+ b̂i n̂ j + b̂ j n̂i

2p
, (5.97)

with an associated stress σi j . The strain energy Es of the layer due to the relaxed
misfit is then

Es = 1

2
h σi j εri j (5.98)

lim
p→∞ Es = 2h

Y (1 + ν)

1 − ν
f 2. (5.99)

The total strain energy E is given by

pE = 2Ed + 2Ec + p Es (5.100)

E∞ = lim
p→∞ E, (5.101)

with the core energy Ec of the dislocation that needs to be calculatedwith an atomistic
model (not considered further here). This energy is shown in Fig. 5.36a for the mater-
ial parameters of Ge0.1Si0.9/Si(001) (misfit−0.4%) for various layer thicknesses as a
function of 1/p. This plot looks similar to that for a first-order phase transition (with
1/p as the order parameter). For a certain critical thickness hc1 the energy of the
layer without any dislocation and the layer with a particular dislocation density p1

are identical (E − E∞ = 0) and additionally ∂E/∂ p|p=p1 = 0. However, between
p → ∞ and p = p0 there is an energy barrier. The critical thickness hc2 is reached
when

∂E/∂ p |p→∞ = 0, (5.102)
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(a) (b)

Fig. 5.36 (a) Theoretical calculation for the strain energy versus inverse dislocation density for
various thicknesses of Ge0.1Si0.9 layers on Si (001). The ordinate is b/2p, b/2 being the edge
component of the Burgers vector and p being the dislocation spacing. The abscissa is the strain
energy E scaled with E∞ (5.101). (b) Critical thickness for GexSi1−x layers on Si (001). The solid
line is theory (hc2) according to (5.103). Data points are from [389] (squares, growth temperature
of 750 ◦C) and from [380] (triangles for growth temperature of 550 ◦C)

i.e. the energy decreases monotonically for increasing dislocation density up to
the global energy minimum at a certain equilibrium dislocation spacing p2. Equa-
tion (5.102) leads to the following implicit equation for the determination of hc2:

hc2 = b
[−16 + 3b2 + 8 (−4 + ν) ln (2hc2/q)

]

128 f π (1 + ν)
, (5.103)

with the length of the Burgers vector b = a0/
√
2.

The theoretical dependence of hc2 for GexSi1−x /Si(001)with varying composition
is shown in Fig. 5.36b together with experimental data. The critical thickness for a
fairly high growth temperature is much closer to the energetic equilibrium than that
deposited at lower temperature. This shows that there are kinetic limitations for the
system to reach the mechanical equilibrium state. Also, the experimental determi-
nation of the critical thickness is affected by finite resolution for large dislocation
spacing, leading generally to an overestimate of hc.

In zincblende materials two types of dislocations are possible, α and β, with
Ga- and As-based cores, respectively. They have [1̄10] and [110] line directions for
a compressively strained interface. The α dislocation has the larger glide velocity.
Therefore, strain relaxation can be anisotropic with regard to the 〈110〉 directions for
zincblende material, e.g. InGaAs/GaAs [390, 391].
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5.4.2 Cleaving

The cleavage planes of the diamond structure are {111} planes (Fig. 5.37a). It is
easiest to break the bonds connecting the double layers in the 〈111〉 directions.

The cleavage planes of the zincblende structure are {110} planes (Fig. 5.37b).
Due to the ionic character, breaking the bonds connecting the double layers in
the 〈111〉 directions would leave charged surfaces, which is energetically unfavor-
able. The {100} planes contain only one sort of atom and would also leave highly
charged surfaces. The {110} planes contain equal amounts of A and B atoms and
are neutral. Ideally, the cleaving plane is atomically flat (Fig. 5.38a) or exhibits large
mono-atomically flat terraces. However, certain dopants in high concentrations, e.g.
GaAs:Te, can induce a rough surface due to lattice distortion [392].

The natural cleavage planes of wurtzite (GaN) are {11̄.0} (m-type) planes [393].

(a) (b)

Fig. 5.37 Cleaving planes of the (a) diamond and (b) zincblende lattice

10 nm

(a) (b)

Fig. 5.38 Scanning tunneling microscopy images of a cleaved GaAs (110) surface with (a) good
cleave and (b) bad cleave with defects dominating. Adapted from [394]
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5.4.3 Wafer Breakage

The thickness and thus strength of wafers for semiconductor production (cmp.
Sect. 12.2.2) is an important issue. The wafer should be as thin as possible for saving
expensive materials but thick enough to avoid loss due to stress during handling, in
particular during the later steps in a process since the value of a wafer increases with
number of process steps it has undergone.

Reasons for wafer breakage is the mechanical handling (pick, place, trans-
port) [395], stress loads due to processing (dielectrics, metals, asymmetric structures)
and stress during processing for example due to thermal loads in annealing or depo-
sition steps and cutting/dicing. The problem is less important in microelectronics
but especially severe in photovoltaics (PV) industry, handling large total areas; on
the other hand the profit loss per broken wafer is much higher in microelectronics
industry. An additional problem poses the grain structure of multicrystalline silicon
wafers used for PV [396] and the effect of surface cracks and irregularities at wafer
edges and corners. Just going from awafer thickness of 270 to 250µm canmore than
double the breakage rate at certain process steps [397]. The minimum strength of a
wafer with surface cracks is about 100MPa, while the strength of wafers with cracks
at the edge can reach rather low values around 20MPa. Also the careful shaping of
the wafer edge is important to avoid breakage [398].

http://dx.doi.org/10.1007/978-3-319-23880-7_12


Chapter 6
Band Structure

Silicon is a metal.
A.H. Wilson, 1931 [67]

Abstract A treatment of electron states in one-dimensional potentials introduces
into the concepts of band gap and effective mass. The band structures of various
semiconductors are reviewed. The systematics of band gaps, symmetry considera-
tions, band gaps in alloys, amorphous semiconductors and the effect of strain and
temperature are discussed. Electron and hole dispersions are treated and the density
of states in various dimensions is derived.

6.1 Introduction

Valence electrons that move in the crystals feel a periodic potential

U (r) = U (r + R) (6.1)

for all vectorsR of the direct lattice. The potential1 is due to the effect of the ion cores
and all other electrons. Thus a serious many-body problem is present. In principle,
the band structure can be calculated from the periodic arrangements of the atoms
and their atomic order number. We note that for some problems, e.g. the design
of optimal solar cells, a certain band structure is known to be ideal and a periodic
atomic arrangement, i.e. a material, needs to be found that generates the optimal
band structure. This problem is called the inverse band structure problem.

1In this book the form of the potential will never be explicitly given.

© Springer International Publishing Switzerland 2016
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154 6 Band Structure

6.2 Electrons in a Periodic Potential

6.2.1 Bloch’s Theorem

First, we will deduce some general conclusions about the structure of the solution as
a consequence of the periodicity of the potential. We first investigate the solution of
a Schrödinger equation of the type

H Ψ (r) =
[
− �

2

2m
∇2 + U (r)

]
Ψ (r) = E Ψ (r) (6.2)

for an electron. U will be periodic with the lattice, i.e. it will obey (6.1).
Bloch’s theorem says that the eigenstates Ψ of a one-particle Hamiltonian as in

(6.2) can be written as the product of plane waves and a lattice-periodic function, i.e.

Ψnk(r) = A exp(i k r) unk(r). (6.3)

The normalization constant A is often omitted. If unk(r) is normalized, A =
1/

√
V , where V is the integration volume. The wavefunction is indexed with a

quantum number n and the wavevector k. The key is that the function unk(r), the
so-called Bloch function, is periodic with the lattice, i.e.

unk(r) = unk (r + R) (6.4)

for all vectors R of the direct lattice. The proof is simple in one dimension and more
involved in three dimensions with possibly degenerate wavefunctions, see [399].

If Enk is an energy eigenvalue, then Enk+G is also an eigenvalue for all vectors G
of the reciprocal lattice, i.e.

En(k) = En (k + G). (6.5)

Thus the energy values are periodic in reciprocal space. The proof is simple,
since the wavefunction (for k + G) exp (i(k + G)r) un(k+G)(r) is for un(k+G)(r) =
exp (−iGr) unk(r) obviously an eigenfunction to k.

A band structure along one k-direction can be displayed in various zone schemes
as depicted in Fig. 6.1. Themost frequently used scheme is the reduced zone scheme.
In three dimensions, the band structure is typically shown along particular paths in
the Brillouin zone, as depicted, e.g., in Fig. 6.2c.
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(a) (b) (c)

Fig. 6.1 Zone schemes for a band structure: (a) extended, (b) reduced and (c) repetitive zone
scheme
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0
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X W L K X

(a) (b) (c)

Fig. 6.2 Dispersion of free electrons (empty lattice calculation, U = 0, shown in the first Brillouin
zone) in (a) a one-dimensional lattice (G = n 2π/a), (b) a simple cubic lattice (G = (h, k, l) 2π/a)
and (c) in a fcc lattice. The energy is measured in units of the energy at the X-point, EX =
(�2/2m)(2π/a)2. The shaded circle in (c) represents the region where the band gap develops for
finite periodic potential U �= 0

6.2.2 Free-Electron Dispersion

If the entire wavefunction (from (6.3)) obeys the Schrödinger equation (6.2), the
Bloch function unk fulfills the equation

[
1

2m
(p + � k)2 + U (r)

]
unk(r) = Enk unk(r), (6.6)

which is easy to see from p = −i�∇.
First, we discuss the simplest case of a periodic potential,U ≡ 0. This calculation

is also called the empty lattice calculation. The solution of (6.6) is then just constant,
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i.e. uk = c and Ψk(r) = c exp (ikr). The dispersion of the free electron is then
given by

E(k) = �
2

2m
k2, (6.7)

where k is an arbitrary vector in the reciprocal space. k′ is a vector from the Brillouin
zone such that k = k′ + G with a suitable reciprocal lattice vector G. Because of
(6.5) the dispersion relation can be written also as

E(k) = �
2

2m
(k′ + G)2, (6.8)

where k′ denotes a vector from the Brillouin zone. Thus, many branches of the
dispersion relation arise from using various reciprocal lattice vectors in (6.8).

The resulting dispersion relation for the free electron is shown in Fig. 6.2a for a
one-dimensional system (k′ and G are parallel) and in Fig. 6.2b for the simple cubic
lattice (in the so-called reduced zone scheme). In Fig. 6.2c, the (same) dispersion of
the free electron is shown for the fcc lattice.

6.2.3 Non-Vanishing Potential

Now the effect of a non-vanishing periodic potential on electron motion will be dis-
cussed. A simple, analytically solvable model that visualizes the effect of a periodic
potential on the dispersion relation of the electrons and the formation of a (one-
dimensional) band structure with gaps is the Kronig–Penney model [64] which is
discussed in the Appendix F.

General Wave Equation

In this section, we will discuss the solution of a general wave equation for electrons
in a periodic potential. The solution is investigated particularly at the zone boundary.
The potential U is periodic with the lattice (6.1). It can be represented as a Fourier
series with the reciprocal lattice vectors (lattice vector expansion, cf. (3.18)):

U (r) =
∑

G

UG exp (iG r) . (6.9)

Since U is a real function, U−G = U ∗
G. The deeper reason for the success of such

an approach is that for typical crystal potentials, the Fourier coefficients decrease
rapidly with increasing G, e.g. for the unscreened Coulomb potential UG ∝ 1/G2.
The wavefunction is expressed as a Fourier series (or integral) over all allowed
(Bloch) wavevectors K,

http://dx.doi.org/10.1007/978-3-319-23880-7_3
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Ψ (r) =
∑

K

CK exp (iK r) . (6.10)

The kinetic and potential energy terms in the Schrödinger equation (6.6) are

∇2Ψ = −
∑

K

K2 CK exp (iK r) (6.11a)

UΨ =
∑

G

∑
K

UG CK exp (i (G + K) r) . (6.11b)

With K′ = K + G, (6.11b) can be rewritten as

UΨ =
∑

G

∑
K′

UG CK′−G exp
(
iK′ r

)
. (6.12)

Now, the Schrödinger equation can be written as an (infinite) system of algebraic
equations:

(λK − E) CK +
∑

G

UG CK−G = 0, (6.13)

with λK = �
2 K2/(2m).

Solution for One Fourier Coefficient

The simplest (non-trivial) potential energy has only one important Fourier coefficient
U for the shortest reciprocal lattice vector G. Also, we have U−G = UG. Thus, the
(one-dimensional) potential has the form U (x) = 2U cos(Gx). Then the equation
system (6.13) has only two equations for CK and CK−G, leading to the condition

∣∣∣∣λK − E U
U λK−G − E

∣∣∣∣ = 0. (6.14)

We find two solutions

E± = λK + λK−G

2
±

√(
λK − λK−G

2

)2

+ U 2. (6.15)

Solution at the Zone Boundary

We consider the solution at the zone boundary, i.e. at K = G/2. The kinetic energy
is then the same for K = ±G/2, i.e. λK = λK−G = (�2/2m) (G2/4) = λ. The
determinant (6.14) reads then

(λ − E)2 − U 2 = 0. (6.16)
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Fig. 6.3 Periodic potential
U (one-dimensional cosine,
black) and the squares of the
wavefunctions Ψ− (red) and
Ψ+ (blue) for the wavevector
at the zone boundary,
K = G/2 = π/a

Thus the energy values at the zone boundary are

E± = λ ± U = �
2

2m

G2

4
± U. (6.17)

At the zone boundary, a splitting of the size E+ − E− = 2U occurs. The center
of the energy gap is given by the energy λK of the free-electron dispersion. The
ratio of the coefficients is CG/2/C−G/2 = ∓1. The ‘−’ solution of (6.17) (lower
energy) is a standing cosine wave (Ψ−), the ‘+’ solution (Ψ+) is a standing sine
wave as visualized in Fig. 6.3. For the lower-energy (binding) state the electrons are
localized at the potential minima, i.e. at the atoms, for the upper state (antibinding)
the electrons are localized between the atoms. Both wavefunctions have the same
periodicity since they belong to the same wavevector K = G/2. We note that the
periodicity of Ψ is 2a, while the periodicity of Ψ 2 is equal to the lattice constant a.

Gap States

For energies within the gap, solutions with a complex wavevector K = G/2 + i q
exist. Solving (6.16) results (in terms of q ′2 = (�2/2m) q2) to

E± = λ − q ′2 ±
√

−4λ q ′2 + U 2. (6.18)

For energies E = λ + ε with −U ≤ ε ≤ U , the complex part of the wavevector is
given by

q ′2 = −(ε + 2λ) +
√
4λ (ε + λ) + U 2. (6.19)

The maximum value of q is in the center of the band gap (ε = 0); for |U | � 2λ, it
isq ′2

max ≈ U 2/(4λ). At the band edges (ε = ±U ),q = 0.q is the characteristic length
of an exponentially decaying wave function. Such solutions occur at surfaces or
interfaces. For larger band gaps, the localization length is smaller (larger q) (Fig. 6.4).
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Fig. 6.4 Complex band
structure q ′(ε) according to
(6.19) for two different
values of λ/U

1 0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

C
om

pl
ex

 w
av

ev
ec

to
r 

 q
'

/ U

=10U

=5U

Solution in the Vicinity of the Zone Boundary

For K in the vicinity of the zone boundary the solutions (6.15) can be developed.
Therefore, we use the (small) distance from the zone boundary K̃ = K − G/2. With
λ = (�2/2m) (G2/4) we rewrite still exactly (6.15):

E±
(
K̃

) = �
2

2m

(
1

4
G2 + K̃2

)
±

(
4λ

�
2K̃2

2m
+ U 2

)1/2

. (6.20)

For small K̃ with �
2GK̃
2m � |U |, the energy is then approximately given by

E±
(
K̃

) ∼= λ ± U + �
2K̃2

2m

(
1 ± 2λ

U

)
. (6.21)

Thus the energy dispersion in the vicinity of the zone boundary is parabolic.
The lower state has a negative curvature, the upper state a positive curvature. The
curvature is

m∗ = m
1

1 ± 2λ/U
≈ ± m

U

2λ
, (6.22)

and will be later related to the effective mass. The approximation in (6.22) is valid for
|U | � 2λ. We note that in our simple model m∗ increases linearly with increasing
band gap 2U (see Fig. 6.28 for experimental data).

6.2.4 Kramer’s Degeneracy

En(k) is the dispersion in a band. The time-reversal symmetry (Kramer’s degeneracy)
implies
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Fig. 6.5 Theoretical
calculation of the spin
splitting of (a) the three
lowest conduction bands
(CB1, CB2, and CB3) and
(b) the top three valence
bands (VB1, VB2, and VB3)
of GaAs. Adapted from [401]
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En↑(k) = En↓(−k), (6.23)

where the arrow refers to the direction of the electron spin. If the crystal is symmetric
under inversion, we have additionally

En↑(k) = En↑(−k). (6.24)

With both time reversal and inversion symmetry the band structure fulfills

En↑(k) = En↓(k). (6.25)

The inversion symmetry is particularly important for the spin-orbit interaction. In
the absence of inversion symmetry, e.g. in (non-centrosymmetric) zincblende crys-
tals (Fig. 3.16b) or in heterostructures (Fig. 12.34b), a spin splitting, e.g. En↑(k) �=
En↓(k), is present. It can be thought of as provoked by an effective magnetic field.
Bulk inversion asymmetry (BIA) leads to the Dresselhaus spin splitting [400, 401]
that is shown in Fig. 6.5 for GaAs (cmp. Fig. 6.7a). The spin splitting due to structural
inversion asymmetry (SIA) is described by the Bychkov-Rashba Hamiltonian [402,
403]. A review on these topics can be found in [404].

6.2.5 Symmetry Considerations

In general the symmetry of the lattice is a symmetry of the system’s Hamiltonian
and thus transfers into the electronic (and other) properties of the semiconductor.

http://dx.doi.org/10.1007/978-3-319-23880-7_3
http://dx.doi.org/10.1007/978-3-319-23880-7_12
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The means to formulate this mathematically is group theory. At a given reciprocal
lattice point, the wave function must fulfill the given spatial symmetry. Additional
symmetry due to spin and spin-orbit interaction enters via the double-group scheme.
This problem has been treated for the 32 point groups (cmp. TableB.2) in [405]
and in [406] particularly for the pc, fcc, bcc and hcp lattices. A detailed treatment
for the zincblende structure has been given in [407]. The symmetry at particular
lattice points is denoted by the irreducible representations of the symmetry group,
e.g. by the Γi -symbols used in Figs. 6.6, 6.7 or also Fig. 6.38. As an example base
functions with the symmetry of the irreducible representations of tetraeder group
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Fig. 6.6 Band structure of (a) silicon (indirect) and (b) germanium (indirect). In Si, the minima
of the conduction band are in the 〈100〉 direction, for germanium in the 〈111〉 direction. Adapted
from [146], based on [409]
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Fig. 6.7 Band structure of (a) GaAs (direct) and (b) GaP (indirect). For GaAs the minimum of the
conduction band is at Γ , for GaP in the 〈100〉 direction. Adapted from [146], based on [409]



162 6 Band Structure

15

10

5

0

-5

15

10

5

0

-5

-10

WX

GaN

zb w

Fig. 6.8 Band structure of GaN (direct) in zincblende (zb) modification (left) and wurtzite (w)
modification (right), both displayed in the wurtzite Brillouin zone to facilitate comparison

Table 6.1 Representations of the tetraeder group (zincblende structure) in molecular, BSW [408]
and Koster [405] notation and corresponding base functions (c.p.: cyclic permutations)

Molecular BSW Koster Base functions

A1 Γ1 Γ1 x y z

A2 Γ2 Γ2 x4 (y2 − z2) + c.p.

E Γ12 Γ3 2 z2 − (x2 + y2), (x2 − y2)

T2 Γ15 Γ4 x , y, z

T1 Γ25 Γ5 z (x2 − y2) and c.p.

are listed in Table6.1. With the knowledge of the wave functions at the points of
high symmetry, it is possible to deduce the general nature of the energy bands in the
vicinity of such symmetry points.

6.3 Band Structures of Selected Semiconductors

In the following, the band structures of various important and prototype semicon-
ductors are discussed. The band below the energy gap is called the valence band; the
band above the gap is the conduction band. The band gap ΔEcv, mostly denoted as
Eg, is the energy separation between the highest valence-band state and the lowest
conduction-band state. Themaximumof the valence band is formost semiconductors
at the Γ point.
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6.3.1 Silicon

For silicon, an elemental semiconductor, (Fig. 6.6a) the minimum of the conduction
band is located close to the X point at 0.85π/a in the 〈100〉 direction. Thus, it is not
at the same point in k space as the top of the valence band. Such a band structure is
called indirect. Since there are six equivalent 〈100〉 directions, there are six equivalent
minima of the conduction band.

6.3.2 Germanium

Germanium, another elemental semiconductor, (Fig. 6.6b) also has an indirect band
structure. The conduction minima are at the L point in the 〈111〉 direction. Due to
symmetry there are eight equivalent conduction-band minima.

6.3.3 GaAs

GaAs (Fig. 6.7a) is a compound semiconductor with a direct band gap since the top
of the valence band and the bottom of the conduction band are at the same position
in k space (at the Γ point). The next highest (local) minimum in the conduction band
is close to the L point.

6.3.4 GaP

GaP (Fig. 6.7b) is an indirect compound semiconductor. The conduction-band min-
ima are along the 〈100〉 directions.

6.3.5 GaN

GaN (Fig. 6.8) is a direct semiconductor that has wurtzite structure but can also occur
in the metastable cubic (zincblende) phase.

6.3.6 Lead Salts

The band gap of PbS (Fig. 6.9), PbSe and PbTe is direct and located at the L point.
The lead chalcogenide system shows the anomaly that with increasing atomic weight
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Fig. 6.9 Calculated band
structure of PbS (direct). The
energy gap is at the L point.
The forbidden band is shown
in grey. Adapted from [410]

the band gap does not decrease monotonically. At 300K, the band gaps are 0.41, 0.27
and 0.31eV for PbS, PbSe and PbTe, respectively.

6.3.7 MgO, ZnO, CdO

Cadmium oxide is a cubic semiconductor in the rocksalt structure. Due to symmetry
considerations, coupling (repulsion) of oxygen 2p- and cadmium 3d-orbitals does
not occur at the zone center in the rocksalt structure. Repulsion occurs though away
from the Γ -point and therefore the valence band maximum is not located at the zone
center (Fig. 6.10). Thus CdO is an indirect semiconductor. A similar effect would
occur in rs-ZnO due to zinc 3d orbitals; however, ZnO has wurtzite structure for

Fig. 6.10 Calculated
indirect band structure of
CdO. The top of the valence
band is at E = 0. Adapted
from [412]
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which p–d coupling at the Γ -point is allowed; thus ZnO is direct. In MgO, Mg of
course only possesses populated s- and p-orbitals and no such repulsion is present;
thus MgO even with its rocksalt structure is also direct [411].

6.3.8 Chalcopyrites

The experimental band gaps of a number of chalcopyrite semiconductors are listed
in Table6.2. The band structures of CuAlS2, CuAlSe2, and CuGaSe2 are compared
in Fig. 6.11.

Table 6.2 Band gaps of various chalcopyrite semiconductors

Material Eg (eV) Eg (eV) Eg (eV)

CuAlS2 3.5 CuGaS2 2.5 CuInS2 1.53

CuAlSe2 2.71 CuGaSe2 1.7 CuInSe2 1.0

CuAlTe2 2.06 CuGaTe2 1.23 CuInTe2 1.0–1.15

AgAlS2 3.13 AgGaS2 2.55 AgInS2 1.87

AgAlSe2 2.55 AgGaSe2 1.83 AgInSe2 1.24

AgAlTe2 2.2 AgGaTe2 1.1–1.3 AgInTe2 1.0

ZnSiP2 2.96 ZnGeP2 2.34 ZnSnP2 1.66

ZnSiAs2 2.12 ZnGeAs2 1.15 ZnSnAs2 0.73

CdSiP2 2.45 CdGeP2 1.72 CdSnP2 1.17

CdSiAs2 1.55 CdGeAs2 0.57 CdSnAs2 0.26

CuAlSe2CuAlS2 CuGaSe 2

NT NT NT

Fig. 6.11 Calculated band structures of CuAlS2, CuAlSe2, and CuGaSe2. The absolute values of
the gap energies are incorrect due to LDA calculation. Adapted from [413]
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GaN
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Fig. 6.12 Calculated (within LDA) band structures of ZnGeN2 and its related III–V compound
GaN, both displayed in the chalcopyrite (orthorhombic) Brillouin zone to facilitate comparison.
Adapted from [414]

In Fig. 6.12, the theoretical band structure of GaN and its closest related chalcopy-
rite ZnGeN2 are compared, both shown in the chalcopyrite (orthorhombic) Brillouin
zone. The band gap of ZnGeN2 is smaller than that of GaN and the difference of
0.4eV is fairly well reproduced by the calculation2 (giving 0.5eV).

6.3.9 Spinels

The band structure of spinels (in particular CdIn2S4) has been discussed in [415],
the band structure of ZnM2O4 has been calculated in [412] for (M = Co, Rh, Ir)
(Fig. 6.13) and in [416] for (M = Al, Ga, In).

6.3.10 Delafossites

In Fig. 6.14, the theoretical band structures of the delafossites CuAlO2, CuGaO2, and
CuInO2 are shown. Themaximumof the valence band is not atΓ but near the F point.
The direct band gap at Γ decreases for the sequence Al → Ga → In, similar to the
trend for AlAs, GaAs and InAs. The direct band gap at F and L, causing the optical
absorption edge, increases, however (experimental values are 3.5, 3.6, and 3.9eV).

2Due to the local density approximation (LDA) the absolute values of the band gaps are too small
by about 1eV.
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Fig. 6.13 Calculated band structures of ZnCo2O4 and ZnIr2O4. Adapted from [412]
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CuGaO 2 CuInO2CuAlO2

Fig. 6.14 Band structures of CuAlO2, CuGaO2, and CuInO2, calculated with LDA (underestimat-
ing the absolute value of the band gaps). The arrows denote the maximum of the valence band that
has been set to zero energy for each material. Adapted from [200]

6.3.11 Perovskites

The calculated band structure of BaTiO3 in the tetragonal phase is shown in Fig. 6.15.
The minimum of the conduction band is at the Γ point. The maximum of the valence
band is not at the Γ point but at the M point. The band gap of the LDA3 calculation
is too small (2.2 eV) compared to the experimental value ∼3.2eV.

3local density approximation.
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Fig. 6.15 Calculated energy band structure of BaTiO3 along the major symmetry directions. The
Fermi level (EF) is set at zero energy. Adapted from [417]

6.4 Systematics of Semiconductor Band Gaps

The trends with regard to the size of the band gap for elemental, III–V and II–VI
semiconductors can essentially be understood in terms of the bond strength and
ionicity. In Fig. 6.16, the band gaps of many important semiconductors are shown
as a function of the lattice constant. For elemental semiconductors, the band gap
decreases with reduced bond strength, i.e. lattice constant (C→Si→Ge). A similar
trend exists both for the III–V and the II–VI semiconductors.

Fig. 6.16 Band gaps as a function of the lattice constant for various elemental, III–V and II–VI
semiconductors. The lattice constant of wurtzite semiconductors has been recalculated for a cubic
cell
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For the same lattice constant, the band gap increases with increasing ionicity,
i.e. IV–IV→III–V→II–VI→I–VII.A typical example is the sequenceGe→GaAs→
ZnSe→CuBr, for which all materials have almost the same lattice constant, and the
band gaps increase 0.66eV→1.42eV→2.7eV→2.91eV.

This behavior can be understood within the framework of a modified Kronig–
Penney model [418] (Appendix F). Double potential wells (b/a = 3) are chosen
to mimic the diatomic planes along the 〈111〉 direction in the zincblende structure
(Fig. 6.17a). Symmetric wells (depth P0) are chosen to model covalent semiconduc-
tors and asymmetric wells with depths P0 ± ΔP to model partially ionic semicon-
ductors. Results are shown in Fig. 6.17a for P0 = −3. With increasing asymmetry,
i.e. ionicity, the band gap increases, mostly due to a downward shift of the valence
band. The case of III–V (II–VI) semiconductors is reached for ΔP ≈ 2 (4).

Fig. 6.17 Kronig–Penney
model (along 〈111〉,
b/a = 3) for a (a) IV–IV
semiconductor and (b) for a
III–V (or II–VI)
semiconductor, (c) resulting
band structure (P0 = −3). d
is the lattice constant
(b + a). Adapted from [418]
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Fig. 6.18 Optical image of two inch wafers of GaAs (left), GaP (center) and ZnO (right). A GaN
wafer would look like the ZnO wafer

Table 6.3 Comparison of band gap, lattice constant and ionicity of gallium–group V semiconduc-
tors for various anions

Anion Eg (eV) a0 (nm) fi

N 3.4 0.45 0.50

P 2.26 0.545 0.33

As 1.42 0.565 0.31

Sb 0.72 0.61 0.26

Lattice constant for GaN has been recalculated for a cubic cell

In Fig. 6.18, the visual impression of 2” wafers of GaAs, GaP and GaN on white
paper is shown. GaAs (and GaSb) is opaque since the band gap is below the visible
spectral range. GaP has a band gap in the green and appears red, GaN has a band gap
in the ultra-violet and thus appears transparent. As can be seen from Table6.3, the
anion sequence Sb, As, P, and N leads to smaller lattice constant and higher ionicity.
A notable deviation from this rule is InN whose band gap (0.7eV) is much smaller
than that of InP [419].

6.5 Alloy Semiconductors

In alloy semiconductors, the size of the band gap and the character of the band gap
will depend on the composition. The dependence of the band gap on the ternary com-
position is mostly nonlinear and can usually be expressed with a bowing parameter
b that is mostly positive. For a compound AxB1−xC the band gap is written as

Eg(AxB1−xC) = Eg(BC) + x
[
Eg(AC) − Eg(BC)

] − b x (1 − x). (6.26)

Even on the virtual crystal approximation (VCA) level (Sect. 3.7.3) a nonzero bowing
parameter b is predicted. However, a more thorough analysis shows that the bowing
cannot be treated adequatelywithinVCAand is due to the combined effects of volume
deformation of the band structure with the alloy lattice constant, charge exchange in

http://dx.doi.org/10.1007/978-3-319-23880-7_3
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the alloy with respect to the binary end components, a structural contribution due to
the relaxation of the cation–anion bond lengths in the alloy and a small contribution
due to disorder [420]. The discussion of Sect. 6.11.3 is related.

The SixGe1−x alloy has diamond structure for all concentrations and the position
of the conduction-band minimum in k-space switches from L to X at about x =
0.15 (Fig. 6.19a). However, for all concentrations the band structure is indirect. The
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Fig. 6.19 (a) Band gap of SixGe1−x alloy (T = 296K) with a change from the conduction-band
minimum at L (Ge-rich) to X. The inset depicts the transition energy of the indirect (Γ –L) and direct
(Γ –Γ ) absorption edge for low Si content. Adapted from [424]. (b) Band gap (at room temperature)
of InxGa1−xAs. The solid line is an interpolation with bowing (b = 0.6eV) and the dashed line is
the linear interpolation. Data from [421]. (c) Band gap (at room temperature) in the ternary system
AlxGa1−xAs. For x < 0.4 the alloy is a direct, for x > 0.4 an indirect, semiconductor. Edd denotes
the energy position of a deep donor (cf. Sect. 7.7.6). Adapted from [425]. (d) Band gap (at room
temperature) in the ternary systemMgxZn1−xO. Data (from spectroscopic ellipsometry [426, 427])
are for hexagonal wurtzite phase (circles), and Mg-rich cubic rocksalt phase (squares). Dashed
lines are fits to data with a different bowing parameter for each phase

http://dx.doi.org/10.1007/978-3-319-23880-7_7
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InxGa1−xAs alloy has zincblende structure for all compositions. The band gap is
direct and decreases with a bowing parameter of b = 0.6eV [421] (Fig. 6.19b). This
means that for x = 0.5 the band gap is 0.15eV smaller than expected from a linear
interpolation between GaAs and InAs, as reported by various authors [422].

If one binary end component has a direct band structure and the other is indi-
rect, a transition occurs from direct to indirect at a certain composition. An example
is AlxGa1−xAs where GaAs is direct and AlAs is indirect. For all concentrations
the crystal has zincblende structure. In Fig. 6.19c, the Γ , L and X conduction-band
minima for ternary AlxGa1−xAs are shown. Up to an aluminum concentration of
x = 0.4 the band structure is direct. Above this value the band structure is indi-
rect with the conduction-band minimum being at the X point. The particularity of
AlxGa1−xAs is that the lattice constant is almost independent of x . For other alloys
lattice match to GaAs or InP substrates is only obtained for specific compositions,
as shown in Fig. 6.20.

Bowing in the group-III–nitride system has been discussed in [423].
If the twobinary end components havedifferent crystal structure, a phase transition

occurs at a certain composition (range). An example is MgxZn1−xO, where ZnO
has wurtzite structure and MgO has rocksalt structure. The band gap is shown in
Fig. 6.19d. In this case, each phase has its own bowing parameter.

All alloys of Fig. 6.19b–d have mixed cations. The band gap also varies upon
anion substitution in a similar way as shown in Fig. 6.21 for ternary alloys with the
cation Zn and the chalcogenides S, Se, Te and O.

Fig. 6.20 Band gap versus
lattice constant for
Gax In1−xP and Alx In1−xP
(lattice matched to GaAs) as
well as for InxAl1−xAs and
InxGa1−xAs alloys (lattice
matched to InP)
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Fig. 6.21 Band gap of various Zn-based alloys. The lines are fits with (6.26), the bowing parameter
b is labeled. Data for Zn(S,Se,Te) from [428], for Zn(O,Se/Te) from [429]

6.6 Amorphous Semiconductors

Since the crystal lattice in an amorphous semiconductor is not periodic, the concept
of k-space and the related concepts such as band structure E(k) break down at least
partially. The density of states, however, remains a meaningful and useful quantity
(Sect. 6.12.2).

Fig. 6.22 (a) Calculated band structure of crystalline silicon. (b) Calculated band structure of
amorphous silicon with α = 0.05 (cf. (3.7)). The solid lines denote the real part of the energy, the
shaded areas denote the regions with a width of twice the imaginary part of the energies centered
around the real part. Adapted from [431]

http://dx.doi.org/10.1007/978-3-319-23880-7_3
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In a perfectly crystalline semiconductor the eigenenergies of the states in the bands
are real. An amorphous semiconductor can be modeled using a spectrum of complex
energies [430]. In Fig. 6.22 the band structure of crystalline silicon is shown next to
that calculated for amorphous silicon with α = 0.05.

6.7 Temperature Dependence of the Band Gap

The band gap typically decreases with increasing temperature (see Fig. 6.23 for Si
and GaAs). The reasons for this are the change of electron–phonon interaction and
the expansion of the lattice. The temperature coefficient may be written as

(
∂Eg

∂T

)
p

=
(

∂Eg

∂T

)
V

− α

β

(
∂Eg

∂ p

)
T

, (6.27)

where α is the volume coefficient of thermal expansion and β is the volume com-
pressibility. A recommendable discussion of the thermodynamic role of the band gap
as chemical potential for the mass action law (7.12), entropy contributions and its
temperature dependence can be found in [432].

An anomaly is present for the lead salts (PbS, PbSe, PbTe) for which the tempera-
ture coefficient is positive (Fig. 6.24a). Theoretical calculations [434] show that both
terms in (6.27) are positive for the lead salts. The L+

6 and L−
6 levels (see Fig. 6.9) shift

as a function of temperature in such a way that their separation increases (Fig. 6.24b).
Also in copper and silver halides [435, 436] (Fig. 6.25a) and chalcopyrites [437]

(Fig. 6.25b) the increase of band gap with increasing temperature has been found,
sometimes only for a certain temperature range. This effect is attributed to the p-d
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Fig. 6.23 Temperature dependence of the band gap of (a) Si (data from [433]) and (b) ZnO
(experimental data from photoluminescence (triangles) and ellipsometry (circles)). The solid lines
are fits with (6.30) and the parameters given in Table6.4

http://dx.doi.org/10.1007/978-3-319-23880-7_7
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Fig. 6.25 (a) Band gap versus temperature for zincblende CuI1−xBrx alloys with various compo-
sitions x (including binary CuI and CuBr) as labeled. Dashed lines are guide to the eyes. Adapted
from [435]. (b) Band gap versus temperature for chalcopyrite AgGaSe2. Solid line is fit with two-
oscillator Bose-Einstein model. Adapted from [437]

electron hybridization in the valence band with Cu 3d electrons and to even stronger
effect with Ag 4d electrons.

For many semiconductors the temperature dependence can be described with the
empirical, three-parameter Varshni formula [438],

Eg(T ) = Eg(0) − α T 2

T + β
, (6.28)
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Table 6.4 Parameters for the temperature dependence of the band gap (6.29) and (6.30) for various
semiconductors

α (10−4 eV/K) Θ (K) Δ αB (10−4 eV/K) ΘB (K)

Si 3.23 446 0.51 2.82 351

Ge 4.13 253 0.49

GaAs 4.77 252 0.43 5.12 313

InP 3.96 274 0.48

InAs 2.82 147 0.68

ZnSe 5.00 218 0.36

ZnO 3.8 659 0.54

where Eg(0) is the band gap at zero temperature. A more precise and physically
motivated formula (based on a Bose–Einstein phononmodel) has been given in [439]

Eg(T ) = Eg(0) − 2αB ΘB

[
coth

(
ΘB

2T

)
− 1

]
, (6.29)

whereαB is a coupling constant and kΘB is a typical phonon energy; typical values are
given inTable6.4. Thismodel reaches a better descriptionof the fairlyflat dependence
at low temperatures.

The more elaborate model of [440] takes into account a more variable phonon
dispersion, including optical phonons, and proposes the four-parameter formula

Eg(T ) = Eg(0) − α Θ

[
1 − 3Δ2

exp (2/γ) − 1
+ 3Δ2

2

(
6
√
1 + β − 1

)]
(6.30)

β = π2

3 (1 + Δ2)
γ2 + 3Δ2 − 1

4
γ3 + 8

3
γ4 + γ6

γ = 2 T/Θ,

where α is the high-temperature limiting magnitude of the slope (of the order of
several 10−4 eV/K), Θ is an effective average phonon temperature and Δ is related
to the phonon dispersion. Δ takes typically values between zero (Bose–Einstein
model) and 3/4 [440].

6.8 Isotope Dependence of the Band Gap

The band edge slightly depends on the isotope composition of semiconductor, as
shown for GaAs in Fig. 6.26. The effect is discussed in detail in [441].
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Fig. 6.26 Band gap of GaAs
(at T = 10K) as a function
of the Ga isotope content.
Dashed line is linear fit.
Adapted from [441]

6.9 Electron Dispersion

6.9.1 Equation of Electron Motion

The equation of motion for the electron in the band structure is no longer given by
Netwon’s law F = d(mv)/dt as in vacuum. Instead, the propagation of quantum-
mechanical electron wave packets has to be considered. Their group velocity is given
by (vg = ∂ω/∂k)

v = 1

�
∇k E(k), (6.31)

where ∇k is the gradient with respect to k. Through the dispersion relation the
influence of the crystal and its periodic potential on the motion enters the equation.

An electric field E acts on an electron during the time δt the work δE = −eEvg δt .
This change in energy is related to a change in k via δE = dE/dk δk = �vg δk. Thus,
we arrive at � dk/dt = −eE . For an external force we thus have

�
dk
dt

= −e E = F. (6.32)

Thus, the crystal momentum p = �k takes the role of the momentum. A more
rigorous derivation can be found in [399].

In the presence of a magnetic field B the equation of motion is:

�
dk
dt

= −e v × B = − e

�
(∇k E) × B. (6.33)

The motion in a magnetic field is thus perpendicular to the gradient of the energy,
i.e. the energy of the electron does not change. It oscillates therefore on a surface of
constant energy perpendicular to B.
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6.9.2 Effective Mass of Electrons

From the free-electron dispersion E = �
2k2/(2m) themass of the particle is inversely

proportional to the curvature of the dispersion relation, i.e. m = �
2/(d2E/dk2). This

relation will now be generalized for arbitrary dispersion relations. The tensor of the
effective mass is defined as

(m∗−1)i j = 1

�2

∂2E

∂ki ∂k j
. (6.34)

The equation F = m∗ v̇ must be understood as a tensor equation, i.e. for the
components of the force Fi = m∗

i j a j . Force and acceleration must no longer be
collinear. In order to find the acceleration from the force, the inverse of the effective-
mass tensor must be used, a = (m∗)−1 F.

In Fig. 6.27 the energy dispersion of the (lowest) conduction band in a typi-
cal semiconductor, the related electron velocity and the effective mass are shown
schematically.

In (6.22) the ratio of the effective mass and the free-electron mass is of the order
of m∗/m ≈ U/λ, the ratio of the free particle energy and the band gap. For typical
semiconductors, the width of the (valence) band is of the order of 20eV, and the gap
is about 0.2–2eV. Thus, the effective mass is expected to be 10–100 times smaller
than the free-electron mass. Additionally, the relation m∗ ∝ Eg is roughly fulfilled
(Fig. 6.28).

Fig. 6.27 Schematic
diagram of the electron
dispersion E(k) in a typical
semiconductor (blue) and
corresponding carrier
velocity (∝ ∂E/∂k) (red)
and effective mass
(∝ 1/(∂2E/∂k2)) (green)
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Fig. 6.28 Effective electron
mass (in units of the
free-electron mass m0) as a
function of the
(low-temperature) band gap
for several (direct band gap)
semiconductors. The dashed
line fulfills
m∗/m0 = Eg/20 eV

From so-called k · p theory [442] (see Appendix G) the effective electron mass is
predicted to be related to the momentum matrix element pcv

pcv = 〈c|p|v〉 =
∫

Ω0

u∗
c,k(r) p uc, k(r) d3r, (6.35)

with Ω0 being the unit cell volume and the Bloch functions |c〉 and |v〉 of the con-
duction and valence band, respectively, given as

|c〉 = uc,kc(r) exp (i kcr) (6.36a)

|v〉 = uv,kv(r) exp (i kvr) . (6.36b)

Typically, the k-dependence of the matrix element is small and neglected. The
momentum matrix element will also be important for optical transitions between the
valence and conduction bands (Sect. 9.5). Other related quantities that are often used
are the energy parameter EP

EP = 2 |pcv|2
m0

, (6.37)

and the bulk momentum matrix element M2
b that is given by

M2
b = 1

3
|pcv|2 = m0

6
EP. (6.38)

http://dx.doi.org/10.1007/978-3-319-23880-7_9
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(a) (b)

(c) (d)

Fig. 6.29 Energy isosurfaces in k-space in the vicinity of the conduction-bandminima for (a) GaAs
with isotropic (spehrical) minimum at Γ point, (b) ZnO with anisotropic (ellipsoidal) minimum at
Γ point (anisotropy exaggerated), (c) silicon with six equivalent anisotropic minima (ml/mt = 5
not to scale) along 〈100〉 and (d) germanium with eight equivalent anisotropic minima along 〈111〉.
The cube indicates the 〈100〉 directions for the cubic materials. For the wurtzite material (part b)
the vertical direction is along [00.1]

The electron mass is given by4

m0

m∗
e

= 1 + EP

3

(
2

Eg
+ 1

Eg + Δ0

)
(6.39)

= 1 + EP
Eg + 2Δ0/3

Eg
(
Eg + Δ0

) ≈ 1 + EP

Eg + Δ0/3
≈ EP

Eg
.

Comparison with the fit from Fig. 6.28 yields that EP is similar for all semicon-
ductors [443] and of the order of 20eV (InAs: 22.2eV, GaAs: 25.7eV, InP: 20.4eV,
ZnSe: 23eV, CdS: 21eV).

In silicon there are six conduction-band minima. The surfaces of equal energy
are schematically shown in Fig. 6.29c. The ellipsoids are extended along the 〈100〉

4Δ0 is the spin-orbit splitting discussed in Sect. 6.10.2.
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Table 6.5 Longitudinal direction of effective mass ellipsoid, longitudinal and transverse effective
electron mass in several semiconductors

Long. dir. ml mt ml/mt md,e References

C 〈100〉 1.4 0.36 3.9 1.9 [446]

Si 〈100〉 0.98 0.19 5.16 1.08 [447]

Ge 〈111〉 1.59 0.082 19.4 0.88 [447]

ZnO [00.1] 0.21 0.25 0.88 [448]

CdS [00.1] 0.15 0.17 0.9 [449]

Mass values in units of the free electron mass m0. For the density of states mass md,e see (6.68)

direction because the longitudinalmass (along theΔpath) is larger than the transverse
mass in the two perpendicular directions (Table6.5). For example, the dispersion
relation around the [100] minimum is then given as (k0

x denotes the position of the
conduction-band minimum)

E(k) = �
2

(
(kx − k0

x )
2

2m l
+ k2

y + k2
z

2m t

)
. (6.40)

For germanium surfaces of constant energy around the eight conduction-band
minima in the 〈111〉 directions are depicted in Fig. 6.29d. The longitudinal and the
transverse masses are again different. For GaAs, the conduction-band dispersion
around the Γ point is isotropic, thus the surface of constant energy is simply a
sphere (Fig. 6.29a). In wurtzite semiconductors the conduction-band minimum is at
the Γ point. The mass along the c-axis is typically smaller than the mass within the
(00.1) plane [444] (m l/m t ≈ 0.8 for ZnO [445]), see Fig. 6.29b. In [444] also an
anisotropy within the (00.1) plane is predicted.

The directional dependence of themass can bemeasuredwith cyclotron resonance
experiments with varying direction of the magnetic field. In Fig. 6.30, the field B is
in the (110) plane with different azimuthal directions. When the (static) magnetic
field makes an angle θ with the longitudinal axis of the energy surface, the effective
mass is given as [450]

1

m∗ =
√
cos2 θ

m2
t

+ sin2 θ

m t m l
. (6.41)

6.9.3 Nonparabolicity of Electron Mass

The dispersion around the conduction-band minimum is only parabolic for small
k. The further away the wavevector is from the extremum, the more the actual dis-
persion deviates from the ideal parabola (see, e.g., Fig. 6.7). This effect is termed
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(a) (b)

Fig. 6.30 Effective electronmass from cyclotron resonance experiments (at T = 4K) on (a) Si and
(b) Ge for themagnetic field in the (110) plane and various azimuthal directions θ. Experimental data
and fits (solid lines) using (6.41) with (a) ml = 0.98, mt = 0.19 and (b) ml = 1.58, mt = 0.082.
Data from [447]

nonparabolicity. Typically, the energy increases less quickly with k than in the par-
abolicmodel. This can be described in a so-called two-levelmodelwith the dispersion
relation

�
2k2

2m∗
0

= E

(
1 + E

E∗
0

)
, (6.42)

where E∗
0 > 0 parameterizes the amount of nonparabolicity (a parabolic band corre-

sponds to E∗
0 = ∞). The nonparabolic dispersion for GaAs is shown in Fig. 6.31a.

The curvature is reduced for larger k and thus the effective mass is energy depen-
dent and increases with the energy. Equation (6.42) leads to the energy-dependent
effective mass

m∗(E) = m∗
0

(
1 + 2E

E∗
0

)
, (6.43)

where m∗
0 denotes here the effective mass at k = 0. Theory and experimental data

for the effective electron mass of GaAs are shown in Fig. 6.31b.
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Fig. 6.31 (a) Dispersion relations for the conduction band of GaAs. The solid line is parabolic
dispersion (constant effective mass). The dashed (dash-dotted) line denotes the dispersion for k
along [001] ([111]) from a five-level k · p model (5LM). (b) Cyclotron resonance effective mass
of electrons in GaAs as a function of the Fermi level (upper abscissa) and the corresponding
electron concentration (lower abscissa). The dashed line is from a 2LM according to (6.43) with
E∗
0 = 1.52eV. The solid lines are for a 5LM for the three principal directions of the magnetic field.

The symbols represent experimental data from different sources. Data from [451]

6.10 Holes

6.10.1 Hole Concept

Holes are missing electrons in an otherwise filled band. A Schrödinger-type wave-
equation for holes (unoccupied electron states) was derived by Heisenberg [63] to
interpret Hall effect data. The hole concept is useful to describe the properties of
charge carriers at the top of the valence band. The hole is a new quasi-particle whose
dispersion relation is schematically shown in Fig. 6.32 in relation to the dispersion
of electrons in the valence band.

Fig. 6.32 Hole dispersion
(dashed line) in relation to
the electron dispersion in the
valence band (solid line)

k

E

ke
kh
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The wavevector of the hole (filled circle in Fig. 6.32) is related to that of the
‘missing’ electron (empty circle in Fig. 6.32) by kh = −ke. The energy is Eh(kh) =
−Ee(ke), assuming that EV = 0, otherwise Eh(kh) = −Ee(ke) + 2EV. The hole
energy is larger for holes that are further away from the top of the valence band,
i.e. the lower the energy state of the missing electron. The velocity of the hole,
vh = �

−1 dEh/dkh, is the same, vh = ve, and the charge is positive,+e. The effective
mass of the hole is positive at the top of the valence band, m∗

h = −m∗
e . Therefore,

the drift velocities of an electron and hole are opposite to each other. The resulting
current, however, is the same.

6.10.2 Hole Dispersion Relation

The valence band at the Γ point is 3-fold degenerate. The band developed from the
atomic (bonding) p states; the coupling of the spin s = 1/2 electrons with the orbital
angular momentum l = 1 leads to a total angular momentum j = 1/2 and j = 3/2.
The latter states are degenerate at Γ in zincblende bulk material and are called
heavy holes (hh) for m j = ±3/2 and light holes (lh) for m j = ±1/2 due to their
different dispersion (Fig. 6.33a). The two (m j = ±/2) states of the j = 1/2 state are
split-off from these states by an energyΔ0 due to spin-orbit interaction and are called
split-off (s-o) holes. The spin-orbit interaction increaseswith increasing atomic order
number Z of the anion since the electrons are located preferentially there (Fig. 6.34).

(a)

(b)

Fig. 6.33 (a) Simplified band structure with conduction band and three valence bands and (b)
three-dimensional visualization (E vs. (kx, ky)) of the valence bands of Ge (including warping).
Part (b) from [453]
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Fig. 6.34 Spin-orbit
splitting Δ0 for elemental
(diamonds) and various
III–V and II–VI (circles)
semiconductors. The data are
plotted as empty (filled)
circles as a function of the
cation (anion) order number.
Obviously, Δ0 correlates
with the anion Z . The dashed
line is proportional to Z2

A detailed discussion of the spin-orbit splitting in zincblende semiconductors is given
in [452].

All three holes have different mass. In the vicinity of the Γ point the dispersion
for heavy and light holes can be described with (+:hh, −:lh)

E(k) = A k2 ±
√

B2 k4 + C2
(

k2
x k2

y + k2
y k2

z + k2
x k2

z

)
. (6.44)

For heavy and light holes there is a dependence of the dispersion, i.e. the mass, in
the (001) plane. This effect, sketched in Fig. 6.33b, is called warping. The warping
at the GaAs valence-band edge is shown in Fig. 6.35. Equation (6.44) can also be
expressed in terms of angular coordinates [454].

The s-o holes have the dispersion

E(k) = −Δ0 + A k2. (6.45)

Values for A, B,C2 andΔ0 for a number of semiconductors are given in Table6.6.
The valence-band structure is often described with the Luttinger parameters γ1, γ2,
and γ3 that can be represented through A, B, and C via

�
2

2m0
γ1 = −A (6.46a)

�
2

2m0
γ2 = − B

2
(6.46b)

�
2

2m0
γ3 =

√
B2 + C2/3

2
. (6.46c)

The mass of holes in various directions can be derived from (6.44). The mass
along the [001] direction, i.e. �

2/
(
∂2E(k)/∂k2

x

)
for ky = 0 and kz = 0, is
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Fig. 6.35 Dispersion at the valence band edge of GaAs for (a, b) heavy holes and (c, d) light holes.
(a, c) Constant energy surfaces and (b, d) isolines in the (kx , ky)-plane ((b) and (d) have different
energy scales)

Table 6.6 Valence-band parameters (for (6.44)) A and B in units of (�2/2m0), C2 in units of
(�2/2m0)

2, and Δ0 in eV

Material A B C2 Δ0

C −4.24 −1.64 9.5 0.006

Si −4.28 −0.68 24 0.044

Ge −13.38 −8.5 173 0.295

GaAs −6.9 −4.4 43 0.341

InP −5.15 −1.9 21 0.11

InAs −20.4 −16.6 167 0.38

ZnSe −2.75 −1.0 7.5 0.43

From [146, 455, 456]
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(a) (b)

Fig. 6.36 Effective hole masses from cyclotron resonance experiments (T = 4K) for heavy and
light holes in (a) Si and (b) Ge for the magnetic field in the (110) plane and various azimuthal
directions θ. Experimental data (symbols) and fits (solid lines) using (6.48). Adapted from [447]

1

m100
hh

= 2

�2
(A + B) (6.47a)

1

m100
lh

= 2

�2
(A − B). (6.47b)

The anisotropy of hole masses has been investigated with cyclotron resonance
experiments (Fig. 6.36). For θ being the angle between the magnetic field and the
[001] direction, the effective heavy hole (upper sign) and light hole (lower sign) mass
in cubic semiconductors is given by [447]

m∗ = �
2

2

1

A ± √
B2 + C2/4

(6.48)

×
⎧⎨
⎩

C2 (1 − 3 cos2 θ)2

64
√

B2 + C2/4
[

A ± √
B2 + C2/4

] + . . .

⎫⎬
⎭ .

For C2 = 0 the hole bands are isotropic, as is obvious from (6.44). In this case
γ2 = γ3, the so-called spherical approximation. The average of the hole masses over
all directions is
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(a) (b)

Fig. 6.37 Luttinger parameters for various III-V semiconductors versus their band gap. (a) Inverse
values of γ1 (squares) and γ2 (diamonds). Dashed lines are guides to the eyes. (b) γ3 − γ2 versus
band gap

1

mav
hh

= 2

�2

(
A + B

[
1 + 2C2

15 B2

])
(6.49a)

1

mav
lh

= 2

�2

(
A − B

[
1 + 2C2

15 B2

])
. (6.49b)

Similar to the correlation of the electron mass with the band gap (Fig. 6.28), the
Luttinger parameters are correlated with the band gap as shown in Fig.6.37. The
parameters 1/γ1 and 1/γ2 increase about linearly with Eg. The parameter γ3 − γ2,
which is responsible for the valence band warping, decreases with increasing band
gap.

6.10.3 Valence-Band Fine Structure

In Fig. 6.38, the schematic structure of the band edges for zincblende structure semi-
conductors is shown. The s-o holes in the zincblende structure are split-off due to
the spin-orbit interaction Δso, the Γ8 band is degenerate (heavy and light holes).
Degeneracies for the holes are removed in the wurtzite and chalcopyrite structures
by the additional crystal field splitting Δcf due to the anisotropy between the a- and
c-axes. Typically, e.g. for CdS, the topmost valence band in the wurtzite structure has
Γ9 symmetry (allowed optical transitions only for E ⊥ c); an exception is ZnO for
which the two upper bands are believed to be reversed. In the chalcopyrite structure
optical transitions involving the Γ6 band are only allowed for E ⊥ c. The three hole
bands are usually labeled A, B, and C from the top of the valence band.

The energy positions of the three bands (with respect to the position of the Γ15

band) in the presence of spin-orbit interaction and crystal field splitting are given
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Fig. 6.38 Schematic band structure of zincblende and the valence-band splitting due to spin-orbit
interaction Δso and crystal field splitting Δcf for chalcopyrites (typically Δcf < 0, see Fig. 6.39)
and wurtzites. For the wurtzites the situation is schematically shown for CdS (Δso = 67meV,Δcf =
27meV) (or GaN) and ZnO (Δso = −8.7meV, Δcf = 41meV)

within the quasi-cubic approximation [457] by

E1 = Δso + Δcf

2
(6.50a)

E2,3 = ±
√(

Δso + Δcf

2

)2

− 2

3
Δso Δcf . (6.50b)

In chalcopyrites the crystal field splitting is typically negative (Fig. 6.39). It is
approximately linearly related to 1 − η (for η = c/2a see Sect. 3.4.6).

6.10.4 Band Inversion

In certain compounds the band gap can shrink to zero (zero-gap semiconductor,
cf. Sect. 18.1.2) and even become negative in the sense that the s-orbital type Γ6

symmetry (conduction) band is inverted below the valence-band edge. HgTe is a
classical example for such material as shown in Fig. 6.40, but similar effects are also
present in other semiconductors, for example various chalcopyrites [459].

For the zero-gap case, the dispersion of some bands is linear (cmp. Sect. 18.1.2);
this corresponds to a very strong non-parabolicity. The dielectric function of zero-gap
semiconductors is discussed in [460].

http://dx.doi.org/10.1007/978-3-319-23880-7_3
http://dx.doi.org/10.1007/978-3-319-23880-7_18
http://dx.doi.org/10.1007/978-3-319-23880-7_18
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Fig. 6.39 Crystal field
splitting Δcf for various
chalcopyrite compounds
versus the tetragonal
distortion
2 − c/a = 2 (1 − η).
Dash-dotted line represents
Δcf = 1.5 b (2 − c/a) for
b = 1eV. Data from [458]
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Fig. 6.40 Schematic band
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6.11 Strain Effects on the Band Structure

A mechanical strain (or equivalently stress) causes changes in the bond lengths.
Accordingly, the band structure is affected. These effects have been exhaustively
treated in [461, 462]. For small strain, typically ε � 0.01 the shift of the band
edges is linear with the strain, for large strain it becomes nonlinear [463]. Often
homogeneous strain is assumed, the effect of inhomogeneous strain is discussed
in [464].
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6.11.1 Strain Effect on Band Edges

In a direct-gap zincblende material the position of the conduction-band edge is only
affected by the hydrostatic component of the strain

EC = E0
C + ac

(
εxx + εyy + εzz

) = E0
C + ac Tr(ε), (6.51)

where ac < 0 is the conduction-band hydrostatic deformation potential and E0
C is the

conduction-band edge of the unstrained material. Similarly, the valence-band edge is

EV = E0
V + av Tr(ε), (6.52)

where av > 0 is the valence-band hydrostatic deformation potential. Therefore the
band gap increases by

ΔEg = a Tr(ε) = a
(
εxx + εyy + εzz

)
, (6.53)

with a = aC−aV. Such linear behavior upon hydrostatic pressure has been found for
many semiconductors and is shown in Fig. 6.41a for Ga0.92In0.08As. The anomaly for
N-doping is discussed below in Sect. 6.11.3. In Fig. 6.42 the dependence of the direct
and indirect gaps of GaAs is shown. The dependence of the direct gap on pressure
is non-linear, that on the density is linear [465].

(a) (b)

Fig. 6.41 (a) Dependence of the band gap of Ga0.92In0.08As alloy (squares) and nitrogen-doped
(Ga,In)As on (compressive) hydrostatic pressure, determined by photomodulated transmission at
T = 295K. (b) Pressure dependence of band gap for two (Ga,In)(As,N) samples together with
model calculation (6.58). The coupling parameter is V = 0.12eV (0.4eV) for a nitrogen content
of 0.9% (2.3%). Adapted from [466]
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Fig. 6.42 Dependence of the direct Γ V
15–Γ

C
1 and indirect Γ V

15–XC
1 band gap of GaAs (T = 300K)

on pressure. Solid lines are interpolations of experimental data, dashed line is extrapolation to
p = 0. The crossing of the direct and indirect band gap occurs at 4.2GPa. The arrow denotes
the pressure of the phase transition from zincblende to an orthorhomic structure around 17GPa.
Adapted from [465]

Biaxial and shear strains affect the valence bands and lead to shifts and splitting
of the heavy and light holes at the Γ point:

Ev,hh/lh = E0
v ± Eεε (6.54a)

E2
εε = b2/2

[(
εxx − εyy

)2 + (
εyy − εzz

)2 + (εxx − εzz)
2
]

+ d2
[
ε2xy + ε2yz + ε2xz

]
,

where E0
v denotes the bulk valence-band edge. b and d are the optical deformation

potentials. For compressive strain the heavy-hole band is above the light-hole band.
For tensile strain there is strong mixing of the bands (Fig. 6.43). In Table6.7 the
deformation potentials for some III–V semiconductors are listed. Typical values are
in the eV regime.

In a wurtzite crystal, seven (or eight) deformation potentials are needed that are
termed a (for the change of band gap with hydrostatic strain, again a = aC − aV)
and D1–D6 (for the valence band structure) [467, 468].

In Si and Ge, three deformation potentials, termed a, b, d, are needed for the
valence band and two for each conduction band minimum, �u and �d [469]. The
energy position of the i th conduction-band edge (with unit vector ai pointing to the
valley) is

EC,i = E0
C,i + �d Tr(ε) + �u ai ε ai , (6.55)

where E0
C,i denotes the energy of the unstrained conduction-band edge. The defor-

mation potentials for Si and Ge are given in Table6.8.
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Fig. 6.43 Schematic band structure of GaAs in unstrained state (center) and under compressive
and tensile biaxial strain as labeled. Dashed lines indicate shift of band edges due to hydrostatic
part of strain

Table 6.7 Deformation potentials for some III–V semiconductors

Material a b d

GaAs −9.8 −1.7 −4.6

InAs −6.0 −1.8 −3.6

All values in eV

Table 6.8 Deformation potentials for silicon and germanium

Material �
(Δ)
d �

(Δ)
u �

(L)
d �

(L)
u a b d

Si 1.1 10.5 −7.0 18.0 2.1 −2.33 −4.75

Ge 4.5 9.75 −4.43 16.8 2.0 −2.16 −6.06

All values in eV from [470]

6.11.2 Strain Effect on Effective Masses

In the presence of strain the band edges are shifted (cf. Sect. 6.11). Since the electron
mass is related to the band gap, it is expected that the mass will also be effected.
In the presence of hydrostatic strain εH the electron mass is [471] (cf. to (6.39) for
εH → 0)

m0

m∗
e

= 1 + EP

Eg + Δ0/3

[
1 − εH

(
2 + 3a

Eg + Δ0/3

)]
, (6.56)

with a being the hydrostatic deformation potential and εH = Tr(ε). In [471], formulas
are also given for biaxial and shear strain and also for hole masses. Since the effective
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mass enters the mobility, the electrical conductivity depends on the stress state of the
semiconductor (piezoresistivity, see Sect. 8.3.11).

6.11.3 Interaction with a Localized Level

The normal dependence of the band gap on hydrostatic pressure is linear and given
by (6.53). (Ga,In)As containing nitrogen exhibits a remarkable deviation from this
behavior as shown in Fig. 6.41a. This is due to the interaction of the continuum states
of the conduction band with the electron level of the isoelectronic nitrogen impurity
(Sect. 7.7.9) EN, being within the conduction band. For GaAs it is 0.2 eV above
the conduction band edge EC. This phenomenon has been investigated theoretically
withinmicroscopic detail [472].Within a simple ‘band anticrossing’ two-levelmodel,
the coupling of the pressure-dependent conduction band edge EC and the nitrogen
level can be obtained from the Eigenwert equation

∣∣∣∣ E − EC V
V E − EN

∣∣∣∣ = 0, (6.57)

V being the coupling constant. The determinant vanishes for

E± = 1

2

(
EC + EN ±

√
(EC − EN)2 + 4V 2

)
. (6.58)

Here the weak pressure dependence of EN is neglected for simplicity. This model can
explain the pressure dependence of the band gap of (Ga,In)As:N fairly well [466]
(Fig. 6.41b). The coupling parameter V is in the order of a few 0.1eV for small

Fig. 6.44 Bandgap of
GaAs1−xNx , experimental
data from various sources
(symbols) and model (curve)
according to (6.58) with
V = V0

√
x for V0 = 2.7eV.

Adapted from [473]
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http://dx.doi.org/10.1007/978-3-319-23880-7_8
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nitrogen content. In photomodulated reflection also the E+ levels can be observed
[473]. The anticrossing model can also model the dependence of the GaAs1−xNx

bandgap on the nitrogen concentration [473] (Fig. 6.44).

6.12 Density of States

6.12.1 General Band Structure

The dispersion relation yields how the energy of a (quasi-) particle depends on
the k vector. Now we want to know how many states are at a given energy. This
quantity is called the density of states (DOS) and is written as D(E). It is defined
in an infinitesimal sense such that the number of states between E and E + δE is
D(E)δE . In the vicinity of the extrema of the band structure many states are at the
same energy such that the density of states is high.

The dispersion relation of a band will be given as E = E(k). If several bands
overlap, the densities of state of all bands need to be summed up. The density of
states at the energy Ẽ for the given band is

D(Ẽ) dE = 2
∫

d3k
(2π/L)3

δ(Ẽ − E(k)), (6.59)

where, according to (5.5), (2π/L)3 is the k-space volume for one state. The factor
2 is for spin degeneracy. The integral runs over the entire k-space and selects only
those states that are at Ẽ . The volume integral can be converted to a surface integral
over the isoenergy surface S(Ẽ) with E(k) = Ẽ . The volume element d3k is written
as d2S dk⊥. The vector dk⊥ is perpendicular to S(Ẽ) and proportional to ∇k E(k),
i.e. dE = |∇k E(k)| dk⊥.

D(Ẽ) = 2
∫

S(Ẽ)

d2S

(2π/L)3

1

|∇k E(k)| . (6.60)

In this equation, the dispersion relation is explicitly contained. At band extrema
the gradient diverges, however, in three dimensions the singularities are integrable
and the density of states takes a finite value. The corresponding peak is named a
van-Hove singularity. The concept of the density of states is valid for all possible
dispersion relations, e.g. for electrons, phonons or photons.

The density of states for the silicon band structure (see Fig. 6.6a) is shown in
Fig. 6.45.

http://dx.doi.org/10.1007/978-3-319-23880-7_5
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Fig. 6.45 Density of states
in the silicon valence- (blue)
and conduction-band (red) as
obtained from theoretical
calculation using empirical
pseudopotentials. Grey
regions denotes the band
gap. Critical points
(cf. Fig. 6.6a) are labeled. In
the lower three graphs, the
DOS is decomposed into
contributions from different
angular momentum states
(s (green), p (orange) and d
(purple)). Top part adapted
from [474], bottom part
adapted from [155]

6.12.2 Amorphous Semiconductors

If disorder is introduced, the density of states is modified as shown in Fig. 6.46 for
amorphous germanium using a calculation with complex eigenenergies. The defects,
as compared to the perfect lattice, introduced states in the band gap and generally
wash out the sharp features from the crystalline DOS.

Several models exist for the defect level distributions within the band gap. The
first model was the Mott model which has band tails at the valence and conduction
band edges [475]. In the Cohen-Fritzsche-Ovshinsky (CFO) model [476], the band
tails are more severe and overlap; the Fermi energy lies at the minimum of the
density of states. In the Davis–Mott model [477] deep states were added in the gap
and eventually the Marshall-Owen model [478] assumes band tails and donor- and
acceptor-like deep states. The four models are schematically shown in Fig. 6.47.
These model densities of states allow also the interpretation of carrier transport
in amorphous semiconductors, taking into account localized and delocalized states
(see Sect. 8.8).

The density of states for an amorphous semiconductor is best calculated from
atomistic models, possibly averaging over many configurations. The typical features,

http://dx.doi.org/10.1007/978-3-319-23880-7_8
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Fig. 6.46 Theoretical calculation for the density of states of amorphous Ge models as obtained for
various degrees of disorder α (3.7). α = 0.09 corresponds to a mean short-range order distance of
about 2.4 lattice constants (cmp. Fig. 3.14b). Adapted from [177]
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Fig. 6.47 Model density of states in amorphous semiconductors (solid lines) according to
Mott [475], Cohen-Fritzsche-Ovshinsky [476], Davis–Mott [477] and Marshall–Owen [478].
Dashed lines represent the DOS of the same material without disorder

compared to the clear band gap of a similar ordered material, are band tails due
to disorder (cmp. Sect. 5.2.8) and deep levels within the gap due to specific atomic
arrangements not present in ordered bulk. Themost investigated system is amorphous
silicon; in Fig. 6.48 a numerical calculation of the density of states is shown together
with charge distribution of four states at selected energies [479]. The further the
states are in the band tail, the stronger their localization is. The two most right states
shown in Fig. 6.48 are not conducting.

http://dx.doi.org/10.1007/978-3-319-23880-7_3
http://dx.doi.org/10.1007/978-3-319-23880-7_3
http://dx.doi.org/10.1007/978-3-319-23880-7_5
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Fig. 6.48 Theoretical calculation of the density of electronic states of amorphous silicon. The
charge distribution in four selected states at the indicated energies is shown, from right to left with
decreasing localization. Adapted from [479]

As another example, simulations of ZnSnO3 are shown in Fig. 6.49. The band tail
between 0 and 0.5eV is due to disorder of oxygen 2p orbitals [480]. At 0.9eV a level
due to under-coordinated oxygen appears. Deep levels are due to metal-metal bonds.
Band tails due to chemically disordered oxygen have been experimentally observed
for amorphous GIZO [481].

Fig. 6.49 Theoretical
calculation for the density of
states of crystalline (dashed
lines, conduction and
valence bands indicated by
greay areas) and amorphous
ZnSnO3 with different
configurations (solid lines).
States due to
under-coordinated oxygen
(Ouc) and metal-metal binds
are labelled. Adapted
from [480]
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6.12.3 Free-Electron Gas

In M dimensions, the energy states of a free-electron gas are given as

E(k) = �
2

2m∗

M∑
i=1

k2
i . (6.61)

The ki can take the values ±πn/L (in the first Brillouin zone) with n ≤ N , N
being the number of unit cells in one dimension. These values are equidistant in
k-space. Each M-dimensional k-point takes a volume of (2π/L)M . The number of
states N (EF) up to the energy EF = �

2

2m k2
F (later used as Fermi energy EF and Fermi

vector kF) is

N (EF) = 2

(2π/L)M

∫ |k|=kF

k=0
dM k. (6.62)

The factor 2 is for spin degeneracy, the integration runs over M dimensions. The
density of states is the derivative

D(E) = dN

dE
. (6.63)

In the following, the density of states for M = 3, 2, 1 and zero dimensions is
derived. A visualization is given in Fig. 14.1.

M = 3

This case relates to bulk material in which electrons are free to move in all three
dimensions. Performing the integral (6.62) for M = 3 yields for an isotropic mass,

N 3D = V

3π2
k3
F = V

3π2

(
2m EF

�2

)3/2

. (6.64)

Therefore, kF and EF are given by

kF =
(
3π2 N

V

)1/3

(6.65)

EF = �
2

2m∗

(
3π2 N

V

)2/3

, (6.66)

and the density of states in three dimensions is

D3D(E) = V

2π2

(
2m∗

�2

)3/2 √
E . (6.67)

http://dx.doi.org/10.1007/978-3-319-23880-7_14
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Mostly the density of states is used as density of states per volume, then the factor
V in (6.67) is omitted.

If a conduction-bandminimum is degenerate, a factor gv (valley degeneracy) must
be included in the density of states, i.e. gv = 6 for Si and gv = 8 for Ge (gv = 1 for
GaAs). This factor is typically included in the mass used in (6.67) that then becomes
the density of states mass md,e. If the conduction-band minimum has cylindrical
symmetry in k-space, such as for Si and Ge, the mass that has to be used is

md,e = g2/3v

(
m2

t m l
)1/3

. (6.68)

In the case of a degeneracy of the valence band, the states of several bands need to be
summed. In bulk material, typically the heavy and light hole bands are degenerate at
the Γ point. If the split-off band is not populated because of insufficient temperature,
the valence-band edge density of states is expressed by the density of states holemass

md,h =
(

m3/2
hh + m3/2

lh

)2/3
. (6.69)

The density of states (per volume) at the conduction and valence band edges are
thus given by

D3D
e (E) = 1

2π2

(
2md,e

�2

)3/2 √
E − EC, E > EC (6.70)

D3D
h (E) = 1

2π2

(
2md,h

�2

)3/2 √
EV − E, E < EV. (6.71)

M = 2

This case is important for thin layers in which the electron motion is confined in
one direction and free in a plane. Such structures are called quantum wells (see
Sect. 12.3.2). We find for the 2D density of states (for each subband over which it is
not summed here, including spin degeneracy)

N 2D = A

2π
k2
F = A

π

m∗

�2
E, (6.72)

where A is the area of the layer. The density of states is thus constant and given by

D2D(E) = A

π

m∗

�2
. (6.73)

M = 1

The case M = 1 describes a quantum wire in which the electron motion is confined
in two dimensions and free in only one dimension. For this case, we find for a wire

http://dx.doi.org/10.1007/978-3-319-23880-7_12
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of length L

N 1D = 2L

π
kF = 2L

π

(
2m∗E

�2

)1/2

. (6.74)

The density of states becomes singular at E = 0 and is given by (for one subband)

D1D(E) = L

π

(
2m∗

�2

)1/2 1√
E

. (6.75)

M = 0

In this case electrons have no degrees of freedom, as, e.g., in a quantum dot
(Sect. 14.3), and each state has a δ-like density of states at each of the quantized
levels.

http://dx.doi.org/10.1007/978-3-319-23880-7_14


Chapter 7
Electronic Defect States

Über Halbleiter sollte man nicht arbeiten, das ist eine
Schweinerei, wer weiß ob es überhaupt Halbleiter gibt.
One should not work on semiconductors. They are a mess.
Who knows whether semiconductors exist at all.

W. Pauli, 1931 [482]

Abstract After the carrier statistics for intrinsic conduction and general doping
principles, donors and acceptors, compensation and high doping effects are treated
in detail. The concept of quasi-Fermi levels is introduced. Finally for deep levels and
their thermodynamics general remarks and several examples are given.

7.1 Introduction

One centimeter cube of a semiconductor contains about 5 × 1022 atoms. It is prac-
tically impossible to achieve perfect purity. Typical low concentrations of impurity
atoms are in the 1012–1013 cm−3 regime. Such a concentration corresponds to a purity
of 10−10, corresponding to about one alien in the world’s human population. In the
beginning of semiconductor research the semiconductors were so impure that the
actual semiconducting properties could only be used inefficiently. Nowadays, thanks
to large improvements in high-purity chemistry, the most common semiconductors,
in particular silicon, can be made so pure that the residual impurity concentration
plays no role in the physical properties. However, the most important technological
step for semiconductors is doping, the controlled incorporation of impurities, in order
to manage the semiconductor’s conductivity. Typical impurity concentrations used
in doping are 1015–1020 cm−3. A milestone in the understanding of doping and the
spreading of semiconductor technology was the 1950 textbook by Shockley [483].

© Springer International Publishing Switzerland 2016
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
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204 7 Electronic Defect States

7.2 Carrier Concentration

Generally, the density of electrons in the conduction band is given by

n =
∫ ∞

EC

De(E) fe(E) dE, (7.1)

and accordingly the density of holes in the valence band is

p =
∫ EV

−∞
Dh(E) fh(E) dE . (7.2)

The energy of the top of the valence band is denoted by EV, the bottom of the
conduction band as EC. The distribution function for holes is fh = 1 − fe. Thus,

fh(E) = 1 − 1

exp
( E−EF

kT

) + 1
= 1

exp
(− E−EF

kT

) + 1
. (7.3)

If several hole bands (hh, lh, so) are considered, the same distribution is valid for all
hole bands in thermal equilibrium.

We assume parabolic band edges, i.e. effective masses me and mh for electrons
and holes, respectively. The density of states (per volume) in the conduction and
valence bands is given by (6.70) and (6.71).

In thermodynamic equilibrium, the distribution function fe(E) for electrons is
given by the Fermi–Dirac distribution (Fermi function) fe(E) (E.22)

fe(E) = 1

exp
( E−EF

kT

) + 1
, (7.4)

If the Boltzmann distribution (E.23) is a good approximation, the carrier distribution
is called nondegenerate. If the Fermi distribution needs to be invoked, the carrier
ensemble is called degenerate. If the Fermi level is within the band, the ensemble is
highly degenerate.

If theBoltzmann approximation (E.23) cannot be applied, i.e. at high temperatures
or for very small band gaps, the integral over D f cannot be analytically evaluated.
In this case the Fermi integral is needed that is defined1 as

Fn(x) = 2√
π

∫ ∞

0

yn

1 + exp(y − x)
dy. (7.5)

1Equation (7.5) is restricted to n > −1. A form without restriction is Fn(x) = 1
Γ (n+1)

∫ ∞
0

yn

1+exp(y−x)
dy. The factor 2/

√
π is often omitted but must be then added explicitly in, e.g. (7.6).

http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_6
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(a) (b)

Fig. 7.1 Fermi integral F̂1/2 = (
√

π/2)F1/2 with approximations in three regions of the argu-
ment: A1(x) = (

√
π/2) exp(x) for x < 2, A2(x) = (

√
π/2)(1/4 + exp(−x))−1 for −2 < x < 2,

A3(x) = 2/3x3/2 for x > 2. (a) linear, (b) semilogarithmic plot

In the present case of bulk materials n = 1/2. For large negative argument, i.e.
x < 0 and |x | � 1, F1/2(x) ≈ exp(x), which is the Boltzmann approximation.
F1/2(0) = 0.765 . . . ≈ 3/4. For large argument, i.e. x � 1, F1/2(x) ≈ (2/

√
π)(2/3)

x3/2. Such fairly simple approximations are plotted in Fig. 7.1 in comparison with
the Fermi integral. For computations, analytical [484–486] or numerical approxima-
tions [487, 488] are used.

The derivative of the Fermi integral is given by F ′
n(x) = nFn−1(x), n > 0. For

n = 0, i.e. a two-dimensional system, the integral can be executed explicitly, F0(x) =
(2/

√
π) ln

[
1 + exp(x)

]
.

With the Fermi integral F1/2 (7.10) and (7.11) the free-carrier densities can be
written as

n = NC F1/2

(
EF − EC

kT

)
(7.6)

p = NV F1/2

(
− EF − EV

kT

)
, (7.7)

with

NC = 2

(
me kT

2π �2

)3/2

(7.8)

NV = 2

(
mh kT

2π �2

)3/2

, (7.9)

where NC (NV) is called the conduction-band (valence-band) edge density of states.
The masses in (7.8) and (7.9) are the density of states masses given in (6.68) and
(6.69). Values of NC,V for Si, Ge and GaAs are given in Table7.1.

Now, we assume that the Boltzmann approximation (Appendix E) can be used,
i.e. the probability that a band state is populated is � 1. Then, the integral (7.1) can

http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_6
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Table 7.1 Band gap,
intrinsic carrier concentration,
conduction band and
valence-band edge density of
states at T = 300K for
various semiconductors

Eg (eV) ni (cm−3) NC (cm−3) NV (cm−3)

InSb 0.18 1.6 × 1016

InAs 0.36 8.6 × 1014

Ge 0.67 2.4 × 1013 1.04 × 1019 6.0 × 1018

Si 1.124 1.0 × 1010 7.28 × 1019 1.05 × 1019

GaAs 1.43 1.8 × 106 4.35 × 1017 5.33 × 1018

GaP 2.26 2.7 × 100

GaN 3.3 �1

be executed analytically and the concentration n of electrons in the conduction band
is given as

n = 2

(
mekT

2π�2

)3/2

exp

(
EF − EC

kT

)
= NC exp

(
EF − EC

kT

)
. (7.10)

For the Boltzmann approximation and a parabolic valence band, the density of holes
is given by

p = 2

(
mhkT

2π�2

)3/2

exp

(
− EF − EV

kT

)
= NV exp

(
− EF − EV

kT

)
. (7.11)

The product of the electron and hole density is

n p = NV NC exp

(
− EC − EV

kT

)
= NV NC exp

(
− Eg

kT

)
(7.12)

= 4

(
kT

2π�2

)3

(md,e md,h)
3/2 exp

(
− Eg

kT

)
.

Thus, the product np is independent of the position of the Fermi level, as long as the
Boltzmann approximation is fulfilled, i.e. the Fermi level is not in the vicinity of one
of the band edges within several kT :

EV + 4kT < EF < EC − 4kT . (7.13)

The relation (7.12) is called the mass-action law.
In Fig. 7.2, the product np is shown for silicon over awide range of Fermi energies.

If EF is within the band gap, np is essentially constant. If the Fermi level is in the
valence or conduction band, np decreases exponentially.
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(a) (b)

Fig. 7.2 (a) np for silicon at T = 300K as a function of the position of the Fermi level. The
valence-band edge EV is chosen as E = 0. np is constant for the range of Fermi energies given by
(7.13) (4kT ≈ 0.1eV). (b) n, p and

√
np as a function of the Fermi level

7.3 Intrinsic Conduction

First, we consider the conductivity of the intrinsic, i.e. an ideally pure, semiconductor.
At T = 0 all electrons are in the valence band, the conduction band is empty and thus
the conductivity is zero (a completely filled band cannot conduct current). Only at
finite temperatures the electrons have a finite probability to be in a conduction-band
state and to contribute to the conductivity. Due to neutrality, the electron and hole
concentrations in the intrinsic semiconductors are the same, i.e. each electron in the
conduction band comes from the valence band,

− n + p = 0, (7.14)

or ni = pi. Therefore

ni = pi = √
NV NC exp

(
− Eg

2kT

)

= 2

(
kT

2π�2

)3/2

(memh)
3/4 exp

(
− Eg

2kT

)
. (7.15)

The mass-action law

np = ni pi = n2
i = p2

i (7.16)

will be essential also for light and moderately doped semiconductors. The intrinsic
carrier concentration is exponentially dependent on the band gap. Thus, in thermo-
dynamic equilibrium intrinsic wide-gap semiconductors have much smaller electron
concentrations than intrinsic small-gap semiconductors (see Table7.1). The intrinsic
carrier concentration of Si (in cm−3) has been determined to be (within 1%, T in K)
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(a) (b)

Fig. 7.3 (a) Band gap of silicon versus temperature. (b) Intrinsic carrier concentration of sili-
con versus temperature. Solid line is (7.17) using Eg = 1.204 eV − (2.73 × 10−4 eV/K) T [491],
symbols are experimental data from [492]

nSi
i = 1.640 × 1015 T 1.706 exp

(
− Eg(T )

2kT

)
(7.17)

for temperatures between 77 and 400K [489, 490] (Fig. 7.3).
As we will see later in Part II, many semiconductor devices rely on regions

of low conductivity (depletion layers) in which the carrier concentration is small.
Since the carrier concentration cannot be smaller than the intrinsic concentration
(n + p ≥ 2ni), an increase of temperature leads to increasing ohmic conduction in
the depletion layers and thus to a reduction or failure of device performance. The
small band gap of Ge leads to degradation of bipolar device performance already
shortly above room temperature. For silicon, intrinsic conduction limits operation
typically to temperatures below about 300 ◦C. For higher temperatures, as required
for devices in harsh environments, such as close to motors or turbines, other semi-
conductors with wider band gaps need to be used, such as GaN, SiC or even diamond.

From the neutrality condition for the intrinsic semiconductor (7.14), (7.10) and
(7.11), the Fermi level of the intrinsic semiconductor can be determined as

EF = Ei = EV + EC

2
+ kT

2
ln

(
NV

NC

)
= EV + EC

2
+ 3

4
kT ln

(
mh

me

)
. (7.18)

Since the hole mass is perhaps a factor of ten larger than the electron mass, the
second term has the order of kT . Thus, for typical semiconductors where Eg � kT ,
the intrinsic Fermi level, denoted by Ei, is close to the middle of the band gap, i.e.
Ei ≈ (EC + EV)/2.

The situation for an intrinsic semiconductor is schematically shown in Fig. 7.4b.
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Fig. 7.4 Density of states
(left column), Fermi
distribution (center column)
and carrier concentration
(right column) for (a) n-type,
(b) intrinsic and (c) p-type
semiconductors in thermal
equilibrium
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7.4 Doping

7.4.1 Concept

Themodification of the conductivity of a semiconductor using point defects is termed
doping. In 1930 electrical conduction of semiconductors was attributed solely to
impurities [493]. However ‘chemically pure’ substances become conductive upon
deviation from stoichiometry, e.g. historically found for changes in the anion con-
centration and conductivity in CuI [31] (p-type) and ZnO [70] (n-type). The modifi-
cation of CuI by exposure to different partial pressure of iodine in organic solutions
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with different iodine concentration [34] and subsequently various concentrations of
copper vacancies [494] can be considered the first doping of a semiconductor (1909).

The electronic levels of a defect or an impurity can exist within the forbidden
gap of the bulk host material. These levels can lie close to the band edges or in the
vicinity of the middle of the band gap. In a simplified approach, the first stem from
shallow defects (Sect. 7.5), the latter from deep defects (Sect. 7.7).

7.4.2 Doping Principles

In [495] various doping principles are formulated. Essentially, the amount of impu-
rities that lead to electrically active dopants is limited by the increasingly probable
formation of compensating defects. In the case of donors, these are electron killers,
e.g. n-type doping of Si:As is limited by the formation of VSi [496]. In the case of
acceptors, the compensating defects are hole killers. The so-called n-type pinning
energy En,pin

F is the Fermi level at which such killer defect (e.g. a cation vacancy)
forms.When the Fermi level reaches the pinning energy, no further progress in n-type
doping can be made, since the spontaneously generated electron killers will negate
the introduced (impurity) donors. As a tendency, materials with low lying conduction
band, i.e. large electron affinity (difference between vacuum level and conduction
band) can be doped n-type. Similarly, p-type doping by acceptors, shifting the Fermi
level towards the valence band, will meet at some point Ep,pin

F , called p-type pinning
energy, when native hole killers, such as anion vacancies or cation interstitials form
spontaneously. At this point, further p-type doping is no longer possible. p-type dop-
ing is facilitated by materials whose valance band maximum is close to the vacuum
level [495].

A comparison of thewide gapmaterials ZnO,NiO andMgO is depicted in Fig. 7.5.
The position of the pinning levels is marked on a common energy scale. From the
position of En,pin

F it can be understood, that ZnO can be highly n-doped while NiO

ZnO NiO MgO

E
-E

V

Fig. 7.5 Comparison of ZnO, NiO and MgO on a common energy scale, comparing conduction
band and valence band edges and n-type (red) and p-type (blue) pinning energies (determined for
metal-rich and oxygen-rich conditions, respectively). Adapted from [497]
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and MgO cannot [497]. From Ep,pin
F , NiO can be doped p-type, while MgO cannot

be doped at all.
For dopability, generally, it is also important that the ionized charges from impu-

rities are free and thus contribute to the free charge carrier density and do not form
localized states, e.g. due to polaronic effects (Sect. 8.6).

7.5 Shallow Defects

In Fig. 7.6, the positions of the energy levels of a variety of impurities are shown for
Ge, Si and GaAs. An impurity for which the long-range Coulomb part of the ion-core
potential determines the energetic level is termed a shallow impurity. The extension
of the wavefunction is given by the Bohr radius. This situation is in contrast to a
deep level where the short-range part of the potential determines the energy level.
The extension of the wavefunction is then of the order of the lattice constant. A view
on the history of the science of shallow impurity states is given in [498, 499].

We will consider first a group-IV semiconductor, Si, and (impurities) dopants
from the groups III and V of the periodic system. When these are incorporated on a
lattice site (with tetrahedral bonds), there is one electron too few (group III, e.g. B)
or one electron too many (group V, e.g. As). The first case is called an acceptor, the
latter a donor. The doping of III–V semiconductors is detailed in [501].

7.5.1 Donors

Silicon doped with arsenic is denoted as Si:As. The situation is schematically shown
in Fig. 7.7. The arsenic atom has, after satisfying the tetrahedral bonds, an extra
electron. This electron is bound to the arsenic atom via the Coulomb interaction
since the ion core is positively charged compared to the silicon cores. If the electron
is ionized, a fixed positive charge remains at the As site.

Without being in the silicon matrix, an arsenic atom has an ionization energy of
9.81eV. However, in the solid the Coulomb interaction is screened by the dielec-
tric constant of the material, typically εr is of the order of 10 for typical semi-
conductors. Additionally, the mass is renormalized (effective mass) by the periodic
potential to a value that is smaller than the free electron mass. Within effective-
mass theory (Appendix H) Bohr’s theory of the hydrogen problem is scaled with the
(isotropic) effective mass m∗

e and the dielectric constant εr , the binding energy (ion-
ization energy) Eb

D of the electron to the shallow donor is (relative to the continuum
given by the conduction-band edge EC)

Eb
D = m∗

e

m0

1

ε2r

m0 e4

2 (4πε0 �)2
. (7.19)

http://dx.doi.org/10.1007/978-3-319-23880-7_8
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(a)

(b)

(c)

Fig. 7.6 Energetic position (ionization energy labeled in meV) of various impurities (A: acceptor,
D: donor) in (a) Ge, (b) Si and (c) GaAs. Based on [500]

Fig. 7.7 Arsenic impurity in
silicon. Arsenic donates one
electron, and a fixed positive
charge remains

Si

Si Si

As

Si

Si

Si

Si
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The absolute energy position of the level is ED = EC − Eb
D. The first factor in

the right side of (7.19) is the ratio of effective and free-electron mass, typically 1/10,
the second factor is typically 1/100. The third factor is the ionization energy of the
hydrogen atom, i.e. the Rydberg energy of 13.6eV. Thus, the binding energy in the
solid is drastically reduced by a factor of about 10−3 to the 10meV regime. The
excited states of the hydrogen-like spectrum can also be investigated experimentally
(Sect. 9.7).

The extension of the wavefunction of the electron bound to the fixed ion is given
by the Bohr radius

aD = m0

m∗
e

εr aB, (7.20)

where aB = 0.053nm denotes the hydrogen Bohr radius. For GaAs aD = 10.3nm.
A similar value has been determined for InP [502]. For semiconductors with a non-
isotropic band minimum, such as Si, Ge or GaP, an ‘elliptically deformed’ hydrogen
problem with the masses m l and m t has to be treated [503].

An impurity that fulfills (7.19) is called an effective-mass impurity. For GaAs, the
effective-mass donor has a binding energy of 5.715meV, which is closely fulfilled for
several chemical species (Table7.3). In GaP, experimental values deviate consider-
ably from the effective-mass donor (59meV). For silicon, considering the anisotropic
tensor of the effective masses, the result for the effective-mass donor binding energy
is 29meV [503]. Some experimentally observed values are summarized in Table7.2.

Table 7.2 Binding energies Eb
D of Li and group-V donors in elemental semiconductors

Li N P As Sb

C 1700 ≈500

Si 33 45 49 39

Ge 9.3 12.0 12.7 9.6

Data for carbon from [505]. All values in meV

Table 7.3 Binding energies Eb
D of donors in GaAs (data from [506]), GaP (data from [507]) and

GaN (low concentration limits, data from [508, 509])

V site III site

GaAs S 5.854 C 5.913

Se 5.816 Si 5.801

Te 5.786 Ge 5.937

GaP O 897 Si 85

S 107 Ge 204

Se 105 Sn 72

Te 93

GaN O 39 Si 22

Ge 19

All values in meV

http://dx.doi.org/10.1007/978-3-319-23880-7_9


214 7 Electronic Defect States

Fig. 7.8 Electron spin
resonance signal from As
and P in Ge with the
magnetic field H parallel to
[100], T ≈ 1.3K. Adapted
from [504]

Deviations from the effective-mass theory are due to modification of the potential
in the immediate vicinity of the impurity atom and breakdown of the effective-mass
formalism.

Different impurities can have quite similar binding energies. They can be distin-
guished, e.g. by electron spin resonance (ESR). At low temperatures the electron
is localized on the impurity and the hyperfine interaction with the nucleus can be
resolved in ESR. In Fig. 7.8 data are shown forAs and P in germanium. Themultiplets
distinguish the nuclear spins I = 3/2 for arsenic (75As) and I = 1/2 for phosphorus
(31P) [504].

The donors are typically distributed statistically (randomly) in the solid.Otherwise
their distribution is called clustered. The concentration of donors is labeled ND and
usually given in cm−3.

The concentration of donors populatedwith an electron (neutral donors) is denoted
by N 0

D, the concentration of ionized donors (positively charged) is N+
D . Other con-

ventions in the literature label the concentrations N1 and N0, respectively:

N1 = N 0
D = ND fe(ED) (7.21a)

N0 = N+
D = ND (1 − fe(ED)), (7.21b)

with fe(ED) = [
1 + exp(ED − EF)

]−1
. For the sum of these quantities the condition

ND = N+
D + N 0

D (7.22)

holds.
The ratio of the two concentrations is first given as (caveat: this formula will be

modified below)
N 0
D

N+
D

= N1

N0
= f

1 − f
= exp

(
EF − ED

kT

)
. (7.23)

Now, the degeneracy of the states has to be considered. The donor charged with
one electron has a 2-fold degeneracy g1 = 2 since the electron can take the spin up and
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down states. The degeneracy of the ionized (empty) donor is g0 = 1. Additionally,
we assume here that the donor cannot be charged with a second electron (cmp.
Sect. 7.7.2). Due to Coulomb interaction, the energy level of the possible N−

D state is
in the conduction band. Otherwise, a multiply charged center would be present. We
also do not consider excited states of N 0

D that might be in the band gap as well. In the
following,wewill continuewith ĝD = g1/g0 = 2 as suggested in [510].2 We note that
the definition of the degeneracy factor for donors (and acceptors, see (7.39)) is not
consistent in the literature as summarized in [511]. Considering now the degeneracy,
(7.23) is modified to

N 0
D

N+
D

= N1

N0
= ĝD exp

(
EF − ED

kT

)
. (7.24)

This can be understood from thermodynamics (cf. Sect. 4.2.2), a rate analysis or
simply the limit T → ∞.

The probabilities f 1 and f 0 for a populated or empty donor, respectively, are

f 1 = N1

ND
= 1

ĝ−1
D exp

( ED−EF
kT

) + 1
(7.25a)

f 0 = N0

ND
= 1

ĝD exp
(− ED−EF

kT

) + 1
. (7.25b)

First, we assume that no carriers in the conduction band stem from the valence
band (no intrinsic conduction). This will be the case at sufficiently low temperatures
when ND � ni. Then the number of electrons in the conduction band is equal to the
number of ionized donors, i.e.

n = f 0 ND = N0 = ND

1 + ĝD exp
( EF−ED

kT

) = 1

1 + n/n1
ND,

with n1 = (NC/ĝD) exp
(−Eb

D/kT
)
. The neutrality condition (its general from is

given in (7.41)) is
− n + N+

D = −n + N0 = 0, (7.26)

leading to the equation (n is given by (7.10))

NC exp

(
EF − EC

kT

)
− ND

1 + ĝ exp
( EF−ED

kT

) = 0. (7.27)

2We do not agree with the treatment of the conduction band valley degeneracy in [510] for the donor
degeneracy factor for Ge and Si.

http://dx.doi.org/10.1007/978-3-319-23880-7_4
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(a) (b)

Fig. 7.9 (a) Position of the Fermi level in Si:P (ND = 1015 cm−3, Eb
D = 45meV, no acceptors)

as a function of temperature without consideration of intrinsic carriers. Zero energy refers to the
(temperature-dependent, Table6.4) conduction-band edge EC with approximative solutions for low
(dashed line, (7.29)) and high (dash-dotted line, (7.30)) temperatures. (b) Corresponding density
of conduction-band electrons as a function of temperature

Solving this equation will yield the Fermi level (as a function of temperature T ,
doping level ED and doping concentration ND).3 The solution is

EF = EC − Eb
D + kT ln

⎛
⎜⎝

[
1 + 4ĝD

ND
NC

exp
(

Eb
D

kT

)]1/2 − 1

2 ĝD

⎞
⎟⎠ . (7.28)

For T → 0 the Fermi level is, as expected, in the center between the populated and
unpopulated states, i.e. at EF = EC − Eb

D/2. In Fig. 7.9a the position of the Fermi
is shown for a donor with 45meV binding energy in Si. For low temperatures the
solution can be approximated as (dashed curve in Fig. 7.9b)

EF
∼= EC − 1

2
Eb
D + 1

2
kT ln

(
ND

ĝD NC

)
. (7.29)

The freeze-out of carriers in n-type silicon has been discussed in detail in [512],
taking into account the effects of the fine structure of the donor states. We note that
the fairly high donor binding energy in silicon leads to freeze-out of carriers at about
40K and is thus limiting for the low-temperature performance of devices. Ge has
smaller donor ionization energies and subsequently a lower freeze-out temperature of
20K. For n-type GaAs, conductivity is preserved down to even lower temperatures.

3As usual, the Fermi level is determined by the global charge neutrality, see also Sect. 4.2.2.

http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_4
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We note that the freeze-out of carriers involves the recombination of free electrons
with the ionized donors. This aspect is considered in Sect. 10.9. Microscopically this
process is equal to the emission of a (far infrared) photon [513, 514]. Similarly the
release of an electron from the donor is due to the absorption of a photon.

For higher temperatures, when the electron density saturates towards ND, the
approximate solution is (dash-dotted curve in Fig. 7.9a)

EF
∼= EC + kT ln

(
ND

NC

)
. (7.30)

The electron density n is given (still in the Boltzmann approximation) by

n = NC exp

(
− Eb

D

kT

) [
1 + 4 ĝD

ND
NC

exp
(

Eb
D

kT

)]1/2 − 1

2 ĝD

= 2 ND

1 +
[
1 + 4 ĝD

ND
NC

exp
(

Eb
D

kT

)]1/2 . (7.31)

The theoretical electron density as a function of temperature is shown in Fig. 7.9b. It
fits very well to experimental data for arsenic doped germanium [515] as shown in
Fig. 7.10 (Arrhenius plot, ln n vs. 1/T ).

For low temperatures, the solution (7.31) is close to

n ∼=
√

NDNC

ĝD
exp

(
− Eb

D

2kT

)
= √

n1 ND. (7.32)

Fig. 7.10 Electron
concentration as a function
of temperature for a Ge:As
sample with
ND ≈ 1013 cm−3. Solid line
is fit to the data with a donor
binding energy of 12.7meV.
Adapted from [515]
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For high temperatures, n ∼= ND. This regime is called exhaustion or saturation
since all possible electrons have been ionized from their donors. We note that even
in this case np = ni pi holds, however, n � p.

While the characteristic energy for the ionization of electrons from donors is Eb
D,

at high enough temperatures electrons are transferred also from the valence band
into the conduction band. Thus, in order to make the above consideration valid for
all temperatures, the intrinsic conduction also has to be considered. The neutrality
condition (still in the absence of any acceptors) is

− n + p + N+
D = 0. (7.33)

Using (7.10) and p = n2
i /n, the equation reads:

NC exp

(
EF − EC

kT

)
− n2

i

NC exp
( EF−EC

kT

) − ND

1 + ĝD exp
( EF−ED

kT

) = 0. (7.34)

The solution is

EF = EC − Eb
D + kT ln

[
β/γ + γ/N 2

C − 1

3 ĝD

]
, (7.35)

with

γ =
⎛
⎝−N 4

C α +
√

(N 4
C α)2 − 4(N 2

C β)3

2

⎞
⎠

1/3

(7.36a)

β = N 2
C + 3ĝDNCND exp

(
ED

kT

)
+ 3ĝ2Dn2

i exp

(
2ED

kT

)
(7.36b)

α = 2N 2
C + 9ĝDNCND exp

(
ED

kT

)
− 18ĝ2Dn2

i exp

(
2ED

kT

)
. (7.36c)

The temperature-dependent position of the Fermi level is shown in Fig. 7.11. The
carrier concentration is given by

n = NC exp

(
− Eb

D

kT

)
β/γ + γ/N 2

C − 1

3 ĝD
. (7.37)

The three important regimes are the intrinsic conduction at high temperatures when
ni � ND, the exhaustion at intermediate temperatures when ni � ND and kT > ED,
and finally the freeze-out regime for kT � ED at low temperatures when the elec-
trons condense back into the donors. The three regimes can be seen in the experi-
mental data of Fig. 7.10 for donors (n-Ge) and Fig. 7.15 for acceptors (p-Ge).
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(a) (b)

Fig. 7.11 (a) Position of the Fermi level in Si:P (ND = 1015 cm−3, Eb
D = 45meV, no acceptors)

as a function of temperature. The temperature dependence of the band gap (as given in Table6.4)
has been taken into account. Zero energy refers to the conduction-band edge for all temperatures.
The dotted curve shows Eg/2. The dashed (dash-dotted) line shows the low- (high-) temperature
limit according to (7.29) and (7.18), respectively. (b) Corresponding electron concentration as a
function of temperature. The dashed line shows the intrinsic carrier density

Fig. 7.12 Fermi level in
silicon as a function of
temperature for various
doping levels (n-type (blue
lines) and p-type (red lines))
of 1012, 1013, . . . ,
1018 cm−3. The intrinsic
Fermi level is chosen as zero
energy for all temperatures.
The (temperature-dependent)
conduction and valence band
edges are shown as dashed
lines

A similar plot as in Fig. 7.11a is shown in Fig. 7.12. With increasing temperature
the Fermi level shifts from close to the band edge towards the band center. At higher
doping the shift begins at higher temperatures.

The electronic states of individual donors can be directly visualized by scanning
tunneling microscopy (STM) as shown in Fig. 7.13 for Si:P. For small negative bias,
tunneling occurs through the charged dopant that is located within the first three
monolayers. At high negative bias the large contribution from the filled valence band
masks the effect of the donor. This image, however, shows that the contrast attributed
to the dopant atom is not due to surface defects or absorbates.

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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EF

EF

Si

D

tip

(a) (b)

Fig. 7.13 Filled-state image of a phosphorus atom underneath a Si (001) surface at a tunneling
current of 110pA. The doping level is 5 × 1017 cm−3. (a) Sample bias −0.6V, (b) sample bias
−1.5V between Si:P and tip. Image sizes are 22 × 22nm2. Reprinted with permission from [516],
c© 2004 APS. Lower row Schematic band diagrams for the two bias situations

7.5.2 Acceptors

A group-III atom in Si has one electron too few for the tetrahedral bond. Thus, it
‘borrows’ an electron from the electron gas (in the valence band) and thus leaves a
missing electron (termed hole) in the valence band (Fig. 7.14). The energy level of
the impurity is in the gap close to the valence-band edge. The latter consideration
is made in the electron picture. In the hole picture, the acceptor ion has a hole and
the hole ionizes (at sufficient temperature) into the valence band. After ionization
the acceptor is charged negatively. Also, for this system a Bohr-like situation arises
that is, however, more complicated than for donors because of the degeneracy of the
valence bands and their warping.

In Table7.4 the acceptor binding energies Eb
A for group-III atoms in C, Ge and

Si are listed. The absolute acceptor energy is given as EA = EV + Eb
A. In Table7.5

acceptor binding energies are listed for GaAs, GaP and GaN. While in GaAs some
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Fig. 7.14 Boron impurity in
silicon. Boron accepts one
electron and a fixed negative
charge remains

Si

Si Si

B

Si

Si

Si

Si

Table 7.4 Binding energies Eb
A of group-III acceptors in elemental semiconductors

B Al Ga In

C 369

Si 45 57 65 16

Ge 10.4 10.2 10.8 11.2

Data for diamond from [517, 518]. All values in meV

Table 7.5 Binding energies Eb
A of acceptors in GaAs, GaP and GaN (low concentration values,

data from [519, 520])

V site III site

GaAs C 27 Be 28

Si 34.8 Mg 28.8

Ge 40.4 Zn 30.7

Sn 167 Cd 34.7

GaP C 54 Be 57

Si 210 Mg 60

Ge 265 Zn 70

Cd 102

GaN C 230 Mg 220

Si 224 Zn 340

Cd 550

All values in meV

acceptors are close to the effective mass value of 27meV, in GaP the deviation from
the effective-mass value ≈50meV is large.

When the conductivity is determined by holes or electrons, the material is called
p-type or n-type, respectively. We note that some metals also show hole conduc-
tion (e.g. Al). However, for metals the conductivity type is fixed, while the same
semiconductor can be made n- or p-type with the appropriate doping.

The acceptor concentration is denoted by NA. The concentration of neutral accep-
tors is N 0

A, the concentration of charged acceptors is N−
A . Of course

NA = N 0
A + N−

A . (7.38)
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The ratio of the degeneracy of the (singly) filled and empty acceptor level is ĝA. In
Ge ĝA = 4 since the localized hole wave function may be formed in EMA with four
Bloch wave functions (heavy and light holes) [521]. For Si with its small split-off
energy (Table6.6) ĝA = 6 according to [522]. For doubly ionized acceptors, e.g. Zn in
Si and Ge (see Sect. 7.7.3), the more shallow level (Zn− → Zn0) has ĝA = 6/4 = 1.5
in Ge [522]. Amore general discussion of the degeneracy factor for multiply charged
acceptors can be found in [510, 523]. Similar to the considerations for electrons and
donors we have

N 0
A

N−
A

= ĝA exp

(
− EF − EA

kT

)
. (7.39)

The population of the acceptor levels is given by

N−
A = NA

1 + ĝA exp
(− EF−EA

kT

) . (7.40)

The formulas for the position of the Fermi level and the hole density are analo-
gous to those obtained for electrons and donors and will not be explicitly given here.
The analogue to Fig. 7.11b is shown for data on p-doped Ge [524, 525] in Fig. 7.15.
The acceptor activation energy is 11meV which could be due to various impurities
(cf. Table7.4). The different impurities (B, Al, Ga) can be distinguished by pho-
tothermal ionization spectroscopy [525] (cmp. Sect. 9.7).

In Fig. 7.12, the temperature dependence of the Fermi level is included for p-type
Si. With increasing temperature the Fermi level shifts from the valence-band edge
(For T = 0, EF = EV + Eb

A/2) towards the middle of the band gap (intrinsic Fermi
level).

Also, the wavefunction at acceptors can be imaged using scanning tunneling
microscopy [526]. In [527] images of ionized and neutral Mn in GaAs have been

Fig. 7.15 Carrier
concentration as a function
of temperature for p-type Ge.
The net shallow level
concentration is
2 × 1010 cm−3. Solid line is
fit to the data, the dashed line
indicates the intrinsic hole
concentration pi. Adapted
from [525]

http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_9
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Fig. 7.16 (a) Tunneling I–V characteristic of GaAs:Mn sample. Solid (dashed) line is for pure
GaAs (subsurfaceMn onGa site).UFB denotes the simulated flat-band voltage. Adapted from [527].
(b, c) STM images of a Mn atom underneath a GaAs (110) surface. The doping level is 3 ×
1018 cm−3. (b) Sample bias −0.7V, (c) sample bias +0.6V. Below the images are schematic band
diagrams of GaAs:Mn and tip. Image sizes are (b) 8 × 8nm2 and (c) 5.6 × 5nm2. Reprinted with
permission from [527], c©2004 APS. Lower row under parts (a, b): Schematic band diagrams for
the two bias situations

reported (Fig. 7.16b). The tunneling I–V characteristics are shown in Fig. 7.16a. At
negative bias, the acceptor is ionized and appears spherically symmetric due to the
effect of the A− ion Coulomb potential on the valence-band states. At intermediate
positive voltages, tunneling is through the neutral state. The wavefunction of A0

looks like a bow-tie due to the admixture of d-wavefunctions [528]. The Mn atom
is presumably in the third subsurface atomic layer. At even higher positive bias the
contrast due to the dopant is lost because the image is dominated by a large tunneling
current from the tip to the empty conduction band.

7.5.3 Compensation

When donors and acceptors are simultaneously present, some of the impurities will
compensate each other. Electrons from donors will recombine with holes on the
acceptors. Depending on the quantitative situation the semiconductor can be n- or p-
type. This situation can be invoked by intentional doping with donors or acceptors or
by the unintentional background of donors (acceptors) in p-doped (n-doped)material.
Also the formation of pairs, exhibiting a new defect level different from the single
donor or single acceptor, has been described, e.g. for Se and B in silicon [273].
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The charge-neutrality condition (now finally in its most general form) reads

− n + p − N−
A + N+

D = 0. (7.41)

We will now discuss the case of the presence of donors and acceptors, but limit
ourselves to sufficiently low temperatures (or wide band gaps) such that the intrin-
sic carrier density can be neglected. We assume Boltzmann statistics and assume
here ND > NA. Then it is a very good approximation to use N−

A = NA since there
are enough electrons from the donors to recombine with (and thus compensate) all
acceptors. Under the given assumptions regarding the temperature p = 0 and the
material is n-type. Thus, in order to determine the position of the Fermi level, the
charge-neutrality condition

n + NA − N+
D = 0 (7.42)

must be solved (compare to (7.27))

NC exp

(
EF − EC

kT

)
+ NA − ND

1 + ĝ exp( EF−ED
kT )

= 0. (7.43)

We rewrite (7.42) and find ND − NA − n = N 0
D = N+

D ĝD exp
( EF−ED

kT

)
using

(7.24). Using again (7.42) and also (7.10), (7.43) can be written as

n (n + NA)

ND − NA − n
= NC

ĝD
exp

(
− Eb

D

kT

)
, (7.44)

a form given in [529]. Analogously for compensated p-type material

p (p + ND)

NA − ND − p
= NV

ĝA
exp

(
− Eb

A

kT

)
(7.45)

holds.
The solution of (7.43) is

EF = EC − Eb
D + kT ln

⎛
⎜⎝

[
α2 + 4ĝD

ND−NA
NC

exp
(

Eb
D

kT

)]1/2 − α

2 ĝD

⎞
⎟⎠ , (7.46)

with

α = 1 + ĝD
NA

NC
exp

(
Eb
D

kT

)
= 1 + NA

β
(7.47a)
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β = NC

ĝD
exp

(
− Eb

D

kT

)
. (7.47b)

The carrier density is best obtained from (7.44),

n =
√

(NA − β)2 + 4 ND β − NA + β

2
. (7.48)

For NA = 0 we haveα = 1 and (7.28) is reproduced, as expected. For T = 0 (and
NA �= 0) the Fermi energy lies at EF = ED since the donor level is partially filled
(N 0

D = ND − NA). For low temperatures the Fermi level is approximated by

EF
∼= EC − Eb

D + kT ln

(
ND/NA − 1

ĝD

)
. (7.49)

The corresponding carrier density at low temperatures is

n = NC

ĝD
exp

(
− Eb

D

kT

) (
ND

NA
− 1

)
. (7.50)

For higher temperatures (7.32) holds approximately for n > NA; the slope is
now given by Eb

D/2 as in the uncompensated case (Fig. 7.17b). For sufficiently high

(a) (b)

Fig. 7.17 (a) Position of Fermi level in partially compensated Si:P,B (ND = 1015 cm−3, Eb
D =

45meV, Eb
A = 45meV, solid line NA = 1013 cm−3, dashed line NA = 0, dash-dotted line NA =

1012 cm−3, short-dashed line NA = 1014 cm−3, dash-double dotted line NA = 5 × 1014 cm−3) as
a function of temperature. (b) Corresponding electron concentration for NA = 1013 cm−3 as a
function of temperature (neglecting intrinsic carriers), dashed line for NA = 0 according to (7.31),
dash-dotted line approximation for n � NA as in (7.50)
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Fig. 7.18 Hole density in
p-type silicon
(NA = 7.4 × 1014 cm−3,
Eb
A = 46meV (probably

boron) and partial
compensation with
ND = 1.0 × 1011 cm−3).
Adapted from [530]
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temperatures in the exhaustion regime (but still ni < n) the electron density is
given by

n ∼= ND − NA. (7.51)

At evenhigher temperatures the electrondensitywill be determinedby the intrinsic
carrier concentration. Only in this case p �= 0!

An experimental example is shown in Fig. 7.18 for partially compensated p-Si
(with ND � NA). The change of slope around p ≈ ND is obvious.

If donors are added to a p-type semiconductor, first the semiconductor remains
p-conducting as long as ND � NA. If the donor concentration becomes larger than
the acceptor concentration, the conductivity type switches from p- to n-conduction.
If the impurities are exhausted at room temperature, the lowest carrier concentration
is reached for ND = NA. Such a scenario is shown for p-type InxGa1−xAs1−yNy

doped with various concentrations of Si in Fig. 7.19. At high Si incorporation, the
number of charge carriers saturates due to autocompensation (see Sect. 7.5.5) and the
formation of Si precipitates. Since the ionization energies of donors and acceptors
are typically different, the situation for ND ≈ NA needs, in general, to be investigated
carefully and will depend on the temperature.

7.5.4 Multiple Impurities

If more than one donor species is present, (7.43) can be generalized, e.g. for the case
of two donors D1 and D2 in the presence of compensating acceptors,

n + NA − ND1

1 + ĝ1 exp( EF−ED1
kT )

− ND2

1 + ĝ2 exp( EF−ED2
kT )

= 0. (7.52)
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Fig. 7.19 Carrier concentration and conductivity type (red circles p, blue squares n) for MOVPE-
grown InxGa1−xAs1−yNy layers on GaAs (001) (layer thickness ≈ 1µm, x ≈ 5%, y ≈ 1.6%)
doped with different amounts of silicon. The ordinate is the ratio of the partial pressures of disilane
and the group-III precursors (TMIn and TMGa) in the gas phase entering theMOVPE reactor. Lines
are guides to the eye. Experimental data from [531]

(a) (b)

Fig. 7.20 (a) Electron concentration versus temperature as determined from Hall effect for a CdTe
sample doped with indium. (b) −kT dn/dEF, as determined from the experimental Hall data (sym-
bols). The solid line is theory for three donor levels (ED1 = EC − 0.37eV, ND1 = 2.5 × 1012 cm−3;
ED2 = EC − 0.24eV, ND2 = 7.0 × 1011 cm−3; ED3 = EC − 0.18eV, ND3 = 2.5 × 1011 cm−3)
whose energy positions are indicated by dashed lines. Adapted from [533]

This case is treated in [532]. Simple high and low temperature approximations can
be found where the trap with the larger and smaller activation energy, respectively,
dominates. The case formultiple acceptors (and compensating donors) is treated anal-
ogously. As detailed in [533], the function dn/dEF has a maximum at the donor level
position; this can be used to visualize the contribution of several donors (with suffi-
ciently different binding energies) from n(T ) as measured by Hall effect (Fig. 7.20).
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7.5.5 Amphoteric Impurities

If an impurity atom can act as a donor and acceptor it is called amphoteric. This can
occur if the impurity has several levels in the band gap (such as Au in Ge or Si).
In this case, the nature of the impurity depends on the position of the Fermi level.
Another possibility is the incorporation on different lattice sites. For example, carbon
in GaAs is a donor if incorporated on the Ga-site. On the As-site carbon acts as an
acceptor.

Thus, e.g. crystal growth kinetics can determine the conductivity type. In Fig. 7.21
the conductivity due to carbon background is shown for GaAs grown using MOVPE
under various growth conditions. At high (low) arsine partial pressure incorporation
of carbon onAs-sites is less (more) probable, thus the conductivity is n-type (p-type).
Also, growth on different surfaces can evoke different impurity incorporation, e.g.
n-type on (001) GaAs and p-type on (311)A GaAs, since the latter is Ga-stabilized.

The charge density at an impurity nucleus can be investigated via the isomer
shift as determined by Mössbauer spectroscopy [535, 536]. The incorporation of
the isotope 119Sn can be controlled in III-V compounds to be on cation or anion
site as donor or acceptor, respectively. This is accomplished by introducing 119In or
119Sb on group-III and group-V site, respectively, both decaying into 119Sn without
leaving their lattice site. The isomer shifts of 119Sn in various III-V compounds
are shown in Fig. 7.22. In [536] it is concluded from these data that the tin donor
is formed by a positive tin ion and the electron charge transfer to its neighboring
(group-V) atoms is rather small. For tin as an acceptor, for the present conditions an
ionized, i.e. negatively charged acceptor, the isomer shift follows closely the trend
from substitution in group-IV semiconductors. Therefore four electrons form the
tetrahedral bond, while the extra electron is located rather at the (positively charged)
group-III next neighbors and not in the impurity cell. The difference to the point
charge Coulomb distribution is called central-cell correction.

Fig. 7.21 Background
doping of GaAs due to
carbon in MOVPE for
different ratios of the partial
pressures of AsH3 and TMG
(trimethylgallium). The
conductivity type (blue
squares n-type, red circles
p-type) depends on the
incorporation of C from CH3
radicals on Ga- or As-site.
Lines are guides to the eye.
Experimental data
from [534]
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Fig. 7.22 Isomer shift
(relative to CaSnO3) of
119Sn in various group-IV
and III-V compound
semiconductors as labeled.
Dashed line is trend from
isoelectronic substitution.
Experimental data
from [536]

Fig. 7.23 Carrier
concentration and
conductivity type (blue
squares n-type, red circles
p-type) as a function of
stoichiometry for CuInSe2
thin films. Lines are guides
to the eye. Experimental data
from [537]

Deviation from the ideal stoichiometry introduces point defects that can be elec-
trically active and change conductivity type and carrier concentration. In the case of
CuInSe2, excess Cu could go on interstitial positions or promote selenium vacancies,
both leading to n-type behavior. This material is particularly sensitive to deviations
from ideal stoichiometry for both Cu/In ratio (Fig. 7.23) and Se deficiency [537].

7.5.6 Autodoping

If intrinsic defects such as vacancies or interstitials, possibly as a result of non-
stoichiometry, or anti-site defects cause electronic levels relevant for conductivity
one speaks of autodoping. An example is the role of A-B antisites in AB2O4 spinels
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Fig. 7.24 Schematic
position of electronic levels
of AB (blue, 0/− transition
level) and BA (red, +/0
transition level) defects in
AB2O4 spinels and resulting
material properties
(compensated, n- or p-type or
semi-insulating). After [538]

VB

CB

BTd

Aoh

EF

comp. p-type n-type s.i.

(Sect. 3.4.7). In the perfect crystal theA (B) atoms occupy tetraeder (octaeder) places.
Typical charges are A2+ and B3+. Thus (without charge transfer) the A atom on
octaeder site (AOh) acts like a donor and the B atom on a tetraeder site (BTd) as an
acceptor. Such defects have been classified in [538] as being able to create compen-
sated, semi-insulating, n-type or p-type material depending on the defect formation
energies and the position of the electronic levels of the AB and BA defects in the
band gap (Fig. 7.24). An example for a p-type spinel oxide is ZnCo2O4 [539].

7.5.7 High Doping

For lowdoping concentrations, the impurity atoms can be considered to be decoupled.
At low temperature, only hopping from one impurity to the next is possible due to
thermal emission or tunneling and the semiconductor becomes an insulator.

With increasing concentration, the distance between impurities decreases and
their wavefunctions can overlap. Then, an impurity band develops (Fig. 7.25). A
periodic arrangement of impurity atoms would result in well-defined band edges as
found in the Kronig–Penney model. Since the impurity atoms are randomly dis-
tributed, the band edges exhibit tails. For high doping, the impurity band over-
laps with the conduction band. In the case of compensation, the impurity band
is not completely filled and contains (a new type of) holes. In this case, conduc-
tion can take place within the impurity band even at low temperature, making
the semiconductor a metal. This metal–insulator transition has been discussed by
Mott [540]. Examples for highly doped semiconductors are transparent conductive
oxides (Chap.20), the contact layer for an ohmic contact (Sect. 21.2.6) or the active

http://dx.doi.org/10.1007/978-3-319-23880-7_3
http://dx.doi.org/10.1007/978-3-319-23880-7_20
http://dx.doi.org/10.1007/978-3-319-23880-7_21
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Fig. 7.25 Principle of the
formation of a (donor)
impurity band. (a) Small
doping concentration and
sharply defined impurity
state at ED, (b) increasing
doping and development of
an impurity band that (c)
widens further and
eventually overlaps with the
conduction band for high
impurity concentration. The
shaded areas indicate
populated states at T = 0K
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layers in a tunneling diode (Sect. 21.5.9). The physics, properties and preparation of
highly doped semiconductors are treated in detail in [541].

The formation of the impurity band leads to a reduction of the impurity ionization
energy as known from (7.19). Typical results are shown in Fig. 7.26a for n-type
Ge [515] and Fig. 7.26b for p-type ZnTe [542]. At the critical doping concentration
of Nc = 1.5 × 1017, the activation energy for the carrier concentration disappears.
Similar effects have been observed for Si [543] and GaAs [544]. The freeze-out
of the carrier concentration (see Fig. 7.9) disappears as shown in Fig. 7.27. Critical
doping concentrations are listed in Table7.6. The decrease of the ionization energy
Eb (donor or acceptor) follows the dependence [515, 543]

Ge:As
15

10

5

1013 10181017101610151014

N -N (cm )A
-3

D

1012
0

ED
b

(a) (b)

Fig. 7.26 (a) Donor ionization energy in n-type Ge for various doping concentrations. Dashed
line is a guide to the eye. The arrow labeled Eb

D denotes the low-concentration limit (cf. Table7.2).
Experimental data from [515]. (b) Acceptor ionization energy for ZnTe:Li and ZnTe:P as a function
of the third root of the ionized acceptor concentration. Data from [542]

http://dx.doi.org/10.1007/978-3-319-23880-7_21
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Fig. 7.27 Electron
concentration versus inverse
temperature for Si:P for three
different doping
concentrations ((i):
1.2 × 1017 cm−3, (ii):
1.25 × 1018 cm−3, (iii):
1.8 × 1019 cm−3).
Experimental data
from [543]
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Table 7.6 Critical doping
concentration for various
semiconductors (at room
temperature)

Material Type Nc (cm−3) Ref.

C:B p 2 × 1020 [518]

Ge:As n 1.5 × 1017 [515]

Si:P n 1.3 × 1018 [543]

Si:B p 6.2 × 1018 [543]

GaAs n 1.0 × 1016 [544]

GaP:Si n 6 × 1019 [546]

GaP:Zn p 2 × 1019 [547]

GaN:Si n 2 × 1018 [548]

GaN:Mg p 4 × 1020 [519]

Al0.23Ga0.77N:Si n 3.5 × 1018 [549]

ZnTe:Li p 4 × 1018 [542]

ZnTe:P p 6 × 1018 [542]

ZnO:Al n 8 × 1018 [550]

Eb = Eb
0 − α N 1/3

i = Eb
0

[
1 −

(
Ni

Nc

)1/3
]

, (7.53)

where Ni is the concentration of ionized dopants. A refined theory, considering
screening, shift and tails of the conduction band and most importantly broadening
of the donor level has been presented in [545].

The critical density can be estimated from the Mott criterion when the distance
of the impurities becomes comparable to their Bohr radius (7.20)

2aD = 3

2π
N 1/3
c . (7.54)
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Table 7.7 Maximum
electrically active doping
concentration for GaAs

Material Type Nc (cm−3) Ref.

GaAs:Te n 2.6 × 1019 [554]

GaAs:Si n 1.8 × 1019 [555]

GaAs:C p 1.5 × 1021 [556]

GaAs:Be p 2 × 1020 [557]

The pre-factor 3/(2π) stems from the random distribution of impurities and disap-
pears for a periodic arrangement. The Mott criterion is (rewriting (7.54))

aD N 1/3
c ≈ 0.24. (7.55)

For GaAs with aD = 10.3nm, the criterion yields Nc = 1.2 × 1016 cm−3, in agree-
ment with experiment.

The achievable maximum concentration of electrically active dopants is limited
by the concentration dependence of the diffusion coefficient, Coulomb repulsion,
autocompensation and the solubility limit [501]. In Table7.7 the maximum carrier
concentrations for GaAs with various dopants are listed.

As an example we show the Ga-doping of epitaxial ZnO layers on sapphire
in Fig. 7.28. Under slightly Zn-rich (O-polar) conditions the growth mode is two-
dimensional and the carrier concentration increases linearly with the Ga concentra-
tion, n ≈ cGa, up to high values in the 1020 cm−3 range [551]. For O-rich (Zn-polar)
conditions the growth mode changes to three-dimensional growth and the activation
ratio of Ga donors becomes low [552]. Above a gallium content of 2%, the octahe-
dral coordination of gallium and thus the partial segregation into a parasitic ZnGa2O4

spinel phase is observed for [Ga] = 4% [553].
The random distribution of dopants essentially makes a doped semiconductor a

disordered system. The physics of electronic states in disordered systems has been
reviewed in [558]. A metal–insulator transition is observed at a certain value of

Fig. 7.28 Electron
concentration as a function
of gallium concentration in
MBE grown ZnO:Ga on
sapphire for the two different
polarities. Adapted
from [551, 552]
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Fig. 7.29 Zero temperature
conductivity of Si:P for
various (donor) doping
concentrations. Experimental
data (symbols) and guide to
the eye (dashed line).
Adapted from [559]
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doping (NP = 3.8 × 1018 cm−3), as shown in Fig. 7.29 for Si:P [559]. For a certain
value of disorder all states become localized (Anderson localization [560], cmp.
Sect. 8.8).

7.6 Quasi-Fermi Levels

The carrier concentrations were given by (7.6) and (7.7). So far, we have only con-
sidered semiconductors in thermodynamic equilibrium for which np = n2

i . In a non-
equilibrium situation, e.g. for external excitation or carrier injection in a diode, the
electron and hole densities can each take arbitrary values, in principle. In particular,
np will no longer be equal to n2

i and there is no Fermi level constant throughout the
structure. In this case, however, quasi-Fermi levels Fn and Fp for electrons and holes,
respectively, are defined via

n(r) = NC F1/2

(
Fn(r) − EC

kT

)
(7.56a)

p(r) = NV F1/2

(
− Fp(r) − EV

kT

)
. (7.56b)

A quasi-Fermi level is sometimes called imref4 and can also be denoted as EFn
or EFp . We emphasize that the quasi-Fermi levels are only a means to describe the
local carrier density in a logarithmical way. The quasi-Fermi levels can be obtained
from the density via

4W. Shockley had asked E. Fermi for permission to use his name reversed. Fermi was not too
enthusiastic but granted permission.

http://dx.doi.org/10.1007/978-3-319-23880-7_8
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Fn = EC + kT ln

(
n

NC

)
(7.57a)

Fp = EV − kT ln

(
p

NV

)
. (7.57b)

The quasi-Fermi levels do not imply that the carrier distribution is actually a Fermi
distribution. This is generally no longer the case in thermodynamical nonequilibrium.
However, in ‘well-behaved’ cases the carrier distribution in nonequilibrium can be
approximated locally as a Fermi distribution using a local quasi-Fermi level and a
local temperature, i.e.

fe(r, E) ∼= 1

exp
(

E−Fn(r)
kT (r)

)
+ 1

. (7.58)

Using the quasi-Fermi levels, np is given by

n(r) p(r) = n2
i exp

(
Fn(r) − Fp(r)

kT

)
. (7.59)

Wenote that for an inhomogeneous semiconductor or a heterostructure (cf. Chap.12),
ni may also depend on the spatial position. In the case of thermodynamic equilibrium
the difference of the quasi-Fermi levels is zero, i.e. Fn − Fp = 0 and Fn = Fp = EF.

7.7 Deep Levels

For deep levels the short-range part of the potential determines the energy level. The
long-range Coulomb part will only lead to a correction. The term ‘deep level’ implies
that the level is within the band gap and far from the band edges. However, some deep
levels (in the sense of the potential being determined by the ion core) have energy
levels close to the band edges or even within a band. Details can be found in [233,
561–564].

The wavefunction is strongly localized. Thus, it cannot be composed of Bloch
functions, as has been done for the shallow levels for the effective-mass impurity.
The localization in r space leads to a delocalization in k space. Examples are Si:S,
Si:Cu or InP:Fe, GaP:N, ZnTe:O. Deep levels can also be due to intrinsic defects
such as vacancies or antisite defects.

Due to the larger distance to the band edges, deep levels are not efficient at provid-
ing free electrons or holes. Quite the opposite, they rather capture free carriers and
thus lead to a reduction of conductivity. Centers that can capture electrons and holes
lead to nonradiative recombination of electrons through the deep level into the valence
band (see also Chap.10). This can be useful for the fabrication of semi-insulating

http://dx.doi.org/10.1007/978-3-319-23880-7_12
http://dx.doi.org/10.1007/978-3-319-23880-7_10
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layers with low carrier concentration and fast time response of, e.g. switches and
photodetectors.

While the electronic properties of deep levels can be readily characterized, the
microscopic origin is not immediately apparent. Next to theoretical modeling of
defects and correlation with experimental results, paramagnetic hyperfine interac-
tions have proven useful to identify the microscopic nature of various defects [565].

7.7.1 Charge States

The deep level can have different charge states depending on the occupancy with
electrons. The energy position within the gap varies with the charge state due to the
Coulomb interaction. Also, the lattice relaxation around the defect depends on the
charge state and modifies the energy level.

The localized charge qd at the defect is the integral over the change Δρ of the
charge density compared to the perfect crystal over a sufficiently large volume V∞
around the defect

qd =
∫

V∞
Δρ(r) d3r = n e

εr
. (7.60)

In semiconductors, the charge qdεr is an integer multiple of the elementary charge.
The defect is said to be in the nth charge state. Each charge state has a certain stable
atomic configuration Rn . Each charge state has a ground state and excited states that
can each have different stable atomic configurations.

Now, we discuss how the concentration of the various charge states depends on
the position of the Fermi level. The overall constraint of global charge neutrality
determines the chemical potential of the electron, i.e. the Fermi level in Fermi–Dirac
statistics. We use the approximation that the concentration of defects is so small that
the mutual interaction of defects becomes negligible.

As an example, we treat the possible reaction V 0 � V + + e−, where V 0 denotes
a neutral vacancy and V + is a positively charged vacancy, created by the ionization
of an electron from the vacancy into the conduction band. The free energy G depends
on the numbers n0 of neutral and n+ of positively charged vacancies. The minimum
condition is met by

dG = ∂G

∂n0
dn0 + ∂G

∂n+
dn+ = 0. (7.61)

The neutrality constraint is dn0 + dn+ = 0 and therefore the minimum condition
reads

∂G

∂n0
= ∂G

∂n+
. (7.62)



7.7 Deep Levels 237

For noninteracting defects and using (4.9) we write

∂G

∂n0
= Gf(V 0) + kT ln

(
n0

N0

)
(7.63a)

∂G

∂n+
= ∂G(V +)

∂n+
+ ∂G(e−)

∂n+
= Gf

V + + kT ln

(
n+
N+

)
+ μe− , (7.63b)

where N0 = N Z0 and N+ = N Z+ are the number of available sites, given by the
number N of atomic sites and including possible internal degeneracies Z0 and Z+,
respectively. Degeneracy factors of deep levels are not a simple subject [522] and,
e.g. the degeneracy factors of Au donor and acceptor levels in Si are under discus-
sion [566–568]. Gf denotes the free enthalpy of formation of the respective defect,
as in (4.3). We have written the free enthalpy of the separated pair V + and e− as the
sum G(V +) + G(e−). μe− = ∂G(e−)/∂n+ is (by definition) the chemical potential
of the electron, i.e. the Fermi energy EF of Fermi–Dirac statistics.5 From (7.63a, b)
we find for the ratio of the concentrations of defects c0 = n0/N and c+ = n+/N

c0
c+

= Z+
Z0

exp

(
−Gf

V + − Gf
V 0 + EF

kT

)
= Z+

Z0
exp

(
Et(V 0) − EF

kT

)
, (7.64)

where the trap level energy (for the particular charge transition), Et(V 0) = Gf
V 0 −

Gf
V + , is the free enthalpy of ionization of V 0. We note that c0 can be obtained from

(4.9) and EF is determined by the charge-neutrality condition.
As example experimental data on the charge transition Fe0 � Fe+ + e− of inter-

stitial iron (in tetrahedral position, Fig. 7.30a, cmp. Fig. 3.18) in silicon is shown.
The concentration of Fe0 is tracked via the EPR signal from the neutral S = 1 state6

with g-factor g = 2.07 [569]. For n-type samples the iron is in neutral state and the
maximum EPR signal is found. For strongly p-type samples, the Fermi energy is
below the trap level and all iron is in Fe+ state, yielding no EPR signal at the given
g-factor. From the investigation of various silicon samples with different doping
levels and consequently different position of the Fermi level, the trap (deep donor)
energy is found to be EV + 0.375eV as indicated in Fig. 7.30b.

5The chemical potential in a one-component system is μ = ∂G/∂n = G/n. In a multicomponent
system it is, for the i th component, μi = ∂G/∂ni �= G/ni .
6The electron configuration is 3d8 with two paramagnetic electrons. Under uniaxial stress along
[100] the EPR line splits into a doublet. [569] Further details can be found in [570].

http://dx.doi.org/10.1007/978-3-319-23880-7_4
http://dx.doi.org/10.1007/978-3-319-23880-7_4
http://dx.doi.org/10.1007/978-3-319-23880-7_4
http://dx.doi.org/10.1007/978-3-319-23880-7_3
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(a)

(b)

Fig. 7.30 (a) Silicon cubic unit cell with an interstitial iron atom (red) at tetrahedral site. (b)
EPR intensity (at T = 95K from interstitial iron in neutral state, Fe0 with S = 1) versus Fermi
level position for iron-doped silicon with varying Fermi level due to different amounts of shallow
impurity levels from toAl, B and P as labeled. The shaded areas indicate the valence and conduction
band. The dashed line at Et = EV + 0.375eV indicates the trap level. The inset shows a typical
EPR spectrum of Fe0. Adapted from [571], inset adapted from [572]

7.7.2 Double Donors

An impurity that has two extra electrons available after bonding in the matrix may
give rise to a double donor. Typical examples are substitutional chalcogenide atoms
(S, Se or Te) in silicon [573] and germanium [574], interstitial impurities such as
Mgi in Si [575], or group-V atoms on a group-III site in a III–V compound (antisite
defect), such as PGa in GaP [576] or AsGa in GaAs [577].

The double donor is electronically similar to a helium atom. Due to the repulsive
Coulomb interaction of the two electrons on the neutral double donor, the (single)
ionization energy E1 (also often labeled E(0, 1) or E(0,+)) of D0 is smaller than
that of D+ (E2, also labeled E(1, 2) or E(+,++)). For He and He+ the ratio of
ionization energies is 0.45; for chalcogenides in Si and Ge similar ratios have mostly
been found (Table7.8).

The carrier statistics and the degeneracy factors for a double donor have been
discussed in [510, 578]. Typically, the degeneracy factor for the ionization of the
double donor D0 → D+ is ĝD = g2/g1 = 1/2 and for the ionization D+ → D++ is
ĝD = g1/g0 = 2/1 = 2.

For the probabilities to find a neutral, single and double ionized donor we find
following the treatment in [578]



7.7 Deep Levels 239

Table 7.8 Binding energies (to conduction band) of double donor chalcogenide impurities in Si
and Ge

Host State S Se Te

Si D0 318 307 199

D+ 612 589 411

Ge D0 280 268 93

D+ 590 512 330

All energies in meV, data from [573, 574]

d0 = N 0
D

ND
= exp 2 EF

kT

exp E1+E2
kT + exp 2 EF

kT + 2 exp E1+EF
kT

(7.65a)

d+ = N+
D

ND
= exp E1+E2

kT

exp E1+E2
kT + exp 2 EF

kT + 2 exp E1+EF
kT

(7.65b)

d++ = N++
D

ND
= 2 exp E1+EF

kT

exp E1+E2
kT + exp 2 EF

kT + 2 exp E1+EF
kT

(7.65c)

The probabilities are depicted in Fig. 7.31a. The maximum of d+ is at the energy
(E1 + E2)/2. Its value is

d+
(

E1 + E2

2

)
= 1

1 + exp
(− E1−E2

2kT

) (7.66)

(a) (b)

Fig. 7.31 (a) Population of states of a double donor (neutral: black, single ionized: red, double
ionized: blue) according to (7.65a–c) as a function of the Fermi level. The ionization energies have
been chosen as E1 = −0.2eVand E2 = −0.4eVand are indicated by dashed lines (kT = 25meV);
these energies are similar to Si:Te (cmp.Table7.8). The conduction band edge is taken as zero energy.
(b) depicts the according number of electrons ñ ionized from the donor.
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Fig. 7.32 Temperature dependent electron concentration (from Hall data) for Si:Te. (a) Exper-
imental data and fit with double donor model using NTe = 5 × 1016 cm−3, E1 = 200meV and
E2 = 440meV (solid line). Single donor models would fail (NTe = 5 × 1016 cm−3 and NTe =
2 × 1017 cm−3, dashed lines). (b) Second ionization step in more detail with fits using different
values for E2; the solid line is for E2 = 440meV, the other dashed lines for E2 = 420 and 460meV.
Adapted from [579]

and reaches a value close to one for (E1 − E2)/kT � 1. In Fig. 7.31b the number
of electrons per donor ñ = (N+

D + 2 N++
D )/ND is shown as a function of the Fermi

level; at (E1 + E2)/2, exactly ñ = 1. In Fig. 7.32 the temperature dependent electron
concentration in Si:Te is depicted. Up to 570K the single ionization is visible (other
shallow impurities present in the sample in lower concentrations < 1014 cm−3 play
no role). From the fit E1 = 200 ± 2.7meV is determined [579]. Single donor models
would fail. The second ionization step is somewhat masked by the onset of intrinsic
conduction. According to (7.15), the slope of ni is Eg/2 ≈ 500meVwhich is similar
to E2 ≈ 440meV.

7.7.3 Double Acceptors

In analogy to double donor defects, double acceptors can introduce up to two holes
into the valence band. A typical example is Zn in silicon [580], exhibiting its ‘normal’
acceptor level (Zn0/Zn−) at EV + 0.31eV. In moderately n-doped silicon another
level (Zn−/Zn2−) is observed at EC − 0.55eV, when the n-doping is sufficient to
partially compensate the Zn and supply one electron for each Zn atom but not
two (2NZn > ND > NZn). A similar situation has been observed for Zn in germa-
nium, exhibiting the levels EV + 0.03eV and EV + 0.09eV [581]. In Fig. 7.33 three
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Fig. 7.33 Inverse (absolute)
Hall coefficient (cmp.
Sect. 13.2.1) R−1

H , i.e. charge
concentration, for three
Ge:Zn samples with different
degree of compensation with
Sb donors as labeled. The
dash-dotted lines indicate
typical slopes. The dashed
lines sketch the Zn0 → Zn−
and the Zn− → Zn−−
processes. Adapted
from [581]

different Ge:Zn samples are compared. If the additional Sb donor concentration
(ND ≈ 3.4 × 1016 cm−3) is larger than 2NZn (NZn ≈ 1.2 × 1016 cm−3), the sample
is n-type (upper curve). The slope is similar to the Ge:Sb donor binding energy
(Table7.2). If compensation with donors is weak (NZn > ND, middle curve) first
the shallow donor level with 0.03eV activation energy is activated and subsequently
the deeper one with 0.09eV activation energy, creating p-conduction with a satu-
rated hole density of p ≈ 2NA − ND > NZn (negative Hall coefficient). The two
individual activation processes are sketched as dashed lines in Fig. 7.33. If the Sb
concentration is larger than NZn but smaller than 2NZn, the shallow acceptor level
is filled with electrons, leaving still the only partially filled deeper acceptor level
available for ionization (lower curve). In this case the sample is still p-type, but the
saturation hole density is p ≈ 2NA − ND < NZn. The degeneracy factors for Zn in
Si and Ge have been discussed in [522].

7.7.4 Jahn–Teller Effect

The lattice relaxation can reduce the symmetry of the defect. Many defects, such
as a vacancy, a tetrahedral interstitial or an impurity, occupy initially tetrahedral
sites in the zincblende structure. The lattice relaxation reduces the symmetry, e.g.
to tetragonal or trigonal, and therefore causes initially degenerate levels to split.
Such splitting is called the static Jahn–Teller effect [561, 582]. The energy change in
terms of the atomic displacement Q can be denoted (using perturbation theory for the
simplest, nondegenerate case) as −I Q (I > 0). Including the elastic contribution

http://dx.doi.org/10.1007/978-3-319-23880-7_13
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with a force constant C , the energy of a configuration Q is

E = −I Q + 1

2
C Q2. (7.67)

The stable configuration Qmin, for which the energy isminimal (Emin), is therefore
given by

Qmin = I

C
(7.68a)

Emin = − I 2

2C
. (7.68b)

Several equivalent lattice relaxationsmay exist, e.g. a 3-foldminimum for remain-
ing C3v symmetry. The energy barrier between them has a finite height. Therefore,
e.g. at sufficient temperature, the defect can switch between different configurations
and eventually again becomes isotropic (dynamic Jahn–Teller effect). The experi-
mental observation depends on the relation between the characteristic time of the
experiment and the reorientation time constant of the defect.

7.7.5 Negative-U Center

We explain the principle of a so-called negative-U center [583] for the Si vacancy
[584] (cf. Fig. 4.2). It was first proposed by Anderson to explain the properties
of amorphous chalcogenide glasses [585]. Many defects in semiconductors exhibit
negative-U behavior, e.g. also the boron interstitial in Si [584, 586]. Coulomb energy
and the Jahn–Teller effect compete for the position of the occupancy level for dif-
ferent charge states. U refers to the additional energy upon charging of the defect
with an additional electron. The Coulomb repulsion of electrons leads to an increase
of the energy, i.e. positive U , which has been calculated to be 0.25eV for the Si
vacancy [587] for all charge states. The occupation level (cf. Sect. 4.2.2) E0(1, 2)
(the index 0 indicates effects only due to many-electron Coulomb interaction), sepa-
rating the domination of V ++ and V + (Fig. 7.34) is 0.32eV above the valance-band
edge. Therefore, the occupation level E0(0, 1) is expected to lie at about 0.57eV
about EV.

The Jahn–Teller effect may lead to a splitting of the otherwise 4-fold degenerate
states of the vacancy. A detailed experimental study using hyperfine interactions can
be found in [588]. The schematic level diagram for the Jahn–Teller splitting is shown
in Fig. 7.35. The V ++ state (A1 is always populated with two electrons) is resonant
with the valence band. The T2 state lies in the band gap. When the Jahn–Teller effect
(now on the T2 state) is included, the energies of the different charge states depend
on the configuration coordinate (a mostly tetragonal distortion in the case of the Si
vacancy).

http://dx.doi.org/10.1007/978-3-319-23880-7_4
http://dx.doi.org/10.1007/978-3-319-23880-7_4
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Fig. 7.34 Charge states of the vacancy in silicon. Left level scheme without lattice relaxation, right
level scheme including the Jahn–Teller effect. For a Fermi level below (above) E(0, 2) the charge
state V ++ (V 0) is dominant
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V V0 V

Fig. 7.35 Jahn–Teller splitting for different charge states of the vacancy. A1 and T2 refer to irre-
ducible representations of the Td point symmetry group. A1 is nondegenerate and therefore does
not exhibit a Jahn–Teller effect. T2 is triply degenerate. The arrows represent electrons and their
spin orientation

EV 0 = E(0, Q) = E(0, Q = 0) − 2I Q + 1

2
C Q2 (7.69a)

EV + = E(1, Q) = E(1, Q = 0) − I Q + 1

2
C Q2 (7.69b)

EV ++ = E(2, Q) = E(2, Q = 0) + 1

2
C Q2. (7.69c)

For the n = 2 state the T2 gap state is empty and thus no degeneracy and Jahn–
Teller term arises. For n = 1 there is a linear Jahn–Teller term. The occupation with
two electrons (V 0) causes an approximately twice as large Jahn–Teller splitting for
the n = 0 state. The force constant is assumed to be independent of the charge state.
The energies for the minimum configurations Qn

min are therefore

E(0, Q0
min) = E(0, Q = 0) − 4

I 2

2C
(7.70a)

E(1, Q1
min) = E(1, Q = 0) − I 2

2C
(7.70b)

E(2, Q2
min) = E(2, Q = 0). (7.70c)
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The Jahn–Teller energy EJT = I 2/2C lowers the position of the occupancy levels
E0 calculated with Coulomb terms only. The occupancy levels including the Jahn–
Teller contribution are therefore given as

E(1, 2) = E0(1, 2) − EJT (7.71a)

E(0, 1) = E0(0, 1) − 3 EJT. (7.71b)

For the vacancy in silicon the Jahn–Teller energy EJT is about 0.19eV. Thus the
E(1, 2) level is lowered from0.32 to 0.13eV. TheE(0,1) occupancy level, however, is
reduced from 0.57 to 0.05eV [584, 589] (see Fig. 7.34). The occupancy level E(0, 2)
is in themiddle between E(0, 1) and E(1, 2) (E(0, 2) = (E(0, 1) + E(1, 2))/2) and
indicated in Fig. 7.36a. At this energy, c(V 0) = c(V ++) and the value of c(V +) is
small (≈ exp E1−E2

2kT ) since E(0, 1) < E(1, 2) (cmp. (7.66)).
The relative concentrations of the three charge states are determined by (7.64)

(degeneracy and entropy terms have been neglected)

c(V ++)

c(V +)
= exp

(
E(1, 2) − EF

kT

)
(7.72a)

c(V +)

c(V 0)
= exp

(
E(0, 1) − EF

kT

)
. (7.72b)

They are depicted in Fig. 7.36a in a plot related to Fig. 7.31a. Therefore, V ++
dominates if EF < E(0, 1) and V 0 dominates for EF > E(1, 2). In the intermediate
range E(0, 1) < EF < E(1, 2) we know from (7.72a, b) that V + is dominated by
V 0 and V ++. However, at this point it is not clear whether V ++ or V 0 dominates

(a) (b)

Fig. 7.36 (a) Population of states of a negative-U defect (neutral: black, single ionized: red, double
ionized: blue) according to (7.65a–c) as a function of the Fermi level. The ionization energies have
been chosen as E1 = −0.4eV and E2 = −0.2eV (cmp. Fig. 7.31) and are indicated by dashed lines
(kT = 25meV). The occupancy level E(0, 2) is indicated with a dash-dotted line. The conduction
band edge is taken as zero energy. (b) depicts the according number of electrons ionized from the
defect.
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overall. The ratio of the concentrations of V ++ and V 0 is given by

c(V ++)

c(V 0)
= exp

(
E(1, 2) + E(0, 1) − 2EF

kT

)
= e2 exp

(
E(0, 2) − EF

kT

)
. (7.73)

The occupancy level E(0, 2) is thus again given as

E(0, 2) = E(0, 1) + E(1, 2)

2
, (7.74)

and is shown in Fig. 7.34. V ++ dominates if EF < E(0, 2) and V 0 dominates for
EF > E(0, 2). V + is, for no position of the Fermi level, the dominating charge state
of the Si vacancy.We note that for n-doped Si the V − and V −− can also be populated.
The population of the V 0 state with an extra electron introduces another Jahn–Teller
splitting (Fig. 7.35) that has trigonal symmetry.

Generally, the Jahn–Teller effect can make the addition of an electron cause an
effectively negative charging energy; in this case the center is termed a negative-U
center. We note that the single vacancy in germanium is not a negative-U center due
to smaller Jahn–Teller distortion and smaller electron-lattice coupling [590].

7.7.6 DX Center

The DX center is a deep level that was first investigated for n-doped (e.g. Si-doped)
AlxGa1−xAs. It dominates the transport properties of the alloy for x > 0.22. For
smaller Al concentrations and GaAs the DX level lies in the conduction band. DX-
type deep levels have also been found for other alloys and dopants, e.g. GaAsP:S.

It is experimentally found that the capture process of electrons into the DX
center is thermally activated. The capture energy Ec depends on the AlAs mole
fraction (Fig. 7.37). The (average) barrier for electron capture has a minimum of
0.21eV for x ≈ 0.35, near the crossover point between direct and indirect band gap

Fig. 7.37 Energy barrier for
electron capture Ec at the
Si-DX center in
AlxGa1−xAs for various
compositions. Experimental
data from [591]
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(cf. Fig. 6.19). For lower Al concentrations, the capture barrier increases to 0.4eV
for x = 0.27; for x > 0.35 the capture barrier increases to about 0.3eV for x around
0.7 [591]. The barrier for thermally releasing carriers from the DX center has been
determined to be about 0.43eV, independent of the Al mole fraction [591].

Carriers can be removed from the DX center by optical absorption of photons
with energy larger than about 1.2eV. If carriers are removed by optical excitation at
low temperatures the (re-)capture is so slow (σ < 10−30 cm2) that the carriers remain
in the conduction band and cause persistent photoconductivity (PPC). The PPC is
only reduced upon increasing the sample temperature. The concentration of the DX
center is about the same as the net doping concentration.

The properties of the DX center are reviewed in [592, 593]. So far, no definite
microscopicmodel of theDXcenter has been agreed on. Lang [594] proposed that the
DX center involves a donor and an unknown defect (probably a vacancy). It probably
involves large lattice relaxation as in the configuration coordinates model of Fig. 7.38
where the donor binding energy Eb

D with respect to the conduction-band minimum,
the barrier for electron capture Ec, the barrier for electron emission Ee and the optical
ionization energy Eo are labeled. The donor binding energy is measured with Hall
effect (cf. Sect. 13.2.1) at temperatures sufficient to overcome the capture and emis-
sion barriers, the emission barrier is measured with deep level transient spectroscopy
(DLTS). The capture barrier manifests itself in PPC experiments. We note that the
DX center is related to the L-conduction band. For small Al mole fraction, the DX
level is degenerate with the Γ -related conduction band (see Fig. 7.38b).

Theoretical models and experimental evidence hint at a vacancy-interstitial model
for the Si-DX center [595]. The donor (Si) is displaced along the 〈111〉 direction
from the Ga substitution site. The displacement is predicted to be 0.117nm and the

q0 qt

ED
b Ee
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EDX

EC
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E

qt

Ee
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EL

q

Ec

DXL

EDX

(a) (b)

Fig. 7.38 (a) Schematic configuration coordinate diagram for the DX level with large lattice relax-
ation. q0 is the configuration of the empty defect, qt is the configuration of the filled defect. The
donor binding energy Eb

D, the barrier for electron capture Ec, the barrier for electron emission
Ee and the optical ionization energy Eo are labeled. EC denotes the conduction-band edge. We
note that in AlGaAs the DX level is associated with the L conduction band (see Fig. 6.19). (b)
Schematic configuration coordinate diagram for the DX level in Al0.14Ga0.86As with the DX level
being degenerate with the (Γ -related) conduction band

http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_13
http://dx.doi.org/10.1007/978-3-319-23880-7_6
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Fig. 7.39 Absorption
spectrum of GaAs at low
temperatures (T = 10K)
when cooled in the dark
(solid line). The dashed
(dash-dotted) line is the
absorption after illuminating
the sample for 1min (10min)
with white light, leading to
quenching of the EL2-related
absorption. Adapted
from [597]
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distorted geometry can be viewed as a Ga vacancy and a Si interstitial. The charge
state of the (filled) DX center is proposed to be a two-electron negative-U state.

7.7.7 EL2 Defect

The EL2 defect is a deep donor in GaAs. It is not related to impurities but occurs
for intrinsic material, in particular grown under As-rich conditions. It has physical
properties similar to the DX center. The bleaching of absorption due to EL2, i.e. the
optical removal of electrons from the defect at low temperatures, is shown inFig. 7.39.
The microscopic model [596] describes the EL2 defect as an arsenic antisite defect,
i.e. an arsenic atom on a Ga site, AsGa. In the charged state the arsenic atom is
displaced from the lattice position and a complex of a Ga vacancy (symmetry T3d )
and an interstitial As (symmetry C3v) with 0.14nm displacement along 〈111〉 forms
(VGa-Asi). The charged state is filled with two electrons.

7.7.8 Semi-insulating Semiconductors

Semiconductors with high resistivity (107–109 �cm) are called semi-insulating
(‘s.i.’ or ‘si’). Semi-insulating substrates are needed for high-speed devices. The high
resistivity should stem from a small free-carrier density at finite temperature and not
from a small mobility due to poor crystal quality. For sufficiently wide band gap, the
intrinsic carrier concentration is small and such pure material is semi-insulating, e.g.
GaAs with ni = 1.47 × 106 cm−3 and 5.05 × 108 �cm [598]. Since shallow impuri-
ties are hard to avoid, another route is used technologically. Impurities that form deep
levels are incorporated in the semiconductor in order to compensate free carriers. For
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Fig. 7.40 (a) Schematic band diagram of InP with levels of Fe impurities in the 3+ and 2+ charge
states at low temperature. All energies are given in eV. The arrow denotes capture of an electron
(from the conduction band or a shallow donor) on the deep acceptor. Compare this figure also with
Figs. 9.33 and 10.25. (b) Depth profile of electron concentration in an InP:Sn/InP:Sn,Fe/InP:Sn
structure. The change Δn ≈ 4.5 × 1016 cm−3 of electron concentration is due to the compensation
by Fe and corresponds to the chemical iron concentration determined by SIMS, [Fe] = 4.9 ×
1019 cm−3. Part (b) adapted from [610]

example, a deep acceptor compensates all electrons if NA > ND. Since the acceptor
is deep (Eb

A � kT ), it does not release holes for reasonable temperatures. Examples
of suitable impurities for compensation of electrons are Si:Au [599], GaAs:Cr [600]
and InP:Fe [601]. A deep donor, e.g. InP:Cr [602], is necessary to compensate p-type
conductivity.

Figure7.40a shows the terms of Fe in InP [603, 604]. An overview of transition
metals in III–V semiconductors can be found in [605]. The electron configuration
of neutral Fe atoms is 3d64s2 (cf. Table16.2). The Fe is incorporated on the In site
and thus has a Fe3+ state as a neutral acceptor (A0). The Fe3+ state has the electron
configuration 3d5. The arrow in Fig. 7.40a represents the capture of an electron from
the conduction band or from a shallow donor. The charge state of the Fe becomes
Fe2+ (charged acceptor, A−) with the electron configuration 3d6. The cubic crystal
field (Td symmetry) splits this 5D Fe state7 into two terms [606] that exhibit further
fine structure [604]. The large thermal activation energy of 0.64eV found in the Hall
effect on semi-insulating InP:Fe [601] corresponds to the energy separation of the
5E level and the conduction band.

The maximum electron concentration that can be compensated in this way is lim-
ited by the solubility of Fe in InP [607], about 1 × 1017 cm3. Higher Fe incorporation
leads to the formation of Fe (or FeP) precipitates and degrades the crystal quality.
Only a fraction of the incorporated Fe may then be electrically active and contribute
to the compensation. The maximum electrically active Fe concentration is found

7The notation is 2S+1 J (multiplicity), with S being the total spin and J being the total angular
momentum.

http://dx.doi.org/10.1007/978-3-319-23880-7_9
http://dx.doi.org/10.1007/978-3-319-23880-7_10
http://dx.doi.org/10.1007/978-3-319-23880-7_16
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to be 5–6×1016 cm−3 [608]. The compensation can be directly visualized via the
depth profile of the electron concentration in a n-si-n structure (Fig. 7.40b). The poor
thermal stability of Fe, i.e. high diffusion coefficient, has evoked proposals for more
stable dopants such as InP:Ru [609].

7.7.9 Isoelectronic Impurities

Isoelectronic impurities, generally represent a deep level with a short range potential.
The isoelectronic trap introduces a bound state for an electron or a hole. Once a
carrier has been captured, the defect becomes charged. The other carrier type is then
easily trapped, forming a bound exciton (Sect. 10.3.2). The theory of isoelectronic
impurities is outlined in [611]. A detailed theoretical treatment of N in GaAs and
GaP is given in [472].

In GaP:N, an electron is spatially localized on the N impurity. Most of the wave
function is at theX-point. The nitrogen-bound electron level inGaP (A1 symmetry) is
close to the conduction band edge and within the band gap. Important for the energy
position is the lattice relaxation, leading to an inward relaxation of the surroundingGa
atoms (Fig. 7.42). Due to the spatial localization of the wave function it is delocalized
in k-space (Fig. 7.41a) and obtains a sizeable component at the Γ -point, facilitating
zero-phonon absorption from the valence band. This effect is present only when
the lattice relaxation around the impurity is considered; without relaxation the Γ -
component is zero, with relaxation about 1% [472]. The Γ -component of the wave-
function is larger for localization at an isoelectronic impurity than at a shallow donor
such as sulfur [612]. This way a large oscillator strength for optical transitions occurs

(a) (b)

Fig. 7.41 (a) Model calculation of the wave-vector dependence of the probability density of an
electron bound to a 10meV deep isoelectronic trap (N) and to a 100meV deep shallow donor (S) in
GaP. Adapted from [612]. (b) Wavefunction (isosurface at 20% of maximum) of isolated nitrogen
(N) and neighboring N–N pair (NN1) in GaP. Adapted from [472]

http://dx.doi.org/10.1007/978-3-319-23880-7_10
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(a) (b) (c) (d) (a) (b) (c) (d)

Fig. 7.42 Energy levels of nitrogen impurity states in GaP (left) and GaAs (right). The energy
scale is relative to the bulk GaP valence band maximum, the conduction band minima (CBM) are
thus shown relative to the vacuum level. The conduction band is shown in grey. For both materials,
(a) denotes the isolated N impurity level calculated without lattice relaxation (dashed line), and (b)
with lattice relaxation. (c) denotes the position of N–N pair levels, m denoting the neighbor. (d)
shows selected experimental data. NN1 denotes the direct neighbor NN-pair. The other NNn follow
the usual nomenclature as in [616]. Data taken from [472] (color figure online)

Fig. 7.43 Pressure dependence of the energy of excitons bound to isolated nitrogen impurities in
GaAs (circles), measured from the top of the GaAs valence band. The dashed lines are the pressure
dependent GaAs bulk band gaps (cmp. Fig. 6.42). The solid (dash-dotted) line is a theoretical model
for the nitrogen-bound exciton (electron) level. Adapted from [615]

(Sects. 9.6.9 and 10.3.2). The wavefunction of an isolated single N impurity and a
neighboring N–N pair (NN1) in GaP are shown in Fig. 7.41b.

Isolated nitrogen impurities in (unstrained) GaAs introduce states only within
the conduction band (Fig. 7.42). The reason is that the GaAs conduction band edge
is further from the vacuum level than that of GaP (see Fig. 12.21). Only the NN1

and NN4 pair levels are theoretically expected to be within the GaAs band gap. The
index denotes the n-th neighbor position. The NN1 level has been experimentally
observed [613, 614]. The isolated nitrogen impurity level is forced into the GaAs
band gap upon hydrostatic pressure [614, 615] (Fig. 7.43). Further levels deeper
within the band gap are due to clusters containing more than two nitrogen atoms.

http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_9
http://dx.doi.org/10.1007/978-3-319-23880-7_10
http://dx.doi.org/10.1007/978-3-319-23880-7_12
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Fig. 7.44 Image of (a) topography (Δz = 2.8nm) and (b) work function (Δφ = 4.21–4.26eV) of
a surface step along [111] on a n-GaP(110) surface cleaved in UHV. Adapted from [618]. (c) and
(d) show the corresponding linescans. Adapted from [618]

7.7.10 Surface States

The investigation of (semiconductor) surfaces is a large field with sophisticated
methods that allow real-space imaging with atomic resolution by scanning probe
microscopy and highly depth resolved electronic studies. The surface represents
first of all a break in the periodic crystal potential and thus a defect of the bulk
crystal. The unsatisfied bonds partly rearrange, e.g. by building dimers, forming a
surface reconstruction or remain as dangling bonds. The surface exhibits a surface
density of states. Such states can lie in the band gap and capture electrons, leading
to recombination and a depletion layer. For a brief introduction on semiconductor
surface physics see Chap.11; for more details we refer to [617].

As an example of the formation of electronic states at surface defects we show
in Fig. 7.44 the comparison of topography and work function (measured by Kelvin
probe force microscopy [618]) at a surface step on a GaP(110) surface that has been
prepared by cleaving in-situ in ultrahigh vacuum (UHV). The depletion-type band
bending of the surface is about 0.4eV. The further increase of the position of the
vacuum level at the step edge shows the presence of trap states in the band gap
causing the conduction band to bend upwards (cf. Sect. 21.2.1). Modeling of the
effect shows that the charge density at the surface is 6 × 1011 cm−2 and at the step
edge 1.2 × 106 cm−1.

7.8 Hydrogen in Semiconductors

The role of hydrogen in semiconductors was first recognized in studies of ZnO [619].
It is now clear that hydrogen plays an important role in the passivation of defects.
As a ‘small’ atom, it can attach easily to dangling bonds and form an electron-pair

http://dx.doi.org/10.1007/978-3-319-23880-7_11
http://dx.doi.org/10.1007/978-3-319-23880-7_21
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bond.Thus, surfaces, grain boundaries, dislocations and shallow (donor and acceptor)
and deep impurity levels become passivated. A good overview and many details
of the physics and technological use of hydrogen in semiconductors can be found
in [620, 621]. The hydrogen must be typically introduced as atomic species into
semiconductors, e.g. from a plasma in the vicinity of the surface or by ion irradiation.

With regard to silicon it is important to note that the Si–H bond is stronger than the
Si–Si bond. Thus a silicon surface under atomic hydrogen exhibits Si–H termination
rather than Si–Si dimers [622]. Due to the stronger bond, the hydrogenation leads to
an increase of the silicon band gap, which can be used for surface passivation [623],
leading to reduced reverse diode current.

The hydrogen concentration in amorphous Si (a-Si) can be as high as 50% [624].
Electronic grade a-Si contains typically 10–30atomic% hydrogen and is thus rather
a silicon–hydrogen alloy.

Hydrogen in crystalline silicon occupies the bond-center interstitial position (see
Fig. 3.18b) as shown in Fig. 7.45a. The complexes formed by hydrogen with shal-
low acceptors and donors have been studied in detail. It is now generally accepted
that for acceptors (e.g. boron) in silicon the hydrogen is located close to the bond-
center position of the Si–B pair (BM, bond minimum) as sketched in Fig. 7.46a.
The boron atom forms an electron-pair bond with three silicon atoms of the tetra-
hedra, the fourth silicon bonds to the hydrogen atom. The complex therefore no
longer acts as an acceptor. The silicon atoms and the acceptor relax their positions.
The adiabatic potential energy surface of hydrogen in Si:B is shown in Fig. 7.45b.
The hydrogen can sit on four equivalent sites (BM) along the 〈111〉 directions of the
initial B–Si4 tetrahedron. This reduces the symmetry, e.g. of H–B vibrations [626].
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Fig. 7.45 (a) Energy for positions u of the hydrogen atom along the 〈111〉 direction for H+ in pure
Si (Si atom at u = −0.25) and neutral hydrogen (B atom at u = −0.25). u is measured in units of√
3a0. For all positions of the hydrogen atom the positions of the other atoms have been relaxed in

the calculation. Data from [625]. (b) Adiabatic potential energy in the (110) plane for hydrogen in
Si:B. ‘BM’ denotes the bond minimum site (high valence electron density), C and C’ are equivalent
for pure Si. Reprinted with permission from [625], c©1989 APS

http://dx.doi.org/10.1007/978-3-319-23880-7_3
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(a) (b)

Fig. 7.46 Schematic model for hydrogen in silicon forming a complex with (a) a shallow acceptor
(boron, empty orbital) and (b) a shallow donor (phosphorus, double-filled orbital)

[110]

[001]

[110]

(a) (b)

Fig. 7.47 (a) Structure of the V–O complex (A center) in silicon. The black sphere represents the
oxygen atom. Reprinted with permission from [628], c©2004 APS. (b) Calculated ground-state
structure for the V–O–H2 center in silicon. Oxygen is over the C2 axis, and the two white spheres
represent hydrogen. Reprinted with permission from [629], c©2000 APS

The energetic barrier for the hydrogen orientation has been determined to be 0.2eV
theoretically [625] for a hydrogen motion along the path BM–C–BM in Fig. 7.45b.
Stress (along [100] and [112]) reduces the symmetry and leads to splitting of the local
vibrational modes, now showing axial symmetry [627]. However, this preferential
orientation disappears with an activation energy of 0.19eV, close to the theoretical
value.

Hydrogen has experimentally been found to also passivate shallow donors. The
microscopic configuration is sketched inFig. 7.46b.Thehydrogen atomsits on theSi–
AB (antibonding) position and forms an electron-pair bondwith the silicon atom. The
donor, e.g. phosphorus, is left with a double-filled p-orbital (lone pair) whose level is
in the valence band and thus no longer contributes to conductivity. Molecular hydro-
gen can passivate the so-called A center in Si, an oxygen–vacancy complex [629].
The atomistic configuration of the V–O–H2 complex is shown in Fig. 7.47. The deep
double donor S in Si with a level at 0.3 eV below the conduction-band edge can also
be passivated by two hydrogen atoms [630].



Chapter 8
Transport

Abstract The physics of transport in semiconductors is treated foremost for charge
transport. Band transport and scattering, mobility, low field and high field effects as
well as polarons and hopping transport are covered. A short section mentions ionic
transport before heat conduction and coupled heat and charge transport including
thermopower and Peltier effect are discussed.

8.1 Introduction

Charge and heat energy can be transported through the semiconductor in the pres-
ence of appropriate (generalized) forces. Such a force can be an electric field or a
temperature gradient. Both transport phenomena are coupled since electrons trans-
port energy and charge simultaneously through the crystal. First, we will treat the
charge transport as a consequence of a gradient in the Fermi level, then the heat trans-
port upon a temperature gradient and finally the coupled system, i.e. the Peltier and
Seebeck effects. Detailed treatments of carrier transport can be found in [631, 632].

Practically all important semiconductor devices are based on the transport of
charge, such as diode, transistor, photodetector, solar cell and laser.

Carriers move in the semiconductor driven by a gradient in the Fermi energy. We
distinguish

• drift, as a consequence of an electric field E,
• diffusion, as a consequence of a concentration gradient ∇n or ∇ p.

In inhomogeneous semiconductors for which the position of the band edges is a
function of position, another force occurs. This will not be treated here, since later
(cf. Chap.12) it will be included as an additional, internal electric field.

In Sects. 8.2–8.5 we treat band conductivity, i.e. the transport of charge carriers
in extended states, the conduction and valence bands characterized by an effective
mass. Conductivity is then determined by the carrier concentration (free electrons
and holes) and scatteringmechanisms (mobility). In disordered semiconductors such
as amorphous material, the charge transport due to hopping between localized states
close to the Fermi level dominates the conductivity which is discussed in Sect. 8.7.
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Many semiconductor properties, such as the carrier concentration and the band
gap, depend on the temperature. Thus, device properties will also depend on temper-
ature. During operation of a device typically heat is generated, e.g. by Joule heating
due to finite resistivity. This heat leads to an increase of the device temperature that
subsequently alters the device performance, mostly for the worse. Ultimately, the
device can be destroyed. Thus cooling of the device, in particular of the active area
of the device, is essential. Mostly the thermal management of device heating limits
the achievable performance (and lifetime) of the device. In high-power devices quite
high energy densities can occur, e.g. the facet of a high-power semiconductor laser
has to withstand an energy density beyond 10MWcm−2.

8.2 Conductivity

Under the influence of an electric field the electrons accelerate according to
(cf. (6.32))

F = m∗ dv
dt

= �
dk
dt

= q E = −e E. (8.1)

In the following, q denotes a general charge, while e is the (positive) elementary
charge. We also consider an isotropic effective mass m∗ at first. After the time δt the
k vector of all conduction electrons (and the center of the Fermi sphere) has been
shifted by δk

δk = −e E
�

δt. (8.2)

In the absence of scattering processes this goes on further (similar to an electron
in vacuum). This regime is called ballistic transport. In a (periodic) band structure,
the electron will perform a closed cycle as indicated in Fig. 8.1. Such motion is
called a Bloch oscillation. However, in a bulk crystal the period T of such an oscil-
lation eET/� = 2π/a0 is of the order of 10−10 s for E = 104 V/cm. This time is
much longer than a typical scattering time of 10−14 s. Thus, in bulk material the
Bloch electron cannot reach the zone boundary. However, in artificial superlattices
(cf. Chap.12) with larger periodicity (≈10nm), high electric fields (≈106 V/cm) and
high quality (reduced collision time) such motion is possible. We note that in the
absence of scattering, electrons also perform a periodic oscillation in amagnetic field
(cyclotron motion).

In a real semiconductor, at finite temperatures, impurities, phonons and defects
(finally also the surface) will contribute to scattering. In the relaxation-time approx-
imation it is assumed that the probability for a scattering event, similar to friction,
is proportional to the (average) carrier velocity. The average relaxation time τ is
introduced via an additional term v̇ = −v/τ that sums up all scattering events.1

1Going beyond the relaxation time approximation is discussed in Sect. I.

http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_12
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Fig. 8.1 Schematic
representation of a Bloch
oscillation

/a/a

Thus, the maximum velocity that can be reached in a static electric field is given by
(steady-state velocity)

v = −e E τ

m∗ . (8.3)

The current density per unit area is then linear in the field, i.e. fulfills Ohm’s law

j = n q v = n e2 E τ

m∗ = σ E. (8.4)

The conductivity σ in the relaxation-time approximation is given by

σ = 1

ρ
= n e2 τ

m∗ . (8.5)

In the case of a cylindrically symmetric mass such as for electrons in silicon or
germanium, for the effective mass in (8.5) the effective conductivity mass must be
used,

1

m∗
σ

= 1

3

(
2

m t
+ 1

m l

)
. (8.6)

The specific resistivity is the inverse of the conductivity. Metals have a high con-
ductivity (see Table8.1), e.g. for Cu at room temperature σ = 5.8 × 105 �−1 cm−1.
At low temperatures (4K) the conductivity is even a factor of 105 higher. The mean
free path d = τ vF is

d = σ m∗vF
n e2

, (8.7)

vF being the Fermi velocity (EF = m∗ v2
F/2). For copper, d = 3mm at low temper-

ature (and thus susceptible to the sample geometry) while at room temperature the
mean free path is only about 40nm. However, this becomes an issue when the metal
line width and height of interconnects in integrated circuits approaches this length
scale [633] (see Sect. 24.5.5).

In semiconductors, the carrier concentration depends strongly on the temperature.
At zero temperature the conductivity is zero. Also, the scattering processes and thus
the relaxation time constant exhibit a temperature dependence. The conductivity
spans a large range from insulating to almost metallic conduction (see Table8.1).

http://dx.doi.org/10.1007/978-3-319-23880-7_24
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Table 8.1 Conductivity at
room temperature for various
metals, semiconductors,
insulators and liquids

Material σ (�−1 cm−1)

Ag 6.25 × 105

Al 3.6 × 105

Au 4.35 × 105

Cu 5.62 × 105

Fe 1.1 × 105

Pt 1.02 × 105

Ge pure (ND ∼ 1013 cm−3) 10−2

Ge (ND ∼ 1015 cm−3) 1

Ge (ND ∼ 1017 cm−3) 2 × 101

Ge (ND ∼ 1018 cm−3) 2 × 102

Si pure 4.5 × 10−6

Si:As (ND ∼ 3 × 1019 cm−3) 4 × 102

Si:B (NA ∼ 1.5 × 1019 cm−3) 1.2 × 102

GaAs pure 1.4 × 10−7

ZnO:Al (highly doped) ≈1 × 104

Pentacene 10−8–10−4

SiO2 ≈10−15

Al2O3 ≈10−16

H2O pure 4 × 10−8

Hexane ≈10−18

8.3 Low-Field Transport

First we consider only small electric fields. The realmeaning of this will only become
clear in Sect. 8.4 on high-field transport. In the low-field regime the velocity is pro-
portional to the electric field.

8.3.1 Mobility

The mobility is defined (scalar terms) as

μ = v

E
. (8.8)

By definition, it is a negative number for electrons and positive for holes. However,
the numerical value is usually given as a positive number for both carrier types. In
an intrinsic semiconductor the mobility is determined by scattering with phonons.
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Table 8.2 Mobilities of
electrons and holes at room
temperature for various
semiconductors

Material −μn(cm2/Vs) μp(cm2/Vs)

Si 1300 500

Ge 4500 3500

GaAs 8800 400

GaN 300 180

InSb 77000 750

InAs 33000 460

InP 4600 150

ZnO 230 8

Further scattering is introduced by impurities, defects or alloy disorder. The conduc-
tivity is (8.4)

σ = q n μ (8.9)

for each carrier type. Using (8.5) the mobility in the relaxation time approximation
is

μ = q τ

m∗ . (8.10)

In the presence of both electrons and holes,

σ = σe + σh = −e n μn + e p μp, (8.11)

where μn and μp are the mobilities for electrons and holes, respectively. These are
given by μn = −e τn/m∗

e and μp = e τp/m∗
p.

As the unit for mobility, usually cm2/Vs is used. While Cu at room temperature
has a mobility of 35cm2/Vs, semiconductors can have much higher values. In two-
dimensional electron gases (cf. Chap. 12), the mobility can reach several 107 cm2/Vs
at low temperature (Fig. 12.36). In bulk semiconductors with small band gap, a high
electron mobility is caused by its small effective mass. Some typical values are given
in Table8.2.

8.3.2 Microscopic Scattering Processes

The relaxation time constant summarizes all scattering mechanisms. If the relaxation
times τi of various processes are independent, the Matthiesen rule can be used to
obtain the mobility (μi = q τi/m∗)

1

μ
=

∑
i

1

μi
. (8.12)

http://dx.doi.org/10.1007/978-3-319-23880-7_12
http://dx.doi.org/10.1007/978-3-319-23880-7_12
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The various scattering mechanisms have quite different temperature dependences
such that the mobility is a rather complicated function of temperature. In [634]
the mechanisms determining the low and high-field transport properties of (cubic)
semiconductors are reviewed.

8.3.3 Ionized Impurity Scattering

Theoretically, this problem is treated similar to Rutherford scattering. A screened
Coulomb potential is assumed, as the scattering potential

V (r) = − Z e

4πε0εr

1

r
exp

(
− r

lD

)
, (8.13)

where lD is the screening length. The problem has been treated classically byConwell
and Weisskopf [635] and quantum mechanically by Brooks [636] and Herring. An
expression for the mobility that encompasses the Conwell–Weisskopf and Brooks–
Herring results is derived in [637]. Further details are given in [638, 639]. For the
mobility it is found that

μion.imp. = 27/2 (4πε0εr)
2

π3/2 Z2 e3
√

m∗
(kT )3/2

Nion

1

ln(1 + b) − 1/(1 + 1/b)
, (8.14)

with b = 4 (k/ lD)2 = 8m∗ E (lD/�)2. In the Thomas- Fermi screening model

l2D = 4π
e2

ε0εr
N (EF) =

(
3

π

)1/3 4m∗ e2

ε0εr �2
n1/3. (8.15)

The formula (8.14) is valid only for b � 1, i.e. small carrier densities. A similar
formula from [638] is

μion.imp. = 128
√
2π (ε0εr)

2 (kT )3/2

m∗1/2 Z2 Nion e3

[
ln

24m∗ ε0εr (kT )2

n e2 �2

]−1

. (8.16)

For large ionized impurity (and carrier) density (b � 1), the mobility is given by
[483]

μion.imp. = 4 e

31/3 π2/3 h
n−2/3, (8.17)

the value of the pre-factor being about 3 × 1014 (Vs)−1.
The scattering time depends like τ ∝ (E/kT )s on the kinetic energy; formoderate

or weak scattering s = 3/2, for very strong scattering, s = −1/2 [632].
For typical substitutional impurities, the charge of the scattering center is |Z | = 1;

in oxides, oxygen vacancies may have Z = 2. At high impurity densities, impurity
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Fig. 8.2 (a) Electron mobility in highly doped silicon. Experimental data (symbols) from various
sources and modeling with ionized impurity scattering with (solid line) and without (dashed line)
considering impurity clustering. (b) Effective impurity cluster charge ZD. Adapted from [640]

clustersmay formwith |Z | > 1; this will have a strong influence on the scattering rate
since it proportional to Z2. The decrease ofmobility for ND > 1020 cm−3 (Fig. 8.2a) is
attributed to such effect which can be described with an effective impurity clustering
charge ZD (Fig. 8.2b) [640, 641].

8.3.4 Deformation Potential Scattering

Acoustic phonons with small wavevector, i.e. a wavelength large compared to the
unit cell, can have TA or LA character. The TA phonons represent a shear wave (with
zero divergence), the LA phonons are a compression wave (with zero rotation). The
LA is a plane wave of displacement δR parallel to the k-vector q,

δR = A sin (q · R − ωt) . (8.18)

The strain tensor is given by

εi j = 1

2

(
qi A j + q j Ai

)
cos (q R − ωt) . (8.19)

It has a diagonal form εi j = qi A j for q and ω → 0. Therefore, the LA phonon
creates an oscillatory volume dilatation (and compression) with amplitude q · A.
This volume modulation affects the position of the band edges. For the conduction-
band edge the energy change is related to the volume change by the hydrostatic
deformation potential Eac.def. = V ∂EC/∂V . Since themodulation is small compared
to the energy of the charge carriers, it is mostly an elastic scattering process. The
Hamilton operator for the LA scattering is



262 8 Transport

Ĥ = Eac.def. (q · A). (8.20)

The size of the LA amplitude is given by the number of phonons in the mode that

is given by the Bose–Einstein distribution, Nph(�ω) = [
exp

(
�ω
kT

)]−1
. The mobility

due to acoustic deformation potential scattering is found to be

μac.def. = 2
√
2π e �

4 cl
3m∗5/2 E2

ac.def.

(kT )−3/2, (8.21)

where cl = ρcLAs , ρ being the density and cs being the sound velocity. The scattering
time increases like τ ∝ E−1/2 with the kinetic energy [632].

The acoustical deformation potential scattering is important at high temperatures.
It is dominating in nonpolar semiconductors (Ge, Si) at high temperatures (typically
at and above room temperature).

8.3.5 Piezoelectric Potential Scattering

In piezoelectric crystals (see Sect. 15.4), i.e. crystals that show an electric polarization
upon strain, certain acoustic phonons lead to piezoelectric fields. In GaAs, with
〈111〉 being the piezoelectric directions, this is the case for shear waves. In strongly
ionic crystals, e.g. II–VI semiconductors, the piezoelectric scattering can be stronger
than the deformation potential scattering. The mobility due to piezoelectric potential
scattering is

μpz.el. = 16
√
2π

3

� ε0εr

m∗3/2 e K 2
(kT )−1/2, (8.22)

with K = e2p/cl
ε0εr+e2p/cl

, ep being the piezoelectric coefficient.

8.3.6 Polar Optical Scattering

LO phonons are connected with an electric field antiparallel to the displacement
(5.52). In the scattering mechanism the absorbed or emitted phonon energy �ω0 is
comparable to the thermal energy of the carriers. Therefore, the scattering is inelastic
and the relaxation-time approximation does not work. The general transport theory is
complicated. If the temperature is low compared to the Debye temperature, T � ΘD

μpol.opt. = e

2m∗ α ω0
exp

(
ΘD

T

)
, (8.23)

http://dx.doi.org/10.1007/978-3-319-23880-7_15
http://dx.doi.org/10.1007/978-3-319-23880-7_5
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where α = 1
137

√
m∗ c2
2 k ΘD

(
1

ε(∞)
− 1

ε(0)

)
is the dimensionless polar constant.

8.3.7 Dislocation Scattering

Dislocations can contain charge centers and thus act as scattering centers [642].
This has been first demonstrated for n-Ge crystals that have been deformed [643,
644]. The deformation has introduced acceptor-type defects reducing the mobility in
particular at low temperatures (similar to ionized impurity scattering). The mobility
due to dislocation scattering in an n-type semiconductor is given by [645, 646]

μdisl. = 30
√
2π ε2 d2 (kT )3/2

Ndisl e3 f 2 LD
√

m∗ ∝
√

n

Ndisl
T, (8.24)

d being the average distance of acceptor centers along the dislocation line, f their
occupation rate, Ndisl the area density of dislocations and LD = (εkT/(e2n))1/2 the
Debye screening length. The relation μ ∝ √

n/Ndisl has been confirmed for various
n-type GaN samples [647].

8.3.8 Grain Boundary Scattering

The lowering of mobility due to transport across grain boundaries is an important
effect in polycrystallinematerials, such as poly-silicon for solar cells or thin film tran-
sistors [648–651]. Grain boundaries contain electronic trapswhose filling depends on
the doping of the bulk of the grains. Charges will be trapped in the grain boundaries
and a depletion layer will be created.2 At low doping the grains are fully depleted
and all free carriers are trapped in the grain boundaries. This means low conductiv-
ity, however, no electronic barrier to transport exists. At intermediate doping, traps
are partially filled and the partial depletion of the grain leads to the creation of an
electronic barrier ΔEb (Fig. 8.3a) hindering transport since it must be overcome via
thermionic emission. At high doping the traps are completely filled and the barrier
vanishes again. Accordingly the mobility goes through a minimum as a function of
the doping concentration (Fig. 8.3b) [648]. In [652] these data have been modeled
with a 20nm grain size, the value found in [648] from TEM analysis.

2The following arguments may only be followed once the concept of depletion layers and band
bending is understood, see Sect. 21.2.1.

http://dx.doi.org/10.1007/978-3-319-23880-7_21
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(a) (b)

Fig. 8.3 (a) Electronic barrier (ΔEb) for (hole) transport at a grain boundary (GB). (b) Average
hole mobility in poly-silicon, experimental data (symbols) and theoretical model (solid line). The
dependence for monocrystalline silicon is shown for comparison as dashed line. Adapted from
[648]

The expression for the limitation of the mobility due to scattering at grain bound-
aries is given by [651, 653]

μGB = e LG√
8m∗πk

T −1/2 exp

(
−ΔEb

kT

)
, (8.25)

where LG is the grain size.

8.3.9 Temperature Dependence

The sum of all scattering processes leads to a fairly complicated temperature depen-
dence of the mobility μ(T ). In covalent semiconductors (Si, Ge) the most important
processes are the ionized impurity scattering (μ ∝ T 3/2) at low temperatures and
the deformation potential scattering (μ ∝ T −3/2) at high temperatures (Fig. 8.4a). In
polar crystals (e.g.GaAs) at high temperatures the polar optical scattering is dominant
(Fig. 8.4b).

In Fig. 8.5 the electron mobility of bulk and thin-film ZnO is compared. Since
ZnO is polar the mobility at room temperature is limited by polar optical phonon
scattering. In the thin film, grain-boundary scattering (Sect. 8.3.8) additionally occurs
and limits the mobility.

Since the carrier concentration increases with increasing temperature and
the mobility decreases, the conductivity has a maximum, typically around 70K
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(a) (b)

Fig. 8.4 (a) Temperature dependence of the electron mobility in n-doped Ge (for various doping
levels from ND ≈ 1018 for sample A to 1013 cm−3 for sample F in steps of a factor of ten). Dashed
line indicates T −3/2 dependence of deformation potential scattering, solid lines are guides to the
eye.Adapted from [515]. (b)μn(T ) for n-typeGaAs (ND ≈ 5 × 1013 cm−3, NA ≈ 2 × 1013 cm−3).
Solid lines are theoretical mobilities for various scattering mechanisms and combined mobility
according to (8.12). Adapted from [654]

(a) (b)

Fig. 8.5 Temperature dependence of the electron mobility in n-type (a) bulk ZnO and (b) a PLD-
grown ZnO thin film on sapphire. In the latter, grain-boundary scattering is limiting the mobility.
Squares are experimental data, solid lines are theoretical mobilities for various scattering mecha-
nisms and combined mobility according to (8.12). Experimental data from [655]

(see Fig. 8.6). At very high temperature, when intrinsic conduction starts, σ shows a
strong increase due to the increase in n.

At low temperature, the disorder due to doping (random positions of the impu-
rity atoms) leads to a temperature driven metal–insulator transition as depicted in
Fig. 7.29.

http://dx.doi.org/10.1007/978-3-319-23880-7_7
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(a) (b)

Fig. 8.6 (a) Carrier concentration and (b) conductivity of n-type Ge as a function of temperature.
The doping level varies from ND ≈ 1013–1018 (samples A–F as in Fig. 8.4a where the mobility of
the same samples is shown). The dashed lines are for intrinsic Ge. The solid lines are guides to the
eye. Adapted from [515]

8.3.10 Doping Dependence

The mobility decreases with increasing dopant concentration as already shown in
Figs. 8.2 and 8.4a. In Fig. 8.7a the low doping limit is due to deformation potential
scattering; the decrease with doping is due to ionized impurity scattering. At high
doping level, it becomes more important at room temperature than (acoustical or
optical) phonon scattering [656]. The mobility of carriers in n- and p-type silicon
with very high carrier concentrations is depicted in Fig. 8.7b.

Thus, for bulk material high carrier density and high mobility are contrary targets
and cannot be achieved simultaneously. A solution will be provided with the concept
of modulation doping where the dopants and the (two-dimensional) carrier gas will
be spatially separated in a heterostructure (cf. Sect. 12.3.4).

At high doping, the substitutional character of the impurities may be lost and
secondary phases can arise, e.g. as observed for highly doped ZnO:Ga, exhibiting
octahedral coordination of gallium in a parasitic ZnGa2O4 spinel phase for [Ga]=4%
[553]. The onset of such segregation phenomena is accompanied with the decrease
of mobility and conductivity.

http://dx.doi.org/10.1007/978-3-319-23880-7_12


8.3 Low-Field Transport 267

(a) (b)

Fig. 8.7 (a) Electron mobility in Si:P at room temperature over a wide range of carrier concentra-
tions. (b) Electron mobility in Si:P and hole mobility in Si:B for various high carrier concentrations.
Adapted from [657]

8.3.11 Piezoresistivity

The dependence of resistivity on stress or strain is known as piezoresistive effect,
first described in [658]. It is a consequence of the modification of the band structure
upon stress and the change of effective masses (Sect. 6.10.2). In a cubic material, the
resistivity ρi for transport in cartesian direction i changes compared to the unstrained
state in a phenomenological description according to

Δρi

ρi
= πi j σ j , (8.26)

whereπ is the piezoresistivity tensor (8.27) and the σ j form the six-component stress
tensor (5.59),

π =

⎛
⎜⎜⎜⎜⎜⎜⎝

π11 π12 π12 0 0 0
π12 π11 π12 0 0 0
π12 π12 π11 0 0 0
0 0 0 π44 0 0
0 0 0 0 π44 0
0 0 0 0 0 π44

⎞
⎟⎟⎟⎟⎟⎟⎠

. (8.27)

Values for the piezoelectric coefficients are given in Table8.3 for Si, Ge and GaAs.
The piezoelectric effect has been discussed in detail [659] and modeled for

p-type Si [660]. We shall only give a simple example which is particularly rele-
vant for advanced CMOS design (Sect. 24.5.5); the directional dependence of the
piezoresistive coefficient of silicon is shown for uniaxial stress within in the (001)
plane in Fig. 8.8. Uniaxial tensile stress increases hole resistivity along 〈110〉 stress
directions, compressive stress thus increases hole conductivity.

http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_5
http://dx.doi.org/10.1007/978-3-319-23880-7_24
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Table 8.3 Piezoresistivity coefficients (in 10−11 Pa−1) for Si, Ge and GaAs at room temperature

Material ρ (�cm) π11 π12 π44 Reference

p-Si 7.8 6.6 −1.1 138.1 [658]

n-Si 11.7 −102.2 53.4 −13.6 [658]

p-Ge (Ge:Ga) 15.0 −10.6 5.0 98.6 [658]

n-Ge (Ge:As) 9.9 −4.7 −5.0 −137.9 [658]

p-GaAs ∼10−3 −12.0 −0.6 46 [662]

n-GaAs ∼10−3 −3.2 −5.4 −2.5 [662, 663]

(a) (b)

Fig. 8.8 Piezoresistive coefficient for current parallel (perpendicular) to the stress πl as blue lines
(πt , red lines) for uniaxially stressed Si (001) at room temperature, (a) for p-type Si, (b) for n-type
Si. The upper (lower) halves of the graphs show positive (negative) values of the piezoresistive
coefficient, i.e. resistivity increases (decreases) with tensile stress. The solid circle indicates the
value of |π| = 10−9 Pa−1, the dashed circle half that value. Adapted from [661]

8.4 High-Field Transport

In the case of small electric fields the scattering events are elastic. The drift velocity
is linearly proportional to the electric field. The average thermal energy is close to
its thermal value 3kT/2 and the carriers are close to their band edges (Fig. 8.9a). The
scattering efficiency, however, is reduced already at moderate fields. Then, the elec-
tron temperature [664] becomes larger than the lattice temperature. With increasing
electrical field the carriers can gain more and more energy and will on average popu-
late higher states, assuming a non-Boltzmann (and non-Fermi) statistical distribution
[665]. The electron distribution in k-space is depicted for silicon for three different
electric fields in Fig. 8.9b,c. Hot carriers suffer additional scattering processes that are
discussed in the following, namely optical phonon emission, intervalley scattering
and impact ionization.
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Fig. 8.9 Distribution of electrons in silicon in momentum space (cmp. Fig. 6.29c) for electric fields
of (a) 10kV/cm, (b) 102 kV/cm and (c) 103 kV/cm. Adapted from [665]

8.4.1 Drift-Saturation Velocity

If the carrier energy is large enough it can transfer energy to the lattice by the emission
of an optical phonon. This mechanism is very efficient and limits the maximum drift
velocity. Such behavior is non-ohmic. The limiting value for the drift velocity is
termed the drift-saturation velocity. It is given by [666]

vs =
√

8

3π

√
�ωLO

m∗ . (8.28)

This relation can be obtained from an energy-balance consideration. The energy
gain per unit time in the electric field is equal to the energy loss by the emission of
an optical phonon.

q v · E = �ωLO

τ
, (8.29)

where τ is the typical relaxation time constant for LOphonon emission. Togetherwith
(8.3) we find (8.29) except for the pre-factor, which is close to 1. The exact pre-factor
results from a more exact quantum-mechanical treatment. For Ge the drift-saturation
velocity at room temperature is 6 × 106 cm/s, for Si it is 1 × 107 cm/s (Fig. 8.10a).
The carrier velocity also depends on the crystallographic direction [667].

8.4.2 Negative Differential Resistivity

In GaAs there is a maximum drift velocity of about 2 × 107 cm/s and following
a reduction in velocity with increasing field (1.2 × 107 cm/s at 10kV/cm, 0.6 ×
107 cm/s at 200kV/cm) as shown in Fig. 8.10a. This regime, above the threshold
field of Ethr = 3.2kV/cm in GaAs, is called negative differential resistivity (NDR)
and was predicted in [673]. This phenomenon can be used in microwave oscillators,
e.g. the Gunn element (Sect. 21.5.11).

http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_21
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Fig. 8.10 Drift velocity at room temperature as a function of applied electric field for (a) high-
purity Si, Ge, and GaAs on a double-logarithmic plot and (b) on linear plots for Si [668], Ge [669],
GaAs [598], InP [670], InGaAs [671], GaN and ZnO [672]

Table 8.4 Material parameters for multivalley bandstructure of GaAs and InP

Material Eg (eV) ΔE (eV) Ethr
(kV/cm)

vP
(107 cm/s)

Lower valley (Γ ) Upper valley (L)

m∗ (m0) μn
(cm2/Vs)

m∗ (m0) μn
(cm2/Vs)

GaAs 1.42 0.36 3.2 2.2 0.068 ≈8000 1.2 ≈180

InP 1.35 0.53 10.5 2.5 0.08 ≈5000 0.9 ≈100

ΔE denotes the energetic separation of the two lowest valleys of the conduction band, Ethr the
threshold field for NDR and vP the peak velocity (at Ethr). Most values from [675]

The effect occurs in a multivalley band structure (see Fig. 8.11, for values cf.
Table8.4), e.g. in GaAs or InP, when the carrier energy is high enough to scatter
(Fig. 8.11c, d) from the Γ minimum (small mass and high mobility) into the L valley
(large mass and low mobility) [674].

The temperature dependence of the saturation velocity is shown in Fig. 8.12. With
increasing temperature the saturation velocity decreases since the coupling with the
lattice becomes stronger.

8.4.3 Velocity Overshoot

When the electric field is switched on, the carriers are at first in the Γ minimum
(Fig. 8.11a). Only after a few scattering processes are they scattered into the L mini-
mum. This means that in the first moments transport occurs with the higher mobility
of the lowest minimum (Fig. 8.11e). The velocity is then larger than the (steady-state)
saturation velocity in a dc field. This phenomenon is called velocity overshoot and is
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(a) (b)

(c) (d) (e)

Fig. 8.11 Charge-carrier distribution in a multivalley band structure (e.g. GaAs, InP) for (a) zero,
(b) small (E < Ea), (c) intermediate and (d) large (E > Eb) field strength. The situation shown in
(e) is reached temporarily during velocity overshoot (see also Fig. 8.13)

Fig. 8.12 Temperature
dependence of the saturation
velocity for Si (following
vs = vs0 (1 +
0.8 exp(T/600K))−1 with
vs0 = 2.4 × 107 cm/s from
[668]) and GaAs [598, 676,
677]

a purely dynamic effect (Fig. 8.13). Velocity overshoot in GaN is discussed in [678].
It is an important effect in small transistors.

8.4.4 Impact Ionization

If the energy gain in the field is large enough to generate an electron–hole pair, the
phenomenon of impact ionization occurs. The kinetic energy is∝ v2.Momentumand
energy conservation apply. Thus, at small energies (close to the threshold for impact
ionization) the vectors are short and collinear to fulfill momentum conservation. At
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Fig. 8.13 Time dependence
of the electron velocity at
room temperature upon a
step-like electric field
(40kV/cm) for GaAs
(dash-dotted line), InP
(dashed line) and
In0.53Ga0.47As (solid line)
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higher energy, larger angles between the velocity vectors of the impact partners can
also occur. If the process is started by an electron (Fig. 8.14a) the threshold energy
is given by [679]

E thr
e =

(
1 + me

me + mhh

)
Eg. (8.30)

If the process starts with a heavy hole, the threshold [679],

E thr
hh =

(
1 + mhh

me + mhh

)
Eg, (8.31)

is larger because of the larger hole mass.
The threshold for impact ionization triggered by a split-off hole (shown schemat-

ically in Fig. 8.14b) is [680]

E thr
h =

(
1 + mso (1 − Δ0/Eg)

2mhh + me − mso

)
Eg. (8.32)

Thus so-holes have typically the smaller threshold.3 At energieswhere impact ioniza-
tion occurs, non-parabolicities are typically important, thus (8.30)–(8.32) are only
indicative. The threshold behavior and the dependence of the scattering rate as a
function of the primary carrier energy in Si, calculated considering the detailed band
structure, is shown in Fig. 8.15.

3Assuming mso = me, me � mhh and Δ0 � Eg, E thr
so /E thr

e ≈ 1 − (me/mhh)(1 + Δ/Eg)/2 < 1.
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Fig. 8.14 Electron and hole
transitions for impact
ionization close to the
threshold energy. Ionization
is triggered by (a) an
electron and (b) a split-off
hole of velocity vi

(a)
e
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Fig. 8.15 Impact ionization
rate as a function of primary
carrier energy for electrons
(solid line) and holes
(dashed line) in silicon at
room temperature. The
curves are fit to results from
a Monte-Carlo simulation.
Adapted from [681, 682]
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The generation rate G of electron–hole pairs during impact ionization is given by

G = αn n vn + αp p vp, (8.33)

whereαn is the electron ionization coefficient. It describes the generation of electron–
hole pairs per incoming electron per unit length. αp denotes the hole ionization
coefficient. The coefficients depend strongly on the applied electric field. They are
shown in Fig. 8.16. They also depend on the crystallographic direction.

The impact ionization initiated by electrons and holes in silicon has been cal-
culated considering the full band structure using a Monte Carlo technique in [681]
and [682], respectively. In both cases the impact ionization rate is anisotropic for
excess energies smaller than 3eV and become isotropic above. The average energies
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Fig. 8.16 Impact ionization
rates for electrons and holes
as a function of the inverse
electric field for Si, Ge and
other compound
semiconductors at 300K.
Adapted from [500]

Fig. 8.17 Averaged rates for
electron initiated impact
ionization in GaAs (circles)
and GaN (squares). Adapted
from [683]

at the moment of generation of secondary generated carriers depends linearly on the
primary electron or hole energy.

The energy dependence of the electron initiated impact ionization rate has been
calculated for GaAs, GaN and ZnS considering details and anisotropy of the band
structure in [683]. The rates averaged over the Brillouin zone are compared in
Fig. 8.17. Because of the large band gap of GaN, impact ionization can only be
generated by electrons in higher conduction bands. The sharp increase of ionization
rate for GaN around 5.75eV correlates with a large valence band DOS from hole
states at the zone boundary.
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8.5 High-Frequency Transport

The above consideration pertained to dc (or slowly varying) fields. Now, we consider
an ac field. It accelerates the carriers but at the same time the dissipative force in the
relaxation-time approximation is present, i.e. (for electrons)

m∗v̇ = −e E − m∗ v
τ

. (8.34)

For a harmonic field E ∝ exp(−iωt) the complex conductivity (j = σE = nqv) is

σ = n e2 τ

m∗
1

1 − iωτ
= n e2

m∗
i

ω + iγ
, (8.35)

with γ = 1/τ being the damping constant. Splitting into real and imaginary parts
yields

σ = n e2 τ

m∗

(
1

1 + ω2τ 2
+ i

ωτ

1 + ω2τ 2

)
. (8.36)

For small frequencies (ω → 0) the dc conductivity from (8.5) is recovered, i.e.
σ = ne2τ/m∗. For high frequencies (ωτ � 1)

σ = n e2 τ

m∗

(
1

ω2τ 2
+ i

1

ωτ

)
. (8.37)

8.6 Polarons

In an ionic lattice, the electron polarizes the ions and causes a change of their equilib-
rium position. Depending of the severity of this effect, the lattice polarization leads
to a modification of carrier (electron or hole) mass during band transport (Sect. 8.6.1)
(large polarons) or the lattice deformation is so strong that it leads to carrier localiza-
tion on the length scale of the lattice constant. Such self-trapped carriers are termed
small polarons and discussed in Sect. 8.6.1. Reviews are given in [684, 685].

8.6.1 Large Polarons

When the electronmoves through the ionic crystal andmust drag an ion displacement
with it, the effective electron mass changes to the ‘polaron mass’ mp,4

4For the calculation, many-particle theory and techniques are needed; the best solution is still given
by Feynman’s path integral calculation [686–688].
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Table 8.5 Fröhlich coupling constant α for various semiconductors

GaSb GaAs GaP GaN InSb InAs InP InN

0.025 0.068 0.201 0.48 0.022 0.045 0.15 0.24

3C-SiC ZnO ZnS ZnSe ZnTe CdS CdSe CdTe

0.26 1.19 0.63 0.43 0.33 0.51 0.46 0.35

Data from [691]

mp = m∗
(
1 + α

6
+ 0.025α2 + · · ·

)
, (8.38)

for α ≤ 1, with m∗ being the band mass as defined in Sect. 6.8.2 and α the Fröhlich
coupling constant5

α = 1

2

e2

�

√
2m∗

�ωLO

(
1

ε∞
− 1

ε0

)
. (8.39)

This process it called the polaronic effect and requires additional energy [686,
689]. Often, the polaron mass is given as mp = m∗/(1 − α/6) which is the result of
perturbation theory [689] and an approximation to (8.38) for small α.

For large coupling parameter, α � 1, the polaron mass is given by [687]

mp = m∗ 16

81π4
α4. (8.40)

The energy of the electron is lowered due to the interaction with the lattice. The
energy E0 for k = 0 is given, relative to the uncoupled case, by

E0 = − (
α + 0.0098α2 + · · · ) �ω0 ,α ≤ 1 (8.41a)

E0 = − (
2.83 + 0.106α2

)
�ω0 ,α � 1 (8.41b)

Numerical results are reported in [690].
Polarons in semiconductors are typically ‘large’ or Fröhlich-type polarons, i.e.

the coupling constant is small (Table8.5). The dressing with phonons (as the ion
displacement is called in a quantum-mechanical picture) is then only a perturbative
effect and the number of phonons per electron (≈α/2) is small. If α becomes large
(α > 1, α ∼ 6), as is the case for strongly ionic crystals such as alkali halides, the
polaron becomes localized by the electron–phonon interaction6 and hopping occurs
infrequently from site to site.

5This constant is part of the matrix element in the Hamiltonian of the electron–phonon interaction
and is related to the electric field created by LO phonons, as given in (5.52).
6One can think about it in the way that the electron strongly polarizes the lattice and digs itself a
potential hole out of which it can no longer move.

http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_5
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Fig. 8.18 Hole from Nb acceptor localized on Ti site (small polaron) in rutile TiO2. Adapted from
[694]

simulation experiment

(101)

Fig. 8.19 Simulated and experimental TEM images of β-Ga2O3 in (101) projection. The arrow
denotes the position of a polaron. Adapted from [693]

8.6.2 Small Polarons

In a polaron, the charge carrier (electron or hole) sits in a potential well resulting
from the ionic displacements it created. In some materials, the shape and strength of
this potential well is such that the charge is confined to a volume of approximately
one unit cell or less. In this case, the polaron is called a small polaron. An example
of a hole polaron in rutile TiO2:Nb is depicted in Fig. 8.18. In oxides often the hole
from an acceptor is bound to oxygen, e.g. in BaTiO3:Na, as reviewed in [692]. In
Fig. 8.19 the lattice relaxation due to a hole bound to oxygen in the monoclinc unit
cell of β-Ga2O3 is depicted directly using aberration corrected TEM. The bonding
of the hole to the oxygen atom breaks the bond to a Ga atom which moves by 0.1nm
from its equilibrium position [693].

A proper theoretical analysis of a small polaron requires ab initio techniques that
account for the motion of each atom in the few unit cells nearest the electron.7

The transport of small polarons occurs generally via thermally-activated hopping
(cmp. Sect. 8.7). Under certain conditions the following mobilities for drift and Hall

7This paragraph has been taken from the concise tutorial by S.J.F. Byrnes [695].
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effect have been given [684]:

μd ∝ T −1 exp(−W/(2kT )), (8.42)

μH ∝ T −1/2 exp(−W/(6kT )), (8.43)

W being the polaron binding energy. Generally, materials with small polar on trans-
port exhibit high carrier density, often due to structural defects, and low mobility.

8.7 Hopping Transport

Disordered solids such as amorphous semiconductors, films containing quantumdots
or material with many defects are characterized by a large density of localized states
which can form band tails or a large density of states within the band gap. Hopping
conduction is the tunneling between localized states and has been treatedwith various
models [696–698].

A commonly observed phenomenon is the variable range hopping with a conduc-
tivity given by

σ = σ0 exp
(−(T0/T )s

)
(8.44)

with s = 1/4. Such law is fulfilled for amorphous silicon (Fig. 8.20).Mott has derived
[700] and the exponent s = 1/4 using the following argument: The probability p to

Fig. 8.20 Temperature
dependence of the planar
resistance for Si films
deposited at room
temperature. Solid line is
linear fit with
T0 = 8 × 107 K according to
(8.44) (s = 1/4). Adapted
from [699]
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hop from one localized site to another is proportional to

p ∝ exp(−2αR − W/kT ). (8.45)

The first term stems from the probability to find the electron within radius R from its
initial site, α being the decay constant of its wave function, Ψ (r) ∝ exp(−α r). The
second term is the Boltzmann factor for bridging the energy mismatch W between
localized states with a phonon-assisted process, assuming a low temperature limit
(kT � W ). There is a trade-off between hopping to levels closer in energy but
spatially further away (on average), preferred at low temperature and the hopping
to energy levels with larger W but spatially closer at higher temperatures. Thus the
hopping range changes with temperature, giving the mechanism its name.

D(EF) shall be the (constant) density of localized states around the Fermi level.
Within a radius R, there is on average one state of energy between 0 and W (R)when
(for three-dimensional bulk material)

W (R) = 1

D(EF) (4π/3) R3
. (8.46)

Substituting (8.46) in (8.44) and searching for themaximumyields themost probable
hopping distance

R ≈ (α kT D(EF))
−1/4 , (8.47)

showing again, the varying range of hopping with temperature. Thus we find for T0

in (8.44),

T0 ≈ α3

k D(EF)
. (8.48)

Other types of hopping mechanisms are the Efros–Shklovskii variable range
hopping (s = 1/2), emerging for an energy dependent density of states D(E) ∝
(E − EF)

2 due to Coulomb interaction between hopping sites [701], or the next
neighbor hopping (s = 1).

From (8.44) one can rewrite for ξ = d(ln σ(T ))/d ln T ,

ln ξ = ln s + s ln T0 − s ln T . (8.49)

Thus in a plot of ln ξ versus ln T , the exponent s can be determined from the slope.
As can be seen in Fig. 8.21, for the conductivity of a hydrogenated amorphous silicon
thin film the transition of hopping mechanism from Efros–Shklovskii variable range
hopping (s ≈ 1/2) to next neighbor hopping (s ≈ 1) takes place around T = 220K,
as discussed in detail in [702].



280 8 Transport

Fig. 8.21 Temperature
dependence of conductivity
of a hydrogenated
amorphous Si thin film,
plotted as ln ξ versus ln T
(8.49). Solid lines are linear
fits for constant s according
to (8.49) as labelled.
Adapted from [702]
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8.8 Transport in Amorphous Semiconductors

Many models have been presented for the carrier transport in amorphous semicon-
ductors [178]. The most important concept is that of a mobility edge, an energy
separating localized from delocalized states [475, 476, 703]. This is schematically
depicted in Fig. 8.22. The carrier transport between localized states is mediated via
tunneling (hopping) which has been described in the previous section (Sect. 8.7). The
localization of carriers in random lattices has been treated by Anderson [560] and
reviewed in [558]. If the degree of disorder surpasses a certain value, diffusion is sup-
pressed (at T = 0) and conductivity vanishes altogether (Anderson metal–insulator
transition).

Fig. 8.22 Schematic density
of states of amorphous
semiconductor with band
tails and deep levels. The
localized (delocalized) states
are shown in dark (light)
grey. The mobility edges for
electrons and holes are
indicated by dashed lines
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The transport in delocalized states is similar to band transport. The conductivity
(for electrons) is given as

σ = −e
∫ ∞

EC

De(E)μe(E) fe(E) dE . (8.50)

If the Fermi energy is close to the middle of the gap, pinned to deep states, the
Fermi-Dirac distribution can be replaced by the Boltzmann factor. Assuming a con-
stant density of states and mobility for the delocalized states,

σ = −e De(EC)μe(EC) kT exp

(
EC − EF

kT

)
. (8.51)

Charge carriers from localized states in the tails can be thermally excited into
delocalized states and contribute to conductivity (thermally activated hopping). The
mobility then contains an exponential thermal activation term [178].

8.9 Ionic Transport

Ionic transport is the movement of ions upon application of a voltage. Here, we dis-
cuss only solid electrolytes. The transport can include the motion of one or several
of the constituents of the lattice and the transport of other ions (e.g. hydrogen ions
(protons), oxygen ions) through the crystal. Related to this is the diffusive ionicmove-
ment of impurities or defects through the crystal (cmp. Sect. 4.2.3). Ionic conduction
of the lattice constituents under dc voltage will eventually destroy the crystal.

In typical semiconductors like silicon or gallium arsenide, the conductivity is
entirely due to electronic conduction. A typical solid electrolyte is zirconia (ZrO2)
doped with yttria, so-called yttria-stabilized zirconia (YSZ) that takes on a cubic
fluorite lattice (see Sect. 3.4.8). It can conduct oxygen ions via themobility of oxygen
vacancies for use in solid-oxide fuel cells (SOFC) [704]. The conductivity is about
0.01S/cm at a temperature around 1000K, almost entirely due to ionic transport.
Doping with calcium oxide results in an oxygen conductor that is used in oxygen
sensors in automobiles (lambda sensor). The ionic conductivity can be significantly
increased, compared to bulk material, along interfaces [705, 706].

Other typical solid electrolytes are cuprous iodide (CuI) [494] and also AgI. In
the high temperature cubic phase (α-polymorph), the iodide ions form a fairly rigid
cubic framework and the metal ions are mobile; the copper diffusion pathways have
been discussed [707, 708]. The temperature dependence of conductivity of CuI is
shown in Fig. 8.23.

http://dx.doi.org/10.1007/978-3-319-23880-7_4
http://dx.doi.org/10.1007/978-3-319-23880-7_3
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Fig. 8.23 Total (circles) and
electronic (squares)
conductivity of CuI
coexisting with copper.
Filled (empty) symbols refer
to polycrystalline (single
crystal) samples. The
different structural phases (α
(cubic), β (wurtzite), γ
(zincblende)) are indicated
by shaded areas as labeled.
Dashed lines are guides to
the eyes. Adapted from [709]
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8.10 Diffusion

A gradient of a particle concentration n leads to a particle current proportional to
−∇n. This diffusion law (Fick’s law) correspondsmicroscopically to a randomwalk.
The gradients of the semiconductor carrier densities ∇n or ∇ p thus lead to electron
and hole currents, respectively:

jn = eDn∇n (8.52a)

jp = −eDp∇ p. (8.52b)

The coefficients Dn and Dp are called the electron and hole diffusion coefficient,
respectively. Thus the total electron and hole currents in the presence of an electric
field E and diffusion are

jn = −eμnn E + eDn ∇n (8.53a)

jp = eμp p E − eDp ∇ p. (8.53b)

This relation can also be deduced more generally from the gradient of the Fermi
level as

jn = −eμnn E − nμn ∇EF (8.54a)

jp = eμp p E − pμp ∇EF. (8.54b)
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Using (7.6) and (7.7) for the concentrations (valid also in the case of degeneracy)
and using dFj (x)/dx = Fj−1(x) we obtain

jn = −eμnn E − kT μn
F1/2(η)

F−1/2(η)
∇n (8.55a)

jp = eμp p E − kT μp
F1/2(ζ)

F−1/2(ζ)
∇ p, (8.55b)

with η = (EF − EC)/kT and ζ = −(EF − EV)/kT . If the pre-factor of the density
gradient is identified as the diffusion coefficient we find the (generalized) so-called
‘Einstein relations’ (β = e/(kT )) [529, 710]:

Dn = −β−1μn
F1/2(η)

F−1/2(η)
(8.56a)

Dp = β−1μp
F1/2(ζ)

F−1/2(ζ)
. (8.56b)

Useful analytical approximations have been discussed in [711]. We note that, e.g.,
(8.56a) can also be written as [712, 713]

Dn = −β−1μn n
∂η

∂n
. (8.57)

In the case of nondegeneracy, i.e. when the Fermi level is within the band gap and
not closer than about 4kT to the band edges, η = ln(n/NC). Then ∂η/∂n = 1/n,
and the equation simplifies to D = (kT/q)μ, i.e. the ‘regular’ Einstein-relations,

Dn = −β−1μn (8.58a)

Dp = β−1μp. (8.58b)

In this case, (8.53a,b) read

jn = −eμnn E − kT μn ∇n (8.59a)

jp = eμp p E − kT μp ∇ p. (8.59b)

We recall that both diffusion coefficients are positive numbers, sinceμn is negative.
Generally, the diffusion coefficient depends on the density. A Taylor series of the
Fermi integral yields

Dn = −β−1μn

[
1 + 0.35355

(
n

NC

)
− 9.9 × 10−3

(
n

NC

)2

+ · · ·
]

. (8.60)

http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_7
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8.11 Continuity Equation

The balance equation for the charge is called the continuity equation. The temporal
change of the charge in a volume element is given by the divergence of the current and
any source (generation rate G), e.g. an external excitation, or drain (recombination
rate U ). Details about recombination mechanisms are discussed in Chap.10. Thus,
we have

∂n

∂t
= Gn − Un − 1

q
∇· jn = Gn − Un + 1

e
∇· jn (8.61a)

∂ p

∂t
= Gp − Up − 1

e
∇· jp. (8.61b)

In the case of nondegeneracy we find, using (8.53a,b)

∂n

∂t
= Gn − Un − μnn ∇· E − μn E ∇n + DnΔn (8.62a)

∂ p

∂t
= Gp − Up − μp p ∇· E − μp E ∇ p + DpΔp. (8.62b)

In the case of zero electric field these read

∂n

∂t
= Gn − Un + DnΔn (8.63a)

∂ p

∂t
= Gp − Up + DpΔp, (8.63b)

and if the stationary case also applies:

DnΔn = −Gn + Un (8.64a)

DpΔp = −Gp + Up. (8.64b)

8.12 Heat Conduction

We consider here the heat transport [714] due to a temperature gradient. The heat
flow q, i.e. energy per unit area per time in the direction q̂, is proportional to the local
gradient of temperature. The proportionality constant κ is called, heat conductivity,

q = −κ ∇T . (8.65)

In crystals, the heat conductivity can depend on the direction and thus κ is gen-
erally a tensor of rank 2. In the following, κ will be considered as a scalar quantity.
The quite generally valid Wiedemann–Franz law connects the thermal and electrical

http://dx.doi.org/10.1007/978-3-319-23880-7_10
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conductivities

κ = π2

3

(
k

e

)2

T σ. (8.66)

The balance (continuity) equation for the heat energy Q is

∇· q = −∂Q

∂t
= − ρ C

∂T

∂t
+ A, (8.67)

where ρ denotes the density of the solid and C the heat capacity. A denotes a source
or drain of heat, e.g. an external excitation. Combining (8.65) and (8.67), we obtain
the equation for heat conductivity

ΔT = ρ C

κ

∂T

∂t
− A

κ
, (8.68)

which simply reads ΔT = 0 for a stationary situation without sources.
The randommixture of various atoms in natural elements represents a perturbation

of the perfectly periodic lattice. Since themass of the nuclei varies, in particular lattice
vibrations will be perturbed. Thus we expect an effect on the heat conductivity. In
Fig. 8.24, the thermal conductivity of crystals from natural Ge and enriched 74Ge
are compared [715], the latter having, as expected, the higher heat conductivity, i.e.
less scattering. The thermal conductivity of isotopically pure 28Si thin films has been
measured to be 60% greater than natural silicon at room temperature and at least
40% greater at 100 ◦C, a typical chip operating temperature [716, 717].

Fig. 8.24 Thermal
conductivity of Ge versus
temperature. The enriched
Ge consists of 96% 74Ge
while the natural isotope mix
is 20% 70Ge, 27% 72Ge, 8%
73Ge, 27% 74Ge and 8%
76Ge. The dashed line shows
the κ ∝ T 3 dependence at
low temperatures (Debye’s
law). Adapted from [715]
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8.13 Coupled Heat and Charge Transport

The standard effect of coupled charge and heat transport is that a current heats its
conductor via Joule heating.However,more intricate use of thermoelectric effects can
also be employed to cool certain areas of a device. For further details see [718, 719].

For the analysis of coupled charge and heat transport we first sum the electric
field and the concentration gradient to a new field Ê = E + ∇EF/e. Then, the heat
flow and charge current are

j = σ Ê + L ∇T (8.69)

q = M Ê + N ∇T, (8.70)

where Ê and ∇T are the stimulators for the currents. From the experimental point
of view there is interest to express the equations in j and ∇T since these quantities
are measurable. With new coefficients they read

Ê = ρ j + S ∇T (8.71)

q = � j − κ ∇T, (8.72)

where ρ, S and Π are the specific resistance, thermoelectric power and Peltier
coefficient (transported energy per unit charge), respectively. The relations with the
coefficients σ, L , M , and N are given by

ρ = 1

σ
(8.73a)

S = − L

σ
(8.73b)

Π = M

σ
(8.73c)

κ = ML

σ
− N . (8.73d)

8.13.1 Thermopower and Seebeck Effect

A semiconductor shall have two ends at different temperatures T2 and T1 and a
temperature gradient in between in an open circuit, i.e. j = 0. Then a field Ê = S ∇T
and a voltage U = S/(T2 − T1) will arise. This effect is called the thermoelectric
or Seebeck effect. S is termed the Seebeck coefficient or the thermoelectric power,
often also denoted as Q in the literature. The voltage can be measured and used to
determine the temperature at one end if the temperature at the other end is known,
forming a thermometer. The Seebeck coefficient is positive if the electric field is in
the same direction as the temperature gradient.
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A famous relation from irreversible thermodynamics connects it to the Peltier
coefficient via

S = Π

T
. (8.74)

The Seebeck coefficient is related to the energy transport by charge carriers. The
heat (energy) flow is obviously from the hot to the cold end (assuming here T2 > T1),
so is the flow of charge carriers. In a simple picture, if the energy is carried by (hot)
holes, the current (by definition the direction of positive charge carriers) is from the
hot to the cold end (2 → 1); if the energy flow is carried by electrons, the current
flows from the cold to the hot end (1 → 2).Accordingly, energy transport by electrons
and holes gives rise to different signs of the thermoelectric coefficient (Fig. 8.25). If
the cold (unheated) substrate is grounded, the sign of the voltage at a hot solder tip
pressed (carefully) on the surface of the semiconductor yields the conductivity type,
n-type (p-type) for a negative (positive) voltage.

However, the semiconductor should not be heated so strongly that intrinsic con-
duction arises. In this case the conductivity and the thermoelectric power is deter-
mined by the carrier type with the higher mobility; typically, and for the case of
silicon shown in Fig. 8.25, these are the electrons thus yielding a negative Seebeck
coefficient in the intrinsic regime.

For band conduction the thermopower (I.29) is given for electrons (Sn) and holes
(Sp) by [722] (for a derivation see Sect. I.4)
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Fig. 8.25 (a) Seebeck coefficient S for n- and p-doped germanium. Experimental data (symbols)
and theory (lines). NA − ND is 5.7 × 1015 cm−3 (white circles), 1.7 × 1017 cm−3 (grey) and 7.2 ×
1018 cm−3 (black); ND − NA is 3.3 × 1015 cm−3 (white squares), 1.1 × 1017 cm−3 (grey) and 6.2 ×
1017 cm−3 (black) Adapted from [720]. (b) Thermoelectric force� of lowly doped n- and p-silicon
as a function of temperature. Solid line is from simple model calculation and symbols represent
data from silicon samples with the approximate doping of circles: 1 × 1015 cm−3 B, 2 × 1014 cm−3

donors, squares 4 × 1014 cm−3 P, 9 × 1013 cm−3 acceptors. Adapted from [721]
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Sn = −k

e

(
EC − EF

kT
+ AC

)
(8.75a)

Sp = k

e

(
EF − EV

kT
+ AV

)
, (8.75b)

where Ai are constants (I.31a) depending on the energy dependence of the density of
states and the mobility. The sign of the thermopower tells whether conduction takes
place above (negative sign) or below (positive sign) the Fermi level.

If the Fermi level is fixed and both electrons and holes contribute (two-band
conduction), the thermopower is (evaluating (I.32), b = σn/σp and the gap center
energy EM = (EC − EV)/2)

S = k

e

(
1 − b

1 + b

Eg

2 kT
+ EF − EM

kT
+ AV − b AC

1 + b

)
. (8.76)

In the case of intrinsic conduction from (7.18) EF − EM = (kT/2) ln(NV/NC).
The thermoelectric power from some highly doped n-type silicon samples is

depicted in Fig. 8.26a. At low temperature the (low) conductivity is due to con-
duction in a donor impurity band (cmp. Sect. 7.5.7). At high compensation of about
90% (grey data points in Fig. 8.26a), the band is only 10% filled and acts like a
valence band with positive thermopower at sufficiently low temperature when the
free carrier density is small. Without compensation, the thermopower remains nega-
tive since the almost completely filled impurity band acts conduction band like. The
dependence of thermopower on doping has been simulated in [723] (Fig. 8.26); the
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Fig. 8.26 (a) Thermoelectric power S of highly doped n-type silicon as a function of temperature.
Circles are experimental data and dashed lines guides to the eyes. The approximate doping of the
samples is white 2.7 × 1019 cm−3 As, grey 2.2 × 1018 cm−3 As, black 1.1 × 1018 cm−3 As and
1.0 × 1018 cm−3 B with ND − ND = 1.25 × 1017 cm−3 at room temperature. Adapted from [721].
(b) Thermopower of doped n-type silicon at room temperature as a function of doping concentration.
Experimental data (symbols) from [721] and theory (solid line) from [723]

http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_7
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decrease with increasing doping is mostly attributed to the reduced mobility due to
ionized impurity scattering. The increase of thermopower at low temperatures is due
to the phonon-drag effect which is discussed for the samples from [721] in [724].

As a figure of merit for the production of thermoelectric power the Z T -value is
used, Z T = σ S2 T/κ.

8.13.2 Peltier Effect

In a semiconductor with a temperature difference at its ends a current flow will be
allowed now (short circuit). The current leads via the charge transport also to a heat
(or energy) transport. This effect is called the Peltier effect. The Peltier coefficient
is negative (positive) for electrons (holes). The total amount of energy P that is
transported consists of the generation term and the loss due to transport:

P = j · Ê − ∇· q. (8.77)

With (8.71) and (8.72) we find

P = j · j
σ

+ S j ·∇T − Π ∇· q + κ ΔT . (8.78)

The first term is Joule heating, the second term is Thomson heating. The third
exists only when carriers are generated or when they recombine. The fourth term
is the heat conduction. In the Thomson term S j ·∇T heat is generated in an n-type
semiconductor if j and ∇T are in the same direction. This means that electrons that
move from the hotter to the colder part transfer energy to the lattice. The effect can
be used to construct a thermoelectric cooler, as shown in Fig. 8.27, that generates a
temperature difference due to a current flow. For optimal performance σ should be
large to prevent excess Joule heating and κ should be small such that the generated
temperature difference is not rapidly equalized.

Fig. 8.27 Schematic Peltier
cooler. The heat sinks (grey)
and the cold junction (black)
on the left are metals that
make ohmic contacts with
the semiconductors. The
current flow is such that
electrons move through the
n-type semiconductor from
right to left p-typeheat

sink

T

n-typeheat
sink

j

j



Chapter 9
Optical Properties

Abstract After introduction of the complex dielectric function, reflection, diffrac-
tion are briefly discussed. The focus lies on absorptionmechanisms; several transition
types (direct and indirect band-band transitions, impurity-related transitions, lattice
absorption) are discussed including the effects of excitons, polaritons and high carrier
density. Also the various effects of the presence of free carriers are given.

9.1 Spectral Regions and Overview

The interaction of semiconductors with light is of decisive importance for photonic
and optoelectronic devices as well as for the characterization of semiconductor prop-
erties. When light hits a semiconductor, reflection, transmission and absorption are
considered, as for any dielectric material. The response of the semiconductor largely
depends on the photon energy (or wavelength) of the light and various processes
contribute to the dielectric function.

An overview of the electromagnetic spectrum in the optical range is given in
Table9.1. The energy and wavelength of a photon are related by1 E = hν = hc/λ,
i.e.

E [eV] = 1240

λ [nm] . (9.1)

In the infrared regime, energy is often measured in wave numbers (cm−1) for
which the conversion 1meV = 8.056cm−1 holds.

1The more exact numerical value in (9.1) is 1239.84.

© Springer International Publishing Switzerland 2016
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Table 9.1 Spectral ranges with relevance to semiconductor optical properties

Range Wavelengths Energies

Deep ultraviolet DUV <250nm >5eV

Ultraviolet UV 250–400nm 3–5eV

Visible VIS 400–800nm 1.6–3eV

Near infrared NIR 800nm–2µm 0.6–1.6eV

Mid-infrared MIR 2–20µm 60meV–0.6eV

Far infrared FIR 20–80µm 1.6–60meV

THz region THz >80µm <1.6meV

9.2 Complex Dielectric Function

The dielectric function ε fulfills

D = ε0 E + P = ε0 ε E, (9.2)

and is generally a rank 2 tensor since D and E must not be collinear. This is the case,
e.g. for birefringence as discussed in Sect. 13.2.2. The general form of the dielectric
tensor for various crystal symmetries is compiled in Table 9.2. In most cases in the
following ε will be used as scalar. The dielectric function is frequency dependent
ε(ω) due to the various oscillators playing a role and decreases (non-monotonically)
from its static value (forω = 0) to 1 forω → ∞. In some cases also its k-dependence
is important, known as spatial dispersion (cmp. Sect. 9.6.8). The dielectric function
is generally complex and written as

ε = ε′ + i ε′′. (9.3)

The real and the imaginary part of the dielectric function are related to each other
via the Kramers–Kronig relations (AppendixC).

The complex index of refraction is

n∗ = nr + iκ = √
ε. (9.4)

From n∗2 follows

ε′ = n2
r − κ2 (9.5)

ε′′ = 2 nr κ. (9.6)

From ε ε̄ = (n2
r + κ2)2 and (9.5) follows

http://dx.doi.org/10.1007/978-3-319-23880-7_13
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Table 9.2 General form of the dielectric tensor for various crystals

crystal system optical symmetry examples

cubic isotropic

⎛
⎜⎝

a 0 0

0 a 0

0 0 a

⎞
⎟⎠ Si, GaAs, MgO, ZnSe, CuI

tetragonal

hexagonal

trigonal

uniaxial

⎛
⎜⎝

a 0 0

0 a 0

0 0 c

⎞
⎟⎠ CuGaSe2, GaN, Bi2Se3

orthorhombic biaxial

⎛
⎜⎝

a 0 0

0 b 0

0 0 c

⎞
⎟⎠ Sb2Se3

monoclinic biaxial

⎛
⎜⎝

a d 0

d b 0

0 0 c

⎞
⎟⎠ β-Ga2O3, anthracene

triclinic biaxial

⎛
⎜⎝

a d e

d b f

e f c

⎞
⎟⎠ tetracene

n2
r = ε′ + √

ε′ 2 + ε′′ 2

2
(9.7)

κ = ε′′

2 nr
. (9.8)

The real part of the complex index of refraction nr is responsible for the dispersion,
the imaginary part κ is named extinction coefficient and is related to the absorption
coefficient of the plane wave (damping of E2) by

α = 2
ω

c
κ = 4π

λ
κ = 2 k κ. (9.9)

Here, k and λ denote the respective values in vacuum.

9.3 Reflection and Diffraction

FromMaxwell’s equations and the boundary conditions at a planar interface between
two media with different index of refraction for the components of the electric and
magnetic fields the laws for reflection and diffraction are derived. We denote the
index of refraction as n and also nr in the following. The interface between two
media with refractive indices n1 and n2 is depicted in Fig. 9.1. In the following we
assume first that no absorption occurs.
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Snellius’ law for the angle of diffraction is

n1 sin φ = n2 sinψ. (9.10)

When the wave enters the denser medium, it is diffracted towards the normal. If
the wave propagates into the less-dense medium (reversely to the situation shown in
Fig. 9.1), a diffracted wave occurs only up to a critical angle of incidence

sin φTR = n2

n1
. (9.11)

For larger angles of incidence, total internal reflection occurs and thewave remains
in the denser medium. Thus, the angle in (9.11) is called the critical angle for total
reflection. For GaAs and air the critical angle is rather small, φTR = 17.4◦.

The reflectance depends on the polarization (Fresnel formulas). The index ‘p’
(‘s’) denotes parallel polarized/TM (perpendicular polarized/TE) waves.

Rp =
(
tan(φ − ψ)

tan(φ + ψ)

)2
(9.12)

Rs =
(
sin(φ − ψ)

sin(φ + ψ)

)2
. (9.13)

The situation for GaAs and air is shown for both polarization directions and
unpolarized radiation in Fig. 9.2 for a wave going into and out of the GaAs.

reflected
wave

interface

incident
wave

diffracted
wave

normal

Fig. 9.1 Reflection and diffraction of an electromagnetic wave at the transition between medium
‘1’ and ‘2’, n2 > n1. The polarization plane is defined by the surface normal and the k-vector of
the light (plane of incidence). The parallel (‘p’) polarized wave (TM-wave, electric field vector
oscillates in the plane) is shown as ‘↔’; perpendicular (‘s’) polarization (TE-wave, electric field
vector is perpendicular to plane) is depicted as ‘·’
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Fig. 9.2 Reflectance of theGaAs/vacuum interface (close to the band gap, nr = 3.347) for radiation
fromvacuum/air (left panel) and from theGaAs (right panel), respectively, as a function of incidence
angle and polarization

When the reflected and the diffracted wave are perpendicular to each other, the
reflectance of the p-polarized wave is zero. This angle is the Brewster angle φB,

tan φB = n2

n1
. (9.14)

If awave has vertical incidence fromvacuumon amediumwith index of refraction
nr, the reflectance is given (both polarizations are degenerate) as

R =
(

nr − 1

nr + 1

)2
. (9.15)

For GaAs, the reflectance for vertical incidence is 29.2%.

9.4 Absorption

In the absorption process, energy is transferred from the electromagnetic field to the
semiconductor. In the case of a linear absorption process, when the probability of
light absorption is proportional to the incoming intensity, the decrease of intensity
in the absorbing medium is exponential (Lambert–Beer’s law [725, 726]),2

I (x) = I (0) exp(−α x). (9.16)

2In [726], the absorption coefficient μ was defined via I (d)/I (0) = μd , i.e. μ = exp−α.
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Fig. 9.3 Schematic absorption spectrum of a typical semiconductor. From [727]

The quantity α is the absorption coefficient, its reverse the absorption depth. The
spectral dependence α(E), the absorption spectrum, contains the information of
the possible absorption processes, their energy, momentum and angular momentum
selection rules, and their oscillator strength.

In Fig. 9.3 a schematic absorption spectrum of a semiconductor is depicted. The
transition of electrons from the valence to the conduction band begins at the band gap
energy. The band gaps of Si, Ge, GaAs, InP, InAs, InSb are in the IR, those of AlAs,
GaP, AlP, InN in the VIS, those of GaN and ZnO in the UV, MgO and AlN are in the
deep UV. The Coulomb correlation of electrons and holes leads to the formation of
excitons that leads to absorption below the band gap. The typical exction binding
energy is in the range of 1–100meV (see Fig. 9.16). Optical transitions from valence-
band electrons into donors and from electrons on acceptors into the conduction band
lead to band–impurity absorption. In the region from 10–100meV the interaction
with lattice vibrations (phonons) leads to absorption if the phonons are infrared
active. Further in the FIR lie transitions from impurities to the closest band edge
(donor to conduction and acceptor to valence band). A continuous background is
due to free-carrier absorption.

If absorption is considered, the reflectance (9.15) needs to be modified. Using the
complex index of refraction n∗ = nr + iκ, it is given as

R =
∣∣∣∣
n∗ − 1

n∗ + 1

∣∣∣∣
2

= (nr − 1)2 + κ2

(nr + 1)2 + κ2
. (9.17)
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9.5 Electron–Photon Interaction

The absorption process is quantum mechanically described by the coupling of elec-
trons and photons. The process is describedwith time-dependent perturbation theory.
If Hem is the perturbation operator (electromagnetic field), the transition probability
per time wfi for electrons from (unperturbed) state ‘i’ (initial) to state ‘f’ (final) is
given (with certain approximations) by Fermi’s golden rule

wfi(�ω) = 2π

�

∣∣H ′
fi

∣∣2 δ(Ef − Ei − �ω), (9.18)

where �ω is the photon energy, Ei (Ef ) is the energy of the initial (final) state. H ′
fi is

the matrix element

H ′
fi = 〈Ψf

∣∣H′∣∣Ψi〉, (9.19)

where Ψi (Ψf ) are the wavefunctions of the unperturbed initial (final) state.
A is the vector potential for the electromagnetic field, i.e. E = −Ȧ, μH = ∇ ×A,

∇ · A = 0 (Coulomb gauge). The Hamiltonian of an electron in the electromagnetic
field is

H = 1

2m
(�k − qA)2 . (9.20)

When terms in A2 are neglected (i.e. two-photon processes), the perturbation
Hamiltonian is thus

Hem = − q

m
A p = i �q

m
A · ∇ ≈ q r · E. (9.21)

The latter approximation is valid for small wavevectors of the electromagnetic
wave and is termed the electric dipole approximation.

In order to calculate the dielectric function of the semiconductor from its band
structurewe assume thatA isweak andwe can apply (9.18). The transition probability
R for the photon absorption rate at photon energy �ω is then given by3

R(�ω) = 2π

�

∫
kc

∫
kv

|〈c|Hem|v〉|2 δ (Ec(kc) − Ev(kv) − �ω) d3kc d
3kv, (9.22)

with the Bloch functions |c〉 and |v〉 of the conduction and valence band, respectively,
as given in (6.36b).

The vector potential is written as A = Aê with a unit vector ê parallel to A. The
amplitude is connected to the electric-field amplitude E via

3Here we assume that the valence-band states are filled and the conduction-band states are empty.
If the conduction-band states are filled and the valence-band states are empty, the rate is that of
stimulated emission.

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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A = − E

2ω

[
exp (i(qr − ωt)) + exp (−i(qr − ωt))

]
. (9.23)

In the electric-dipole approximation the momentum conservation q + kv = kc,
q being the momentum of the light wave is approximated by kv = kc. The matrix
element is then given by

|〈c|Hem|v〉|2 = e2 |A|2
m2

∣∣〈c|ê · p|v〉∣∣2 , (9.24)

with

〈c ∣∣ê · p|v〉∣∣2 = 1

3
|pcv|2 = M2

b , (9.25)

and the momentum matrix element pcv given in (6.35). A k-independent matrix
element |pcv|2 is often used as an approximation. In Fig. 9.4 the matrix elements for
valence to conduction band transitions in GaN are shown as a function of k.
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Fig. 9.4 Theoretical momentum matrix elements |pcv|2 along high-symmetry directions in the
Brillouin zone (see Fig. 3.34d) for transitions between valence and conduction bands in GaN and
light polarized perpendicular (left panel) and parallel (right panel) to the c-axis. The transitions are
A: Γ9(A)→ Γ7c, B: Γ7(B)→ Γ7c, C: Γ7(C)→ Γ7c (see Fig. 6.38). Adapted from [728]

In terms of the electric-field amplitude E(ω) the transition probability is

R(�ω) = 2π

�

( e

m ω

)2 ∣∣∣∣
E(ω)

2

∣∣∣∣
2

|pcv|2
∫

k
δ (Ec(k) − Ev(k) − �ω) d3k. (9.26)

http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_3
http://dx.doi.org/10.1007/978-3-319-23880-7_6
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If the integration over k is restricted to those values allowed in unit volume, the
power that is lost from the field in unit volume is given by R �ω, leaving a 1/E factor.
The dielectric function ε = εr + iεi is given by

εi = 1

4πε0

(
2π e

m ω

)2
|pcv|2

∫
k
δ (Ec(k) − Ev(k) − �ω) d3k (9.27a)

εr = 1 +
∫

k

e2

ε0 m ω2
cv

2 |pcv|2
m �ωcv

1

1 − ω2/ω2
cv

d3k, (9.27b)

with�ωcv = Ec(k)−Ev(k). The second equation has been obtained via theKramers–
Kronig relations4 (see Appendix C).

Comparisonwith (D.7) yields that the oscillator strength of the band–band absorp-
tion is given by

f = e2

ε0 m ω2
cv

2 |pcv|2
m �ωcv

, (9.28)

with

Ncv = 2 |pcv|2
m �ωcv

(9.29)

being the classical ‘number’ of oscillators with the frequency ωcv.

9.6 Band–Band Transitions

9.6.1 Joint Density of States

The strength of an allowed optical transitions between valence and conduction bands
is proportional to the joint density of states (JDOS) Dj(Ecv) (cf. (6.59), (6.60) and
(9.27a))

Dj(Ecv) = 2
∫

S(Ẽ)

d2S

(2π/L)3

1

|∇k Ecv| , (9.30)

where Ecv is an abbreviation for Ec(k) − Ev(k) and d2S is a surface element of
the constant energy surface with Ẽ = Ecv. The spin is assumed to generate doubly
degenerate bands and accounts for the pre-factor 2. Singularities of the JDOS (van-
Hove singularities or critical points) appear where ∇k Ecv vanishes. This occurs
when the gradient for both bands is zero or when both bands are parallel. The latter
generates particularly large JDOS because the condition is valid at many points in
k-space.

4The real and imaginary parts of the dielectric function are generally related to each other via the
Kramers–Kronig relations.

http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_6
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Table 9.3 Functional dependence of the joint density of states for critical points in 3, 2 and 1
dimensions

Dim. Label Type Dj for E < E0 Dj for E > E0

3D M0 Min. 0
√

E − E0

M1 Saddle C − √
E0 − E C

M2 Saddle C C − √
E − E0

M3 Max.
√

E0 − E 0

2D M0 Min. 0 C

M1 Saddle − ln(E0 − E) − ln(E − E0)

M2 Max. C 0

1D M0 Min. 0
√

E − E0

M1 Max.
√

E0 − E 0

E0 denotes the energy (band separation) at the critical point, C stands for a constant value. The type
of critical point is given (min.: minimum, saddle: saddle point, max.: maximum)

Generally, the (three-dimensional) energy dispersion E(k) around a three-
dimensional critical point (here developed at k = 0) can be written as

E(k) = E(0) + �
2k2

x

2mx
+ �

2k2
y

2my
+ �

2k2
z

2mz
. (9.31)

The singularities are classified as M0, M1, M2 and M3 with the index being the
number ofmassesmi in (9.31) that are negative. M0 (M3) describes aminimum (max-
imum) of the band separation. M1 and M2 are saddle points. For a two-dimensional
k-space there exist M0, M1 and M2 points (minimum, saddle point and maximum,
respectively). For a one-dimensionalk-space there exist M0 and M1 points (minimum
and maximum, respectively). The functional dependence of the JDOS at the critical
points is summarized in Table9.3. The resulting shape of the dielectric function is
visualized in Fig. 9.5.

9.6.2 Direct Transitions

Transitions between states at the band edges at theΓ point are possible (Fig. 9.6). The
k conservation requires (almost) vertical transitions in the E(k) diagram because the
length of the light k vector, k = 2π/λ, is much smaller than the size of the Brillouin
zone |k| ≤ π/a0. The ratio of the lengths of the k vectors is of the order a0/λ and
typically about 10−3 for NIR wavelengths.
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Fig. 9.5 Shape of the real (left panel) and imaginary (right panel) parts of the dielectric function
in the vicinity of critical points in 3, 2 and 1 dimensions (for labels see Table9.3). The dashed line
in each graph indicates the energy position of the critical point E0. Adapted from [729]
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Fig. 9.6 (a) Direct optical transition and (b) indirect optical transitions between valence and con-
duction bands. The indirect transition involves a phonon with energy �ωph (index a: phonon absorp-
tion, e: phonon emission) and wavevector kph

For isotropic parabolic bands the band-band transition energy versus wavevector
relation is

Ecv(k) = Eg + �
2

2

(
1

m∗
e

+ 1

m∗
h

)
k2. (9.32)

When the energy dependence of the matrix element is neglected, the absorption
coefficient is determined by the corresponding square-root joint density of states (M0

critical point):

α(E) ∝
√

E − Eg

E
≈∝ √E − Eg. (9.33)
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The approximation is valid if the considered energy interval, e.g. around a band edge,
is small.

Absorption spectra of (InxGa1−x )2O3 alloy thin films at room temperature are
shown in Fig. 9.7a. The α2 versus photon energy plots shows a linear dependence
with broadening and additional states at the band edge due to disorder effects. The
extrapolation of the linear parts yields the absorption edge (Fig.9.7b).

Absorption spectra of GaAs are shown in Fig. 9.8a for photon energies close to the
band gap at various temperatures. The rapid increase, typical for direct semiconduc-
tors, is obvious. In particular at low temperatures, however, the absorption lineshape
close to the band gap is dominated by an excitonic feature, discussed in Sect. 9.6.6.

Due to the increasing density of states, the absorption increases with the photon
energy (Fig. 9.8c). At 1.85eV there is a step in the absorption spectrum of GaAs
due to the beginning of the contribution of transitions between the s-o hole band
and the conduction band (see E0 + Δ0 transition in Fig. 9.8e). When bands run in
parallel, i.e. with the same separation, in the E(k) diagram, the absorption processes
accumulate at the same transition energy. In this way higher peaks in the absorption
spectrum due to the E1 or E ′

0 transitions originate as indicated in the band structure
in Fig. 9.8e.

The selection rules for transitions from valence to conduction band must take into
account the angular momentum and spin states of the wavefunctions. The optical
transitions for circularly polarized light are shown in Fig. 9.9a, fulfilling the selection
ruleΔm j = ±1. A lifting of the energetic degeneracies of these states occurs, e.g. by
magnetic fields or spatial confinement (cmp. Fig. 12.29). For two-photon absorption
(Sect. 9.6.14), the selection rule is Δm j = ±2 as shown in Fig. 9.9b [732].

We note that in some materials the direct transition between certain bands is
forbidden. An example is SnO2 where the direct transition from the topmost valence

(a) (b)

Fig. 9.7 (a) Absorption spectra of (InxGa1−x )2O3 alloy thin films on Al2O3, plotted as α2 versus
photon energy. (b) Band edge determined from extrapolation of linear parts

http://dx.doi.org/10.1007/978-3-319-23880-7_12
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Fig. 9.8 (a) Absorption of GaAs close to the band gap at different temperatures. Adapted
from [730]. (b) High-resolution absorption spectrum of highly pure GaAs at T = 1.2K in the exci-
ton region. Dashed line is theory without excitonic correlation. Adapted from [731]. (c) Absorption
spectrum of GaAs at T = 21K in the vicinity of the band gap. Adapted from [730]. (d) Complex
dielectric function of GaAs at T = 300K, dashed (solid) line real (imaginary) part of dielectric
constant. Peak labels relate to transitions shown in part (e). (e) Band structure of GaAs with band
gap transition (E0) and higher transitions (E0 + Δ0, E1, E1 + Δ1, E ′

0, and E2) indicated
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Fig. 9.9 Optical selection rules for band–band transitions in bulk material for (a) single photon
transitions and (b) two-photon transitions (with photon energy equal to half the transition energy)

band into the lowest conduction band (at Γ ) is forbidden (cmp. Fig. 9.46). If the
matrix element increases linearly with E − Eg, the absorption coefficient varies like

α(E) ∝ (E − Eg)
3/2. (9.34)

9.6.3 Indirect Transitions

In an indirect band structure the missing k difference (across the Brillouin zone)
between valence- and conduction-band state needs to be provided by a second quan-
tum. A phonon can provide the necessary momentum and additionally contributes
a small amount of energy �ωph. There are several steps in the absorption spectrum
due to various involved phonons (or combinations of them). At low temperature
(T = 1.6K, Fig. 9.10) phonons can only be generated and the absorption starts at
energies above the band gap. At higher temperatures (typically above 40K [733],
Fig. 9.10), acoustical phonons assisting the optical absorption transition can also be
absorbed from the crystal; in this case due to energy conservation the absorption starts
already at an energy Eg − �ωph below the band gap. At even higher temperatures
(>200K, Fig. 9.10), also optical phonons can be absorbed.

The perturbation calculation yields an absorption coefficient with a quadratic
dependence on energy (9.35a) [734]. Essentially, for the absorption into a specific
(empty) conduction band state (with square-root density of states) various initial
(filled) valence band states (also with square-root density of states) are possible,
making the probability depend on the product of the DOS and thus on the energy to
the first power. Integrating over all energy states with energy separation E ± �ωph,
yields an E2-dependence.5 Considering the temperature dependent population of

5A flat optical phonon dispersion is assumed.
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Fig. 9.10 Absorption edge of GaP (
√

α vs. E) at various temperatures. The index ‘e’ (‘a’) indicates
phonon emission (absorption) during the optical absorption process. The theoretical excitonic gap
(EgX) at T = 77K is indicated. Adapted from [733]

the phonon density of states (Bose statistics, (E.3)) the absorption coefficients for
transitions with phonon emission (αe) and phonon absorption (αa) are:

αe(E) ∝ (E − (Eg + �ωph))
2

1 − exp(−�ωph/kT )
(9.35a)

αa(E) ∝ (E − (Eg − �ωph))
2

exp(�ωph/kT ) − 1
. (9.35b)

The two-particle process is less probable than the direct absorption that only involves
one photon. The strength of indirect absorption close to the band gap is about 10−3

smaller than for the direct transition.
An 11-parameter formula based on terms like (9.35a) can describe the room

temperature absorption spectrum of silicon in the visible with a precision of a few
percent [735].

The absorption spectra close to the absorption edge are shown for GaP (Fig. 9.10)
and Si (Fig. 9.11a). According to (9.35a), the plot of

√
α versus energy (Macfarlane–

Roberts plot [736]) yields a straight line beyond the spectral region of phonon effects.
The complicated form close to the (indirect) gap energy is due to the contribution of
different phonons. The phonon energies found to contribute to the silicon absorption
edge [737] agree with the TA and TO energy at the X minimum [738] (Fig. 9.11b).
Also multiple phonons can contribute (Fig. 9.10). The momentum conservation can
also be achieved by impurity scattering or electron-electron scattering [739].

We note also that the indirect semiconductors have an optical transition between
Γ valence- and conduction-band states. However, this transition is at higher energies
than the fundamental band gap, e.g. for Si (Eg = 1.12eV) at 3.4 eV (see Fig. 6.6a). In

http://dx.doi.org/10.1007/978-3-319-23880-7_6


306 9 Optical Properties

(a) (b)

Fig. 9.11 (a) Absorption edge of Si at two different temperatures. Adapted from [737]. (b) Phonon
energies in silicon along [001] obtained from neutron scattering (black unidentified, green TA,
purple LA, blue LO, red TO). The vertical grey bar indicates the position of the conduction band
minimum, the horizontal grey bars the energies of the phonons observed at the indirect optical
absorption edge. The dark grey overlap areas indicate that TO and TA phonons contribute. Adapted
from [738]
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Fig. 9.12 (a) Scheme of indirect and direct optical transitions starting at the top of the valence band
in Ge. Vertical solid lines represent the involved photon, the horizontal dashed line the involved
phonon. (b) Experimental absorption spectrum of Ge (T = 20K). Adapted from [737]

Fig. 9.12, the absorption scheme for indirect and direct absorbtion processes starting
with an electron at the top of the valence band is shown together with an experimental
absorption spectrum for Ge with the direct transition (Γ8 → Γ7) at 0.89eV, 0.136eV
above the fundamental band gap.

In Fig. 9.13, the absorption edge of BaTiO3 is shown. An indirect transition with
an increase of (weak) absorption ∝ E2 and an indirect gap of Ei = 2.66eV and a
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Fig. 9.13 Absorption of BaTiO3 at room temperature. Experimental data (circles) from [740] with
fits (dashed lines) ∝ E2 and ∝ E1/2, respectively

direct transition with an increase of (strong) absorption ∝ E1/2 and a direct gap of
Ed = 3.05eV are observed. These transitions could be due to holes at theM (indirect
gap) and Γ (direct gap) points (cf. Sect. 6.3.11), respectively.

9.6.4 Urbach Tail

Instead of the ideal (E − Eg)
1/2 dependence of the direct band-edge absorption, often

an exponential tail is observed (see Fig. 9.14). This tail is called the Urbach tail [741]
and follows the functional dependence (for E < Eg)

α(E) ∝ exp

(
E − Eg

E0

)
, (9.36)

where E0 is the characteristic width of the absorption edge, the so-called Urbach
parameter.

The Urbach tail is attributed to transitions between band tails below the band
edges. Such tails can originate from disorder of the perfect crystal, e.g. from defects
or doping, and the fluctuation of electronic energy bands due to lattice vibrations.
The temperature dependence of the Urbach parameter E0 is thus related to that of
the band gap as discussed in [742, 743].

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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Fig. 9.14 (a) Experimental absorption spectrum (circles) of GaAs at room temperature on a semi-
logarithmic plot. The exponential tail below the band gap is called the Urbach tail (the dash-dotted
line corresponds to E0 = 10.3meV in (9.36)). The dashed line is the theoretical dependence from
(9.33). Adapted from [744]. (b) Temperature dependence of Urbach parameter E0 for two GaAs
samples. Experimental data for undoped (solid circles) and Si-doped (n = 2 × 1018 cm−3, empty
circles) GaAs and theoretical fits (solid lines) with one-phonon model. Adapted from [742]

9.6.5 Amorphous Semiconductors

The sharp features in the dielectric function due to critical points in the band structure
of crystalline semiconductors are washed out in amorphous material. As an example
the spectra of the imaginary part of the dielectric function for crystalline (trigonal)
and amorphous selenium are shown in Fig. 9.15.

Fig. 9.15 Imaginary part of
the dielectric function of
amorphous (solid line) and
crystalline (trigonal)
selenium (dash-dotted lines
for two different polarization
directions). From [745]
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9.6.6 Excitons

An electron in the conduction band and a hole in the valence band form a hydrogen-
like state due to the mutual Coulomb interaction. Such a state is called an exciton.
The center-of-mass motion is separated and has a dispersion E = �

2

2M K2, where
M = me + mh is the total mass and �K is the center-of-mass momentum

K = ke + kh. (9.37)

The relative motion yields hydrogen-like quantized states En ∝ n−2 (n ≥ 1):

En
X = −m∗

r

m0

1

ε2r

m0e4

2(4πε0�)2

1

n2
, (9.38)

where m∗
r denotes the reduced effective mass m∗−1

r = m∗−1
e + m∗−1

h . The third factor
is the atomic Rydberg energy (13.6eV). The exciton binding energy Eb

X = −E1
X is

scaled by (m∗/m0) ε−2
r ≈ 10−3.Amore detailed theory of excitons beyond the simple

hydrogen model presented here, taking into account the valence-band structure, can
be found in [746] for direct and [747] for indirect cubic and in [748] for wurtzite
semiconductors. The exciton binding energies for various semiconductors are listed
in Table9.4 and shown in Fig. 9.16a versus the band gap.

The radius of the exciton is

rn
X = n2 m0

m∗
r

εr aB, (9.39)

where aB = 0.053 nm denotes the hydrogen Bohr radius.6 The Bohr radius of the
exciton is aX = r1X (14.6nm for GaAs, ∼2nm for ZnO). The exciton moves with
the center-of-mass K-vector through the crystal. The complete dispersion is (see
Fig. 9.16b)

Table 9.4 Exciton (Eb
X) and biexciton (Eb

XX, see Sect. 9.6.10) binding energies in various bulk
semiconductors

Material Eb
X (meV) Eb

XX (meV) Eb
XX/Eb

X

GaAs 4.2

GaAs QW 9.2 2.0 0.22

ZnSe 17 3.5 0.21

GaN 25 5.6 0.22

CdS 27 5.4 0.20

ZnS 37 8.0 0.22

ZnO 59 15 0.25

Values for 10nm GaAs/15nm Al0.3Ga0.7As quantum well (QW) are taken from [749]

6Cf. (7.20); an electron bound to a donor can be considered as an exciton with an infinite hole mass.

http://dx.doi.org/10.1007/978-3-319-23880-7_7
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(a) (b)

Fig. 9.16 (a) Exciton binding energy versus band gap for various semiconductors. (b) Schematic
dispersion of excitonic levels. The K -vector refers to the center-of-mass motion

E = Eg + En
X + �

2

2M
K2. (9.40)

The oscillator strength of the exciton states decays ∝ n−3. The absorption due to
excitons is visible in Fig. 9.8a for GaAs at low temperatures. If inhomogeneities are
present, typically only the n = 1 transition is seen.However, under special conditions
also higher transitions of the exciton Rydberg series are seen (e.g. n = 2 and 3 in
Fig. 9.8b).

The exciton concept was introduced first for absorption in Cu2O [750]. The J =
1/2 absorption spectrum (‘yellow series’) is shown in Fig. 9.17. In this particular

Fig. 9.17 One-photon (top)
and two-photon (bottom)
absorption spectra of Cu2O
at T = 4.2K. Arrows denote
theoretical peak positions.
Adapted from [752]
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Fig. 9.18 (One photon) Absorption spectrum of Cu2O (thickness 34µm) at T = 1.2K with
transitions labelled n = 2 . . . 25. Adapted from [751]

material both the valence and conduction bands have s character, thus the 1s transition
of the exciton is forbidden and the np transitions are observed in normal (one-
photon) absorption. With two-photon absorption also the s (and d) transitions can
be excited. On a piece of natural Cu2O, the Rydberg series has been measured
up to n = 25 [751] (Fig. 9.18a). The peak energy and the oscillator strength follow
the n−2 (Eb

X = 92meV, Eg = 2.17208eV) and n−3 laws, respectively, expected
from a hydrogen model (Fig. 9.18b). The deviation from the n−3-dependence for the
oscillator strength at large n is due to interaction effects of excitons with large radius
at finite exciton density.

The scattering (unbound) states of the exciton [753] for E > Eg contribute to
absorption above the band gap. The factor by which the absorption spectrum is
changed is called the Sommerfeld factor. For bulk material it is

S(η) = η
exp(η)

sinh(η)
, (9.41)

with η = π
[
Eb

X/(E − Eg)
]1/2

. The change of the absorption spectrum due to the
Coulomb correlation is shown in Fig. 9.19. There is a continuous absorption between
the bound and unbound states. At the band gap there is a finite absorption (S(E →
Eg) → ∞). The detail towhich exciton peaks can be resolved depends on the spectral
broadening.
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(a) (b)

(c) (d)

Fig. 9.19 Modification of the absorption edge of a direct transition by excitonic effects for different
spectral (Lorentzian) broadening (∝ (E2 + Γ 2/4)−1), (a) Γ = 0.01Eb

X, (b) Γ = 0.1Eb
X, (c)

Γ = Eb
X. (d) is (c) in linear scale. Dashed lines are electron–hole plasma absorption according to

(9.33)

Fig. 9.20 Theoretical
dependency (lines) for the
the differences of the C-line
and A-line as well as B-line
and A-line exciton transition
energies in GaN as a
function of the c-axis strain.
Symbols are experimental
data from [754]. Adapted
from [468]
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Table 9.5 Phonon broadening parameters (FWHM) of various bulk semiconductors

Material �ωLO (meV) Γ0 (meV) γAC (µeV/K) γLO (meV)

GaAs 36.8 0 4 ± 2 16.8 ± 2

ZnSe 30.5 1.9 0 ± 7 84 ± 8

GaN 92 10 15 ± 4 408 ± 30

ZnO 33 1.2 32 ± 26 96 ± 24

Values from fits with (9.42) to experimental data for GaAs [759], ZnSe [757], GaN [756], ZnO [760]
(phonon energy fitted) as shown in Fig. 9.22b

In Fig. 9.20 the energy separations of the A-, B-, and C-excitons in GaN are
shown [468]. Thus, the ordering of the valence bands depends on the strain state of
the semiconductor.

9.6.7 Phonon Broadening

The scattering with phonons and the related dephasing leads to homogeneous broad-
ening Γhom of absorption (and recombination) lines. Acoustic and optical phonons
contribute to the broadening according to the dependence [755]

Γhom(T ) = Γ0 + γAC T + γLO
1

exp(�ωLO/kT ) − 1
, (9.42)

where �ωLO is the optical phonon energy and the last factor is the Bose function
(E.24). Γ0 is a temperature-independent contribution, Γ0 = Γ (T = 0). The increas-
ing broadening with increasing temperature is obvious, e.g., in absorption spectra
(Fig. 9.21a). In Fig. 9.21b experimental data for GaAs, ZnSe and GaN are assembled.
The data have been fittedwith (9.42); the resulting phonon broadening parameters are
listed in Table9.5.7 The optical transitions in polar semiconductors exhibit stronger
coupling to optical phonons. The phonon coupling parameters from different mea-
surements on GaN are discussed and compared in [758].

9.6.8 Exciton Polariton

Electrons and holes are particles with spin 1/2. Thus, the exciton can form states
with total spin S = 0 (para-exciton, singlet) and S = 1 (ortho-exciton, triplet). The

7Such parameter can be directly determined from spectroscopic broadening (as in [756]) or a time-
resolved measurement of the decay of the coherent polarization (four-wave mixing) as in [757]. In
the latter, the decay constant of the dephasing T2 is related to the decay constant τ of the FWM-signal
by T2 = 2τ for homogeneous broadening. The Fourier transform of exp−t/(2τ ) is a Lorentzian
of the type ∝ ((E − E0)

2 + Γ 2/4)−1 with Γ = 1/τ being the FWHM.
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(a) (b)

Fig. 9.21 (a) Absorption spectra of GaN bulk (0.38µm thick epilayer on sapphire) for various
temperatures T = 100, 200, 300, 350, 400, 450, and 475K. Adapted from [756]. (b) Homogeneous
broadening as a function of temperature, symbols are experimental data, solid lines are fits, rf.
Table9.5

exchange interaction leads to a splitting of these states, the singlet being the ener-
getically higher. The singlet state splits into the longitudinal and transverse exciton
with respect to the orientation of the polarization carried by the Bloch functions
and the center-of-mass motion K of the exciton. Dipole transitions are only possible
for singlet excitons (bright excitons). The triplet excitons couple only weakly to the
electromagnetic field and are thus also called dark excitons.

The coupling of these states to the electromagnetic field creates new quasi-
particles, the exciton polaritons [761, 762]. The dielectric function of the exciton
(with background dielectric constant εb) is

ε(ω) = εb

[
1 + β

1 − (ω2/ωX)2

]
∼= εb

[
1 + β

1 − (ω2/ωT)2 + � K 2/(M ωT)

]
,

(9.43)

where β is the oscillator strength and the energy is �ωX = �ωT + �
2 K 2/2M . �ωT

is the energy of the transverse exciton at K = 0. With this dispersion the wave
dispersion must be fulfilled, i.e.

c2 k2 = ω2 ε(ω), (9.44)

where k is the k-vector of the light that needs to be k = K due tomomentumconserva-
tion. The dependence of the dielectric function on k is called spatial dispersion [763].
Generally, up to terms in k2 it is written as

ε(ω) = εb

[
1 + β

1 − (ω2/ω0)2 + D k2

]
. (9.45)
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The term k2 with curvature D (for the exciton polariton D = �/(M ωT)) plays a
role in particular when ω2

T −ω2 = 0. For k �= 0 even a cubic material is anisotropic.
The dimensionless curvature D̂ = Dk

′2 should fulfill D̂ = �/(Mc) � 1 in order to
make k4 terms unimportant. For exciton polaritons8 typically D̂ = �ωT/(m c2) ≈
2 × 10−5 for �ωT = 1eV and m∗ = 0.1.
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Fig. 9.22 (a) Schematic dispersion of exciton polaritons. The lower polariton branch (‘LPB’) is at
small k photon-like, at large k exciton-like. The upper branch (‘UPB’) is exciton-like at small k and
photon-like at larger k. The limit of the UPB for k → 0 is the energy of the longitudinal exciton.
The dashed lines represent the pure exciton dispersions. (b) Theoretical effect of spatial dispersion
on the reflectance at the fundamental exciton resonance at normal incidence for ZnSe material
parameters (�ωT = 2.8eV, β = 1.0 × 10−3 and a background dielectric constant of εb = 8.1,
damping was set to Γ = 10−5ωT). The arrow denotes the position of ωL. The solid (dashed) line
is with (without) spatial dispersion for D̂ = 0.6 × 10−5 (D̂ = 0). Data from [763]

From (9.44) together with (9.45) two solutions result:

2ω2 = c2k2 + (1 + β + Dk2)ω2
0

± [−4c2k2(1 + Dk2)ω2
0 + (c2k2 + (1 + β + Dk2)ω2

0)
2
]1/2

. (9.46)

The two branches are shown schematically in Fig. 9.22a. Depending on the k value
they have a photonic (linear dispersion) or excitonic (quadratic dispersion) character.
The anticrossing behavior at k ′ ≈ ωT/c (for �ωT = 1eV, k ′ ≈ 0.5 × 10−5 cm−1)
creates a bottleneck region in the lower polariton branch. This name stems from the
small emission rate of acoustic phonons (i.e. cooling) in that region, as predicted
in [764] and experimentally found, e.g. in CdS [765]. The polaritons decay into a

8The dependence of the optical-phonon energies on k is typically too small tomake spatial dispersion
effects important. According to (5.19) D̂ = − (a0ωTO/4c)2 ≈ 4 × 10−11 for typical material
parameters (lattice constant a0 = 0.5nm, TO phonon frequency ωTO = 15THz).

http://dx.doi.org/10.1007/978-3-319-23880-7_5
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photonwhen they hit the surface. The effect of the oscillator strength of the dispersion
is shown in Fig. 9.23 for two-exciton resonance. In the case of several excitons (9.45)
reads

ε(ω) = εb

[
1 +

n∑
i=1

βi

1 − (ω2/ω0,i )2 + Di k2

]
. (9.47)
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Fig. 9.23 Schematic polariton dispersion for a two-exciton resonance (curvature of exciton dis-
persion greatly exaggerated, D̂ = 10−2) at ωT,1 = 1 and ωT,2 = 1.5 for three different oscillator
strengths (a) f = 10−3, (b) f = 10−2, (c) f = 10−1. The dashed lines in (c) represent the pure
exciton dispersions

For k = 0 either ω = 0 (lower polariton branch) or ε(ωL) = 0. For the latter we
find from (9.45)

ωL = √1 + β ωT. (9.48)

Therefore, the energy splitting ΔELT, mostly denoted as ΔLT, between the L- and
T-exciton energy given by

ΔELT = �(ωL − ωT) =
[√

1 + β − 1
]

�ωT ≈ 1

2
β �ωT (9.49)

is proportional to the exciton oscillator strength (for experimental values see
Table9.6). We note that if (D.9) is used for the dielectric function, β in (9.49) needs
to be replaced by β/εb.

The effect of spatial dispersion on the reflection at the fundamental exciton reso-
nance is depicted in Fig. 9.22b. For non-normal incidence an additional feature due
to the longitudinal wave is observed for p-polarization [763]. For a detailed discus-
sion additional effects due to anisotropy in wurtzite crystals, an exciton free layer
at the semiconductor surface, additional boundary conditions and damping need to
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Table 9.6 Exciton energy (low temperature), LT splitting and exciton polariton oscillator strength
for various semiconductors

CdS A CdS B ZnO A ZnO B ZnSe GaN A GaN B GaAs

�ωT (eV) 2.5528 2.5681 3.3776 3.3856 2.8019 3.4771 3.4816 1.5153

ΔLT (meV) 2.2 1.4 1.45 5 1.45 1.06 0.94 0.08

β (10−3) 1.7 1.1 0.9 3.0 1.0 0.6 0.5 0.11

Values for ZnO from [766], values for GaAs from [767], all other values from [768]
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Fig. 9.24 (a) Exciton polariton dispersion (k ⊥ c) of ZnO with experimental data (T = 1.8K).
Solid (dotted) lines are for polaritons with E ‖ c (E ⊥ c). The dashed lines refer to excitons.
Adapted from [771]. (b) Exciton polariton dispersion (T = 2K) in GaN (on sapphire) for E ⊥ c.
Adapted from [772]

be considered [769, 770]. The polariton dispersions of ZnO and GaN are shown in
Fig. 9.24.

9.6.9 Bound-Exciton Absorption

Excitons can localize at impurities or inhomogeneities. Such excitons are called
bound excitons. Here, the absorption due to such complexes is discussed. The recom-
bination is discussed in Sect. 10.3.2. In GaP:N excitons are bound to isoelectronic

http://dx.doi.org/10.1007/978-3-319-23880-7_10
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Fig. 9.25 (a) Transmission spectrum of GaP:N with a nitrogen concentration of about 1019 cm−3

at 1.6K (thickness: 1.1mm). n is indicated for the first eight transitions due to excitons bound to
nitrogen pairs. NNn’ indicate phonon replica. The ‘A’ line denotes the position of the transition
due to excitons bound to a single nitrogen atom (observable for samples with low N doping). The
‘B’ line is forbidden and due to the J = 2 exciton. Adapted from [616]. (b) Absorption spectra of
N-doped (NN = 7 × 1018 cm−3) and intrinsic GaP (T = 2K). Adapted from [612]

N impurities (substituting P), resulting in the ‘A’ line at 2.3171eV (at T = 4.2K).9

The absorption due to A excitons is well resolved in the spectrum of Fig. 9.25b. At
sufficiently high nitrogen doping, there exist nitrogen pairs, i.e. a complex where a
nitrogen impurity has a second nitrogen impurity in the vicinity. The pairs are labeled
NNn . It was believed that the second nitrogen atom is in the n-th shell around the first
one. However, the proper level asignment is probably different in the view of modern
theory [472]. Also clusters with more than two nitrogen atoms may exist. NN1 is
a prominent level and relates to a N–Ga–N complex having 12 equivalent sites for
the second N atom on the next neighbor anion site. The transitions due to excitons
bound to NNn , as shown in Fig. 9.25a, give a series of lines (see Table9.7) that fulfill
limn→∞ NNn = A. Although GaP has an indirect band structure, the absorption
coefficient of N-related transitions is large, about 105 cm−1 for a nitrogen doping

9The A line is due to excitons with J = 1, resulting of coupling of the electron spin 1/2 with the
hole angular momentum of 3/2. The B-line is a dipole forbidden line due to ‘dark’ excitons with
J = 2.
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Table 9.7 Index of nitrogen pairs NNn and energy separation ΔE of bound-exciton transitions
from the free-exciton line for n = 1 . . . 10 and the ‘A’ line

n 1 2 3 4 5 6 7 8 9 10 ∞ (A)

ΔE
(meV)

143 138 64 39 31 25 22 20 18 17 11

level of 1019 cm−3.10 This is due to the fact that the electron spatially localized at
the nitrogen isoelectronic trap (Sect. 7.7.9) has a sizeable k = 0-component of its
wave-function (Fig. 7.41), leading to a large transition probability for Γ -point holes
with an oscillator strength of 0.09 [773].

9.6.10 Biexcitons

Similar to two hydrogen atoms forming a hydrogen molecule, two excitons can also
form a bound complex, the biexciton involving two electrons and two holes. The
biexciton binding energy is defined as

Eb
XX = 2 EX − EXX. (9.50)

Biexcitons are binding in bulk material. Accordingly, the biexciton recombination
or absorption occurs at lower energy than that of the exciton. Values of the biexciton
binding energy are listed in Table9.4 for various semiconductors. The ratio of biexci-
ton and exciton binding energies is fairly constant about 0.2. In semiconductors with
small exciton binding energy, such as GaAs, biexcitons are hard to observe in bulk
material but show up in heterostructures that provide additional carrier confinement
(see also Sect. 14.3.4). While the exciton density increases linearly with external
excitation, the density of biexcitons increases quadratically.

9.6.11 Trions

The complexes ‘eeh’ and ‘ehh’ are called trions. Also, the notation X− and X+ is
common.X− is typically stable in bulkmaterial but hard to observe. In quantumwells
or dots, trions are easier to observe. In quantum dots excitons with higher charge,
e.g. X2−, have also been observed (see Fig. 14.34).

10Also the recombination (Sect. 10.3.2) is efficient and allows green GaP:N and yellow GaAsP:N
light emitting diodes.

http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_14
http://dx.doi.org/10.1007/978-3-319-23880-7_14
http://dx.doi.org/10.1007/978-3-319-23880-7_10
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9.6.12 Band Gap Renormalization

The band structure theory has been developed so far for small carrier densities. If
the carrier density is large the interaction of free carriers has to be considered. The
first step was exciton formation. However, at high temperatures (ionization) and at
large carrier density (screening) the exciton is not stable. Exchange and correlation
energy leads to a decrease of the optical absorption edge that is called band gap
renormalization (BGR).

An effect due to significant carrier density is to be expected when the density is
of the order of the exciton volume, i.e. n ∼ a−3

B . For aB ∼ 15nm (GaAs) this means
n ∼ 3 × 1017cm−3. The dimensionless radius rs is defined via

4π

3
r3s = 1

n a3
B

. (9.51)

The sum of exchange and correlation energies Exc is found to be mostly indepen-
dent of material parameters [774] (Fig. 9.26a) and follows the form

Exc = a + b rs
c + d rs + r2s

, (9.52)
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Fig. 9.26 (a) Theoretical exchange and correlation energies in units of the exciton Rydberg energy
as a function of the dimensionless variable rs for Ge, Si and a model system (with one isotropic
conduction and valence band each). The solid line is a fit according to (9.52). Adapted from [774].
(b) Band gap renormalization in terms of the excitonic Rydberg for various II–VI semiconductors.
Solid line is the relation according to (9.52), dashed line is the dependence predicted in [775] for
T = 30K. Data are compiled in [776]
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Fig. 9.27 Absorption of
GaAs (low temperature,
T = 10K) as a function of
the electron–hole density n
(theory). Adapted from [777]
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with a = −4.8316, b = −5.0879, c = 0.0152 and d = 3.0426. Thus the density
dependence of the band gap at small carrier density is ∝ n1/3. Experimental data for
a number of II–VI semiconductors roughly follow such a dependence (Fig. 9.26b).

In Fig. 9.27, a theoretical calculation of the absorption spectrum of bulk GaAs
for various carrier densities (n = p) [777] is shown. With increasing density, the
excitonic resonance broadens and vanishes. The shape approaches the electron–hole
plasma shape. The absorption edge shifts to smaller energies. At high carrier density,
the absorption becomes negative in a spectral range before absorption sets in. In this
spectral region, the material exhibits gain and an incoming light wave is amplified
(cmp. Sect. 10.2.6).

9.6.13 Electron–Hole Droplets

At low temperature and high density, electron–hole pairs in Ge and Si can undergo
a phase transition into a liquid state. This electron–hole liquid (EHL) was suggested
in [778] and is a Fermi liquid exhibiting the high conductivity of a metal and the
surface and density of a liquid. The condensation is due to exchange interaction
and correlation. The formation is fostered by the band structure of Ge [779] and the
long lifetime of carriers in the indirect band structure. In unstressed Ge typically
a cloud of electron–hole droplets with diameter in the µm range exists. The phase
diagram is shown in Fig. 9.28a. In suitably stressed Ge electron–hole droplets with
several hundredµm diameter form around the point of maximum shear strain in
inhomogeneously strained crystals, as shown in Fig. 9.28b. The pair density in such
a liquid is of the order of 1017 cm−3.

We note that the metallic EHL state hinders observation of the Bose–Einstein
condensation (BEC) of (bosonic) excitons. The light-exciton mass offers a high

http://dx.doi.org/10.1007/978-3-319-23880-7_10
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Fig. 9.28 (a) Temperature–density phase diagram of electrons and holes in Ge. The regions of
electron–hole gas (EHG) and liquid (EHL) and the droplet phase are labeled. Solid line is theo-
retical calculation, symbols are experimental data from [780]. The dash-dotted line denoted ρsp is
the experimentally obtained temperature dependence of the liquid density due to single-particle
excitations. ρ

exp
c and T exp

c denote the experimental critical density and temperature, respectively.
Adapted from [781]. (b) Photographic image of radiative recombination (at 1.75µm wavelength)
from a 300-µmdiameter droplet of electron–hole liquid (EHL) in a stressed (001) Ge disk (diameter
4mm, thickness 1.8mm) at T = 2K. The stress is applied from the top by a nylon screw along a
〈110〉 direction. Adapted from [782], reprinted with permission, © 1977 APS

condensation temperature in the 1K range (compared to the mK range for atoms).
Recent experiments with spatially indirect excitons in coupled quantum wells lead
towards BEC [783, 784]. A sufficiently long lifetime ensures cooling of the excitons
close to the lattice temperature. Another potential candidate for BEC are long-living
excitons (ms-range) in Cu2O [785]. The condensation of polaritons (cf. Sect. 9.6.8)
in microcavities to well-defined regions of k-space has been discussed in [786] and
compared to bosonic condensation in bulk.

9.6.14 Two-Photon Absorption

So far, only absorption processes that involve one photon have been considered. The
attenuation of the intensity I of a light beam (of frequency ω0) along the z direction
can be written as

dI

dz
= −α I − β I 2, (9.53)
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Fig. 9.29 Experimental
two-photon absorption
spectrum of GaAs (T = 4K)
(dots) plotted as a function
of the difference of the
double-photon energy 2�ω
from the GaAs band edge
Eg. The solid line is a
theoretical calculation, the
dashed lines represent slopes
with exponent 1/2 and 3/2,
respectively. Adapted
from [789]
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where α is due to the (linear) absorption coefficient (and possibly scattering) and
β is the two-photon absorption coefficient. A two-photon process can occur in two
steps, e.g. via a midgap level, which is not considered any further here. Here, we
consider two-photon absorption (TPA) via the population of a state at 2�ω0 higher
energy than the initial state with a nonlinear optical process. The TPA coefficient is
related to the nonlinear third-order electric dipole susceptibility tensor [787] χi jkl .
Within the two-band approximation theory predicts [788]

β ∝ (2 �ω0 − Eg
)3/2

. (9.54)

The exponent 3/2 is indeed found experimentally, as shown in Fig. 9.29 for GaAs.
The strength of absorption depends on the relative orientation of the light polarization
with respect to the main crystallographic directions, e.g. TPA for polarization along
〈110〉 is about 20% larger than for the 〈100〉 orientation.

9.7 Impurity Absorption

9.7.1 Shallow Levels

For charge carriers bound to shallow impurities long range Coulomb forces are most
important and they exhibit a hydrogen-like term scheme

En = m∗

m0

1

ε2r

1

n2
× 13.6 eV, (9.55)
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Fig. 9.30 (a) Term scheme of phosphorus donor in silicon, all energies in meV. After [791]. (b)
Schematic sequence for photothermal ionization, here absorption of a photon with �ω = E3p − E1s
and subsequent absorption of a phonon with energy �ωph ≥ E∞ − E3p

with the ionization limit E∞ being the conduction (valence) band edge for donors
(acceptors), respectively. They can be excited by light to the nearest band edge. Such
absorption is typically in the FIR region and can be used for photodetectors in this
wavelength regime. The optical absorption cross section of impurity absorption can
be related to the carrier capture cross section [513, 514].

The actual transition energies can deviate from (9.55) due to deviation of the
potential close to the impurity from the pure Coulomb potential. Such an effect is
known as the chemical shift or central cell correction (cf. Sect. 7.5.5) and is charac-
teristic of the particular impurity. In GaAs such shifts are small (∼100µeV) [790].

The term scheme for P in Si is shown in Fig. 9.30a. The ground state (1s) is split
because of a reduction of the tetrahedral symmetry due to intervalley coupling. The
anisotropicmass at theX-valley in Si causes the p states (and stateswith higher orbital
momentum) to split into p0 and p± states. Such an effect is absent in a direct semi-
conductor with an isotropic conduction-band minimum such as GaAs (Fig. 9.31).
Optical transitions between the 1s and various p states can be directly observed in
absorption, e.g. for Si:P in [792]. These transitions are also observed in photocon-
ductivity because the missing energy to the ionization into the continuum is supplied
by a phonon at finite temperature (photothermal ionization) (Fig. 9.30b) [791]. The

http://dx.doi.org/10.1007/978-3-319-23880-7_7
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Fig. 9.31 (a) Far-infrared photoconductivity response (Lyman-type s→p series) of not intentionally
dopedGaAswith residual donors Pb, Sn, and Si, NA = 2.6×1013 cm−3, ND−NA = 8×1012 cm−3.
The upper (lower) curve is for a magnetic field of 0 (1.9)T. Measurement temperature is 4.2K.
(b) Photoconductive response of a (different) GaAs sample with the same impurities (ND = 1 ×
1013 cm−3) with (upper curve) and without (lower curve) illumination with above-bandgap light
(B = 1.9T, T = 4.2K). Adapted from [793]
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Fig. 9.32 Low-temperature (T = 1.35K) absorption spectra of highly doped n-type GaAs:Te
with doping concentrations as labeled (circles ND = 2.1 × 1016 cm−3, stars 6.7 × 1014, triangles
1.0 × 1015). A sharp photoconductivity spectrum (in arbitrary units) from low-doped GaAs:Te
(crosses, ND = 1.0 × 1014 cm−3) is shown for comparison (cf. Fig. 9.31a). The energy of the
1s→2p transition and the donor binding energy (onset of continuum absorption) are indicated.
Adapted from [794]

splitting of the 2p transition in Fig. 9.31a is the chemical shift due to different donors
incorporated in the GaAs (Si, Sn, and Pb). Peak broadening is mostly due to Stark
broadening due to neighboring charged impurities. The application of a magnetic
field induces Zeeman-like splittings and increases the sharpness of the peaks. The
peak width can be further increased by illuminating the sample with light having a



326 9 Optical Properties

higher energy than the band gap. The additional charge carriers neutralize charged
impurities and allow higher resolution (Fig. 9.31b).

In Fig. 9.32 absorption spectra of highly doped n-typeGaAs are shown. For doping
concentrations larger than the critical concentration of∼1×1016 cm−3 (cf. Table7.6)
significant broadening is observed due to the formation of an impurity band.

9.7.2 Deep Levels

The absorption of deep levels is typically in the infrared. In Fig. 9.33a the possible
optical absorption processes involving the Fe levels in InP (cf. Sect. 7.7.8) during
the charge transfer Fe3+ → Fe2+ are shown. These transitions and their fine struc-
ture (Fig. 9.33b) have been observed in calorimetric absorption spectroscopy (CAS)
experiments [604].

In Fig. 9.34 the photoconductivity of is shown. The sharp peaks are due to transi-
tions of interstitial, singly ionized Mg, Mg+

i [795]. Mg in Si is a double donor [575]
(see Sect. 7.7.2). Above the ionization limit of about 256meV, the peaks are repli-
cated, shifted by theLOphonon energy of 59.1meV.However, now they rather appear
as dips. This behavior is typical for a discrete state interacting with a continuum, also
called Fano resonance [796, 797] with its characteristic lineshape, going below the
continuum level.

The absorption spectra due to various deep acceptors in GaAs are compared
in Fig. 9.35. The density of states in the band increases with k (proportional to√

E − Ec). The carrier on the impurity is strongly localized and described with
a wave packet centered around Γ , its k-components decreasing with increasing k.
Thus the maximum absorption will be at an intermediate k-value and an associ-
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Fig. 9.33 (a) Schematic band diagram of InP with levels of Fe impurities in the 3+ and 2+ charge
states at low temperature. All energies are given in eV. The arrows denote the optical transition
of a valence-band electron to the Fe center, Fe3+ + �ω → Fe2+ + h. (b) Calorimetric absorption
spectra (at T = 1.3K) of InP:Fe, [Fe] = 5 × 1016 cm−3. Part (b) adapted from [604]

http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_7
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Fig. 9.34 Photocurrent spectrum of Si:Mg. Transitions are due to Mg+
i from its 1s state to excited

states as labeled and indicated by vertical lines. CB denotes the conduction band edge (ionization
limit). Above the CB edge (shaded area) phonon-assisted absorption occurs (Fano resonances).
For comparison the absorption spectrum below CB is shown shifted by the phonon energy (dashed
line). Above the plot, the transition mechanisms (photothermal ionization and Fano resonance) are
schematically shown. Adapted from [795]

Fig. 9.35 Absorption
spectra (σ = α/p) due to
various deep impurities in
GaAs as labeled. The dashed
line is a theoretical lineshape
assuming a hole bound to a
δ-potential. The energy axis
is scaled by the ionization
energy. The kink for Mn at
3.5 Ei ≈ 450meV is due to
the onset of absorption into
the split-off valence band.
Adapted from [279]
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ated energy larger than the ionization energy Ei (lowest transition to continuum at
for k = 0). The lineshapes in Fig. 9.35 fit to a model with a δ-potential (zero range
model, neglecting long range Coulomb terms) [798] with maximum absorption close
to 2 Ei,

α(E) ∝ E1/2
i (E − Ei)

3/2

E3
. (9.56)

9.8 Absorption in the Presence of Free Charge Carriers

In the presence of charge carriers, various absorption processes can occur. First, the
dissipative motion of carriers leads to infrared absorption, termed the free carrier
absorption (Sect. 9.8.1). Filling of a band with carriers leads to a shift of the band-
band absorption edge, the Burstein–Moss shift (Sect. 9.8.2). Besides the free-carrier
absorption, free carriers present in the semiconductor can lead to further absorption
processes with transition energies below the band gap. These processes are due to
transitions within the band structure and can be

• inter-valence band transitions of holes (Sect. 9.8.3),
• phonon-assisted inter-valley transitions of electrons (Sect. 9.8.4),
• phonon-assisted intra-band transitions of electrons (Sect. 9.8.5).

9.8.1 Free-Carrier Absorption

The absorption due to free carriers in the infrared spectral range (away from phonon
resonances) can be described with the Drude model [799].

A time-dependent electric field accelerates the charge carriers within a band. The
excess energy is subsequently transferred to the lattice via scattering with phonons.
A review of the effect of free carriers on optical properties can be found in [800].
In the relaxation-time approximation energy is relaxed with a time constant τ . Thus
energy is absorbed from the electromagnetic wave and dissipated. Effectively, this
process represents an intra-band excitation.

The complex conductivity (8.36) is given by

σ∗ = σr + iσi = n e2 τ

m∗

(
1

1 + ω2τ 2
+ i

ωτ

1 + ω2τ 2

)
. (9.57)

We note that a static magnetic field introduces birefringence as discussed in more
detail in Sect. 13.2.2. The wave equation for the electric field is

∇2E = εr ε0 μ0 Ë + σ∗ μ0 Ė. (9.58)

http://dx.doi.org/10.1007/978-3-319-23880-7_8
http://dx.doi.org/10.1007/978-3-319-23880-7_13
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For a plane wave ∝ exp [i(kr − ωt)] the wavevector obeys

k = ω

c

√
εr + i

σ∗

ε0 ω
, (9.59)

where c = (ε0μ0)
−1/2 is the velocity of light in vacuum, εr is the backgrounddielectric

constant (for large ω).
The part εFC of the dielectric function due to free carriers is

εFC = i

ε0 ω
σ∗. (9.60)

The complex index of refraction is

n∗ = nr + iκ =
√

εr + i
σ∗

ε0 ω
. (9.61)

Taking the square of this equation yields

n2
r − κ2 = εr + i

σi

ε0 ω
= εr − n e2

ε0 m∗
τ 2

1 + ω2τ 2
(9.62a)

2 nr κ = σr

ε0ω
= n e2

ε0 ω m∗
τ

1 + ω2τ 2
. (9.62b)

The absorption coefficient is related to κ by (9.9). For the case of higher frequen-
cies, i.e. ωτ � 1, the absorption is

α = n e2

ε0 c nr m∗ τ

1

ω2
. (9.63)

The absorption decreases with increasing frequency likeω−r . The classical Drude
treatment as followed here results in an exponent of r = 2. This is the case for
neutral impurity scattering and also for small frequencies �ω � EF. Amore detailed
discussion of the energy dependence of free-carrier absorption can be found in [801].
Other exponents have been derived for scattering by acoustical phonons (r = 3/2),
LO phonons (r = 5/2) and ionized impurities (r = 7/2). More detailed quantum
mechanical treatments of free-carrier absorption in the presence of impurities and
phonons can be found in [802, 803].

For semiconductors free-carrier absorption is particularly important in the mid-
and far-infrared regionswhen carriers are present due to doping or thermal excitation.
In Fig. 9.36a absorption spectra of n-type Ge for various doping concentrations are
shown. The absorption coefficient in the transparency regime varies proportionally
to λ2 ∝ ω−2 as predicted in (9.63). In Fig. 9.36a, the absorption can be seen to rise
for photon energy above 0.7eV due to absorption in the band structure. Electrons are
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excited from the valence band across the fundamental band gap into the conduction
band (cmp. Sect. 9.6.3), which is an indirect transition in Ge.

In Fig. 9.36b the absorption coefficient due to free carrier absorption at fixed
wavelength is shown as a function of dopant concentration.11 The slope is slightly
overlinear, indicating a weak dependence τ (n). A sub-linear relation has been found
for heavily p-doped GaAs [804].

The index of refraction is given by (also for ωτ � 1)

n2
r = εr − ne2

ε0m∗ω2
+ κ2 = εr

[
1 −
(ωp

ω

)2]+ ε2r
4n2

r

(ωp

ω

)4 1

ω2τ 2

≈ εr

[
1 −
(ωp

ω

)2]
, (9.64)

where

ωp =
√

n e2

εr ε0 m∗ (9.65)

(a)

(b)

Fig. 9.36 (a) Optical absorption spectra (at T = 4.2K) of n-type Ge for various As dopant
concentrations as labeled. The arrow denotes the band edge of undoped Ge, the vertical dashed
line the energy for which the free-carrier absorption is measured in part (b). The inclined dashed
line visualizes the slope ∝ λ2. Curved dashed lines are guides to the eye. Adapted from [739].
(b) Free-carrier absorption at λ = 2.4µm as determined from part (a) of the figure (blue squares)
as a function of As dopant concentration. Additionally data at 300K (red circles) from the same
samples are included [739]. The dashed lines visualizes the slope ∝ N 1.25

D

11Even at low temperature, n ≈ ND since ND � Nc (cf. [515] and Sect. 7.5.7).

http://dx.doi.org/10.1007/978-3-319-23880-7_7
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Fig. 9.37 (a) Dielectric constant for plasmon oscillations. Shaded area represents region of atten-
uation (negative ε). (b) Dispersion relation (k in units of ωp/c, ω in units of ωp) in the presence of
free carriers (9.67, for εr = 1). Shaded area represents forbidden frequency range for propagating
solutions. Dashed line is photon dispersion ω = ck

Fig. 9.38 Plasma
wavelength λp for n-type
GaAs with various electron
concentrations due to
different doping levels.
Filled circles: experimental
values, dashed line: n−1/2

dependence; the deviation is
due to nonparabolicity of the
electron mass (cf.
Fig. 9.50b). Data from [805]

is the plasma frequency. The approximation is valid for small absorption and when
(ωτ )−2 can be neglected. A graphical representation is given in Fig. 9.37a. For cou-
pling to electromagnetic waves (still ωτ � 1)

ε(ω) = εr

[
1 −
(ωp

ω

)2] = c2 k2

ω2
(9.66)

must be fulfilled. It follows that the dispersion relation in the presence of free carriers
(Fig. 9.37b) is

ω2 = ω2
p + c2 k2

εr
. (9.67)
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Fig. 9.39 Czochralski-
grown Ga2O3 crystals with
different electron
concentration, courtesy of Z.
Galazka, IKZ Berlin

-Ga O2 3

n 10 cm18 -3

n 10 cm16 -3

For ω > ωp, ε > 0, thus waves can propagate. For ω < ωp, however, the dielec-
tric constant is negative, i.e. ε < 0. For such frequencies waves are exponentially
damped and cannot propagate or penetrate a layer. This effect can be used in a plas-
mon waveguide. The expected dependence of the plasmon wavelength on the carrier
density λp = 2πc/ωp ∝ n−1/2 is depicted in Fig. 9.38 for GaAs. For semiconductors
the plasmon frequency is in the mid-or far-infrared spectral region.12

The effect of free-carrier absorption is visualized in Fig. 9.39. The blue hue of the
boule with the higher electron concentration is due to free carrier absorption in the
long wavelength part of the visible spectrum.

9.8.2 Burstein–Moss Shift

In the discussion so far it has been assumed that all target states in the conduction
band are empty. In the presence of free carriers the absorption is modified by the

• change of the distribution function
• many-body effects (band gap renormalization)

The latter is discussed in the next section. For a degenerate electron distribution
all states close to the conduction-band edge are populated. Thus a transition from
the valence band cannot take place into such states. This shift of the absorption
edge to higher energies is called the Burstein–Moss shift [806, 807]. Originally, the
Burstein–Moss shift was evoked to explain the absorption shift in InSb with varying
carrier concentration (Fig. 9.40).

k-conserving optical transitions between parabolic hole and electron bands have
the dependence

E = Eg + �
2k2

2m∗
e

+ �
2k2

2m∗
h

= Eg + �
2k2

2mr
, (9.68)

12The much higher free-electron density in metals shifts the plasma frequency to the UV, explaining
the reflectivity of metals in the visible and their UV transparency.
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Fig. 9.40 Burstein–Moss
effect at InSb
(Eg = 0.18eV) at room
temperature. Theoretical
dependence and data points
for intrinsic InSb and
5 × 1018 cm−3 n-type. Data
from [806]
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Fig. 9.41 Principle of
Burstein–Moss shift. Left
panel: Schematic band
structure with completely
filled electron states shown
in grey. The k-vector for the
lowest photon energy optical
absorption process is
indicated as k̂. Right panel:
Electron distribution
function for a degenerate
electron gas with Fermi level
in the conduction band
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where mr is the reduced mass of electron and hole. About 4kT below the Fermi level
all levels in the conduction band are populated (Fig. 9.41). Thus the k value at which
the absorption starts is given as

k̂ =
√
2mr

�2
(EF − EC − 4kT ). (9.69)

Besides the energy shift in the conduction band, the corresponding energy shift
in the valence band �k2/(2mh) must be considered. Thus, the Burstein–Moss shift
of the absorption edge is

ΔE = �ω − Eg = (EF − 4kT − EC)

(
1 + me

mh

)
. (9.70)
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Fig. 9.42 Burstein–Moss
effect for CdO. The linear fit
is for Eg = 2.22(8)eV and
mr = 0.113(11) me. The
dashed lines indicate the
confidence interval of
±0.08eV. Adapted
from [808]
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The relation between n and the Fermi level is given by (7.6). If EF − EC � kT

the Fermi integral can be approximated by 2√
π
2
3

( EF−EC
kT

)3/2
. Using (7.8) for NC, the

Burstein–Moss shift can be written for this case as

ΔE = n2/3 h2

8me

(
3

π

)2/3 (
1 + me

mh

)
≈ 0.97

h2

8mr
n2/3. (9.71)

The n2/3 dependence of the energy shift is found, e.g., for CdO13 with differ-
ent carrier concentrations (due to different deposition temperature, no intentional
doping) [808] and depicted in Fig. 9.42.

9.8.3 Inter-Valenceband Transitions

Transitions within the valence band can occur between three bands, i.e. lh→hh,
so→hh, and so→lh, as schematically depicted in Fig. 9.43. Theoretical treatments
have been given in [809, 810]. For GaAs, such intravalence-band absorption occurs
at photon energies close to Δ0 as shown in Fig. 9.44a for p-type GaAs:Zn [811]. For
p-type GaSb, the absorption coefficient below the fundamental band gap is found
almost entirely due to inter-valence band transitions, as shown in Fig. 9.44b for a
hole concentration of p = 3.2 × 1016 cm−3 [812].

13CdO is an indirect semiconductor, the optical band gap is the energy of the direct transition at
the Γ -point. The indirect transitions involve holes from other points in the Brillouin zone (cmp.
Fig. 6.10).

http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_6
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Fig. 9.43 Schematic optical transitions within the valence band
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Fig. 9.44 (a) Optical absorption spectrum of GaAs:Zn with p = 2.7 × 1017 cm−3 at T = 84K.
The absorption above the split-off energyΔ0 is due to the hh/lh→ s-o process . Adapted from [811].
(a) Optical absorption coefficient of GaSb with p = 3.2 × 1016 cm−3. Experimental data (solid
line) and calculation of inter-valence band contribution (squares). The free carrier contribution is
less than 5cm−1 in the considered spectral range. Adapted from [812]

9.8.4 Inter-Valley Transitions

Electrons at the conduction band minimum can undergo optical transitions to the
same band at a different point of the Brillouin zone. Such intervalley transition,
as sketched in Fig. 9.45a, is phonon-assisted to fulfill momentum conservation and
occurs around the energy difference ΔE between the two valleys (cmp. Table8.4).

For InP with an electron concentration of n = 1.65 × 1018 cm−3, below the
fundamental band edge at 1.4 eV, an additional contribution starting around 0.8–
0.9eV is found besides the free carrier absorption (Fig. 9.45b) [813]. Taking into
account the filling of the bottom of the conduction band, an energy separation for the
two valleys of ΔE = 0.90 ± 0.02eV was found for various values of the electron

http://dx.doi.org/10.1007/978-3-319-23880-7_8
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Fig. 9.45 (a) Schematic of inter-valley conduction band transitions involving a photon (solid line
arrow) and a phonon (dashed line arrow). (b) Optical absorption coefficient of InP with n = 1.65×
1018 cm−3. Experimental data (solid line) and calculation of inter-valley band contribution (dashed
line). The extrapolated free carrier contribution is shown as dash-dotted line and the difference of
experimental absorption and extrapolated free carrier contribution as circles. Adapted from [813]

concentrations. This energy corresponds to the energy difference of conduction band
minima atΓ and X in InP. The lineshape of this absorption processes can bemodeled
and fits well the difference of measured absorption and extrapolated free-carrier
absorption spectra. Transitions to the lower minimum at L (ΔE = 0.6eV) are not
observed, possibly masked by the free-carrier absorption.

9.8.5 Intra-Band Transitions

Phonon-assisted transitions within the lowest conduction band (not to a different
valley), as indicated schematically in Fig. 9.46a for the SnO2 band structure [814],
can cause absorption at photon energies below the fundamental absorption edge.
Actually in SnO2, the optical transition across the fundamental band gap is only
weakly dipole-allowed and leads to small absorption coefficient below 100cm−1

directly above the fundamental band gap of about 3.6eV. The strong dipole-allowed
transition with absorption coefficient around 105 cm−1 begins at about 4.3eV and
stems from electrons in a lower valence band [815]. The free-carrier absorption
due to transitions within the lowest conduction band are calculated to start already
at 2.8eV (Fig. 9.46b) and thus can also impact transparency in the visible spectral
range.
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Fig. 9.46 (a) Band structure of SnO2 and absorption processes; the transition from the topmost
valence band (dashed arrow) is forbidden. (b) Calculated free-carrier absorption (σ = α/n) for
SnO2. The solid and dashed lines are results including phonon-assisted transitions for two light
polarizations. The dotted lines are fits of theDrudemodel to the infrared regime.Adapted from [814]

9.9 Lattice Absorption

While there is no interaction of optical phonons and (infrared) light in Si and Ge
due to crystal structure symmetry [816], strong effects are present for compound
semiconductors. A review can be found in [817].

9.9.1 Dielectric Constant

The dielectric constant (with damping parameter Γ ) in the vicinity of the optical
phonon energies is given by (cf. (5.50))

ε(ω) = ε(∞)

(
ω2
LO − ω2 − iωΓ

ω2
TO − ω2 − iωΓ

)
. (9.72)

The dispersion relation (without damping) can be written as

ε(ω) = ε(∞) + ε(0) − ε(∞)

1 − (ω/ωLO)2
= ε(∞)

[
1 + f

1 − (ω/ωLO)2

]
. (9.73)

Thus the oscillator strength (compare with (D.10)) is f = ε(0)−ε(∞)

ε(∞)
. With the

LST relation (5.49) the oscillator strength is

http://dx.doi.org/10.1007/978-3-319-23880-7_5
http://dx.doi.org/10.1007/978-3-319-23880-7_5
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Fig. 9.47 Lattice absorption
oscillator strength f from
(9.74) for various elemental,
III–V and II–VI
semiconductors as a function
of their ionicity fi (cf.
Table2.1). Dashed line is
linear dependence on
ionicity for similar (reduced)
mass, dash-dotted lines are
guides to the eye for similar
ionicity and varying mass

f = ω2
LO − ω2

TO

ω2
TO

≈ 2
ωLO − ωTO

ωTO
, (9.74)

and thus proportional to the splitting ΔLT = ωLO − ωTO between the longitudinal
and transverse optical phonon frequency. The approximation in (9.74) is valid for
ΔLT � ωTO.

The oscillator strength increases with the ionicity, i.e. the electronegativity differ-
ence of the atoms in the base (Fig. 9.47). Additionally, the oscillator strength depends
on the reduced mass and the high-frequency polarizability; this can be seen, e.g., for
the series of the Zn compounds that all have similar ionicity. For the series of the
nitrides, the mass effect is small since the reduced mass is dominated by the light N
mass.

9.9.2 Reststrahlenbande

The absorption of electromagnetic radiation by optical phonons is governed by the
dielectric function that has been derived in (9.72). For small damping, i.e. Γ � ΔLT,
the dielectric constant is negative betweenωTO andωLO. From εr = n2

r −κ2 it follows
that κ2 is much larger than n2

r . Therefore, the reflectance (9.17) will be close to 1.
This energy range is the so-called reststrahlenbande. This term stems from multiple
reflections in this wavelength regime that suppresses neighboring spectral regions
and thus achieves a certain monochromatization in the far-infrared spectral region.
Within the semiconductor the absorption is large in the reststrahlenbande (Fig. 9.48).

http://dx.doi.org/10.1007/978-3-319-23880-7_2
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Fig. 9.48 Far-infrared
absorption of GaAs. In the
region around 35meV is the
reststrahlenbande with high
absorption due to optical
phonons. Adapted
from [146], based on [818] 0 5025

GaAs

75

9.9.3 Polaritons

The coupled propagation of phonons and electromagnetic radiation is related to the
equation (without phonon damping)

ε(ω) = ε(∞)

(
ω2
LO − ω2

ω2
TO − ω2

)
= c2 k2

ω2
. (9.75)

There are two branches of propagating waves (real k):

ω2 = 1

2

(
ω2
LO + c2k2

ε(∞)

)
±
√
1

4

(
ω2
LO + c2k2

ε(∞)

)2
−
(

c2k2ω2
TO

ε(∞)

)2
. (9.76)

For k = 0 we find the solutions ω = ωLO and ω = kc/
√

ε(0). For large k we find
ω = ωTO andω = kc/

√
ε(∞). These solutions are shown in Fig. 9.49. Both branches

have a phonon- and a photon-like part. The coupled state between the phonon and
the photon field is called the (phonon-) polariton.

Fig. 9.49 Dispersion of the polariton. The dotted line displays the dispersion for a purely imaginary
wavevector with the absolute value k
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In the interval [ωTO,ωLO] the wavevector is purely imaginary, i.e. k = ik̃ with
real k̃. For this case there is only one solution that is also depicted in Fig.9.49,

ω2 = 1

2

(
ω2
LO + c2k̃2

ε(∞)

)
+
√√√√1

4

(
ω2
LO + c2k̃2

ε(∞)

)2

+
(

c2k̃2ω2
TO

ε(∞)

)2

. (9.77)

9.9.4 Phonon–Plasmon Coupling

The coupling of phonons and plasmons in the spectral region of the reststrahlenbande
leads to the development of two new branches, the longitudinal phonon plasmon
modes (LPP+ and LPP−), in the common dispersion. The dielectric function is

ε(ω) = ε(∞)

(
1 + ω2

LO − ω2

ω2
TO − ω2

− ω2
p

ω2

)
. (9.78)

For ε(ω) = 0 for k = 0 (coupling to photons) the two solutions ωLPP+ and ωLPP−
do not cross as a function of ωp (Fig. 9.50),

(a) (b)

Fig. 9.50 (a) Frequency of the coupled longitudinal-phonon plasmon (LPP) modes (lower (upper)
polariton branch in blue (red)) as a function of the plasma frequency. Dashed line shows uncoupled
plasmon frequency (ω = ωp), grey area indicates spectral region between TO and LO modes. (b)
Experimental data on the polariton energies in n-typeGaAswith different carrier concentrationωp ∝√

n m∗ (9.65). Dashed (dash-dotted) line is plasmon frequency ωp without (with) consideration of
conduction band non-parabolicity (cf. Fig. 6.31b). Data from [805, 819]

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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ωLPP± = 1

2

[
ω2
LO + ω2

p ±
√

(ω2
LO + ω2

p)
2 − 4ω2

TO ω2
p

]
. (9.79)

For small plasma frequencies ωLPP+ = ωLO, i.e. the optical phonons couple to the
electromagnetic field without change. Also ωLPP− = ωp. For large carrier density,
i.e. ωp � ωLO, we find ωLPP− = ωTO and ωLPP+ = ωp. Thus, the carriers have
effectively screened the electric field of the phonon that had led to the increase of
the TO to the LO frequency.



Chapter 10
Recombination

Les hommes discutent, la nature agit.
Men argue, nature acts.

Voltaire

Abstract The various mechanisms and statistics of carrier recombination in semi-
conductors including band-band, excitonic, band-impurity (Shockley–Read–Hall
kinetics) and Auger recombination are explained. Also recombination at extended
defects and surfaces is treated. Using the diffusion-recombination theory, the one-
dimensional carrier profiles for typical situations in experiments and devices are
derived.

10.1 Introduction

In thermodynamic nonequilibrium excess charges can be present in the semiconduc-
tor. They can be created by carrier injection through contacts, an electron beam or
the absorption of light with wavelength smaller than the band gap. After the external
excitation is turned off, the semiconductor will return to the equilibrium state. The
relaxation of carriers into energetically lower states (and energy release) is called
recombination. The term stems from the electron recombining with the hole created
after absorption of a photon. However, there are other recombination mechanisms.
A dedicated textbook is [820].

In the simplest picture an excitation generates carriers with a rate G (carriers per
unit volume and unit time). In the steady state (after all turn-on effects) a constant
excess charge n carrier density is present. Then the generation exactly compensates
the recombination processes. The principle of detailed balance even says that each
microscopic process is balanced by its reverse process. If the time constant of the
latter is τ , n is given by n = G τ . This follows from the steady-state solution ṅ = 0 of

dn

dt
= G − n

τ
. (10.1)

© Springer International Publishing Switzerland 2016
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In the literature two limiting cases have been discussed, the relaxation and the
lifetime semiconductor, depending on the relation of two time constants. The one
time constant τ0 is the relaxation time constant due to recombination as discussed
in the following. The smaller τ0 is, the faster excited electrons and holes recombine
and ‘disappear’. Fast lifetimes are typically present in direct semiconductors (com-
pared to indirect ones), semiconductors with high defect density and amorphous
semiconductors. The other time constant is τD = ε/σ, the dielectric relaxation time;
it describes the transport of carriers due to mobility (and diffusion). Large dielec-
tric relaxation times are present in semiconductors with high mobility (low defect
density, small carrier mass), small τD typically for hopping conduction. The relax-
ation case is given for τ0 � τD; carriers will recombine quickly and it is hard to
build up non-equilibrium carriers and separate them with an applied electric field. In
the recombination case τD � τ0, non-equilibrium carriers can assume non-uniform
distributions and an applied electrical field generates separate quasi-Fermi levels for
electrons and holes1 (cmp. Sect. 7.6).

10.2 Band–Band Recombination

The band–band recombination is the relaxation from an electron in the conduction
band into the valence (the empty state there is the hole). In a direct semiconductor,
electrons can make an optical transition between the bottom of the conduction band
to the top of the valence band. In an indirect semiconductor, this process is only
possible with the assistance of a phonon and is thus much less probable.

10.2.1 Spontaneous Emission

We consider the spontaneous recombination of an electron of energy Ee and a hole of
energy Eh (Fig. 10.1a). C(Ee, Eh) is a constant proportional to the matrix element of
the optical transition (cf. Sect. 9.5). The spontaneous recombination rate rsp at photon
energy E ≥ EC − EV = Eg is (assuming energy conservation, i.e. E = Ee − Eh,
but without k-conservation in a dense plasma [821]),

rsp(E) =
∫ ∞

EC

dEe

∫ EV

−∞
dEh C(Ee, Eh)

× De(Ee) fe(Ee) Dh(Eh) fh(Eh) δ(E − Ee + Eh) (10.2)

1In the relaxation case, the separation of quasi-Fermi levels is � kT .

http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_9
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Fig. 10.1 Processes of band–band recombination: (a) spontaneous emission, (b) absorption and
(c) stimulated emission. A full (empty) circle represents an occupied (unoccupied) electron state

=
∫ E+EV

EC

dEe C(Ee, Ee − E)

× De(Ee) fe(Ee) Dh(Ee − E) fh(Ee − E),

where fh denotes the hole occupation fh = 1 − fe.
The lineshape of the band–band recombination with k-conservation2 is propor-

tional to the joint density of states (9.30) and the Fermi distribution function. At small
excitation and at low doping it can be approximated by the Boltzmann distribution
function and the lineshape is given as

I (E) ∝ √
E − Eg exp

(
− E

kT

)
. (10.3)

An experimental spectrum is shown inFig. 10.2 togetherwith a fit according to (10.3).
The expected FWHMof the peak is 1.7954 kT , which is about 46meV at T = 300K.
At low sample temperature, the temperature of the carrier gas is typically higher than
the lattice temperature, depending on the cooling mechanisms (carrier–carrier scat-
tering, optical phonon emission, acoustic phonon emission, recombination, . . .) and
the excitation rate. The carrier temperature in GaAs, determined from the Boltz-
mann tail of spontaneous emission (photoluminescence) is depicted in Fig. 10.3 as
a function of excitation density; clearly it increases with increasing excitation.

The recombination rate in indirect semiconductors is small since the transition is
phonon-assisted. For silicon, an internal quantum efficiency in the 10−6-range has
been reported [824]. For germanium, the direct transition is energetically fairly close
to the fundamental, indirect L–Γ band edge transition (Fig. 9.12).The energy differ-
ence can be reduced from its bulk value of 136meV by tensile strain. Additionally,
the direct transition can be favored by heavily n-doping and filling the L conduc-
tion band minimum states (see Sect. 9.8.2). In this case, direct recombination from

2Excitonic effects are neglected here, e.g. for temperatures kT � Eb
X. Such effects are discussed

in Sect. 10.3.

http://dx.doi.org/10.1007/978-3-319-23880-7_9
http://dx.doi.org/10.1007/978-3-319-23880-7_9
http://dx.doi.org/10.1007/978-3-319-23880-7_9
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Fig. 10.2 (a) Photoluminescence spectrum of an undoped LPE-grown epitaxial GaAs layer at
room temperature and low cw (λ = 647nm) excitation density (10W/cm2). The solid line is a
lineshape fit with (10.3) and Eg = 1.423 eV and T = 293K. (b) Room temperature, direct (eΓ –
hΓ ) recombination from heavily n-doped (1019 cm−3) germanium (1µm thick Ge layer on silicon
(001)) with biaxial (thermal) tensile strain. The strain-split valence band edge (Fig. 6.43) causes
the e–hh and e–lh transitions (individual contributions with lineshape according to (10.3) shown as
dashed lines) to occur at different energies. Adapted from [822]

Fig. 10.3 Carrier
temperature TC in GaAs as a
function of excitation density
at a lattice temperature of
1.6K. The dashed line is
guide to the eyes, the solid
line corresponds to an
activation energy of 33meV,
similar to the GaAs optical
phonon energy. Adapted
from [823]
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the conduction band Γ -minimum can be observed [822] and the effective energy
difference has been lowered to about 100meV.

10.2.2 Absorption

A similar consideration is made for the absorption process (Fig. 10.1b). An elec-
tron is transferred upon light absorption from a valence-band state (occupied) to a
conduction-band state that must be empty. The coefficient is B1. Also, the process

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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is proportional to the light intensity, represented by the density of occupied photon
states Nph(E),

rabs(E) =
∫ E+EV

EC

dEe B1(Ee, Ee − E)

× De(Ee) (1 − fe(Ee)) Dh(Ee − E) (1 − fh(Ee − E)) Nph(E). (10.4)

10.2.3 Stimulated Emission

In this case, an incoming photon ‘triggers’ the transition of an electron in the con-
duction band into an empty state in the valence band. The emitted photon is in phase
with the initial photon (Fig. 10.1c). The rate is (with coefficient B2):

rst(E) =
∫ E+EV

EC

dEe B2(Ee, Ee − E)

× De(Ee) fn(Ee) Dh(Ee − E) fh(Ee − E) Nph(E). (10.5)

The photon density Nph at a given energy is given by Planck’s law and the Bose–
Einstein distribution (Appendix E)

Nph(E) = N0
1

exp (E/kT ) − 1
. (10.6)

The pre-factor is the density of states of the electromagnetic field3 N0(E) =
8π E2 (nr/hc)3.

10.2.4 Net Recombination Rate

In thermodynamical equilibrium the rates fulfill

rsp(E) + rst(E) = rabs(E). (10.7)

The population functions are Fermi functions with quasi-Fermi levels Fn and Fp.
Since for absorption and stimulated emission the same quantum-mechanical matrix
element is responsible, B1 = B2. The detailed balance (10.7) yields

C(E1, E2) = B1(E1, E2) Nph

[
exp

(
E − (Fn − Fp)

kT

)
− 1

]
. (10.8)

3The total number of photon states in vacuum between the frequencies zero and ν is N (ν) =
8πν3/(3c3). With ν = E/h and N0 = dN (E)/dE and considering c → c/nr we obtain the given
value for N0.



348 10 Recombination

In thermodynamic equilibrium, i.e. Fn = Fp,

C(E1, E2) = N0 B1(E1, E2) = B. (10.9)

If the constant B, the bimolecular recombination coefficient, is independent of
the energy E , the integration for the net bimolecular recombination rate rB can be
executed analytically and we find

rB =
∫ ∞

Eg

[
rsp(E) + rst(E) − rabs(E)

]
dE

= B n p

[
1 − exp

(
− Fn − Fp

kT

)]
. (10.10)

In thermodynamic equilibrium, of course, rB = 0. The recombination rate Bnp
is then equal to the thermal generation rate G th

G th = B n0 p0. (10.11)

The bimolecular recombination rate typically used in Shockley–Read–Hall (SRH)
[825, 826] kinetics is

rB = B (n p − n0 p0). (10.12)

Values for the coefficient B are given in Table 10.1. In the case of carrier injection,
np is larger than in thermodynamical equilibrium, i.e. n p > n0 p0, and the recom-
bination rate is positive, i.e. light is emitted. If the carrier density is smaller than in
thermodynamical equilibrium, e.g. in a depletion region, absorption is larger than
emission. This effect is also known as ‘negative luminescence’ [827] and plays a role
particularly at elevated temperatures and in the infrared spectral region.

Table 10.1 Bimolecular recombination coefficient at room temperature for a number of semicon-
ductors

Material B (cm3/s)

GaN 1.1 × 10−8

GaAs 1.0 × 10−10

AlAs 7.5 × 10−11

InP 6.0 × 10−11

InAs 2.1 × 10−11

4H-SiC 1.5 × 10−12

Si 1.1 × 10−14

GaP 3.0 × 10−15

Data for GaN from [828], Si from [829], SiC from [830], other values from [831]
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10.2.5 Recombination Dynamics

The carrier densities n and p, are decomposed into the densities n0 and p0 in ther-
modynamic equilibrium and the excess-carrier densities δn and δ p, respectively

n = n0 + δn (10.13a)

p = p0 + δ p. (10.13b)

Here, only neutral excitations are considered, i.e. δn = δ p. Obviously the time
derivative fulfills ∂n

∂t = ∂ δn
∂t , and correspondingly for the hole density. The equation

for the dynamics

ṅ = ṗ = −Bnp + G th = −B (n p − n0 p0) = −B (n p − n2
i ) (10.14)

can be written as

∂ δ p

∂t
= −B (n0 δ p + p0 δn + δn δ p) . (10.15)

The general solution of (10.15) is given by

δ p(t) = (n0 + p0) δ p(0)

[n0 + p0 + δ p(0)] exp [B t (n0 + p0)] − δ p(0)
. (10.16)

In the following, we discuss some approximate solutions of (10.15). First, we
treat the case of a small (neutral) excitation, i.e. δn = δ p � n0, p0. The dynamic
equation is in this case

∂ δ p

∂t
= −B (n0 + p0) δ p. (10.17)

Then the decay of the excess-carrier density is exponential with a time constant
(lifetime) τ given by

τ = 1

B (n0 + p0)
. (10.18)
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In an n-type semiconductor additionally n0 � p0, and thus the minority carrier
lifetime τp is

τp = 1

B n0
. (10.19)

If the nonequilibrium carrier densities are large, i.e. n ≈ p � n0, p0, e.g. for
strong injection, the kinetics obeys

∂ δ p

∂t
= −B (δ p)2, (10.20)

and the transient has the form

δ p(t) = δ p(0)

1 + B t δ p(0)
, (10.21)

where δ p(0) is the excess hole density at time t = 0. Such a decay is called hyperbolic
and the recombination is bimolecular. The exponential decay time is formally τ−1 =
Bδ p(t) and is thus time and density dependent. A detailed discussion of minority
carrier lifetime is given in [832].

10.2.6 Lasing

The net rate for stimulated emission and absorption is

rst(E) − rabs(E) =
[
1 − exp

(
E − (Fn − Fp)

kT

)]

×
∫ E+EV

EC

dEe B De(Ee) fe(Ee) Dh(Ee − E) fh(Ee − E) Nph(E).

(10.22)

The net rate at photon energy E = �ω is only larger than zero (i.e. dominating
stimulated emission) when

Fn − Fp > E ≥ Eg. (10.23)

When the difference of the quasi-Fermi levels is larger than the band gap, the
carrier population is inverted, i.e. close to the band edges the conduction-band states
are more strongly populated with electrons than the valence-band states, as shown
in Fig. 10.4. An incoming optical wave of energy E will then be net amplified
by stimulated emission. Equation (10.23) is also called the thermodynamic laser
condition. We note that lasing requires further conditions as discussed in Sect. 23.4.

http://dx.doi.org/10.1007/978-3-319-23880-7_23
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Fig. 10.4 Charge-carrier
distribution during inversion,
necessary for lasing. Shaded
areas are populated with
electrons. A stimulated
transition between an
electron and a hole is
indicated

D(E)

EV

EC

E

Fn

Fp

10.3 Exciton Recombination

10.3.1 Free Excitons

The observation of free-excitons is limited for semiconductors with a small exciton
binding energies (such as in GaAs) to low temperatures. However, for large exciton
binding energy, recombination from free-excitons is observed even at room temper-
ature, as shown in Fig. 10.5 for ZnO.

A low temperature recombination spectrum of silicon is shown in Fig. 10.6. In
pure silicon, phonon-assisted exciton recombination (cmp. Sect. 10.4) is observed
involving acoustic (ITA) and optical (ITO) phonons. The weakly observed no-phonon
line (I0) is forbidden in perfect Si.

10.3.2 Bound Excitons

Excitons can localize at impurities, defects or other potential fluctuations and sub-
sequently recombine [834, 835]. Excitons can be bound to neutral or ionized donors
and acceptors impurities [836]. Also they can be bound to isoelectronic impurities,
themost prominent example beingN inGaP [837] (cmp. Sect. 9.6.9). or isoelectronic
clusters [838]. The recombination of excitons localized in quantumwells (Sect. 12.4)
and quantum dots (Sect. 14.3.4) is discussed later.

http://dx.doi.org/10.1007/978-3-319-23880-7_9
http://dx.doi.org/10.1007/978-3-319-23880-7_12
http://dx.doi.org/10.1007/978-3-319-23880-7_14
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Fig. 10.5 Temperature-dependent luminescence spectra of a ZnO thin film (on sapphire). At low
temperatures, the spectra are dominated by donor-bound exciton transitions (Al0,X)). The vertical
dashed line indicates the low-temperature position of the donor-bound exciton transition (D0,X).
The curved dashed line visualizes the energy position of the free-exciton transition (XA) that
becomes dominant at room temperature

Fig. 10.6 Low temperature
recombination spectra from
silicon with low (solid lines)
and sizeable (dashed line)
phosphorus dopant
concentration. Spectrum for
NP = 2 × 1014 cm−3

(NP = 8 × 1016 cm−3) taken
at 26K (15K). Transitions in
pure Si are label with ‘I’,
transitions involving P
donors are labeled with ‘P’.
Q indicates the dissociation
energy of the bound exciton.
Adapted from [833]
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Table 10.2 Localization energy Q (Q∗) of excitons on selected impurities (ionized impurities,
D+ or A−, respectively) in various semiconductors

Host Donor Q (meV) Q∗ (meV) Q∗/Q σ Reference

GaAs EMD 0.88 1.8 2.0 0.28 [840]

Zn 8.1 31.1 3.8 [841]

GaN EMD 6.8 11.2 1.6 0.36 [842]

Mg 20 [843]

AlN Si 16 [843]

Mg 40

CdS EMD 6.6 3.8 0.6 0.17 [844]

ZnSe Al 4.9 5.4 1.1 0.27 [845, 846]

Ga 5.1 6.6 1.3

In 5.4 7.5 1.4

ZnO Al 15.5 3.4 0.21 0.3 [847]

Ga 16.1 4.1 0.25

In 19.2 8.5 0.44

σ is the ratio of effective electron and hole (polaron) masses. EMD: effective mass donor

The transition energy �ω of an exciton bound to a neutral impurity is

�ω = Eg − EX
b − Q, (10.24)

where Q is the binding (or localization) energy of the exciton to the impurity. The
binding energy of an exciton to an ionized impurity is denoted with Q∗. A transition
involving an exciton bound to a neutral donor is denoted (D0, X); correspondingly
(D+, X), also denoted as (h, D0), and (A0, X). Values for donor-bound excitons in
various semiconductors are listed in Table 10.2. The (D0, X) complex is stable for
0 < σ = m∗

e/m∗
h < 0.43 according to [839]. The (D+, X) peak can occur on the low-

or high-energy side of the (D0, X) recombination. Whether Q∗ < Q or Q∗ > Q
depends on σ being smaller or larger than 0.2, respectively [839], and is fulfilled for
many semiconductors, e.g. GaAs, GaN, CdS, and ZnSe.

Recombination in silicon due to excitons involving phosphorus donors is depicted
in Fig. 10.6. The (D0, X) transition in Si:P is labeled ‘P0’ (Q = 6meV). Other
P-related transitions are discussed in [833]. In Si, the binding energy to the impurity
is about one tenth of the binding energy of the impurity (Haynes’s rule [834, 848]),
i.e. Q/Eb

D and Q/Eb
A ≈ 0.1 (Fig. 10.7a). In GaP the approximate relations Q =

0.26Eb
D − 7meV and Q = 0.056Eb

A + 3meV have been found [837]. For donors in
ZnO, the relation Q = 0.365Eb

D − 3.8meV holds (Fig. 10.7b) [849]. In Fig. 10.8,
the recombination spectrum of GaAs:C is shown that exhibits recombination from
excitons bound to the acceptor (carbon) and shallow donors. The exciton is more
strongly bound to an ionized donor (D+) than to a neutral donor.

Varying the concentration of a specific impurity and observing the corresponding
change in the intensity of the (D0,X) transition allows to identify the chemical species
to which the exciton is bound. This can be achieved via the comparison of different
samples or more elegantly by introducing radioactive isotopes. This is shown in
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Fig. 10.7 Energy Q required to remove an exciton from a neutral impurity (10.24) as a function of
the ionization energy Eb

D (open circles) or Eb
A (solid circles) of the involved impurity in (a) silicon

(experimental data from [848]) and (b) ZnO (experimental data from [849]
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Fig. 10.8 Photoluminescence spectrum (T = 2K, D = 10mWcm−2) of GaAs:CAs (NA =
1014 cm−3) with donor- and acceptor-related bound-exciton recombination around 1.512eV,
(e, A0), (h, D0) and (D0, A0) pair and free-exciton recombination. Adapted from [840]

Fig. 10.9 for In in ZnO; the (111In0, X) transition disappears with the characteristic
time constant close to that (97h) of the nuclear decay of 111In into stable 111Cd.
However, in such experiments it should be considered that the decay product and
accompanying high-energy radiation can create new electronic and structural defects,
respectively.
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(a) (b)

Fig. 10.9 (a) Low-temperature photoluminescence spectrumofZnO implantedwith 111In featuring
the so-called I9-line. Spectra are recorded at various times after implantation as labeled. (b) Intensity
of I9-line as a function of time. Adapted from [850]
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Fig. 10.10 (a) Photoluminescence spectrum (T = 1.5K, D = 50mWcm−2) of high-purity GaAs
with two donors (Ge and Se/Sn). The lower spectrum has been excited 6meV above the band gap,
the upper spectrum has been resonantly excited with the laser set to the (D0, X) transition and
exhibits n = 2, 3, 4, and 5 TES transitions. α, β, γ denote excited (hole rotational) states of the
(D0, X) complex. Adapted from [852]. (b) Schematic representation of the n = 2 TES process, left
initial, right final state

The peak labeled (D0,X)2s in Fig. 10.8 is called a two-electron satellite (TES)
[851].High-resolution spectra of theTES inGaAs [506, 852] are shown inFig. 10.10a.
The TES recombination is a (D0,X) recombination that leaves the donor in an excited
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state as schematically shown in Fig. 10.10b. Therefore a hydrogen-like series with
n = 2, 3, . . . is observed with energies

En
TES = E(D0,X) − Eb

D

(
1 − 1

n2

)
. (10.25)

The effect of isotope disorder on the sharpness and splitting of impurity states
has been investigated in [853, 854]. The recombination of excitons bound to Al, Ga
and In in natural silicon (92.23% 28Si, 4.67% 29Si, 3.10% 30Si) is split into three
lines due to the valley-orbit splitting [855] of electron states at the band minimum
(Fig. 10.11). Each of these (A0, X) lines is split by 0.01cm−1 for Si:Al due to a
symmetry reduction of the 4-fold degenerate A0 ground state, as observed in the
presence of applied axial strain or an electric field. The comparison to spectra from
enriched 28Si shows that the observed splitting without external perturbation is due
to isotope disorder that causes random strains and splits the A0 ground state into
two doublets [854] (Fig. 10.11). Similarly, the (unsplit) phosphorus-induced (D0, X)
transition in enriched Si is found to be much sharper (<40µeV) than in natural Si
(330µeV) [853]. At higher resolution, a hyperfine splitting of 485neV due to the 31P
nuclear spin I = 1/2 (2×1012 cm−3) in isotopically pure (99.991%) 28Si (I = 0) is
observed for the (P0, X) recombination [856]. In a magnetic field, the Zeeman-split
lines have a FWHM of about 150neV.

In Fig. 10.12 the recombination of excitons bound to the N isoelectronic impurity
in lowly doped GaP is shown. The efficient recombination of nitrogen-bound elec-
trons with holes at theΓ point is due to the wave-function component of the localized
electron at k = 0 [612] (Fig. 7.41). The decay time of the A exciton is about 40ns
[857] and thus larger than the typical lifetime of excitons in direct semiconductors
(ns-range). The forbidden B exciton has a much longer lifetime of 4µs [857].

Fig. 10.11 High-resolution
photoluminescence (PL)
spectra of (A0, X)
recombination in natural and
28Si-enriched silicon doped
with aluminum (T = 1.8K).
The 28Si PL spectrum is
shifted up in energy by
0.114meV, as indicated by
the arrow, to compensate for
the shift in band gap. The
inset shows a level scheme
for the recombination in
natural silicon. Adapted
from [854], reprinted with
permission, ©2002 APS

Si:Al

28Si

1.1508 1.1509 1.1510

natural
Si

A0

A0X

http://dx.doi.org/10.1007/978-3-319-23880-7_7
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Fig. 10.12 Photoluminescence spectrum (T = 4.2K) of GaP:N (NN ≈ 5 × 1016 cm−3). The A
exciton is bound to an isolated nitrogen impurity, cmp. to Fig. 9.25. Adapted from [612]

Fig. 10.13 Spectral position
of neutral donor- and
acceptor-bound exciton
photoluminescence
transition (T = 2K) in GaAs
doped with different
amounts of indium relative
to the donor-bound exciton
luminescence in pure GaAs
(1.5146eV). Adapted from
[858]

In the case of In in GaAs it has been found that down to the regime of NIn <

1019 cm−3 the indium does not act as a substitutional isoelectronic impurity but
still fully participates in the composition of a pseudo-binary system (Sect. 6.5).
Recombination from excitons bound to single indium atoms or In–In pairs could
not be found. The energy shift of donor- and acceptor-bound excitons in the dilute
limit (Fig. 10.13) follows the band-gap dependence established for larger indium
concentrations. The non-occurrence of localization effects is attributed to the small
effective electron mass in InAs [472].

The luminescence intensity I (T ) of bound exciton lines is quenched with increas-
ing temperature due to ionization of the excitons from the impurities. The temperature
dependence can be modeled using the relation [859]

http://dx.doi.org/10.1007/978-3-319-23880-7_9
http://dx.doi.org/10.1007/978-3-319-23880-7_6
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Fig. 10.14 Temperature
dependent PL intensity of
(D0, X) in GaN and (A0, X)
in AlN:Mg recombination.
Solid lines are fits with
(10.26). Data from [843,
861]

I (T )

I (T = 0)
= 1

1 + C exp(−EA/kT )
, (10.26)

EA being the thermal activation energy andC a pre-factor. Often the activation energy
is found equal to the localization energy, EA = Q (Fig. 10.14, cmp. Table 10.2). If
several processes contribute, additional exponential terms can be added with further
activation energies. For acceptor-bound excitons in GaAs two processes are found
to contribute, the ionization from the impurity into a free exciton (E1

A ≈ Q) and
into an electron-hole pair (E2

A ≈ Q + Eb
X) [859]. In [860] the model is refined by

considering the temperature dependence of the parameter C due to the ionization of
the impurity itself.

So far single excitons bound to a center have been discussed. Also bound exciton
complexes [862] containing up to six excitons have been observed at sufficient exci-
tation density, e.g. for substitutional boron [863] or phosphorus [864] and interstitial
Li [865] in silicon. In a multi-valley semiconductor several electrons are available to
form bound excitons which follow approximately a shell model and exhibit further
fine structure.

10.3.3 Alloy Broadening

The bound-exciton recombination peak in a binary compound is spectrally fairly
sharp (Sect. 10.3.2), even in the presence of isotope disorder (Fig. 10.11). In an alloy
(see Sect. 3.7), the random distribution of atoms (with different atomic order number
Z ) causes a significant broadening effect of the luminescence (and absorption) line,
the so-called alloy broadening [866, 867]. As an example, we treat AlxGa1−xAs. The

http://dx.doi.org/10.1007/978-3-319-23880-7_3
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exciton samples, at different positions of the lattice, different coordinations of Ga and
Al atoms. If the experiment averages over these configurations, an inhomogeneously
broadened line is observed.

The cation concentration cc for the zincblende lattice is given as cc = 4/a3
0 , for

the wurtzite lattice as cc = 4/(
√
3 a2c). For example, cc = 2.2 × 1022 cm−3 for

AlxGa1−xAs in the entire composition range 0 ≤ x ≤ 1 since the lattice constant
does not vary significantly, and cc = 4.2×1022 cm−3 for wurtziteMgxZn1−xO [868].
In a random alloy, the probability p(N ) to find exactly N Ga atoms in a given volume
V (with a total of ccV cations) is given by the binomial distribution

p(N ) =
(
cc V

N

)
x N (1 − x)ccV −N . (10.27)

The sampling volume for a luminescence event is the exciton volume (cf. (9.39))
that is given for the free-exciton (in 1s hydrogen state) as [866, 869]

Vex = 10 π a3
X = 10 π

(
m0

m∗
r

εs aB

)3

. (10.28)

One should note that due to the variation of the involved material parameters Vex

depends itself on x . In GaAs there are about 1.2×106 cations in the exciton volume.
In AlxGa1−xAs, there are on average xccVex Al atoms in the exciton volume. The
fluctuation is given by the standard deviation of the binomial distribution [869]

σ2
x = x (1 − x)

cc Vex
. (10.29)

The corresponding energetic broadening (full width at half-maximum) of the
spectral line is given by ΔE = 2.36σ with

σ = ∂Eg

∂x
σx = ∂Eg

∂x

√
x (1 − x)

ccVex
. (10.30)

We note that instead of the quantum mechanically correct factor 10 π [866, 869],
often the factor 4π/3 [867] is used, resulting in larger theoretical broadening.

Experimental data for CdxSe1−x in Fig. 10.15a are consistent with (10.30). The
theoretical dependence (10.30) is shown in Fig. 10.15b also for AlxGa1−xAs together
with experimental data and found to disagree [870]. Since the exciton volume is
much smaller (cf. 9.6.6) than in AlxGa1−xAs, alloy broadening in MgxZn1−xO is
much larger for a given for given x .

The spectral broadening due to alloy disorder masks the fine structure of recom-
bination lines near the band edge present for binary semiconductors. Often for all
temperatures only a single recombination line appears for alloys. Spectra for three dif-
ferent MgxZn1−xO alloys are shown in Fig. 10.16a. The increasing inhomogeneous

http://dx.doi.org/10.1007/978-3-319-23880-7_9
http://dx.doi.org/10.1007/978-3-319-23880-7_9
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(a) (b)

Fig. 10.15 (a) Spectral width of the photoluminescence fromCdSxSe1−x alloys. Solid line is theory
according to (10.30). Adapted from [866]. (b) Spectral width of the bound exciton recombination
in AlxGa1−xAs with various Al content within the direct-bandgap regime. Solid line is (10.30) with
(10.28), dashed line with pre-factor 4π/3 instead of 10 π. Adapted from [870]

(a) (b)

Fig. 10.16 (a) Photoluminescence spectra (T = 80K, scaled) of three MgxZn1−xO alloy layers
on sapphire with three different Mg-contents, x = 0.005, x = 0.03, and x = 0.06 as labeled. The
energy positions of (D0, X) and XA peaks are marked. Adapted from [860]. (b) Peak energy of
the photoluminescence spectrum (T = 2K) of ZnO (I6-line, star) and various MgxZn1−xO alloys
(circles). For x ≤ 0.03 (filled circles) the (D0, X) recombination peak (Al donor) can be spectrally
separated from the free exciton (XA) recombination. For the samples with higherMg content (empty
circles) a single recombination peak is present at all temperatures. The dashed line is a linear least
square fit for the alloys with 0 ≤ x ≤ 0.03, showing that also for x > 0.03 the low temperature
recombination peak is due to donor-bound excitons. Adapted from [871]

broadening is obvious, causing a single peak for x > 0.03. The temperature depen-
dence of the peak positions is shown in Fig. 10.17 for the same samples. For
x = 0.005 the bound exciton (Al-donor) (D0,X) and free exciton (XA) recombination
lines can still be resolved despite the inhomogeneous broadening of σ = 2.6meV. At
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(a) (b) (c)

Fig. 10.17 Temperature dependence of the shift of energy position of (D0, X) and XA pho-
toluminescence peak in MgxZn1−xO alloys with three different Mg-contents, (a) x = 0.005,
(b) x = 0.03, (c) x = 0.06. The energy positions are given relative to the low temperature position
of the respective (D0, X) peaks. Adapted from [860]

low temperature the luminescence intensity is dominated by (D0, X) recombination,
at room temperature by free exciton (XA) recombination. Both peaks are present
at low temperatures and exhibit a red-shift with increasing temperatures due to the
shrinking of the band gap (Fig. 10.17a). The (D0, X) peak vanishes at about 180K
due to ionization of the excitons from the donors (Q ≈ 15meV, similar as in pure
ZnO).

For larger Mg-content of x = 0.03 the two peaks can still mostly be separated
(σ = 6.0meV). The (D0, X) energy position shows a small dip (about 2meV) due
to exciton localization in the alloy disorder potential (arrow in Fig. 10.17b). At low
temperatures excitons are frozen in local potential minima and have a non-thermal
(non-Boltzmann) population.With increasing temperature they can overcome energy
barriers and thermalize, leading to a shift of the recombination peak to lower energies.
Further increase of temperature populates higher levels and leads to a shift of the
recombination peak to higher energies. Superimposed is the red-shift due to the band
gap shrinkage. This so-called “S”-shape effect of E(T ) is discussed in Sect. 12.4 in
detail with regard to exciton localization in a quantum well disorder potential.

For x = 0.06 only a single photoluminescence peak is observed for the alloy
(σ = 8.5meV). The (D0, X) peak is the dominant for the MgxZn1−xO alloys at
low temperatures even in the presence of large alloy broadening (Fig. 10.16b). The
peak changes its nature from (D0, X) at low temperatures to XA at room tempera-
ture. In between, first exciton thermalization (red-shift) in the disorder potential and

http://dx.doi.org/10.1007/978-3-319-23880-7_12
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subsequently exciton ionization from the donors (blue-shift, arrow in Fig. 10.17c)
are observed [860]. Such exciton ionization from impurities has also been observed
for AlGaN:Si [549, 872].

10.4 Phonon Replica

The momentum selection rule for free-exciton recombination allows only excitons
withK ≈ 0 (forK, cf. (9.37)) to recombine. Thefine structure of this recombination is
connected to polariton effects (cf. Sect. 9.6.8). Excitonswith largeK can recombine if
a phonon or several phonons are involved [873] that provide the necessarymomentum
q = K1−K2, withK1 (K2) being thewave vector of the initial (intermediate) exciton
state (Fig. 10.18). A so-called zero-phonon line at energy E0 is then accompanied
by phonon replica below E0 at integer multiples (at low temperature) of the (LO)
phonon energy �ωph

En = E0 − n �ωph. (10.31)

Phonon replicas have been observed in many polar semiconductors such as CdS
[874] and ZnSe [875]. A sequence of such phonon replica, as observed in GaN [876],
is depicted in Fig. 10.19a.

The lineshape of the nth phonon-assisted line is proportional to the exciton pop-
ulation at a given excess energy, which is proportional to the density of states and
the Boltzmann distribution function [877]

Fig. 10.18 Schematic
representation of 1LO
exciton scattering of an
exciton at K �= 0 to an
intermediate state with
K ≈ 0 and subsequent
radiative decay. �ω
represents the phonon energy
and E1 the energy of the
emitted photon

K

n=1
n=2

n=3

h ph

E1

E

continuum

http://dx.doi.org/10.1007/978-3-319-23880-7_9
http://dx.doi.org/10.1007/978-3-319-23880-7_9
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Fig. 10.19 (a) Photoluminescence spectrum of GaN (grown on SiC substrate) at T = 50K. In
addition to emission from free (FE) andbound (BE) excitons several phonon replica (labeled as 1LO–
5LO) are observed. Vertical dashed lines indicate energy positions of multiple LO-phonon energies
(�ωLO = 92meV) below the FEpeak.Adapted from [876]. (b) Photoluminescence spectrumof 1LO
phonon-assisted recombination peak at T = 103K (from the data of Fig. 10.5). Data points (dots)
and lineshape fit (solid line) according to (10.32) with the parameters L1 = 0.9 and E1 = 3.2955eV
(and background)

In(Eex) ∝ √
Eex exp

(
− Eex

kT

)
wn(Eex). (10.32)

Here, Eex represents the exciton kinetic energy. The factor wn(Eex) accounts for the
q-dependence of the matrix element. It is typically expressed as

wn(Eex) ∝ E Ln
ex . (10.33)

Accordingly, as temperature dependent refinement of (10.31), the energy separation
ΔEn of the energy of the peak maximum of phonon replica from E0 is given by

ΔEn = En − E0 = −n �ωph +
(

Ln + 1

2

)
kT . (10.34)

It is found theoretically that L1 = 1 and L2 = 0 [877]. These relations are
approximately fulfilled for GaN [878]. A lineshape fit for the 1LO phonon-assisted
transition in ZnO is shown in Fig. 10.19b.

In Fig. 10.20a the ‘green band’ emission of ZnO is shown as presented in [879].
This band is mostly attributed to a Cu impurity; recently, evidence has grown from
isotope decay and annealing studies that it is related to the zinc vacancy [880]
(Fig. 10.20b). The zero phonon line is followed by many replica with a maximum at
about 6 LO phonons. The intensity IN of the N -th replica is given by [881, 882]

IN ∝ exp(−S)
SN

N ! , (10.35)
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Fig. 10.20 (a) Luminescence spectrum of ZnO in the visible. The arrow denotes the zero-phonon
line at 2.8590eV. The numbers of the phonon replica are labeled. Adapted from [879]. (b) Lumi-
nescence spectra (solid lines) of a ZnO bulk crystal before (‘untreated’) and after annealing in O2
atmosphere at T = 1073K. After annealing in Zn atmosphere at the same temperature, the green
band disappears again (dashed line). From [880]

where S is the so-called Huang–Rhys parameter. In [880], a coupling parameter of
S = 6.9 has been determined.

Equation (10.35) is obtained from the consideration of transitions in the configu-
ration diagram [881, 883] (Fig. 10.21), using the Born–Oppenheimer approximation.
Here the electronic wavefunctions are separated from the vibrational wavefunctions,
leading to the Franck–Condon principle, that optical transitions occur with the posi-
tions of the nuclei fixed and thus vertical in the configuration diagram Fig. 10.21.
Assuming low temperatures, only the lowest state is (partially) occupied. TheHuang–
Rhys parameter, the average number of phonons involved in the transition, is related
to the displacement δq = q1 − q0 of the two configurations

S = C δq2

2 �ωph
, (10.36)

where C is the ‘spring constant’ of the parabola, C = d2E/dq2.
For small S � 1, we are in the weak coupling regime and the zero-phonon line

is the strongest. In the strong coupling regime, S > 1, the maximum is (red-) shifted
from the zero-phonon line. We note that in absorption, phonon replica occur on the
high-energy side of the zero-phonon absorption. For large S the peak intensities are
close to aGaussian. The correspondence of emission and absorption is nicely seen for
excitons on isoelectronic oxygen traps in ZnTe [882]. The oxygen is on substitutional
Te site. Up to seven phonon replica are visible in Fig. 10.22 around the zero-phonon
or A-line with a separation of about 26meV, the optical phonon energy in ZnTe. The
Huang–Rhys parameter is about 3–4. Other peaks are due to acoustic phonons.
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Fig. 10.21 (a) Configuration diagram of two states that differ in their configuration coordinate by
δq = q1 − q0. Both are coupled to phonons of energy �ω. The absorption maximum (solid vertical
line) and emission maximum (dashed vertical line) are shifted with respect to the zero-phonon line
(dotted vertical line) with energy E1 − E0. The Huang–Rhys parameter is S ∼ 4. (b) Intensity of
zero-phonon line (‘ZPL’) and phonon replica (10.35) for emission and absorption processes with
different values of the Huang–Rhys parameter S as labeled

Fig. 10.22 Photoluminescence (solid line) and absorption (dashed line) spectra of excitons bound
to substitutional oxygen in ZnTe at T = 20K. The energy position is relative to the A-line at
1.9860eV. The vertical dashed lines have a separation of 25.9meV. Adapted from [884]

10.5 Self-Absorption

Luminescence that is emitted within the semiconductor can be (re-)absorbed before
it may reach the surface and can leave the crystal. This effect is called self-absorption.
It is particularly strong for radiation with an energy where the absorption α(�ω) is
high, i.e. above the band gap of a direct semiconductor. Similarly to the penetration
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Fig. 10.23 Photoluminescence spectrum (at T = 55K) from bulk ZnO excited homogeneously
via two-photon excitation by a Q-switched ruby laser (pulse width 40ns). Adapted from [885]

depth 1/α for radiation entering the crystal, emission approximately occurs only
from a layer of such thickness. For typical values of α in the range of 105 cm−1,
the ‘skin’ of the semiconductor that emits light with energy above the band gap is
100nm. For light at the low energy side of the band gap or with energy within the
band gap (deep levels), the emission depth can be much larger.

After re-absorption, the energy has another chance to relax non-radiatively, thus
reducing the quantum efficiency. Alternatively it can be reemitted, either at the
same energy or at a lower energy. Possibly several re-absorption processes occur
before a photon eventually leaves the semiconductor (‘photon recycling’). Such
processes are important in LED structures where photon extraction has to be opti-
mized (Sect. 23.3.4). Emission on phonon replica (Sect. 10.4) is red-shifted from the
energy range of strong absorption and thus suffers no (or only little) self-absorption.
This can be seen from the spectrum of a thick ZnO crystal excited homogeneously
(via two-photon absorption with a red Ruby laser), Fig. 10.23. The zero phonon
line (at EX), originating from the ≈100nm skin of the samples and being by far the
strongest in thin films (Fig. 10.5), is practically absent and emission on the phonon
replica collected from the entire volume dominates the spectrum.

10.6 Donor–Acceptor Pair Transitions

Optical transitions can occur between neutral donors and acceptors. The (spatially
indirect) donor–acceptor pair (DAP) recombination is present in (partially) compen-
sated semiconductors and follows the scheme D0 A0 → D+ A−eh → D+ A− + γ,
where γ is a photon with the energy �ω. The energy of the emitted photon is given by

�ω = Eg − Eb
D − Eb

A + 1

4πε0

e2

εr R
, (10.37)

http://dx.doi.org/10.1007/978-3-319-23880-7_23
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Fig. 10.24 Transition energies in GaP (T = 1.6K) of the donor–acceptor recombination involving
the deep oxygen donor and C, Zn, and Cd acceptors, respectively. The lines follow (10.37) for
EGaP
g = 2.339eV, εr = 11.1 and (Eb

D)O = 893meV, (Eb
A)C = 48.5meV, (Eb

A)Zn = 64meV, and

(Eb
A)Cd = 96.5meV. Predicted missing modes for GaP:C, O are labeled with ‘G’. Adapted from

[886]

where R is the distance between the donor and the acceptor for a specific pair. Since
R is discrete, the DAP recombination spectrum consists of several discrete lines. If
the donor and acceptor occupy the same sublattice, e.g. O and C both substituting P
sites in GaP, the spatial distance of the donor and acceptor is R(n) = a0

√
n/2, where

a0 is the lattice constant and n is an integer. However, for certain ‘magic’ numbers
n = 14, 30, 46, . . . no lattice points exist and therefore the corresponding lines are
missing (labeled ‘G’ in Fig. 10.24). No such gaps exist in DA spectra where donors
and acceptors occupy different sublattices, e.g. GaP:O, Zn (see also Fig. 10.24). In
this case, the spatial separation is given by R(n) = a0

√
n/2 − 5/16. If significant

broadening is present, the lines are washed out and a donor–acceptor pair band forms.

10.7 Inner-Impurity Recombination

The transitions of electrons between different states of an impurity level can be
nonradiative or radiative. As an example, the radiative transition of electrons in the
Fe2+ state in InP 5T2 →5E (Fig. 10.25) and its fine structure were observed first in
[888] at around 0.35eV.
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Fig. 10.25 (a) Schematic band diagram of InP with levels of Fe impurities in the 3+ and 2+ charge
states at low temperature. All energies are given in eV. The arrow denotes the optical transition from
an excited Fe2+ state to the Fe2+ ground state. (b) Photoluminescence spectrum (at T = 4.2K) of
InP:Fe sample with [Fe] = 5 × 1016 cm−3. Part (b) adapted from [887]

10.8 Auger Recombination

In competition with the radiative, bimolecular recombination is the Auger recom-
bination (Fig. 10.26). In the Auger process, the energy that is released during the
recombination of an electron and hole is not emitted with a photon but, instead, trans-
ferred to a third particle. This can be an electron (eeh, Fig. 10.26a) or a hole (hhe,
Fig. 10.26b). The energy is eventually transferred nonradiatively from the hot third
carrier via phonon emission to the lattice. The probability for such process is ∝ n2 p
if two electrons are involved and∝ np2 if two holes are involved. The Auger process
is a three-particle process and becomes likely for high carrier density, either through
doping, in the presence ofmany excess carriers, or in semiconductorswith small band
gap. Auger recombination is the inverse of the impact ionization (cf. Sect. 8.4.4).
Phonon-assisted Auger recombination relaxes the momentum conservation rule for
the involved charge carriers at the cost of an additional particle being involved in
the scattering process. It has been pointed out that this process is dominating in bulk
material [889, 890] and quantum wells [891].

In thermodynamic equilibrium the rates for Auger recombination and thermal
Auger generation must be equal, thus

G th = Cn n2
0 p0 + Cp n0 p2

0, (10.38)

where Cn and Cp denote the Auger recombination coefficients. The equation for the
dynamics in the presence of excess carriers (if solelyAuger recombination is present)
is given as

∂ δn

∂t
= G th − R = −Cn (n2 p − n2

0 p0) − Cp (n p2 − n0 p2
0). (10.39)

http://dx.doi.org/10.1007/978-3-319-23880-7_8
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Fig. 10.26 Schematic representation of Auger recombination. An electron recombines with a hole
and transfers the energy to (a) another electron in the conduction band, (b) another electron in the
valence band

The Auger recombination rate typically used in SRH kinetics is

rAuger = (Cn n + Cp p) (np − n0 p0) . (10.40)

Typical values for the Auger recombination coefficients are given in Table 10.3.
In Fig. 10.27a the electron lifetime in heavily p-doped InGaAs (lattice matched

to InP) is shown [893]. It follows τ−1
n = Cp N 2

A as expected from (10.39) for p-
type material. The Auger process in silicon has been discussed in detail [894]. In
Fig. 10.27b experimental data for n-type and p-type Si are summarized. Auger theory
can predict the lifetimes in n-type material. The predicted rate in p-type material is
too small, thus a phonon-assisted process is evoked [894].

Table 10.3 Auger
recombination coefficients for
some semiconductors. Data
for InSb from [892], SiC from
[830], others from [831]

Material Cn (cm6/s) Cp (cm6/s)

4H-SiC 5 × 10−31 2 × 10−31

Si, Ge 2.8 × 10−31 9.9 × 10−32

GaAs, InP 5.0 × 10−30 3.0 × 10−30

InSb 1.2 × 10−26
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(a) (b)

Fig. 10.27 (a) Experimental values of the electron lifetime in heavily p-doped InGaAs on InP
at room temperature. The dashed lines show dependencies of Auger (∝ N−2

A , Cp = 8.1 ×
10−29 cm−6 s−1) and band-band recombination (∝ N−1

A , B = 1.43 × 10−10 cm−3 s−1). Adapted
from [893]. (b) Experimental Auger lifetimes in p-type (squares) and n-type (circles) silicon at
300K. The dashed (solid) line is theory for p-type (n-type) material. Adapted from [894]

10.9 Band–Impurity Recombination

A very important recombination process is the capture of carriers by impurities. This
process is in competition with all other recombination processes, e.g. the radiative
recombination and the Auger mechanism. The band–impurity recombination is the
inverse process to the carrier release from impurities and intimately related to carriers
statistics (Chap. 7). It is particularly important at low carrier densities, for high
dopant concentration and in indirect semiconductors since for these the bimolecular
recombination is slow. This process is generally considered to be non-radiative since
no photons close to the band edge are emitted.4

10.9.1 Shockley–Read–Hall Kinetics

The theory of capture on and recombination involving impurities is called Shockley–
Read–Hall (SRH) kinetics [825]. An example of radiative band–impurity recombi-
nation (of the type shown in Fig. 10.28a) is shown in Fig. 10.8 (e, A0) recombination
at the carbon acceptor in GaAs.

4Depending on the energetic depth of the trap, mid or far infrared photons can be emitted.

http://dx.doi.org/10.1007/978-3-319-23880-7_7
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Fig. 10.28 Band-to-impurity processes at an impurity with one level (left initial, right final state
in each part): (a) electron capture (from conduction band), (b) electron emission (into conduction
band), (c) hole capture (from valence band), (d) hole emission (into valence band). The arrows
indicate the transition of the electron

We consider electron traps [895] (see Fig. 10.28) with a concentration Nt with an
energy level Et . In thermodynamic equilibrium they have an electron population

f 0t = 1

exp
( Et−EF

kT

) + 1
, (10.41)

where ft is the nonequilibrium population of the trap. Then the capture rate rc is
proportional to the unoccupied traps and the electron concentration, rc ∝ nNt(1− ft).
The proportionality factor has the form vthσn, where vth is the thermal velocity
vth = √

3kT/m∗ ≈ 107 cm/s and σn is the capture cross section that is of atomic
scale, typically ∼10−15cm2. The capture cross section can be related to the optical
absorption cross section [513, 514].

In order to make the following calculation more transparent, we put the effective-
mass ratio

√
m0/m∗ into σ in the following and thus have the same thermal velocity

vth = √
3kT/m0 for electrons and holes. The capture rate of electrons is

rc = vth σn n Nt (1 − ft). (10.42)

The emission rate from filled traps is

gc = en Nt ft, (10.43)

where en denotes the emission probability. In a similar way, the emission and capture
rates for holes can be written:

rv = vth σp p Nt ft (10.44)

gv = ep Nt (1 − ft). (10.45)
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In thermodynamical equilibrium, capture and generation rates are equal, i.e. rc =
gc and rv = gv. Thus, the emission probability is

en = vth σn n0
1 − f 0t

f 0t
. (10.46)

Using 1− f 0t
f 0t

= exp
( Et−EF

kT

)
, (7.10) and (7.11) the emission probabilities can be

written as

en = vth σn nt (10.47)

ep = vth σp pt, (10.48)

with

nt = NC exp

(
Et − EC

kT

)
(10.49)

pt = NV exp

(
− Et − EV

kT

)
. (10.50)

We note that nt pt = n0 p0 (cf. (7.15)).
The temperature dependence of the thermal velocity is ∝ T 1/2, the temperature

dependence of the band-edge density of states is ∝ T 3/2 (7.8) and (7.9). Thus,the
temperature dependence of the emission rate en is (apart from the exponential term)
∝ T 2 if σ is temperature independent.

Charge conservation requires in nonequilibrium (and of course in equilibrium)
rc − rv = gc − gv. From this we obtain the population of the trap in nonequilibrium:

ft = σn n + σp pt

σn (n + nt) + σp (p + pt)
. (10.51)

The recombination rate rb−i of the band–impurity recombination is then

rb−i = − ∂δn

∂t
= rc − gc

= σn σp vth Nt

σn (n + nt) + σp (p + pt)
(n p − n0 p0) . (10.52)

Using the ‘lifetimes’

τn0 = (σn vth Nt)
−1 (10.53)

τp0 = (σp vth Nt)
−1, (10.54)

http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_7
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this is typically written as

rb−i = 1

τp0 (n + nt) + τn0 (p + pt)
(n p − n0 p0) . (10.55)

For an n-type semiconductor the Fermi level is above Et and the traps are mostly
full. Thus hole capture is the dominating process. The equation for the dynamics
simplifies to

∂δ p

∂t
= − p − p0

τp0

. (10.56)

Thus, an exponential decay with minority-carrier lifetime τp0 (or τn0 for p-type mate-
rial) occurs.

A recombination center is most effective when it is close to the middle of the band
gap (midgap level). The condition ∂rb−i/∂Et = 0 leads to the trap energy Emax

t with
the maximum recombination rate being located at

Emax
t = EC + EV

2
− kT ln

(
σn NC

σp NV

)
. (10.57)

The curvature ∂2rb−i/∂E2
t at Emax

t is proportional to −(np − n0 p0) and thus indeed
is negative in the presence of excess carriers. However, the maximum can be fairly
broad.

TheSRHkinetic presented here is valid for lowdensities of recombination centers.
A more detailed discussion and a more general model can be found in [896].

A typical example for a recombination center is gold in silicon. The minority
carrier lifetime decreases from 2 × 10−7 s to 2 × 10−10 s upon increase of the Au
concentration from 1014 to 1017 cm−3. The incorporation of recombination centers
is an important measure for the design of high-frequency devices [897]. Due to
importance in silicon technology the recombination properties of many metals in
silicon have been investigated, in particular Fe-contamination and the role of FeB-
complexes [898–900].

A reduction in minority-carrier lifetime can also be achieved by irradiation with
high-energy particles and the subsequent generation of point defects with energy
levels at midgap.

In Fig. 10.29 various data onminority carrier lifetime in silicon are compiled.Over
some doping range, a dependence of the lifetime ∝ N−1 as in (10.53) prevails. For
doping beyond the 1019 cm−3 range, Auger recombination (Sect. 10.8) with τ ∝ N−2

is dominant. A more detailed discussion can be found in [901, 902]. Generally the
lifetimes are temperature dependent [903] as expected from (10.52).
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Fig. 10.29 Minority carrier lifetime at room temperature as a function of majority carrier con-
centration in n-type and p-type silicon. The dashed lines have the slopes N−1 and N−2. Data
from [902]

10.9.2 Multilevel Traps

Traps with multiple levels in the band gap have generally similar but more com-
plicated dynamics as compared to single-level traps. Lifetimes are an average over
negatively and positively charged states of the trap.

10.10 ABC Model

Summarizing the results on band-impurity recombination (Sect. 10.9), bimolecular
recombination (Sect. 10.2) and Auger recombination (Sect. 10.8), the total recom-
bination rate R can be written simplified as

R = A n + B n2 + C n3, (10.58)

where A is the coefficient for the band-impurity recombination, B the bimolecular
recombination coefficient and C the Auger recombination coefficient; n denotes the
carrier density. This model is known as the ‘ABC’ model. It can be refined separating
effects of electrons and holes and including higher terms. Often such model is used
to investigate recombination in devices as a function of injection, e.g. [904, 905].

The internal radiative quantum efficiency ηint is given by ratio of the radiative
recombination rate and the total recombination rate,

ηint = B n2

A n + B n2 + C n3
= B n

A + B n + C n2
. (10.59)
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10.11 Field Effect

The emission of electrons from a trap is thermally activated with an ionization energy
Ei = EC − Et . If the trap is in a strong electric field E , the emission probability can
change. An acceptor-like trap after removal of the electron is neutral and its potential
is short range. A donor has a long-range Coulomb potential after ionization. In
an electric field, these potentials are modified as visualized in Fig. 10.30. Various
additional processes can now occur.

10.11.1 Thermally Activated Emission

For the δ-like potential the ionization energy remains unchanged. For the Coulomb
potential the barrier in the field direction is lowered by

ΔEi = e

√
e

π ε0 εr

√
E . (10.60)

The emission rate en is increased in the field by exp (ΔEi/kT ). This effect is
called the Poole–Frenkel effect [906] and can be quite important. For silicon and
E = 2 × 105 V/cm and ΔEi = 100meV a 50-fold increase of the emission rate
at room temperature is expected. As an example the Poole–Frenkel effect for the
electron emission from (neutral) interstitial boron in silicon (B0

i → B+
i + e−) is

Ei

Ei

(a) (b)

Fig. 10.30 Field effect at (a) a δ-like potential and (b) a Coulomb potential
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Fig. 10.31 Field effect for
electron emission from
interstitial boron in silicon
(T = 65K). The filled circles
represent experimental data
from DLTS, the data point
marked with an empty circle
is from EPR (zero field). The
line is a linear fit and
extrapolation. Adapted from
[907]
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shown in Fig. 10.31, following the enhancement of en ∝ exp(
√

E). The extrapolation
to E = 0 agrees with the EPR result [241, 907].5

10.11.2 Direct Tunneling

Carriers can tunnel from the trap level through the barrier in the field direction
into the conduction band. This process is temperature independent. The transmis-
sion factor of a barrier is (in WKB approximation) proportional to exp[−(2/�)∫ √

2m [V (x) − E] dE]. The emission probability for a triangular barrier is then

en = e E

4
√
2m∗Ei

exp

(
−4

√
2m∗ E3/2

i

3 e � E

)
. (10.61)

In the case of a Coulomb-like potential the argument of the exponent in (10.61)
needs to be multiplied by a factor 1 − (ΔEi/Ei)

5/3 with ΔEi from (10.60).

10.11.3 Assisted Tunneling

In a thermally assisted tunneling process the electron on the trap level is first excited
to a virtual level Et + Eph by phonon absorption and then tunnels out of the trap

5The slope of the line in Fig. 10.31 is slightly smaller than expected from (10.60).
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(photon-assisted tunneling). From the energetically higher level the tunneling rate is
higher. The probability is proportional to exp

(
Eph/kT

)
. The additional energy can

also be supplied by a photon (photon-assisted tunneling).

10.12 Recombination at Extended Defects

10.12.1 Surfaces

Asurface (cmp. Chap.11) is typically a source of recombination, e.g. throughmidgap
levels induced by the break of crystal symmetry. The recombination at surfaces is
modeled as a recombination current

js = −e S (ns − n0), (10.62)

where ns is the carrier density at the surface and S is the so-called surface recombi-
nation velocity.

The surface recombination velocity for GaAs is shown in Fig. 10.32. For InP, if
the surface Fermi level is pinned close to midgap, the surface recombination velocity
increases from ∼5× 103 cm/s for a doping level of n ∼ 3× 1015 cm−3 to ∼106 cm/s
for a doping level of n ∼ 3 × 1018 cm−3 [908]. For Si, the surface recombination
rate depends on the treatment of the surface and lies in the range between 1–104 cm/s
[911]. The Si-SiO2 interface can exhibit S ≤ 0.5cm/s. Time-resolved measurements
and detailed modeling for Si have been reported in [911].

Fig. 10.32 Surface
recombination velocity for
GaAs as a function of n-type
doping concentration.
Different experimental points
correspond to different
surface treatment methods.
Dashed line is a guide to the
eye. Experimental data from
[912]

GaAs

1016 1017 1018 1019
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107

1015
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http://dx.doi.org/10.1007/978-3-319-23880-7_11
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(a)
(b)

Fig. 10.33 (a) Minority carrier lifetime in (p-type) silicon as a function of grain boundary size.
The dashed line has the slope ∝ A. Data from [916]. (b) Linescan of the electron beam induced
current (EBIC) perpendicular to a single grain boundary in silicon. The arrow denotes the position
of the grain boundary. Compiled from [917]

10.12.2 Grain Boundaries

Grain boundaries can be a source of non-radiative recombination. This is technolog-
ically important for solar cells made from polycrystalline silicon (cf. Sect. 22.4.6).
The grain boundary can be understood as an inner surface in the crystal. Modelling
of recombination at a grain boundary can be done using an interface recombination
velocity [913, 914] or considering deep traps [915]. The minority carrier lifetime
decreases with decreasing grain boundary area A (Fig. 10.33a). The carrier loss at
a grain boundary can be imaged directly via the efficiency of the collection of an
electron beam induced current (EBIC) as shown in Fig. 10.33b. The minority carrier
lifetime is only unaffected when the average distance to a grain boundary is much
larger than the minority carrier diffusion length,

√
A � LD, otherwise the entire

grain volume is subject to non-radiative recombination.

10.12.3 Dislocations

Also dislocations typically act as recombination centers, sometimes called carrier
sinks. In Fig. 10.34 it can be seen that the minority carrier lifetime depends on the
dislocation density nd and follows a τ−1 ∝ nd law, as if each dislocation is a recom-
bination center [918]. The non-radiative recombination makes dislocations appear as
‘dark line defects’ in luminescence imaging [919]. In [920] also the decrease of car-
rier lifetime around (misfit) dislocations has been imaged. The effect of dislocations
on the radiative recombination efficiency depends on the diffusion length [920].

http://dx.doi.org/10.1007/978-3-319-23880-7_22
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Fig. 10.34 Inverse minority
carrier lifetime in n-type
silicon (40�cm), low
resistivity Ge (3–5�cm) and
high resistivity Ge
(30–40�cm). Data from
[918]

10.13 Excess-Carrier Profiles

In this section, some typical excess-carrier profiles (in one-dimensional geometry)
are discussed that arise from certain excitation conditions. The excess-carrier density
Δp (here holes in an n-type semiconductor, i.e. Δp = pn − pn0 ) is determined by
the diffusion equation (cf. (8.64a))

Dp
∂2Δp

∂x2
= −G(x) + Δp

τp
. (10.63)

10.13.1 Generation at Surface

First, the generation of excess carriers in a semi-infinite piece of semiconductor shall
occur only at the surface at x = 0. The generation is zero everywhere else and
the excitation is incorporated via the boundary condition Δp(x = 0) = Δp0. The
general solution for the homogeneous equation (10.63), i.e. G = 0, is

Δp(x) = C1 exp

(
− x

Lp

)
+ C2 exp

(
x

Lp

)
, (10.64)

with the diffusion length Lp = √
Dpτp. Taking the boundary condition Δp(x →

∞) = 0 the solution is

Δp(x) = Δp0 exp

(
− x

Lp

)
. (10.65)

http://dx.doi.org/10.1007/978-3-319-23880-7_8
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In order to connect Δp0 with the total generation rate per unit area G tot, we
calculate

G tot =
∫ ∞

0

Δp(x)

τp
dx = Δp0 Lp

τp
= Δp0

√
Dp

τp
. (10.66)

10.13.2 Generation in the Bulk

Now, a generation rate following (9.16), realistic for photodiodes and solar cells, is
considered,

G(x) = G0 exp (−α x) , (10.67)

i.e. due to light absorption with the (wavelength-dependent) absorption coefficient
α. The total generation rate is

G tot =
∫ ∞

0
G(x) dx = G0

α
. (10.68)

The total generation rate is equal to the number of photons per second Φ0 that enter
the semiconductor.

The solution of (10.63) is the sum of the homogeneous solution (10.64) and a
particular solution that is given by

Δp(x) = C exp (−α x) . (10.69)

The constant C is determined to be

C = G0 τp

1 − α2 L2
p

. (10.70)

Therefore, the solution is

Δp(x) = C1 exp

(
− x

Lp

)
+ C2 exp

(
x

Lp

)
+ G0 τp

1 − α2 L2
p

exp (−α x) . (10.71)

Using again Δp(x → ∞) = 0 (leading to C2 = 0) and a recombination velocity
S at the front surface, i.e.

− e S Δp0 = −e Dp
∂Δp

∂x

∣∣∣∣
x=0

. (10.72)

http://dx.doi.org/10.1007/978-3-319-23880-7_9
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(a) (b)

Fig. 10.35 Excess carrier density profile (10.73) in (a) linear and (b) semi-logarithmic plot for
S = 0 and S = ∞. Other parameters are given in panel (a)

The solution is given as

Δp(x) = G0 τp

1 − α2 L2
p

[
exp (−α x) − S + α Dp

S + Dp/Lp
exp

(
− x

Lp

)]
. (10.73)

For vanishing surface recombination, S = 0, the solution is (Fig. 10.35)

Δp(x) = G0 τp

1 − α2 L2
p

[
exp (−α x) − α Lp exp

(
− x

Lp

)]
. (10.74)

For αLp � 1, (10.65) is recovered. This dependence is the excess-carrier profile if
the absorption is strong, which is a tendency for short wavelengths. The current at
the surface, j (x = 0) ∝ ∇ Δp, is zero.

In the case of very strong surface recombination, S → ∞, (10.73) becomes

Δp(x) = G0 τp

1 − α2 L2
p

[
exp (−α x) − exp

(
− x

Lp

)]
, (10.75)

with Δp(0) = 0 (Fig. 10.35). The current at the surface is (Dp τp = L2
p)

j (x = 0) = −e D
∂Δp

∂x

∣∣∣∣
x=0

= −e
G0 Lp

1 + α Lp
= −e Φ0

α Lp

1 + α Lp
. (10.76)
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Chapter 11
Surfaces

Gott schuf das Volumen, der Teufel die Oberfläche.
God created the bulk; surfaces were made by the devil.

attributed to W. Pauli

Abstract The specifics of semiconductors surfaces, their symmetry, equilibrium
crystal shape, reconstructions, steps and faceting are summarized, being important
for epitaxy. Physical surface properties such as vibrational and electronic states are
discussed.

11.1 Introduction

Obviously every crystal has a surface all around it, connecting it to the surrounding
world. This represents a brutal perturbation of the bulk periodicity with the conse-
quence of a whole newworld of physics at the surface. With regard to semiconductor
technology, the surface properties are of large importance in a number of instances:

• The crystal growth of semiconductors always occurs at a surface. This subject will
be discussed in Chap.12.

• The surface is subject to interaction with the chemistry of the surrounding
atmosphere. This is of essential importance for catalysis, e.g. oxidation of CO
at noble metals or photocatalytic water splitting, e.g. using TiO2, into oxygen and
hydrogen [921, 922]. Photocatalysis is briefly discussed in Sect. 22.1. The interac-
tion and reaction with the surrounding atmosphere can lead modifications of the
semiconductor such as change of conductivity, e.g. in SnO2, which can be used in
the construction of gas detectors [923–925].

• Surface passivation and barriers, e.g. using photoresist, silicon oxides or nitrides,
are often necessary in practical devices in order to avoid surface recombination
(Sect. 10.12.1) or the interaction with atmospheric oxygen or water.

But surface physics is interesting in its own right, investigating the properties
of a complex mostly two-dimensional system. ‘Pure’ surfaces are studied using

© Springer International Publishing Switzerland 2016
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
DOI 10.1007/978-3-319-23880-7_11
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crystals cleaved in ultra-high vacuumor carefully prepared atomically clean surfaces.
A special case are two-dimensional materials, also termed atomic sheets, such as
graphene; these will be discussed in Sect. 18.1.

At the surface the atoms rearrange, compared to their bulk positions, vertically
and laterally, also forming new bonds (surface reconstructions). The mechanical
properties (surface phonons) and electronic properties (surface states) are different
from the bulk modes. Detailed treatments of surface physics and its experimental
methods can be found in [617, 926–928].

11.2 Surface Crystallography

The surface symmetry, i.e. the two-dimensional spatial periodicity of the constituent
atoms, is described with the ten two-dimensional point groups (Table B.1). The
point symmetries are 1-, 2-, 3-, 4-, and 6-fold rotational symmetry (Fig. 3.4) with or
without mirror plane(s). The two-dimensional point symmetries of popular substrate
orientations are compiled in Table11.1; the different symmetry of the first layer
and the half-space are notable. The combination of five 2D Bravais lattices (cmp.
Sect. 3.3.4) with the 10 2Dpoint groups leads to the 17 two-dimensional space groups
(wallpaper groups) [929].

For the treatment of surface in reciprocal space, the three-dimensional k-vector
is split into the two-dimensional component k|| parallel and the one-dimensional
component k⊥ perpendicular to the surface,

k = k|| + k⊥. (11.1)

The three most important Brillouin zones in two-dimensional k-space are depicted
in Fig. 11.1. Often the special points of the 2D Brillouin zones are denoted with a
bar over the letter.

Table 11.1 Two-dimensional
point symmetries of common
substrates with ideal
low-index surfaces

Crystal Surface 1st layer 1st & 2nd layers Half space

Rocksalt (001) 4mm 4mm 4mm

(110) 2mm 2mm 2mm

(111) 6mm 3m 3m

Diamond (001) 4mm 2mm 2mm

(110) 2mm 2mm 2mm

(111) 6mm 3m 3m

Zincblende (001) 4mm 2mm 2mm

(110) 1m 1m 1m

(111) 6mm 3m 3m

Wurtzite (00.1) 6mm 3m 3m

(10.1) 2mm 2mm 1m

(11.0) 2mm 2mm 1m

http://dx.doi.org/10.1007/978-3-319-23880-7_18
http://dx.doi.org/10.1007/978-3-319-23880-7_3
http://dx.doi.org/10.1007/978-3-319-23880-7_3
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Fig. 11.1 Two-dimensional
Brillouin zones for (a)
square, (b) rectangular and
(c) hexagonal surface
symmetry. Special points are
labelled and the grey areas
indicate the smallest
irreducible area

MJ'
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11.3 Surface Energy

The surface energy, more precisely the surface energy per area γ, is related to the
work that is necessary to split a crystal in two parts. Such process will leave broken
(‘dangling’) bonds. This energy will depend on the crystal orientation as is already
clear from the fact that there are easy cleaving planes (Sect. 5.4.2). The surface energy
will also depend on the surface reconstruction (see Sect. 11.4), i.e. the rearrangement
of surface bonds and atoms. Generally, the reduction of the number of dangling bonds
on a surface lowers its energy, while the distortion of bonds increases its energy.

Table 11.2 Surface energy (in J/m2) for various C, Si and Ge surfaces

Material {111} {110} {100} {311}
C 8.12 7.48 9.72 8.34

Si 1.82 2.04 2.39 2.12

Ge 1.32 1.51 1.71 1.61

Data from [930]
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Fig. 11.2 (a) Equilibrium crystal shape (cross section in 〈110〉 azimuth) of 1.06µm diameter Si
bulb at T = 1323K with facet orientations as labelled. (b) Anisotropy of surface energy (relative
to γ(111)) for Si, the dashed line is guide to the eyes. Adapted from [931]

http://dx.doi.org/10.1007/978-3-319-23880-7_5
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The anisotropy of the surface energy for a given orientation hkl, γ(hkl), deter-
mines the equilibrium crystal shape (ECS) at a given temperature (below melting
temperature). The crystallite is assumed to be of at least mesoscopic size such that
energy effects due to edges and apexes can be neglected compared to the surface
energy terms. As an example theoretically calculated surface energy values for cova-
lent semiconductors are listed in Table11.2. The equilibrium shape of silicon has
been observed for µm-sized bulbs as shown in Fig. 11.2a for T = 1323 K ; the
experimental anisotropy of surface energy of silicon is shown in Fig. 11.2b.

11.4 Surface Reconstruction

When in a Gedankenexperiment the bulk crystal is split such that a surface with
defined orientation develops, many bonds are cut. These dangling bonds can be sat-
urated with other atoms such as hydrogen. In particular under vacuum conditions,
the dangling bonds will rearrange and form new bonds such as dimers along the sur-
face, lowering the total energy. This surface reconstruction displays two-dimensional
periodicity of a surface unit cell.

Since the forces from the split-away half-space aremissing, the atomic planes will
rearrange vertically1 and the surface-near layers will exhibit slightly different lattice
spacing than in bulk. In [932] the surface reconstructions ofmany semiconductors are
reviewed. In Fig. 11.3a the rearrangement of surface atoms on GaAs(110) is depicted
as an example. The anion is moved up, the cation moved down, preserving the bond
length, rotating the bond by about γ = 30◦ for various III–V semiconductors [933]
(Fig. 11.3b). The height difference of the top anion and cationΔ1 scales with the bulk
lattice constant (Fig. 11.3c). The details are specific to materials and orientations.

Different reconstructions occur for different thermodynamical conditions, some
of them being metastable, as depicted for GaAs(100) in Fig. 11.4. Several differ-
ent surface reconstructions can also be present simultaneously at a surface within
different domains.

The stable reconstruction of the Si(111) surface is the somewhat complicated 7×7
reconstruction which is schematically depicted in Fig.11.5a as proposed in [936]
(‘DAS’ dimer-adatom-stacking fault model). A STM image of this surface has been
reported first in [937] and is depicted in Fig. 11.5b. Details of this surface are also
recently a subject of interest [938].

1Typically the distance between the first and second layer is reduced, and the distance between the
second and third layer a little bit increased.
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(a)
Ga As

ideal reconstructed

(b)

[100]

[110]

(c)

Fig. 11.3 (a) Schematic drawing of the GaAs(110) surface after cutting bonds (‘ideal’) and actual
atomic rearrangement with asymmetric dimer in the reconstructed state. Adapted from [934]. (b)
Schematic of the III–V (110) surface relaxation red circles: anions, blue circles: cations) with bond
rotation ω and atom shift Δ. (c) Experimental values for he relaxation Δ1 as shown in panel (b) for
various semiconductors versus their bulk lattice constant a0; dashed line is straight line as guide to
the eyes. Data from [933]
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Fig. 11.4 (a) Various reconstructions of the GaAs(100) surface. Filled (empty) circles represent
As (Ga) atoms. Atom positions in the top two atomic layers are indicated by larger symbols. (b)
The relative formation energy per (1 × 1) unit cell of various reconstructions as a function of the
Ga chemical potential. Vertical dashed lines mark the approximate anion- and cation-rich limits of
the thermodynamically allowed range of Δμ. Adapted from [935]
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(a)

[112]

[110]

[111]

1nm

(b)

Fig. 11.5 (a) Schematic drawing of the 7 × 7 reconstruction of Si(111) surface. The large grey
circles represent adatoms, the small balck circles rest atoms. Adapted from [936] (b) STM image
(empty states) of such surface. Adapted from [937]

11.5 Surface Morphology

The surface reconstruction is related to the local atomic arrangement of the surface
atoms. On larger length scales, surfaces can exhibit roughness in general and various
specificmorphologies, among them steps, step bunches, facets, hillocks or pits.When
atomically flat terraces are separated by steps of equal heights, the surface is termed
vicinal. The step height can be an atomic monolayer or more. The step edges can be
straight, smoothly curved or rugged, depending on the formation energy of kinks.
If the substrate surface is inclined by a small ‘off-cut’ angle θ with respect to a low
index plane, for a step height h the average terrace width L is given by

L = h

tan θ
≈ h

θ
. (11.2)

TheSi(001) surface (under certain conditions) exhibitsmonoatomic steps between
the A-type 1×2 and B-type 2×1 terraces [939]; clearly also the step edges between
A–B and B–A are quite different, one being much rougher than the other (Fig. 11.6).
The surface is thus a two domain surface, the symmetry of both A- and B-type
terraces being 2mm, rotated by 90◦ against each other.

A similar example is the Zn(00.1) surface. The found step height of the mono-
atomic steps is 0.27nm and corresponds c/2 [940]. The terrace width is about 12nm
(Fig. 11.7a), yielding an off-cut (11.2) of about 1.3◦. The surface pattern shows
triangular features in two orientations, rotated by 60◦. The 3m symmetry of the
surface, although the first monolayer has 6m point symmetry (Table11.1), occurs
in two domains rotated against each other by 60◦. The LEED pattern from each
individual terrace is expected to have three-fold symmetry; the mixed character of
the surface yields a six-fold pattern (Fig. 11.7b).

Steps can gather and form step buncheswith a heightmuch larger than amonolayer
(Fig. 11.8). Facetingof higher indexplanes occurswhen it is energetically favorable to
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Fig. 11.6 STM image of Si(001) surface with an off-cut θ = 0.5◦. Adapted from [939]

(a)

10nm

(b)

Fig. 11.7 (a) STM images a ZnO(00.1) O-terminated surface, left (right) panel with zero (about
1.3◦) off-cut, exhibiting monolayer step heights of 0.27nm. (a) LEED pattern of such surface
(recorded at 70eV). Adapted from [940]

Fig. 11.8 SEM image of the
surface of a 4H-SiC layer on
[00.1]-oriented substrate
with 8◦ misorientation
towards [11.0]. Adapted
from [942]

5µm
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100nm

(114) (113)

(114) (113)

10nm

Fig. 11.9 STM images of a silicon surface close to (113), 21.5◦ from (001) towards (111), i.e.
(113)-3.7◦. Adapted from [943]

form alternating facets of low energy low index planes, for example Si(223) exhibits
periodic ridges with (111) and (113) facets [941]. The faceting of a surface close to
(113), exhibiting smooth (113) and rough (114) planes, is depicted in Fig. 11.9.

11.6 Surface Physical Properties

11.6.1 Surface Phonons

As a model for surface vibrational states, the diatomic one-dimensional chain model
discussed in Sect. 5.2.2 can bemodified to allow for a different surface spring constant
Cs instead of C1 or C2. Such model can be solved numerically for finite chain length.
The bulk dispersion is found with an extra mode in the gap or above the maximum
frequency for a range of values of Cs as depicted in Fig. 11.10. When the spring
constant of the surface atom is smaller than the larger of the two spring constants C1

and C2 (in our model calculation C2 > C1), a state in the gap forms; for a surface
spring constant larger than C2, first the surface vibration lies within the optical bulk
band and then forms a state above the maximum optical frequency ωm, given by
(5.18).2

In order to display the dispersion of surface states together with the bulk band
structure, the latter is projected to the surface k||-vector: En(k) is considered as
En,k⊥(k||) = Eν(k||), where ν = n, k⊥ is a new, continuous index. In the plot of E surf

n
versus k||, for each value of k|| a range of energies reflects the bulk band structure,
as shown in Fig. 11.11 for GaAs. This concept pertains to phonon dispersion as well
as to electronic states.

2The appearance of states within the gap and above ωm resembles that of localized vibrational
modes of substitutional masses (Sect. 5.2.6).

http://dx.doi.org/10.1007/978-3-319-23880-7_5
http://dx.doi.org/10.1007/978-3-319-23880-7_5
http://dx.doi.org/10.1007/978-3-319-23880-7_5
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Fig. 11.10 One-dimensional model calculation of surface vibrational state frequency (in units of
the maximum bulk optical phonon frequency ωm) as a function of the spring constant Csurface of the
surface atom replacing C1 (blue curve) or C2 (black curves). As model parameters we use equal
masses and C2 = 2C1 (γ = 0.943 from (5.17)). The grey areas represent the energy range of the
acoustic and optical phonon bulk bands
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Fig. 11.11 Surface phonon dispersion for GaAs(110) (solid lines) with the surface projected bulk
band structure (light grey area). The symboles are experimental data from two different methods.
The dark grey areas at about 10meV indicate regions where the A1-peak is present in the calculated
scattering cross-section. Adapted from [933]

11.6.2 Surface Plasmons

Free-carrier oscillations in the bulk had been discussed in Sect. 9.8.1. A surface
plasmon is the quantum of a surface-bound plasma oscillation. Such effect has been
discussed in [944] and reviewed in [945, 946].Ametal (or conductive semiconductor)

http://dx.doi.org/10.1007/978-3-319-23880-7_5
http://dx.doi.org/10.1007/978-3-319-23880-7_9
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Fig. 11.12 Sketch of surface plasmon field distribution. Adapted from [947]

with dielectric constant according to (9.65) ε1 = εm = εr (ωp/ω)2 and a dielectric
(or vacuum) with ε2 = εd are assumed (Fig. 11.12).

The surface plasmon (polariton) (SPP) is a wave localized at the surface with
evanescent parts into the metal and the dielectric. The dispersion of the surface
plasmon (polariton) is given by

kSPP = ω

c

√
ε1 ε2

ε1 + ε2
. (11.3)

For large k, the limiting frequency is the SPP frequency (from ε1 = ε2)

ωSPP = ωp√
1 + εd/εr

< ωp, (11.4)

which is smaller than the plasma frequency. For a metal against vacuum, ωSPP =
ωp/

√
2. The SPP dispersion for a ZnO:Ga/air interface is depicted in Fig. 11.13 for

three different doping concentrations.

Fig. 11.13 Surface plasmon
polariton dispersion for
ZnO:Ga/air for three
different carrier
concentrations as labelled,
experimental data (symbols)
and theory (lines). Adapted
from [948]
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11.6.3 Electronic Surface States

The bulk band structure is given by the energy eigenvalues En(k). The surface adds
its own states E surf

n (k||), many of them in the gap. The calculation of gap states has
been already briefly discussed in Sect. 6.2.3. The nature of bulk states is oscillatory in
the bulk and exponentially decaying in the outside (Fig. 11.14a), the nature of surface
states is localized at the surface and decaying both towards the bulk and the outside
(Fig. 11.14b). A third type of states is a surface resonance which is oscillatory in the
bulk and has enhanced probability at the surface, of course also decaying towards
the outside (Fig. 11.14c); such states are surface related but energetically degenerate
with states of the bulk band structure.

Surface states for Si(100) in 2 × 1 reconstruction are shown in Fig. 11.15. The
surface bands arise from (filled and unfilled) π- and π∗-orbitals from the dangling
bonds on the threefold-coordinated surface atoms [949]. A calculation for the ideal
(unreconstructed) (100), (110) and (111) surfaces of Si, Ge andGaAs can be found in
[950]. Further work on silicon surface states (clean and with adsorbates) is compiled
in [951].

For a conventional insulating material (with gap) the states of conduction and
valence band have defined s- and p-type symmetry (cmp. Fig. 2.5) and the surface
states can be populated with spin up and down electrons as is schematically drawn in
Fig. 11.16a. Such ‘normal’ surface states are thus not spin-polarized. This has been
shown, e.g., for the well-known surface states of Si(111)-(7 × 7) [952] in [953].

In a so-called topological insulator [954], a band inversion is present. InHgTe-like
materials, s- and p-type bands are inverted at theΓ point (cmp. Sect. 6.9.4). In layered

Fig. 11.14 Schematic
wavefunction versus
coordinate for (a) bulk state
in the vicinity of the surface
(its position indicated by the
vertical dashed line), (b)
surface state and (c) surface
resonance state

(a)

(b)

(c)

http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_2
http://dx.doi.org/10.1007/978-3-319-23880-7_6


396 11 Surfaces

2.0

1.0

0

-1.0

E
ne

rg
y 

(e
V

)

J M J‘

Si(100)-(2 1)

Surface wave vector
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Fig. 11.16 (a) ‘Normal’ band structure with surface states, the valence band states are antisymmet-
ric (‘−’) from p-states, the conduction band states are symmetric (‘+’) from s-states. The arrows
denote the electron spin orientation of the states. (b) ‘Topological’ band structure with surface states
crossing the gap and electrons in the two surface states having unique spin orientations

(orthorhombic) Bi2Se3-like tri-chalcogenide materials two pz-orbitals with opposite
parity are inverted at the Γ point. Reasons for the band inversion are spin-orbit
interaction but also scalar relativistic effects and lattice distortions [955]. The spin-
orbit interaction is responsible for opening a gap; the associated surface states cross
the band gap (Fig. 11.16b) and are spin-polarized (Fig. 11.16c) [956, 957]. A review
of various systems is given in [958]. Charge transport in such spin-polarized surface
states suffers no scattering (thus these states are called ‘topologically protected’)
unless by a center that breaks time reversal symmetry (magnetic impurity). The
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Fig. 11.18 (a)Angle-resolved photoemission spectra fromBi2Se3 (111) surface along twodifferent
k-space directions. The Fermi level is at energy zero. The blue dashed line indicates the angular
scan displayed in panel (b). (b) Spin-polarized momentum distribution curve at a binding energy
of −140meV, measured along the ky-direction. Adapted from [960]

more or less linear dispersion of these states forms a ‘Dirac cone’ (cmp. Sect. 18.1.2
for the band structure of graphene with six Dirac cones).

Topological surface (or interface) states have been observed in various systems
[958]. As an example we show data on bulk Bi2Se3 [959] for which the surface
states are found to cross the band gap (Figs. 11.17 and 11.18a) and spin-polarized
measurements (Fig. 11.18b) show a strong spin polarization (about 50%) of the two
branches.

http://dx.doi.org/10.1007/978-3-319-23880-7_18


Chapter 12
Heterostructures

The interface is the device.
H. Kroemer [961]

Abstract Heterostructures are the most important basis for modern devices and
are covered regarding various aspects including heteroepitaxy on planar and pat-
terned substrates, surfactants, heterostructure band lineup as well as energy levels
and recombination in planar confined systems (quantum wells and two-dimensional
electron gases).

12.1 Introduction

Heterostructures consist of (at least two) different materials. The geometry of the
interfaces between the two materials can be complicated. The simplest case is a
planar interface, i.e. a layered system. A metal–semiconductor junction is generally
a heterostructure. However, we will use the term mostly for structures of various
semiconductors. Most of the heterostructures discussed here are epitaxial, i.e. fabri-
cated by the successive epitaxy of the various layers on a substrate. Another method
to fabricate heterostructures of different (and dissimilar) materials is wafer bonding
that is briefly discussed in Sect. 12.6.

Many modern semiconductor devices rely on heterostructures, such as the heter-
obipolar transistor (HBT), the high electron mobility transistor (HEMT), lasers and
nowadays also light-emitting diodes. Shockley had already considered heterostruc-
tures in his 1951 patent for pn-junctions. For the development and the realization
of heterostructures H. Kroemer and Zh.I. Alferov were awarded the 2000 Physics
Nobel Prize. The properties of charge carriers in layers that are part of heterostruc-
tures can be quite different from those in bulk material, e.g. extremely high mobility,
high radiative recombination efficiency or novel states of matter, as revealed in the
quantum Hall effects.

© Springer International Publishing Switzerland 2016
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
DOI 10.1007/978-3-319-23880-7_12
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400 12 Heterostructures

12.2 Heteroepitaxy

12.2.1 Growth Methods

Since the thickness of layers in the active part of heterostructures has to be con-
trolled to monolayer precision and the thickness of layers can go down to the single
monolayer range, special growth methods have been developed [962–964]. Among
these molecular beam epitaxy (MBE [965]), chemical vapor deposition (CVD [966,
967]) and metalorganic vapor phase epitaxy (MOVPE [968]) are the most common
for Si, Ge, III–V and II–VI semiconductors. In particular, oxide semiconductors are
also fabricated with pulsed laser deposition (PLD [969]). Liquid phase epitaxy (LPE
[970]) used to be very important for the fabrication of LEDs but has lost its role
largely to MOVPE.

MBE is performed in an ultrahigh vacuum (UHV) chamber, pumped by getter
pumps and cryo-shrouds. The source materials are evaporated from effusion cells
and directed towards the heated substrate. If the sourcematerials are supplied as a gas
stream, the method is called gas-sourceMBE (GSMBE). If metalorganic compounds
are used as precursors, the method is denoted as MOMBE. The atoms impinge on
the substrate with thermal energy and are first physisorbed. After diffusion on the
surface they either desorbor they are chemisorbed, i.e. incorporated into the crystal. In
order to obtain high spatial homogeneity of material properties such as composition,
thickness and doping, the substrate is rotated during deposition.

During CVD and MOVPE the heated substrate is in a gaseous environment. The
transport gas is typically H2, N2 or O2. Precursor materials are hydrides such as
silane, germane, arsine or phosphine (SiH4, GeH4, AsH3, PH3) and (for MOVPE)
metalorganic compounds, such as, e.g. trimethylgallium (TMG). Due to the toxicity
of the hydrides, alternative, i.e. less-toxic and less-volatile compounds are used, such
as TBAs ((CH3)3CAsH2). The crystal growth occurs after pyrolysis and catalysis of
the compounds close to or on the substrate surface. All remaining C and H atoms
(and whatever else that is not incorporated into the crystal) leave the reactor and are
neutralized and stopped in a scrubber.

In-situmonitoring is of importance to obtain information about the growth process
while it is underway. Using the information in a feedback loop it is possible to achieve
in-situ control of the process, e.g. for precise determination of growth rates or layer
thickness. Techniques are RHEED (reflection high-energy electron diffraction) [971]
(only for UHV systems) and RAS (reflection anisotropy spectroscopy) [972, 973].

12.2.2 Substrates

Thin-film epitaxy is mostly performed on wafers, i.e. thin circular slices of substrate
material. The most common substrate materials are Si (currently up to 400mm diam-
eter [974, 975]), Ge (also up to 300mm [976]), GaAs (up to 6 inch), InP (up to 4 inch)
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and sapphire (up to 6 inch). Typical wafer thickness is 300–500µm. Also, very thin,
flexible Si wafers (8–10µm) have been developed [977]. A wafer is cut from a large
single cylindrical crystal that is fabricated with suitable growth techniques such as
Czochralski (CZ) growth (1918)modified byTeal and Little [978, 979]. In CZ growth
the crystal is pulled from a seed crystal out of a melt of previously polycrystalline,
pure or dopedmaterial. All dislocations stop in the narrow neck between the seed and
the main body of the cylinder. The diameter of the crystal is controlled by the pulling
rate and the heating power. For the growth of III–V compound semiconductors liquid
encapsulated CZ (LEC) growth has been developed to counteract the high volatility
of the growth-V component. During LEC growth themelt is completely covered with
molten boric oxide (B2O3). The keys to optimization of the crystal growth process
are numerical modeling and computer control. In Fig. 12.1a,c a large CZ silicon
crystal and a smaller LEC GaAs crystal (boule) are shown. Over time wafer size and
ingot mass have increased remarkably (Fig. 12.1b). For details on other important
fabrication methods for bulk crystals, including float-zone (FZ [980]) or vertical gra-
dient freeze (VGF), we refer to the literature [981]. Significant expertise is necessary
for cutting, grinding and polishing (lapping) wafers for epitaxy.

For semiconductors, the wafer is marked with flats to indicate orientation and
doping. In Fig. 12.2 the standard flats are shown for (100)- and (111)-oriented
material. The primary (major) flat (OF, orientation flat) defines the crystallographic

(a)

(c)

(b)

Fig. 12.1 (a) Silicon single crystal for 300-mm diameter wafers after opening of the crucible. From
[982] with permission. (b) Historic development (first year of larger production) of silicon wafer
diameter and ingot mass. Data from [975]. (c) GaAs single crystal (boule) for 4-inch wafers and
some cut and polished wafers
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S

PP

S

PP
S

Fig. 12.2 Schematic semiconductor wafer geometry for various orientations and doping with the
primary (P) and secondary (S) flats indicated

(a)

(b) (c)

Fig. 12.3 (a) AFM images of an as-received ZnO wafer, exhibiting small terraces and nm deep
scratches from polishing. (b, c) TwoZnO (0001̄) wafers with vicinal surfaces after thermal treatment
(1000 ◦C for 2h in O2), exhibiting atomically flat terraces with c/2 monoatomic step heights. Two
different substrates with different off-cut (misorientation direction and angle) are shown. Adapted
from [990]

orientation1 is longer than the secondary (minor) flat which defines the conductivity
type (IF, identification flat). For a 4-inch (100mm) diameter wafer the OF is 32 and
the IF 12mm long. The front surface, on which the epitaxy is performed, typically
undergoes an elaborate cleaning and polishing process. Silicon processes [981, 984]
are based on the RCA cleaning procedure [985] and the related Shiraki etch [986] and
can achieve clean, atomically flat surfaces [987]. III-V semiconductors are typically
prepared using a polishing etch [988, 989], often solutions containing bromine. It is
possible to create compound semiconductor surfaces that exhibit large, essentially
monoatomically flat terraces between individual surface steps. Polishing or other
surface damage can also be removed prior to epitaxy with thermal (Fig. 12.3) or ion
beam treatments.

1In the ‘US’ flat definition, the primary flat is the (011̄) surface, in the ‘EJ’ definition, the primary
flat is (01̄1̄).
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(a)

(b)

Fig. 12.4 Cross-sectional TEM of MBE-grown AlxGa1−xAs/GaAs heterostructures for (a) x =
0.41 and (b) x = 1.0.Using anAlAs/GaAs superlattice an excellent flattening of substrate roughness
is achieved. From [991]

One prerequisite for making high-quality heterostructures with thin layers is a flat
surface. Even if the polished substrate is not perfect, flat interfaces can be achieved
with the growth of appropriate superlattice buffer layers (Fig. 12.4). Roughness can
exist on all length scales and is typically investigated using atomic force microscopy
scans.

High throughput demands and the advent ofmulti-wafer reactorsmakeprior clean-
ing and etching procedures tedious. For this purpose, substrates for well-developed
material systems are offered ‘epiready’. Epiready wafers are often covered with
a very thin protective film that can be released using a thermal treatment at or
below typical growth temperature in the growth reactor immediately prior to epitaxy.
The protective film separates the polished semiconductor wafer from the ambient.
Examples are a few monolayers of arsenic on GaAs or two monolayers GaN on SiC.
However, the suitability of a purchased substrate may depend on the duration and
conditions of its storage.

A special case is the use of curved substrates which allow the study of growth on
different crystal orientations in a continuous fashion. Such experiments have been
performed using cylindrical substrates [992] and hemispherical crystals. For the latter
homoepitaxy has been reported for Si [993, 994], SiC [995] or GaAs [996]. Also
heteroepitaxy has been investigated, for example for GaP and GaAs on Ge [997]
(cmp. Fig. 12.12). Using such curved substrates, the growth rate can be determined
as a function of crystal orientation as shown for GaAs (on GaAs) in Fig. 12.5; large
differences are found for (111)A and (111)B surfaces. For growth of silicon the
variations with angle are much smaller in the range of 10% [992].

12.2.3 Growth Modes

The growth of a material A on a material B can occur via three fundamental
growth modes (Fig. 12.6), the layer-by-layer or Frank-van der Merwe (FvdM)
growth mode [384], the island or Volmer-Weber (VW) growth mode [998] and the
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(a) (b) (c)

Fig. 12.6 Schematic of the three different fundamental epitaxial growth modes

Stranski-Krastanow (SK) growth mode [999]. In [999] the possibility of island
formation on an initially flat heteroepitaxial surface was proposed for the growth
of lattice-matched ionic crystals that have different charges. The term SK growth is
now typically used in lattice-mismatched heteroepitaxy for the island formation (and
related relaxation of strain energy, cmp. Fig. 14.26) on an initially two-dimensional
layer (wetting layer).2 Also growth of islands relaxed by misfit dislocations in
strained heteroepitaxy has been termed SK growth [1000].

The growth mode is determined by the relation of the free energies (per area)
of the surface σs, interface σi and film σf . Wetting of the substrate and growth of a
coherent film (FvdM-growth) occurs for

σs > σi + σf . (12.1)

If the inequality has the opposite sign, Volmer-Weber or Stranski-Krastanow growth
occurs. Additionally the strain energy of the filmmust be considered. The SK growth

2This is the growth mode of self-assembled epitaxial quantum dots as discussed in Sect. 14.3.3.

http://dx.doi.org/10.1007/978-3-319-23880-7_14
http://dx.doi.org/10.1007/978-3-319-23880-7_14
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Fig. 12.7 HRTEM cross
section of the interface
region of MOVPE grown
hexagonal AlN on 6H-SiC
substrate. Adapted from
[1004]

2H-AlN

6H-SiC

1nm

generally occurs when there is wetting of the substrate but layer strain is unfavorable
and leads to islanding.

Layer-by-layer growth typically involves nucleation of two-dimensional islands
and ‘filling’ of the remaining monolayer before the next one is started. Another
growth mode resulting in smooth epitaxial layers is step-flow growth where adatoms
are incorporated mainly at step edges. A more detailed discussion can be found in
[1001]. Further details on crystal growth can be found in [1002].

The nucleation and the initial film growth are important and determine the film
quality. Several techniques have been developed to overcome common problems. A
typical strategy is the growth of a low-temperature nucleation layer.

12.2.4 Heterosubstrates

If homosubstrates are not available or very expensive, semiconductors are grown on
dissimilar substrates, e.g. (Al,Ga)NandZnOon sapphire (Al2O3) or SiC.3 InFig. 12.7
the interface region of hexagonal AlN on 6H-SiC (cmp. Fig. 3.28b) is shown. The
change of crystallographic phase is obvious; the perfect atomic arrangement justifies
the term ‘epitaxy’, literally meaning ‘order on top’.

In many cases, the integration of III–V- or II–VI-based semiconductors for opto-
electronic applications on silicon for electronic devices is desirable, such as GaAs/Si,
InP/Si, GaN/Si or the growth on economic substrates is attractive such as GaN/Al2O3

and ZnO/Al2O3. For all such combinations the epitaxial relationship, i.e. the align-
ment of the crystallographic directions of both materials, which can have different
space groups, has to be considered. Some examples for epitaxial relationships are
given in Table 12.1. The epitaxial relation is determined by the energetically favorite
formation of the interface and the early stages of growth.

3For ZnO, homosubstrates have recently been produced with 3-inch diameter [1003].

http://dx.doi.org/10.1007/978-3-319-23880-7_3
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Table 12.1 Epitaxial relationship for various film/substrate combinations, ZnO (or GaN) on c-, a-
and r -sapphire and Si(111)

ZnO Al2O3 ZnO Al2O3 ZnO Al2O3 ZnO/GaN Si

[00.1] [11.0] [ ¯10.2] [111]
[00.1] [00.1] [00.1] [11.0] [11.0] [ ¯10.2] [00.1] [111]
[11.0] [01.0] [11.0] [00.1] [00.1] [0 ¯1.1] –/ [2 ¯1.0] [ ¯110]

Fig. 12.8 X-ray diffraction
intensity from the
asymmetric ZnO (10.4)
(upper panel) and the
sapphire (10.10) (lower
panel) reflections as a
function of the azimuthal
sample orientation (rotation
angle φ around the [00.1]
axis). The peaks appear at
different tilt angles ω due to
an overall tilt of the mounted
sample (dashed sinusoidal
lines). The ZnO [00.1] axis
is not tilted with respect to
the sapphire [00.1] direction
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In Fig. 12.8, X-ray diffraction data are shown from a ZnO layer on c-oriented
sapphire. The hexagonal ZnO lattice is rotated by 30◦ with respect to the trigonal
sapphire lattice. In the case of growth of ZnO on Si(111) an amorphous SiO2 layer
can form at the interface such that the crystallographic information of the substrate
is lost. The ZnO grains exhibit random in-plane orientation (Fig. 12.9).

If substrate and epilayer have different space groups, the formation of domains
can occur [1006]. The two-dimensional symmetries of various substrates are listed in
Table 11.1.Thegroup theoreticalminimumnumber of domains NRD in dependenceof
the two-dimensional symmetries of substrate and epilayerwith rotational symmetries
Cn and Cm , respectively, is given by [1007]

NRD = lcm(n, m)

m
, (12.2)

http://dx.doi.org/10.1007/978-3-319-23880-7_11
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(a)

(b)

(c)

Fig. 12.9 (a) Plan-view TEM image (inset: electron diffraction diagram averaged over several
grains) of ZnO on Si(111).(b) Cross-sectional TEM of the same sample. (c)High-resolution cross-
sectional image of the ZnO/SiO2/Si interface region. Adapted from [1005]

where lcm denotes the least common multiple. The values are listed in Table 12.2
and visualized in Fig. 12.10.

If the main symmetry axes of substrate and epilayer are not aligned, mirror
domains appear. An example is the growth of GaN(00.1) on Ge(111), for which
it has been reported that the major symmetry directions do not align exactly. There
is a 4◦ in-plane rotation of the lattices with respect to the usual [11.0] ‖ [11̄0] in-
plane relationship [1008] (cmp. the exact alignment for GaN/Si(111) in Table 12.1).
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Table 12.2 Number of rotational (or mirror) domains NRD for all 2D point groups of substrate
(GS) (rows) and epilayer (G E ) (columns). When two numbers are given (x |y), the first (second)
number represents the number of domains if mirror symmetry planes of substrate and epilayer align
(misalign).

GS\G E 1 m 2 2mm 3 3m 4 4mm 6 6mm

1 1 1 1 1 1 1 1 1 1 1

m 2 1|2 2 1|2 2 1|2 2 1|2 2 1|2
2 2 2 1 1 2 2 1 1 1 1

2mm 4 2|4 2 1|2 4 2|4 2 1|2 2 1|2
3 3 3 3 3 1 1 3 3 1 1

3m 6 3|6 6 3|6 2 1|2 6 3|6 2 1|2
4 4 4 2 2 4 4 1 1 2 2

4mm 8 4|8 4 2|4 8 4|8 2 1|2 4 2|4
6 6 6 3 3 2 2 3 3 1 1

6mm 12 6|12 6 3|6 4 2|4 6 3|6 2 1|2

Fig. 12.10 Visualization of
the minimum number of
rotational domains for
different substrate and
epilayer symmetries
according to Table 12.2

sub
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Due to 3m mirror symmetry of the substrate, the misaligment is equivalent for
clockwise and counter-clockwise rotation. Therefore two domains with an angle of
8◦ occur (Fig. 12.11).

Another well-known domain effect in heteroepitaxy is the occurrence of antiphase
domains of zincblende semiconductors (e.g. GaAs, GaP, InP,...) grown on Si(001)
withmonoatomic steps; such surface actually exhibits two kind of terraces (1 × 2 and
2 × 1 reconstructions) and is thus itself not homogeneous. The formation of antiphase
domains can be avoided by using an off-cut of the surface against the (001)-planes
promoting double-atomic steps [1009]. In Fig. 12.12a the growth of GaP on a Ge
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Fig. 12.11 X-ray diffraction
φ-scans of
GaN(00.1)/Ge(111).
Adapted from [1008]
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hemisphere with [111]-pole is depicted; spherical triangles meeting at the 〈100〉
poles can be seen. In a similar experiment GaAs was grown in a spherical depression
in Ge(001) (Fig. 12.12b), allowing a more detailed look at the [001]-pole. Close
to the it, within an approximately square area, antiphase domains (cmp. Sect. 4.4.4)
form.Along the connection lines between different 〈001〉-poles, an antiphase domain
boundary forms, microscopically broken up into domains [997].

Details of the initial deposition steps can determine the orientation in polar mate-
rials. GaN directly grown on c-Al2O3 grows with N-face orientation (see Fig. 3.19).
The high surface mobility of Ga allows nitrogen to take its preferred position in the
first atomic layer. Even under Ga-rich conditions the N atoms can kick-off the Ga
from its favorite site on the surface. If an AlN buffer is used the strong bond between
Al and oxygen leads to an Al atomic layer at the interface and subsequent GaN grows
with a Ga-face [1010].

2mm
10µm

(a) (b)

Fig. 12.12 The morphology of (a) GaP grown on a Ge hemisphere with [111]-pole and (b) GaAs
grown in a Ge(001) spherical depression. Adapted from [997]

http://dx.doi.org/10.1007/978-3-319-23880-7_4
http://dx.doi.org/10.1007/978-3-319-23880-7_3
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12.2.5 Patterned Substrates

Using patterning of the substrate certain growth modes and crystallographic direc-
tions of the growth front can be evoked.

Returning to the discussion of [00.1] or [00.1̄] growth of wurtzites, on a sapphire
substratewith lateralAlNpatterns, laterally orientation-modulatedGaNcanbegrown
(Fig. 12.13). At the juncture of the phases an inversion domain boundary forms
[1011].

The defect density can be reduced in parts of the structure using epitaxial lateral
overgrowth (ELO) [1013]. The defects thread only from the limited contact area of
the layer with the substrate and the part of the layer away from the mask (‘wing’) is
free of defects (Fig. 12.14).

While the patterning of a mask may be cumbersome and require interruption
of growth, the in-situ deposition of a random SiN mask with small holes has been
found beneficial in the epitaxy of GaN [1014]. GaN islands nucleate selectively
in the mask openings (Fig. 12.15a). The nucleation and subsequent coalescence of
islands (Fig. 12.15b) leads to defect annihilation and eventually again to a flat film
(Fig. 12.15c). The reduction of defect density is evident (Fig. 12.15d) and leads to
improved optical properties [1015].

(a) (c)

(d)(b)

Fig. 12.13 Side view of the heterointerfaces between AlN and c-oriented sapphire with nitrogen
(a) and Al (b) being the first layer. Adapted from [1010]. (c) Phase image of piezoresponse force
microscopy (PFM) of lateral polarity GaN heterostructure and (d) linescan of phase signal along
white line in part (c). Adapted from [1012], part (c) reprinted with permission, © 2002 AIP



12.2 Heteroepitaxy 411

Fig. 12.14 SEMcross-sectional imageofGaNgrownona structuredSi(111) substrate. The laterally
grown wings extend about 2.5µm over the grooves. The thickness of the GaN layer is 0.5µm on
the bottom of the grooves, while it is 1.4µm on top of the ridges. Reprinted with permission from
[1013], © 2001 AIP

GaN

sapphire

GaN

SiN mask

(a) (b) (c)

(d)

Fig. 12.15 SEM images of GaN (a) growing through the openings of a random SiN mask, (b)
laterally overgrowing the mask and coalescing and (c) eventually forming a flat film. Bar widths
are 2, 1 and 10µm. (d) Cross-section TEM image. Adapted from [1014]

Using patterned substrates with stripe-like mesas and promoting the growth on
a sidewall of the mesa, the direction of GaN growth front can be steered into a
semipolar direction (cmp. Sect. 15.4.3). The r-plane sapphire substrate with etched
mesa stripes oriented along the [11.0] direction exposes [00.1]-oriented sidewall
facets on which the GaN grows along its c-axis; The angle of 57.6◦ between the
r- and the c-planes of sapphire is very close to the angle (3.21c) of 58.4◦ between
the GaN semipolar (11.2) and the (00.1) plane. The flat growth front represents a

http://dx.doi.org/10.1007/978-3-319-23880-7_15
http://dx.doi.org/10.1007/978-3-319-23880-7_3
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Fig. 12.16 SEM
cross-sectional image of
MOVPE GaN grown on
patterned r-sapphire
exposing a (11.2) growth
front. Based on SEM image
courtesy of F. Tendille

r-Al O2 3

GaN

A [11.0]

C [00.1]
R [11.2]

M [11.0]

C [00.1]
[11.2]

[11.3]

1 µm

(11.2) facet [1016] (Fig. 12.16). After coalescence of grains from various mesas, a
flat (11.2) surface arises, allowing the reduction of various defects including basal
stacking faults [1017, 1018].

12.2.6 Pseudomorphic Structures

Heterostructures can generally be made from any sequence of materials. However
a mismatch in lattice constant (or a different crystal structure) leads to strains
and stresses that are of the order of 103 atmos for strains of 1% (σ ∼ Cε,
C ≈ 5 × 1010 Pa) as discussed in Sect. 5.3.3. The total strain energy is∝ Cε2. Above
a critical thickness hc ∝ ε−1 (cf. Sect. 5.4.1) defects, e.g. misfit dislocations (relaxing
strain with their edge components), are generated (Sect. 12.2.7). There are a number
of semiconductor combinations that are lattice matched and thus can be grown with
arbitrary thickness. AlxGa1−xAs is closely lattice matched to GaAs for all Al con-
centrations. See Fig. 6.21 for lattice-matched pairs, e.g. In0.53Ga0.47As/InP. Often,
thin layers of lattice-mismatched materials with thickness smaller than the critical
thickness are used.

For many device applications the ability to grow pseudomorphic layers thicker
than the critical layer thickness would be beneficial. The use of compliant substrates
was proposed in [1019] to meet this demand. A recent review on compliant sub-
strate technologies can be found in [393]. Schemes to accommodate part of the
mismatch strain in the substrate include the use of cantilevered membranes, silicon-
on-insulator, twist bonding, glass bonding or trenched substrates. In this sense also
nanowhiskers (Sect. 14.2.3) represent a compliant substrate, enabling the growth of
coherent (laterally confined) layers thicker than the critical thickness of a 2D layer
(cmp. Fig. 14.9).

http://dx.doi.org/10.1007/978-3-319-23880-7_5
http://dx.doi.org/10.1007/978-3-319-23880-7_5
http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_14
http://dx.doi.org/10.1007/978-3-319-23880-7_14
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12.2.7 Plastic Relaxation

Above the critical thickness, a film will relax plastically by forming misfit disloca-
tions. The cross-hatch pattern at the surface due to misfit dislocations is shown in
Fig. 12.17. ATEM image of an array ofmisfit dislocations can be found in Fig. 5.33b.

The strain relaxation in mismatched heteroepitaxy can be determined experimen-
tally via thewafer curvature of the heterostructure (Sect. 5.3.5). Data for the thickness
dependent relaxation ε(d) of In0.15Ga0.85As on GaAs (mismatch ≈1%) are shown in
Fig. 12.18. Growth interruptions lead to larger relaxation at smaller thickness. There-
fore relaxation at early times or small thickness (above hc) is kinetically hindered,
i.e., the available dislocation density and glide velocity are not sufficient to relieve
the strain. At large thickness the strain does not go to zero (saturation regime) and
the film remains in a metastable, incompletely relaxed state as discussed in more
detail in [1020].

An extreme case of plastic relaxation is cracking (Sect. 4.4.1) which can occur for
example in thick films during cooling due to the mismatch of the thermal expansion
coefficients of substrate and epilayer (Fig. 12.19). Such cracking can be avoided by
the introduction of suitable stress-relaxing layers and growth on predefined mesas
[1021, 1022].

Fig. 12.17 Optical image of
the surface of a supercritical,
plastically relaxed
InxGa1−xAs film on GaAs.
Image width is about 1mm.
The cross-hatch pattern is
due to misfit dislocations
along [110] and [11̄0]. A
pseudomorphic layer would
exhibit no contrast under the
given conditions

http://dx.doi.org/10.1007/978-3-319-23880-7_5
http://dx.doi.org/10.1007/978-3-319-23880-7_5
http://dx.doi.org/10.1007/978-3-319-23880-7_4
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Fig. 12.18 Average film strain (measured in-situ via substrate curvature) of In0.15Ga0.85As/GaAs
grown at 450◦C as a function of film thickness (determined from growth time × deposition rate).
Relaxation for three different growthmodes are shown (as labeled): continuous growth, employment
of several growth interruptions (GRI) and GRI with annealing step (to 550◦). Adapted from [1020]

Fig. 12.19 1 × 1 mm2 top
view with a differential
interference contrast
microscope of a 1.3-µm
thick GaN layer grown on
Si(111). Reproduced with
permission from [1021],
© 2000 IPAP

12.2.8 Surfactants

The condition (12.1) allows layer-by-layer growth (cf. Sect. 12.2.3), i.e. the substrate
surface free energy is higher than the than the total of interface and film surface free
energy. This makes wetting energetically favorable. For two elements A and B, one
of them must have the lower surface free energy. If A can be grown on B in Frank-
van der Merwe (or Stranski-Krastanow) growth mode, then (12.1) does not hold for
B on A and the growth will occur in Volmer-Weber mode, i.e. with islands. This
is a serious problem for the growth of embedded layers of the type A–B–A. If the
embedded film grows well, the capping does not and vice versa.
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(a) (c)

(b)

Fig. 12.20 (a, b) 10nm thick Ge layer on Si (100) deposited at room temperature with MBE and
annealed up to 770◦Cwithout (a) andwith (b) Sb surfactant. Adapted from [1030]. (c) Cross-section
TEM image of a heterostructure of 70 monolayers germanium on Si (111), grown by MBE with
Sb surfactant. The horizontal arrow labeled ‘I’ denotes the position of the interface. The arrows
labeled ‘D1’ and ‘D2’ denote the positions of partial dislocations (cmp. Fig. 4.19). Adapted from
[289]

In the case of Ge on Si, Ge has the lower surface free energy than Si. Ge grows
on Si in Stranski-Krastanow mode [1023] (Fig. 12.20a). Si grows both on Ge(001)
and Ge/Si(001) in a Volmer-Weber mode [1024] causing severe problems for the
fabrication of Si/Ge/Si quantum wells or superlattices. A substantial modification
of growth mode can be achieved by using a third element C as a capping layer,
saturating surface bonds. It lowers the surface free energy of both materials A and B,
thus favoring wetting of the substrate. Such element C is called surfactant (surface-
active species) [1025, 1026]. Typical examples are As [1025] or Sb [289] on Si and
Ge (Fig. 12.20b). Also the surfactant modifies defect nucleation and can lead to
defect-free epitaxial Ge/Si layers (Fig. 12.20c). Surfactants have also been described
for the growth of compound semiconductors, e.g. In [1027] or Sb [1028, 1029] for
GaAs.

12.3 Energy Levels in Heterostructures

12.3.1 Band Lineup in Heterostructures

In heterostructures, semiconductors with different band gaps are combined. The
relative position of conduction and valence band (band alignment) is determined by
the electron affinities χ as shown in Fig. 12.21. For a semiconductor, the electron
affinity is the (positive) energy difference between vacuum level and conduction
band edge. It can lead to different types of heterostructures. Early perspectives of
semiconductor heterostructures are discussed in [1031].

http://dx.doi.org/10.1007/978-3-319-23880-7_4
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Fig. 12.21 Position of conduction and valence-band edges for a variety of semiconductors (relative
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Fig. 12.22 Position of band edges (band alignment) in (a) type-I, (b) type-II and (c) type-III
heterostructure.

In Fig. 12.22, the band alignment for type-I, type-II and type-III heterostructures
are shown. In the type-I structure (straddled band lineup) the lower conduction-band
edge and the higher valence-band edge are both in the material with smaller band
gap. Thus, electrons and holes will localize there. In the type-II structure a staggered
lineup is present and electrons and holes will localize in different materials. In the
type-III structure, also termed ‘broken gap’ structure, the conduction band of one
material is below the valence band of the other material. The technologically most
relevant are type-I structures. The design of heterostructures to fulfill a certain device
functionality or to have certain physical properties is called ‘band gap engineering’.
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(a) (b) (c)

(d) (e)

Fig. 12.23 Heterostructures with different layer sequences (band gap engineering). (a) quantum
well (QW), (b) multiple quantum well (MQW), (c) superlattice (SL), (d) single-barrier tunneling
structure, (e) double-barrier tunneling structure

In a type-I heterostructure, the conduction- and valence-band discontinuities are
given, respectively, by

ΔEC = χ1 − χ2 (12.3a)

ΔEV = (χ1 + Eg1) − (χ2 + Eg2). (12.3b)

Depending on the layer sequence of high- and low-bandgap materials various
configurations, as shown in Fig. 12.23 have obtained special names, such as single
heterointerface, quantum well (QW), multiple quantum well (MQW), superlattice
(SL). In the extreme case the layer is only one monolayer thick (Fig. 12.24) and the
concept of layer and interface blurs. Such atomically precise layer sequences are
mastered nowadays for a variety of material systems such as (Al,Ga)As/GaAs/InAs,
InP/(In,Ga)As, Si/SiGe, ZnO/(Mg,Zn)O and also BaTiO3/SrTiO3.

The abruptness of interfaces is determined by the epitaxial machine through the
switching precision of the incoming material flux and fundamentally limited by
segregation phenomena which can be modeled with a segregation coefficient [1037]
(cmp. Sect. 4.2.4). As shown in Fig. 12.24c, In has the tendency to be carried into
the following GaAs layer. A quantitative evaluation is possible using aberration-
corrected scanning transmission electron microscopy [1038].

12.3.2 Quantum Wells

The energy in a single quantumwell of thickness Lz (along the growth direction z) can
be calculated with the quantum-mechanical particle-in-a-box model. In the envelope
function approximation (Appendix H) the wavefunction is written as a product of
the Bloch function and the envelope function χ(z).

Ψ A,B(r) = exp (i k⊥ r) unk(r)χn(z), (12.4)

http://dx.doi.org/10.1007/978-3-319-23880-7_4
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InAs
(a)

(b)

(c)

Fig. 12.24 Ultrathin heterostructures: (a) Cross-sectional TEM of a MOVPE-grown short-period
superlattice (SPS) of InAs layers in GaAs1−xNx ). In high resolution (right image), the individual
rows of atoms can be seen. From [1039]. (b, c) Cross-section STM image of 2ML InAs on GaAs;
the segregation of In into the top layer is visible atom by atom. Adapted from [1040]

where ‘A’ and ‘B’ denote the two different materials. The envelope functionχ fulfills,
approximately, the one-dimensional Schrödinger-type equation,

[
− �

2

2m∗
∂2

∂z2
+ Vc(z)

]
χn(z) = En χn(z), (12.5)
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n=1

n=2

n=3

LzLz

n=1

n=2

(a)

(b)

Fig. 12.25 Schematic energy levels and wavefunctions in a potential well with (a) infinite barriers,
and (b) finite barrier height

where m∗ denotes the effective mass. Vc is the confinement potential determined by
the band discontinuities. Typically, Vc = 0 in the well and V0 > 0 outside in the
barrier. En are the resulting energy values of the quantized levels. In the case of
infinite barriers (V0 → ∞, Fig. 12.25a) the boundary conditions χ(0) = χ(Lz) = 0
yield

En = �
2

2m∗

(
n π

Lz

)2

(12.6)

χn(z) = An sin

(
n π

Lz
z

)
, (12.7)

where En is called the confinement energy.
For finite barrier height V0 (Fig. 12.25b) the calculation leads to a transcenden-

tal equation. The wavefunction tunnels into the barrier. While for infinite barrier
height the lowest level diverges for Lz → 0, for finite barrier height E1 → V0. A
complication arises from the different effective mass in the well and barrier mate-
rial. This is taken into account by forcing the continuity of χ and χ′/m∗ across
the interfaces4 (‘BenDaniel-Duke’ boundary conditions [1042]). The Schrödinger
equation and (semi-)analytical solutions for special and numerical methods for

4The kinetic energy term in (12.5) is written as �
2

2
∂
∂z

1
m∗(z)

∂χ
∂z for varying mass across the structure

[1041].
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(a) (b) (c) (d)

Fig. 12.26 Schematic representation of the development of hole levels in a quantum well: (a)
degenerate bulk levels at Γ , (b) splitting at the subband edge (due to different quantized values of
kz), (c) in-plane dispersion (mass reversal), (d) anticrossing behavior. Based on [991]

arbitrary potential distributions are discussed in [1043]. The application of k · p
theory (AppendixG) to heterostructures is discussed in [1044].

The motion of carriers in the plane is still free and has a two-dimensional disper-
sion. Thus, each quantized level contributes m∗/(π�

2) to the density of states at each
subband edge En .

For holes, the situation is a little more complicated than for electrons (Fig. 12.26).
First, the degeneracy of heavy and light holes is lifted since their mass enters the
confinement energy. The effective hole masses along the z direction, i.e. those that
enter (12.5), are

1

mz
hh

= γ1 − 2 γ2 (12.8a)

1

mz
lh

= γ1 + 2 γ2. (12.8b)

The light holes have the higher quantization energy. The angular momentum is
quantized along the z direction. The transverse masses for the dispersion in the
interface plane are

1

mxy
hh

= γ1 + γ2 (12.9a)

1

mxy
lh

= γ1 − γ2. (12.9b)

Now the heavy hole, i.e. the Jz = ± 3
2 state, has the smaller mass and the light

hole (Jz = ± 1
2 ) the larger (Fig. 12.26c). However, this consideration is only an

approximation since the lifting of degeneracy and the dispersion have to be treated
on the same level. Higher terms of the perturbation calculation lead to band mixing
and remove the band crossing that seems to originate from the situation at theΓ point.
In reality, the bands show anticrossing behavior and are strongly deformed. The hole
dispersion in a superlattice and the anticrossing behavior is shown in Fig. 12.27.
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Fig. 12.27 Hole dispersion
in a 68-ML GaAs/71 ML
Al0.25Ga0.75As superlattice
(numerical calculation). The
double curves originate from
a lifting of time-reversal
symmetry at k �= 0.
Reprinted with permission
from [1045], © 1985 APS
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Fig. 12.28 Observed
electron–hole transitions
(energy difference to the first
e–h transition from
excitation spectroscopy) in
GaAs/AlGaAs quantum
wells of varying thickness.
Symbols are experimental
data, solid lines are
theoretical model. Data from
[1046]

Experimentally observed transition energies in quantumwells of varying thickness
are shown inFig. 12.28 and are in good agreementwith the theoretical calculation.We
note that for infinite barriers optical transitions are only allowed between confined
electron and hole states with the same quantum number n. For finite barriers this
selection rule becomes relaxed, and other transitions become partially allowed, e.g.
e1–hh3. The optical matrix element from the Bloch part of the wavefunction, which
was isotropic for (cubic) bulk material (9.25), is anisotropic for quantum wells. TE
(TM) polarization is defined with the electromagnetic field in (perpendicular to)
the plane of the quantum well (Fig. 12.29a). At the subband edge, i.e. for in-plane
wavevector k|| = 0 the matrix elements for the various polarizations and propagation

http://dx.doi.org/10.1007/978-3-319-23880-7_9
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Fig. 12.29 (a) Directions of electric-field vector relative to the quantum-well plane for TE and
TM polarization. (b) Optical selection rules for band–band transitions in a quantum well. If the
(in-plane averaged) relative strength of the e–hh transitions (solid lines) is 1, the relative strength of
the TE-polarized e–lh transitions (dashed lines) is 1/3 and that of the TM-polarized e–lh transitions
(dash-dotted lines) is 4/3

Table 12.3 Squared
momentum matrix elements∣∣〈c|ê · p|v〉∣∣2 in a quantum
well for various propagation
directions in units
of M2

b . The quantum-well
normal is along z

Propagation êx (TE) êy (TE) êz (TM)

e–hh x – 1/2 0

y 1/2 – 0

z 1/2 1/2 –

x – 1/6 2/3

e–lh y 1/6 – 2/3

z 1/6 1/6 –

x – 1/3 1/3

e–so y 1/3 – 1/3

z 1/3 1/3 –

directions are given in Table 12.3. The matrix elements averaged over all in-plane
directions for TE-polarization are 3/2M2

b (1/2M2
b ) for the electron to heavy (light)

hole transition. For TM polarization the values are 0 and 2M2
b , respectively [1047].

The optical selection rules are shown in Fig. 12.29 (see Fig. 9.9 for bulk material).
For propagation along the quantum-well plane, the ratio between the strength of the
TE polarized e–hh and e–lh transitions is 3:1.

The confinement potential squeezes charge carriers bound to impurities closer to
the ion. Therefore, the binding energy increases as shown in Fig. 12.30. This behavior
can be modeled theoretically with good precision. It makes a difference whether the
impurity is located at the center or the interface of the quantum well.

The confinement potential also squeezes electrons and holes in the exciton closer
together and thus increases their Coulomb interaction. The binding energy of the
quantum-well exciton is thus larger than in bulk material and depends on the well

http://dx.doi.org/10.1007/978-3-319-23880-7_9
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Fig. 12.30 Experimental values for the acceptor binding energy in GaAs/Al0.3Ga0.7As quantum
wells (solid circles) from [1048] as a function of well width. Solid line is theory (variational
calculation) for the well-center acceptor including top four valence bands and finite barriers, dashed
line is hydrogen-like model with infinite barrier height. Adapted from [1049]
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Fig. 12.31 (a) Theoretical (variational) calculation (solid line) of the heavy-hole exciton bind-
ing energy versus QW thickness in a GaAs/Al0.4Ga0.6As quantum well (using also different
approximations, other lines). Adapted from [1050]. (b) Experimental exciton binding energy in
InxGa1−xAs/GaAs quantum wells of different thickness. Circles: data and error bars from [1051],
x unspecified, squares: data from [1052], x = 0.18

width (Fig. 12.31). In the simple hydrogen-like model with infinite barriers the exci-
ton binding energy is 4 times the bulk binding energy in the limit Lz → 0. In a
realistic calculation the effect of different dielectric constants in the well and barrier
(image charge effect) need to be considered.
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Fig. 12.32 Band structure of
a superlattice with a potential
depth of 0.4eV and well and
barrier width w

(LQW = Lbarr). Adapted
from [1053]
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12.3.3 Superlattices

In a superlattice, the barrier thickness is so small that carriers can tunnel in neigh-
boring wells or, in other terms, that there exists a significant wavefunction overlap
between adjacent wells. This leads to a band structure (Fig. 12.32), similar to the
Kronig–Penney model (AppendixF). For the superlattice the bands are called mini-
bands, the gaps are called minigaps. The density of states does not make a step at
the subband edge but follows an arccos function. The modification of the density of
states, as seen in the absorption spectrum, are shown in Fig. 12.33 for 1, 2, 3 and 10
coupled wells.

12.3.4 Single Heterointerface Between Doped Materials

We consider a single heterointerface between n-doped materials. As an example we
take n-AlGaAs/n-GaAs (Fig. 12.34). First, we consider thematerials without contact,
forming a type-I structure. In thermodynamic equilibrium the system must have a
constant Fermi level. Thus, charge is transferred from the region close to the interface
from AlGaAs to GaAs. This results in the formation of a triangular potential well in
the GaAs close to the interface. A two-dimensional electron gas (2DEG) forms in
this potential well (Fig. 12.35). The charge transfer in thermodynamic equilibrium
adjusts the band bending and the charge density (quantized levels in thewell) in such a
way that they are self-consistent. The Poisson equation and the Schrödinger equation
are simultaneously fulfilled. Numerically, both equations are iteratively solved and
the solution is altered until it is self-consistent, i.e. it fulfills both equations.
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Fig. 12.33 Absorption spectra of a single, double, triple and ten coupled quantum wells. Theo-
retically predicted transitions with heavy (light) holes are labeled with filled (empty) bars at their
respective transition energies. Adapted from [1054]

Fig. 12.34 Schematic
formation of a triangular
potential well in a
n-AlGaAs/n-GaAs
heterostructure, (a) before
and (b) after equilibration of
Fermi levels

GaAsAlGaAs

Ev

Ec

Ev

Ec

(a) (b)

If the region of the 2DEG is not doped, the electron gas exists without any dopant
atoms and ionized impurity scattering no longer exists. This concept is called mod-
ulation doping. Mobilities up to 3.1 × 107 cm2/Vs have been realized (Fig. 12.36).
The theoretical limits of mobility in a 2DEG at modulation-doped AlGaAs/GaAs
heterointerfaces are discussed in detail in [1056].
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Fig. 12.35 (a) Conduction-band edge at a GaAs/Al0.3Ga0.7As heterointerface (T = 0K) with two
confined states at E0 and E1 marked with solid horizontal lines. In the GaAs channel there are
5 × 1011 cm−2 electrons. The barrier height is 300meV, NGaAs

D = 3 × 1014 cm−3. The position of
the Fermi level EF is at E = 0 and indicated with a dash-dotted line. (b) Envelope wavefunctions
φ0 and φ1 of the two confined states, dash-dotted line: calculation without exchange and correlation
for state at E0. Adapted from [1055]

Fig. 12.36 Progress in the
achievement of high electron
mobility in GaAs, annotated
with the technical innovation
responsible for the
improvement. Adapted from
[1057]
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12.4 Recombination in Quantum Wells

12.4.1 Thickness Dependence

The energy of exciton recombination in quantum wells is blue-shifted with respect
to that in bulk material due to the quantum-confinement energies of electrons and
holes (Fig. 12.37). The electron–hole recombination lineshape in quantum wells
is given by the product of the joint density of states and the Boltzmann function
(when Boltzmann statistics apply). The JDOS is given by a step function (Heavyside
function H(E)).

I (E) ∝ H(E − E11) exp

(
− E

kT

)
, (12.10)
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Fig. 12.37 (a) Schematic energy diagram of a quantum well with confined electron (e1, e2) and
hole (h1, h2) states and recombination between them at energies E11 and E22. (b) Schematic
sample structure with two GaAs/AlxGa1−xAs quantum wells with thicknesses 3 and 6nm. (c)
Photoluminescence spectrum (T = 300K) of the structure from part (b). A small amount of barrier
luminescence appears at 1.88eV, according to x = 0.37 (cf. Fig. 6.19c)

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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Fig. 12.38 (a) Reflectance spectra at various temperatures from a 17nm thick GaAs/Al0.3Ga0.7As
quantum well. The inset shows the temperature dependence of the homogeneous linewidth. (b) LO
phonon broadening parameter (FWHM) for various quantum well widths. Adapted from [1061]s

where E11 = Eg + Ee1 + Eh1 represents the energy of the E1–H1 subband edge as
shown in Fig. 12.37. An experimental spectrum (Fig. 12.39a) shows that excitonic
effects influence the recombination lineshape in a GaAs quantum well even at room
temperature [1058].

The recombination decay constant of excitons decreases with decreasing well
width, partly due to the increase of exciton binding energy as discussed in [1059].

12.4.2 Broadening Effects

Many-Body Effects

At high carrier densities when the electron (quasi-) Fermi level is above the
electron subband edge, the spectrum broadens and reflects the Fermi–Dirac dis-
tribution (Fig. 12.39b). At low temperatures a many-body effect, multiple electron–
hole scattering with electrons at the Fermi edge, leads to an additional peak, termed
Fermi-edge singularity that is discussed in [1060].

Homogeneous Broadening

The temperature dependence of the homogeneous broadening of quantumwell lumi-
nescence has been investigated in [1061]. It follows the dependence of the broadening
known from bulk material (Sect. 9.6.7) with similar values for the LO broadening
parameter. In Fig. 12.38a the reflectance spectra for different temperatures of a 17nm
GaAs/Al0.3Ga0.7As QW are shown. The optical phonon broadening parameter for
various well widths is shown in Fig. 12.38b and coincides with the bulk value.

http://dx.doi.org/10.1007/978-3-319-23880-7_9
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(b)(a)

Fig. 12.39 (a) Photoluminescence spectrum of a 5-nmGaAs/AlGaAs quantumwell at T = 300K.
The solid (dashed) line is fit with (without) excitonic effects. The two peaks are due to transitions
involving heavy and light holes. Adapted from [1058]. (b) Photoluminescence spectra at three
different temperatures as labeled of a 10-nm modulation-doped InGaAs/InP quantum well with an
electron sheet density ns = 9.1× 1011 cm−2. The electron quasi-Fermi level is Fn − (EC + Ee1) =
44.1meV from the subband edge. The dashed line in the T = 80K spectrum is the lineshape from
JDOS and a Fermi–Dirac distribution without enhancement at the Fermi edge. Adapted from [1060]

The homogeneous broadening leads to excitons with in-plane center-of-mass
wave-vector K �= 0 being allowed to recombine radiatively. This leads to a lin-
ear increase of exciton lifetime as demonstrated for GaAs quantum wells up to 50K
in [1059]. In [1062] all exciton wave-vectors within the light cone are considered,
explaining the linear increase of exciton lifetime in (non-polar) ZnO quantum wells
up to room temperature.

Inhomogeneous Broadening

Inhomogeneous broadening affects the recombination lineshape. Since the interfaces
of theQWare not ideally flat, the exciton averages over different quantum-well thick-
nesses within its volume. Also, e.g. for the GaAs/AlGaAs system, the wavefunction
in the (binary) quantum well tunnels into the barrier, the amount depending on the
QW width, and there ‘sees’ the alloy broadening (see Sect. 10.3.3). The problem of
exciton dynamics in a potential with random fluctuations has been treated in detail
[1063, 1064].

A simplified picture is as follows: At low temperatures the excitons populate
preferentially the potential minima. A simple lineshape5 of the QW absorption or
joint density of states is given by a step function (cf. Table 9.2) at the QW band
edge E0. The inhomogeneous broadening has a Gaussian probability distribution
p(δE) ∝ exp[−(δE)2/2σ2)] with δE being the deviation from the QW band edge
δE = E − E0. The resulting lineshape is given by the convolution of the Gaussian

5neglecting excitonic enhancement.

http://dx.doi.org/10.1007/978-3-319-23880-7_10
http://dx.doi.org/10.1007/978-3-319-23880-7_9
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(a)

(b) (c)

Fig. 12.40 (a) Recombination spectra (solid lines, scaled to same height) of a model quantum
well for different temperatures as labeled and complete thermalization, dashed (dash-dotted) line
is unperturbed (inhomogeneously broadened by σ = 20meV) shape of the QW absorption edge.
The energy scale is relative to the energy position of the unperturbed QW absorption edge at E0. (b)
Theoretical energy position and (c) linewidth of exciton recombination from a model disordered
quantum well. The high-temperature limits are marked by arrows. Parts (b, c) adapted from [1063]

with the unperturbed absorption spectrum yielding an error-function-like spectrum6

as shown in Fig. 12.40a.
For complete thermalization the level population is given by the Boltzmann func-

tion. The recombination spectrum is given by the product of the absorption spectrum
(or JDOS) and the Boltzmann function. It is (red-) shifted with respect to E0 by
about7

ΔE(T ) = − σ2

kT
= γ(T ) kT . (12.11)

This shift between emission and absorption is also called the Stokes shift.

6The error function is defined as erf(x) = (2/
√

π)
∫ z
0 exp−t2 dt .

7Formula (12.11) is exact for the product of a Gaussian and the Boltzmann function.
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Within their lifetime, limited at least by radiative recombination, the excitons are
typically unable to reach the energy position required by the Boltzmann function,
but only a local minimum. Thus, their thermalization may be incomplete due to
insufficient lateral diffusion. This effect is particularly important at low temperatures
when thermal emission into adjacent deeper potential minima is suppressed. In this
case, the red-shift is smaller than expected from (12.11). A numerical simulation
[1063] yields such behavior of the energy position of the recombination line as
shown in Fig. 12.40b. Simultaneously, the width of the recombination spectrum also
exhibits a minimum (Fig. 12.40c). These findings are in agreement with experiments
[1065, 1066]. An analytical model for temperature dependent exciton localization in
the presence of disorder has been given in [1067], yielding a value 0 ≤ γ ≤ γ0 =
(σ/kT )2 in (12.11).

A potential fluctuation can localize an exciton laterally at low temperatures [1058]
and behave like a quantum dot (cf. Sect. 14.3). Localized and delocalized excitons
are separated by a boundary called the mobility edge [1068]. The transition between
the two regimes is a Mott transition [1069].

Monolayer Growth Islands

Under certain growth conditions, quantum wells with piecewise very flat interfaces
can be fabricated. The thickness difference between such regions (with lateral exten-
sion in the µm range) is an integer monolayer. Accordingly, the recombination spec-
trum yields several, typically two or three, discrete lines (Fig. 12.41).

12.4.3 Quantum Confined Stark Effect

The quantum confined Stark effect (QCSE, Sect. 13.1.2) in quantum wells shifts
energy levels when electric fields are present along the width of the quantum well.
A strong effect exists for pyro- and piezoelectric material combinations such as c-
axis oriented (In,Ga)N/(Al,Ga)N [1070, 1071] or (Cd,Zn)O/(Mg,Zn)O [1072, 1073]
quantum wells due to the built-in electric field (cf. Sect. 15.2). The QCSE induced
red-shift is larger in thicker quantum wells and goes beyond the bulk band gap of
the quantum well material (Fig. 12.42b). Also the wavefunction overlap is reduced
with increasing well width, leading to an increase of the radiative recombination
lifetime as shown in Fig. 12.42. The pyroelectric field and the related modification
of lifetime are absent in quantum wells grown on non-polar directions such as [11.0]
(Fig. 12.42a).

http://dx.doi.org/10.1007/978-3-319-23880-7_14
http://dx.doi.org/10.1007/978-3-319-23880-7_13
http://dx.doi.org/10.1007/978-3-319-23880-7_15
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Fig. 12.41 Photoluminescence spectrum (T = 2K) (dots) of GaAs/AlGaAs quantum well grown
by MBE with 120s growth interruptions. Recombination is due to excitons in islands of 19, 18,
and 17 monolayers (a0/2) height. The solid line is a lineshape fit including lifetime broadening
(Γ = 1.34meV) and residual inhomogeneous broadening (σ = 0.04meV) due to AlGaAs barrier
alloy fluctuations. Note that the energy separation of the peaks is much larger than kT . The peak
doublet structure is discussed in [1058]. Adapted from [1058]

(a) (b)

Fig. 12.42 (a) Radiative lifetime of electron-hole pairs in polar [00.1]-oriented In0.2Ga0.8N/GaN
(circles) and non-polar [11.0]-oriented GaN/Al0.2Ga0.8N (squares) quantumwells of varying thick-
ness. Experimental data are shown in symbols. The solid line is the (scaled) theoretical dependence
of the electron-hole overlap for (In,Ga)N/GaN QWs. The dashed line is guide to the eyes. The
arrow denotes the recombination time constant in bulk GaN. Adapted from [1074, 1075]. (b) Low
temperature PL peak recombination energy (solid squares) for ZnO/Mg0.3Zn0.7O quantum wells
for various well widths Lz (barrier width LB = 5nm). Dashed line indicates dependence for inter-
nal field of 0.9MV/cm, horizontal dashed line indicates recombination energy in ZnO bulk. Carrier
lifetime determined from PL (circles), dashed line is guide to the eyes. Adapted from [1073]
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Fig. 12.43 Measured (full circles) and theoretical (solid lines) confined LO phonon energies in
70Gen /74Gen superlattices versus the layer thickness (number of monolayers) n. The dashed lines
represent a calculation that considers intermixing at the interfaces. On the right, the energies of bulk
modes for isotopically pure 70Ge and 74Ge are shown together with that of an 70Ge0.570Ge0.5 alloy.
Adapted from [1076]

12.5 Isotope Superlattices

A special type of heterostructure is the modulation of the isotope content. The first
kind of heterostructures made like this were 70Gen/74Gen symmetric superlattices
[1076]. Figure12.43 shows phonon energies determined from Raman spectroscopy
for various layer numbers n. The modes are classified by 70LOm and 74LOm denoting
the material in which the amplitude is maximal and m being the number of maxima
in that medium.8 Such modes are visualized in Fig. 12.44a for a 69GaP16/71GaP16
superlattice. Theoretical mode energies as a function of the superlattice period are
shown in Fig. 12.44b.

12.6 Wafer Bonding

Wafer bonding is a fairly recently developed method to join different and dissimilar
materials. Two wafers of the respective materials are put together face to face and
are adequately fused. The idea is to not only ‘glue’ the wafers together with a sticky
(and compliant) organic material, but to form strong atomic bonds between the two
materials with possibly a perfect interface. In some cases, the interface needs to
allow charge-carrier transport through it. Less stringent conditions need to be met
for photon transport.

8Only modes with odd m are Raman-active.
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Fig. 12.44 (a) Atomic displacements [Ga (filled dots) and P (open circles)] of odd-index LOmodes
in a 69Ga16P/71Ga16P superlattice unit cell. These modes have even parity with respect to midlayer
planes, which are at atom numbers 16 and 48 in this example. The labels on the left identify the
predominant character of the mode, those on the right give the relative Raman intensities with
respect to that of the 69LO1 mode. The tick marks on the vertical axis indicate zero displacement of
the respective mode. (b) Upper panel: Energies and characters of odd-index LO phonon modes in
GaP isotope SLs as calculated within the planar bond charge model for the case of ideal interfaces.
69LOm modes are shown as open symbols; 71LOm modes as full symbols. The shaded area marks
n = 16 for which the atomic displacements of the modes are shown in part (a). Lower panel:
Calculated intensities of the modes relative to that of the 69LO1 phonon mode. Adapted from [335],
reprinted with permission, © 1999 APS

(a) (b)

Fig. 12.45 High-resolution TEM images of wafer-bonded (a) Si-Si and (b) GaAs-Si interfaces.
White circles indicate the position of misfit dislocations. Part (a) reprinted from [1077], © 2003,
with permission from Elsevier. Part (b) reprinted with permission from [1078], © 1998 AIP
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Mechanical deficiencies such as surface roughness, dust particles and the likemust
be avoided in the wafer-bonding process since they result in voids. Several methods
have been developed for bonding various materials [1079, 1080]. Such processes are
successful for large substrate sizes. With proper processing, ideal interfaces can be
created, as shown in Fig. 12.45. Such structures, if made between a p-doped and a
n-doped semiconductor, show diode characteristics.



Chapter 13
External Fields

Abstract The effects of external electric and magnetic fields on the electronic and
optical properties of bulk materials and quantum wells are discussed including the
Stark effect and quantum-confined Stark effect, the Hall effect and Quantized Hall
Effects.

13.1 Electric Fields

13.1.1 Bulk Material

The center-of-mass motion of the exciton is not influenced by an electric field. The
Hamilton operator for the relative motion of an electron–hole pair of reduced mass
μ along z in the presence of an electric field E along the z direction is

Ĥ = − �
2

2μ
Δ − e E z. (13.1)

Here, the Coulomb interaction, leading to the formation of bound exciton states, is
neglected. In the plane perpendicular to the field (here the z direction) the solutions
for the relative motion are just plane waves.

In the electric field the bands are tilted (Fig. 13.1), i.e. there is no longer an overall
band gap. Accordingly, the wavefunctions are modified and have exponential tails in
the energy gap.

© Springer International Publishing Switzerland 2016
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
DOI 10.1007/978-3-319-23880-7_13

437



438 13 External Fields

(a)

Egh

EC

EV

(b)

e2

e1

h1

h3
h2

h4

h5

e2

e1

h1

h3
h2

h4

h5

h h

E 0E=0

Fig. 13.1 Impact of an electric field on (a) bulk material (tilt of bands) and (b) a quantum well
(quantum confined Stark effect, QCSE)

After separation of the motion in the (x,y) plane the Schrödinger equation for the
motion in the z direction is

(
− �

2

2μ

d2

dz2
− e E z − Ez

)
φ(z) = 0 , (13.2)

which is of the type
d2f (ξ)

dξ2
− ξ f (ξ) = 0 , (13.3)

with ξ = Ez

Θ
− z

(
2μ
�2 e E

)1/3
and the optoelectronic energy Θ =

(
e2E2

�
2

2μ

)1/3
. The

solution of (13.3) is given by the Airy function Ai (cf. Fig. 13.2):

φEz(ξ) =
√

e E

Θ
Ai(ξ). (13.4)

The pre-factor guaranties the orthonormality (with regard to the Ez). The absorp-
tion spectrum is then given by

α(ω, E) ∝ 1

ω

√
Θ π

[
Ai

′2(η) − η Ai2(η)
]

, (13.5)

with η = (Eg − E)/Θ and Ai′(x) = dAi(x)/dx.
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Fig. 13.2 (a) Airy function Ai(x), (b) Ai’(x)

Optical transitions below the band gap become possible that are photon-assisted
tunneling processes. The below-bandgap transitions have the form of an exponential
tail. Additionally, oscillations develop above the band gap, the so-called Franz–
Keldysh oscillations (FKO) (Fig. 13.3a).

The absorption spectrum scales with the optoelectronic energy Θ . The energy
position of the FKO peaks En is periodic with (ν ∼ 0.5)

(
En − Eg

)3/2 ∝ (n − ν) E
√

μ. (13.6)

A nonperiodicity can indicate a nonparabolicity of the mass. For a given mass
the electric field strength can be determined. Well-pronounced oscillations are only
present for homogeneous fields.

Experimental spectra show additionally the peaks due to excitonic correlation
(Fig. 13.3b) at low field strength. At higher fields the FKO evolve and the amplitude
of the excitonic peaks decreases because the excitons are ionized in the field.

13.1.2 Quantum Wells

In a quantumwell an electric field along the confinement direction (z direction) causes
electrons and holes to shift their mean position to opposite interfaces (Fig. 13.1b).
However, excitons are not ionized due to the electric field. With increasing field (for
bothfield directions) the energypositionof the absorption edge and the recombination
energy is reduced. This is the quantum confined Stark effect (QCSE). Corresponding
experimental data are shown in Fig. 13.4i–v. The shift depends quadratically on the
electric field since the exciton has no permanent dipole moment (mirror symmetry
of the quantum well). Thus, only the second-order Stark effect is present (as for the
hydrogen atom) in which the field first induces a dipole p = αE. This dipole interacts
with the field with an energy E = −p ·E = −αE2. The carrier separation in opposite
sides of the quantum well (Fig. 13.4b) leads to a reduced overlap of the electron and
hole wavefunctions and subsequently to an increased recombination lifetime (see
Fig. 12.42).

http://dx.doi.org/10.1007/978-3-319-23880-7_12
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electric field for a volume semiconductor (without Coulomb interaction) and theoretical change of
absorption (bottom panel). (b) Experimental absorption spectra of InGaAs on InP at T = 15K for
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Fig. 13.4 Impact of electric fields on the absorption spectrum of n × (9.5nm GaAs/9.8nm
Al0.32Ga0.68As) multiple quantum well structures. a Electric field along the [001] growth direction
(n = 50), (i)–(v): E = 0, 0.6, 1.1, 1.5, and 2× 105 V/cm. b Electric field within the interface plane
(n = 60), (i–iii): E = 0, 1.1, and 2×105 V/cm. Adapted from [1082]
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If the field is within the quantum-well interface plane, the field leads to the ioniza-
tion of excitons without shift of the energy position. The loss of the excitonic peak
is visualized in the spectra in Fig. 13.4a–c.

13.2 Magnetic Fields

In magnetic fields, electrons (or holes) perform a cyclotron motion with frequency
ωc = eB/m∗, i.e. a motion perpendicular to the magnetic field on a line of constant
energy in k-space. This line is the intersection of a plane perpendicular to the mag-
netic field and the respective isoenergy surface in k-space. For semiconductors with
anisotropic mass, such as Si and Ge, the quantum theory of cyclotron resonance has
been given in [1083]. The physics of semiconductors in magnetic fields is covered
in detail in [1084].

The ballistic cyclotron motion can only occur between two scattering events.
Thus, a significantly long path along the cyclotron trajectory (classically speaking)
and the connected magnetotransport properties are only possible when

• ωcτ � 1, i.e. when the average scattering time τ is sufficiently large. This requires
high mobility.

• the magnetic field is sufficiently strong and the temperature sufficiently low, i.e.
�ωc � kT , such that thermal excitations do not scatter electrons between different
Landau levels.

• the cyclotron path is free of geometric obstructions.

An external magnetic field also produces a splitting of the spin states. For the
electron, the energy splitting ΔE is given by

ΔE = g∗
e μB B , (13.7)

where B is the magnetic-field amplitude and g∗
e the (effective) electron g-factor. This

value differs from the free-electron value in vacuum of ge = 2.0023 due to the pres-
ence of spin-orbit interaction (see Sect. 13.2.3). Values for g∗

e at low carrier density
and low temperatures are 2 for Si, 1.2 for InP and ZnSe, −1.65 for CdTe, −0.44
for GaAs, −15 in InAs, and −50 for InSb. In [1085] the temperature dependence
of g∗

e in GaAs, InP and CdTe is also measured and discussed. The electron g-factor
increases in thin GaAs/AlGaAs quantum wells [1086].

13.2.1 Hall Effect

An electrical current along the x (longitudinal) direction in a perpendicular magnetic
field B = (0, 0, B) along z causes an electric field Ey along the transverse (y) direc-
tion (Fig. 13.5). The charge accumulation is due to the Lorentz force. The related
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transverse voltage is called the Hall voltage and the resistivity ρxy = Ey/jx the Hall
resistivity [21, 24, 25]. Many aspects of the Hall effect are discussed in [1087]. For
thin-film samples typically Hall bars [1088] (see Fig. 13.6 and also Fig. 13.17, for a
reasonable measurement of the Hall voltage the ratio of length and width of the Hall
bar should be at least 3) or the van-der-Pauw geometry (Fig. 13.7) and method are
used [1089–1091].

For band transport in the relaxation time approximation (Sect. 8.2), the steady-
state equation of motion is

m∗ v
τ

= q (E + v × B) . (13.8)

We note that this equation of motion is also valid for holes, given the convention
of Sect. 6.9.1, i.e. positive effective mass and charge. With the cyclotron frequency
ωc = qB/m∗ the conductivity tensor is (j = qnv = σ E)

http://dx.doi.org/10.1007/978-3-319-23880-7_8
http://dx.doi.org/10.1007/978-3-319-23880-7_6
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(a) (b)

(c) (d)

(e)

Fig. 13.7 (a–d) Geometry for van-der-Pauw Hall measurements. (a) Best geometry (cloverleaf ),
(b) acceptable square geometry with small contacts on the corners, (c,d) not recommended geome-
tries with contacts on the edge centers or inside the square, respectively. (e) Current distribution, as
visualized by lock-in thermography [1092], in epitaxial ZnO layer on sapphire with Hall geometry
as in part (b). Grey dashed line indicates the outline of the 10 × 10mm2 substrate, grey areas
indicate gold ohmic contacts

σ =
⎛
⎝σxx σxy 0

σyx σyy 0
0 0 σzz

⎞
⎠ (13.9a)

σxx = σyy = σ0
1

1 + ω2
c τ 2

= σ0
1

1 + μ2 B2
(13.9b)

σxy = −σyx = σ0
ωcτ

1 + ω2
c τ 2

= σ0
μ B

1 + μ2 B2
(13.9c)

σzz = σ0 = q2 n τ

m∗ = q n μ. (13.9d)

Perpendicular to themagnetic field, the conductivity (σzz) is given by (8.5). If only
one type of carrier (charge q, density n) is considered, the condition jy = 0 leads to
Ey = μB Ex and jx = σ0 Ex. The Hall coefficient is defined as RH = Ey/(jx B) or
more precisely as

RH = ρxy

B
, (13.10)

where the resistivity tensor ρ is the inverse of the conductivity tensor σ,

ρ = σ−1 =
⎛
⎝ρxx ρxy 0

ρyx ρyy 0
0 0 ρzz

⎞
⎠ (13.11a)

ρxx = ρyy = σxx

σ2
xx + σ2

xy

(13.11b)

http://dx.doi.org/10.1007/978-3-319-23880-7_8
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ρxy = −ρyx = σxy

σ2
xx + σ2

xy

(13.11c)

ρzz = 1

σzz
= 1

σ0
. (13.11d)

For a single type of carriers, the Hall coefficient is therefore given by

RH = μ

σ0
= 1

q n
. (13.12)

It is negative (positive) for electron (hole) conduction. We note that electrons and
holes are deflected in the same y-direction by the magnetic field and collect at the
same electrode. Thus the Hall effect allows the determination of the carrier type and
the carrier density.1

If both types of carriers are present simultaneously, the conductivity (two-band
conduction) is given by the sum of electron and hole conductivity (8.11),

σ = σe + σh. (13.13)

The Hall constant (13.10) is then

RH = 1

e

−n μ2
e (1 + μ2

h B2) + p μ2
h (1 + μ2

e B2)

n2 μ2
e (1 + μ2

h B2) − 2 n p μe μh (1 + μe μh B2) + p2 μ2
h (1 + μ2

e B2)
.

(13.14)

Under the assumption of smallmagnetic fields,2 i.e.μB � 1, theHall coefficient is

RH = 1

e

[ −n μ2
e + p μ2

h

(−n μe + p μh)2
+ n p (−n + p)μ2

e μ2
h (μe − μh)

2

(−n μe + p μh)4
B2 + · · ·

]
.

(13.15)

For small magnetic field this can be written as

RH = 1

e

p − n β2

(p − n β)2
, (13.16)

1Using the Hall effect, the net free charge carrier concentration is determined. We note that the
concentration of fixed charges in semiconductors can be investigated by depletion layer spectroscopy
(Sect. 21.2.4).
2We note that for a mobility of 104 cm2/Vs, μ−1 is a field of B = 1T.

http://dx.doi.org/10.1007/978-3-319-23880-7_8
http://dx.doi.org/10.1007/978-3-319-23880-7_21
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with β = μe/μh < 0. For large magnetic fields, i.e. μB � 1, the Hall coefficient is
given by

RH = 1

e

1

p − n
. (13.17)

In Fig. 13.8, the absolute value of the Hall coefficient for InSb samples with
different doping concentrations is shown. The p-doped samples exhibit a reverse of
the sign of the Hall coefficient upon increase of temperature when intrinsic electrons
contribute to the conductivity. The zero in RH occurs for n = p μ2

h/μ
2
e = ni/|β|. For

high temperatures, the Hall coefficient for n- and p-doped samples is dominated by
the electrons that have much higher mobility (Table 8.2).

The simultaneous conduction in a band and an impurity band (cmp. Sect. 7.5.7)
has been separated with a suitable model assuming two conduction channels for
holes [1094] (Fig. 13.9).

In the derivation of the (unipolar) Hall coefficient we had assumed that all car-
riers involved in the transport have the same properties, in particular that they are
subject to the same scattering time. This assumption is generally not the case (cmp.
Appendix I) and we need to operate with the ensemble average of the discussed

(a) (b)

Fig. 13.8 (a) Conductivity and (b) absolute value of the Hall coefficient versus inverse temperature
for four p-doped (A–D) and two n-doped (E, F) InSb samples. The doping levels are given in (a).
Adapted from [1093]

http://dx.doi.org/10.1007/978-3-319-23880-7_8
http://dx.doi.org/10.1007/978-3-319-23880-7_7
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Fig. 13.9 Carrier densities
in valence band (circles) and
impurity band (triangles)
from evaluating the Hall
effect on GaAs doped with
lithium (and annealed)
taking into account two
conduction channels.
Adapted from [1094]
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quantities. The ensemble average of an energy-dependent quantity ζ(E) over the
(electron) distribution function f (E) is denoted as 〈ζ〉 and is given as3

〈ζ〉 =
∫

ζ(e) f (E) dE∫
f (E) dE

. (13.18)

In particular 〈τ 〉2 is now different from 〈τ 2〉. Considering the equation 〈j〉 = 〈σ〉 E
for the ensemble averaged current densities we find (for one type of carrier, cf.
(13.12))

RH = 1

q n
rH , (13.19)

with the so-called Hall factor rH given by

rH = γ

α2 + ω2
c γ2

(13.20)

α = 〈 τ

1 + ω2
c τ 2

〉

γ = 〈 τ 2

1 + ω2
c τ 2

〉.

3For this consideration it is assumed that the energy dependence is the decisive one. Generally,
averaging may have to be performed over other degrees of freedom as well, such as the spin or, in
the case of anisotropic bands, the orbital direction.
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The Hall factor depends on the scattering mechanisms and is of the order of 1.
For large magnetic fields the Hall factor approaches 1. For small magnetic fields we
have

RH = 1

q n

〈τ 2〉
〈τ 〉2 . (13.21)

The mobility calculated from (cf. (13.9d)) σ0RH is called the Hall mobility μH

and is related to the mobility via

μH = rH μ. (13.22)

It is assumed so far that the free carrier density and mobility are homogeneous
within the volume of current transport. Multi-layer models can be fitted to experi-
mental Hall data in order to account for different conduction channels in different
layered parts of the sample [1095]. E.g., in a two-layer model, contributions from
bulk and surface/interface conduction can be separated [1096–1098].

The magnetic field dependence ofσ can be used in a general case to separate con-
tributions of carriers with different density and mobility (including its sign) with-
out assumptions and obtain the mobility spectrum s(μ) (MSA, mobility spectral
analysis),

σxx =
∫ ∞

−∞
s(μ)

1

1 + μ2B2
dμ (13.23a)

σxy =
∫ ∞

−∞
s(μ)

μB

1 + μ2B2
dμ, (13.23b)

as a generalization of (13.13), (13.9b) and (13.9c) [1099-1101]. Examples are the
separation of electron conductivity in (GaAs-) Γ - and (InAs-) X-Minima in a
GaAs/AlGaAs/InAs double quantum well structures [1099] (Fig. 13.10a), substrate
and 2DEG electron conductivity in AlGaN/GaN heterostructures [1102], and elec-
trons and holes in an InAs/GaSb quantum well [1100] (Fig. 13.10b).

In the case of hopping conduction (Sect. 8.7), the theory of Hall effect is more
involved [1103, 1104]. If carriers are transported by hopping, generally, they may
not be free to move as expected by (13.8) in response to the applied magnetic field
and the Lorentz force. A Hall effect occurs only at the junction of three (or more)
hopping sites [1103]. The sign of the experimentally determined Hall coefficient is
often opposite to the one expected from the carrier type according to (13.12), e.g.
as studied in a-Si [1105, 1106]. The sign anomaly depends on intricacies such as
the local site geometry and interference processes taking place among bonding and
antibonding orbitals of various numbers as summarized in [1107].

http://dx.doi.org/10.1007/978-3-319-23880-7_8
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Fig. 13.10 (a) Mobility spectrum of GaAs/AlGaAs/InAs double quantum well structure. Adapted
from [1099]. (b) Mobility spectrum of InAs/GaSb quantum well structure. Adapted from [1100]

13.2.2 Free-Carrier Absorption

The absorption of free carriers was treated in Sect. 9.8.1 without the presence of
a static magnetic field. Solving (13.8) for a static magnetic field B = μ0 H with
H = H (hx, hy, hz) and a harmonic electric field E ∝ exp(−iωt) yields for the
dielectric tensor (cf. (9.60))

ε = i

ε0 ω
σ, (13.24)

and by comparing to j = σ E = q n v,

ε(ω) = −ω∗2
p

⎡
⎣(ω2 + iω γ) 1 − iωc

⎛
⎝ 0 −hz hy

hz 0 −hx

−hy hx 0

⎞
⎠

⎤
⎦

−1

, (13.25)

where 1 denotes the (3 by 3) unity matrix and γ = 1/τ = q/(m∗μ) is the damping
parameter with μ representing the optical carrier mobility (in the non-isotropic case
a tensor γ needs to be used). The (unscreened) plasma frequency is given by (cmp.
(9.65))

ω∗
p =

√
n

e2

ε0 m∗ . (13.26)

http://dx.doi.org/10.1007/978-3-319-23880-7_9
http://dx.doi.org/10.1007/978-3-319-23880-7_9
http://dx.doi.org/10.1007/978-3-319-23880-7_9
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The free-carrier cyclotron frequency is

ωc = e
μ0 H

m∗ . (13.27)

If the effective mass is treated as a tensor, 1/m∗ is replaced by m∗−1 in (13.26) and
(13.27). For zero magnetic field the classical Drude theory for one carrier species is
recovered (cf. (9.62a))

ε(ω) = − ω∗2
p

ω (ω + iγ)
. (13.28)

With the magnetic field perpendicular to the sample surface, i.e. B = μ0 (0, 0, H)

the magneto-optic dielectric tensor simplifies to (cf. (13.9d))

ε(ω) = −ω∗2
p

ω2

⎛
⎝ ε̃xx iε̃xy 0

−iε̃xy ε̃xx 0
0 0 ε̃zz

⎞
⎠ (13.29a)

ε̃xx = 1 + iγ/ω

(1 + iγ/ω)2 − (ωc/ω)2
(13.29b)

ε̃zz = 1

(1 + iγ/ω)
(13.29c)

ε̃xy = ωc/ω

(1 + iγ/ω)2 − (ωc/ω)2
. (13.29d)

The in-plane component εxx provides information about ω∗
p and γ, i.e. two of

the three parameters n, μ and m∗ are known. Additionally, the antisymmetric tensor
component εxy is linear in the cyclotron frequency and provides q/m∗. This subtle but
finite birefringence depends on the strength (and orientation) of the magnetic field
and can be experimentally determined in the infrared using magneto-ellipsometry
[1108, 1109]. Such ‘optical Hall effect’ experiment allows the determination of the
carrier density n, the mobility μ, the carrier mass4 m∗ and the sign of the carrier
charge sgn(q) with optical means. The electrical Hall effect (Sect. 13.2.1) can reveal
n, μ and sgn(q) but cannot reveal the carrier mass.

13.2.3 Energy Levels in Bulk Crystals

In a 3D electron gas (the magnetic field is along z, i.e. B = B[0, 0, 1]) the motion
in the (x, y) plane is described by Landau levels. Quantum mechanically they
correspond to levels of a harmonic oscillator. The magnetic field has no impact on

4We note that mobility and effective mass defined and measured in this way may be referred to
as ‘optical’. Other definitions and approaches to the mobility or effective mass may give different
results.

http://dx.doi.org/10.1007/978-3-319-23880-7_9
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Fig. 13.11 3D electron gas in an external magnetic field. (a) Allowed states in k-space for magnetic
field along the z direction. (b) Density of states (DOS) ρ versus energy (in units of �ωc). Dashed
line is three-dimensional DOS without magnetic field. Based on [991]

the motion of electrons along z, such that in this direction a free dispersion relation
∝ k2z is present. The energy levels are given as

Enkz =
(

n + 1

2

)
�ωc + �

2

2m
k2z . (13.30)

Thus, the states are on concentric cylinders ink-space (Fig. 13.11a). The populated
states of the 3D electron gas (at 0K) lie within the Fermi vector of length kF. For the
3D system the density of states at the Fermi energy is a square root function of the
Fermi energy (6.67). In the presence of a magnetic field the density of states diverges
every time that a new cylinder (with a one-dimensional density of states, (6.75))
touches the Fermi surface at EF. In real systems, the divergence will be smoothed,
however, a pronounced peak or the periodic nature of the density of states is often
preserved.

The period is given by the number nm of cyclotron orbits (Landau levels) within
the Fermi surface. (

nm + 1

2

)
�ωc = EF. (13.31)

If the number of carriers is constant, the density of states at the Fermi energy at
varying magnetic field varies periodically with 1/B. From the conditions

(
nm + 1

2

)
�

eB1
m = EF and

(
nm + 1 + 1

2

)
�

eB2
m = EF with 1

B2
= 1

B1
+ 1

ΔB we find

1

ΔB
= e�

m∗ EF
. (13.32)

http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_6
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This periodicity is used to determine experimentally, e.g., the properties of the
Fermi surface inmetals using the Shubnikov–de Haas oscillations (of themagnetore-
sistance) or the deHaas–vanAlphén effect (oscillationof themagnetic susceptibility).

Equation (13.30) needs to be extended to account for the splitting (13.7) of the
Landau level due to the electron spin. According to [1110] the electron Landau level
energy can be written as

En =
(

n + 1

2

)
�eB

m∗(E)
± g∗

e (E)μB B , (13.33)

with energy dependent effective mass and g-factor

1

m∗(E)
= 1

m∗(0)
Eg (Eg + Δ0)

3Eg + 2Δ0

(
2

E + Eg
+ 1

E + Eg + Δ0

)
(13.34a)

g∗
e (E) = g∗

e (0)
Eg(Eg + Δ0)

Δ0

(
1

E + Eg
− 1

E + Eg + Δ0

)
(13.34b)

The band edge value m∗(0) of the effective mass is given by (6.39) and that of the
g-factor by

g∗
e (0) = 2

[
1 − 2Δ0

3Eg (Eg + Δ0)
EP

]
. (13.35)

For large spin-orbit splitting, the value of the g-factor deviates strongly from 2 and
becomes negative.

13.2.4 Energy Levels in a 2DEG

In a 2D electron gas (2DEG), e.g. in a quantum well or a potential well at a
modulation-doped heterointerface, a free motion in z is not possible and kz is quan-
tized. The energy levels (for each 2D subband) are only given by the cyclotron energy
(Fig. 13.12a). The density of states is a sequence of δ-like peaks (Fig. 13.12b). Each
peak contributes (degeneracy ĝ of a Landau level) a total number of

ĝ = e B

h
(13.36)

states (per unit area without spin degeneracy and without the degeneracy of the band
extremum). In reality, disorder effects lead to an inhomogeneous broadening of these
peaks. The states in the tails of the peaks correspond to states that are localized in
real space.

Also, in a 2D system several physical properties exhibit an oscillatory behavior
as a function of Fermi level, i.e. with varying electron number, and as a function of
the magnetic field at fixed Fermi energy, i.e. at fixed electron number (Fig. 13.13).

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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Fig. 13.12 2D electron gas in an external magnetic field. (a) Allowed states in k-space. (b) Density
of states (DOS) ρ versus energy. Dashed line is two-dimensional DOSwithout magnetic field. Thick
vertical lines: δ-like DOS without broadening, curves: broadened DOS. Based on [991]

13.2.5 Shubnikov–de Haas Oscillations

From the 2D density of states (per unit area including spin degeneracy) D2D(E) =
m∗/π�

2 the sheet density of electrons ns can be expressed as a function of the Fermi
level (at T = 0K without spin degeneracy)

ns = m∗

2π �2
EF. (13.37)

Using (13.32) we thus find (without spin degeneracy, without valley degeneracy),
that the period of 1/B is ∝ ns:

1

ΔB
= e

h

1

ns
. (13.38)

The carrier density of a 2DEG can therefore be determined from the oscillations
of magnetoresistance, and is proportional to the density of states at the Fermi level
(Shubnikov–de Haas effect). A corresponding measurement with varying field and
fixed electron density is shown in Fig. 13.14. The periodicity with 1/B is obvious.
Since only the component of the magnetic field perpendicular to the layer affects the
(x, y) motion of the carriers, no effect is observed for the magnetic field parallel to
the layer.

In another experiment the carrier density was varied at constant field (Fig. 13.15).
The electron density in an inversion layer in p-type silicon is (linearly) variedwith the
gate voltage of a MOS (metal–oxide–semiconductor) structure (inset in Fig. 13.15,
for MOS diodes cf. Sect. 24.5). In this experiment, the Fermi level was shifted
through the Landau levels. The equidistant peaks show that indeed each Landau
level contributes the same number of states.

http://dx.doi.org/10.1007/978-3-319-23880-7_24
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Fig. 13.13 Oscillatory
(theory, T = 6K) behavior
of a 2DEG (GaAs/AlGaAs)
in a magnetic field: (a) Fermi
level, (b) magnetization, (c)
specific heat, (d)
thermoelectric power. A
Gaussian broadening of
0.5meV was assumed.
Adapted from [991, 1111]
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13.3 Quantum Hall Effect

In high magnetic fields, at low temperatures and for high-mobility, 2D electron
gases exhibit a deviation from the classical behavior. We recall that the classical Hall
effect (i.e. considering the Lorentz force, classical Drude theory), the generation of
a field Ey perpendicular to a current flow jx (cf. Sect. 13.2.1), was described with the
conductivity tensor σ (here, for the (x, y)-plane only)
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Fig. 13.14 Shubnikov–de
Haas oscillations at a
modulation-doped
AlGaAs/GaAs
heterostructure with a
2DEG, n = 1.7 × 1017 cm−2

and μ = 11 400cm2/Vs.
Data from [1112]

0 2 64 8

H layersAlGaAs/GaAs

Fig. 13.15 Shubnikov–de
Haas oscillations of a 2DEG
at the (100) surface of p-type
silicon (100�cm) at a
magnetic field of 33kOe and
T = 1.34K. The inset shows
schematically the contact
geometry. Data from [1113]
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n+ n+

σ = σ0

1 + ω2
c τ 2

(
1 ωc τ

−ωc τ 1

)
(13.39a)

σxx = σ0
1

1 + ω2
c τ 2

→ 0 (13.39b)

σxy = σ0
ωc τ

1 + ω2
c τ 2

→ n e

B
, (13.39c)

where σ0 is the zero-field conductivity σ0 = ne2τ/m∗ (8.5). The arrows denote the
limit for ωcτ → ∞, i.e. large fields. The resistivity tensor ρ = σ−1 is given by

ρ =
(

ρxx ρxy

−ρxy ρxx

)
(13.40a)

ρxx = σxx

σ2
xx + σ2

xy

→ 0 (13.40b)

http://dx.doi.org/10.1007/978-3-319-23880-7_8
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ρxy = −σxy

σ2
xx + σ2

xy

→ − B

n e
. (13.40c)

13.3.1 Integral QHE

Experiments yield strong deviations from the linear behavior of the transverse resis-
tivity ρxy = Ey/jx = BRH with the Hall coefficient RH = −1/(ne) with increasing
magnetic field is observed at low temperatures for samples with high carrier mobility,
i.e. ωcτ � 1 (Fig. 13.16). In Fig. 13.17a,b, Hall bars are shown for 2DEGs in silicon
metal–oxide–semiconductor field-effect transistor (Si-MOSFET) electron inversion
layers and at GaAs/AlGaAs heterostructures, respectively.

The Hall resistivity exhibits extended Hall plateaus with resistivity values that are
given by

ρxy = 1

i

h

e2
, (13.41)

i.e. integer fractions of the quantized resistance ρ0 = h/e2 =25812.807…�, which
is also called the von-Klitzing constant. In Fig. 13.16, a spin splitting is seen for the
n = 1 Landau level (and a small one for the n = 2). We note that the topmost Hall

Fig. 13.16 Hall resistivity
ρxy and longitudinal
resistivity ρxx for a
modulation-doped
GaAs/AlGaAs
heterostructure
(n = 4 × 1011 cm−2,
μ = 8.6 × 104 cm2/Vs) at
50mK as a function of
magnetic field (10kG=1T).
The numbers refer to the
quantum number and spin
polarization of the Landau
level involved. The inset
shows schematically the Hall
bar geometry, VL (VH)
denotes the longitudinal
(Hall) voltage drop.
Reprinted with permission
from [1114], ©1982 APS
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Fig. 13.17 (a) Silicon MOS (metal–oxide–semiconductor) structure of K. v. Klitzing’s et al. origi-
nal experiments. (b) GaAs/AlGaAs heterostructure sample grown with molecular beam epitaxy for
QHE measurements, chip carrier and bond wires. Reprinted with permission from [1115]

plateau is due to the completely filled n = 0 Landau level; the resistance is ρ0/2 due
to the spin degeneracy of 2.

The integral quantumHall effect, first reported in [1116, 1117], and the value forρ0
are found for a wide variety of samples and conditions regarding sample temperature,
electron density or mobility of the 2DEG and the materials of the heterostructure.

Within the plateau the resistivity is well defined within 10−7 or better up to 4 ×
10−9. A precise determination allows for a newnormal for the unit Ohm [1118, 1119],
being two orders of magnitude more precise than the realization in the SI system,
and an independent value for the fine-structure constant α = e2

�c
1

4πε0
. At the same

time, the longitudinal resistivity, starting from the classical value for small magnetic
fields, exhibits oscillations and eventually it is zero for the plateaus in ρxy. For ρxx

values of 10−10 �/� have beenmeasured, which corresponds to 10−16 �/cm for bulk
material, a value three orders of magnitude smaller than for any nonsuperconductor.

The interpretation of the quantum Hall effect(s) is discussed in [1120] among
many other treatises. The simplest explanation is that the conductivity is zero when
a Landau level is completely filled and the next is completely empty, i.e. the Fermi
level lies between them. The temperature is small, i.e. kT � �ωc, such that no
scattering between Landau levels can occur. Thus no current, similar to a completely
filled valence band, can flow. The sheet carrier density ns is given by counting the i
filled Landau levels (degeneracy according to (13.36)) as

ns = i
e B

h
. (13.42)
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In the transverse direction energy dissipation takes place and the Hall resistivity
ρxy = B/(nse) takes the (scattering-free) values given in (13.41).

However, this argument is too simple as it will not explain the extension of the
plateaus. As soon as the system has one electron more or less, the Fermi energy will
(for a system with δ-like density of states) be located in the upper or lower Landau
level, respectively. Then, the longitudinal conductivity should no longer be zero and
the Hall resistivity deviates from the integer fraction of ρ0.

Therefore (in the localization model) an inhomogeneous (Gaussian) broadening
of the density of states is assumed. Additionally, the states in the tails of the distrib-
ution are considered nonconducting, i.e. localized, while those around the peak are
considered conductive. This mobility edge is schematically shown in Fig.13.18a–c.

When the Fermi level crosses the density of states of the broadened Landau
level (upon increase of the magnetic field), it first populates localized states and ρxx

remains at zero. When the Fermi level crosses the delocalized, conducting states, the
longitudinal conductivity shows a peak and the Hall conductivity increases from the
plateau value by e2/h to the next plateau. When the Fermi level lies within the upper
nonconducting states, the Hall resistivity remains constant in the next plateau. For
the sample in Fig. 13.16 it has been estimated that 95% of the Landau level states
are localized [1114].

In the localization model it is still astonishing that the samples exhibit the step
of e2/h in the conductivity as if all electrons on the Landau level contribute to
conduction, cf. (13.42). According to the calculations in [1123] the Hall current lost
by the localized states is compensated by an extra current by the extended states. The
behavior of the electrons in the quantum Hall regime (‘quantum Hall liquid’) can
be considered similar to that of an incompressible fluid where obstructions lead the
fluid to move with increased velocity. Nevertheless, the single particle picture seems
to be insufficient to model the IQHE.

Another model for the explanation of the QHE, supported now with plenty of
experimental evidence, is the edge state model where quantized one-dimensional
conductivity of edge channels, i.e. the presence of conductive channels along the
sample boundaries, is evoked [1124]. Due to depletion at the boundary of the sample,
the density of the 2DEG varies at the edge of the sample and ‘incompressible’ stripes
develop for which ∂μ/∂ns → ∞. When the filling factor is far from an integer, the
Hall voltage is found to vary linearly across the conductive channel and the current
is thus homogeneous over the sample (Fig. 13.18d). In the Hall plateau, the Hall
voltage is flat in the center of the channel and exhibits drops at the edges, indicating
that the current flows along the boundary of the sample (edge current) [1122] in
agreement with predictions from [1125]. Although the current pattern changes with
varying magnetic field, the Hall resistivity remains at its quantized value.

The most fundamental arguments for the explanation of the IQHE come from
gauge invariance and the presence of a macroscopic quantum state of electrons and
magnetic flux quanta [1126]. This model holds as long as there are any extended
states at all.
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Fig. 13.18 (a) Density of states D(E), (b) longitudinal conductivity σxx and (c) Hall conductivity
σxy for a Landau level as a function of the filling factor μ = n/d, where n is the electron density and
d the degeneracy of the level. In (a) the filling factor relates via the position of the Fermi level to an
energy scale. The grey areas in (a) denote localized states. The slanted dashed line in (c) has a slope
of ne/B. Adapted from [1121]. (d) Normalized Hall potential profile for different magnetic fields
around filling factor ν = 2. The overall voltage drop corresponds to 20mV. The insets show the
sample geometry and transport data. The 2DEG is from a GaAs/Al0.33Ga0.67As modulation-doped
heterostructure, ns = 4.3 × 1011 cm−2, μ = 5 × 105 cm2/Vs, T = 1.4K. Adapted from [1122]

13.3.2 Fractional QHE

For very low temperatures and in the extreme quantum limit, novel effects are
observed when the kinetic energy of the electrons is smaller than their Coulomb
interaction. New quantumHall plateaus are observed at various fractional filling fac-
tors ν = p/q.We note that the effects of the fractional quantumHall effect (FQHE) in
Fig. 13.19 mostly arise for magnetic fields beyond the n = 1 IQHE plateau. The fill-
ing factor ν = n/(eB/h) is now interpreted as the number of electrons per magnetic
flux quantum φ0 = h/e.
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Fig. 13.19 Hall resistance Rxy and magnetoresistance Rxx of a two-dimensional electron system
(GaAs/AlGaAs heterostructure) of density n = 2.33 × 1011 cm−2 at a temperature of 85mK,
versus magnetic field B. Numbers identify the filling factor ν, which indicates the degree to which
the sequence of Landau levels is filled with electrons. Plateaus are due to the integral (ν = i)
quantum Hall effect (IQHE) and fractional (ν = p/q) quantum Hall effect (FQHE). Adapted from
[1127], reprinted with permission, ©1990 AAAS

The effects of the FQHE cannot be explained by single-electron physics. The
plateaus at fractional fillings ν occur when the Fermi energy lies within a highly
degenerate Landau (or spin) level and imply the presence of energy gaps due to
many-particle interaction and the result of correlated 2D electron motion in the
magnetic field.

Adecisive role is played by themagnetic flux quanta. The presence of themagnetic
field requires the many-electron wavefunction to assume as many zeros per unit
area as there are flux quanta penetrating it. The decay of the wavefunction has a
length scale of the magnetic length l0 = √

�/(eB). Since the magnetic field implies
a 2π phase shift around the zero, such an object is also termed a vortex, being
the embodiment of the magnetic flux quanta in the electron system. Such a vortex
represents a charge deficit (compared to a homogeneous charge distribution) and
thus electrons and vortices attract each other. If a vortex and an electron are placed
onto each other, considerable Coulomb energy is gained. At ν = 1/3, there are
three times more vortices than there are electrons, each vortex representing a charge
deficit of 1/3 e. Such a system is described with many-particle wavefunctions, such
as the Laughlin theory for ν = 1/q [1126] and novel quasi-particles called composite
fermions[1128, 1129] for other fractional fillings. For further readingwe refer readers
to [1130]and references therein.
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(b)

(a)
(a)

(b)

Fig. 13.20 Weiss oscillations: (a) magnetoresistance and (b) Hall resistance of an antidot lattice
(inset in (a))with pattern (solid lines) andwithout pattern (dashed lines) atT = 1.5K. (b) Schematic
of the different orbits: (‘p’: pinned, ‘d’: drifting, ‘s’: scattered). Reprinted with permission from
[1131], ©1991 APS

13.3.3 Weiss Oscillations

In Fig. 13.20, measurements are shown for a Hall bar in which an array of antidots
(in which no conduction is possible) has been introduced by dry etching. The antidot
size is 50nm (plus depletion layer) and the period is 300nm. These obstructions for
the cyclotron motion lead to a modification of the magnetotransport properties.

Before etching of the antidot array the 2DEG has a mean free path length of
5–10μm at 4K for the mobility of ≈ 106 cm2/Vs. At low magnetic fields there is a
strong deviation of the Hall resistivity from the straight line to which the QHE levels
converge. Similarly, ρxx shows a strong effect as well.

These effects are related to commensurability effects between the antidot lat-
tice and the cyclotron resonance path. When the cyclotron orbit is equal to the lat-
tice period, electrons can fulfill a circular motion around one antidot (pinned orbit,
Fig. 13.20b) that leads to a reduction of conductivity. At high fields, drifting orbits
for which the cyclotron orbit is much smaller than the lattice period occur. At small
fields, scattering orbits also contribute for which the cyclotron radius is large and the
electron has antidots from time to time. Resonances in the Hall resistivity have been
found due to pinned orbits enclosing 1, 2, 4, 9 or 21 antidots.



Chapter 14
Nanostructures

The principles of physics, as far as I can see,
do not speak against the possibility
of maneuvering things atom by atom.

R.P. Feynman, 1959 [1132]

Abstract One-dimensional nanostructures (quantum wires) and zero-dimensional
ones (quantum dots) are discussed with regard to their various fabrication methods
and the tunable physical properties in such systems. Main effects covered are the
modified density of states, confined energy levels, (envelope) wavefunction symme-
try and the resulting novel electrical and optical properties.

14.1 Introduction

When the structural size of functional elements enters the size range of the de Broglie
matter wavelength, the electronic and optical properties are dominated by quantum-
mechanical effects. The most drastic impact can be seen from the density of states
(Fig. 14.1).

The quantization in a potential is ruled by the Schrödinger equation with appro-
priate boundary conditions. These are simplest if an infinite potential is assumed.
For finite potentials, the wavefunction leaks out into the barrier. Besides making the
calculation more complicated (and more realistic), this allows electronic coupling
of nanostructures. Via the Coulomb interaction, a coupling is even given if there
is no wavefunction overlap. In the following, we will discuss some of the fabrica-
tion techniques and properties of quantum wires (QWR) and quantum dots (QD). In
particular for the latter, several textbooks can also be consulted [1133, 1134].

© Springer International Publishing Switzerland 2016
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
DOI 10.1007/978-3-319-23880-7_14
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Fig. 14.1 Schematic
geometry and density of
states for 3D, 2D, 1D and 0D
electronic systems

14.2 Quantum Wires

14.2.1 V-Groove Quantum Wires

Quantum wires with high optical quality, i.e. high recombination efficiency and
well-defined spectra, can be obtained by employing epitaxial growth on corrugated
substrates. The technique is shown schematically in Fig. 14.2. A V-groove is etched,
using, e.g., an anisotropic wet chemical etch, into a GaAs substrate. The groove
direction is along

[
11̄0

]
. Even when the etched pattern is not very sharp on the
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Fig. 14.2 Schematic cross section of a GaAs/AlGaAs heterostructure grown on a channeled sub-
strate, illustrating the concept of self-ordered quantum-wire fabrication. Adapted from [1135]

bottom, subsequent growth of AlGaAs sharpens the apex to a self-limited radius
ρl of the order of 10nm. The side facets of the groove are {111}A. Subsequent
deposition of GaAs leads to a larger upper radius ρu > ρl of the heterostructure. The
GaAs QWR formed in the bottom of the groove is thus crescent-shaped as shown in
Fig. 14.3. A thin GaAs layer also forms on the side facets (sidewall quantum well)
and on the top of the ridges. Subsequent growth of AlGaAs leads to a resharpening
of the V-groove to the initial, self-limited value ρl. The complete resharpening after a
sufficiently thick AlGaAs layer allows vertical stacking of crescent-shaped QWRs of
virtually identical size and shape, as shown in Fig. 14.4. In this sense, the self-limiting
reduction of the radius of curvature and its recovery during barrier-layer growth leads
to self-ordering of QWR arrays whose structural parameters are determined solely
by growth parameters. The lateral pitch of such wires can be down to 240nm.

Fig. 14.3 Transmission
electron microscopy
cross-sectional image of a
crescent-shaped single
GaAs/AlGaAs quantum
wire. From [1136]
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Fig. 14.4 TEM
cross-sectional image of a
vertical stack of identical
GaAs/AlGaAs
crescent-shaped QWRs.
From [1135]

To directly visualize the lateral modulation of the band gap, a lateral cathodolu-
minescence (CL) linescan perpendicular across the wire is displayed in Fig. 14.5. In
Fig. 14.5a, the secondary electron (SE) image of the sample from Fig. 14.3 is shown
in plan view. The top ridge is visible in the upper and lower parts of the figure, while
in the middle the sidewalls with the QWR in the center are apparent. In Fig. 14.5b,
the CL spectrum along a linescan perpendicular to the wire (as indicated by the white
line in Fig. 14.5a) is displayed. The x-axis is now the emission wavelength, while
the y-axis is the lateral position along the linescan. The CL intensity is given on a
logarithmic scale to display the full dynamic range. The top QW shows almost no
variation in band gap energy (λ = 725nm); only directly at the edge close to the side-
wall does a second peak at lower energy (λ = 745nm) appear, indicating a thicker
region there. The sidewall QW exhibits a recombination wavelength of 700nm at the
edge to the top QW, which gradually increases to about 730nm at the center of the
V-groove. This directly visualizes a linear tapering of the sidewall QW from about
2.1nm thickness at the edge to 3nm in the center. The QWR luminescence itself
appears at about 800nm.

After fast capture from the barrier into the QWs and, to a much smaller extent
corresponding to its smaller volume, into the QWR, excess carrierswill diffuse into
the QWR via the adjacent sidewall QW and the vertical QW. The tapering of the
sidewall QW induces an additional drift current.
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Fig. 14.5 (a) Plan-view SE
image of single QWR
(sample A), showing top and
sidewall with QWR in the
center. The white line
indicates the position of the
linescan on which the CL
spectra linescan (b) has been
taken at T = 5K. The CL
intensity is given on a
logarithmic grey scale to
display the full dynamic
range as a function of
wavelength and position
along the white line in (a).
From [1136]

14.2.2 Cleaved-Edge Overgrowth Quantum Wires

Anothermethod to create quantumwires of high structural perfection is cleaved-edge
overgrowth (CEO) [1137], shown schematically in Fig. 14.6. First, a layered structure
is grown (single or multiple quantum wells or superlattice). Then, a {110} facet is
fabricated by cleaving (in vacuum) and epitaxy is continued on the cleaved facet.
At the junctures of the {110} layer and the original quantum wells QWRs form.
Due to their cross-sectional form they are also called T-shaped QWRs. A second
cleave and another growth step allow fabrication of CEO quantum dots [1138, 1139]
(Fig. 14.6c).

14.2.3 Nanowhiskers

Whiskers are primarily known as thin metal spikes and have been investigated in
detail [1140]. Semiconductor whiskers can be considered as (fairly short) quantum
wires. They have been reported for a number of materials, such as Si, GaAs, InP and
ZnO [1141]. A field of ZnO whiskers is shown in Fig. 14.7. If heterostructures are
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[001]

cleavage
plane

QW

QW

50nm

(a)

(b)
(c)

(d)

Fig. 14.6 Principle of CEO quantumwires and 2-fold CEO quantum dots. Part (a) depicts a layered
structure (quantum wells or superlattice, blue), (b) describes the growth on the cleaved facet used
for fabrication of quantum wires. In (c) a second cleave and growth on top of the plane allows the
fabrication of quantum dots. From [1138]. (d) Cross-sectional TEM image of CEO GaAs/AlGaAs
quantum wires. Two quantum wells (QW) and the QWR at their junction are labeled. The first
epitaxy was from left to right. The second epitaxy step was on top of the cleavage plane (dashed
line) in the upward direction. Adapted from [1139], reprinted with permission, ©1997 APS

incorporated along the whisker axis [1142], quantum dots or tunneling barriers can
be created (Fig. 14.8). The nanocrystal can also act as a nanolaser [1143, 1144]. In
ZnO nanowhiskers the conversion of mechanical energy into electrical energy has
been demonstrated [1145] based on the piezoelectric effect (Sect. 15.4).

The critical thickness hc in nanowire heterostructure is strongly modified from
the 2D situation (Sect. 5.4.1). Based on the strain distribution of a misfitted slab in
a cylindrical wire [1148] the dependence of critical thickness on the nanowhisker
radius r was developed [1149, 1150]. For given misfit ε there is a critical radius rc
for which hc is infinite for r < rc (Fig. 14.9).

http://dx.doi.org/10.1007/978-3-319-23880-7_15
http://dx.doi.org/10.1007/978-3-319-23880-7_5
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(a) (b)

Fig. 14.7 (a) Array of ZnO nanowhiskers on sapphire, fabricated using thermal evaporation.
Adapted from [1146]. (b) Single, free-standing ZnO nanowire fabricated using PLD. Adapted
from [1147]

Fig. 14.8 TEM image of a
part of an InAs whisker
40nm in diameter that
contains InP barriers. The
zooms show sharp interfaces.
On top of the whisker is a
gold droplet from the
so-called vapor–liquid–solid
growth mechanism. The
whisker axis is [001], the
viewing direction is [110].
Adapted from [1142],
reprinted with permission,
©2002 AIP

Au

InAs

InAs

InAs

InP

InP

14.2.4 Nanobelts

A number of belt-shaped nanostructures has been reported [1141]. These are wire-
like, i.e. very long in one dimension. The cross-section is rectangular with a high
aspect ratio. In Fig. 14.10a ZnO nanobelts are shown. The wire direction is [21̄.0].
The large surface is (00.1), the thickness of the belt extends in [01.0]-direction.
High resolution transmission microscopy (Fig. 14.10b) shows that these structures
are defect-free. The pyroelectric charges on the ZnO (0001) surfaces (Sect. 15.2) lead
to the formation of open (Fig. 14.11c) spirals. Closed spirals (Fig. 14.11a) occur if

http://dx.doi.org/10.1007/978-3-319-23880-7_15
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Fig. 14.9 Critical radius rc above which an infinitely thick layer with misfit ε grows coher-
ently on a cylindrical nanowire (relaxation by 60◦ dislocations, b = 0.4nm, ν = 1/3). Adapted
from [1150]

(a) (b)

Fig. 14.10 (a) SEM image of an ensemble of ZnO nanobelts. (b) HRTEM image of a single ZnO
nanobelt, viewing direction is [00.1]. The inset shows the diffraction pattern. Adapted from [1151]

the short dimension is along [00.1] and alternating charges become compensated in
a ‘slinky’-like ring (Fig. 14.11b).

14.2.5 Quantization in Two-Dimensional Potential Wells

The motion of carriers along the quantum wire is free. In the cross-sectional plane
the wavefunction is confined in two dimensions. The simplest case is for constant
cross section along the wire. However, generally the cross section along the wire
may change and therefore induce a potential variation along the wire. Such potential
variation will impact the carrier motion along the longitudinal direction. Also, a twist
of the wire along its axis is possible.

In Fig. 14.12, the electron wavefunctions in a V-groove GaAs/AlGaAs QWR
are shown. Further properties of V-groove QWRs have been reviewed in [1153].
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(a) (b) (c)

Fig. 14.11 (a) Bright field and (b) dark field TEM image of a ZnO nanoring formed by the ‘slinky’-
like growth of a nanobelt. (c) SEM image of an open ZnO nanospiral. The insets in (a, c) show
schematically the surface charge distribution. Adapted from [1152]

Fig. 14.12 Electron
wavefunctions (|Ψ |2 on
logarithmic grey scale) for
the first three confined levels
for the QWR of Fig. 14.3.
From [1136]

n=1n=1

n=2n=2

n=3n=3

In Fig. 14.13, the excitonic electron and holewavefunctions are shown for a (strained)
T-shaped QWR.

In Fig. 14.14a the atomic structure of a very thin ZnO nanowhisker with a cross-
section consisting of seven hexagonal unit cells is shown. The theoretical one-
dimensional band structure [1155] is shown in Fig. 14.14b together with the charge
density of the lowest conduction band state (LUMO) and the highest valence band
state (HOMO). The band gap is generally too small because of the LDA method
used.1 In [1155] also the properties of nanowires with various diameters are com-
pared. The HOMO at Γ lies only 80meV above the top of valence band of bulk
ZnO, and its position changes little with the wire diameter. It is mainly composed
by surface oxygen 2p like dangling bonds (Fig. 14.14d). The LUMO (Fig. 14.14c) is
delocalized in the whole nanowire, indicating that it is a bulk state. The delocalized

1The LDA in [1155] yields Eg = 0.63eV for the bulk ZnO band gap; its experimental value is
3.4eV.



470 14 Nanostructures

hhe

(a)

(b)

[110]

[001]

[110]

[110] [001]

Fig. 14.13 (a) Three-dimensional view of the electron and (heavy) hole part of the excitonic
wavefunction in a 4 × 5nm T-shaped In0.2Ga0.8As/GaAs QWR. The orbitals correspond to 70%
probability inside. (b) Cross section through the electron and hole orbitals in their center along the
wire direction. Reprinted with permission from [1154], ©1998 APS

(a)

(b) (c)

(d)

Fig. 14.14 (a) Atomic arrangement of a 1nm wide ZnO nanowire. (b) Theoretical band structure
and charge density of the (c) lowest conduction band and (d) highest valence band state. Adapted
from [1155]

distribution is also responsible for the large dispersion of the LUMO from Γ to A.
The energy of the LUMO increases substantially with decreasing diameter due to
the radial confinement.
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14.3 Quantum Dots

14.3.1 Quantization in Three-Dimensional Potential Wells

The solutions for the d-dimensional (d = 1, 2, or 3) harmonic oscillator, i.e. the
eigenenergies for the Hamiltonian

Ĥ = p2

2m
+

d∑

i=1

1

2
m ω2

0 x2
i (14.1)

are given by

En =
(

n + d

2

)
�ω0, (14.2)

with n = 0, 1, 2, . . . . More detailed treatments can be found in quantum-mechanics
textbooks.

Next, we discuss the problem of a particle in a centrosymmetric finite potential
well with different masses m1 in the dot and m2 in the barrier. The Hamiltonian and
the potential are given by

Ĥ = ∇ �
2

2m
∇ + V (r) (14.3)

V (r) =
{−V0 , r ≤ R0

0 , r > R0
. (14.4)

The wavefunction can be separated into radial and angular components Ψ (r) =
Rnlm(r) Ylm(θ,φ), where Ylm are the spherical harmonic functions. For the ground
state (n = 1) the angular momentum l is zero and the solution for the wavefunction
(being regular at r = 0) is given by

R(r) =
{

sin(k r)

k r , r ≤ R0

sin(k R0)

k R0
exp (−κ (r − R0)) , r > R0

(14.5a)

k2 = 2m1 (V0 + E)

�2
(14.5b)

κ2 = −2m2 E

�2
. (14.5c)

From the boundary conditions that both R(r) and 1
m

∂R(r)

∂r are continuous across the
interface at r = R0, the transcendental equation

k R0 cot (k R0) = 1 − m1

m2
(1 + κ R0) (14.6)
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is obtained. From this formula the energy of the single particle ground state in a
spherical quantum dot can be determined. For a given radius, the potential needs
a certain strength V0,min to confine at least one bound state; this condition can be
written as

V0,min = π2
�
2

8m∗ R2
0

(14.7)

for m1 = m2 = m∗. For a general angular momentum l, the wavefunctions are given
by spherical Bessel functions jl in the dot and spherical Hankel functions hl in the
barrier. Also, the transcendental equation for the energy of the first excited level can
be given:

k R0 cot (k R0) = 1 + k2 R2
0

m1

m2

2+2κ R0+κ2 R2
0

1+κ R0
− 2

. (14.8)

In the case of infinite barriers (V0 → ∞), the wavefunction vanishes outside the
dot and is given by (normalized)

Rnml(r) =
√

2

R3
0

jl(knl r)

jl+1(knl R0)
, (14.9)

where knl is the nth zero of the Bessel function jl , e.g. kn0 = nπ. With two-digit
precision the lowest levels are determined by

knl l = 0 l = 1 l = 2 l = 3 l = 4 l = 5

n = 0 3.14 4.49 5.76 6.99 8.18 9.36
n = 1 6.28 7.73 9.10 10.42
n = 2 9.42

The (2l + 1) degenerate energy levels Enl are (V0 = ∞, m = m1):

Enl = �
2

2m

k2
nl

R2
0

. (14.10)

The 1s, 1p, and 1d states have smaller eigenenergies than the 2 s state.
A particularly simple solution is given for a cubic quantum dot of side length a0

and infinite potential barriers. One finds the levels Enx ny nz :

Enx ny nz = �
2

2m
π2

n2
x + n2

y + n2
z

a2
0

, (14.11)

with nx , ny , nz = 1, 2, . . . . For a sphere, the separation between the ground and
first excited state is E1 − E0 ≈ E0, for a cube and a two-dimensional harmonic
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Fig. 14.15 Isosurface plots (25% of maximum value) of the total probability densities (a, b) and
valence-band projections (c)–(e) of bound electron (a) and hole (b)–(e) states in a model pyramidal
InAs/GaAs quantum dot with base length b = 11.3 nm. The percentages are the integrals of the
projections to the bulk heavy, light and split-off hole bands, respectively, and the isosurfaces show
the corresponding projection shapes. For each valence-band state the difference from 100% is the
integral

∫ ∞
−∞ |ψs↑|2 + |ψs↓|2d3r of the s-type (conduction band) Bloch function projection (not

shown). Reprinted with permission from [1159]

oscillator it is exactly E0. For a three-dimensional harmonic oscillator this quantity
is E1 − E0 = 2E0/3.

For realistic quantum dots a full three-dimensional simulation of strain,
piezoelectric fields and the quantum-mechanical confinement must be performed
[1156, 1157]. In Fig. 14.15, the lowest four electron and hole wavefunctions in a
pyramidal InAs/GaAs quantum dot (for the strain distribution see Fig. 5.27 and for
the piezoelectric fields see Fig. 15.16) are shown. The figure shows that the lowest
hole states have dominantly heavy-hole character and contain admixtures of the other
hole bands. The wavefunction in such quantum dots can be imaged using scanning
tunneling microscopy [1158].

14.3.2 Electrical and Transport Properties

The classical electrostatic energy of a quantum dot with capacitance C that is capac-
itively coupled to a gate (Fig. 14.16) at a bias voltage Vg is given by

http://dx.doi.org/10.1007/978-3-319-23880-7_5
http://dx.doi.org/10.1007/978-3-319-23880-7_15
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Fig. 14.16 (a) Schematic drawing of a quantum dot with tunnel contacts and gate electrode. (b)
Realization with an in-plane gate structure. The distance between ‘F’ and ‘C’ (gate electrode) is
1µm. Electron transport occurs from a 2DEG between 3/F to 4/F through the quantum points
contacts 1/3 and 2/4. Part (b) reprinted with permission from [1160]

E = Q2

2C
− Q α Vg, (14.12)

where α is a dimensionless factor relating the gate voltage to the potential of the
island and Q is the charge of the island.

Mathematically, minimum energy is reached for a charge Qmin = α C Vg. How-
ever, the charge has to be an integer multiple of e, i.e. Q = Ne. If Vg has a value,
such that Qmin/e = Nmin is an integer, the charge cannot fluctuate as long as the
temperature is low enough, i.e.

kT � e2

2C
. (14.13)

Tunneling into or out of the dot is suppressed by the Coulomb barrier e2/2C ,
and the conductance is very low. Analogously, the differential capacitance is small.
This effect is called Coulomb blockade. Peaks in the tunneling current (Fig. 14.17b),
conductivity (Fig. 14.17a) and the capacitance occur, when the gate voltage is such
that the energies for N and N + 1 electrons are degenerate, i.e. Nmin = N + 1

2 . The
expected level spacing is

e α ΔVg = e2

C
+ ΔεN , (14.14)

where ΔεN denotes the change in lateral (kinetic) quantization energy for the added
electron. e2/C will be called the charging energy in the following. A variation of the
source–drain voltage (for a given gate voltage) leads to a so-called Coulomb staircase
since more and more channels of conductivity contribute to the current through the
device (Fig. 14.18). Single electron tunneling (SET) is investigated with respect to
metrology for a novel ampere standard [1118].
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Fig. 14.17 (a) Conductivity (Coulomb oscillations) and (b) current–voltage diagram at different
gate voltages (Coulomb staircase, shifted vertically for better readability) of a tunnel junction with
a quantum dot as in Fig. 14.16. Adapted from [1160]

(a) (b) (c)

(f)(e)(d)

Fig. 14.18 Chemical potentials of source and drain and of a quantum dot in between them. (a), (b),
and (c) show the sequence for a variation of the gate voltage and visualize the origin of the Coulomb
oscillations (see Fig. 14.17a). (d), (e) and (f) visualize a variation of the source–drain voltage and
the origin of the Coulomb staircase (cf. Fig. 14.17b)

A lot of research so far has been done on lithographically defined systems where
the lateral quantization energies are small and smaller than the Coulomb charging
energy. In this case, periodic oscillations are observed, especially for large N . A
deviation from periodic oscillations for small N and a characteristic shell structure
(at N = 2, 6, 12) consistent with a harmonic oscillator model (�ω0 ≈ 3meV) has
been reported for≈500-nm diameter mesas (Fig. 14.19b, c). In this structure, a small
mesa has been etched and contacted (top contact, substrate back contact and side
gate). The quantum dot consists of a 12-nm In0.05Ga0.95As quantum well that is
laterally constricted by the 500-nm mesa and vertically confined due to 9- and 7.5-
nm thickAl0.22Ga0.68As barriers (Fig. 14.19a). By tuning the gate voltage, the number
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(a)

(b)

(c)

Fig. 14.19 (a) Schematic sample geometry for side-gated In0.05Ga0.95As/Al0.22Ga0.68As disk-
shaped quantum dot. (b) Coulomb oscillations in the current versus gate voltage at B = 0T
observed for a D = 0.5µm disk-shaped dot. (c) Addition energy versus electron number for two
different dots with D = 0.50 and 0.44µm. Adapted from [1161]

of electrons can be varied within 0 and 40. Measurements are typically carried out
at a sample temperature of 50mK.

In the sample shown in Fig. 14.20, self-assembled QDs are positioned in the
channel under a split-gate structure. In a suitable structure, tunneling through a single
QD is resolved.

In small self-assembled quantum dots single-particle level separations can be
larger than or similar to the Coulomb charging energy. Classically, the capacitance
for a metal sphere of radius R0 is given as

C0 = 4π ε0 εr R0, (14.15)

e.g. C0 ≈ 6aF for R0 = 4nm in GaAs, resulting in a charging energy of 26meV.
Quantum mechanically, the charging energy is given in first-order perturbation
theory by

E21 = 〈00|Wee|00〉 =
∫∫

Ψ 2
0 (r1e) Wee(r1e , r2e ) Ψ 2

0 (r2e ) d
3r1e d

3r2e , (14.16)
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Fig. 14.20 (a) Schematic layer sequence of epitaxial structure comprising a n-AlGaAs/GaAs het-
erointerface with a two-dimensional electron gas and a layer of InAs/GaAs quantum dots. (b) and
(c) are corresponding band diagrams with no gate bias and gate voltage below the critical value,
respectively. (d) Experimental dependence of drain current on gate voltage in a split-gate structure
at a drain source voltage of 10µV. Inset: Dependence of valley current on temperature (squares)
with theoretical fit. Reprinted with permission from [1162], ©1997 AIP

where Wee denotes the Coulomb interaction of the two electrons and Ψ0 the ground
state (single particle) electron wavefunction. The matrix element gives an upper
bound for the charging energy since the wavefunctions will rearrange to lower their
overlap and the repulsive Coulomb interaction. For lens-shaped InAs/GaAs quantum
dots with radius 25nm a charging energy of about 30meV has been predicted.

14.3.3 Self-Assembled Preparation

The preparation methods for QDs split into top-down (lithography and etching ) and
bottom-up (self-assembly) methods. The latter achieve typically smaller sizes and
require less effort (at least concerning the machinery).

Artificial Patterning

Using artificial patterning, based on lithography and etching (Fig. 14.21), quantum
dots of arbitrary shape can be made (Fig. 14.22). Due to defects introduced by high-
energy ions during reactive ion etching the quantum efficiency of such structures
is very low when they are very small. Using wet-chemical etching techniques the
damage can be significantly lowered but not completely avoided. Since the QDs
have to compete with other structures that can be made structurally perfect, this is
not acceptable.

Template Growth

Template growth is another technique for the formation of nanostructures. Here,
a mesoscopic structure is fabricated by conventional means. The nanostructure is
created using size-reduction mechanisms, e.g. faceting, (Fig. 14.23). This method
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Fig. 14.21 Lithography and
etching techniques for the
fabrication of semiconductor
structures

can potentially suffer from low template density, irregularities of the template, and
problems of reproducibility.

Colloids

Another successful route to nanocrystals is the doping of glasses with subsequent
annealing (color filters). When nanocrystals are prepared in a sol-gel process, the
nanoparticles are present as a colloid in wet solution (Fig. 14.24). With the help of
suitable stabilizing agents they are prevented from sticking to each other and can be
handled in ensembles and also individually.

Mismatched Epitaxy

The self-assembly (or self-organization) relies on strained heterostructures
that achieve energy minimization by island growth on a wetting layer (Stranski–
Krastanow growth mode, see Sect. 12.2.3 and [1133]). Additional ordering
mechanisms [1166, 1167] lead to ensembles that are homogeneous in size2 [1168]
and shape [1169] (Fig. 14.25).

2The ordering in size is remarkable. Typically Ostwald ripening (due to the Gibbs–Thomson effect;
smaller droplets have larger vapor pressure and dissolve, larger droplets accordingly grow) occurs
in an ensemble of droplets or nuclei. In the case of strained QDs, surface energy terms stabilize a
certain QD size.

http://dx.doi.org/10.1007/978-3-319-23880-7_12


14.3 Quantum Dots 479

Fig. 14.22 Quantum dots of various shapes created by lithography and etching techniques.
From [1163]

Fig. 14.23 (a) Schematic representation of growth on top of a predefined template, (b) cross-
sectional TEM of quantum dot formation at the apex. Reprinted with permission from [1164],
©1992 MRS

Fig. 14.24 CdSe colloidal nanoparticles. From [1165]
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Fig. 14.25 Self-organized formation of InGaAs/GaAs quantum dots during epitaxy. Left Plan-view
and cross-sectional transmission electron micrographs. Right Histogram of vertical and lateral size
of the quantum dots. Reprinted with permission from [1170], ©1993 AIP
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Fig. 14.26 Distribution of strain energy for (left) uncapped island and (right) island embedded in
host matrix. Numerical values are for InAs/GaAs

When a thin layer of a semiconductor is grown on top of a flat substrate with
different lattice constant, the layer suffers a tetragonal distortion (Sect. 5.3.3). Strain
can only relax along the growth direction (Fig. 14.26). If the strain energy is too large
(highly strained layer or large thickness), plastic relaxation via dislocation formation
occurs. If there is island geometry, strain can relax in all three directions and about
50% more strain energy can relax, thus making this type of relaxation energetically
favorable.When the island is embedded in the host matrix, the strain energy is similar
to the 2D case and the matrix becomes strained (metastable state).

When such QD layers are vertically stacked, the individual quantum dots grow on
top of each other (Fig. 14.27) if the separation is not too large (Fig. 14.29). This effect
is due to the effect of the underlying QD. In the case of InAs/GaAs (compressive
strain), the buried QD stretches the surface above it (tensile surface strain). Thus,
atoms impinging in the next QD layer find a smaller strain right on top of the buried

http://dx.doi.org/10.1007/978-3-319-23880-7_5
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Fig. 14.27 Cross-sectional TEM image of a stack of five layers of quantum dots. Due to strain
effects, vertical arrangement is achieved

Fig. 14.28 Cross-sectional
STM image of a stack of five
InAs quantum dots in a GaAs
matrix. Individual In atoms
can be observed in-between
the wetting layers and the
quantum dots. Each quantum
dot layer was formed by
growing 2.4ML of InAs. The
intended distance between
the quantum dot layers was
10nm. Image size is
55 × 55nm2. Reprinted with
permission from [1171],
©2003 AIP

QDs. In STM images of the cross section through (XSTM) such a stack (Fig. 14.28)
individual indium atoms are visible and the shape can be analyzed in detail [1171].

The vertical arrangement can lead to further ordering since a homogenization in
lateral position takes place. If two QDs in the first layers are very close, their strain
fields overlap and the second layer ‘sees’ only one QD.

The lateral (in-plane) ordering of the QDs with respect to each other occurs in
square or hexagonal patterns and is mediated via strain interaction through the sub-
strate. The interaction energy is fairly small, leading only to short-range in-plane
order [1166] as shown in Fig. 14.30. The in-plane ordering can be improved up to
the point that regular one- or two-dimensional arrays form or individual quantum
dots are placed on designated positions using directed self-assembly [1133]. Among
others, dislocation networks buried under the growth surface of the nanostructure,
surface patterning and modification have been used to direct the QD positioning.
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Fig. 14.29 Experimentally observed pairing probability inMBE-grown stacks of InAs/GaAs quan-
tum dots as a function of the spacer-layer thickness. Data are taken from (a) (110) and (b) (1–10)
cross-sectional TEM images. The filled circles are fit to data from theory of correlated island for-
mation under strain fields. Reprinted with permission from [1172], ©1995 APS

Ion-Beam Erosion

During the erosion of a surface with low-energy ion beam sputtering ordered pat-
terns of dots appear [1173–1176]. Isotropic [1177] and hexagonal [1173, 1175]
(Fig. 14.31) near-range ordering has been observed. The pattern formation mecha-
nism is based on the morphology-dependent sputter yield and further mechanisms
of mass redistribution [1178]. Also linear patterns have been reported [1179].

14.3.4 Optical Properties

The optical properties of QDs are related to their electronic density of states. In
particular, optical transitions are allowed only at discrete energies due to the zero-
dimensional density of states.

Photoluminescence from a single QD is shown in Fig. 14.32. The δ-like sharp
transition is strictly true only in the limit of small carrier numbers (�1 exciton per
dot on average) since otherwise many-body effects come into play that can encom-
pass recombination from charged excitons or multiexcitons. At very low excitation
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Fig. 14.30 Lateral ordering of QD array. (d) Plan-view TEM of QD array on which the statistical
evaluation is based. (a) Two-dimensional histogram of QDs as a function of the nearest-neighbor
distance and direction, (b,c) projections of part (a). Solid lines in (b) and (c) are theory for square
array with σ = 20% deviation from ideal position. Adapted from [1133] and [1166]

(a) (b)

Fig. 14.31 (a) AFM image of a Si (001) substrate after 960min of ion sputtering (1.2keV Ar+,
normal incidence). (b) Two-dimensional autocorrelation function from a 400 × 400nm2 area of
image in part (a). Adapted from [1175]

density the recombination spectrum consists only of the one-exciton (X) line. With
increasing excitation density small satellites on either side of the X-line develop
that are attributed to charged excitons (trions) X+ and X−. On the low-energy
side, the biexciton (XX) appears. Eventually, the excited states are populated and
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Fig. 14.32 Optical emission
spectra (T = 2.3K) of a
single InGaAs/GaAs
quantum dot at different
laser excitation levels P as
labeled. The single exciton
(X) and biexciton (XX) lines
are indicated. Adapted from
[1180]

a multitude of states contribute with rich fine structure. In bulk material the biex-
citon (Sect. 9.6.10) is typically a bound state, i.e. its recombination energy EXX is
lower than that of the exciton EX. A similar situation is present in Fig. 14.32. It was
pointed out in [1181] that in QDs the biexciton recombination energy can also be
larger than the exciton recombination energy. In [1182] the modification of the QD
confinement potential of InAs/GaAs QDs by annealing was reported. The exciton
binding energy (EX-EXX) is tuned from positive (‘normal’) to negative values upon
annealing (Fig. 14.33).

The charging state of the exciton can be controlled in a field-effect structure. The
recombination energy is modified due to Coulomb and exchange effects with the
additional carriers. In charge-tunable quantum dots [1183] and rings [1184] exciton
emission has been observed in dependence of the number of additional electrons.
The electron population can be controlled in a Schottky-diode-like structure through

http://dx.doi.org/10.1007/978-3-319-23880-7_9
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Fig. 14.33 Biexciton
binding energy determined
for a single InAs/GaAs
quantum dot for various
annealing times. Data from
[1182]

Fig. 14.34 Luminescence of
charged excitons from a
single quantum ring at
T = 4.2K versus the bias
voltage with which the
number of electrons in the
quantum dot N is tuned from
zero to N > 3. Adapted from
[1184], reprinted with
permission from Nature,
©2000 Macmillan
Magazines Limited

the manipulation of the Fermi level with the bias voltage. At high negative bias all
charge carriers tunnel out of the ring and no exciton emission is observed. A variation
of the bias then leads to an average population with N = 1, 2, 3, . . . electrons. The
recombination of additional laser-excited excitons depends (due to the Coulomb
interaction) on the number of the electrons present (Fig. 14.34). The singly negatively
charged exciton X− is also called a trion.

The interaction of a spin with an exciton in a CdTe quantum dot has been observed
in [1185]. If the CdTe quantum dot is pure, a single line arises. If the dot contains a
single Mn atom, the exchange interaction of the exciton with the Mn S = 5/2 spin
leads to a six-fold splitting of the exciton line (Fig. 14.35). In an external magnetic
field a splitting into a total of twelve lines due to Zeeman effect at the Mn spin is
observed.
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Fig. 14.35 Photoluminescence
spectrum of a single
CdTe/ZnSe quantum dot
containing a single Mn atom
(T = 5K)

Fig. 14.36 Ensemble
photoluminescence spectrum
(T = 293K, excitation
density 500W/cm2) of
InAs/GaAs QDs

In a QD ensemble, optical transitions are inhomogeneously broadened due to
fluctuations in the QD size and the size dependence of the confinement energies
(Fig. 14.36). Interband transitions involving electrons and holes suffer from the vari-
ation of the electron and hole energies:

σE ∝
(∣∣

∣∣
∂Ee

∂L

∣
∣∣∣ +

∣∣∣
∣
∂Eh

∂L

∣
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)
δL . (14.17)
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Fig. 14.37 Luminescence
(under UV excitation) from
flasks of colloidal CdTe
quantum dots with
increasing size (from left to
right). From [1165]

A typical relative size inhomogeneity of σL/L of 7% leads to several tens of
meV broadening. Additional to broadening due to different sizes fluctuations of the
quantum dot shape can also play a role. The confinement effect leads to an increase
of the recombination energy with decreasing quantum-dot size. This effect is nicely
demonstrated with colloidal quantum dots of different size as shown in Fig.14.37.



Chapter 15
Polarized Semiconductors

Abstract In this chapter semiconductors with a spontaneous polarization and fer-
roelectric semiconductors are discussed. Also the effect of piezoelectricity is treated
in some detail for zincblende and wurtzite materials.

15.1 Introduction

Semiconductors can have an electric polarization. Such polarization can be induced
by an external electric field (Fig. 15.1a). This phenomenon, i.e. that the semiconduc-
tor is dielectric, has been discussed already in Chap. 9. In this chapter, we discuss
pyroelectricity, i.e. a spontaneous polarization without an external field (Fig. 15.1b),
ferroelectricity,1 i.e. pyroelectricity with a hysteresis (Fig. 15.1c) and piezoelectric-
ity, i.e. a polarization due to external stress.

15.2 Spontaneous Polarization

The reason for a spontaneous polarization Psp (without external electric field) is the
static, relative shift of positive and negative charges in the unit cell. For a slab of semi-
conductor material (thus ignoring depolarization effects present in other geometries),
the polarization causes polarization charges located at the upper and lower surfaces
(Fig. 15.2a). The polarization vectorP points from the negative to the positive charge.
The electric field due to the polarization charges has the opposite direction. In the
absence of free charges, the Maxwell equation ∇ · D = 0 yields for piecewise con-
stant fields at a planar interface (Fig. 15.2b) (D2 − D1) · n12 = 0 where n12 is the
surface normal pointing from medium 1 to medium 2. Therefore, the polarization
charge σP = ε0∇ · E is given by

1Ferromagnetic semiconductors are discussed in Chap.16. We note that there exist so called
multiferroic materials that possess more than one ferroic property [1186, 1187].
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Fig. 15.1 Schematic representation of the polarization versus external electric field dependence
for (a) dielectric, (b) pyroelectric and (c) ferroelectric semiconductors
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Fig. 15.2 (a) Surface polarization chargesσP on a slab of semiconductormaterial with polarization.
The electric field is given by E = −P/ε0. (b) Polarization charge σP at an interface between two
semiconductors with different polarization. In the depicted situation σ is negative

σP = −(P2 − P1) · n12. (15.1)

Polarization charges develop at interfaces where the polarization is discontinuous,
e.g. an interface between two semiconductors with different spontaneous polariza-
tion. Vacuum (at a surface) represents a special case with P = 0.

For cubic zincblende structure semiconductors, Psp is typically fairly small. The
anisotropy of the wurtzite structure allows for sizeable effects (Fig. 15.3). The main
cause is the nonideality of the cell-internal parameter u (cf. Sect. 3.4.5).

15.3 Ferroelectricity

Ferroelectric semiconductors exhibit a spontaneous polarization in the ferroelectric
phase and zero spontaneous polarization in the paraelectric phase. As a function of
temperature, the ferroelectric material undergoes a phase transition from the high-
temperature paraelectric phase into the ferroelectric phase. There can be further
phase transitions between different ferroelectric phases that differ in the direction of
the polarization. The literature until 1980 is summarized in [1189]. A more recent
treatment can be found in [1190,1191].

PbTiO3 has perovskite structure (cf. Sect. 3.4.10). It exhibits a phase transition
at TC = 490 ◦C from the cubic into the (ferroelectric) tetragonal phase as shown in
Fig. 15.4a. Mostly the cell symmetry changes, while the cell volume remains almost
constant. A more complicated situation arises for BaTiO3. At 120 ◦C the transition

http://dx.doi.org/10.1007/978-3-319-23880-7_3
http://dx.doi.org/10.1007/978-3-319-23880-7_3
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Fig. 15.4 (a) Cell parameters of PbTiO3 as a function of temperature. Adapted from [1194].
(b) Phase transitions of BaTiO3 as a function of temperature. The spontaneous polarization PS
points along 〈100〉, 〈110〉 and 〈111〉 in the tetragonal (C4v), orthorhombic (C2v) and trigonal
(C3v , rhombohedral) phase, respectively. Adapted from [1195]

into the ferroelectric phase occurs (Fig. 15.4b) that is tetragonal with the polarization
in the [100] direction. At −5 ◦C and −90 ◦C transitions occur into an orthorhombic
and a rhombohedral (trigonal) phase, respectively. The largest polarization is caused
by a displacement of the negatively (O) and positively (Ba, Ti) charged ions of the
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Fig. 15.5 (a) Crystal structure of BaTiO3 (see Fig. 3.26). (b) Schematic tetragonal deformation
below the Curie temperature, generating a dipole moment

unit cell by δ ≈ 0.02nm (Fig. 15.5). Such an origin of the spontaneous polarization
is called a displacement transition.2

15.3.1 Materials

A large class of ferroelectric semiconductors are of the type ABO3, where A stands
for a cation with larger ionic radius and B for an anion with smaller ionic radius.
Many ferroelectrics have perovskite (CaTiO3) structure. They are A2+B4+O2−

3 , e.g.
(Ba,Ca,Sr) (Zi,Zr)O3 or A1+B5+O2−

3 , e.g. (Li,Na,K) (Nb,Ta)O3. Ferroelectrics can
also be alloyed. Alloying in the B component yields, e.g. PbTixZr1−xO3 also called
PZT. PZT is widely used for piezoelectric actuators. Also, alloying in the A compo-
nent is possible, e.g. BaxSr1−xTiO3.

Another class of ferroelectrics are AVBVICVII compounds, such as SbSI, SbSBr,
SbSeI, BiSBr. These materials have a width of the forbidden band in the ∼2eV
range. A further class of ferroelectric semiconductors are AV

2 B
VI
3 compounds, such

as Sb2S3.

15.3.2 Soft Phonon Mode

The finite displacement of the sublattices in the ferroelectric means that the related
lattice vibration has no restoring force. The displacement is, however, finite due to
higher-order terms (anharmonicity). Thus, for T → TC ωTO → 0. Such a mode

2The widely accepted model for such ferroelectric is that the basic displacement occurs into the
〈111〉-direction at low temperature. The three higher symmetry phases at higher temperature are the
result of 2 (orthorhombic), 4 (tetragonal) or 8 (cubic) allowed 〈111〉 orientations which make the
macroscopically averaged polarization appear in 〈110〉- or 〈100〉-direction or vanishing altogether,
respectively [1192, 1193].

http://dx.doi.org/10.1007/978-3-319-23880-7_3
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Fig. 15.6 (a) Decrease of the transverse phonon mode of SbSI close to the Curie temperature of
TC = 288K. The dashed curved line represents a |T − TC|1/2 dependence. Adapted from [1196].
(b) Dielectric constant of various perovskites versus 1/(T −TC) in the paraelectric phase (T > TC).
Adapted from [1197]

is called a soft phonon mode. The decrease of the phonon frequency is shown in
Fig. 15.6a for SbSI.

From the LST relation (5.49), it follows that the static dielectric function must
increase strongly. The increase is ∝ (T − TC)−1 (Fig. 15.6b).

15.3.3 Phase Transition

In the case of ferroelectrics, the order parameter for the Ginzburg–Landau theory
of phase transitions is the spontaneous polarization P . The free energy F of the
ferroelectric crystal is written in terms of the free energy of the paraelectric phase
F0 and is expanded in powers of P (here up to P6) as

F = F0 + 1

2
α P2 + 1

4
β P4 + 1

6
γ P6. (15.2)

In this equation, we have neglected effects due to charge carriers, an external electric
field or external stresses andwe assume homogeneous polarization. In order to obtain
a phase transition, it has to be assumed that α has a zero at a certain temperature TC

and we assume (expanding only to the linear term)

α = α0 (T − TC). (15.3)

Second-Order Phase Transition

For modeling a second-order phase transition, we set γ = 0. Thus, the free energy
has the form (Fig. 15.7a)

F = F0 + 1

2
α P2 + 1

4
β P4. (15.4)

http://dx.doi.org/10.1007/978-3-319-23880-7_5
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Fig. 15.7 (a) Schematic plot of the free energy versus spontaneous polarization for a second-
order phase transition. α > 0 (α < 0) corresponds to the paraelectric (ferroelectric) phase. (b)
Spontaneous polarization of LiTaO3 as a function of temperature exhibiting a second-order phase
transition. The dashed line is theory with suitable parameters. Adapted from [1198]

The equilibrium condition with regard to the free energy yields a minimum for

∂F

∂P
= α P + β P3 = 0 (15.5a)

∂2F

∂P2
= α + 3β P2 > 0 . (15.5b)

Equation (15.5a) yields two solutions. P = 0 corresponds to the paraelectric
phase. P2 = −α/β is the spontaneous polarization in the ferroelectric phase. The
condition from (15.5b) yields that α > 0 in the paraelectric phase, while α < 0 in
the ferroelectric phase. Also, β > 0 below the Curie temperature (β is assumed to
be temperature independent in the following). Using (15.3), the polarization is given
as (Fig. 15.7b)

P2 = α0

β
(T − TC) . (15.6)

Therefore, the entropy S = − ∂F
∂T and the discontinuity ΔCp of the heat capacity

Cp = T
(

∂S
∂T

)
p at the Curie point TC are given by

S = S0 + α2
0

β
(T − TC) (15.7a)

ΔCp = α2
0

β
TC, (15.7b)

with S0 = − ∂F0
∂T being the entropy of the paraelectric phase. This behavior is in

accordance with a second-order phase transition with vanishing latent heat (contin-
uous entropy) and a discontinuity of the heat capacity. The dielectric function in
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Fig. 15.8 (a) Schematic plot of the free energy versus spontaneous polarization for a first-order
phase transition. The lowest curve is for α = 0, the others are for α > 0. (b) Spontaneous
polarization in BaTiO3 as a function of temperature exhibiting a first-order phase transition. The
dashed line is a guide to the eye. Adapted from [1199]

the paraelectric phase is ∝ 1/α and in the ferroelectric phase ∝ −1/α. The latter
relation is usually written as the Curie–Weiss law

ε = C

T − TC
. (15.8)

First-Order Phase Transition

When the P6 term is included in (15.2) (γ 
= 0), a first-order phase transition is
modeled. However, in order to obtain something new, compared to the previous con-
sideration, now β < 0 (and γ > 0) is necessary. The dependence of the free energy
on P is schematically shown in Fig. 15.8a for various values of α. The condition
∂F
∂P = 0 yields

α P + β P3 + γ P5 = 0, (15.9)

with the solutions P = 0 and

P2 = − β

2γ

(

1 +
√

1 − 4α γ

β2

)

. (15.10)

For a certain value of α, i.e. at a certain temperature T = T1, the free energy is
zero for P = 0 and also for another value P = P0 (second curve from the top in
Fig. 15.8a). From the condition

1

2
α(T1) P2

0 + 1

4
βP4

0 + 1

6
γ P6

0 = 0, (15.11)



496 15 Polarized Semiconductors

the values for P0 and α at the transition temperature T = T1 are given by

P2
0 = −3

4

β

γ
(15.12a)

α(T1) = 3

16

β2

γ
> 0. (15.12b)

The schematic dependence of P at the phase transition temperature T1 is depicted
in Fig. 15.8b.

For T ≤ T1 the absolute minimum of the free energy is reached for finite polar-
ization P > P0. However, between F(P = 0) and the minimum of the free energy
an energy barrier (second lowest curve in Fig. 15.8) is present for T close to T1. The
energy barrier disappears at the Curie–Weiss temperature T0. At the phase transition
temperature, the entropy has a discontinuity

ΔS = α0 P2
0 , (15.13)

that corresponds to a latent heat ΔQ = T ΔS. Another property of the first-order
phase transition is the occurrence of hysteresis in the temperature interval between
T1 and T0

ΔT ≈ T1 − T0 = 1

4α0

β2

γ
, (15.14)

in which an energy barrier is present to hinder the phase transition. For decreasing
temperature, the system tends to remain in the paraelectric phase. For increasing
temperature, the system tends to remain in the ferroelectric phase. Such behavior is
observed for BaTiO3, as shown in Fig. 15.4b.

15.3.4 Domains

Similar to ferromagnets, ferroelectrics form domains with different polarization
directions in order tominimize the total energy byminimizing the field energy outside
the crystal. The polarization can have different orientations, 6 directions for P along
〈< 100〉 > (tetragonal phase), 12 directions for P along 〈< 110〉 > (orthorhombic
phase) and 8 directions for P along 〈< 111〉 > (rhombohedral phase). In Fig. 15.9,
such domains are visualized for BaTiO3. Due to the restricted geometry, domain
formation in thin films is different from that in bulk material.

Domains can also be artificially created by so-called poling. The ferroelectric
semiconductor is heated to the paraelectric phase. With electrodes, appropriate elec-
tric fields are applied and the material is cooled. The polarization is then frozen in the
ferroelectric phase. The domains of a periodically poled structure in LiNbO3 (PPLN)
are shown in Fig. 15.10b. The nonlinear optical properties in such structures can be
used for efficient second harmonic generation (SHG).
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Fig. 15.9 Ferroelectric domains in a BaTiO3 single crystal visualized by birefringence contrast.
Reprinted with permission from [1200], © 1949 APS

PPLN

(a) (b)

Fig. 15.10 (a) Scheme of PPLN (perodically poled lithium niobate), arrows denote the direc-
tion of spontaneous polarization. (b) Polarization microscopy image (vertical stripes are domains,
horizontal dark lines are scratches)

15.3.5 Optical Properties

The first-order phase transition of BaTiO3 manifests itself also in a discontinuity of
the band gap (Fig. 15.11). The coefficient ∂Eg/∂T for the temperature dependence
of the band gap is also different in the para- and ferroelectric phases.
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Fig. 15.11 Temperature
dependence of the band gap
in BaTiO3 (for polarized
light with E ⊥ c).
Experimental data
from [1201]

15.4 Piezoelectricity

15.4.1 Piezoelectric Effect

External stress causes atoms in the unit cell to shift with respect to each other. In
certain directions, such a shift can lead to a polarization. Generally, all ferroelectric
materials are piezoelectric. However, there are piezoelectric materials that are not
ferroelectric, e.g. quartz, GaAs and GaN. Piezoelectricity can occur only when no
center of inversion is present. Thus, e.g., GaAs is piezoelectric along 〈< 111〉 >,
but Si is not. Also, the cubic perovskite structure (in the paraelectric phase) is not
piezoelectric. Generally, the piezoelectric polarization is related to the strains via the
tensor eijk of the piezoelectric modules3

Pi = eijk εjk. (15.15)

15.4.2 Zincblende Crystals

In zincblende semiconductors, the polarization (with respect to x = [100],
y = [010], z = [001]) is due to shear strains only and is given as

Ppe = 2 e14

⎛

⎝
εyz

εxz

εxy

⎞

⎠ . (15.16)

3Another formulation is used with parameters dijk and Pi = dijk σjk.
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Table 15.1 Piezoelectric coefficients (in Cm−2) for various zincblende and wurtzite semi-
conductors

Zincblende Wurtzite

III–V e14 II–VI e14 e33 e31 e15

InSb −0.123 CdTe 0.054 CdSe 0.347 −0.16 −0.138

InAs −0.078 ZnSe 0.049 CdS 0.385 −0.262 −0.183

GaSb −0.218 ZnS 0.254 ZnS 0.265 −0.238 −0.118

GaAs −0.277 ZnO 0.69 ZnO 0.89 −0.51 −0.45

AlSb −0.118 GaN 0.375 GaN 0.73 −0.49 −0.3

AlN 1.46 −0.60 −0.48

BeO 0.02 −0.02

Data from [690,1202,1205], for zb-ZnO from [1206], for zb-GaN from [1207]

The values of e14 for various zincblende compound semiconductors are listed
in Table15.1. We note that the sign of e14 reverses from negative in cubic III–V
to positive in cubic II–VI semiconductors. This non-trivial behavior involves strain
effects on ionic and electronic polarization and ionicity as discussed in [163,1202].
The coefficient e33, the equivalent to e14 in wurtzite semiconductors (see below), is
positive for III–V and II-VI semiconductors.

The strain in pseudomorphic heterostructures (cf. Sect. 5.3.3) can cause piezo-
electric polarization in a piezoelectric semiconductor. In zincblende, the main effect
is expected when the growth direction is along [111] and the strain has a purely shear
character. In this case, the polarization is in the [111] direction, i.e. perpendicular
to the interface (P⊥). For the [001] growth direction, no piezoelectric polarization
is expected. For the [110] growth direction, the polarization is found to be parallel
to the interface (P‖). The situation is shown for various orientations of the growth
direction in Fig. 15.12.

15.4.3 Wurtzite Crystals

In wurtzite crystals, the piezoelectric polarization (with respect to x = [2–1.0], y =
[01.0], z = [00.1]) is given by4

Ppe =
⎛

⎝
2 e15 εxz

2 e15 εyz

e31 (εxx + εyy) + e33 εzz

⎞

⎠ . (15.17)

4In Voigt notation, Px = e15 e5, Py = e15 e4.

http://dx.doi.org/10.1007/978-3-319-23880-7_5
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Fig. 15.12 Three-dimensional view of the (a) total, (b) longitudinal and (c) transverse polarization
in uniaxially compressed GaAs. Adapted from [1203]. (d) Transverse polarization P‖ (parallel to
the interface) and (e) longitudinal electric field E⊥ (perpendicular to the interface) in the InGaAs
layer of a GaAs/In0.2Ga0.8As superlattice with joint in-plane lattice constant (obtained from energy
minimization, 1.4% lattice mismatch, the InGaAs is under compressive and the GaAs under tensile
strain). The layer thicknesses of the GaAs and InGaAs layers are identical. The quantities are shown
for various orientations of the growth direction. The vector of the growth direction varies in the
(01–1) plane (φ = π/4) with polar angle θ reaching from [100] (0◦) over [111] to [011] (90◦).
Image (f) depicts the transverse polarization P‖ (P⊥ = 0 in this geometry) for growth directions in
the (001) plane (φ = 0). Parts (d, e, f) reprinted with permission from [1204], © 1988 AIP
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Fig. 15.13 Piezoelectric
polarization Ppe in GaN
(Ga-face) versus in-plane
strain ε‖ = (a − a0)/a0 for
biaxial, uniaxial and
hydrostatic strain. The value
of the spontaneous
polarization Psp is indicated
by an arrow. From [1209]
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Values for the piezoelectric coefficients of severalwurtzite semiconductors5 are listed
in Table15.1.

The polarization (along c) for biaxial strain in heteroepitaxy (5.73) on the [00.1]
surface is

Ppe = 2 ε‖
(

e31 − C13

C33
e33

)
, (15.18)

where ε‖ = (a − a0)/a0 is the in-plane strain. The dependence of the magnitude
for GaN on the in-plane strain is shown in Fig. 15.13 together with the polarization
for uniaxial stress along [00.1] and hydrostatic strain. In the latter two cases, the
polarization is smaller.

The difference of spontaneous polarization of the constituent materials in het-
erostructures and piezoelectric effects in strained quantum wells lead to quantum
confined Stark effect (QCSE, Sect. 13.1.2). The spatial separation of electrons and
holes leads to a larger radiative lifetime (Fig. 12.42) and thus reduced radiative recom-
bination rate in the presence of nonradiative channels, an effect unwanted in light
emitting diodes. In particular nitride based LEDs grown along the c-direction are
prone to this effect. Therefore growth on nonpolar surfaces such as (11̄00) (m-plane)
and (112̄0) (a-plane) has been investigated [1210,1211]. However, crystal quality
for these growth planes seems limited.

An alternative route are ‘semipolar’ planes, e.g. (101̄1̄) or (112̄2) [1212], with at
least reduced polarization effects. The (112̄2)-plane is tilted about 58◦ (forGaN) from
the c-axis, close to the theoretically predicted zero of the internal electric field for
InGaN/GaN quantumwells [1213] (Fig. 15.14). Promising experimental results have
been published on semipolar growth, especially for InGaN/GaN on (112̄2)-oriented
GaN substrates [1214].

5If e14 for a zincblende material is transformed to a coordinate system along [111], the wurtzite-like
piezoelectric constants are e33 = 2 e14/

√
3 and e31 = −e14/

√
3 [1208].

http://dx.doi.org/10.1007/978-3-319-23880-7_5
http://dx.doi.org/10.1007/978-3-319-23880-7_13
http://dx.doi.org/10.1007/978-3-319-23880-7_12
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(a)

(b)

Fig. 15.14 (a) Internal electric field and (b) transition probability for electron-hole pairs in pseudo-
morphic InxGa1−xN/GaN quantum well (Lw = 3nm) for three different indium contents x as
labeled. θ denotes the angle between the c-axis and the normal of the interface plane (see inset).
Based on [1213]

Fig. 15.15 (a) Electric field and (b) additional confinement potential for electrons due to piezoelec-
tric charges for a strained In0.2Ga0.8As/GaAs quantumwire. Adapted from [1203]. (c) Piezoelectric
charge density in a (111)-oriented GaAs wire with hexagonal cross section. Adapted from [1215]
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42

-42 -21

charges

25
(a) (b)

(c) (d)

Fig. 15.16 (a) Piezoelectric charges and (b)–(d) resulting Coulomb potential for InAs/GaAs quan-
tum dot with base length b = 12nm. (a) Isosurfaces corresponding to volume charges±0.3enm−3.
(b) Isosurfaces for the Coulomb potential at ±30meV. (c, d) Cross section through the Coulomb
potential somewhat above the wetting layer in two different magnifications, (d) is a zoom into (c).
The InAs/GaAs interface is visible in (d) due to the image charge effect. Parts (a) and (b) reprinted
with permission from [367], © 1995 APS

15.4.4 Piezoelectric Effects in Nanostructures

The strain distribution around zincblende strained quantum wires [1203], (111)-
oriented wires under torsion [1215] and epitaxial (embedded) quantum dots [367]
contains shear components and thus generates piezoelectric fields. In Fig. 15.15a,
b, the electric field and potential due to the piezoelectric charges are shown for a
strained In0.2Ga0.8As/GaAs quantum wire. In Fig. 15.15c the three-fold symmetric
piezoelectric charge density within the cross-section of a (111)-oriented GaAs wire
under torsion (due to second order piezoelectricity) is depicted.

In Fig. 15.16, the piezoelectric charges and potential are shown for the quantum
dot from Fig. 5.27. The piezoelectric potential has quadrupole character and thus
reduces the symmetry of the QD (toC2v) [367].6 Piezoelectric effects are particularly
important in wurtzite nanostructures [1216].

6The strain distribution has C2v symmetry for a square-based pyramid for zincblende materials.
The energy levels and wavefunctions are more strongly impacted by the piezoelectric effects than
by the strain asymmetry [1156, 1157].

http://dx.doi.org/10.1007/978-3-319-23880-7_5


Chapter 16
Magnetic Semiconductors

Abstract Materials and properties of two types of semiconductors with sponta-
neous magnetization or ferromagnetic and paramagnetic properties are explained:
Compound materials and diluted magnetic semiconductors. A short introduction to
semiconductor spintronics covers the concepts of spin transistor and spin LED.

16.1 Introduction

Magnetic semiconductors exhibit spontaneous magnetic order. Even ferromag-
netism, important for spin polarization, as needed in spinelectronics (also called
spintronics), can occur below the Curie temperature that is characteristic of the
material. Magnetic semiconductors can be binary compounds such as EuTe (anti-
ferromagnetic) or EuS (ferromagnetic). Another class of magnetic semiconductors
contains paramagnetic ions in doping concentration (typically< 1021 cm−1) or alloy
concentration x (typically x ≥ 0.1%). Such materials are termed diluted magnetic
semiconductors (DMS). The incorporation of the magnetic atoms leads first to con-
ventional alloy effects, such as the modification of the lattice constant, the carrier
concentration or the band gap. The status of the field up to the mid-1980s can be
found in [1217, 1218], mostly focused on II–VI DMS. A review of work on III–V
based materials for spintronics, mostly GaAs:Mn, can be found in [1219]. A 2003
review of wide band gap ferromagnetic semiconductors is given in [1220], a 2014
review of Mn-containing DMS in [1221].

16.2 Magnetic Semiconductors

In amagnetic semiconductor, one sublattice is populatedwith paramagnetic ions. The
first two ferromagnetic semiconductors discovered were CrBr3 [1222] in 1960 and
EuO [1223] one year later. Europiummonoxide has an ionic Eu2+O2− character, such
that the electronic configuration of europium is [Xe]4f75d06s0 and that of oxygen
is 1s22s22p6. Some properties of europium chalcogenides [1224] are summarized in
Table16.1.

© Springer International Publishing Switzerland 2016
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
DOI 10.1007/978-3-319-23880-7_16
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Table 16.1 Material properties of Eu chalcogenides

Material Eg (eV) Magnetic order TC, TN (K)

EuO 1.12 FM 69.3

EuS 1.65 FM 16.6

EuSe 1.8 AF 4.6

FM 2.8

EuTe 2.00 AF 9.6

‘FM’ (‘AF’) denotes ferromagnetic (antiferromagnetic) order. TC (TN) denotes the Curie (Néel)
temperature. Data collected in [1226]

EuO can be modeled as a Heisenberg ferromagnet with dominant nearest- and
next-nearest Eu–Eu interactions [1225]. TheHeisenberg exchange parameters J1 and
J2 for these four compounds are shown in Fig. 16.1. In the nearest-neighbor interac-
tion J1 a 4f electron is excited to the 5d band, experiences an exchange interaction
with the 4f spin on a nearest neighbor and returns to the initial state. This mechanism
generally leads to ferromagnetic exchange. The next-nearest-neighbor interaction
J2 is weakly ferromagnetic (EuO) or antiferromagnetic (EuS, EuSe, EuTe). In the
superexchange process, electrons are transferred from the anionic p states to the 5d
states of the Eu2+ cations, resulting in an antiferromagnetic coupling.

Fig. 16.1 Heisenberg
nearest (J1, squares) and
next-nearest (J2, circles)
exchange parameters (in
units of J1,2/kB) for the Eu
chalcogenides versus the
Eu–anion distance. Dashed
lines are guides to the eye.
Experimental data
from [1226]
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16.3 Diluted Magnetic Semiconductors

In Table16.2, the transition metals and their electron configurations are summarized.
The 3d transition metals are typically used for magnetic impurities in DMS due to
their partially filled 3d shell. Due to Hund’s rule, the spins on the 3d shell are filled in
parallel for the first five electrons up to half filling (in order to allow the electrons to
get out of their way in real space). Thus, the atoms have a sizeable spin and amagnetic
moment. The spin of Mn is S = 5/2. Most transition metals have a 4s2 configuration
that makes them isovalent in II–VI compounds. We note that Zn has a complete 3d
shell and thus no net spin. In Fig. 16.2, an overview of the crystallographic properties
is given for Mn-alloyed II–(Se, S, Te, O) based DMS [1227] (DMS with Se, S, and
Te have been discussed in [1228]).

As an example, the properties of Hg1−xMnxTe are discussed. This alloy is semi-
conducting (positive band gap ε0) for x > 0.075 and a zero-gap material (nega-
tive interaction gap ε0) for smaller Mn concentration (cf. Fig. 6.40). The transitions
between the Γ6 and Γ8 bands can be determined with magnetoabsorption spectra
in the infrared [1229]. In Fig. 16.3a, the magnetic field dependence of transition

Table 16.2 3d, 4d and 5d transition metals and their electron configurations

Sc21 Ti22 V23 Cr24 Mn25 Fe26 Co27 Ni28 Cu29 Zn30

3d 3d2 3d3 3d5 3d5 3d6 3d7 3d8 3d10 3d10

4s2 4s2 4s2 4s 4s2 4s2 4s2 4s2 4s 4s2

Y39 Zr40 Nb41 Mo42 Tc43 Ru44 Rh45 Pd46 Ag47 Cd48

4d 4d2 4d4 4d5 4d6 4d7 4d8 4d10 4d10 4d10

5s2 5s2 5s 5s 5s 5s 5s – 5s 5s2

La57 Hf72 Ta73 W74 Re75 Os76 Ir77 Pt78 Au79 Hg80

5d 5d2 5d3 5d4 5d5 5d6 5d7 5d9 5d10 5d10

6s2 6s2 6s2 6s2 6s2 6s2 6s2 6s 6s 6s2

Note that Hf72 has an incompletely filled 4f-shell with 4f14

Fig. 16.2 Diagrammatic
overview of AII

1−xMnxBVI

alloys and their crystal
structures. The bold lines
indicate ranges of the molar
fraction x for which
homogeneous crystal phases
form. ‘Hex’ and ‘Cub’
indicate wurtzite and
zincblende, respectively.
From [1227]

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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Fig. 16.3 (a) Energies of Γ6 → Γ8 transitions versus magnetic field for Hg0.996Mn0.004Te at
T = 2K. Symbols are experimental values for two polarization directions as indicated. Numbers
denote quantum numbers of transitions. Solid lines are theoretical fits. (b) Interaction gap versus
Mn concentration for Hg1−xMnxTe at T = 4.2K. Various symbols represent data from different
authors and methods. Dashed line is a guide to the eye. Adapted from [1229]

energies between different Landau levels is shown that can be extrapolated to yield
the interaction gap. The interaction gap is shown in Fig. 16.3b as a function of the
Mn concentration.

For small Mn concentrations, the DMS behaves like a paramagnetic material.
For larger concentrations, the Mn atoms have increasing probability to be directly
neighbored by another Mn atom and suffer superexchange interaction (cf. (3.23b)).
At a certain critical concentration xc, the cluster size becomes comparable with the
size of the sample. If interaction up to the first, second or third neighbor are taken
into account for a fcc lattice, the critical concentrations are given by xc = 0.195,
0.136, and 0.061, respectively [1230]. The nearest-neighbor interaction between Mn
atoms in such DMS as (Zn,Cd,Hg)Mn(S,Se,Te) was found to be antiferromagnetic,1

i.e. neighboring spins are aligned antiparallel. Due to frustration of antiferromagnetic
long-range order on a fcc lattice, an antiferromagnetic spin glass forms. The transition
temperature TC between the paramagnetic and spin-glass phases of Hg1−xMnxTe is
shown in Fig. 16.4.

In III–V compounds, the 3d transition metals represent an acceptor if incorpo-
rated on the site of the group-III element as, e.g., in the much investigated compound
Ga1−xMnxAs. This material will be used in the following to discuss some prop-

1Such superexchange leads to antiferromagnetic interaction if the bond angle is ‘close’ to 180◦.

http://dx.doi.org/10.1007/978-3-319-23880-7_3
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Fig. 16.4 Magnetic phase
diagram of Hg1−xMnxTe,
‘P’ (‘SG’) denotes the
paramagnetic (spin glass)
phase. Various symbols
represent data from different
authors and methods.
Dashed line is a guide to the
eye. Adapted from [1229]
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erties of magnetic semiconductors. It seems currently well understood and has a
fairly high Curie temperature of TC ≈ 160K. Ferromagnetism in a diluted mag-
netic semiconductor is believed to be caused by indirect exchange through itinerant
charge carriers. The ferromagnetic coupling can be invoked by theRuderman–Kittel–
Kasuya–Yoshida (RKKY) interaction, i.e. the spins of the paramagnetic ions are
aligned via interaction with the free carriers in the semiconductor. A related concept
is the double exchange2 [1231–1233] in which carriers move in a narrowMn-derived
d-band (for d-wave character see Fig. 7.16c). Such a mechanism was first invoked
for PbSnMnTe [1234]. Later, ferromagnetism was discovered in InMnAs [1235] and
GaMnAs [1236]. In (In,Ga)MnAs a Mn ion (spin up) spin polarizes the surround-
ing hole gas (spin down), which has been supplied from the Mn acceptors. This
mechanism lowers the energy of the coupled system. The interaction

H = −β N0 x S s (16.1)

between the Mn d-shell electrons (S = 5/2) and the p-like free holes (s = 1/2)
is facilitated by p–d hybridization of the Mn states. N0 denotes the concentration
of cation sites in the A1−xMnxB alloys. The coupling via electrons is much weaker
(coupling coefficient α). The holes interact with the next Mn ion and polarize it (spin
up), thus leading to ferromagnetic order. The ferromagnetic properties are evident
from the hysteresis shown in Fig. 16.6a. Without the carrier gas such interaction is
not present and the material is only paramagnetic. Theoretical results for the Curie
temperature of various p-type semiconductors are shown in Fig. 16.5. Generally, the
quest for higher Curie temperatures (well above room temperature) is underway and
wide bandgapmaterials such asGaNorZnOdopedwith transitionmetals have shown
some encouraging results. Mn-substituted chalcopyrite semiconductors are analyzed
theoretically in [1237] and are predicted to exhibit less-stable ferromagnetism than
III–V semiconductors of comparable band gap.

2This model is also called the Zener model.

http://dx.doi.org/10.1007/978-3-319-23880-7_7
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Fig. 16.5 Computed values of the Curie temperature TC for various p-type semiconductors plotted
versus the band gap (dashed lines are guides to the eye). All materials contain 5%Mn on the cation
sublattice and a hole concentration of p = 3.5 × 1020 cm−3. Values for TC taken from [1233]

The carrier density and thus magnetic properties in a DMS can be controlled in a
space-charge region (cf. Sect. 21.2.2) as demonstrated in [1238]. In Fig. 16.6, results
are shown for hydrogen- (deuterium-) passivated GaMnAs that exhibits ferromag-
netism as ‘as-grown’ thin film.The deuterium is incorporated in similar concentration
as the Mn, assumes a back-bond position (forming a H–As–Mn complex) and com-
pensates the hole gas from the Mn (cf. Sect. 7.8). The low-temperature conductivity
drops nine orders of magnitude [1239]. Such material displays only paramagnetic
behavior. An optimal Mn concentration for ferromagnetic Ga1−xMnxAs is around
x = 0.05. For smaller Mn concentrations, the hole density is too small and the Curie

Fig. 16.6 Magnetization M versus magnetic field H for Ga0.963Mn0.037As at low temperature. (a)
Comparison of as-grown (full squares) and deuterated (open circles) thin film with magnetic field
in the layer plane at T = 20K. (b) Magnetization of the deuterated sample at T = 2K for larger
magnetic fields. Solid line is Brillouin function for g = 2 and S = 5/2. Adapted from [1239]

http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_7
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Fig. 16.7 Magnetization M
versus magnetic field H for
Zn0.935Mn0.065O thin film at
T = 10 and 300K. A
hysteresis is obvious for both
temperatures
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temperature drops; for largerMn concentrations, the structural properties of the alloy
degrade (phase separation into GaAs and MnAs).3

Magnetic hysteresis has been found in nearly compensatedMn-doped ZnO [1240,
1241] (Fig. 16.7). Such material is interesting due to its small spin-orbit coupling.
The exchange mechanism is under debate.

16.4 Spintronics

Spintronics (as opposed to electronics) is an emerging field that uses the electron spin
rather than its charge for transport, processing and storage of information. Prototype
devices are the spin transistor and the spin LED. A crucial point is spin injection,
i.e. the creation of (highly) spin-polarized currents. It remains to be seen whether
spintronics can be developed to its theoretically envisioned potential and will play
a commercially important role in the course of microelectronics. The spin degree of
freedom also promises potential for quantum information processing due to its weak
coupling to charge and phonons and the resulting long dephasing time.

It shall bementionedhere that themagnetization alters also the ‘classical’ transport
properties of the semiconductor. The Hall effect is modified strongly and reflects the
magnetic hysteresis, also termed anomalous Hall effect (AHE).4 This effect was
already discovered by Hall in 1881 for Ni and Co [1242]; a review of the AHE can
be found in [1243]. Also the optical excitation of spin-polarized carriers in non-
magnetic materials causes AHE [1244].

3MnAs is a ferromagnetic metal. MnAs clusters can be a problem since they create ferromagnetic
properties but not in the way the DMS is supposed to work.
4This use of the term ‘anomalous’ should be distinguished from the historical use of ‘anomalous’
Hall effect for the sign reversal of the Hall voltage for hole conductors.
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source draingate

Fig. 16.8 Scheme of spin transistor after the proposal of [1247]. Source and drain are ferromagnets
with their magnetization shown schematically as arrows. The channel under the gate transports
electrons whose spin rotates in the electric field under the gate

16.4.1 Spin Transistor

In this device (for regular transistors cf. Chap. 24), spin-polarized electrons are
injected from contact 1, transported through a channel and detected in contact 2.
During the transport, the spin rotates (optimally by π) such that the electrons cannot
enter contact 2 that has the same magnetization as contact 1 (Fig. 16.8). The spin
rotation is caused by spin-orbit interaction due to the electric field under the gate
contact. This effect is called the Rashba effect and is purely relativistic [1245]. As
channel material, a semiconductor with strong spin-orbit coupling such as InAs or
(In,Ga)Sb is preferable. However, the use of narrow-gap semiconductors and the
increase of spin scattering at elevated temperatures [1246] make the realization of
such a transistor at room temperature difficult.

16.4.2 Spin LED

In a spin LED (for LEDs see Sect. 23.3), the injection of spin-polarized carriers
into the active layer leads to circularly polarized luminescence. The spin align-
ment can be achieved with semimagnetic semiconductors grown on top of the active
layer or via spin injection from a ferromagnetic metal into the semiconductor (for
metal–semiconductor junctions cf. Sect. 21.2). In Fig. 16.9a, a Fe/AlGaAs interface
is shown.

Ideally, the spin-polarized electrons from the ferromagnetic metal tunnel into the
semiconductor and transfer to the recombination region. Subsequently, the emission
is circularly polarized (Fig. 12.29b). The degree of circular polarization is

Pσ = Iσ+ − Iσ−
Iσ+ + Iσ−

, (16.2)

with Iσ± being the intensity of the respective polarization. The degree of polarization
depends on themagnetization of themetal. For the saturationmagnetization of Fe, the
maximum polarization is about 30% at T = 4.5K (Fig. 16.9b) [1248]. The interface

http://dx.doi.org/10.1007/978-3-319-23880-7_24
http://dx.doi.org/10.1007/978-3-319-23880-7_23
http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_12
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Fig. 16.9 (a) Transmission electron microscopy image of the (110) cross section of the Fe/AlGaAs
interface of a spin LED. The vertical lines in Fe are the (110) planes with 0.203nm distance. (b)
Magnetic-field dependence of the circular polarization ratio Pσ at T = 4.5K (16.2) (filled and
empty circles) and the out-of-plane component of the Fe-film magnetization (dashed line, scaled to
the maximum of Pσ). Reproduced from [1249] by permission of the MRS Bulletin

and its structural nonideality of the interface presumably prevent the spin injection
from being 100% efficient [1249].



Chapter 17
Organic Semiconductors

Abstract An introduction to organic semiconductors, based on the sp2 bonding
scheme is given, covering small organic molecules and polymers. Their electronic
structure, doping schemes, as well as their particular transport and optical properties
are covered.

17.1 Introduction

Organic semiconductors are based on carbon compounds. The main structural dif-
ference from inorganic semiconductors is the bond based on sp2 hybridization (cf.
Sect. 2.2.3) as present in benzene (and graphite). Diamond, although consisting of
100% carbon, is not considered an organic semiconductor. We note that carbon can
form further interesting structures based on sp2 bonds, such as carbon nanotubes
(Sect. 18.2), (single or few layer) graphene sheets (Sect. 18.1) rolled up to form
cylinders, or fullerenes, e.g. soccer-ball-like molecules such as C60.

In the 1980 Handbook on Semiconductors only a good ten pages were devoted to
organic semiconductors [1250]. Now several textbooks are available [1251, 1252]
for a much more detailed treatment than given here.

17.2 Materials

17.2.1 Small Organic Molecules, Polymers

The prototype organic molecule is the benzene molecule with its ring-like structure
(Fig. 2.8).

There is a large number of organic, semiconducting molecules that differs by the
number of benzene rings (Fig. 17.1), the substitution of carbon atoms by nitrogen
or sulfur (Fig. 17.2a, b), the polymerization (Fig. 17.2c) or the substitution of hydro-
gen atoms by side groups (Fig. 17.2d). Since PPV is insoluble, typically derivatives

© Springer International Publishing Switzerland 2016
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Fig. 17.1 Various organic compounds: 1: naphtalene, 2: anthracene, 3: tetracene, 4: pentacene,
5: pyrene, 6: perylene, 7: chrysene, 8: pyranthrene, 9: isoviolanthrene, 10: anthanthrene, 11:
coronene, 12: ovalene, 13: violanthrene, 14: p-terphenyl, 15: rubrene, 16: m-dinaphthanthrene,
17: anthanthrone, 18: m-dinaphthanthrone, 19: violanthrone, 20: pyranthrone, 21: isoviolanthrone

such as MEH-PPV1 [1254] that are soluble in organic solvents are used. Compared
to benzene, the substitution of one carbon atom by nitrogen (pyridine) represents
doping with one electron. In Fig. 17.3, the most important building blocks of organic
molecules are shown.

17.2.2 Organic Semiconductor Crystals

Small organic molecules can crystallize into solids, so-called organic molecular
crystals (OMC), due to van-der-Waals interaction. In Fig. 17.4a, the monoclinic unit
cell of an anthracene crystal [1255] is shown as an example. Also tetracene and

12-ethoxy,5-(2’-ethyl-hexyloxy)-1,4-phenylene vinylene.
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Al
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Fig. 17.2 Organic compounds: (a) thiophene, (b) pyridine, (c) poly-(p-phenyl), (d) poly-(p-
phenylvinyl), (e) Alq3 (tris-(8-hydroxyquinolate)-aluminum) and (f) a three-dimensional view of
the Alq3 molecule. Part (f) reprinted with permission from [1253], © 1998 AIP

Fig. 17.3 Building blocks of
organic molecules, ‘R’=alkyl
group, i.e. CH3 (methyl-),
CH3CH2 (buthyl-), . . .
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(a) (b)

Fig. 17.4 (a) Monoclinic unit cell (for size see Table17.1) of anthracene crystal. (b) Two her-
ringbone layers of pentacene in a projection onto the bc plane of the triclinic unit cell. Adapted
from [1263]

Table 17.1 Properties of oligoacene crystals

Property Naphtalene Anthracene Tetracene Pentacene

Melting point
(◦C)

80 217 357 >300 ◦C

Crystal system Monoclinic Monoclinic Triclinic Triclinic

a (nm) 0.824 0.856 0.798 0.793

b (nm) 0.600 0.604 0.614 0.614

c (nm) 0.866 1.116 1.357 1.603

α (◦) 90 90 101.3 101.9

β (◦) 122.9 124.7 113.2 112.6

γ (◦) 90 90 87.5 85.8

Melting point and unit cell parameters. Data from [1256]

pentacene (Fig. 17.4b) have this layered ‘herringbone’ structure. A comparison of
the unit cells of oligoacene crystals is given in Table17.1.

Crystal growth of single crystal OMC is achieved with a variety of methods,
among them sublimation, Bridgman- and Czochralski-type methods [1257, 1258],
vapor phase growth [1259, 1260] or from solution [1261, 1262]. Single organic
molecular crystals exhibit intrinsic material properties. The practical use of organic
semiconductors involves thin films, e.g. in LEDs (OLED, Sect. 23.3.7) and transistors
(OFET, Sect. 24.6.3). Thin films of organic molecules are typically disordered and
their performance parameters are inferior to that of OMCs.

http://dx.doi.org/10.1007/978-3-319-23880-7_23
http://dx.doi.org/10.1007/978-3-319-23880-7_24
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17.3 Electronic Structure

The pz orbitals in benzene are partially filled and there is an energy gap between
HOMO and LUMO (Fig. 2.11). A similar consideration is valid for polymers. The
coupling of orbitals along the polymer chain leads to broadening of the π and π∗
states into a (filled) valence and an (empty) conduction band, respectively (Fig. 17.5).
The HOMO and LUMO positions of various organic semiconductors are shown in
Fig. 17.6 relative to the vacuum level (cmp. Fig. 12.21 for inorganic semiconductors).
The HOMO is also known as ionization energy (IE), the LUMO as electron affin-
ity (EA). With layered organic semiconductors heterostructures can be built, e.g.
to design recombination pathways (recombination layer, electron blocking layers
(EBL) and hole blocking layers (HBL)). For electron injection and electron extrac-
tion (hole injection) contacts, metals with appropriate work function (in connection
with a possible interface dipole layer) have to be used. More details on injection and
extraction contacts to organic semiconductors are discussed in Sect. 21.2.7.

Fig. 17.5 Schematic band
structure of a polymer
originating from the states of
the benzene molecule (see
Fig. 2.11)

pz

sp2

6

18

Fig. 17.6 Position of
HOMO and LUMO for a
variety of organic
semiconductors (relative to a
common vacuum level at
E = 0eV). Based on values
from [1264]. On the right
hand side the work functions
of several metals are shown
for comparison

http://dx.doi.org/10.1007/978-3-319-23880-7_2
http://dx.doi.org/10.1007/978-3-319-23880-7_12
http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_2
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17.4 Doping

The doping of organic semiconductors can be achieved by

• partial oxidation or reduction of the organic molecule,
• substitution of atoms in the organic molecule,
• mixing of the matrix with ‘dopant’ molecules.

The systematic shift of theFermi levelwith dopant concentrationhas been reported
in [1265]. Typically, the conductivity increases superlinearly with the doping con-
centration (Fig. 17.7a), an effect discussed in detail in [1266]. While the mobility
remains constant, the thermal activation energy Ea for carriers decreaseswith increas-
ing doping (Fig. 17.7b) due to electrostatic interaction [515, 1267], an effect already
discussed in Sect. 7.5.7. The activation energy in the dilute limit Ea,0 is modified to
(cmp. (7.53))

Ea = Ea,0 − β N 1/3
D . (17.1)

(a)

(b)

Fig. 17.7 (a) Conductivity (at 0.9V/µm) versus dopant concentration ND for PPEEB films. Exper-
imental data (circles) and fit (solid line) according to (17.1) with activation energy Ea,0 = 0.23eV
and β = 6.5 × 10−8 eVcm (μ = 0.2cm2/Vs). Dashed line denotes linear relation between con-
ductivity and ND. Adapted from [1268]. (b) Thermal activation energy Ea of carriers (holes) in
ZnPc:F4-TCNQ as a function of the molar dopant concentration. Adapted from [1265]

http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_7
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17.5 Transport Properties

Transport in organic semiconductors is characterized by

• strong polaronic effects,
• hopping conduction,
• low mobility, low drift saturation velocity.

The interaction of charges with lattice deformations leads to the formation of
polarons [1269]. In organic materials these are often ‘small’, i.e. the extension of the
deformation is on atomic scale. Such self-trapping of charges reduces their mobil-
ity. Two charges can share the same deformation (bipolaron) or oppositely charged
polarons can attract (similar to an exciton). If these charges are on the same (neigh-
boring) polymer chain, the polaron is called intrachain (interchain).

The conductivity within a molecule, e.g. a long polymer chain, and the conductiv-
ity between different molecules have to be distinguished. The conduction between
different molecules occurs via hopping. Typically, the conductivity is thermally acti-
vated according to

σ = σ0 exp

(
− Ea

kT

)
, (17.2)

where Ea is an energy of the order of 1eV. Such activation also pertains to the
mobility alone, e.g. Ea = 0.48eV for PPV [1270].

The maximum low-field mobility of many crystalline organic semiconductors at
room temperature is around 1cm2/Vs with a weak temperature dependence [1271].
Suchmobility ismuch smaller than that of crystalline silicon and rather comparable to
that of amorphous silicon. Improved purity and handling of organic semiconductors
has allowed to achieve intrinsicmaterial properties (Fig. 17.8). Themobility increases

Fig. 17.8 Historic
development of the
experimentally achieved
mobility of organic
semiconductors at room
temperature
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Fig. 17.9 Carrier velocity in
ultrapure and highly perfect
single crystals of
(n-conducting) perylene at
T = 30K and
(p-conducting) naphtalene at
T = 4.3K. For comparison
electron (hole) velocity in
silicon at room temperature
is shown as solid (dashed)
line. Adapted from [1258]

at low temperatures, e.g. below 100K in naphtalene [1272]. This has been attributed
to the freeze-out of phonons and the transition from hopping to band transport. The
drift velocity at higher fields shows saturation but the values, even at low temperature,
are much smaller than in silicon (Fig. 17.9). An analytical model for the described
main features of transport in organic semiconductors has been given in [1273].

17.6 Optical Properties

Organic molecules can emit light efficiently and are thus useful for light emitters. For
the photo-physics of organicmaterials it is essential to recall themolecular physics of
singlet and triplet states. In the singlet (triplet) state, the total spin quantum number
of the unpaired electrons is S = 0 (S = 1). A simple energy scheme includes a
ground state S0 and excited singlet (S1) and triplet (T1) states. The recombination
transition S1 → S0 is allowed and its lifetime short. Such luminescence is termend
‘fluorescence’. Recombination from the triplet state is forbidden or at least very slow
(‘phosphorescence’).

As an example for a small organic molecule, the fluorescence lifetime of Alq3 is
about 12ns [1274]. The triplet lifetime is in the 10µs range [1275]. Luminescence
and absorption spectra of Alq3 are shown in Fig. 17.10. The luminescence peak is
redshifted with respect to the absorption edge due to the Frank-Condon principle
(Fig. 10.21). The density of excited (empty) states of the Alq3 molecule is shown in
Fig. 17.11 together with the orbitals associated with the four prominent states. The
lowest orbital is the LUMO and leads to the visible luminescence of the Alq3 in the
red.

In Fig. 17.12a, the photoluminescence (PL) and absorption of a polymer, poly-
thiophene are shown. The recombination is below the band gap of 2.1–2.3eV on
an excitonic level at 1.95eV. There are several phonon replica whose separation of
180meV corresponds to the C–C stretchingmode. The PL excitation (PLE) spectrum

http://dx.doi.org/10.1007/978-3-319-23880-7_10
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Fig. 17.10 Luminescence and absorption spectra of Alq3 (vapor-deposited 150nm thin film on a
quartz substrate) at room temperature. Adapted from [1276]

(a) (b)

Fig. 17.11 (a) Projected density of states (for C, N, and O) of excited states in an Alq3 molecule.
The origin of the energy axis is the HOMO level. (b) Orbitals for the four states labeled I–IV in (a).
Reprinted with permission from [1253], © 1998 AIP

of poly-thiophene demonstrates that the PL at 1.83eV can be excited via the exciton
level. The theoretical band structure of poly-thiophene is shown in Fig. 17.13a. The
Brillouin zone is one-dimensional. The situation I corresponds to a single molecular
chain, the situation II pertains to the chain embedded in a medium with a dielectric
constant ε = 3. The predicted band gaps are 3.6 and 2.5eV, respectively. The exci-
ton binding energy is about 0.5eV. The exciton is a Frenkel exciton that has a small
extension and is localized. The high binding energy is favorable for radiative recombi-
nation since the exciton is stable at room temperature. For photovoltaic applications,
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Fig. 17.12 Photoluminescence (PL) spectra at T = 20 and 300K and absorption spectrum (green
line) of poly-thiophene. The vertical dashed line denotes the detection energy (Edet = 1.83eV) of
the PL excitation (PLE) spectrum (blue circles) (T = 20K). Adapted from [1277]

Fig. 17.13 (a) Band structure of poly-thiophene (‘I’: naked chain, ‘II’: chain in a dielectric medium
(ε = 3)), (b) single-particle energies and band gap, (c) exciton levels (‘E’: experimental values).
Reprinted with permission from [1278], © 2002 APS

it is unfavorable since it has to be overcome in order to separate electrons and holes
(after absorption). Generally, intrachain excitons (as here) and interchain excitons,
where electron and the hole are localized on different chains, are distinguished.
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Collection of carriers in the ‘dark’ triplet state poses a problem limiting the quan-
tum efficiency to 25% in a simple model [1279]. Harvesting luminescence from all
exciton states would yield significantly higher efficiencies than is possible in purely
fluorescent materials (or devices).

A successful route is the use of a phosphorescent guest material. Radiative transi-
tions from triplet states become partially allowed when the excited singlet and triplet
states are mixed. This is typically achieved in metalorganic molecules with heavy
metal atoms, providing large spin-orbit interaction effects [1280, 1281]. Most promi-
nently Ru-, Pt- and Ir-containing compounds are used, e.g. fac tris(2-phenylpyridine)
iridium [Ir(ppy)3] in 4,4’-N,N’-dicarbazole-biphenyl [CBP] (Fig. 17.14a, b) [1282].
The luminescence spectrum of Ir(ppy)3 is shown in Fig. 17.14d. The radiative decay
constant of the Ir(ppy)3 triplet state is about 800ns and observable if energy transfer
from the host triplet state is exotherm (ΔG = GG −GH < 0 [1275], see Fig. 17.15a)
and fast. This is the case for CBP:Ir(ppy)3 (Fig. 17.15b), ΔG ≈ −0.2eV. Actually,
reverse transfer from Ir(ppy)3 to CBP seems responsible for some loss in lumines-
cence efficiency and the decrease in phosphorescent lifetime from 800 to 400ns. In
the case of N,N’-diphenyl-N,N’-bis(3-methylphenyl)-[1,1’-biphenyl]-4,4’-diamine

(a)

(d)

(b) (c)

Fig. 17.14 Molecular structure of (a) Ir(ppy)3, (b) CBP and (c) TDP (see text). (d) Electrolu-
minescence spectra (at room temperature) of CBP:6%Ir(ppy)3, CBP:10%Ir(ppy)3/1%DCM2 and
CBP:2%DCM2. Based on data from [1282, 1283]
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[TDP] (Fig. 17.14c) host, the triplet energy transfer to the phosphorent Ir(ppy)3 guest
is endotherm (ΔG ≈ +0.1eV) and represents the rate limiting step [1275]. In this
case the recombination of Ir(ppy)3 has a decay constant of about 15µs (Fig. 17.15b).
The thermal activation character is confirmed by even longer decay times at low

(a) (b)

Fig. 17.15 (a) Schematic term diagram of host (TH) and guest (TG) triplet states. Straight arrows
denote energy transfer between triplet states, wiggly arrows denote radiative transitions to the
(singlet) ground state. (b) Electroluminescence transients (at room temperature, detected in the range
500–560nm [cmp. Fig. 17.14b]) ofCBP:6%Ir(ppy)3 (τ ≈ 1µs) andTDP:6%Ir(ppy)3 (τ ≈ 15µs).
Insets: term schemes with arrow denoting the rate limiting step. Based on data from [1275]

(a) (b)

Fig. 17.16 (a) Schematic term scheme of CBP:Ir(ppy)3/DCM2 and energy transfer and recombi-
nation paths (cmp. spectrum in Fig. 17.14). The rate constants are shown for various processes, the
rate limiting step is shown with a bold arrow. (b) Electroluminescence transients after 100ns exci-
tation pulse (grey area) of Ir(ppy)3 and DCM2 luminescence from CBP:10%Ir(ppy)3/1%DCM2.
Based on data from [1283]
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Fig. 17.17 Photoconductivity and absorption spectrum of anthracene

temperatures (τ ≈ 80µs at T = 200K) [1275]. Endothermic transfer allows to
pump a blue guest phosphor without a blue host material.

Further, subsequent Förster energy transfer [1284] from the guest triplet state
to a fast and efficient singlet state (SD) of a fluorescent dye is possible, e.g. from
CBP:Ir(ppy)3 to DCM2 [1283]. The transient lifetime of pure DCM2 is about 1ns. In
a mixture of CBP:10%Ir(ppy)3/1%DCM2 the luminescence of DCM2 appears with
the same 100ns decay constant as that of Ir(ppy)3 (Fig. 17.16b). This decay constant
(rate limiting step, see Fig. 17.16a) corresponds to the energy transfer depleting the
triplet state of Ir(ppy)3 to DCM2 and is much faster than the pure Ir(ppy)3 radiative
lifetime.

The photoconductivity of organic semiconductors is typically related to their
absorption spectrum as shown for anthracene in Fig. 17.17.



Chapter 18
Graphene and Carbon Nanotubes

Abstract The phononic properties and the band structure of graphene and carbon
nanotubes of different chirality are given and derived within elementary models.
Also inorganic atomic sheets and nanotubes such as BN are briefly discussed.

18.1 Graphene

18.1.1 Structure

Graphene is a single sheet of carbon atoms in hexagonal arrangement (Fig. 18.1). The
carbon bond length is dC−C = 0.142nm. It can be prepared from graphite via micro-
mechanical cleavage, i.e. mechanical exfoliation (repeated peeling) of smallmesas of
highly oriented pyrolytic graphite [1285, 1286]. Graphite is a stacked arrangement of
such graphene sheets (Fig. 18.2a) held together by van-der-Waals forces as shown in
Fig. 18.2b. The carbon atoms bond in-plane via sp2 hybridization. Organic molecules
such as, e.g., anthracene or coronene (Fig. 17.1) can be understood as molecular-size
pieces of such two-dimensional graphene sheet with hydrogen saturating the out-
side, broken bonds. In literature single layer graphene sheets (SLG) and few-layer
graphene (FLG) sheets are distinguished. Ideally such two-dimensional crystal is
infinitely extended, e.g. for band structure calculations. Real crystals have a bound-
ary (surface) which is topologically a line or very thin sidewall. The mechanical
properties of graphene are discussed in [1287].

The phonon dispersion of graphene is shown in Fig. 18.3. For the ZA and ZO
modes the displacement is perpendicular to the graphene plane (out-of plane modes).

18.1.2 Band Structure

A single layer of graphene is a zero-gap semiconductor (cf. Fig. 6.40) which shows
a linear photon-like spectrum

E = � k c∗ (18.1)

© Springer International Publishing Switzerland 2016
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
DOI 10.1007/978-3-319-23880-7_18

529

http://dx.doi.org/10.1007/978-3-319-23880-7_17
http://dx.doi.org/10.1007/978-3-319-23880-7_6


530 18 Graphene and Carbon Nanotubes

Fig. 18.1 Schematic atomic arrangement in graphene; the C–C bond length is dC−C = 0.142nm.
Several vectors for making carbon nanotubes (cf. Sect. 18.2) are shown

(a) (b)

Fig. 18.2 (a) Schematic layer structure of graphite with bond length and layer distance labelled.
(b) AFM image of graphene on oxidized silicon. The height of two areas relative to the background
is labelled. Adapted from [1288]

around the Fermi energy at the K point (Fig. 18.4a). This point is also called Dirac
point. The important bands close to the Fermi level stem from the π-orbitals. The
linear dispersion around the K point is similar to that of relativistic particles without
rest mass. The electrons in graphene are of course not really massless, their velocity
(6.31) being v = c∗ ≈ 106m/s, about 300 times smaller than the speed of light [1290,
1291].

In the simplest tight-binding approximation, the band structure is given as

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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Fig. 18.3 Phonon dispersion
in graphene. Symbols are
experimental data from
various methods. Dashed
lines is DFT-LDA theory,
solid lines GGA. Adapted
from [1289]
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where a is the lattice constant and T ≈ 3eV is the next-neighbor hopping
energy [1292]. In the meantime more elaborate tight-binding schemes have been
reported [1293, 1294] as shown in Fig. 18.4b. The two-dimensional band struc-
ture is visualized in Fig. 18.4c. Such band structure has been directly confirmed
experimentally [1295] as shown in Fig. 18.5a–e. The distortion of the band struc-
ture with increasing electron concentration (Fig. 18.5e–h) from the conical bands is
due to strong electron–electron, electron–phonon, and electron–plasmon coupling
effects [1295].

The band structure of FLG has been theoretically analysed in [1296]. For bilayers
experimental data on the band structure can be found in [1297]. Subtle differences
exist for different stacking orders of the graphene sheets. Bulk graphite shows a semi-
metallic behavior with a band overlap of about 41meV. For more than ten graphene
layers the difference with the band overlap in bulk graphite is less than 10%.

18.1.3 Electrical Properties

The Shubnikov-de Haas (SdH) oscillations from a graphene sheet exhibit a
behavior [1291]

1

ΔB
= 4e

h

1

nS
, (18.3)

which corresponds to (13.38) for a two-dimensional electron system and a spin-
and valley-degeneracy1 of two. The cyclotron mass has been determined from the

1Each of the six valleys at the K points is shared by three Brillouin zones.

http://dx.doi.org/10.1007/978-3-319-23880-7_13
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(a) (b)

(c)

Fig. 18.4 (a) Band structure of graphene fromfirst principles. (b) Three-dimensional representation
E(kx , ky) of the π-bands of graphene. (c) Band structure of graphene with only π-bands shown,
solid lines are ab-initio calculation, dashed lines are calculated with tight-binding approximation.
Adapted from [1294]

temperature dependence of the SdHoscillations to be proportional2 to
√

n (Fig. 18.6).
The cyclotron mass is generally related [1298] to the area S(E) = πk2 in k-space of
the orbits at the Fermi energy via

mc = �
2

2π

∂S(E)

∂E
(18.4)

With the linear dispersion (18.1) we can write (18.4) as

mc = �
2

2π

2π E

�2 c2∗
= E

c2∗
. (18.5)

2In a parabolic dispersion as in (13.37), the cyclotron mass is independent of n.

http://dx.doi.org/10.1007/978-3-319-23880-7_13
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(a) (b)

(c)

(e) (f)

(g) (h)

(d)

Fig. 18.5 Experimental bandstructure of graphene (on (0001) 6H-SiC) as determined fromARPES.
(a) Energydistributionof states as a functionofmomentumalongprincipal directions in theBrillouin
zone. The single-orbital tight-binding model (18.2) with T = 2.82eV is shown as solid lines.
The Fermi level is shifted by 0.435eV due to doping. (b) Constant energy map of the states at
binding energy corresponding to the Dirac energy ED; the boundary of the Brillouin Zone boundary
is superimposed as dashed line. The arrow at the K point indicates the directions over which the
data in (e–h) were acquired. (c, d) Constant energy maps at the Fermi energy (EF = ED +0.45eV)
and ED − 1.5eV, respectively. (e–h) Experimental energy bands along the line through the K point
parallel to Γ –M direction as indicated in (b). The dashed lines are an extrapolation of the lower
bands below the Dirac crossing energy, which are observed not to pass through the upper bands
(above ED), suggesting the kinked shape of the bands around ED. The sheet electron density is
nS = 1.1, 1.5, 3.7, and 5.6 × 1013 cm−2 for (e)–(h), respectively, due to increased doping upon
potassium adsorption. Adapted from [1295]
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Fig. 18.6 Cyclotron mass in
graphene as a function of the
sheet electron concentration
nS (negative values relate to
hole concentration,
EF < ED). Adapted
from [1291]

For the linear energy dispersion (18.1) the number of states up to energy EF is
(with a degeneracy of 4)

N (EF) = 4
π k2

F

(2π/L)2
= A

4π E2
F

h2 c2∗
, (18.6)

where A is the system area. Therefore we have (at low temperature) with (18.5)

nS = 4π

h2

E2
F

c2∗
∝ m2

c, (18.7)

as determined experimentally. Therefore the behavior of the SdH oscillations con-
firms the linear dispersion relation. The experimental value for the velocity is
c∗ ≈ 106m/s. From (18.7) the density of states (per area and energy) around the
Dirac point increases linearly with energy,

D(E) = 8π

h2 c2∗
E . (18.8)

The carrier density in a graphene sheet can be controlled via the field effect. The
graphene is positioned on an insulator/semiconductor structure, typically SiO2/Si
(cf. Sect. 21.3). The carrier density is then related to the applied (gate) voltage Vg via
(21.89) and (21.91), i.e.

nS = εi Vg

e d
, (18.9)

where d is the thickness of the insulator and εi its dielectric constant. By applying
positive (negative) bias electron (holes) can be induced in the sheet. The electron and
hole densities depend on the Fermi energies3

3Here we assume the linear dispersion for all thermally populated states.

http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_21
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Fig. 18.7 Band structure of graphene with various positions of the Fermi energy EF in relation to
the Dirac energy ED. States occupied with electrons are shown with in bold

nS = 8π

h2 c2∗

∫ ∞

ED

E − ED

1 + exp [(E − EF)/kT ]
dE (18.10a)

pS = 8π

h2 c2∗

∫ ED

−∞
−(E − ED)

1 + exp [−(E − EF)/kT ]
dE (18.10b)

as visualized in Fig. 18.7. These relations cannot be inverted to obtain EF(n, p)

analytically. The total charge carrier density is ρS = e(pS − nS).
The Hall effect (Fig. 18.8) shows the expected ambipolar dependence according

to (13.16) which takes the form

RH = 1

e

pS − nS

(nS + pS)2
(18.11)

for equal electron and hole mobilities.4

From Hall effect measurements the mobility has been determined to be about
104 cm2/Vs, independent of temperature between 10 and 100K, and the same for
electrons and holes. This value, however, is much smaller than the in-plane mobility
of about 106 cm2/Vs at 4.2K in high quality samples of highly ordered pyrolithic
graphite (HOPG) [1299]. In suspended graphene a mobility of 2.3 × 105 cm2/Vs
has been found, limited by finite sample size [1300]. Thus in graphene layers on a
solid surface extrinsic effects such as charge traps, interfacial phonons, ripples or
fabrication residue seem to limit the carrier mobility.

The QHE has been observed in graphene [1291], reportedly up at room temper-
ature [1301]. The plateaus (4e2/h)(n + 1/2) correspond to unusual half-integer
filling, the first plateau occurring at 2e2/h, as has been also suggested from
theory, and related to the ‘pseudospin’. Another consequence of the Dirac-like
behavior of the fermions in graphene is the presence of finite maximum resistiv-

4Including sign, μh = −μe. For T = 0 and EF = ED, nS = pS = 0 and thus 1/RH should
be zero. For finite temperatures there is always nS > 0 and pS > 0, even for EF = ED. Thus
1/RH ∝ 1/(pS − nS) diverges at ρS = e(pS − nS) = 0 with a change of sign.

http://dx.doi.org/10.1007/978-3-319-23880-7_13
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Fig. 18.8 Hall coefficient
(T = 10K) for a graphene
sheet as a function of the free
carrier sheet density
ρS/e = pS − nS (positive
values indicate p-type). Data
shown as solid lines
from [1291]

ity ρmax = h/4e2 = 6.45k� even at low temperature and EF = ED. It is due to the
fact that localization effects, leading to insulating behavior, are strongly suppressed.
Then each carrier keeps a mean free path in the order of its Fermi wavelength.

The Klein paradox [1302, 1303], the efficient tunneling of Dirac particles
through high and thick barriers seems accessible in transport experiments with
graphene [1304].

18.1.4 Other Two-Dimensional Crystals

Two-dimensional crystals have been reported also for other materials such as BN,
MoS2, NbSe2, Bi2Sr2CaCu2Ox [1286] or ZnO [1305]. The phonon spectra of
graphene, BN- and BC2N-sheets are compared in Fig. 18.9. The spectrum of BC2N
is similar to the superposition of the C and BN spectra [1306].

18.2 Carbon Nanotubes

18.2.1 Structure

A carbon nanotube (CNT) is a part of a graphene sheet rolled up to form a
cylinder. They were first described as multi-walled nanotubes by Iijima [1307] in
1991 (Fig. 18.10b) and in their single-walled form (Fig. 18.10a) in 1993 [1308].
Reviews can be found in [1293, 1309].

The chirality and diameter of a nanotube are uniquely described by the chiral
vector

ch = n1 a1 + n2 a2 ≡ (n1, n2), (18.12)
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(a)

(c)

(b)

Fig. 18.9 (a) Crystal structure of BC2N. (b) Brillouin zone of BC2N (rectangle) and C, BN
(hexagon). (c) Phonon dispersion of graphene (C) and BN- and BC2N-sheets. Adapted from [1306]

(a) (b)

Fig. 18.10 (a) TEM image of single-walled carbon nanotubes (SWNT). (b) TEM images of various
multi-walled carbon nanotubes (MWNT). Adapted from [1307]

where a1 and a2 are the unit vectors of the graphene sheet. The chiral vector
denotes two crystallographic equivalent sites which are brought together along the
circumference of the nanotube. The possible vectors are visualized in Fig. 18.1 for
−30◦ ≤ θ ≤ 0◦. The fiber diameter is given by

d = |ch|
π

= a

π

(

n2
1 + n1 n2 + n2

2

)

, (18.13)
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(a)

(b)

(c)

Fig. 18.11 Structure of different types of carbon nanotubes that have similar diameter of 0.8nm.
(a) Armchair (6,6), (b) zigzag (8,0) and (c) chiral symmetry. Adapted from [1309]

Fig. 18.12 Achiral nanotube (chiral vector is (10,5), θ = −19.11◦) with hemispherical caps at both
ends based on an icosahedral C140 fullerene. The tube diameter is 1.036nm. Adapted from [1311]

with the graphene lattice constant a = √
3 dC−C = 0.246nm. Ab-initio calcula-

tions show that the diameter becomes a function of the chiral angle below 0.8nm;
deviations from (18.13) are below 2% for tube diameters d > 0.5nm [1310]. The
(n, 0) tubes (θ = 0) are termed ‘zig-zag’ and an example is depicted in Fig. 18.11b.
Nanotubes with θ = ±π/6, i.e. of the (n, n) (and (2n,−n)) type, are called ‘arm-
chair’. All others are termed ‘chiral’.

The extension along the wire axis is large compared to the diameter. The tip
of a nanotube is part of a buckminster-fullerene type molecule (Fig. 18.12). When
the nanotube if formed by rolling a single sheet of graphene (SLG), a single-walled
nanotube (SWNT) is formed.AFLGsheet creates amulti-walled nanotube (MWNT).
For small number of layers they are called double-walled, triple-walled and so forth.

The mechanical strength of carbon nanotubes is very large. For SWNT Young’s
moduli of 103 GPa have been found experimentally [1312] in agreement with theo-
retical predictions [1313].

18.2.2 Band Structure

In carbon nanotubes there is some mixing of the π(2pz) and σ(2s and 2pz)
carbon orbitals due to the radial curvature. This mixing is, however, small and can
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(a) (b)

(c) (d)

Fig. 18.13 (a) Brillouin zone of the graphene lattice (bold line) and allowed k-values for a (6,6)
armchair nanotube. (b)Band structure of a (6,6) carbonnanotube.Adapted from [1315]. (c)Brillouin
zone of the graphene lattice (bold line) and allowed k-values for a (6,0) zig-zag carbon nanotube.
In the lower part the real space structure is visualized. (d) Band structure of graphene (left) and a
(6,6) nanotube (right). Adapted from [1316]

be neglected near the Fermi level [1314]. The band structure of a nanotube is mainly
determined by zone-folding of the graphene band structure. The vector along the
(infinitely extended) wire kz is continuous. The vector k⊥ around the nanotube is
discrete with the periodic boundary condition

ch · g⊥ = 2π m, (18.14)

where m is an integer. The distance of allowed k⊥-values is (5.5)

Δk⊥ = 2π

π d
= 2

d
. (18.15)

The character of the nanotube band structure depends on how the allowed k-values
lie relative to the graphene Brillouin zone and its band structure. This is visualized
in Fig. 18.13. For the case of an armchair tube (n, n), as shown in Fig. 18.13a, the
K-point of the graphene band structure always lies on an allowed k-point. Therefore,

http://dx.doi.org/10.1007/978-3-319-23880-7_5
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(a)

(b)

(c)

Fig. 18.14 (a, b) Brillouin zone of the graphene lattice (bold line) and allowed k-values for a
(a) (6,0) and a (b) (8,0) zig-zag nanotube. (c) Band structures of a (12,0) metallic and (13,0)
semiconducting armchair carbon nanotube. Adapted from [1315]

the nanotube is metallic, i.e. zero-gap, as seen in the bandstructure in Fig.18.13b.
The Dirac point is between Γ and X. For a zig-zag nanotube, the k-space is shown
in Fig. 18.13c for a (6, 0) nanotube. The corresponding band structure for a (6, 0)
nanotube is also metallic (Fig. 18.13d) with the Dirac point at the Γ point.

In Fig. 18.14c the band structure of another metallic (12, 0) zig-zag nanotube is
shown. However, only for (3m, 0) the K-point is on an allowed state and thus the
tube metallic. For the other cases, as shown for the k-space of a (8, 0) nanotube in
Fig. 18.14b, this is not the case. The corresponding band structure (Fig. 18.14c for
(13, 0)) has a gap and thus the nanotube is a semiconductor. Generally, the condition
for a nanotube to be metallic is with an integer m

n1 − n2 = 3m. (18.16)

There are two semiconducting ‘branches’ with ν = (n1−n2)mod 3 = ±1. The tubes
with ν = +1 have a small band gap, those with ν = −1 have a larger band gap.

The density of states is a series of one-dimensional DOS, proportional to
√

E
(6.75). It is compared in Fig. 18.15 for a metallic and a semiconducting nanotube.
Within 1eV from the Fermi energy the DOS can be expressed in an universal
term [1317].

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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Fig. 18.15 Density of states for a (9,0)metallic and (10,0) semiconducting zig-zag carbon nanotube
within the tight-binding approximation (18.2). The energy scale is given in units of the tight-binding
parameter T ≈ 3eV. The dashed lines are the DOS of graphene. Adapted from [1311]

18.2.3 Optical Properties

Optical transitions occur with high probability between the van-Hove singularities
of the DOS. The theoretical absorption spectrum of a (10,0) nanotube is shown in
Fig. 18.16.

In an ensemble of nanotubes various types and sizes occur. The transition ener-
gies of all possible nanotubes sorted by diameter are assembled in the Kataura plot
(Fig. 18.17a). Experimental data are shown in Fig. 18.17b. The two branches of semi-
conducting nanotubes ν = ±1 yield different transition energies. The overall depen-
dence of the transition energy follows a 1/d-law.

18.2.4 Other Anorganic Nanotubes

Structures similar to carbon nanotubes have been reported for BN [1322, 1323].
A boron nitride nanotube is a cylindrically rolled part of a BN sheet. BN tubes
are always semiconducting (Fig. 18.18) and have a band gap beyond 5eV similar
to hexagonal BN which is mostly independent on chirality and diameter [1324].
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Fig. 18.16 Calculated absorption spectra for a (semiconducting) (10,0) carbon nanotube for parallel
(solid line) and perpendicular (dotted line) polarization. The thick (thin) lines are calculated with
(without) the matrix element included. Adapted from [1318]

(a) (b)

Fig. 18.17 (a) Theoretical transition energies of semiconducting (filled symbols) andmetallic (open
symbols) carbon nanotubes as a function of tube diameter (Kataura plot). Energies are calculated
from van-Hove singularities in the JDOSwithin the third-order tight-binding approximation [1294].
(b) Experimental Kataura plot for the first two semiconducting (S, closed symbols) and the first
metallic (M, open symbols) transition. Dashed lines connect the (near-to) armchair tubes; full lines
connect tubes in a branch, ν = (n1−n2)mod 3. Data from photoluminescence [1319] and resonant
Raman scattering [1320]. Adapted from [1321]

Thus, while carbon nanotubes appear black since they absorb within 0–4eV, BN is
transparent (or white if scattering). For high energies larger than 10eV C and BN
tubes are quite similar since they are isoelectronic and the high-lying unoccupied
states are less sensitive to the difference in the nuclear charges than the states at and
below the Fermi energy [1325].
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Fig. 18.18 Band structure and density of states (DOS) of C(3,3) and BN(3,3) nanotubes, calculated
with DFT-LDA. Adapted from [1325]



Chapter 19
Dielectric Structures

Abstract Dielectric structures, in particular periodic dielectric structures are treated.
A general one-dimensional model is developed describing Bragg mirrors. Examples
for photonic band gapmaterials in one, two and three dimensions are given. Different
types of dielectric cavities and microscopic resonators including Fabry–Pérot and
whispering gallery resonators are treated. Quantum electrodynamic physical effects
from light matter coupling such as Purcell effect and strong coupling are treated.

19.1 Photonic Band Gap Materials

Layered structures of dielectric materials with different index of refraction are used
as optical elements such as filters or reflection and anti-reflection coatings [1326]. In
this section we discuss the use of such concepts in one-, two- and three-dimensional
photonic band gap materials.

19.1.1 Introduction

A structure with a so-called photonic band gap (PBG) exhibits an energy range (color
range) in which photons cannot propagate in any direction. In the photonic band gap,
there are no optical modes, no spontaneous emission and no vacuum (zero-field)
fluctuations. We recollect that spontaneous emission is not a necessary occurrence:
Looking at Fermi’s golden rule (19.18) for the transition probability integrated over
all final states

w(E) = 2π

�
|M |2 ρf(E), (19.1)

we see that the decay rate depends on the density ρf of final states at energy E . In the
case of spontaneous emission, this is the (vacuum) density Dem of electromagnetic

© Springer International Publishing Switzerland 2016
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
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Fig. 19.1 Right
electromagnetic dispersion
with a forbidden gap at the
wavevector of the
periodicity. Left
Electron-wave dispersion
typical of a direct-gap
semiconductor. When the
photonic band gap straddles
the electronic band gap,
electron–hole recombination
into photons is inhibited
since the photons have no
place to go (zero final
density of states)

modes (per energy per volume) that varies ∝ ω2:

Dem(E) = 8π

(hc)3
E2. (19.2)

In a homogeneous optical medium c must be replaced with c/n (cmp. Sect. 10.2.3).
If the band gap of a PBG is tuned to the electronic gap of a semiconductor,

the spontaneous emission, and also induced emission, can be suppressed. Thus, one
mode has to be left by ‘doping’ the structure. In this mode all emission will disappear
and an efficient single-mode (monochromatic) LED or ‘zero-threshold’ laser could
be built. A schematic comparison of the band structure of electrons and photons is
given in Fig. 19.1.

19.1.2 General 1D Scattering Theory

The formation of a photonic band gap in a one-dimensional dielectric can be cal-
culated to a large extent analytically and thus with direct insight. Let n(x) be the
spatially varying index of refraction (no losses or nonlinear optical effects). The
one-dimensional wave equation (Helmholtz equation) reads for the electric field E

∂2E(x)

∂x2
+ n2(x)

ω2

c2
E(x) = 0. (19.3)

http://dx.doi.org/10.1007/978-3-319-23880-7_10
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A comparison with a one-dimensional Schrödinger equation

∂2Ψ (x)

∂x2
− 2m

�2
[V (x) − E]Ψ (x) = 0 (19.4)

shows that the Helmholtz equation corresponds to the quantum-mechanical wave
equation of zero external potential V and a spatially modulated mass, i.e. a case that
is usually not considered.

Let us consider now the amplitude ak of the k eigenvector. The eigenvalue is then
ωk . The one-dimensional mode density ρ(ω) (per energy and per unit length) is

ρ(ω) = dk

dω
, (19.5)

which is the inverse of the group velocity.
We follow one-dimensional scattering theory as presented in [1327]. At this point

we do not rely on any specific form of n(x) (Fig. 19.2a). The (complex) transmission
coefficient t for any index structure is

t = x + iy = √
T exp(iφ), (19.6)
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Fig. 19.2 1D scattering problem: (a) General scattering of an index of refraction distribution, (b)
N -period stack, (c) two-layer (quarter-wave) stack
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where tan φ = y/x . φ is the total phase accumulated during propagation through the
structure. It can be written as the product of the physical thickness of the structure d
and the effective wave number k. Hence we have the dispersion relation

d

dω
tan(kd) = d

dω

( y

x

)
. (19.7)

Evaluating the derivative we find

d

cos2(kd)

dk

dω
= y′x − x ′y

x2
, (19.8)

where the prime denotes derivation with respect to ω. Using the relation cos2 θ =
(1 + tan2 θ)−1, we obtain the general expression

ρ(ω) = dk

dω
= 1

d

y′x − x ′y
x2 + y2

. (19.9)

19.1.3 Transmission of an N-Period Potential

Now, the behavior of N periods of a given index distribution n(x) within a thickness
d of one period (Fig. 19.2b) is investigated. The scattering matrix M connects the

intensity at x = 0 with that at x = d . We use the column vector u =
(

u+
u−

)

containing the right- and left-going waves (labeled ‘+’ and ‘−’, respectively), u± =
f ± exp(±ikx),

u(0) = M u(d). (19.10)

Using the boundary conditions u(0) = (1, r) and u(d) = (t, 0), we find that M
has the structure

M =
(
1/t r∗/t∗
r/t 1/t∗

)
. (19.11)

The conservation of energy requires that det M = (1− R)/T = 1. The eigenvalue
equation for M is

μ2 − 2μRe(1/t) + 1 = 0. (19.12)

The two eigenvalues μ± are related by μ+ μ− = det M = 1. If we consider an
infinite, periodic structure, we know fromBloch’s theorem that the eigenvector varies
between unit cells only via a phase factor, i.e. |μ| = 1. Therefore, the eigenvalues
can be written as

μ± = exp(±iβ), (19.13)
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where β corresponds to the Bloch phase of a hypothetical infinite periodic structure.
This phase β should not be confused with φ defined earlier, which is associated with
the unit cell transmission. We find the condition

Re(1/t) = cosβ (19.14)

for the Bloch phase. Since every matrix obeys its own eigenvalue equation, we have
also (1 being the unity matrix)

M2 − 2M cosβ + 1 = 0. (19.15)

By induction one can show that the N -period case has the scattering matrix

MN = M
sin(Nβ)

sin β
− 1

sin((N − 1)β)

sin β
. (19.16)

The solution for the finite period case can be written in terms of the Bloch phase
of the infinite potential. The transmission and reflection of the N -period system are
given by

1

tn
= 1

t

sin(Nβ)

sin β
− sin((N − 1)β)

sin β
(19.17a)

rn

tn
= r

t

sin(Nβ)

sin β
. (19.17b)

The transmission of intensity can be written as (T = t∗t)

1

TN
= 1 + sin2(Nβ)

sin2 β

(
1

T
− 1

)
. (19.18)

Again, up to this point no specific distribution of the index of refraction within the
unit cell has been specified.

From (19.17a), a general formula for the mode density ρN (ω) of the N -stack can
be obtained as [1327]

ρN = 1

N d

sin(2Nβ)

2 sin β

(
η′ + ηξξ′

1−ξ2

)
− Nηξ′

1−ξ2

cos2(Nβ) + η2
(
sin(Nβ)

sin β

)2 , (19.19)

where ξ = x/T = cosβ and η = y/T .
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19.1.4 The Quarter-Wave Stack

A quarter-wave stack, also known as a Bragg mirror, exhibits a one-dimensional
photonic band gap. One period consists of two regions with thickness and index of
refraction (d1, n1) and (d2, n2), respectively (Fig. 19.2c). In the quarter-wave stack
each region has an optical thickness of λ/4 (the wave accumulates in each region a
phase of π/2) for a particular wavelength λ0 or (midgap) frequency ω0. Thus, the
condition reads

n1 d1 = n2 d2 = λ0

4
= π

2

c

ω0
. (19.20)

Using the Fresnel formulas, the transmission of an arbitrary two-layer cell is

t = T12 exp(i(p + q))

1 + R12 exp(2iq)
, (19.21)

where p = n1d1ω/c and q = n2d2ω/c are the phases accumulated in the two layers,
respectively. The values of T12 and R12 are given as

T12 = 4 n1 n2

(n1 + n2)2
(19.22a)

R12 = (n1 − n2)
2

(n1 + n2)2
. (19.22b)

For the quarter-wave stack (p = q = π/2), we obtain for (19.21)

t = T12 exp(iπω̃)

1 + R12 exp(iπω̃)
, (19.23)

where ω̃ = ω/ω0 is the frequency scaled to the midgap value.
The transmission of a single two-layer cell is

T = T 2
12

1 − 2 R12 cos(πω̃) + R2
12

, (19.24)

and the Bloch phase is given by

cosβ = ξ = cos(πω̃) − R12

T12
(19.25a)

η = sin(πω̃)

T12
. (19.25b)
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(a)

(b)

Fig. 19.3 Quarter-wave stack with indices of refraction (a) n1, n2 = 1.0, 1.5 and (b) 1.0, 3.0.
Solid lines dimensionless density of modes ρN (19.19), dashed lines transmission TN (19.26) for
two different numbers of pairs N = 5 (left panels) and 10 (right panels) versus the dimensionless
frequency ω̃

For the N -period quarter-wave stack the transmission is given by

TN = 1 + cosβ

1 + cosβ + 2 (R12/T12) sin2(N β)
. (19.26)

A band gap forms. Within the band gap, the density of modes is lowered, at the
edges it is enhanced (Figs. 19.3 and 19.4). The transmission at midgap decreases
∝ (

ni/n j
)2N

, where ni < n j .
In the limit of large N the completewidthΔω̃ of the band gap is implicitly given by

cos
(π

2
Δω̃

)
= 1 − 2

(
n1 − n2

n1 + n2

)2

. (19.27)

If |n1 − n2| � n1 + n2, we find

Δω̃ ≈ 4

π

|n1 − n2|
n1 + n2

. (19.28)
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(a) (b)

Fig. 19.4 Quarter-wave stack with indices of refraction n1, n2 = 1.0, 1.5: (a) Transmission TN at
midgap (ω̃ = 1, down triangles) and at the band edge (ω̃ = 1−Δω̃/2, up triangles) versus number
of pairs N . (b) Dimensionless density of modes ρN at maximum near the band edge and at midgap
versus number of pairs N

The principle of the quarter-wave stack is scalable to frequencies other than vis-
ible light.1 In Fig. 19.5 the reflectance of various quarter-wave stacks from yttria-
stabilized zirconia (YSZ [1328], high index material, Fig. 19.6a) and Al2O3 are
shown [1329]. The different design wavelengths have been achieved solely by vary-
ing the layer thicknesses.

In Fig. 19.6b the three Bragg mirrors from Fig. 19.5 with N = 15.5 pairs are
replotted in relative frequency units ω̃. The spectra look very similar; subtle differ-
ences in the width of the reflectance band are due to slightly larger index contrast
at higher design energy (cmp. Fig. 19.6a). The width of the gap is approximately
Δω̃ ≈ 0.18 in agreement with (19.28).

As further example, a Mo/Si Bragg mirror with a period of 6.7nm is shown in
Fig. 19.7. Such a mirror works in the extreme UV and is used for soft X-ray optics,
possibly in advanced lithography systems. Dielectric thin films can also be designed
for anti-reflection coatings, edge filters or pass and stop band filters as detailed
in [1326].

19.1.5 Formation of a 3D Band Structure

For other applications, e.g. waveguides with minimized footprint, 3D (or at least
2D) photonic band gap structures are needed. Details can be found in dedicated
textbooks [1332–1334]. In [1335] planar, cylindrical and spherical Bragg mirrors
are discussed.

1This is a general property of Maxwell’s equations which do not contain a specific length scale.
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Fig. 19.5 Reflectance of various Bragg mirrors from YSZ/Al2O3 grown by pulsed laser deposition
on sapphire. The different layer thicknesses result in the design energies 0.43eV (N = 10.5, Rmax =
0.9812, red), 1.19eV (N = 10.5, Rmax = 0.9779, orange), 2.11eV (N = 15.5, Rmax = 0.99953,
green), 3.39eV (N = 15.5, Rmax = 0.99946, blue) and 4.54eV (N = 15.5, Rmax = 0.99989,
purple)

(a) (b)

Fig. 19.6 (a) Index of refraction of YSZ and Al2O3 as a function of photon energy. (b) Reflectance
spectra of the 2.11eV, 3.39eV and 4.54eV Bragg mirrors of Fig. 19.5 replotted as a function of the
scaled frequency ω̃ = ω/ω0

Sincewewant a photonic band gap that is present for all directions of propagation,
a Brillouin zonewith a shape close to a sphere is preferable. Then, themain directions
are at similar k-values (Fig. 19.8). One of the best suited is the fcc lattice. Since the
L point is centered at ≈14% lower frequency than the X point, the forbidden gaps
for different directions must be, however, sufficiently wide to create a forbidden
frequency band overlapping at all points along the surface of the Brillouin zone. For
example, the bcc lattice has a Brillouin zone that is less symmetric than that of the
fcc lattice (see Fig. 3.34) and thus is less suited for the creation of an omnidirectional

http://dx.doi.org/10.1007/978-3-319-23880-7_3
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50nm

Si

Mo
Si

(a) (b)

Fig. 19.7 (a) Cross-sectional TEM of Mo/Si superlattice with 2.7nm Mo and 4.0nm Si (period:
6.7nm) on Si(001) substrate. From [1330]. (b) Reflection spectrum for a SL with period of 6.5nm
and 88.5◦ angle of incidence. Data points are shown as circles, the solid line is a fit with a period
of 6.45nm. Adapted from [1331]
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Fig. 19.8 (a) The Brillouin zone of the fcc lattice. (b) Schematic forbidden gaps at the L and X
points

photonic band gap. However, the photonic band gap must not arise above the first
band, relaxing problems due to asymmetry of the Brillouin zone (cf. Table 19.1).

Maxwell’s equations (zero charge density) for monochromatic waves ∝ exp(iωt)

∇ · D = 0 (19.29a)

∇ × E = i
μω

c
H (19.29b)

∇ × H = i
ω

c
D (19.29c)

∇(μH) = 0 , (19.29d)
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Fig. 19.9 (a) Calculated photonic band gap structure of a fcc dielectric structure composed of air
spheres in a dielectric background of refractive index n = 3.5. The filling ratio is 86% air and 14%
dielectricmaterial.Dotted and solid lines represent coupling to s- and p-polarized light, respectively.
Reprinted with permission from [1336], ©1990 APS. (b) Density of states for the band structure of
part (a)

Fig. 19.10 (a) Calculated photonic band structure for a diamond dielectric structure consisting
of overlapping air spheres in a dielectric material with n = 3.6. Filling ratio of air is 81%. The
frequency is given in units of c/a, a being the cubic lattice constant of the diamond lattice and c
being the velocity of light. (b) Gap-to-midgap frequency ratio for the diamond structure as a function
of filling ratio for dielectric spheres n = 3.6 in air (solid circles) and air spheres in dielectric n.
Optimal case: air spheres with 82% filling ratio. Reprinted with permission from [1336], ©1990
APS

together with D(r) = ε(r)E(r) and μ = 1 they are combined into the wave equation

∇ × [
ε−1(r)∇ × H(r)

] + ω2

c2
H(r) = 0. (19.30)

This equation is numerically solved for planar waves with wavevector k.
In the following, results are shown for various structures. In a fcc lattice of air

spheres in a dielectric medium with n = 3.6 (a typical semiconductor), no band gap
can be achieved (Fig. 19.9a), only a pseudogap (Fig. 19.9b) appears.

In a diamond lattice (two fcc lattices shifted by 1/4 〈111〉), a complete pho-
tonic band gap is possible [1336] (Fig. 19.10). Recently, a periodic array of spirals
(Fig. 19.11) has been predicted to exhibit a large photonic band gap [1337]. Glancing-
angle deposition [1338] (GLAD) is a way to realize such structures. Another method
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Fig. 19.11 (a) Tetragonal square-spiral photonic crystal. The crystal shown here has a solid filling
fraction of 30%. For clarity, spirals at the corners of the crystal are highlighted with a different
shade and height. The tetragonal lattice is characterized by lattice constants a and b. The geometry
of the square spiral is illustrated in the insets and is characterized by its width, L , cylinder radius, r ,
and pitch, c. The top left inset shows a single spiral coiling around four unit cells. (b) Band structure
for the direct structure crystal characterized by [L , C , r ]=[1.6, 1.2, 0.14] and a spiral filling factor
fspiral = 30%. The lengths are given in units of a, the lattice constant. The width of the PBG is
15.2% relative to the center frequency for background dielectric constant εb = 1 and spiral dielectric
constant εs = 11.9. The positions of high-symmetry points are illustrated in the inset. Reprinted with
permission from [1337], ©2001 AAAS. (c) Oblique and edge views of a tetragonal square spiral
structure grown using the GLAD (glancing-angle deposition) process. Reprinted with permission
from [1338], ©2002 ACS

to fabricate structures with arbitrary geometry within a material is two-photon litho-
graphy or two-photon holography. Another path to PBG structures are so-called
inverted opals. First, a close-packed structure of spheres, e.g. monodisperse silica
spheres, is fabricated by sedimentation or self-assembly. The gaps are filled with
a high-index medium and the template is subsequently removed, e.g. by etching or
dissolving. The resulting structure is shown in Fig. 19.12a. Such a structure has a pho-
tonic band gap (Fig. 19.12b) if the refractive index is sufficiently high (>2.85) [1339].
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Fig. 19.12 (a) Cartoon showing, in five steps, the fabrication of an inverse diamond structure with
a full photonic band gap. First, (i) a mixed body-centered cubic lattice is assembled (ii) after which
the latex sublattice is removed; (iii) then the structure is sintered to a filling fraction of ∼50% after
that (iv) silicon or germanium infiltration takes place and finally (v) silica elimination. (b) Photonic
band diagrams of (upper panel) a silicon/silica composite diamond opal and (lower panel) made of
air spheres in silicon resulting from the removal of the silica spheres from the former. The filling
fraction for silicon is 50%. The inset shows the corresponding real space structures. Reprinted with
permission from [1347], ©2001 AIP. (c) SEM images of internal facets of silicon inverse opal: (i)
(110) facet, (ii) (111) facet. Adapted from [1348], reprinted with permission from Nature, ©2000
Macmillan Magazines Limited

The band gap in this case is between the 4th and 5th band. Table 19.1 offers a com-
pilation of various PBG structures and their properties.
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Table 19.1 Various photonic band gap structures and some of their properties

Name Crystal type n Δω̃ (%) Reference

Diamond Diamond 2 29 [1336]

Yablonovite fcc 2 19 [1340]

Woodpile fc tetragonal 2 20 [1341]

Spirals sc 4 17 [1342]

Square-spirals Tetragonal 4 24 [1337]

Layered 3D bc orthorhombic 4 23 [1343]

Inverted scaffold sc 5 7 [1344]

Inverse opal fcc 8 4.25 [1345]

Inverse hcp hcp 16 2.8 [1346]

The band gap is between the nth and (n + 1)th band, Δω̃ is given for air/silicon (ε ≈ 12)

19.1.6 Disorder

A real photonic band gap structure deviates from the ideal, perfectly periodic system
by slight variations of the position and possibly also the size of the dielectric ‘atoms’.
This is schematically shown in Fig. 19.13a. The difference between the real and ideal
structure is a (bipolar) spatial distribution ofΔε(r)which acts as a source of scattering
and hence exponential attenuation of coherent beams propagating through photonic
crystals over lengths l, named the ‘(extinction) mean free path’. After propagating
over such distance l, a light beam is converted to a diffuse glow that corrupts the
functionality of any photonic integrated circuit. Experimentally for opals a mean
free path consistent with 5% fabrication accuracy has been found (Fig. 19.13b). For
such disorder and a lattice constant a ≈ λ, the mean free path is about only 10
wavelengths, l ≈ 10λ.

19.1.7 Defect Modes

Similar to a perfect periodic atomic arrangement leading to the formation of the elec-
tronic band structure, a perfectly periodic dielectric structure leads to the photonic
band structure. As we know from semiconductor physics, much of the interesting
physics and numerous applications lie in defect modes, i.e. localized electronic states
due to doping and recombination at such centers. The equivalent in PBG structures
are point defects (one unit missing) or line defects (a line of units, straight, bend or
with sharp angles, missing). Such defects create localized states, i.e. regions for light
localization. In the case of line defects we deal with waveguides that can be conve-
niently designed and could help to reduce the size of photonic and optoelectronic
integrated circuits.
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(a)

(b)

Fig. 19.13 (a) Schematic photonic band gap structure with perfect (upper left) and disordered
(upper right) periodicity. In the lower left panel the disordered structure is overlayed with the
ideal structure (red circles). In the lower right panel, the difference between ideal and disordered
structure is shown. (b) Optical mean free path in an opal photonic band gap structure for various
lattice constants. Solid line is theory for 5% fabrication accuracy. Adapted from [1349]

1D Model

We revisit our 1D scattering theory and create now a ‘defect’. A simple defect is the
change of the width of the center n2-region in a quarter-wave stack. For the numerical
example, we choose N = 11, n1 = 1, n2 = 2.

In Fig. 19.14, the transmission curves are shown for the undisturbed quarter-wave
stack and the microcavity with n2 dcenter

2 = 2λ0/4 = λ0/2. A highly transmissive
mode at ω = ω0 arises that is quite sharp with Δω = 3 × 10−4. Thus, the quality
factor Q, also called the Q-factor or finesse,

Q = ω0

Δω
, (19.31)

with ω0 being the resonance frequency and Δω being the linewidth, is 3.3 × 103 in
this case.

If the thickness is varied (Fig. 19.15), the mode shifts away from the center. A
similar scenario arises for higher-order nl/2-cavities, e.g. n2dcenter

2 = 4λ0/4 = λ0

(Fig. 19.16).
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(a) (b)

Fig. 19.14 Defect mode in 1D photonic band gap: (a) Transmission of N = 11 quarter-wave stack
exhibiting a photonic band gap (n1 = 1, n2 = 2) (dashed line) and of microcavity (solid line) with
center n2-region of width λ0/2 (instead of λ0/4). (b) Relative width of mode is about 3 × 10−4

Fig. 19.15 Transmission of
N = 11 quarter-wave stack
(n1 = 1, n2 = 2) with center
n2-region of widths 1.8λ0/4
(dashed line) and 2.2λ0/4
(solid line)

Fig. 19.16 Transmission of
N = 11 quarter-wave stack
(n1 = 1, n2 = 2) with center
n2-regions of widths 3λ0/4
(solid line), 3.5λ0/4
(dash-dotted line) and 4λ0/4
(dashed line)
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2D or 3D Defect Modes

An example of 2D waveguiding is shown in Fig. 19.17. Point defects can be used
for high-finesse wavelength filtering. Emitters surrounded by a photonic band gap
material with a defect mode can emit into the defect mode only, leading to spectrally
filtered, highly directional emission.

Fig. 19.17 2D photonic band gap waveguide structure. (a) Fabrication principle, (b) SEM image
of the structure, (c) light guiding at a 90◦ bend. Reprinted with permission from [1350], ©2000 AIP
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19.1.8 Coupling to an Electronic Resonance

In a vertical-cavity surface-emitting laser (cf. Sect. 23.4.14), an optical defect mode
in a 1D dielectric structure is coupled to an electronic excitation, such as an exciton
in a quantumwell or dot. In the simplest picture, the oscillator must emit its radiation
into the cavity mode since other modes do not exist in the Bragg band. Thus, the
emission energy is given and fixed by the cavity mode. However, the photon mode
(field oscillator) and the electronic oscillator form a coupled system that generally
must be described using quantum electrodynamics. Energy is periodically exchanged
between the two oscillators with the Rabi frequency. An analogous phenomenon is
investigated in the field of atom–cavity interactions. A necessary condition for the
observation of such an oscillation is that the radiation energy remains long enough
in the cavity that can be expressed as [1351, 1352] (cf. (19.37))

α d 
 1 − R ≈ π/Q, (19.32)

where α is the absorption coefficient of the electronic transition, d is the length of
the absorbing medium, R is the reflectance of the cavity mirror and Q is the finesse
of the cavity given in (19.31). This situation is called the strong coupling regime
since it leads to anticrossing behavior of the cavity mode and electronic resonance.
In the weak coupling regime for small absorption, the resonances cross (within their
linewidth). For resonance, the emission intensity of the oscillator into the cavity
mode is enhanced and its lifetime is reduced (Purcell effect), which is discussed in
Sect. 19.2.2.

The transmission T of a Fabry–Perot cavity with two (equal and lossless) mirrors
of transmission Tm = 1 − Rm is given by

T (ω) = T 2
m exp (−2 L α(ω))

|1 − Rm exp (i 2 n∗ L ω/c)|2 , (19.33)

with the complex index of refraction n∗ = nr + iκ = √
ε and α = 2ωκ/c (cf. (9.9)).

For an empty cavity, i.e. a (small) background absorption αB and a background
index of refraction nr = nB, the resonances occur when the phase shift 2nBLω/c is
an integer multiple of 2π, i.e. for

ωm = m
π c

nB L
, (19.34)

with m ≥ 1 being a natural number. In the vicinity of the resonance, i.e. for ω =
ωm + δω, we can expand exp (2nBLω/c) ≈ 1+ i2nBLδω/c and obtain from (19.33)
a Lorentzian for the transmission

T (ω) ≈ T 2
m exp (−2Lα(ω))

|1 − Rm(1 + i2nBL δω/c)|2 = (Tm/Rm)2 exp (2Lα(ω))

(δω)2 + γ2
c

. (19.35)

http://dx.doi.org/10.1007/978-3-319-23880-7_23
http://dx.doi.org/10.1007/978-3-319-23880-7_9
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The frequency width (HWHM) γc of the empty-cavity resonance is given by

γc = 1 − R′

R′
c

2 nB L
, (19.36)

where R′ = Rm exp (−2Lα). Thus, the decay rate (photon loss from the cavity) is
proportional to Tm + αBL if both terms are small. The quality factor of the cavity
resonance m is given by

Q = ωm

2 γc
≈ m π

1 − R
. (19.37)

Now, the electronic resonance is put into the cavity leading to a change in the
dielectric function to (cf. (D.11))

ε = n2
B

[
1 + f

1 − (ω2 + iωΓ )/ω2
0

]
, (19.38)

where the index of refraction due to the electronic resonance is given by n(ω) =√
ε and (D.13a, b). For resonance of the cavity mode and the electronic oscillator,

i.e. ωm = ω0, the solution for the cavity resonance condition 2nrωL/c = m2π is
obtained, using (19.34), from

nr(ω) = m
π c

ω L
= nB

ωm

ω
. (19.39)

A graphical solution (Fig. 19.18a) yields three intersections of the left and right
hands of (19.39). The very high absorption at the central solution (ω = ω0) results in
very low transmission. The other two solutions2 yield the frequencies of the coupled
normal mode peaks. For f � 1, we use (D.13a) in (19.39) and find for the splitting
±Ω0/2 of the two modes

Ω2
0 = f ω2

0 − Γ 2. (19.40)

This frequency is called the Rabi frequency. If the dielectric function of the oscillator
is put into (19.33), the splitting is found to be

Ω2
0 = f ω2

0 − (Γ − γc)
2. (19.41)

A splitting will only be observable if Ω0 
 Γ, γc. If the two resonances ωc and ω0

are detuned by Δ = ωc − ω0, the splitting Ω of the transmission peaks shows the
typical anticrossing behavior of two coupled oscillators

Ω2 = Ω2
0 + Δ2. (19.42)

2These solutions only occur for sufficient oscillator strength f > (Γ/ω0)
2, i.e. in the strong coupling

regime where Ω2
0 > 0. The absorption coefficient at ω0 must be larger than Γ n∞/c.
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Fig. 19.18 (a) Graphical representation of (19.39) with the two solutions marked with circles for
n∞ = 1 (dashed line), f = 10−3, Γ/ω0 = 10−2 and ω0 = ωm. (b) Reflectance peak positions
(experimental data (circles) at T = 5K) versus cavity detuning ωc − ω0 for a cavity with two
GaAs/AlGaAs Bragg mirrors (24/33 pairs for the front/bottom mirror) and five embedded quantum
wells whose resonances are closely matched. Solid lines are a theoretical fit according to (19.42)
with Ω0 = 4.3meV. The dashed lines show the electronic resonance ω0 and the cavity resonance
ωc. Part (b) adapted from [1352]

In the experiment, typically the electronic resonance remains fixed at ω0 and
the cavity resonance is detuned by variation of the cavity length across the wafer
(Fig. 19.18b).

A detailed theory of cavity polaritons is given in [1353]. The nonlinear optics of
normal mode coupling in semiconductor microcavities is reviewed in [1354].

The in-plane dispersion of the cavity polaritons depends on the coupling strength.
First, the photon dispersion is given by

Eph(k) = � ω = � c k = � c
(
k2
‖ + k2

z

)1/2
, (19.43)

where k‖ is the in-plane k-vector and kz is given by the resonance condition, kz =
ωm/c with (19.34),

kz = m
π

nB L
. (19.44)

Thus the dispersion relation is no longer linear as for freely propagating light.
For small k‖ this leads to an (in-plane) effective photon ‘rest mass’, applying

(6.34),
1

m∗
ph

= 1

�2

∂2Eph

∂k2
. (19.45)

We find

m∗
ph = � kz

c
= � ω(k‖ = 0)

c2
. (19.46)

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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Fig. 19.19 Dispersion of
cavity photon mode and
electronic resonance at
Eel = 3.0eV (dashed lines)
and coupled modes (solid
lines) for 2V = 40meV

Nowwe assume the electronic oscillator to be in resonancewith the photon dispersion
at k‖ = 0, i.e. Eel = �ω(k‖ = 0). The electronic resonance shall have vanishing
dispersion for simplicity since the exciton mass is much larger than (19.46). The
eigenwert equation of the coupled system, resembling (6.57), is

∣∣∣∣
E − Eph V

V E − Eel

∣∣∣∣ = 0, (19.47)

with two solutions, called the upper and lower cavity polariton branch, visualized in
Fig. 19.19. Their splitting at k‖ = 0 is 2V . Thus the coupling parameter V = �Ω0/2
corresponds [1353] to the Rabi frequency (19.40). Experimental values for the split-
ting of 3–15meV in InAlGaAs based [1352, 1355–1358], 17–44meV in CdZnTeSe
based [1359], 6–60meV in (Al,In,Ga)N based [1360–1364] and 78meV in ZnO
based [1365] microcavities were found. It is possible to condensate cavity polari-
tons in the minimum of the dispersion around k‖ = 0 (Bose–Einstein condensation).
In [1366] stimulated scattering and gain from cavity polaritons have been reported.
Further details on cavity polaritons can be found in [1367, 1368].

19.2 Microscopic Resonators

19.2.1 Microdiscs

Amicrodisc is a cylindrical resonator with a thickness d that is small compared to the
radius R. It can be fabricated from semiconductors and semiconductor heterostruc-
tures using patterning and material-selective etching. With underetching a mostly
free-standing disc can be made that resides on a post (Fig. 19.20).

The coordinate system is (ρ, φ, z) with the z direction being perpendicular to the
disc area. Typically, the disc is so thin that there is only one node along z. Solving the

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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500nm
1µm

(a) (b)

Fig. 19.20 (a) Side view of a 3-µm diameter disc containing one 10-nm InGaAs quantum well
between 20-nm InGaAsP barriers standing on an InP pillar that has been selectively underetched
using HCl. (b) Top view SEM image of a 5-µm diameter InGaAsP microdisc. The pedestal shape is
a rhombus due to anisotropic etching of the HCl. Adapted from [1369], reprinted with permission,
©1992 AIP
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Fig. 19.21 (a) Field intensity for whispering gallery mode (10, 0) (TM-polarized) for a circle with
1µm radius (shown as white line) and n = 1.5. The image size is 4×4µm2. (b) Theoretical quality
factor of a 2-µm InP microdisc as a function of the deformation parameter (19.49). The insets
show (8,0) whispering gallery modes at a wavelength of 1.55µm for n = 3.4. Part (b) adapted
from [1372]

wave equation in this geometry [1370], the modes are characterized by two numbers
(m, l). m describes the number of zeros along the azimuthal direction φwith the field
amplitude being proportional to exp(±imφ). Thus, except for m = 0, the modes are
simply degenerate. Modes with Ez = 0 are called TE modes. This is the preferred
polarization of emission. The number l denotes the number of zeros in the radial
direction. Only for modes with |m| = 1, is the intensity nonzero on the axis, i.e. for
ρ = 0. All other modes have vanishing intensity in the disc center.

The light intensity in whispering gallery modes is preferentially concentrated
along the circumference of the disc as shown in Fig. 19.21a. Since the light can
only escape via evanescent waves, the light is well ‘captured’ in such a mode.
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(a) (b)

Fig. 19.22 Strong coupling of a single QD exciton (due to monolayer fluctuation in a 13ML thick
GaAs/Al0.33Ga0.67As QW) with aWGM in a microdisk of 2µm diameter (inset). (a) Anti-crossing
of upper and lower peak for various temperatures. Symbols are data points, solid lines are theory
considering coupling. The dashed (dash-dotted line) is the expected temperature shift of the WGM
mode (exciton energy). (b) Photoluminescence spectrum at the anti-crossing point (T = 30K).
Experimental data (squares) and fit with two peaks (solid line). Adapted from [1373]

The Q-factor (19.31) is extremely high and takes values of several 104. In order
to couple light out of such a disc, deformed resonators, e.g. with a defect in the form
of protrusions [1371], were devised. Deformed resonators are discussed in more
detail in the next section.

The strong coupling of a QD exciton to a whispering gallery mode is shown in
Fig. 19.22 where anti-crossing behavior is observed at low temperatures. Tuning is
achieved by temperature variation. Behavior of a similar system in the weak coupling
regime is shown in Fig. 19.24.

19.2.2 Purcell Effect

According to Fermi’s golden rule (19.1), the probability of an optical transition
depends on the density of available optical modes (final states). If the density of
modes is enhanced compared to its vacuum value (19.2) at a resonance of an optical
cavity, the lifetime of the electronic state decreases by the Purcell factor [1374]

FP = 3

4π2
Q

(λ/n)3

V
, (19.48)
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Fig. 19.23 (a) Micropillar with MBE-grown GaAs/AlAs DBRs and a cavity containing five layers
of InAs quantum dots as indicated. The pillar has been prepared by reactive ion etching. Reprinted
with permission from [1375], ©1998 APS. (b) Experimental decay time τ of on-resonance quantum
dot luminescence scaled by off-resonance lifetime τ0 = 1.1ns (close to lifetime in a QD in bulk)
for a variety of micropillars with different Purcell factors FP. The error bars correspond to the
measurement accuracy of the decay time (±70ps), the dashed line is a guide to the eye. Adapted
from [1375]

where n is the refractive index of the medium, Q is the quality factor of the cavity
resonance and V is the effective mode volume.3 Experiments on the emission of
quantum dots (that generally provide small absorption and thus allow for the weak
coupling regime) in etched micropillars containing a microcavity (Fig. 19.23a) have
shown that indeed the luminescence decay is faster for cavities with large Purcell
factor (Fig. 19.23b) [1375]. The resonance of cavity mode and emitter leads to an
enhanced emission intensity as shown in Fig. 19.24 for the exciton emission of a
single quantum dot in a microdisc [1376].

19.2.3 Deformed Resonators

The whispering gallery modes in circular (or spherical) cavities are long-lived and
emission goes into all angles. Light escape is based only on the exponentially slow

3V is given by the spatial integral of the vacuum field intensity for the cavity mode, divided by its
maximum value.
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Fig. 19.24 (a) Temperature dependence of the energy positions of the whispering gallery mode
(WGM) of a 5-µmdiameter AlGaAs/GaAsmicrodisc (Q = 6500) and the single-exciton resonance
of a single InAs quantum dot contained within the disc. (b) Intensity of WGM mode as a function
of the detuning EWGM − EQD−X from the QD single exciton resonance. The excitation density was
15Wcm−2 for all data. Adapted from [1376]

process of evanescent leakage (neglecting disorder effects such as surface roughness).
In order to overcome the isotropic light emission, the resonator needs to be deformed.
This can be accomplished with an ellipsoidal shape, i.e.

r(φ) = R [1 + ε cosφ] , (19.49)

where 1 + 2ε is the aspect ratio of the ellipse. The increased radiation leads to a
decrease of the Q-factor as shown inFig. 19.21b.Also, a newdecayprocess, refractive
escape, becomes possible. A ray that is initially in a whispering gallery trajectory
diffuses in phase space until finally an angle smaller than the critical angle for total
reflection (9.11) is reached. The ray dynamics becomes partially chaotic [1377].

Oneother possible deformationof the circular disc geometry is a ‘flattenedquadru-
pole’ as shown in Fig. 19.25a. This shape can be parameterized by a deformation
parameter ε and the angle-dependent radius r(φ) given by

r(φ) = R
[
1 + 2 ε cos2 (2φ)

]1/2
. (19.50)

For small deformation, the whispering gallery modes become chaotic and exhibit
preferred emission along the long axis of the resonator (Fig. 19.25b). For larger
deformations (ε ≥ 0.14), a stronger and qualitatively different directionality occurs
in the shape of a bow-tie [1378] as shown in Fig. 19.25c. The optical laser power
extracted from deformed resonators was found to increase exponentially with ε; for
ε = 0.2 it was 50 times larger than for the circular resonator.

Another modification that can be applied to the microdisc in order to increase
outcoupling of light, is the spiral resonator [1379] as shown in Fig. 19.26a. The
radius is parameterized by

http://dx.doi.org/10.1007/978-3-319-23880-7_9
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Fig. 19.25 (a) SEM image of a quadrupolar cylinder laser with deformation parameter ε ≈ 0.16
on a sloped InP pedestal. The light grey area in the top view is the electrical contact. (b) Simulated
near-field intensity pattern of a chaotic whispering gallery mode for ε = 0.06 and n = 3.3. (c)
Simulated near-field intensity pattern of a bow-tie mode for ε = 0.15. The length of the minor axis
for (b) and (c) is 50µm. Reprinted with permission from [1378], ©1998 AAAS

r(φ) = R
[
1 + ε

2π
φ
]
. (19.51)

The experimental emission pattern is displayed in Fig. 19.26b. It exhibits a maximum
along the direction of the tangent at the radius step. The simulated near-field intensity
of such an emission mode is shown in Fig. 19.26c. In a spiral laser, ray dynamics is
also chaotic [1380].
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Fig. 19.26 (a) SEM image of a microcavity disc laser diode with a disc radius of 50µm. The
p-contact ring electrode defines the areas through which carriers are injected into the microdisc
and where stimulated emission can take place. (b) Radial distribution of the light output from
the spiral-shaped microdisc laser diode measured below and above threshold. The radius of the
spiral microdisc was r0 = 250µm and the deformation parameters were ε = 0.05 (grey) and
ε = 0.10 (black). An emission beam at an angle of α = 0◦ corresponds to a direction normal to the
notch surface as shown in the inset. Below the laser threshold, the emission pattern is essentially
isotropic and independent of the deformation parameter. Above the threshold, directional emission
is clearly observed with the emission direction at a tilt angle α ≈ 25◦. The measured divergence
angle of the far-field pattern is ∼ 75◦ for ε = 0.10 and ∼ 60◦ for ε = 0.05. Reprinted with
permission from [1381], ©2004 AIP. (c) Simulated near-field intensity pattern of an emission mode
with nk R ≈ 200 for deformation ε = 0.10. Reprinted with permission from [1379], ©2003 AIP

19.2.4 Hexagonal Cavities

Hexagonal cavities develop, e.g., in microcrystals of wurtzite semiconductors (with
the c-axis along the longitudinal axis of the pillar). In Fig. 19.27a, a ZnO tapered
hexagonal resonator (needle) is shown. Whispering gallery modes modulate the
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Fig. 19.27 (a)–(c) SEM images of ZnO nanoneedle fabricated by pulsed laser deposition. (d)
Schematic geometry of cross-sectional plane. Ri (R) is the radius of the incircle (circumscribing
circle). The circumference of the inscribed white hexagon, representing the path of a whispering
gallery mode, has a length of 6Ri. (e) Two-dimensional plot of spectra recorded along a linescan
along the needle’s longitudinal axis. The left vertical axis shows the linescan position x , the right one
refers to the respective needle diameter D. The spectral maxima, i.e. the measured WGM energies,
appear as bright belts going from the bottom left corner to the right upper one. With decreasing
diameter, all resonances shift systematically to higher energies. The white dots give theoretical TM-
resonance energy positions obtained from (19.52), white crosses give the same for TE-polarization.
Reprinted with permission from [1382], ©2004 APS

intensity of the green ZnO luminescence [1382].4 In a simple plane-wave model,
the resonance condition is given by

6Ri = h c

n E

[
N + 6

π
arctan

(
β
√
3n2 − 4

)]
, (19.52)

4We note that besides the green luminescence as in Fig. 10.20, an unstructured green band also
occurs that is observed here. Its origin may be linked to the oxygen vacancy [1383].

http://dx.doi.org/10.1007/978-3-319-23880-7_10
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Fig. 19.28 Simulated near-field intensity pattern of modes in a cavity with hexagonal cross section
(absolute value of electric field in linear grey scale): Modes (N = 4) with (a) symmetry −a and
(b) mode 4+ (nomenclature from [1384]) for n = 2.1 and k R = 3.1553 − i0.0748. Modes (c)
26− and (d) 26+ for n = 1.466 and k R = 22.8725 − i0.1064. The displayed modes have a chiral
pattern. Emission originates mostly from the corners. (e) Micro-photoluminescence spectra of a
single ZnO nanopillar. The three topmost curves are unpolarized. The curve labeled ‘bulk’ shows
the unmodulated luminescence of the green luminescence in bulk. The line labeled ‘exp.’ shows
the experimental µ-PL spectrum of the investigated nanopillar. The experimental spectra recorded
for TM- and TE-polarization, respectively, are shown in the lowest two curves. The curve labeled
‘theory’ displays the theoretical luminescence spectra. Dashed vertical lines are guides to the eye
referring to the spectral position of the dominating WGMs. The inset shows a SEM image of the
investigated pillar, the scale bar has a length of 500nm. The dotted lines show the position of the
edges of the hexagonal resonator obtained from topography contrast

(a) (b) (c)

Fig. 19.29 (a) Photoluminescence spectra of a ZnO microwire with hexagonal cross section for
various pump power densities (lowest curve: D = 60kW/cm2, top curve: D = 250kW/cm2)
at T = 10K. The inset shows the scanning electron microscopy image of a typical microwire
(d = 6.40µm). (b) Dependence of the emitted PL intensity of a selected lasing peak (denoted by
an arrow in the spectrum in part (a)) on the excitation density D. Lines are guide to the eyes. (c)
Dependence of the resonant energies on the interference order N for wires with different diameters
as labeled on top of the graph. Lines are the predicted theoretical values calculated from (19.52)
using diameter values obtained from SEMmeasurements; the symbols represent the experimentally
observed peaks. Adapted from [1385]
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where Ri is the radius of the inner circle (Fig. 19.27d), n is the index of refraction,
N is the mode number and β is given by βTM = 1/n (βTE = n) for TM (TE)
polarization, respectively. Due to birefringence, n|| (n⊥) has to be used as the index
of refraction for TM (TE) polarization.

A N = 26 whispering gallery mode of a hexagonal resonator is shown in
Fig. 19.28c, d. The 6-fold symmetric emission stems from the edges of the hexagon.
While whispering gallery resonators have typically mode numbers N 
 1, in
such hexagonal resonators the whispering gallery modes could be followed down
to N = 1 [1382] as shown in Fig. 19.27a, b, e.

Under high optical pumping laser action occurs on the whispering gallery modes.
The peak positions, close to the band gap in the spectral region of the electron-hole
plasma, follow (19.52) [1385], as shown for various diameters in Fig. 19.29. Pumping
threshold even at room temperature is below 100kW/cm2 [1386].



Chapter 20
Transparent Conductive Oxide
Semiconductors

Many of the most important semi-conductors are oxides.
A.H Wilson, 1939 [65]

Abstract Typical materials in the class of transparent conductive oxides are men-
tioned. Their physical properties and the limits of conductivity versus transparency
are discussed.

20.1 Introduction

Transparent conductive oxides (TCO) are semiconductors that are simultaneous
transparent and highly conductive. Therefore they can serve as transparent con-
tacts, e.g. as a solar cell front contact or in display applications. The materials are
typically fabricated in the form of thin films on glass, polymers or similar substrates
and devices. The crystallographic structure is polycrystalline or amorphous. The first
TCO investigated was CdO in pressed powder [1387] and thin film form [31]. The
recent historic development of the resistivity of the most important TCO materials
in the last 30years is shown in Fig. 20.1. Further information on TCO films can be
found in [1388–1390].

20.2 Materials

Any wide-gap (Eg > 3eV) semiconductor that is conductive, e.g. due to intrin-
sic defects or by chemical impurities (doping), can be considered to be a TCO.
Practically only a few, non-toxic materials that can be easily deposited are of impor-
tance. The first TCO application was heating of air plane windows. As always in
semiconductor technology, price drives the suitability for applications. This in par-
ticular true for TCO applications since they include large area devices such as solar

© Springer International Publishing Switzerland 2016
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
DOI 10.1007/978-3-319-23880-7_20
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Fig. 20.1 Historical
development of the
resistivity of doped ZnO
(circles), In2O3 (squares)
and SnO2 (diamonds) TCO
films. Adapted from [1390]

Fig. 20.2 Practical TCO
materials

cells, displays and also large glass panes for electromagnetic shielding and archi-
tectural heat and IR transparency management. Therefore large quantities of TCO
are needed. The popular ITO (indium-tin-oxide) suffers from large indium price and
potential indium scarcity, opening the field for aluminum-doped ZnO (ZAO) which
is abundant. Possible other compounds including Cd are of no practical interest due
to toxicity. Conductive GaN has not been considered due to its large processing
temperatures. All practical TCO materials contain either Zn, Sn or In (Fig. 20.2).
A number of TCO materials is reviewed in [1391]. TCO are mostly n-conducting.
Also p-conducting TCOs have been reported, e.g. CuAlO2 delafossite [1392] with
room temperature conductivity of σ = 1S/cm, ZnIr2O4 [1393] with σ = 2S/cm and
ZnCo2O4 spinel [1394] with σ = 20S/cm. However, there has been so far no report
on a practical transparent highly conductive p-type electrode.

The term ITO stands for a variety of Sn-doped indium oxide (In2O3) materials,
the Sn content being typically in the 5–10% range but not strictly defined. The
crystal structure of In2O3 [1395] is shown in Fig. 20.3. The effect of the replacement
of indium by tin atoms in In2O3 on mechanical, electrical and optical properties
of ITO has been calculated in [1396] using DFT. In Fig. 20.4 the band structures of
pure In2O3 and (Sn0.065In0.935)2O3 (one out of 16 indium atoms was replaced in the
calculation) are compared [1397]. The fundamental band gap is slightly lowered, the
high doping introduces a gigantic Burstein-Moss shift. Additionally another band
gap opens that splits the lowest conduction band. Also the conduction mechanism in
amorphous oxides has been discussed [1398].
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Fig. 20.3 The bixbyite crystal structure of indium oxide (In32O48) showing one unit cell where
the indium and oxygen atoms are represented by the full and empty circles, respectively. Adapted
from [1396]

Fig. 20.4 Comparison of the band structure of In2O3 (left) and (Sn0.065In0.935)2O3 (right). The
position of the Fermi level is for both cases at E = 0. Adapted from [1397]

20.3 Properties

The best conductivity of TCOs is in the range of 10−4 �cm for the specific resis-
tivity. Such value is about three orders of magnitude smaller than that of metals.
However, the TCO meanwhile is highly transparent in the visible region, while met-
als become transparent only in the UV region because of their high plasma frequency
(cf. Sect. 9.8.1).

The conduction mechanism in ZnO:Al is band transport in a highly doped semi-
conductor. The carrier concentration is typically around 1021 cm−3. One of the
best results is a (Hall) mobility of 47.6cm2/Vs, leading to a specific resistivity of
8.5×10−5 �cm [1399]. The mobility is limited by (doping level dependent) ionized
impurity scattering (Sect. 8.3.3) as shown in Fig. 20.5 for various films. A detailed
discussion of ionized impurity scattering in doped ZnO films can be found in [1400].

http://dx.doi.org/10.1007/978-3-319-23880-7_9
http://dx.doi.org/10.1007/978-3-319-23880-7_8
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Fig. 20.5 Hall mobility for various ZnO:Al TCO thin films as a function of carrier (electron)
concentration. The dashed line is the Brooks–Hering theory of ionized impurity scattering (taking
into account non-parabolicity of the conduction band). The dash-dotted line is mobility in the
presence of grain boundaries, the solid line is combined theory. Symbols are experimental data from
two sets of samples. Adapted from [1390]

Also the mobility is correlated (Fig. 20.6) with scattering at structural defects such
as grain boundaries [1401] (cf. Fig. 8.5). We note that the carrier mobility in a (poly-
crystalline) TCO is not very different from that in highly doped (crystalline) silicon
(Fig. 8.7).

Conductivity and transparency are, however, linked. The high doping of the TCO
leads to shifts in the band gap (renormalization and Burstein-Moss shift), band tails
and the like that can introduce absorption in the visible spectral region. Also the
infrared transparency is related to the conductivity by free carrier absorption and the
plasma edge (Sect. 9.8.1). With increasing carrier density, the plasma edge shifts into
the visible spectral range (Fig. 20.7a), limiting the possible maximum carrier density
to several 1021 cm−3, the exact value depending on the carrier mass. In Fig. 20.7b
the transparency spectra of two SnO2 films with different conductivity are com-
pared. The higher conductivity due to larger carrier concentration leads to reduced IR

Fig. 20.6 Hall mobility of
ZnO:Al films (of varying
thickness) versus the
crystallite size. Experimental
data (from [1390]) are shown
as symbols. The dashed line
is a guide to the eyes

http://dx.doi.org/10.1007/978-3-319-23880-7_8
http://dx.doi.org/10.1007/978-3-319-23880-7_8
http://dx.doi.org/10.1007/978-3-319-23880-7_9
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(a) (b)

Fig. 20.7 (a) Absorption coefficient of n-type ZnO for various electron concentrations as labeled.
Spectra synthesized from ellipsometric data of thin films. The visible spectral range is indicated.
The contributing absorption processes are band-band transitions (BB), free carrier absorption (FC)
and phonon-related absorption (Ph) as labeled. (b) Transparency versus wavelength spectra of two
SnO2 films with different conductivity as labeled. Adapted from [1402]

transparency. Generally, the transmission of a TCO is limited by the band edge on the
high energy side of the spectrum and the plasma edge on the low energy side of the
spectrum. The limited carrier concentration due to the onset of free carrier absorp-
tion in the visible spectral range (∼3 × 1021 cm−3) and the limited mobility in the
presence of such high impurity concentration (max. 50cm2/Vs) restrict theminimum
resistivity of a TCO (or any transparent conductor) to about 4 × 10−5 �cm [1403].



Part III
Applications



Chapter 21
Diodes

Abstract A thorough treatment of Schottky (metal–semiconductor) diodes, MIS
(metal–insulator–semiconductor) diodes and (bipolar) pn-diodes is given, focussing
on suitable materials, the formation of space charge layers and the forward and
reverse current–voltage characteristics. Applications of such devices based on their
rectifying properties are discussed.

21.1 Introduction

One of the simplest1 semiconductor devices is the diode. It is a so-called two-terminal
device, i.e. a device with two leads. The most prominent property of a diode is the
rectifying current–voltage (I–V ) characteristic. This function was initially realized
with vacuum tubes (Fig. 21.1); a heated filament emits electrons that are transferred
through vacuum to the anode if it is on a positive potential. The semiconductor diode
technology led to a tremendous miniaturization, integration with other devices (in
planar technology) and cost reduction.

We distinguish2 unipolar diodes, for which the majority carriers cause the effects
(e.g. metal–semiconductor diodes), and bipolar diodes in which minority carriers
play the decisive role, e.g. in the pn-junction diode.

21.2 Metal–Semiconductor Contacts

Themetal–semiconductor contactwas investigated in 1874byF.Braun (seeSect. 1.1).
For metal sulfides, e.g. CuFeS2, he found nonohmic behavior. We remark here
that we treat first metal–semiconductor contacts with rectifying properties. Later
it becomes understandable that metal–semiconductor contacts can also be used as

1The simplest device is a resistor made from a homogeneous piece of semiconductor, used, e.g., as
a part of an integrated circuit or as a photoresistor as discussed in Sect. 22.2.
2This distinction is not only made for diodes but also many other semiconductor devices such as
transistors, see Chap. 24.

© Springer International Publishing Switzerland 2016
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
DOI 10.1007/978-3-319-23880-7_21
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Fig. 21.1 (a) Schematic image of a vacuum diode. The electron current flows from the heated
cathode to the anode when the latter is at a positive potential. (b) One of John A. Fleming’s
first diode ‘valves’, 1904. (c) Commercial ‘tungar’ rectifier, around 1916 [1405]. (b, c) adapted
from [1404]

ohmic contacts, i.e. contacts with a very small contact resistance. Rectifying metal–
semiconductor contacts are also called Schottky diodes. A very important variation
are metal–insulator–semiconductor diodes for which an insulator, mostly an oxide,
is sandwiched between the metal and the semiconductor. Such diodes are treated in
Sect. 21.3. Reviews on Schottky diodes can be found in [1406–1412].

21.2.1 Band Diagram in Equilibrium

The metal and the semiconductor have generally different positions of the Fermi lev-
els relative to the vacuum level. When the metal is in contact with the semiconductor,
charges will flow in such a way that in thermodynamic equilibrium the Fermi level is
constant throughout the structure.3 In the following we treat two limiting cases: The
contact of a metal with a semiconductor without any surface states (Schottky–Mott
model) and a contact where the semiconductor has a very high density of surface
states (Bardeen model).

The position of the Fermi level in the metal is given by the work function Wm

that is shown in Fig. 21.2 for various metals (see also Table21.1). A recent review
of published values of metal work functions is given in [1413]. The work function
reflects the atomic shell structure; minima of the work function exist for group-I
elements. The work function is the energy difference between the vacuum level (an
electron is at rest in an infinite distance from the metal surface) and the metal Fermi
level (Wm > 0). Since the electron density in the metal conduction band is very high,

3This situation is similar to the heterostructure interface (Sect. 12.3.4), with the metal, however,
having a very short screening length.

http://dx.doi.org/10.1007/978-3-319-23880-7_12
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Fig. 21.2 Work function Wm of various metals

Table 21.1 Values of the work function Wm of various metals

Z Element Wm (eV) Z Element Wm (eV) Z Element Wm (eV)

3 Li 2.4 37 Rb 2.1 64 Gd 3.1

4 Be 3.4 38 Sr 2.59 65 Tb 3.0

5 B 4.5 39 Y 3.1 66 Dy –

6 C 4.8 40 Zr 3.8 67 Ho –

12 Mg 3.66 41 Nb 4.3 68 Er –

13 Al 4.2 42 Mo 4.2 69 Tm –

14 Si 4.2 44 Ru 4.71 70 Yb –

19 K 2.2 45 Rh 4.6 71 Lu 3.3

20 Ca 2.87 46 Pd 5.0 72 Hf 3.9

21 Sc 3.5 47 Ag 4.7 73 Ta 4.1

22 Ti 4.1 48 Cd 4.0 74 W 4.55

23 V 4.3 49 In 4.12 75 Re 5.0

24 Cr 4.4 50 Sn 4.3 76 Os 4.8

25 Mn 3.89 51 Sb 4.1 77 Ir 4.6

26 Fe 4.4 52 Te 4.8 78 Pt 5.3

27 Co 5.0 55 Cs 2.14 79 Au 4.8

28 Ni 4.9 56 Ba 2.5 80 Hg 4.49

29 Cu 4.5 57 La 3.5 81 Tl 3.8

30 Zn 4.3 58 Ce 2.9 82 Pb 4.0

31 Ga 4.2 59 Pr – 83 Bi 4.4

32 Ge 4.8 60 Nd 3.2 90 Th 3.5

33 As 5.1 62 Sm 2.7 92 U 3.6

34 Se 5.9 63 Eu 2.5
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the position of the metal Fermi level does not change considerably when charge is
exchanged between the metal and the semiconductor.

Since in a semiconductor the Fermi level depends strongly on the doping and
temperature it is not useful to characterize the material itself. For semiconductors the
electron affinity χsc = Evac − EC > 0 is defined as the energy difference between
the vacuum level and the conduction-band edge (see Fig. 12.2).

Ideal Band Structure

When the metal and the semiconductor are not in contact (Fig. 21.3a), the metal is
characterized by its work function Wm = Evac − EF and the semiconductor by its
electron affinity χsc. First, we assume that Wm > χsc. For an n-type semiconductor,
the energy difference between the Fermi level and the conduction band is denoted as

− e Vn = EC − EF (21.1)

being negative, Vn < 0, for nondegenerate semiconductors. Thus, the position of the
semiconductor Fermi level is given as

EF = Evac − χsc + e Vn. (21.2)

If the metal and semiconductor are brought into contact the Fermi levels will
equilibrate. For the case of Fig. 21.3 (EF,sc > EF,m) electrons will flow from the
semiconductor to the metal. The negative surface charge of the metal is compensated
by a positive charge (due to D+) in the semiconductor in the vicinity of the surface.
Eventually a (Schottky) barrier of height4 FBn

FBn = Wm − χsc (21.3)

forms at the interface. The subscript ‘n’ stands for the contact on an n-type semicon-
ductor. Surface/interface effects such as non-matching bonds, surface states, etc. are
neglected at this point. In the semiconductor there exists a positively charged region
that is called the depletion layer or space-charge region [1414]. Its extension (w in
Fig. 21.3b) and properties will be discussed in Sect. 21.2.2. The space charge region
in the metal is very thin due to the small screening length.

For a contact on a p-type semiconductor the barrier FBp (to the valence band) is
(see Fig. 21.4d)

FBp = Eg − (Wm − χsc). (21.4)

Between the surface of the metal and the bulk part of the semiconductor there is
a potential drop

Vbi = FBn

e
+ Vn = Wm − χsc

e
+ Vn, (21.5)

4We denote the energy barrier height with FB = −eφB.

http://dx.doi.org/10.1007/978-3-319-23880-7_12
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(a) (b)

Fig. 21.3 Schematic band structure of a metal–semiconductor junction that is dominated by bulk
properties of the semiconductor. (a) no contact, (b) metal and semiconductor in contact. w denotes
the width of the depletion layer. Outside the depletion layer the semiconductor is neutral. FB,n
denotes the Schottky barrier height, Vbi denotes the built-in voltage (here Vbi > 0)

which is termed the built-in potential (or diffusion voltage). The exact form of the
voltage drop, the so-called band bending, will be discussed in Sect. 21.2.2.

The surface index is defined as

S = ∂FBn

∂Wm
. (21.6)

From thepresent consideration (21.3), the same semiconductorwithmetals of varying
work function should result in S = 1.

Band Structure in the Presence of Surface States

Experimental data shown in Fig. 21.5a, however, show a different behavior with
smaller slope. For GaAs, e.g., the barrier height is almost independent of the metal
work function. Thus, a different model is needed for realistic Schottky diodes. A
rule of thumb for the dominantly covalent semiconductors is that for n-type material
the barrier height is 2/3 of the band gap and for p-type material 1/3 of the band gap,
such that EC − EF ≈ 2Eg/3 (Fig. 21.5b). Only for ionic semiconductors S ≈ 1 holds
(Fig. 21.5c) [1419].

If the semiconductor has a large density of states at its surface (�1012 cm−2), there
is a space-charge region alreadywithout themetal [1420]. Surface traps arefilled up to
the Fermi level (Fig. 21.6a). The size of the band bending in the semiconductorwill be
denoted asFBn since it will turn out below as the Schottky barrier height. If the density
of surface states is very high, the charge carriers moving from the semiconductor
into the metal upon contact formation are accommodated in the surface states and the
position of theFermi level at the semiconductor surface changes only very little. Thus,
the space-charge region is not modified and it is identical to the surface depletion
region. The Schottky barrier height is then given by the band bending at the (bare)
semiconductor surface FBn (Fig. 21.6d) and does not depend on the metal work
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(a) (d)

(b) (e)

(c) (f)

Fig. 21.4 Band structures of metal–semiconductor junctions for (a–c) an n-type semiconductor
and (d–f) a p-type semiconductor (here FBp > 0). (b, e) in thermodynamic equilibrium, (a, d) with
forward bias (V > 0), (c, f) with reverse bias (V < 0)

function at all (Bardeen model [1420]). For this limiting case we find for the surface
index S = 0.

For actual metal–semiconductor contacts the surface index S takes values between
0 and 1.A theory involving the semiconductor band structure and midgap (surface)
states (MIGS) is needed [617, 1421]. For Si, the experimental result is S = 0.27; the
corresponding density of surface states is Ds = 4 × 1013 cm−2 eV−1.
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Fig. 21.5 (a) Experimental Schottky barrier heightsFBn versusmetal work functionWm for various
metal–semiconductor junctions as labeled. Dashed lines are guides to the eye, dash-dotted lines
indicate dependencies for S = 1 and S = 0. Data from [1415, 1416]. (b) EC − EF at the metal–
semiconductor interface versus the band gapEg forAuSchottky contacts on various semiconductors.
The dashed line represents EC − EF = 2Eg/3. Data from [1417]. (c) Surface index S versus the
electronegativity difference ΔX between the species of compound semiconductors. Dashed line is
a guide to the eye. Data from [1416, 1418]

21.2.2 Space-Charge Region

The width w of the space-charge region is calculated next. First, we make the
so-called abrupt approximation. In this approximation (Schottky–Mott model), the
charge density ρ in the space-charge region (0 ≤ x ≤ w) is given by the doping, i.e.
ρ = +eND. Outside the space-charge region the semiconductor is neutral, i.e. ρ = 0
and the electric field is zero, i.e. dϕ/dx = 0. As further boundary conditions the
potential at the interface is ϕ(0) = −Vbi < 0. The potential drop in the space-charge
region is determined by the one-dimensional Poisson equation
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(a) (b)

Fig. 21.6 Schematic band structure of ametal–semiconductor junction that is dominated by surface
properties of the semiconductor. (a) No contact; due to pinning of the Fermi level at surface states
of the semiconductor, a depletion-layer of width w is already present. (b) Metal and semiconductor
in contact

d2ϕ

dx2
= − ρ

εs
, (21.7)

where εs = εr ε0 is the static dielectric constant of the semiconductor. Using the
ansatz ϕ(x) = ϕ0 + ϕ1x + ϕ2x2 we find

ϕ(x) = −Vbi + e ND

εs

(
w0 x − 1

2
x2

)
, (21.8)

w0 being the depletion layer width at zero bias.
The spatial dependence E(x) of the electric field strength is

E(x) = −e ND

εs
(w0 − x) = Em + e ND

εs
x, (21.9)

with the maximum field strength Em = −eND w0/εs at x = 0. From the condition
ϕ(w0) = 0 we obtain w0 as

w0 =
√

2 εs

eND
Vbi. (21.10)

The charge density and the potential in the abrupt approximation are shown in
Fig. 21.7 for GaAs material parameters.

Beyond the abrupt approximation, the thermal distribution of the majority carriers
must be treatedwithmore care. The dependence of the charge density ρ = e(N+

D − n)

on the potential ϕ (within the Boltzmann approximation) is (β = e/kT )

ρ = e ND
[
1 − exp (β ϕ)

]
. (21.11)
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(a) (b)

Fig. 21.7 (a) Potential ϕ and (b) charge density ρ across the depletion layer of a Schottky n-GaAs
diode. Calculation parameters are εs = 12.5 ε0, Vbi − Vext = 2V (small reverse bias), ND = 1 ×
1016 cm−3, T = 300K. Abrupt approximation is shown as solid lines, exact (numerical) calculation
asdash-dotted line.Dashed line in (a) indicates depletion layerwidthw0 in the abrupt approximation

The actual charge density and the potential, obtained from a numerical solution of
(21.7), are shown in Fig. 21.7 in comparison with the abrupt approximation. Clearly,
at the Schottky depletion layer width w0, the charge varies continuously and the
potential does not drop to zero.

We note that for the depletion layer ϕ ≤ 0 and n ≤ ND. The charge difference
Δρ (due to the tail of the thermal distribution of the majority charge carriers in the
depletion layer) between the real distribution (21.11) to the abrupt approximation
model with constant charge density (ρ0 = eND) in the depletion layer is

Δρ(x) = ρ(x) − ρ0 = −e ND exp (β ϕ(x)) . (21.12)

The integration of Δρ over the depletion layer yields that the voltage drop Vbi

across the depletion layer needs to be corrected by ΔV

Δϕ =
∫ w0

0

[∫ x

0

−Δρ(x′)
εs

dx′
]
dx = 1

β

[
1 − exp(−β Vbi)

] ≈ β−1. (21.13)

The approximation is valid for βVbi � 1. Therefore, (21.10) is corrected to

w0 =
√

2 εs

e ND

(
Vbi − β−1

)
. (21.14)

When a potential difference Vext is applied externally to the diode, (21.14) is
modified by the change in the interface boundary condition, ϕ(0) = −Vbi + Vext.
The band structure is shown schematically in Fig. 21.4a for a forward bias and in
Fig. 21.4c for a reverse bias. Therefore, we obtain for the depletion-layer width
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(within the abrupt approximation)

w(Vext) =
√

2 εs

e ND

(
Vbi − Vext − β−1

)
. (21.15)

Nowwe can also give explicitly the value of themaximumelectric fieldEm (at x = 0)

Em = −
√
2 e ND

εs

(
Vbi − Vext − β−1

)
(21.16)

= − 2

w

(
Vbi − Vext − β−1

)
.

We note that so far the barrier height is independent of the applied bias voltage. In
the next section, it is shown that this is actually not the case.

An alternative approach to solve the Poisson equation is to consider the field as a
function of the potential, E(φ). Then,

dE2

dφ
= 2E

dE

dφ
, (21.17)

and
dE

dφ
= dE

dx

dx

dφ
= −dE

dx

1

E
= −d2φ

dx2
1

E
. (21.18)

Combining these two equations and using (21.7) and (21.11) we find

dE2

dφ
= −2 e ND

εs
(1 − exp(β φ)). (21.19)

The integration of this equation yieldswith the boundary conditionE(φ = 0) = 0,

E2(φ) = −2 e ND

εs

(
φ − exp(β φ)

β
+ 1

β

)
. (21.20)

At the interface φ(x = 0) = −(Vbi − V ), and for sufficient voltage drop in the
semiconductor expβ φ � 1, and therefore (21.16) for Em is recovered without using
the abrupt approximation or its correction (21.13).5 Without approximation,

5The functional integration method is limited to bijective potentials φ(x), i.e. strictly monotonously
falling or rising potentials [1422] and thus covers monotonously varying doping density within the
depletion layer.
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Em = −
√
2 e ND

εs

(
Vbi − Vext − 1

β

[
1 − exp(−β(Vbi − Vext))

])
. (21.21)

21.2.3 Schottky Effect

The barrier height is reduced by the image-charge effect that has been neglected so
far. This effect has been worked out for metals by Schottky [1423] and has been
adapted to semiconductors [1424, 1425]. An electron (charge q = −e) at position x
in the semiconductor is facing a metal surface. The metal surface is at zero position
(Fig. 21.8a). The potential distribution of the free charge is modified since the metal
surface is an equipotential surface. The potential distribution outside the metal is
identical to that if an image charge −q were located at −x. This image charge exerts
a force (image force Fif ) on the electron

Fif = − q2

16π εs x2
, (21.22)

where εs is the relative dielectric constant of the semiconductor. In order to bring an
electron to x from infinity the work Eif

Eif =
∫ x

∞
Fif dx = − q2

16π εs x
(21.23)

(a)
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0

Fig. 21.8 (a) Energy of a particle with respect to the metal surface (dashed line), conduction band
in semiconductor depletion layer (dash-dotted line) and combined effect (solid line). The image
charge energy lowers the potential barrier FB0 by the amount ΔF if

B to FBn. (b) Conduction band on
the semiconductor side of a metal–semiconductor junction at various bias voltages (V = 0,+Vbi/2,
and −Vbi as labeled) taking into account the Schottky effect. The width of the depletion layer is
indicated with a short vertical dashed line. The barrier height without Schottky effect is FB0. The
dashed line is the situation without Schottky effect for zero bias
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is needed. This image potential energy is shown in Fig. 21.8a. The total energy Etot

(solid line in Fig. 21.8a) of the electron in the presence of an electric fieldE is given by

Etot = q E x − q2

16π εs x
. (21.24)

We note that the divergence at x = 0 stems from the continuum idealization of
the problem. It can be removed by shifting the position of the image charge slightly
against the interface or by using an extended charge [1050].

The maximum of this function (dEtot/dx = 0) is at xm

xm =
√

e

16π εs E
. (21.25)

The energy barrier (21.3) (without image charge effect now labeled as FB0) is
reduced by ΔFB given by

ΔF if
B = e

√
e E

4π εs
= 2 e E xm. (21.26)

With the field in the vicinity of the interface given by Em from (21.16), the barrier
reduction is6

ΔF if
B = e

[
e3 ND

8π2 ε3s

(
Vbi − Vext − β−1

)]1/4

. (21.27)

For εs = ε0 (vacuum) and a field strength of 105 V/cm the maximum position is at
xm = 6nmand the barrier reduction isΔF if

B = 0.12eV. For 107 V/cm, xm = 1nmand
ΔF if

B = 1.2eV. For semiconductors with εr ∼ 10 the effect is smaller (Fig. 21.9). The
Schottky effect depends on the bias voltage as visualized in Fig. 21.8b and therefore
the barrier height depends on the applied bias voltage.

21.2.4 Capacitance

The total space charge Q (per unit area) in the semiconductor is (V = Vext)

Q(V ) = e ND w =
√
2 e ND εs

(
Vbi − V − β−1

)
. (21.28)

and depends on the external voltage.

6The term ε3s is technically εsε
2
d where εd is the image-force dielectric constant. εd is equal to εs if

the transit time of an electron from the metal to the maximum of the potential energy is sufficiently
long to build up the dielectric polarization of the semiconductor [1406].
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Fig. 21.9 Electric-field
dependence of the image
charge lowering of the
Schottky barrier.
Dash-dotted line is for
vacuum dielectric constant,
dashed line is (21.26) for
εr = 12. Adapted
from [1426]

For measurement of the depletion layer capacitance first the external dc bias
voltage V is set which defines the extension of the depletion layer. The (differential)
capacitance is probed by an ac voltage with small amplitude δV � V . First we
assume that the ac frequency ω is small compared to characteristic time constants
of the electrically active impurities (quasi-static capacitance) and discuss the bias
dependence C(V ). Following we discuss the frequency and temperature dependence
of the capacitance7 C(ω, T), in particular when the measurement frequency is in the
range of the (temperature dependent) electron capture or emission rate (10.42, 10.43).

Bias Dependence

From (21.28) the capacitanceC = |dQ/dV | (per unit area) of the space charge region
is given by

C =
√

e ND εs

2
(
Vbi − V − β−1

) = εs

w
. (21.29)

Equation (21.29) can also be written as

1

C2
= 2

(
Vbi − V − β−1

)
e ND εs

. (21.30)

If 1/C2 ismeasured as a function of the bias voltage (C–V spectroscopy), it should
be linearly dependent on the bias voltage if the doping concentration is homogeneous
(Fig. 21.10a). The doping concentration can be determined from the slope via

ND = − 2

e εs

[
d

dV

(
1

C2

)]−1

, (21.31)

7Probing the capacitance as a function of the ac frequency is called admittance spectroscopy.

http://dx.doi.org/10.1007/978-3-319-23880-7_10
http://dx.doi.org/10.1007/978-3-319-23880-7_10
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(a) (b)

Fig. 21.10 (a) Capacitance C (dashed line) and 1/C2 (solid line) versus bias voltage dependence
for an Au/GaAs Schottky diode (2-µm MOVPE-grown GaAs:Si on a n-GaAs substrate) at room
temperature. From the extrapolation to 1/C2 = 0 and (21.30) we obtain Vbi = 804 ±3mV. (b)
Donor concentration (ND = 4.8 × 1016 cm−3) determined via (21.31) from the 1/C2 plot versus
the depletion layer width (calculated using (21.29))

(see Fig. 21.10b) and the built-in voltage Vbi from the extrapolation to V = V ′ such
that 1/C2 = 0, Vbi = V ′ + kT/e. Using (21.5) the Schottky barrier height can be
determined from this [1427] via

FBn = e V ′ − e Vn + kT − ΔF if
B , (21.32)

where ΔF if
B is the barrier lowering (21.27) due to the image force effect between the

flat-band and the zero-bias cases.
We note that for inhomogeneous doping the depth profile of the doping can be

determined by C–V spectroscopy. The 1/C2 versus bias curve is then no longer a
straight line and exhibits a varying slope. ND(w) is evaluated according to (21.31)
using w = εs/C from (21.29) [1428],

ND

(
w = εs

C

)
= − 2

e εs

[
d

dV

(
1

C2

)]−1

, (21.33)

Using functional integration, the capacitance of a depletion layer can be expressed
in terms ofϕ(0) = Vbi − V without explicit knowledge of the potentialϕ(x) [1422].8

In the approximation eϕ(0) � kT we obtain for homogeneous doping as refinement
of (21.29)

C =
√√√√ e ND εs

2
(

Vbi − V − β−1
(

n0
ND

− ln n0
ND

)) , (21.34)

8This is valid as long as ϕ(x) is strictly monotonous.



21.2 Metal–Semiconductor Contacts 597

where n0 is the electron concentration in the neutral region. Within this general
treatment, the validity of (21.31) has been confirmed. Also, C does not diverge
in the flatband case, for V → Vbi, as for the abrupt approximation but exhibits a
maximum [1422].

At a given bias voltage, the charge (ionized donors or acceptors) at the boundary
of the space-charge region is tested by the capacitance measurement. However, this
principle works only if the depth of the space-charge region actually changes with
the bias voltage. The method can therefore not be directly applied to such systems
like δ-doped layers or quantum wells.

Frequency and Temperature Dependence

The release of carriers from (and capture on) a donor occurs with a characteris-
tic emission rate gc (10.43) (capture rate rc). This is true similarly for acceptors.
Therefore, the capacitance depends on the sampling frequency (Fig. 21.11a). If the
capacitance is probed with a frequency much smaller than the release rate, the sys-
tem appears to be in equilibrium and has the (quasi-)static capacitance C0. If the
probe frequency is much higher, the system cannot follow and the donor does not
contribute to the capacitance. The characteristic frequency f̂ at the turning point of
C(f ) is [895]

2π f̂ = 2 gc, (21.35)

(a) (b)

Fig. 21.11 (a) Capacitance versus probing frequency f for a Pd/ZnO Schottky diode (zero bias)
at T = 85K. Theoretical dependence (solid line) and experimental data (circles). (b) Capacitance
of the same diode as a function of temperature (thermal admittance spectroscopy, TAS) for four
different probing frequencies f =10, 50, 100 and 316kHz (ac amplitude 50mV). Arrows denote the
release of carriers from four different defect levels, two shallow ones and the well-known defects
E1 and E3 [655, 1432]. The inset shows the contribution of the E1 defect, indicated by a rectangle
in the main graph, in more detail. Symbols are experimental data, lines are fit with four-level model
(E1: ED = 116meV, E3: ED = 330meV) [1433]

http://dx.doi.org/10.1007/978-3-319-23880-7_10
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with corrections of the simple factor of 2 discussed in [1429]. Since the emission
rate depends exponentially on temperature, for a given frequency the capacitance
depends on temperature [1430]. This is shown in Fig. 21.11b for ZnO which exhibits
several donor levels. At low temperature shallow levels release their carriers, at
higher temperature the deeper levels start to contribute. The DX center in AlGaAs
(see Sect. 7.7.6) has been investigated in [1431] with this technique.

21.2.5 Current–Voltage Characteristic

The current transport through a metal–semiconductor junction is dominated by the
majority charge carriers, i.e. electrons (holes) in the case of an n-type (p-type) semi-
conductor, respectively.

In Fig. 21.12, the possible transport mechanisms are visualized for an n-type semi-
conductor. Thermionic emission ‘above’ the barrier involves the hot electrons from
the thermal distribution and will be important at least at high temperatures. Tun-
neling ‘through’ the barrier will be important for thin barriers, i.e. at high doping
(w ∝ N−1/2

D , cf. (21.15)). ‘Pure’ tunneling for electrons close to the (quasi-) Fermi
level, also called field emission, and thermionic field emission, i.e. tunneling of elec-
trons with higher energies, are distinguished. Also, recombination in the depletion
layer and hole injection from the metal are possible.

The transport of electrons above the barrier can be described with diffusion the-
ory [1434, 1435] or thermionic-emission theory [1436]. A detailed treatment can
be found in [1437, 1438]. In both cases the barrier height is large compared to kT .
For thermionic emission (typically relevant for semiconductors with high mobility)
the current is limited by the emission process and an equilibrium (constant elec-
tron quasi-Fermi level) is established throughout the depletion layer and ballistic
transport is considered. In diffusion theory (for low mobility) a thermal equilibrium
between metal and semiconductor electrons is established in the interface plane and
the current is limited by diffusion and drift in the depletion region.

Fig. 21.12 Transport
mechanisms at
metal–semiconductor
junctions. (1) Thermionic
emission (‘above’ the
barrier) (2) tunneling
(‘through’ the barrier),
(3) recombination in the
depletion layer, (4) hole
injection from metal

EC

EV

EF

EF

(1)

eV

(3)
(2)

(4)

http://dx.doi.org/10.1007/978-3-319-23880-7_7
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Thermionic Emission

The current density per unit area js→m of electrons that flow from the semiconductor
into the metal is due to the hot electrons from the thermal distribution function

js→m =
∫ ∞

EF+FBn

(−e) vx dn. (21.36)

The integral starts at the lowest possible energy, the top of the Schottky barrier (no
tunneling allowed in this model!). The electron density dn in a small energy interval
dE is

dn = D(E) f (E) dE. (21.37)

For a bulk semiconductor density of states (6.67) and the Boltzmann distribution
(FB � kT )

dn = 1

2π2

(
2m∗

�2

)3/2 √
E − EC exp

(
−E − EF

kT

)
dE. (21.38)

For a given energy E, the carrier velocity v is determined by

E = EC + 1

2
m∗ v2. (21.39)

Thus we obtain √
E − EC = v

√
m∗/2 (21.40)

and
dE = m∗ v dv. (21.41)

Also, with (21.39) and (21.1),

E − EF = (E − EC) + (EC − EF) = 1

2
m∗ v2 − e Vn. (21.42)

Therefore we write (21.38) as

dn = 2

(
m∗

h

)3

exp (βVn) exp

(
−m∗ v2

2 kT

)
4π v2 dv. (21.43)

Then the one-dimensional integral over 4πv2 dv is converted into a three-fold
integral over dvx dvy dvz. Integration over all velocities in y and z directions yields
a factor 2π kT/m∗. The integration over vx runs from the minimum velocity vmin,x

necessary to pass the barrier,

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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∫ ∞

vmin,x

exp

(
−m∗v2

x

2 kT

)
vx dvx = kT

m∗ exp

(
−m∗v2

min,x

2 kT

)
, (21.44)

with the minimum velocity determined by

1

2
m∗ v2

min,x = e (Vbi − V ). (21.45)

Thus the current density is given as, using (21.5),

js→m = 4πe m∗ k2

h3
T 2 exp (−β(Vbi − Vn)) exp (βV )

= A∗ T 2 exp

(
−FBn

kT

)
exp (βV ) , (21.46)

with A∗ being the Richardson constant given by

A∗ = 4πe m∗ k2B
h3

= e NC v̄

4T 2
, (21.47)

where v̄ is the average thermal velocity in the semiconductor. A∗ for electrons in
vacuum is 120Acm−2 K−2. A similar result is obtained for the thermionic emission
of electrons from a metal (overcoming the work function) into vacuum.

If the bias is changed, the current from the semiconductor to the metal increases
in the forward direction because the energy difference between the quasi-Fermi
level and the top of the barrier is reduced. The current is reduced for reverse bias.
The barrier from the metal into the semiconductor remains constant (except for the
Schottky effect whose impact on the current–voltage characteristic is discussed next).
Therefore the current jm→s from the metal into the semiconductor is constant and
can be obtained from the condition j = js→m + jm→s = 0 for zero bias. Therefore
the current–voltage characteristic in the thermionic-emission model is

j = A∗ T 2 exp

(
−FBn

kT

) [
exp (βV ) − 1

]

= js
[
exp (βV ) − 1

]
. (21.48)

The pre-factor

js = A∗ T 2 exp

(
−FBn

kT

)
(21.49)

is called the saturation current density. The saturation current increases with increas-
ing temperature.

The dependence (21.48) represents the ideal diode characteristic and is plotted in
Fig. 21.13.
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(a) (b)

Fig. 21.13 Ideal diode I–V characteristics I = Is (exp(eV/kT) − 1) (a) in linear plot and (b)
semilogarithmic plot

The temperature dependence of the saturation current js can be written as

ln

(
js
T 2

)
= lnA∗ − FBn

kT
(21.50)

by transforming (21.49). The plot of ln
(
js/T 2

)
to versus 1/T is called a Richardson

plot and allows the barrier height and the Richardson constant to be determined from
a linear fit (Fig. 21.14b).

Ideality Factor

If the Schottky (image force) effect, i.e. the change of barrier height with bias voltage,
is considered, the semilogarithmic slope of the forward I–V characteristic is no
longer V −1

0 = e/kT but can be expressed as V −1
0 = e/nkT , n being a dimensionless

parameter termed the ideality factor,9

j = js

[
exp

(
e V

n kT

)
− 1

]
. (21.51)

n is given by

n =
(
1 − 1

e

∂FB

∂V

)−1

≈ 1 + 1

e

∂FB

∂V
. (21.52)

The ideality factor due to the image force effect nif (using (21.27) and the image
force barrier lowering ΔF if,0

B at zero bias) [1439] is

9Obviously n = 1 for the ideal characteristic (21.48). Otherwise n ≥ 1.
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Fig. 21.14 Temperature dependent behavior of an AgOx /ZnO Schottky diode. (a) I–V -
characteristics. Inset depicts extracted parameters, ideality factor n, barrier height FB and flatband
barrier height Ff

B (21.54). (b) Richardson plots for the extracted barrier height and the calculated
flatband barrier height with linear fit. Adapted from [1440]

nif = 1 + ΔF if,0
B

4 e Vbi
= 1 + xm

w0
. (21.53)

Typical values are smaller than 1.03. For GaAs and ND = 1017 cm−3, n = 1.02.With
regard toV0 and its temperature dependence,we refer also toFig. 21.17 and the related
discussion.

In Fig. 21.14a the temperature dependence of the I–V -characteristic of an almost
ideal ZnO Schottky diode [1440] is depicted. The extracted barrier height is almost
independent of temperature as it should be. Also the ideality factor is rather small
(about 1.1) and also independent of temperature. The Richardson plot Fig. 21.14b
according to (21.50) for this diode is a straight line. The extracted constant A∗ =
(10 ± 6)Acm−2 K−2 is reasonably close to the theoretical value of 32Acm−2 K−2

(using m∗ = 0.32).
In order to gain a barrier height independent from non-idealities, in [1441] the

flatband barrier height Ff
B is discussed which is calculated from the diode parameters

via

Ff
B = n FB − (n − 1)

kT

e
ln

(
NC

ND

)
, (21.54)

assuming all donors are ionized (otherwise ND shall be replaced by the electron
density n, not to be confused herewith the ideality factor). Accordingly, the saturation
current density (21.49) is rewritten as

js,f = A∗ T 2 exp

(
−Ff

B

kT

)
(21.55)
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Laterally Inhomogeneous Barrier

The increase of the ideality factor due to a spatially inhomogeneous barrier height has
been proposed early on [1439, 1442–1446]. The barrier height FBn(y, z) across the
contact area is typically assumed to have a Gaussian probability distribution [1447]
p(FBn)with a mean value F̄Bn and a standard deviation σF , It turns out that the barrier
height FC

Bn responsible for the capacitance, and thus the diffusion voltage determined
by C–V spectroscopy, is given by the spatial average, i.e. FC

Bn = F̄Bn. The barrier
height F j

Bn determining the current–voltage characteristics (cf. (21.48)) via

j = A∗ T 2
[
exp (βV ) − 1

] ∫
exp

(
−FBn

kT

)
p(FBn) dFBn (21.56)

= A∗ T 2 exp

(
−F j

Bn

kT

) [
exp (βV ) − 1

]

is given by

F j
Bn = F̄Bn − σ2

F

2 kT
. (21.57)

Thus, the barrier height determined from the current–voltage characteristic under-
estimates the spatial average of the barrier height.10 The Richardson plot (21.50) is
now modified (and is nonlinear in 1/T ) to

ln

(
js
T 2

)
= lnA∗ − FBn

kT
+ σ2

F

2 k2 T 2
. (21.58)

In [1448] the barrier nonuniformity due to the randomdistribution anddiscreteness
of impurity charges in the depletion region is evaluated. This mechanism, yielding
increasing barrier inhomogeneity for larger doping, represent a fundamental limit to
the ideality of a Schottky diode.

If the distribution of barrier heights is discrete, at low voltages the current will
first flow at certain spots with low barrier (‘hot spots’). This leads to kinks in the I–V
characteristics as found for SiC [1449] or ZnO [1450] (Fig. 21.15).

Temperature Dependence

Figure21.16a shows the temperature-dependent I–V characteristics of a Pd/ZnO
Schottky diode. A straightforward evaluation according to (21.48) results in a barrier
height of about 700meV and a Richardson constant that is orders of magnitude
smaller than the theoretical value of 32AK−2 cm−2 (for m∗

e = 0.27). A fit of the
temperature-dependent data with (21.57), as shown in Fig. 21.16b, results in F̄Bn =
1.1eV, in agreement with the (temperature-independent) value obtained from CV
spectroscopy, and σF = 0.13eV [1451].

10This phenomenon is similar to the red-shift of luminescence lines (Stokes shift) due to thermal-
ization in the presence of disorder, see Sect. 12.4.

http://dx.doi.org/10.1007/978-3-319-23880-7_12
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(a)

1µm

(b)

(c)

Fig. 21.15 (a) I–V characteristic of ZnO Schottky diode (solid line) with fits due to regions with
three different barrier heights (dashed lines). (b) Thermography image at bias of 1V. The white
square marks the area where one hot spot was investigated in detail. (c) SEM image of FIB prepared
cross section of a defect (Al2O3 particle) causing the lowest barrier hot spots, inset plane view of
such defect before preparation. Adapted from [1450]

The temperature dependence of the ideality factor n is given by [1452]

n = 1

1 − ρ2 + ρ3/(2kT)
, (21.59)

where ρ2 (ρ3) is the (temperature-independent) proportionality coefficient of the bias
dependence of the mean barrier height (standard deviation), i.e.

ρ2 = 1

e

∂F̄Bn

∂V
(21.60a)

ρ3 = 1

e

∂ σ2
F

∂V
. (21.60b)

The fit of 1/n − 1 versus 1/T in Fig. 21.16c yields ρ2 = −0.025 and ρ3 = −0.028eV
for the ZnO diodes under investigation.

The forward I–V characteristic of an Au/GaAs Schottky diode reported in [1453,
1454] is shown in Fig. 21.17a at various temperatures. The current amplitude
decreases with decreasing temperature due to the temperature dependence of the sat-
uration current (21.48). Also, the slope V −1

0 of the characteristic j = js exp(V/V0)

varies with temperature. Looking at the temperature dependence of V0, it is described
as V0 = k(T + T0)/e rather than with an ideality factor n in the form of V0 = nkT/e.
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Fig. 21.16 (a) Forward I–V characteristic of Pd/ZnO Schottky diodes for various temperatures.
Diode temperatures are 210, 220, 230, 240, 250, 260, 270, and 293K. The inset shows the current
density versus voltage for 293K on a semilogarithmic scale. (b) Effective barrier height F j

Bn versus
the inverse temperature. The solid line is a linear fit according to (21.57) yielding the standard
deviation σF = 0.13eV and the mean barrier height F̄Bn = 1.1eV. (c) Plot of 1/n − 1 versus the
inverse temperature. The solid line is a linear fit of the data yielding the voltage deformation
coefficients ρ2 = −0.025 and ρ3 = −0.028eV. The inset shows the experimentally determined n
factors and the n factors calculated from (21.59) using the voltage-deformation coefficients obtained
from the linear fit (dashed line). Adapted from [1451]
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Fig. 21.17 (a) Forward I–V characteristic of Au/GaAs diode for various temperatures. (b) Temper-
ature dependence of the voltage V0. The experimental data are fitted with T0 = 45 ± 8K. Adapted
from [1453]

In other words, the ideality factor follows a temperature dependence n = 1 + T0/T .
In view of (21.59), such behavior means for small T0 that n ≈ 1/(1 − T0/T) and thus
ρ2 = 0 and ρ3 = 2kT0. For T0 = 45K, ρ3 is 0.008eV, which is a fairly small value.
Thus, the temperature behavior of the diode is due to the narrowing of the Gaussian
distribution of barrier height with bias voltage [1447].

Correlation of Barrier Height and Ideality Factor

In a set of similar diodes with varying magnitude of barrier inhomogeneities, it is
found that the effective barrier height and the ideality factor correlate [1454]. The
extrapolation to n = nif yields the limit of the barrier height for a homogeneous
barrier (Fig. 21.18). For silicon, it is found that the surface orientation has a minor
influence on the Schottky barrier height (Fig. 21.18b) for an unreconstructed surface.
The presence of a reconstruction lowers the barrier height11 (Fig. 21.18a).

11Reconstructions are accompanied by redistributions of the valence charge with respect to the
undisturbed bulk (Sect. 11.4). The subsequent extra interface dipoles alter the barrier heights of
reconstructed interfaces [1455].

http://dx.doi.org/10.1007/978-3-319-23880-7_11
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(a) (b)

Fig. 21.18 (a) Effective barrier height versus ideality factor for Ag/n-Si Schottky diodes prepared
on Si(111) surface with (7 × 7) reconstruction or unreconstructed (1 × 1) as labeled. Themore ideal
(1 × 1) surface exhibits the higher barrier. The dashed lines are linear fits. (b) Effective barrier height
versus ideality factor for Au/n-Si Schottky diodes prepared on HF-dipped (1 × 1) unreconstructed
(001) and (111) surfaces. The dashed lines are linear fits and extrapolation to n = nif . Both surface
orientations exhibit the same extrapolated homogeneous barrier height. Based on data compiled
in [1455]

Diffusion Theory

In diffusion theory the current density is considered in the presence of a carrier-
density and electric-field gradient. In the Boltzmann approximation the electron
current is given by (8.59a). In stationary equilibrium the current density is constant,
i.e. independent of x. Assuming that the carrier density has its equilibrium values at
x = 0 and x = w, we find after integration and using (21.8)

j = −e μn NC Em exp

(
−FBn

kT

) [
exp (βV ) − 1

]
(21.61)

= js
[
exp (βV ) − 1

]
.

Therefore, also in this case the ideal diode characteristic is obtained, however, with
a different saturation current. The ideality factor in diffusion theory is n = 1.06 (for
FBn � 15 kT ) [1409].

Combined Theory

A combination of both theories [1456] considers both mechanisms to be in series.
The current can then be expressed as

j = eNCvr

1 + vr/vD
exp

(
−FBn

kT

) [
exp (βV ) − 1

]
(21.62a)

http://dx.doi.org/10.1007/978-3-319-23880-7_8
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= A∗∗ T 2
[
exp (βV ) − 1

]
(21.62b)

= js
[
exp (βV ) − 1

]
.

Here vr = v̄/4 is a ‘recombination velocity’ [1457] at the top of the barrier according
to j = vr(n − n0), n0 being the equilibrium electron density at the top of the barrier
and v̄ is the average thermal velocity in the semiconductor. vD is an effective diffusion
velocity describing the transport of electrons from the edge of the depletion layer
(x = w) to the top of the barrier (x = xm). It is defined as

v−1
D =

∫ w

xm

−e

μnkT
exp

(
−FBn − EC(x)

kT

)
dx. (21.63)

In [1456]μn has been assumed to be independent of the electric field. This assump-
tion is potentially not realistic. If vD � vr, thermionic theory applies and we obtain
(21.48). The case vr � vD ∼ μnEm relates to diffusion theory andwe recover (21.61).

The constant A∗∗ in (21.62b) is called the effective Richardson constant. Its calcu-
lated dependence on the electric field is shown in Fig. 21.19 for Si. At room temper-
ature for most Ge, Si and GaAs Schottky diodes the thermionic emission of majority
carriers is the dominating process. The effect of lateral barrier height inhomogeneity
in a diffusion model has been discussed in [1458].

Tunneling Current

At high doping the width of the depletion layer becomes small and tunneling
processes become more probable. Also at low temperatures, when thermionic emis-
sion is very small, tunneling processes can dominate the transport between metal
and semiconductor. One process is tunneling of electrons close to the Fermi level of

Fig. 21.19 Calculated
effective Richardson
constant A∗∗ as a function of
the electric field for a
metal–Si diode at T = 300K
for a (n-type or p-type)
doping of 1016 cm−3.
Adapted from [1459]
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the semiconductor. This process is called field emission (F) and is at least important
for degenerate semiconductors at very low temperatures. If the temperature is raised,
electrons are excited to higher energies where they encounter a thinner barrier. The
tradeoff between thermal energy and barrier width selects an electron energy Em

above the conduction-band edge for which the current is largest. This process is
known as thermionic field emission (TF). For very high temperatures enough carri-
ers can overcome the barrier completely and we are back in the thermionic emission
regime. The validity of the two regimes is shown in Fig. 21.20 for Au/GaAs Schottky
diodes as a function of doping concentration (n-type) and temperature.

In the field-emission regime the forward current is given by [1409]

j = js exp

(
eV

E00

)
, (21.64)

with the characteristic energy parameter E00 given by

E00 = e�

2

√
ND

m∗εs
. (21.65)

The saturation current is

js ∝ exp

(
−FBn

E00

)
. (21.66)

In Fig. 21.21, the forward characteristic of a highly doped Au/Si is shown. The
experimental value of E00 = 29meV agrees well with the theoretical expectation of
E00 = 29.5meV.

In the reverse direction the I–V characteristic under field emission is given
by [1409]

Fig. 21.20 Calculated
conditions for thermionic
field (‘TF’), field (‘F’) and
thermionic (‘TE’) emission
in a Au/GaAs Schottky diode
as a function of temperature
and doping concentration.
Adapted from [1409]
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Fig. 21.21 (a) Forward and (b) reverse I–V characteristic of a Au/Si Schottky diode at 77K. The
doping concentration of the Si was ND = 8 × 1018 cm−3. Adapted from [1409]

j = 4π e m∗

h3
E2
00

e (Vbi − V )

FBn
exp

(
− 2F3/2

Bn

3E00
√

e(Vbi − V )

)
. (21.67)

From Fig. 21.21b, a barrier height of 0.79eV is deduced.
In the TF-emission regime the current–voltage characteristic is given by

j = js exp

(
eV

E0

)
, (21.68)

with

E0 = E00 coth

(
E00

kT

)
, (21.69)

where E00 is given by (21.65). The energy for maximum TF emission Em is given by
Em = e(Vbi − V )/ cosh2(E00/kT). The coth-dependence ofE0 is shown in Fig. 21.22
for an Au/GaAs diode.

A Schottky diode can suffer from nonideality such as series and parallel ohmic
resistance [1452]. These effects are discussed in some detail below for pn-diodes in
Sect. 21.4.4 and apply similarly to Schottky diodes.
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Fig. 21.22 Temperature
dependence of E0 of an
Au/GaAs diode with
ND = 5 × 1017 cm−3. The
solid line is the theoretical
dependence for thermionic
emission according to
(21.69) with
ND = 6.5 × 1017 cm−3 and
m∗ = 0.07. Adapted
from [1409]
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21.2.6 Ohmic Contacts

Although an ohmic contact does not have a diode characteristic, it can be understood
from the previous remarks. An ohmic contact will have a small contact resistance for
both current directions. The voltage drop across the contact will be small compared
to the voltage drop in the active layer (somewhere else). Details on electric contacts
can be found in [1460].

The contact resistance Rc is defined as the differential resistance at V = 0

Rc =
(

∂I

∂V

)−1

V =0

. (21.70)

At low doping, the transport is dominated by thermionic emission (21.48). In this
case Rc is given by

Rc = k

e A∗ T
exp

(
FBn

kT

)
. (21.71)

A small barrier height (Fig. 21.23a) will lead to small contact resistance. A negative
Schottky barrier height, i.e. Wm < Evac − EF for a n-type semiconductor, leads to an
accumulation layer without a barrier for carrier transport (Fig. 21.23b).

For high doping Rc is determined by the tunneling current (Fig. 21.23c) and is
proportional to

Rc ∝ exp

(
FBn

E00

)
. (21.72)

The contact resistance decreases exponentially with the doping. A theoretical calcu-
lation and experimental data are compared in Fig. 21.24 for contacts on Si.
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(a) (b) (c)

Fig. 21.23 Schematic conditions for the formation of an Ohmic contact, (a) low barrier height, (b)
accumulation layer (c) high doping (thin depletion layer)

Fig. 21.24 Theoretical and
experimental values of
specific contact resistances at
T = 300K for
Al/n-Si [1461] and
PtSi/n-Si [1462] contacts as
a function of donor
concentration. Solid lines are
theoretical dependencies for
different values of the barrier
height as labeled. Adapted
from [500]
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The three mechanisms, low barrier height, accumulation layer and high doping,
for the formation of Ohmic contacts are summarized schematically in Fig. 21.23.
Ohmic contacts on wide band gap semiconductors are difficult, since metals with
sufficiently small (large) work function for contacting n-type (p-type) material are
mostly not available.

Although Schottky contact devices have their place in semiconductor technology,
Ohmic contacts are indispensable for almost all devices.12 Ohmic contacts are typ-
ically prepared by evaporating a contact metal containing the doping material for
the semiconductor, e.g. Au/Zn for a contact on p-type GaAs [1463] and Au/Ge for
a contact [1464] on n-type GaAs. The contact is alloyed around 400–500 ◦C (see
Fig. 21.25) above the eutectic temperature of Teu = 360 ◦C (for Au/Ge) to form a

12Also a Schottky diode has an Ohmic back contact.
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Fig. 21.25 Specific contact
resistance for Ni/Au-Ge on
n-type epitaxial GaAs for
varying alloying
temperatures (2min). Arrow
at Teu denotes the eutectic
temperature of Au-Ge.
Adapted from [1468]

eutectic liquid inwhich the dopant can quickly diffuse.When the eutectic liquid cools
it forms a solid, a highly doped semiconductor layer underneath themetal. The liquid-
phase reactions can lead to inhomogeneous contacts. On n-typeGaAs Pd/Ge/Au con-
tacts have been reported to have superior structural quality [1465]. Ohmic contacts
for a number of different semiconductors are reviewed in [1466, 1467].

21.2.7 Metal Contacts to Organic Semiconductors

Also, for organic semiconductors themetal contact plays a vital role, either for carrier
injection or for manipulation of the space-charge region. The position of the Fermi
level has been determined for various organic semiconductors as shown in Fig. 21.26.
These data have been obtained from measurements on metal–semiconductor–metal
structures (MSM, see also Sect. 22.3.5) as shown in Fig. 21.27a. The thin (50nm)
organic layer is fully depleted, thus the built-in field inside the semiconductor is
constant. The built-in field is measured by applying an external dc bias and finding
the external potential at which the electroabsorption signal vanishes. Figure21.27b
shows the measured electroabsorption signalΔT/T (relative change of transmission
T ) and the optical density of anMEH-PPV film as a function of photon energy for an
Al/MEH-PPV/Al structure. The exciton absorption peak is found at 2.25eV. The bias

http://dx.doi.org/10.1007/978-3-319-23880-7_22
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Fig. 21.26 Measured Fermi
energies EF (labeled data in
eV) and the work functions
Wm of various metals
contacting (a) pentacene, (b)
Alq3 and (c) MEH-PPV. EC
(EV) denotes the energy
position of the electron
(hole) polaron. Measured
data for EF for MEH-PPV
from [1470], other
from [1471]. Data for Wm
from Table21.1
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at which the built-in field vanishes can then be determined for various other metals
in metal/MEH-PPV/Al structures. Figure21.26 summarizes such results for various
metals and three organic semiconductors. The plot of the Fermi level position versus
the metal work function (Fig. 21.27d, e) shows that the metals investigated do not
introduce interface states in the single-particle gap that pin the Schottky barrier (see
Fig. 21.5 for inorganic semiconductors). An electron trap, such as C60 in MEH-PPV,
can pin the Fermi level of the n-contact metal and leads to a change of the built-in
potential [1469].
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Fig. 21.27 (a) SchematicMSMstructurewith organic semiconductor (sc.) on transparent glass sub-
strate. Metal 1 is thin and semitransparent. Thickness of organic semiconductor (polymer or small
molecules) is about 50nm. (b) Electroabsorption spectra of Al/MEH-PPV/Al structure at four dc
bias voltages (solid lines) and optical density spectrum (dashed line). (c)Magnitude of the electroab-
sorption response at 2.1eV as a function of bias formetal/MEH-PPV/Al structures. (d, e) Calculated
(solid lines) and experimental (points) potential difference across (d) metal/MEH-PPV/Al struc-
tures and (e) metal/MEH-PPV/Ca structures as a function of the work-function difference of the
contacts. Parts (b)–(e) adapted from [1470]

21.3 Metal–Insulator–Semiconductor Diodes

In ametal–insulator–semiconductor (MIS) diode an insulator is sandwiched between
the metal and the semiconductor. Subsequently, a MIS contact has zero dc conduc-
tance. The semiconductor typically has an ohmic back contact. As insulator, often
the oxide of the respective semiconductor, is used. In particular SiO2 on Si has
been technologically advanced (Fig. 21.28). In the latter case, the diode is called a
MOS (metal–oxide–semiconductor) diode. This structure has great importance for
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Fig. 21.28 High-resolution
transmission electron
microscopy image of a
1.6-nm thick gate oxide
between poly-Si (cf.
Sect. 24.5.4) and crystalline
Si. From [1472]

poly-Si

Si

the investigation of semiconductor surfaces and overwhelming importance for semi-
conductor technology (planar integration of electronic circuits, CMOS technology).
Also, CCDs (Sect. 22.3.8) are based on MIS diodes.

21.3.1 Band Diagram for Ideal MIS Diode

An ideal MIS diode has to fulfill the following three conditions:

(i) (as shown in Fig. 21.29)without external bias the energy differenceφms between
the work function of the metal and the semiconductor

φms = Wm −
(

χsc + Eg

2
± e ΨB

)
(21.73)

(a) (b)

Fig. 21.29 Band diagram of an idealMIS diodewith (a) n- and (b) p-type semiconductor at external
bias V = 0. The insulator (‘i’) thickness is d as labeled. The dash-dotted line represents the intrinsic
Fermi level Ei

http://dx.doi.org/10.1007/978-3-319-23880-7_24
http://dx.doi.org/10.1007/978-3-319-23880-7_22
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is zero (φms = 0). The ‘+’ (‘−’) sign in (21.73) applies to a p-type, Fig. 21.29b
(n-type, Fig. 21.29a) semiconductor. ΨB is the potential difference between the
intrinsic and actual Fermi level, ΨB = |Ei − EF|/e > 0.

(ii) The only charges present are those in the semiconductor and the opposite charge
is on the metal surface close to the insulator.

(iii) There is no dc current between the metal and the semiconductor, i.e. the con-
ductivity of the insulator is zero.

The quantity ΨB (Fig. 21.31) is given as (for a p-type material, using (7.18), the
high temperature approximation (7.30) and (7.15))

e ΨB = Ei − EF =
[

EC + EV

2
+ kT

2
ln

(
NV

NC

)]
−

[
EV − kT ln

(
NA

NV

)]

= Eg

2
+ kT ln

(
NA√
NC NV

)
= kT ln

(
NA

ni

)
. (21.74)

When an ideal MIS diode is biased, three general cases—accumulation, depletion
and inversion—can occur (Fig. 21.30). We discuss these first for the p-type semicon-
ductor.

Figure21.30d shows the accumulation case for a negative voltage at the metal.13

Part of the voltage drops across the insulator, the rest across the semiconductor. The
valence band is bent upwards towards the Fermi level. The quasi-Fermi level in the
semiconductor, however, is constant since no dc current flows.14

Since the charge-carrier (hole) density depends exponentially on the energy sep-
aration EF − EV, a charge accumulation (of holes) occurs in the (p-type) semicon-
ductor in the vicinity of the interface to the insulator.

In Fig. 21.30e the depletion case is shown. Now a moderate reverse voltage, i.e. a
positive bias to themetal, is applied. A depletion of majority charge carriers occurs in
the semiconductor close to the insulator. The quasi-Fermi level in the semiconductor
remains beneath the intrinsic level (Ei ≈ EC + Eg/2), i.e. the semiconductor remains
p-type everywhere. If the voltage is increased further to large values, the quasi-Fermi
level intersects the intrinsic level and lies above Ei close to the insulator (Fig. 21.30f).
In this region, the electron concentration becomes larger than the hole concentration
and we have the inversion case. The inversion is called ‘weak’ if the Fermi level is
still close to Ei. The inversion is called ‘strong’ when the Fermi level lies close to
the conduction-band edge.

13This poling is a forward bias of the respective Schottky diode since the positive pole is at the
p-type semiconductor.
14We note that in order to reach the situations shown in Fig. 21.30 from the zero bias case of
Fig. 21.29, a current must have flowed since charge carriers are redistributed. Figure21.30 depicts
the stationary equilibriumafter transient voltage switch-on effects have subsided. The time, however,
that is needed in order to reach such stationary equilibrium from zero bias (thermal equilibrium)
may be very long (e.g. days, cf. Sect. 22.3.8).

http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_22
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(a) (d)

(b) (e)

(c) (f)

Fig. 21.30 Band diagram of ideal MIS diodes with (a–c) n-type and (d–f) p-type semiconductors
for V �= 0 in stationary equilibrium for the cases (a, d) accumulation, (b, e) depletion and (c, f)
inversion
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Fig. 21.31 Band diagram at
the surface of a p-type
semiconductor of a MIS
diode. Accumulation occurs
for Ψs < 0, depletion for
Ψs > 0 and inversion (as
shown here) for
Ψs > ΨB > 0
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The corresponding phenomena occur for n-type semiconductors for the opposite
signs of the voltage with electron accumulation and depletion. In the inversion case,
p > n close to the insulator (Fig. 21.30a–c).

21.3.2 Space-Charge Region

Now we calculate the charge and electric field distribution in an ideal MIS diode,
following the treatment in [1473]. We introduce the potential Ψ that measures the
separation of the intrinsic bulk Fermi level and the actual intrinsic level Ei, i.e.
−eΨ (x) = Ei(x) − Ei(x → ∞) (see Fig. 21.31). Its value at the surface is termed
Ψs, the surface potential. The value is positive, i.e. Ψs > 0, if the intrinsic Fermi
level at the surface is below the bulk Fermi level.

The electron and hole concentrations are given (for a p-type semiconductor) as

np = np0 exp(βΨ ) (21.75a)

pp = pp0 exp(−βΨ ), (21.75b)

where np0 (pp0 ) are the bulk electron (hole) concentrations, respectively, and
β = e/kT > 0.

Therefore, the net free charge is given by

np − pp = np0 exp(βΨ ) − pp0 exp(−βΨ ). (21.76)

The electron and hole concentrations at the surface are denoted with an index ‘s’
and are given by15

ns = np0 exp(βΨs) (21.77a)

ps = pp0 exp(−βΨs). (21.77b)

15Ψs represents the voltage drop across the semiconductor that will be discussed in more detail in
Sect. 21.3.3. In this sense, Ψs for the MIS diode is related to Vbi − V for the Schottky contact.
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We use the Poisson equation d2Ψ
dx2 = − ρ

εs
with the charge given by

ρ(x) = e
[
p(x) − n(x) + N+

D (x) − N−
A (x)

]
. (21.78)

As boundary condition we employ that far away from the surface (for x → ∞)
there is charge neutrality (cf. (7.41)), i.e.

np0 − pp0 = N+
D − N−

A , (21.79)

and that Ψ = 0. We note that N+
D − N−

A must be constant throughout the completely
ionized, homogeneous semiconductor. Therefore (21.79) (but not charge neutrality)
holds everywhere in the semiconductor. Using (21.76) the Poisson equation reads

∂2Ψ

∂x2
= − e

εs

{
pp0

[
exp(−βΨ ) − 1

] − np0
[
exp(βΨ ) − 1

]}
. (21.80)

The Poisson equation is integrated and with the notations

F(Ψ ) =
√[

exp(−βΨ ) + βΨ − 1
] + np0

pp0

[
exp(βΨ ) − βΨ − 1

]
(21.81a)

LD =
√

εs kT

e2 pp0
=

√
εs

e β pp0
, (21.81b)

with LD being the Debye length for holes, the electric field can be written as

E = −∂Ψ

∂x
= ±

√
2 kT

e LD
F(Ψ ). (21.82)

The positive (negative) sign is for Ψ > 0 (Ψ < 0), respectively. At the surface, Ψs

will be taken as the value forΨ . The total charge Qs per unit area creating the surface
field

Es = − ∂Ψ

∂x

∣∣∣∣
x=0

= ±
√
2 kT

e LD
F(Ψs) (21.83)

is given by Gauss’s law as Qs = −εs Es.
The dependence of the space-charge density from the surface potential16 is

depicted in Fig. 21.32. When Ψs is negative, F is dominated by the first term
in (21.81a) and the space charge is positive (accumulation) and proportional to
Qs ∝ exp(β|Ψ |/2). ForΨs = 0 the (ideal)MIS diode is under flat-band condition and
the space charge is zero. For Ψs > 0 the space charge is negative. For 0 < Ψs ≤ ΨB

16We note that we discuss the space-charge region now only with regard to Ψs, the voltage drop
across the semiconductor, and the dependence of Ψs on the bias of the diode will be discussed in
the next section.

http://dx.doi.org/10.1007/978-3-319-23880-7_7
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Fig. 21.32 Dependence of
the space charge on the
surface potential Ψs for
p-type silicon with
NA = 4 × 1015 cm−3 at
T = 300K. The flat-band
condition is present for
Ψs = 0, strong inversion for
Ψs > 2ΨB

the space charge is due to ionized impurities (depletion) and F is dominated by the
second term in (21.81a), i.e.Ψs ∝ √

Ψs. ForΨB ≤ Ψs ≤ 2ΨB the diode is in the weak
inversion regime and still Ψs ∝ √

Ψs.
Eventually the dominating term of the second bracket in (21.81a) f1 = np0/pp0

exp(βΨ ) = (ni/NA)2 exp(βΨ ) becomes comparable and exponentially larger than
the dominating termof the first bracket f2 = βΨ . Solving f1 = f2 forΨ = γ ΨB yields
the equation (NA/ni)γ−2 = γ ln(NA/ni) and a value γ larger than and close17 to 2.
Thus for Ψs > Ψ inv

s ≈ 2ΨB (using (21.74)),

Ψ inv
s ≈ 2 kT

e
ln

(
NA

ni

)
, (21.84)

strong inversion starts and the space charge is given as Qs ∝ − exp(βΨ/2).
For the case of strong inversion the band diagram is shown in Fig. 21.33 together

with the charge, field and potential. The total voltage drop V across the MIS diode
is

V = Vi + Ψs, (21.85)

with Vi being the voltage drop across the insulator. In the case of inversion, the charge
(per unit area) in the space-charge region

Qs = Qd + Qn (21.86)

17For NA/ni = 104, 106 and 108, we find γ = 2.33, 2.25 and 2.20, respectively.
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Fig. 21.33 Ideal MIS diode
at inversion: (a) band
diagram, (b) charge
distribution, (c) electric field
and (d) potential
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is composed of the depletion charge (ionized acceptors)

Qd = −e w NA, (21.87)

with w being the width of the depletion region, and the inversion charge Qn, which
is present only close to the interface.

The metal surface carries the opposite charge

Qm = −Qs (21.88)

due to global charge neutrality. The insulator itself does not contribute charges in
the case of an ideal MIS diode.
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21.3.3 Capacitance

The insulator represents a capacitor with the dielectric constant εi and a thickness d.
Therefore, the capacitance is

Ci = εi

d
. (21.89)

Between the charges −Qs and Qs the field strength Ei in the insulator is

Ei = |Qs|
εi

. (21.90)

The voltage drop Vi across the insulator is given by

Vi = Ei d = |Qs|
Ci

. (21.91)

The total capacitance C of the MIS diode is given by the insulator capacitance in
series with the capacitance Cd of the depletion layer

C = Ci Cd

Ci + Cd
. (21.92)

The capacitance of the space-charge region varies with the applied bias
(Fig. 21.34). For forward bias (accumulation), the capacitance of the space-charge
region is high. Therefore, the total capacitance of the MIS diode is given by the
insulator capacitance C ≈ Ci. When the voltage is reduced, the capacitance of the
space-charge region drops to Cd = εs/LD for the flat-band case (Ψs = 0). For a high
reverse voltage, the semiconductor is inverted at the surface and the space-charge
region capacitance is high again. In this case, the total capacitance is given byC ≈ Ci

again.
The previous consideration assumes that the charge density in the semiconduc-

tor can follow changes of the bias sufficiently fast.18 The inversion charge must
disappear via recombination that is limited by the recombination time constant τ .
For frequencies around τ−1 or faster, the charge in the inversion layer cannot fol-
low and the capacitance of the semiconductor is given by the value Cd

∼= εs/wm.
wm (Fig. 21.35) is the maximum depletion-layer width present at the beginning of
inversion (cf. (21.10) and (21.84))

wm
∼=

√
2 εs

e NA
Ψ inv
s =

√
4 εs kT

e2 NA
ln

(
NA

ni

)
. (21.93)

18Typically, a dc bias voltage V is set and the capacitance is sampled with a small ac voltage of
amplitude ΔV , with δV � V .
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Fig. 21.34 (a) Schematic dependence of the capacitance of a MIS diode on the bias for (i) low
frequencies, (ii) high frequencies and (iii) deep depletion. (b) High-frequency capacitance of a
Si/SiO2 diode. The inset shows the frequency dependence. Adapted from [1474]

Fig. 21.35 Maximum width
of the depletion layer wm
(21.93) at room temperature
for deep depletion for GaAs,
Si and Ge diodes as a
function of bulk doping level
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For further increased voltage (into the inversion regime), the electric field is
screened by the inversion charge and the width of the depletion layer remains con-
stant. Therefore, the total capacitance in the inversion regime is given by

C ∼= εi

d + wm εi/εs
. (21.94)

21.3.4 Nonideal MIS Diode

In a real, i.e. nonideal, MIS diode, the difference φms in the work functions of the
metal and semiconductor (cf. (21.73)) is no longer zero. Therefore, the capacitance
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versus voltage relation is shifted with respect to the ideal MIS diode characteristic
by the flat-band voltage shift VFB

VFB = φms − Qox

Ci
. (21.95)

Additionally, the flat-band voltage can be shifted by charges Qox in the oxide that
have been neglected so far. Such charges can be trapped, i.e. fixed with regard to
their spatial position, or mobile, e.g. ionic charges such as sodium.

For Al as metal (φm = 4.1eV) and n-type Si (φs = 4.35eV), the flat-band voltage
shift is φms = −0.25V, as shown schematically in Fig. 21.36a for zero bias. VFB is
split into 0.2eV and 0.05eV for the oxide and the silicon, respectively. In Fig. 21.36b,
the dependence ofφms on the doping, conductivity type andmetal is shown for various
SiO2–Si MIS diodes. An Au-SiO2–Si diode with p-type Si and NA ≈ 1015 cm−3

fulfills the condition of an ideal MIS diode with regard to φms = 0.
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Fig. 21.36 (a) Schematic band diagram of an Al–SiO2–Si (n-type) diode with 50nm oxide thick-
ness andND = 1016 cm−3 for zero bias. Based on data from [1475]. (b) Difference ofwork functions
φms for SiO2–Si MIS diodes and various doping levels and electrode materials (Al, Au and poly-
crystalline Si). The square represents the situation depicted in panel (a). Based on data from [1476]
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21.4 Bipolar Diodes

A large class of diodes is based on pn-junctions. In a homo pn-junction an n-doped
region is next to a p-doped region of the same semiconductor. Such a device is
called bipolar. At the junction a depletion region forms. The transport properties are
determined by the minority carriers. An important variation is the pin-diode in which
an intrinsic (or lowly doped) region is between the doped region (Sect. 21.5.8). If the
differently doped regions belong to different semiconductor materials, the diode is a
heterostructure pn-diode (Sect. 21.4.6). Various schemes have been used to fabricate
pn diodes (Fig. 21.37).

21.4.1 Band Diagram

If the doping profile is arbitrarily sharp, the junction is called abrupt. This geometry
is the case for epitaxial pn-junctions where the differently doped layers are grown
on top of each other.19 For junctions that are fabricated by diffusion, the abrupt
approximation is suitable for alloyed, ion-implanted and shallow-diffused junctions.
For deep-diffused junctions a linearly graded approximation is better (Fig. 21.38),
which is treated in more detail in [500]. If one doping level is much higher that the
other, the junction is termed a one-sided (abrupt) junction. If n � p (p � n), the
junction is denoted as an n+p-diode (p+n-diode).

The thermodynamical equilibrium of a pn-diode is considered here only for the
electronic system. The thermodynamic stability of the atomic doping distribution is
discussed in [1477]. Typically, thermodynamics works to randomize the chemical
concentration gradient; the existence of a pn-junction is due to the extremely low
diffusion coefficient of dopants in the semiconductor lattice. Elevated temperatures
can cause the destruction of the pn-diode via enhanced dopant diffusion (Sect. 4.2.3).
However, a thermodynamically stable concentration gradient and thus a built-in field
can exist in a multi-component system [1477].

21.4.2 Space-Charge Region

In thermodynamical equilibrium the Fermi level is constant (∇EF = 0). The built-in
voltage Vbi is given by (see Fig. 21.39c)

e Vbi = Eg + e Vn + e Vp, (21.96)

19The choices of dopant and the growth conditions, in particular the temperature, need to be made
such that no interdiffusion of the dopants takes place.

http://dx.doi.org/10.1007/978-3-319-23880-7_4
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Fig. 21.37 Schematic fabrication technologies for bipolar diodes: (a) Planar junction with local
impurity incorporation (diffusion from gas phase or ion implantation) through mask and contact
metallization, (b) epitaxial junction
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Fig. 21.38 Description of doping distribution with (a, b) abrupt approximation and with (c, d)
linearly graded junction. (a, c) show real impurity concentration, (b, d) idealized doping profile

where Vn is the difference between conduction band and Fermi level on the n-side,
−eVn = EC − EF. Vp is the difference between valence band and Fermi level on
the p-side, −eVp = EF − EV. For the nondegenerate semiconductor Vn, Vp < 0 and
(using (7.12), (7.10) and (7.11))

e Vbi = kT ln

(
NCNV

n2
i

)
−

[
kT ln

(
NC

nn0

)
+ kT ln

(
NV

pp0

)]

= kT ln

(
pp0 nn0

n2
i

)
= kT ln

(
pp0
pn0

)
= kT ln

(
nn0
np0

)
(21.97a)

∼= kT ln

(
NA ND

n2
i

)
. (21.97b)

http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_7
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The electron and hole densities on either side of the junction (np0 and pp0 at
x = −xp and nn0 and pn0 at x = xn) are related to each other by (from rewriting
(21.97a))

np0 = nn0 exp (−βVbi) (21.98a)

pn0 = pp0 exp (−βVbi) . (21.98b)

Microscopically, the equilibration of the Fermi levels on the n- and p-side occurs
via the diffusion of electrons and holes to the p- and n-side, respectively. The electrons
andholes recombine in the depletion layer. Therefore, on the n-side the ionizeddonors
and on the p-side the ionized acceptors remain (Fig. 21.39a). These charges build up
an electric field (Fig. 21.39d) that works against the diffusion current. At thermal
equilibrium the diffusion and drift currents cancel and the Fermi level is constant.

Values for the built-in potential are depicted in Fig. 21.40 for Si and GaAs diodes.
The spatial dependence of the potential in the depletion layer is determined by the
Poisson equation.

We assume here the complete ionization of the donors and acceptors. Also, we
neglect at first majority carriers in the depletion layers on the n- and p-sides.20 With
these approximations, the Poisson equation in the depletion layers on the n- and
p-side reads

∂2V

∂x2
= −e ND

εs
, 0 ≤ x ≤ xn (21.99a)

∂2V

∂x2
= e NA

εs
, −xp ≤ x ≤ 0. (21.99b)

One integration yields (together with the boundary conditions that the field is zero
at the boundaries of the depletion layer) the electric field in the two regions

E(x) = e

εs
ND (x − xn), 0 ≤ x ≤ xn (21.100a)

E(x) = − e

εs
NA (x + xp), −xp ≤ x ≤ 0. (21.100b)

The maximum field strength Em is present at x = 0 and is given by

Em = −e ND xn
εs

= −e NA xp
εs

. (21.101)

The continuity of the field at x = 0 is equivalent to the overall charge neutrality

ND xn = NA xp. (21.102)

20An abrupt decrease of the majority carrier density at the border of the space-charge region corre-
sponds to zero temperature.
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Fig. 21.39 pn-junction
(abrupt approximation) in
thermal equilibrium (zero
bias) for Si at room
temperature and
NA = ND = 1018 cm−3. (a)
Schematic representation of
p-doped and n-doped region
with depletion layer (grey
area) and fixed space
charges, (b) diffusion
potential, (c) band diagram
with Fermi level (dashed
line), (d) electric field, (e)
free-carrier concentrations n
and p and (f) total
free-carrier density n + p
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Another integration yields the potential (setting V (x = 0) = 0)

V (x) = −Em

(
x − x2

2xn

)
, 0 ≤ x ≤ xn (21.103a)

V (x) = −Em

(
x + x2

2xp

)
, −xp ≤ x ≤ 0. (21.103b)
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Fig. 21.40 Built-in voltage
as a function of doping for
one-sided Si and GaAs
pn-diodes

The built-in potential Vbi = V (xn) − V (−xp) > 0 is related to the maximum field
via

Vbi = −1

2
Em w, (21.104)

where w = xn + xp is the total width of the depletion layer. The elimination of Em

from (21.101) and (21.104) yields

w =
√
2 εs

e

(
NA + ND

NA ND

)
Vbi = xn + xp; (21.105)

the two parts of the depletion layer are given by

xn = NA

NA + ND

√
2 εs

e

NA + ND

NA ND
Vbi (21.106a)

xp = ND

NA + ND

√
2 εs

e

NA + ND

NA ND
Vbi. (21.106b)

For p+n and n+p junctions, the width of the depletion layer is determined by the
lowly doped side of the junction

w =
√

2 εs

e NB
Vbi, (21.107)

where NB denotes the doping of the lowly doped side, i.e. NA for a n+p diode and
ND for a p+n diode.
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If the spatial variation of the majority carrier density is considered in more detail
(and for finite temperature, cf. (21.13)), an additional term −2kT/e = −2/β is
added [1473] to Vbi

w =
√
2 εs

e

(
NA + ND

NA ND

) (
Vbi − V − 2β−1

)
. (21.108)

Also, the external bias V has been included in the formula. If w0 denotes the
depletion layer width at zero bias, the depletion layer width for a given voltage V
can be written as

w(V ) = w0

√
1 − V

Vbi − 2/β
≈ w0

√
1 − V

Vbi
. (21.109)

Using the Debye length (cf. (21.81b))

LD =
√

εs kT

e2 NB
, (21.110)

the depletion layer width for a one-sided diode can be written as (with β = e/kT )

w = LD

√
2 (βVbi − βV − 2). (21.111)

TheDebye length is a function of the doping level and is shown for Si in Fig. 21.41.
For a doping level of 1016 cm−3 the Debye length in Si is 40nm at room temperature.

Fig. 21.41 Debye length in
Si at room temperature as a
function of the doping level
NB according to (21.110)
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For one-sided junctions the depletion layer width is about 6 LD for Ge, 8LD for Si
and 10 LD for GaAs.

The external bias is counted positive if the ‘+’ (‘−’) pole is at the p-side (n-side).
The reverse voltage has opposite polarity. If a reverse bias is applied, the depletion
layer width is increased (Fig. 21.42).

21.4.3 Capacitance

The capacitance of the depletion layer is the charge change upon a change of the
external bias. It is given as

C =
∣∣∣∣ dQ

dV

∣∣∣∣ = d(eNBw)

d(w2eNB/2εs)
= εs

w
= εs√

2 LD

√
βVbi − βV − 2. (21.112)

Therefore, the capacitance of the depletion layer is inversely proportional to the
depletion-layer width (see the two scales in Fig. 21.42). A detailed treatment has
been given in [1478]. 1/C2 is proportional to the external bias

1

C2
= 2 L2

D

ε2s
(βVbi − βV − 2) . (21.113)

From C–V spectroscopy the doping level can be obtained from the slope

d(1/C2)

dV
= 2 β L2

D

ε2s
= 2

e εs NB
. (21.114)

Fig. 21.42 Width of the
depletion layer and
capacitance per area for
one-sided, abrupt Si
junctions for various values
of Vbi − V − 2kT/e as
labeled. The dash-dotted line
is for zero bias, the dashed
line is the limit due to
avalanche breakdown.
Adapted from [500]
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From the extrapolation to the voltage for which 1/C2 = 0 the built-in voltage can be
obtained.

21.4.4 Current–Voltage Characteristics

Ideal Current–Voltage Characteristics

Now, the currents in thermodynamical equilibrium (V = 0) and under bias are dis-
cussed. A diode characteristic will be obtained. We work at first with the follow-
ing assumptions: abrupt junction, Boltzmann approximation, low injection, i.e. the
injected minority-carrier density is small compared to the majority-carrier density,
and zero generation current in the depletion layer, i.e. the electron and hole currents
are constant throughout the depletion layer. In the presence of a bias, electrons and
holes have quasi-Fermi levels and the carrier densities are given by (cf. (7.56a, b))

n = NC exp

(
Fn − EC

kT

)
(21.115a)

p = NV exp

(
−Fp − EV

kT

)
. (21.115b)

Using the intrinsic carrier concentration, we can write

n = ni exp

(
Fn − Ei

kT

)
= ni exp [β(ψ − φn)] (21.116a)

p = ni exp

(
−Fp − Ei

kT

)
= ni exp

[
β(φp − ψ)

]
, (21.116b)

where φ and ψ are the potentials related to the (quasi-) Fermi level and the intrinsic
Fermi levels, −eφn,p = Fn,p and −eψ = Ei. The potentials φn and φp can also be
written as

φn = ψ − β−1 ln

(
n

ni

)
(21.117a)

φp = ψ + β−1 ln

(
p

pi

)
. (21.117b)

The product np is given by

np = n2
i exp

[
β(φp − φn)

]
. (21.118)

Of course, at thermodynamical equilibrium (zero bias) φp = φn and np = n2
i . For

forward bias φp − φn > 0 (Fig. 21.43a) and np > n2
i . For reverse bias φp − φn < 0

(Fig. 21.43b) and np < n2
i .

http://dx.doi.org/10.1007/978-3-319-23880-7_7
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Fig. 21.43 (a) Diffusion potential, (b) band diagram, (c) electric field, (d) electron and hole concen-
trations and (e) n + p under forward bias +0.4V (left panel) and reverse bias (right panel) −0.4V
for a silicon pn-diode at room temperature with NA = ND = 1018 cm−3 (same as in Fig. 21.39).
The dashed lines in (b) are the electron and hole quasi-Fermi levels Fn and Fp. The depletion layer
is shown as the grey area. The diffusion length in the n- and p-type material is taken as 4nm. This
value is much smaller than the actual diffusion length (µm-range) and is chosen here only to show
the carrier concentration in the depletion layer and the neutral region in a single graph

The electron current density (per unit area) is given by (8.59a) that reads here
with E = −∇ψ and n given by (21.116a) as21

jn = −e μn
(
n E + β−1 ∇n

) = e n μn ∇φn. (21.119)

21We remind the reader that μn was defined as a negative number.

http://dx.doi.org/10.1007/978-3-319-23880-7_8
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Similarly, we obtain for the hole current density (using (8.59b) and (21.116b))

jp = e μp
(
p E − β−1 ∇p

) = −e p μp ∇φp. (21.120)

The current through the depletion layer is constant since no recombination/
generation is assumed for now. The gradient of the quasi-Fermi levels in the deple-
tion layer is very small and the quasi-Fermi levels φn,p are practically constant. The
electron and hole currents are shown in Fig. 21.44 together with the carrier densities.
The change of carrier density is mostly due to the variation of ψ (or Ei).

Therefore, the voltage drop across the depletion layer isV = φp − φn and (21.118)
reads

n p = n2
i exp (βV ) . (21.121)

The electron density at the boundary of the depletion layer on the p-side (at
x = −xp) is (using (21.121))

np = n2
i

pp
exp (βV ) = np0 exp (βV ) . (21.122)

Similarly, the hole density on the n-side at x = xn is given by

pn = pn0 exp (βV ) . (21.123)

Fig. 21.44 Carrier densities
(a, c) and current densities
(b, d) (linear scales) in a
pn-diode under (a, b)
forward bias and (c, d)
reverse bias
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From the continuity equation and the boundary condition that far away from the
depletion layer the hole density is pn0 , the hole density on the n-side is given by

pn(x) − pn0 = pn0
[
exp (βV ) − 1

]
exp

(
−x − xn

Lp

)
, (21.124)

where Lp = √
Dpτp is the hole (minority-carrier) diffusion length.

The hole current density at the boundary of the depletion layer on the n-side is

jp(xn) = −e Dp
∂pn
∂x

|xn = e Dp pn0
Lp

[
exp (βV ) − 1

]
. (21.125)

Similarly, the electron current in the depletion layer is

jn(−xp) = e Dn np0
Ln

[
exp (βV ) − 1

]
. (21.126)

The total current due to diffusion is

jd = jp(xn) + jn(−xp) = js
[
exp (βV ) − 1

]
, (21.127)

with the saturation current given by

jds = e Dp pn0
Lp

+ e Dn np0
Ln

. (21.128)

This dependence is an ideal diode characteristic and the famous result from
Shockley. For a one-sided (p+n-) diode, the saturation current is

jds ∼= e Dp pn0
Lp

∼= e

(
Dp

τp

)1/2 n2
i

NB
. (21.129)

The saturation depends viaDp/τp weakly on the temperature. The term n2
i depends

on T , proportional to T 3 exp(−Eg/kT), which is dominated by the exponential
function.

If the minority carrier lifetime is given by the radiative recombination (10.19),
the hole diffusion length is

Lp =
√

Dp

B nn0
. (21.130)

For GaAs (Tables8.2 and 10.1) with ND = 1018 cm−3, we find τp = 10ns and
Lp ≈ 3µm. For Ln we find 14µm, however, the lifetime at room temperature can
be significantly shorter due to nonradiative recombination and subsequently also the

http://dx.doi.org/10.1007/978-3-319-23880-7_10
http://dx.doi.org/10.1007/978-3-319-23880-7_8
http://dx.doi.org/10.1007/978-3-319-23880-7_10
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diffusion length will be shorter (by about a factor of 10). For L ∼ 1µm, the diffusion
saturation current is jds ∼ 4 × 10−20 A/cm2.

The radiative recombination rate (band–band recombination, b–b) in the neutral
n-region (as relevant for LEDs, see Sect. 23.3) is B(np − n2

i ) ≈ Bnn0(pn(x) − pn0).
Therefore, the recombination current jb−b

d,n in the neutral n-region is (using (21.124))

jb−b
d,n = e

∫ ∞

xn

B n2
i

[
exp (βV ) − 1

]
exp

(
−x − xn

Lp

)
dx

= e B Lp n2
i

[
exp (βV ) − 1

]
. (21.131)

For the neutral region on the p-side a similar expression results. The total radiative
recombination current from the neutral regions is

jb−b
d = e B (Ln + Lp) n2

i

[
exp (βV ) − 1

]
. (21.132)

For GaAs, the saturation current for the radiative recombination in the neutral
region

jr,b−b
s = e B (Ln + Lp) n2

i (21.133)

is (Tables7.1 and 10.1) for a diffusion length of 1µm of jr,b−b
s ∼ 4 × 10−21 A/cm2.

Since the (radiative) minority-carrier lifetime is inversely proportional to the
majority-carrier density, the relevant diffusion length is that of the side with the
lower doping level and is given by

L = 1

ni

√
DB NB

B
, (21.134)

where DB is the minority-carrier diffusion coefficient on the lowly doped side. The
radiative recombination current from the neutral region can be written as

jb−b
d = e

√
B DB NB ni

[
exp (βV ) − 1

]
. (21.135)

The I–V characteristic for pn-diodes from two semiconductors with different
band gap are shown in Fig. 21.45a (for Ge and Si). The Si diode has the much
smaller saturation current. The saturation current increases at higher temperature
(Fig. 21.46). A wide-gap pn diode (GaN) exhibits small saturation currents (The
n = 1.5 part of the GaN in Fig. 21.45b belongs to a saturation current density of
7 × 10−27 A/cm2, the n = 1.5 part to ≈ 10−34 A/cm2) and displays sizable current
(density) only for larger voltages.

Real I–V Characteristics

Besides the ideal I–V characteristics due to diffusion several effects contribute to
the characteristics of real bipolar diodes:

http://dx.doi.org/10.1007/978-3-319-23880-7_23
http://dx.doi.org/10.1007/978-3-319-23880-7_7
http://dx.doi.org/10.1007/978-3-319-23880-7_10
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Fig. 21.45 Comparison of the characteristics of (a) Ge and Si and (b) GaN pn diodes at room
temperature. Note the different scales in the forward and reverse regime in (a). The lines in (b) are
related to ideality factors 2 and 1.5 as labeled. Adapted from [1479]

Fig. 21.46 Characteristics
of a Si power diode at two
temperatures, 25 and 100 ◦C

• a generation–recombination (G–R) current is present due to traps in the depletion
layer

• already for fairly small forward voltages, high injection conditions are present, i.e.
pn � nn is no longer valid

• the series resistance Rs of the diode is finite (ideally Rs = 0)
• the diode has a finite parallel (shunt) resistance Rp (ideally Rp = ∞)
• at high reverse voltage the junction breaks down; this phenomenon is treated in
Sect. 21.4.5

First, we consider the generation–recombination current due to band–impurity
(b–i) processes (see Sect. 10.9). Such recombination is nonradiative or at least does
not produce photons with an energy close to the band gap. The impact on the I–V
diode characteristic has first been considered in [1480].

http://dx.doi.org/10.1007/978-3-319-23880-7_10
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The net b–i recombination rate is given by (10.52). For reverse voltage, the gener-
ation dominates the G–R current. For n < ni and p < ni, the net recombination rate
r is

r ∼= σn σp vth Nt

σn exp
(Et−Ei

kT

) + σp exp
(Ei−Et

kT

) ni ≡ ni
τe

, (21.136)

where τe is the effective electron lifetime. The generation current density is given by

jg = e ni w

τe
. (21.137)

Since the width of the depletion layer varies with the applied reverse bias V , we
expect a dependence

jg ∝ √
Vbi + |V |. (21.138)

The saturation current is given by the sum of the diffusion and generation parts

js = e

√
Dp

τp

n2
i

ND
+ e ni w

τe
. (21.139)

In semiconductors with large ni (narrow band gap, e.g. Ge) the diffusion current
will dominate; in Si (larger band gap) the generation current can dominate.

The maximum of the recombination rate is present for Et ≈ Ei (10.57). Then
nt = pt = ni in (10.52). Assuming σ = σn = σp, the recombination rate is

rb−i = σ vth Nt
n p − n2

i

n + p + 2 ni
. (21.140)

Using (21.118) we can write

rb−i = σ vth Nt ni
ni

n + p + 2 ni

[
exp (βV ) − 1

]
. (21.141)

The term ζ = ni
n+p+2ni

is maximal for n = p, which is given (from (21.121)) by

nmr = pmr = ni exp (βV/2) . (21.142)

The function ζ(x) cannot be integrated analytically. In order to evaluate the integral
of ζ over the depletion layer

χ =
∫ xn

−xp

ζ dx, (21.143)

http://dx.doi.org/10.1007/978-3-319-23880-7_10
http://dx.doi.org/10.1007/978-3-319-23880-7_10
http://dx.doi.org/10.1007/978-3-319-23880-7_10
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the maximum rate

ζmr = ni
nmr + pmr + 2 ni

= 1

2

1

1 + exp (βV/2)
(21.144)

can be integrated over the depletion layer as an approximation [500], χ ≈ ζmr w.
This approach yields a recombination current

jmr = e σ vth Nt w ni
2

exp (βV ) − 1

exp (βV/2) + 1
∼= jmr

s exp

(
βV

2

)
, (21.145)

with jmr
s = eσvthNtwni/2 and the approximation being valid for eV/kT � 1. Thus

the nonradiative band–impurity recombination is often said to cause an ideality factor
of n = 2.

For a better approximation of χ, the dependence of the potential ϕ(x) can be
approximated as linear (constant-field approximation), i.e. using the local field Emr at
the position where n = p [1481]. For a symmetric diode with nn0 = pp0 , this position
is at x = 0; for a one-sided junction on the lower-doped side.Emr is given for pp0 ≤ nn0
by

Emr = −
√
2

w
(Vbi − V )

√
1 + 1

β (Vbi − V )
ln

pp0
nn0

√
1 + pp0

nn0
. (21.146)

For a symmetric diode (21.147a) holds, for a one-sided diode the approximation
in (21.147b) holds

Emr = − 2

w
(Vbi − V ) ∝ √

Vbi − V (21.147a)

Emr
∼= −

√
2

w
(Vbi − V ) ∝ √

Vbi − V . (21.147b)

We note that for zero bias (V = 0), (21.104) is recovered from (21.147a). Using the
above approximation ζ is given by

ζ(x) = 1

2

1

1 + exp (βV/2) cosh(βEmrx)
. (21.148)

Since ζ decreases sufficiently fast within the depletion layer, the integration over the
depletion layer can be extended to ±∞ and we obtain

χ = 2

βEmr

1√
exp(βV ) − 1

arctan

[√
exp(βV/2) − 1

exp(βV/2) + 1

]
. (21.149)
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Wenote that forV = 0, the integral takes the valueχ = (βEmr)
−1. The recombination

current is now given by [1481]

jr,b−i = 2 σ vth Nt ni kT

Emr
arctan

[√
exp(βV/2) − 1

exp(βV/2) + 1

] √
exp (βV ) − 1. (21.150)

For large voltage the arctan term becomes π/4. For eV/kT � 1 the nonradiative
recombination current can be written as

jr,b−i = jr,b−i
s exp

(
βV

n

)
, (21.151)

with jr,b−i
s = eσvthNtnikTπ/(2Emr). The voltage-dependent ideality factor n (semi-

logarithmic slope n = βjr(V )/j′r(V )) is close but not identical to 2 and is shown in
Fig. 21.47 for various values of Vbi. The built-in voltage influences the logarithmic
slope via the factor 1/Emr in (21.150).

In the case of radiative band–band (b–b) recombination, the recombination rate
is given by (10.14). Together with (21.121) and integrated over the depletion layer,
the recombination current in the depletion layer is given by (cf. (21.132))

jr,b−b = e B w n2
i

[
exp (βV ) − 1

]
, (21.152)

(a) (b)

Fig. 21.47 (a) Integral χ (21.143) multiplied by exp(βV/2) in order to extract the differences on a
linear scale. Solid line Exact numerical calculation, dash-dotted line standard approximation with
constant maximum rate, dashed line this work (approximation with constant field). As material
parameters we have used room temperature and ni = 1010 cm−3 (Si), nn0 = 1018 cm−3 and pp0 =
1017 cm−3. (b) Logarithmic slope of band–impurity recombination current in the forward bias
regime for various values of the built-in voltage Vbi = 0.6, 1.0, and 1.4eV and in the limit Vbi → ∞.
Adapted from [1481]

http://dx.doi.org/10.1007/978-3-319-23880-7_10
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and exhibits an ideality factor of n = 1. Comparing (21.132) and (21.152), the dom-
inating radiative-recombination current is determined by the ratio of w and Ln + Lp.
Since in the forward direction, the depletion-layer width tends towards zero (for flat-
band conditions), the radiative-recombination current is dominated by the recombi-
nation in the neutral region(s).

For high injection current (under forward bias), the injected minority-carrier den-
sity can become comparable with the majority-carrier density. In this case, diffusion
and drift need to be considered. At large current density, the voltage drop across the
junction is small compared to the ohmic voltage drop across the current path. In the
simulation (Fig. 21.48), the high-injection effects start on the n-doped side because
it has been modeled with the lower doping (ND < NA).

The series resistance Rs (typically a few Ohms) also effects the characteristic at
low injection. The voltage drop across the junction is reduced by Rs I . Thus, the I–V
characteristic taking into account the effect of the series resistance is

I = Is

(
exp

[
e (V − Rs I)

n kT

]
− 1

)
. (21.153)

This equation is implicit with regard to I and can only be solved numerically. At
high current, the resistance of the junction becomes very small (Fig. 21.49a); then the
I–V characteristic deviates from the exponential behavior (Fig. 21.50a); finally it is
dominated by the series resistance and becomes linear (Fig. 21.50b). Sometimes the

1018

10

10

10

10

10

16

14

12

10

8

reirra
C

-3

n

p

p n

n

p

p n

n

p

p n

2

1

0

(a) (b) (c)

Fig. 21.48 Theoretical modeling of charge-carrier concentration, intrinsic Fermi level (potential)
ψ and quasi-Fermi levels (with arbitrary offset) for a Si p+n diode for various current densities: (a)
10Acm−2, (b) 103 Acm−2 and (c) 104 Acm−2. NA = 1018 cm−3, ND = 1016 cm−3, τn = 0.3ns,
τp = 0.84ns. Adapted from [1482]
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Fig. 21.49 Theoretical I–V characteristic of a diode at room temperature with saturation currents
for then = 1 andn = 2 processes of In=1

s = 10−12 Aand In=2
s = 10−9 Aand resistancesRs = 10�,

Rp = 100M�. Dashed line Ideal diode with n = 1 characteristic only, dash-dotted line only n = 2
process, dotted line only parallel ohmic resistance, short dashed line only series resistance, solid
line all effects combined as in (21.155)

(a) (b)

Fig. 21.50 (a) jV -characteristic of NiO/ZnO bipolar diode (cmp. Sect. 21.4.6) in half-logarithmic
plot. The blue line is a fit with ideality factor n = 1.8. (b) IV -characteristic in linear plot. The purple
line in (b) is a linear fit (with Rs = 1.06k�) for the range where the series resistance dominates

extrapolated voltage from the linear range (1.19V in Fig. 21.50b) is called ’threshold’
voltage, but this is a wrong term for this behavior.

The diode can also exhibit a parallel (shunt) resistance Rp, e.g. due to sur-
face conduction between the contacts. Including the shunt resistance, the diode
characteristic is

I = Is

(
exp

[
e (V − Rs I)

n kT

]
− 1

)
+ V − Rs I

Rp
. (21.154)
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The shunt resistance can be evaluated best from the differential conductance in the
reverse-voltage regime [1452]. Due to a high surface-state density, the passivation of
GaAs diodes can be difficult. Si can be very well passivated with low leakage current
and high reliability.

Often, a clear distinction between the n = 1 and n = 2 regimes cannot bemade. In
this case, an intermediate ideality factor 1 ≤ n ≤ 2 is fitted to the I–V characteristic
as in (21.154). If the current can be separated into a n = 1 (diffusion) and a n = 2
(recombination–generation) process, the characteristic is given by (see Fig.21.49)

I = In=1
s

(
exp

[
e (V − Rs I)

kT

]
− 1

)

+ In=2
s

(
exp

[
e (V − Rs I)

2 kT

]
− 1

)
+ V − Rs I

Rp
. (21.155)

In summary, the pn-diode has the equivalent circuit given in Fig. 21.51; the pho-
tocurrent source Iph is discussed below in Sect. 22.3.

21.4.5 Breakdown

If a large voltage is applied in the reverse direction, the pn-junction breaks down.
At breakdown, a small voltage increase leads to a dramatic increase of the current.
There are three mechanisms that lead to breakdown: thermal instability, tunneling,
and avalanche multiplication [1483–1485]. Defects cause localized pre-breakdown
sites [1485, 1486].

Thermal Instability

The reverse current at large applied voltage leads to a power dissipation and heating
of the junction. This temperature increase leads to a further increase of the saturation

Rp

Rs

Iph Id Ir
nr

Fig. 21.51 Equivalent circuit of a pn-diode. Serial (Rs) and parallel (Rp) resistance and diode
currents: Id (due to diffusion, n ≈ 1), Inrr (nonradiative recombination due to band–impurity recom-
bination, n ≈ 2) and an ideal current source due to photogeneration (as discussed in Sect. 22.3)

http://dx.doi.org/10.1007/978-3-319-23880-7_22
http://dx.doi.org/10.1007/978-3-319-23880-7_22
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current (21.129). If the heat sink, e.g. themounting of the chip, is not able to transport
the heat away from the device, the current increases indefinitely. If not limited by a
resistor, such a current can destroy the device. The thermal instability is particularly
important for diodes with high saturation current, e.g. Ge at room temperature.

Tunneling

At large reverse bias, charge carriers can tunnel between conduction and valence band
through the junction. A more detailed discussion will be given below in Sect. 21.5.9
about the tunneling diode. Since for the tunneling effect a thin barrier is necessary,
breakdown due to tunneling is important for diodes where both sides are highly
doped. For Si and Ge diodes, tunneling dominates the breakdown if the breakdown
voltage Vbr is Vbr < 4Eg/e. For Vbr > 6Eg/e avalanche multiplication dominates.
The intermediate regime is a mixed case.

With increasing temperature, the tunneling current can be achieved already with
a smaller field (since the band gap decreases with increasing temperature), thus the
breakdown voltage decreases (negative temperature coefficient).

Avalanche Multiplication

Avalanche multiplication due to impact ionization is the most important mechanism
for the breakdown of pn-diodes. It limits the maximum reverse voltage for most
diodes and also the collector voltage in a bipolar transistor or the drain voltage in
a field-effect transistor. Avalanche multiplication can be used for the generation of
microwave radiation or for photon counting (cf. Sect. 22.3.6).

Impact ionization was discussed in Sect. 8.4.4. Themost important parameters are
the electron and hole ionization coefficients αn and αp. For discussion of the diode
breakdown, we assume that at x = 0 a hole current Ip0 enters the depletion layer. This
current is amplified by the field in the depletion layer and impact ionization. At the
end of the depletion layer (x = w), it is MpIp0 , i.e. Mp = Ip(w)/Ip(0). Similarly, an
electron current is increased on its way from w to x = 0. The incremental change of
the hole current due to electron–hole pairs generated along a line element dx is

dIp = (Ip αp + In αn) dx. (21.156)

The total current in the depletion layer is I = Ip + In and is constant in stationary
equilibrium. Therefore,

dIp
dx

− (
αp − αn

)
Ip = αn I. (21.157)

The solution is

Ip(x) = I

1
Mp

+ ∫ x
0 αn exp

[− ∫ x
0 (αp − αn) dx′] dx

exp
[− ∫ x

0 (αp − αn) dx′] . (21.158)

http://dx.doi.org/10.1007/978-3-319-23880-7_22
http://dx.doi.org/10.1007/978-3-319-23880-7_8
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For x = w we find for the multiplication factor

1 − 1

Mp
=

∫ w

0
αn exp

[
−

∫ x

0
(αp − αn) dx′

]
dx. (21.159)

Avalanche breakdown is reached for Mp → ∞, i.e. when

∫ w

0
αn exp

[
−

∫ x

0
(αp − αn) dx′

]
dx = 1. (21.160)

A corresponding and equivalent equation is obtained when the consideration is
started with the electron current. If αp = αn = α, (21.160) simplifies to

∫ w

0
α dx = 1. (21.161)

This means that per transit of one carrier through the depletion layer, on average
another carrier is created such that the process just starts to diverge. The breakdown
voltage for various semiconductor materials is shown in Fig. 21.52a as a function
of the doping level. The depletion-layer width w at breakdown and the maximum
electric field Em are depicted in Fig. 21.52b.

The average impact ionization coefficient α has been given as [1488]

α = AE7. (21.162)

for silicon with A = 1.8 × 10−35 (cm/V)7 cm−1. For the breakdown condition
(21.161), using (21.9) and (21.162) the depletion layer width at breakdown wB (wB

in cm, ND in cm3) is found to be
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Fig. 21.52 (a) Avalanche breakdown voltage for one-sided abrupt junctions in Ge, Si, (100)-GaAs
and GaP at T = 300K. The dashed line indicates the limit of avalanche breakdown at high doping
due to tunneling breakdown. (b) Depletion-layer widthw at breakdown and maximum electric field
Em for the same junctions. Adapted from [1487]
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Fig. 21.53 Temperature dependence of a n+p Si-diode with NB = 2.5 × 1016 cm−3 and a guard-
ring structure (see Fig. 21.54d). The temperature coefficient ∂Vbr/∂T is 0.024V/K. Adapted
from [1491]

wB = 2.67 × 1010 N−7/8
D . (21.163)

From this the breakdown voltage can be calculated with (21.15) (VB in V, ND in
cm3) [1489]

VB = 6.40 × 1013 N−3/4
D . (21.164)

In GaAs, the impact-ionization coefficients and therefore the breakdown voltage
are direction dependent. At a doping of NB = 1016 cm−3, the breakdown voltage is
the same for (001) and (111) orientation; for smaller doping the breakdown voltage
of (001)-oriented GaAs is smaller, for larger doping that of GaAs (111) [1490].

At higher temperatures, the charge carriers release their excess energy faster to the
lattice.22 Thus, less energy is available for impact ionization and the required electric
field is higher. Therefore, the breakdown voltage increases with the temperature
(Fig. 21.53). This behavior is opposite to tunneling diodes and the two processes can
be distinguished in this way.

In planar structures (Fig. 21.54a), high electric fields as present in high power
devices will occur at the parts with large curvature. At these sites breakdown will
occur first and at much lower voltages than expected for a perfectly planar (infinite)
structure [1492, 1493]. For devices that require high breakdown voltage, design
changes have to be made. These include deep junctions (Fig. 21.54b) with a smaller
curvature, a field-ring structure (Fig. 21.54c) in which an additional depletion layer
is used to smooth the field lines and the often used guard ring (Fig. 21.54d) for which
a circular region of low doping (and thus high breakdown voltage) is incorporated.

The decrease of breakdown voltage in a junction with cylindrical and spheri-
cal geometry has been numerically calculated as a function of curvature [1494]

22The scattering rate becomes higher with increasing temperature and, e.g., the mobility decreases,
see Sect. 8.3.9, and the drift saturation velocity decreases, see Sect. 8.4.1.

http://dx.doi.org/10.1007/978-3-319-23880-7_8
http://dx.doi.org/10.1007/978-3-319-23880-7_8
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Fig. 21.54 (a) Large electric fields at large curvatures in a shallow junction. Avoidance of regions
with large electric fields by (b) deep junction and (c) field-ring structure. (d) shows a guard-ring
structure with circular, low-doped n region. Grey area denotes insulating material, arrows indicate
field lines and the dashed lines indicate the extension of the depletion layers

Fig. 21.55 Breakdown
voltage (in units of the
breakdown voltage VB of a
plane junction) for
cylindrical and spherical
junctions as a function of the
curvature radius (in units of
the depletion layer width at
breakdown WB for a plane
junction). Data from [1489]

(Fig. 21.55). Analytical formulas in terms of the ratio of radius of curvature and
the depletion layer width at breakdown for a plane junction r/wB have been given
later [1489].

Defects

Inmaterialwith extended defects such as polycrystalline silicon breakdown can occur
locally at lower voltage than in the corresponding defect-free bulk material (‘pre-
breakdown’) [1486]. This effect typically occurs at certain grain boundaries and
probably involves mid-gap states. It is also accompanied with electroluminescence
by which it can be detected with high spatial resolution (Fig. 21.56).
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Fig. 21.56 Microscopic (a) forward bias electroluminescence and (b) microscopic reverse bias
electroluminescence (µ-ReBEL) image of an alkaline texturized solar cell (cmp. Fig. 22.58) in
a region without specific surface features at U = −17V. The bulk defects at these positions are
revealed topographically in the neighboring acidic texturized solar cell in themicroscopic (c) image.
Their ReBEL pattern appears similarly in the corresponding EL image (d). Adapted from [1486]

21.4.6 Heterostructure Diodes

In a heterostructure diode, the n- and p-regions aremade of different semiconductors.
Such structures are discussed in detail in [1495].

Type-I Heterostructure Diodes

In Fig. 21.57, the band diagram is shown for a type-I heterostructure with the n (p)
region having the larger (smaller) band gap. Additionally to the built-in voltage, the
barrier in the valence band is increased. Such a diode finds application in particular as
an injection (emitter–base) diode in heterostructure bipolar transistors (Sect. 24.2.7).
In such diode the (mostly undesired) hole current from the p- to the n-side is reduced.
The peak in the conduction band poses potentially a greater barrier for electron
transport across the interface than the diffusion potential itself. The spike can be
reduced by grading the materials across the heterojunction and creating a smooth

http://dx.doi.org/10.1007/978-3-319-23880-7_22
http://dx.doi.org/10.1007/978-3-319-23880-7_24
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(a) (b)

(c)

Fig. 21.57 Schematic band diagram of a n-AlGaAs/p-GaAs diode (a) without contact of the n-
and p-materials, (b) in thermodynamic equilibrium, and (c) with graded Al composition at the
heterointerface

transition of Eg between the materials. The effect of grading on the properties of the
heterojunction is discussed in detail in [1496].

Type-II Heterostructure Diodes

Many semiconductors can only be doped n-type or p-type (cmp. Sect. 7.4.2). Bipolar
heterostructures can be formed and, depending on the position of the bands relativ to
the vacuum level, can form a type-II heterostructure. Examples are p-NiO/n-ZnO or
p-CuI/n-ZnO; the band diagram of the latter is depicted in Fig. 21.58a for a typical
situation (p+-n diode) [494, 1497]. Rectification for such device can be very high
(>1010, Fig. 21.58b). Minority carrier injection is excluded due to the high barriers.
The current across the interface is a recombination current, presumably via interface
defects, which exhibits an ideality factor around 2 [1498].

21.4.7 Organic Semiconductor Diodes

Abipolar diode from organic semiconductors consists of the p-conductive hole trans-
port layer (HTL) and the n-conductive electron transport layer (ETL). The low con-
ductivity of organic semiconductors causes the applied voltage to drop over the
entire structure [1499–1501] (Fig. 21.59c) while in a typical silicon diode for suf-
ficient forward bias (and moderate injection, cmp. Fig. 21.48) flat-band conditions

http://dx.doi.org/10.1007/978-3-319-23880-7_7
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Fig. 21.58 (a) Schematic band diagram of a p-CuI/n-ZnO diode. Adapted from [1497]. (b) jV -
characteristics (room temperature) of type-II epitaxial CuI/ZnO heterojunction bipolar diode (sym-
bols) and fit (red dashed line) with js = 2 × 10−8 A/cm2 and ideality factor n = 1.8. The other
fit (blue line) takes into account additionally a barrier inhomogeneity and the series resistance.
Courtesy of Ch. Yang

are present (Fig. 21.59b). The first organic homodiode was reported only in 2005
for zinc-phthalocyanine (ZnPc) doped with [Ru(terpy)2]0 (n-type) and F4-TCNQ
(p-type, cmp. Fig. 17.7b) [1502]. Deviation from ideal Shockley behavior is dis-
cussed in this report.

(a)

(b)

(c)

Fig. 21.59 Schematic sample geometry and charge distribution (left) and energy diagram (right)
for (a) an ideal insulator, (b) a typical inorganic semiconductor pn-diode and (c) a double layer
organic diode under forward bias V . Adapted from [1501]

http://dx.doi.org/10.1007/978-3-319-23880-7_17


652 21 Diodes

Fig. 21.60 Schematic
energy diagram for (a) dual
layer organic diode (HTL,
ETL), (b) with additional
emission layer (EML) and
(c) with further hole and
electron injection layers
(HIL, EIL)

(a)

(b)

(c)

The hole injecting contact is often made from ITO, the electron injection contact
from low work function metals such as Al, Mg or Ca. Specially designed layers for
efficient charge injection (HIL, hole injection layer [1503] andEIL, electron injection
layer [1504]) can be introduced between the contact metal and the transport layers
(Fig. 21.60c). The particular level lineup of theHTL andHTL as shown in Fig. 21.59c
(also Fig. 21.60a) leads to a barrier for electrons and holes. The hole and/or electron
blocking is beneficial for recombination in the vicinity of the interface and prevents
exciton diffusion to the contacts. In organic light emitting diodes (Sect. 23.3.7) an
additional layer (EML, emission layer) designed for efficient radiative recombination
(Sect. 17.6) is introduced between HTL and ETL (Fig. 21.60b).

21.5 Applications and Special Diode Devices

In the following, various electronic applications of diodes are discussed. The most
important special diode types are introduced. Optoelectronic applications (involving
absorption and emission of photons) are treated below (Chap.22). The applications
of Schottky diodes are discussed in [1505].

http://dx.doi.org/10.1007/978-3-319-23880-7_23
http://dx.doi.org/10.1007/978-3-319-23880-7_17
http://dx.doi.org/10.1007/978-3-319-23880-7_22
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21.5.1 Rectification

In a rectifier, the diode has to supply a high resistivity for one polarity of the bias
and a low one to the other polarity. In Fig. 21.61a, a single-path rectification method
is shown. Only the positive half-wave can pass the load resistor RL (Fig. 21.61b).
In Fig. 21.61c, the characteristic of a Si diode is shown. Of course, the voltage
drop across the diode can only range in the 1-V regime. In order to make the
setup work, the load resistor has to be considered. The total current is given by
I = Is

[
exp (eUd/nkT) − 1

]
. The total voltage U is split between the voltage drop

across the diode Ud and that over the load resistance UL = RLI . The current is there-
fore given by

I = U − Ud

RL
. (21.165)

For sizeable currents the voltage drop across the diode Ud is between 0.7 and
1V. The characteristic is linear between about 1 and 220V (Fig. 21.61d). Typically,
the voltage UL is low-pass filtered with a capacitor parallel to the load resistor. The
effective voltage is the peak voltage divided by 2.

The drawback of the single diode rectifier is that only the positive half-wave
contributes to a dc signal. The setup in Fig. 21.61e (bridge rectifier) allows both half-
waves to contribute to the dc signal. The effective voltage in this case is the peak
voltage divided by

√
2.

The forward resistance in the static (Rf ) and dynamic (rf ) case are (for βVf > 3)

Rf = Vf

If
∼= Vf

Is
exp

(
− e Vf

n kT

)
(21.166a)

rf = ∂Vf

∂If
= n kT

e Is
exp

(
e Vf

n kT

)
∼= n kT

e If
. (21.166b)

For reverse bias we have (β|Vr| > 3)

Rr = Vr

Ir
∼= Vr

Is
(21.167a)

rr = ∂Vr

∂Ir
= nkT

eIs
exp

(
e |Vr|
n kT

)
. (21.167b)

Thus, the dc and ac rectifications ratios are given by

Rr

Rf
= exp

(
e Vf

n kT

)
(21.168a)

rr
rf

= If

Is exp
(

e |Vr |
n kT

) . (21.168b)
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Fig. 21.61 (a) Single-path mains rectifier, (b) characteristics of Si diode (BYD127, Philips), (c)
load characteristics of the mains rectifier (RL = 400�), (d) voltage output of single-path mains
rectifier. (e) Depicts the schematic circuit of a bridge rectifier that works for both half-waves, (f)
the resulting voltage output
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Rectifiers generally have slow switching speeds. A significant time delay arises
from the necessary charge-carrier recombination when the diode switches from low
(forward) to high (reverse) impedance. This poses typically no problem for line-
frequency (50–60Hz) applications. For fast applications, however, the minority-
carrier lifetime needs to be reduced, e.g. by doping Si with Au (see Sect. 10.9).

21.5.2 Frequency Mixing

The nonlinear characteristic of the diode allows the mixing of frequencies, e.g.
for second- (or higher-) harmonic generation, upconversion or demodulating of
radio-frequency (RF) signals. A single balanced mixer is shown in Fig. 21.62a, b.
The RF signal consists of a RF carrier frequency f0 modulated with an intermediate
frequency (IF) signal fIF(t). It is mixed with a local oscillator (LO) that has a constant
frequency fLO outside the RF modulation bandwidth f0 ± fIF. The IF signal can be
detected from the setup in Fig. 21.62a if filtered through a low-pass filter to avoid loss
of power to the IF amplifier. The temperature dependence of the diode characteristic
(via js and β) on mixing efficiency is typically less than 0.5dB for a 100-K change
in temperature.

Problems of single-diode mixers are the radiation of local-oscillator power from
the RF input port,23 loss of sensitivity by absorption of input power in the local
oscillator circuit, loss of input power in the intermediate frequency amplifier, and
the generation of spurious output frequencies by harmonic mixing. Some of these
problems can be solved by circuit techniques, but these circuits often introduce new
problems. Most mixers therefore use multiple-diode techniques to provide a better
solution of these problems. In Fig. 21.62c, the circuit diagram of a double balance
mixer is shown. Even-order harmonics of both the LO and the signal frequency are
rejected. This mixer does not require a low-pass filter to isolate the IF circuit. The
three ports are isolated from each other by the symmetry of the circuit. These mixers
usually cover a broader frequency band than the others. Ratios as high as 1000:1 are
available. Microwave equivalents (working at f � 1GHz) of such mixer circuits are
available. Bandwidth ratios as high as 40:1 are available at microwave frequencies
in MMICs (millimeter-wave integrated circuits).

The common drawback of MMIC diodes is that they are obtained from the Schot-
tky barriers used in field-effect transistors, that have inferior performance compared
to discrete diodes. The use of pHEMT technology24 for millimeter-wave applications
provides diodes that differently from regular Schottky diodes, since they consist of
a Schottky barrier in series with a heterojunction. In Fig. 21.62d, a MMIC 45GHz
mixer is shown using fast GaAs-based pHEMTs.

23That in military applications could make the mixer detectable by the enemy.
24Pseudomorphic high electron mobility transistors, cf. Sect. 24.5.8.

http://dx.doi.org/10.1007/978-3-319-23880-7_10
http://dx.doi.org/10.1007/978-3-319-23880-7_24
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Fig. 21.62 (a) Schematic circuit of single balancedmixerwith input (RF: radio frequency, LO: local
oscillator) and output (IF: intermediate frequency). (b)Optical plan-view image (300 × 125µm2) of
a high-speed single balancedmixerwith twoGaAs Schottky diodeswith opposite poling. The device
properties are Rs = 5�, for I = 1µA a forward and reverse voltage of 0.7 and 6V, respectively; the
capacitance of each diode is 8 fF. Reprinted with permission from [1506]. (c) Schematic circuit of
a double balanced mixer. (d) Optical image (1.65mm2) of 40–45GHz MMIC (Gilbert cell) mixer
on GaAs basis using pHEMTs. Reprinted with permission from [1507]

21.5.3 Voltage Regulator

In a voltage regulator, the large variation of resistance with applied bias is used. This
effect occurs in the forward direction and close to the breakdown voltage.

In Fig. 21.63a, a simple circuit is shown. When the input voltage Vin is increased,
the current increases. The preresistor R1 = 5k� and the load resistor represent a
voltage divider with Vin = IR1 + Vout. The total current I is given by the two cur-
rents through the diode and the load resistor I = Is

[
exp(βVout/n) − 1

] + Vout/RL.
Therefore, the output voltage is implicitly given by

Vout

(
1 + R1

RL

)
= Vin − R1 Is

[
exp

(
βVout

n

)
− 1

]
. (21.169)
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A large current change is related to a fairly small change of the voltage across the
diode, which at the same time is the output voltage. Therefore, a change in the input
voltage causes only a small change in the output voltage.

We assume a diode with n = 1 and IS = 10−14 A with the characteristic shown
in Fig. 21.63a. The numerical example in Fig. 21.63c is calculated for RL = 2k�
and 4k�, respectively. The output voltage varies by about 0.02V if the input varies
between 5 and 9V. In Fig. 21.63d, the differential voltage change α = Vin

Vout

∂Vout
∂Vin

is
shown.

In this way, voltage peaks can be filtered from the input voltage. If two antipar-
allel diodes are used, this principle works for both polarities. Instead of a diode in
the forward direction, the very steep slope of the diode I–V characteristic at the
breakdown can be used. Just before breakdown, the diode has a high resistance and
the voltage drops at the load resistor. If the input voltage increases a little, the diode
becomes conductive and shorts the additional voltage (the maximum allowed break-
down current needs to be observed!). Due to its small saturation current, typically Si

RLVin

R1

Vout

(a)

(b)

(d)(c)

Fig. 21.63 (a) Circuit diagram of a voltage regulator, (b) diode characteristic (n = 1). The vertical
dashed lines show the operation conditions forRL = 2k� andUE = 5 and 9V and thus the principle
of voltage stabilization. (c) Output versus input voltage and (d) stability (differential voltage ratio
α, see text) for input voltage between 5 and 9V
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diodes are used. The breakdown voltage can be designed via the diode parameters.
Such diodes with defined breakdown voltage are called Z- or Zener diodes (see next
section).

If the breakdown is due to tunneling (avalanche multiplication), the breakdown
voltage decreases (increases) with temperature. If two diodes with positive and neg-
ative temperature coefficient are put in series, a very good temperature stability of
the breakdown voltage of 0.002%/K can be achieved. Such diodes can be used to
realize a reference voltage.

21.5.4 Zener Diodes

A Zener diode is designed to have a defined breakdown voltage. Zener diodes
are available with a number of different standard breakdown voltages. Their charac-
teristic is shown for reverse bias with the current shown positive. The characteristics
of various Zener diodes for different breakdown voltages are shown in Fig. 21.64.

21.5.5 Varactors

A diode exhibits a voltage-dependent capacitance. This effect can be used to tune an
oscillator using the diode bias (voltage-controlled oscillator, VCO). The equivalent
circuit is shown in Fig. 21.65. The capacitance consists of a parasitic capacitance Cp

due to mounting and bonding. This effect also causes a parasitic inductance. The
series resistance due to mounting can typically be neglected. The variable junction
capacitance Cj and the ohmic resistance Rs are bias dependent.

Fig. 21.64 Characteristics
of a field of Zener diodes (at
room temperature)
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Fig. 21.65 Equivalent
circuit of a varactor diode
with parasitic capacitance Cp
and inductance Lp and
variable capacitance Cj and
resistance Rs

Rs

CjCp

Lp

The C(V ) dependence has generally a power lawwith an exponent γ (which itself
may depend on the bias voltage)

C = C0

(1 + V/Vbi)γ
, (21.170)

whereC0 is the-zero bias capacitance. Since the frequency f of anLCoscillator circuit
depends on C−1/2 the frequency, f depends on the voltage as f ∝ V γ/2. Therefore, a
γ = 2 dependence is most desirable.

For uniformly doped profiles, the capacitance depends with an inverse square root
law on the applied voltage (21.113), i.e. γ = 0.5. Hyperabrupt junctions are typically
made by ion implantation or epitaxy with graded impurity incorporation to create a
special nonuniform doping profile (Fig. 21.66a). For a doping profile

NB(z) = N̂B

(
z

z0

)m

(21.171)

the capacitance is given as

C =
[

e N̂B εm+1
s

(m + 2) zm
0 (Vbi − V )

] 1
m+2

= C0

(1 + V/Vbi)
1/(m+2)

. (21.172)

Ideally, m = −3/2 results is a linear frequency versus voltage relation. The C–V
characteristic of an implanted, hyperabrupt diode exhibits a part that has an exponent
γ = 2 (Fig. 21.66b). A γ = 2C(V ) dependence and therefore a linear f (V ) curve can
be achieved over more than one octave using computer-controlled variable epitaxial-
layer doping (Fig. 21.66c).
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Fig. 21.66 (a) Donor-doping profile according to (21.171) in p+n or Schottky diodes for m =
0 (abrupt junction), m =1 (linearly graded junction) and two values with m < 0 (hyperabrupt
junctions). (b) Bias dependence of capacitance for diodes with abrupt junction (‘A’, γ = 0.5),
hyperabrupt junction (‘H’, γ > 0.5) and ‘epilinear’ junction (‘L’, γ = 2). (c) Frequency–voltage
tuning characteristics (scaled to 1.0 for V = 0) for the three diode types. Parts (b) and (c) adapted
from [1508], reprinted with permission

21.5.6 Fast-Recovery Diodes

Fast-recovery diodes are designed for high switching speeds. The switching speed
from the forward to the reverse regime is given by the time t0 = t1 + t2 with t1 being
the time to reduce theminority carrier density to the equilibriumvalue (e.g. pn → pn0 )
and t2 being the time in which the current decreased exponentially (Fig. 21.67).
The time t1 can be drastically reduced by incorporation of deep levels that act as
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Fig. 21.67 Current versus time trace for a (soft) fast-recovery diode. Reprinted with permission
from [1509]

recombination centers. A prominent example is Si:Au. However, this concept is
limited since the reverse generation current, e.g. (21.150), depends on the trap density.
For direct semiconductors, recombination times are short, e.g. 0.1ns or less forGaAs.
In silicon, they can be extremely long (up to ms) or at least 1–5ns. Schottky diodes
are suitable for high-speed applications since they are majority-carrier devices and
minority-charge carrier storage can be neglected.

21.5.7 Step-Recovery Diodes

This type of diode is designed to store charge in the forward direction. If polarity is
reversed, the charge will allow conductance for a short while, ideally until a current
peak is reached (Fig. 21.68a), and then cutoff the current very rapidly during the
so-called snapback time Ts (Fig. 21.68b). The cutoff can be quite rapid, in the ps
regime. These properties are used for pulse (comb) generation or as a gate in fast
sampling oscilloscopes. In Si, only 0.5–5µs are reached (fast-recovery diode, see
previous section) while GaAs diodes can be used in the several tens ofGHz regime.

Using a heterostructure GaAs/AlGaAs diode (cf. Sect. 21.4.6), as shown schemat-
ically in Fig. 21.69a, a steepening of a 15-V, 70-ps (10 to 90%) pulse to a fall time
of 12ps was observed (Fig. 21.69c). The forward current of the diode was 40mA,
supplied via a bias tee.
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Fig. 21.68 (a) Current versus time trace for a step-recovery diode and sinusoidal voltage input.
The lifetime must be sufficiently large such that a current peak is reached. (b) Definition of the
snapback time Ts. Reprinted with permission from [1510]
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Fig. 21.69 (a) Schematic layer sequence for fast GaAs/AlGaAs step-recovery diode. (b) Circuit
with input and output pulse. (c) Input (dashed line) and output (solid line) waveforms. Vertical
division is 2V. Adapted from [1511]

21.5.8 Pin-Diodes

In a pin-diode, an intrinsic (i), i.e. undoped region (with higher resistivity) is
located between the n- and the p-regions (Fig. 21.70a). Often, also a region with low
n- or p-doping is used. In this case, the center region is denoted as a ν- or π-region,
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respectively. The fabrication of arbitrary doping profiles and an intrinsic region poses
little problem for epitaxial diodes.

Via the Poisson equation, the charge in the intrinsic layer is related to the electric
field. If no dopants are present, there is a constant (maximum) field in the i-region
at zero bias (Fig. 21.70d). If there is low doping, a field gradient exists.

The capacitance for reverse bias is εsA/w and is constant starting at fairly small
reverse bias (10V). The series resistance is given by Rs = Ri + Rc. The contact
resistance Rc dominates the series resistance for large forward bias.

21.5.9 Tunneling Diodes

For the invention of the tunneling diode and the explanation of its mechanism the
1973Nobel Prize in Physics was awarded to L. Esaki. Eventually, the tunneling diode
did not make the commercial breakthrough due to its high basis capacitance. It is
used for special microwave applications with low power consumption, for frequency
stabilization and possibly in tunneling field-effect transistors (Sect. 24.5.6).

First, the tunneling diode is a pn-diode. While the tunnel effect [1512] has already
beendiscussed forSchottkydiodes, it has not yet been consideredbyus for pn–diodes.
We expect the tunnel effect to be important if the depletion-layer is thin, i.e. when
the doping of both sides is high.

Fig. 21.70 (a) Schematic
layer sequence of pin-diode
(‘i’: intrinsic, ‘π’: lowly
p-doped), (b) net impurity
distribution NA − ND, (c)
space charge and (d) electric
field in a pin (solid lines) and
a p–π–n (dashed lines) diode

(a)

(b)

(d)

(c)

http://dx.doi.org/10.1007/978-3-319-23880-7_24
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The doping is so high that the quasi-Fermi levels lie within the respective bands
(Fig. 21.71). The degeneracy is typically several kT and the depletion layer width is
in the 10nm range.

In the forward direction, the I–V characteristic of the tunneling diode exhibits
a maximum followed by a minimum and subsequently an exponential increase
(Fig. 21.72a). As shown in Fig. 21.72b, the total current consists of three currents,
the band-to-band tunneling current, the excess current and the thermal (normal
thermionic diode) current.

The V = 0 situation is again shown in Fig. 21.73b. Upon application of a small
forward bias, electrons can tunnel from populated conduction-band states on the
n-doped side into empty valance-band states (filled with holes) on the p-doped side
(Fig. 21.73c). We note that this tunneling process is usually considered elastic. How-
ever, signatures at characteristic phonon andmulti-phonon energies are found (at low

p+

Fp Fn

EV

EV

EC

qVn

qVp

EC

n+depletion
region

Fig. 21.71 Band diagram of a tunneling diode in thermodynamic equilibrium (V = 0). Vn and Vp
characterize the degeneracies on the n- and p-side, respectively

(a) (b)

Fig. 21.72 (a) Static current–voltage characteristics of a typical tunneling diode. Peak and valley
current and voltage are labeled. (b) The three components of the current (short dashed band-to-band
tunnel current, dashed excess current, dash-dotted thermal current) are shown separately. Adapted
from [500], ©1981 Wiley
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Fig. 21.73 I–V characteristics (upper row) and simplified band structure (lower row) of a tunneling
diode at various bias voltages as indicated with a dot in the I–V plot. (a) Reverse bias, (b) in
thermodynamic equilibrium (V = 0), (c) in the maximum of the tunneling current, (d) close to the
valley and (e) forward bias with dominating thermal current. The tunneling current is indicated with
straight arrows. In (e) the thermionic emission current (curved arrow) and the excess current with
inelastic tunneling (dotted arrow) are shown

(a) (b)

Fig. 21.74 (a) Current–voltage characteristic of silicon tunneling diode (model 1N4397 from
American Microsemiconductor [1518]) at low temperature (T = 4.2K). (b) d2I/dV 2 for small
forward voltages, exhibiting characteristic phonon energies. Adapted from [1516]

temperature) in the forward current [1513, 1514] and are best seen in a d2I/dV 2-
plot [1515, 1516] (Fig. 21.74). Peaks appear at typical phonon energies of silicon.25

25We note that for the 1N4396 silicon tunneling diode [1517] the phonon structure of germanium
was found in [1516].
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A similar situation, nowwith electrons tunneling for the valence band on the p-side
into the conduction band on the n-side, is present for small reverse bias (Fig. 21.73a).
Thus the rectifying behavior of the diode is lost. This property makes it suitable for
the monolithic ohmic connection of two pn-diodes which is technologically used e.g.
in multi-junction solar cells (cmp. Sect. 22.4.6).

For larger forward bias, the bands are separated so far that the electrons coming
from the n-doped side do not find final states on the p-doped side. Thus the tunneling
current ceases (Fig. 21.73d). The current minimum is at a voltage V = Vn + Vp > 0.
The thermal current is the normal diode diffusion current (Fig. 21.73e). Therefore, a
minimum is present in the I–V characteristic. The excess current is due to inelastic
tunneling processes through states in the band gap and causes the minimum to not
drop down to almost zero current.

The peak (Vp, Ip) and valley (Vv, Iv) structure of the characteristic leads to a
region of negative differential resistance (NDR). Ip/Iv is termed the peak-to-valley
ratio (Fig. 21.75). Peak-to-valley ratios of 8 (Ge), 12 (GaSb, GaAs), 4 (Si), 5 (InP)
or 2 (InAs) have been reported (all at room temperature).

21.5.10 Backward Diodes

When the doping in a tunneling diode is nearly or not quite degenerate, the peak-to-
valley ratio can be very small. Then the tunnel current flows mostly in the reverse
direction (low resistance) and the forward direction has a higher resistance (with
or without the NDR regime). Such diodes are called backward diodes. Since there
is no minority-charge carrier storage, such diodes are useful for high-frequency
applications.

Fig. 21.75 Comparison of
tunneling characteristic
(room temperature) of diodes
based on Ge, GaSb and
GaAs. Peak-to-valley ratios
are 8 (Ge) and 12 (GaSb,
GaAs). Adapted from [500]

http://dx.doi.org/10.1007/978-3-319-23880-7_22
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21.5.11 Gunn Diodes

The Gunn diode is not really a diode and thus more appropriately called Gunn
element. It allows to generate microwave radiation in the frequency range of
1–100GHz [1519] and beyond [1520] using GaAs and in the THz-regime using
GaN [1521]. Extracting higher harmonics, frequencies of several 100GHz can be
realized [1522, 1523].

The Gunn element relies on the negative differential resistance (NDR) occurring
in semiconductors with two valleys of different mobility such as GaAs or InP (cmp.
Sect. 8.4.2). At high fields, the electrons are scattered from the�-valley into the upper
valley (L-valley for most materials). Accordingly, the Gunn element is also called
transferred electron device (TED). Details on Gunn elements can be found in [1524].

The Gunn effect was discovered by and named after J.B. Gunn [122]. The spon-
taneous oscillation of current in a n-type semiconductor occurs when a sufficiently
large voltage (pulse) is applied that causes the electric field in the semiconductor to
reach the NDR regime (Fig. 21.76). The applied average field of E = 16V/25µm =
6.4kV/cm [122] is larger than the threshold field of ET = 3.2kV/cm for NDR in
GaAs (Table8.4).

The self-started oscillations are due the inherent instability introduced by NDR. A
homogeneous (uniform) electric field and electron distribution is unstable and a thin
high-field domain with bipolar charge distribution (Gunn domain, predicted in [673])
can develop and drift through the device. After reaching the anode, another domain
can form, causing a periodically fluctuating current. The highest frequencies can be
achieved with the so-called limited-space-charge accumulation (LSA) mode which
operates without domains. Optimal performance requires non-homogeneous doping
profiles. A detailed discussion of the various oscillation mechanisms can be found
in [674, 1519, 1525].

Discussion of further microwave diode devices such as the IMPATT diode can be
found in [500, 1526].

Fig. 21.76 Current traces
upon excitation of a 25µm
thick piece of n-type GaAs
with a voltage pulse
(amplitude 16V and duration
10ns). The upper trace is an
expanded view of the lower
trace. The oscillation period
is 4.5GHz. Adapted
from [122]

http://dx.doi.org/10.1007/978-3-319-23880-7_8
http://dx.doi.org/10.1007/978-3-319-23880-7_8


Chapter 22
Light-to-Electricity Conversion

Abstract The use of diodes for the conversion of electromagnetic radiation (light)
into electrical signals is discussed with many examples for devices such as photocon-
ductors, pn-, pin-, MSM- and avalanche photodiodes and charge-coupled devices.
Energy conversion with solar cells is explained and standard and advanced solar cells
concepts are introduced.

22.1 Photocatalysis

The absorption of light in a semiconductor across the band gap creates free electrons
and holes. In particular, for small particle size in powders1 these charge carriers can
reach the surface of the semiconductor. At the surface they can react with chemicals.
The hole can form •OH radicals from OH− attached to the bead. The electron can
formO2•−. These radicals can subsequently attack anddetoxify, e.g., noxious organic
pollutants in the solution surrounding the semiconductor. Such photocatalytic activity
has been found, e.g., for TiO2 and ZnO powders. A review of photocatalysis, in
particular with TiO2 particles and their surface modifications with metals and other
semiconductors, is found in [1527].

The efficiency of the photocatalytic activity depends on the efficiency of the charge
separation (Fig. 22.1). Any electron–hole pair that recombines within the bulk or the
surface of the particle is lost for the catalytic activity. Thus, surfaces must exhibit
a small density of recombination centers. Surface traps, however, can be beneficial
for charge-carrier separation when they ‘store’ the charge-carrier rather than letting
it recombine. Small particles are expected to exhibit more efficient charge-carrier
separation than larger ones. Electrons at the surface can be donated and reduce an
electron acceptor, typically oxygen, A → A−. A hole at the surface can oxidize a
donor species, D → D+.

An example of increased photocatalytic activity are TiO2 powders with deposited
metal particles (such as Pt) for H2 evolution and metal-oxide particles (such as
RuO2) for O2 evolution. Such a system behaves as a short-circuited microscopic

1‘Small’ is here in relation to the diffusion length and does not need to be in the range where
quantization effects (quantum dots) are present.
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Fig. 22.1 Principle of
photocatalytic activity. Light
absorption creates an
electron–hole pair. The
electron and hole diffuse and
can recombine in the bulk or
at the surface. Free carriers
can react at the surface with
species from the surrounding
solution, reducing an
electron acceptor or
oxidizing a donor species.
Adapted from [1527]

photoelectrochemical cell in which Pt is the cathode and RuO2 is the anode [1528].
Excitation with light energy above the band gap in the TiO2 particle (3.2 eV) injects
electrons into the Pt particles and holes into the RuO2 particles. Trapped elec-
trons in Pt reduce water to hydrogen and trapped holes in RuO2 oxidize water
to oxygen.

The photocatalytic activity is also tied to the geometrical shape of the semi-
conductor. Generally, powders with nanosized grains have much higher activity than
those with microsized particles [1569]. In Fig. 22.2 it is shown that nanosized objects
with high surface-to-volume ratio are more effective catalysts than rather compact
surfaces.

In sun-protection cream only the UV absorption is wanted in UVA (330–420nm)
and UVB (260–330nm) ranges. Subsequent photocatalysis on the skin and the
presence of radicals are unwanted. Thus the semiconductor particles (∼10–200nm
diameter) are encapsulated in microbeads (∼1–10µm diameter) of silica, PMMA or
urethane, also improving ease of dispersion, aggregation, stability and skin feel.

22.2 Photoconductors

22.2.1 Introduction

Charge carriers can be generated in the semiconductor through the absorption of
light with a photon energy above or below the band gap (Fig. 22.3). Absorption
involving impurities occurs typically in the mid- and far-infrared spectral regimes
(cf. Sect. 9.7). The additional charge carriers cause an increase in the conductivity
(8.11).

http://dx.doi.org/10.1007/978-3-319-23880-7_9
http://dx.doi.org/10.1007/978-3-319-23880-7_8
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Fig. 22.2 SEM images of MOCVD-grown (a) ZnO thin film and (b) ZnO nanoneedle layer. (c)
Comparison of the photocatalytic activity (decoloration of the dye Orange II in aqueous solution)
of the ZnO thin film (irradiation with a Hg lamp for 5h and 15h) and the ZnO nanoneedles (irra-
diation 5h). The sample labeled ‘control’ (scaled to 100%) is the start situation (absorption of the
dye Orange II) without photocatalytic process. Adapted from [1530], reprinted with permission

(a) (b) (c)

Fig. 22.3 Absorption and charge-carrier generation in a photoconductor: (a) band–band transition,
(b) valence-band to acceptor and (c) donor to conduction-band transition

22.2.2 Photoconductivity Detectors

In stationary equilibrium for constant illumination of power Popt and photon energy
E = hν the generation rate G is given by

G = n

τ
= η

Popt/hν

V
, (22.1)
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Fig. 22.4 (a) Scheme of photoconductor. (b) Equivalent circuit of photoconductor

where V is the volume (V = wdL, see Fig. 22.4) and τ denotes the charge-carrier
lifetime. η is the quantum efficiency, i.e. the average number of electron–hole pairs
generated per incoming photon. The photocurrent between the electrodes is

Iph = σ E w d ≈ e μn n E w d, (22.2)

assuming that μn � μp and with E = V/L denoting the electric field in the photo-
conductor, V being the voltage across the photoconductor. We can then also write

Iph = e

(
η

Popt

hν

) (
μn τ E

L

)
= g Ip. (22.3)

With the primary photocurrent Ip = e
(
η

Popt

hν

)
we deduce a gain

g = Iph
Ip

= μn τ E

L
= τ

tr
, (22.4)

where tr = L/vd is the transit time through the photoconductor.
Now we consider a modulated light intensity

P(ω) = Popt
[
1 + m exp(iωt)

]
, , (22.5)

where m is between 0 and 1. For m = 0 it is a constant light power, for m = 1 the
intensity is sinusoidally modulated between 0 and Pmax = 2Popt. The rms optical
power2 is given by

√
2mPopt. In the case of m = 1 this is equal to Pmax/

√
2.

The rms photocurrent (i2 = 〈I2〉 − 〈I〉2) is

iph ≈ e η m Popt√
2hν

τ

tr

1√
1 + ω2τ 2

. (22.6)

2The rms value is the square root of the time average of the square of the power,
√〈

P2
〉
.
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Besides the photocurrent which is considered the signal, several sources of noise
must be considered. Noise is in this case a fluctuation current in with 〈in〉 = 0 (see
Appendix J).

The thermal noise (Appendix J.3.1) at a conductivity G = 1/R is3

i2G = 4 k T G B, (22.7)

with B being the bandwidth over which the noise spectrum is integrated. The thermal
noise at a resistor was experimentally found by Johnson [1531, 1532] and theoreti-
cally explained by Nyquist [1533].4

The statistical nature (Poisson statistics) of photon arrival (and absorption) and
equally that of recombination of (photo-) excited electrons leads to fluctuations of the
carrier density and consequently to fluctuating conductivity and gain. This so-called
generation–recombination noise (Appendix J.3.4 is given by [1534]

i2GR = 4 e Iph B g
1

1 + ω2 τ 2
(22.8)

for the modulation frequency ω, Iph being the photocurrent in steady state (22.3).
The equivalent circuit with the ideal photocurrent source and the noise currents is
depicted in Fig. 22.4b. A detailed treatment can be found in [1535].

The signal-to-noise ratio of the power is then given by

S/N = i2ph
i2G + i2GR

= η m2 (Popt/hν)

8B

[
1 + β−1 tr

τ
(1 + ω2τ 2)

G

I0

]−1

. (22.9)

An important quantity is the noise equivalent power (NEP). This is the light power
(mPopt/

√
2) for which the S/N ratio is equal to 1 (for B = 1). The responsivity

of a detector to light has been termed ‘detectivity’ and is the inverse of the noise
equivalent power. It typically depends on the square root of the detector area A and
the bandwidth B [1536]. Thus the detectivity D∗ (D star) has been introduced defined
by [1537]

D∗ =
√

A B

NEP
, (22.10)

in order to make various detectors comparable. The unit of D∗ is cmHz1/2W−1,
also known as Jones. The detectivity should be stated together with the modulation
frequency. It can be given for monochromatic radiation of a particular wavelength λ
or a blackbody spectrum of given temperature T . As refined measure for detectivity,
D∗∗ (D double star) has been defined to take into account the solid angle � from

3For frequencies hν 
 kT ; at room temperature kT/h is in the THz regime.
4The formula for thermal noise (22.7) is the fluctuation-dissipation theorem in statistical physics,
providing a general relation between the response of an equilibrium system to small external per-
turbations and its spontaneous fluctuations.
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(f) (g)

30 µmphotosensitive layer

blocking layer

substrate

protective surface layer 0.5 µm

3 µm

(h)

(a) (b) (c) (d) (e)

Fig. 22.5 Principle of xerography: (a) charging of the selenium-covered drum, (b) (reflection)
exposure of the Se, exposed areas become uncharged, (c) toner addition, (d) toner transfer to paper
for copy, and (e) fixation of the toner on the copy and preparation of drum for the next cycle. (f)
First xerox copy (Oct. 22nd 1938). (g) Schematic cross section of coating of photosensitive drum.
The indicated thicknesses are approximate. (h) Image of drum with photosensitive layer made from
amorphous silicon. Part (h) from [1539]

which radiation can reach the detector [1538],

D∗∗ = √
�/π D∗ ; (22.11)

for a Lambertian characteristic D∗∗ = D∗.

22.2.3 Electrophotography

The principle of the Xerox copy machine is based on a photoconductive layer
(Fig. 22.5). This layer is normally insulating such that both sides of the layer can
be oppositely charged. If light hits the layer it becomes photoconductive and neu-
tralizes locally. This requires a small lateral diffusion of charge carriers. Initially
amorphous selenium (Eg = 1.8eV) was used. The conductivity in the dark of a-
Se is 1016 �/cm. Se was subsequently replaced by organic material. The highest
performance is currently achieved with amorphous silicon.

On the charged areas of the photosensitive layer toner can be attached. The toner
pattern is subsequently transferred to the copy sheet and fixated. A copy takes typ-
ically more than one rotation of the drum. The principle was invented in 1938 by
Chester F. Carlson (1906–1968) with sulfur as the photoconductor.5

5In 1947 the Haloid company bought the rights to this process, renamed itself XeroX and brought
the first copy machine to the market in 1958 based on amorphous selenium. The word ‘xerography’
stems from the Greek word ξέρoς (dry). The last ‘X’ in XeroX was added to mimic the name of
the KodaK corporation.
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22.2.4 QWIPs

Quantum-well intersubband photodetectors (QWIPs) are based on the absorption of
photons between two quantum well subbands (Fig. 22.6). A review can be found in
[1540]. Quantized electron or hole states can be used. Besides an oscillator strength
for this transition, the lower levelmust be populated and the upper levelmust be empty
in order to allow this process. The Fermi level is typically chosen by appropriate
doping such that the lower subband is populated.

For infinite barrier height the energy separation between the first and second
quantized levels (in the effective-mass theory) is (cf. (12.6))

E2 − E1 = 3
�
2

2m∗
π2

L2
z

. (22.12)

For real materials the barrier height determines the maximum transition energy.
Typical absorption and transmission spectra of a QWIP structure are shown in
Fig. 22.7. The spectral response is in the mid- or far-infrared.

The dipole matrix element 〈z〉 = 〈Ψ2|z|Ψ1〉 can be easily calculated to be

〈z〉 = 16

9π2
Lz. (22.13)

The oscillator strength is about 0.96. The polarization selection rule causes the
absorption to vary ∝ cos2 φ, where φ is the angle between the electric-field vector
and the z direction (Fig. 22.8). This means that for vertical incidence (φ = 90◦) the
absorption vanishes. Thus schemes have been developed to allow for skew entry of
the radiation (Fig. 22.9a). The strict selection rule can be relaxed by using asymmet-
ric potential wells (breaking of mirror symmetry/parity), strained materials (band
mixing) or quantum dots (lateral confinement). Also, a grating can be used to create
a finite angle of incidence (Fig. 22.9b).

growth
direction

b-b

Lz0

b-c

E

Fig. 22.6 Schematic level diagram of a quantum well. Optical intersubband transitions between
the first and second quantized level (b–b) and the ground state and the continuum (b–c)

http://dx.doi.org/10.1007/978-3-319-23880-7_12
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Fig. 22.7 (a) AlGaAs/GaAs QWIP absorption spectrum for multiple reflection geometry. Adapted
from [1540]. (b) Transmission of AlGaAs/GaAs QWIP (100QWs) in double reflection geometry
(45◦ angle of incidence). The well doping is 1.0 × 1012 cm−2 (dashed line) and 1.5 × 1012 cm−2

(solid line). Adapted from [1541]
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Fig. 22.8 Dependence of theQWIP response on (a) polarization and (b) angle of incidence.Dashed
lines are guides to the eye. Adapted from [1540]

Fig. 22.9 QWIP geometries:
(a) 45◦ edge coupled with
multiple quantum-well
(MQW) absorber and (b)
grating coupled with GaAs
substrate, AlAs reflector and
metal grating on top. Grey
areas are highly n-doped
contact layers

h
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h

(b)(a)

GaAs

AlAs
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Fig. 22.10 Part of a
256 × 256 QWIP focal plane
array (FPA) with grating
coupler (area of one pixel:
37µm2). From [1543]

Besides a useful detectivity (2×1010 cmHz1/2/W at 77K) QWIPs have the advan-
tage, e.g. againstHgCdTe interband absorbers, that the highly developedGaAs planar
technology is available for the fabrication of focal plane arrays (FPA) as shown in
Fig. 22.10. A FPA is an image sensor (in the focal plane of an imaging infrared optics)
and is used, e.g., for the detection of heat leaks in buildings or night surveillance.
In particular, night vision support in cars may become a major market. A competing
technology are bolometric arrays with thermally insulated pixels based on MEMS
technology. A review of FPA technologies can be found in [1542].

The carriers that have been optically excited into the upper state leave the QW
by tunneling or thermionic emission. Also, a QWIP can be made based on the direct
transfer from the (populated) subband into the continuum.

The incoming infrared radiation creates a photocurrent density of

iph = e ηw Φ, (22.14)

where ηw is the quantum efficiency of a single quantum well (including the escape
rate) andΦ is the photon flux per time and unit area.During the transport of the charge
carriers through the barrier they can be (re-)captured by the QWwith the probability
pc. The capture probability decreases exponentially with the applied bias. The total
photocurrent (including generation and recapture) is

Iph = (1 − pc) Iph + iph = iph
pc

. (22.15)

If the quantumefficiency is small, the efficiencyofNw quantumwellsη ≈ Nw×ηw.
With this approximation the total photocurrent of Nw quantum wells is given by

Iph = e η Φ g, (22.16)
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Fig. 22.11 (a) Dark current of a QWIP at 10.7µm, experimental (solid lines) and theoretical
(dashed lines) response. (b) QWIP responsivity as a function of the applied voltage. The solid line
(dashed line) is the theoretical dependence with (without) the effect of avalanche multiplication.
Adapted from [1540]

where g is termed the gain of the structure and is given by

g = 1

pc

ηw

η
≈ 1

Nw pc
. (22.17)

The dark current can be calculated from thermionic emission and agrees fairly
well with experiment (Fig. 22.11a). When the voltage is increased further, avalanche
multiplication can occur while the carriers are transported through the barrier(s).
This mechanism provides further gain as shown in Fig. 22.11b.

22.2.5 Blocked Impurity-Band Detectors

Impurity absorption allows photoconductivity detectors in the mid- and far-infrared
regions to be made. In particular, for THz spectroscopy in medicine and astronomy
the extension to longer wavelengths is interesting. For conventional photoconduc-
tors the impurity concentration is well below the critical dopant concentration (cf.
Sect. 7.5.7). Long-wavelength response can be achieved by going to impurity/host
systems with smaller ionization energy, such as Si:B (45meV)→Ge:As (12.7meV)
→GaAs:Te (5.7meV).By applying stress toGe the energy separation between impu-
rity and conduction bands can be lowered and subsequently the detector response is
shifted towards longer wavelengths.

For high doping the impurity level broadens to an impurity band and thus allows
smaller ionization energy and thus stronger long-wavelength detector response.How-
ever, conduction in the impurity band leads to dark current and makes such detectors
unfeasible. In a blocked impurity band (BIB) detector [1544–1546] an additional

http://dx.doi.org/10.1007/978-3-319-23880-7_7


22.2 Photoconductors 679

Fig. 22.12 (a) Structure of
BIB photodetectors. Highly
doped contact layers (black),
doped semiconductor (white)
and blocking (intrinsic) layer
(grey). (b) Band diagram
under small forward bias.
Shaded area represents the
donor impurity band. (c)
Electric field in the structure
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intrinsic blocking layer is sandwiched between the absorption layer and the con-
tact (Fig. 22.12a). Such a structure is similar to a MIS diode, the insulator being the
intrinsic semiconductor. We assume in the following an n-type semiconductor, such
as Si:As or GaAs:Te, but also p-type BIBs can be made, e.g., from Ge:Ga.

The semiconductor is highly doped (ND) and partly compensated (NA). Typically,
the acceptor concentration must be small, about 1012 cm−3, and controls the forma-
tion of the electric field as shown below. The doping is so high that the impurities
form an impurity band. Some of the electrons recombinewith the acceptorsN−

A = NA

and leave some donors charged N+
D = NA. For GaAs, e.g., the donor concentration

in the doped semiconductor is >1016 cm−3 and ∼1013 cm−3 in the i-layer.
Under an external forward bias V , i.e. the positive pole is at the insulator, part of

the applied voltage drops over the blocking layer of thickness b. If ideally no charges
are present here, the electric field is constant. In the n-doped material electrons move
in the impurity band towards the insulator, forming neutral donors in an electron
accumulation layer of thickness w in the presence of the charged acceptors N−

A . This
layer is the absorption layer. The mechanism can also be considered as if positive
charge (the charged donors, N+

D ) moves (via hopping conduction) towards the back
contact. In the literature the layer close to the insulator is thus also termed a ‘depletion
layer’. The band diagram and the electric field are shown in Fig.22.12b,c. Due to
the blocking layer the carriers on the donors in the n-type material cannot spill via
the impurity band into the contact but must be lifted (by photoabsorption) into the
conduction band.

From the Poisson equation the electric field is given by

E(x) = − e

εs
NA (w + x) , −w ≤ x ≤ 0 (22.18a)

E(x) = − e

εs
NA w = Ei, 0 ≤ x ≤ b. (22.18b)
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The voltage drops across the blocking layer Vb and the doped semiconductor Vs

fulfill
V = Vb + Vs. (22.19)

Integration of the fields yields

Vs = e

εs
NA

w2

2
(22.20a)

Vb = e

εs
NA w b. (22.20b)

Substituting (22.20a, b) into (22.19) results in the width of the ‘depletion layer’

w =
√
2 εs V

e NA
+ b2 − b. (22.21)

The high dopant concentration allows for much thinner absorption layers than in
a conventional photoconductivity detector, making it less susceptible to background
high-energy cosmic radiation. The recombination in the depletion layer is negligible.
Detector performance is modeled in [1547].

22.3 Photodiodes

22.3.1 Introduction

The principle of the photodiode is the interband absorption of light in the depletion
layer of a diode (or the i-zone of a pin-diode) and the subsequent separation of
electrons and holes by the electric field. There are opposite requirements for fast
detectors (thin depletion layer) and efficient detectors (complete light absorption,
sufficiently thick depletion layer). For this reason generally semiconductors with
high absorption coefficient are most suited (Fig. 22.13). In Fig. 22.14 the quantum
efficiency and detectivity D∗ of various semiconductor detectors are compared.

A diode can be operated without bias (photovoltaic mode) using the built-in field.
An improvement in the speed of a pn-diode is achieved with a reverse bias since it
increases the field strength in the depletion layer. However, the reverse bias is below
the breakdown voltage. Operation near breakdown is exploited in the avalanche
photodiode (APD). In the following we will discuss pn-, pin-, MS- (Schottky-),
MSM- and heterostructure-diodes and APDs.
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(a)

(b)

Fig. 22.13 Optical absorption coefficient of various semiconductor materials (as labeled) used for
photodetectors (a) in the UV, visible and near-infrared range (at room temperature) and (b) in the
mid-infrared spectral range at room temperature (solid lines) and at 77K (dashed lines). Based on
[1548]

22.3.2 pn Photodiodes

The most important figures of merit are the quantum efficiency, responsivity, noise
equivalent power (NEP) and the response speed.

If the depletion layer is hit by a photon fluxwith a generation rateG0 (i.e. electron–
hole pairs per unit volume per unit time) the photogenerated current is added to the
diffusion current. The photocurrent density jp (per unit area) is

jp = −e G0 Lp (22.22)
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(a)

(b)

Fig. 22.14 (a) Quantum efficiency of various photodetectors. The dashed lines depict lines of equal
responsivity (Rλ in A/W) as labeled on top of the panel. (b) Detectivity D∗ of various photocon-
ductors and photodiodes (PD). The lighter (darker) shaded area indicates the range unachievable
at 300K (77K) due to background radiation. Adapted from [500]
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Fig. 22.15 (a) Schematic dark and illuminated I–V -characteristics of a photodiode (for the case
jp = −2js). (b) Schematic representation of currents in a photodiode and equivalent circuit. Part
(b) adapted from [1549]

for a p+n-diode. In order to obtain this result the diffusion and continuity equations
have to be solved for the depletion region.6 Equation (22.22) means that the dark I–V
characteristic is shifted by jp as shown in Fig. 22.15a. The number of electron–hole
pairs that are generated per photon of energy hν by the absorption of the (monochro-
matic) light power Popt is

6This derivation is done in Sect. 22.3.3. Equation (22.22) is obtained from (22.33) for vanishing
thickness w and αLp 
 1.
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η = Iph/e

Popt/(hν)
, (22.23)

where Iph = Ajph is the photogenerated current over the surface A. The responsivity
Rλ of the photodiode (for monochromatic radiation) is defined as

Rλ = Iph
Popt

= e

hν
η ≈ λ

1.24µm
η. (22.24)

For amodulated light intensityPopt must be replaced bymPopt/
√
2. The equivalent

circuit including noise sources for a photodiode is shown in Fig.22.15b.
Random processes lead to shot noise 〈i2S〉 (Sect. J.3.3). Besides the photocurrent

Iph itself, the background radiation (IB, in particular for infrared detectors) and the
thermal generation (dark current, ID) of carriers contribute:

〈i2S〉 = 2 e
(
Iph + IB + ID

)
B, (22.25)

withB being the bandwidth. Additionally, the parallel resistances cause thermal noise

〈i2T〉 = 4 kT B/Req. (22.26)

The resistance Req is given by the resistance of the depletion layer (junction) Rj,
the load RL and the input of the amplifier Ri as R−1

eq = R−1
j + R−1

L + R−1
i . The series

resistance Rs of the photodiode can be usually ignored in this context.
For a fully modulated signal the signal-to-noise ratio of the photodiode is given by

S/N = i2ph
〈i2S〉 + 〈i2T〉

=
(
e η Popt/hν

)2
/2

2e
(
Iph + IB + ID

)
B + 4 kT B/Req

. (22.27)

Therefore the NEP is given by

NEP = 2 hν B

η

[
1 +

√
1 + Ieq

e B

]
. (22.28)

The current Ieq is given by Ieq = IB + ID + 2kT/(eReq). If Ieq/eB 
 1, the NEP is
determined by the shot noise of the signal itself. In the other limit Ieq/eB � 1 the
detection is limited by the background radiation or thermal noise. In this case, the
NEP is (for B = 1Hz, in Wcm2Hz1/2)

NEP = √
2

hν

η

√
Ieq
e

. (22.29)
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Fig. 22.16 NEP as a
function of the resistance Req
for a Si photodiode. From
[1549]
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In Fig. 22.16 the situation is shown for a silicon photodiode as a function of
Req. The diode has a quantum efficiency of 75% at λ = 0.77µm. A high value of
Req ∼ 1G� is necessary to ensure detection limited by dark current.

22.3.3 Pin Photodiodes

The depletion layer in pn-diodes is relatively thin such that the incident light is not
completely absorbed. An almost complete absorption of light can be achieved by
using a thick intrinsic absorption layer. The field in the intrinsic region is constant
or slowly varying linearly (Fig. 21.70). The generation rate per unit area decreases
exponentially following the Lambert–Beer law (9.16) as shown in Fig. 22.17c:

G(x) = G0 exp(−α x). (22.30)

The initial generation rate G0 = Φ0α is given by the incident photon flux per unit
area Φ0 and the reflectance of the surface R as Φ0 = Popt(1 − R)/(Ahν).

The drift current in the i-region collects all those carriers (if recombination in the
depletion layer is neglected). The electron drift current is given by

jdr = −e
∫ w

0
G(x) dx = e Φ0

[
1 − exp(−α w)

]
, (22.31)

with w being the thickness of the depletion layer that is approximately the same as
the thickness of the i-region. In the bulk (neutral) region (x > w) the minority-carrier
density is determined by drift and diffusion7 (10.76). The diffusion current density

7At the edge of the depletion layer, x = w, all photo-generated carriers are transported away
instantly, thus the excess carrier density from photo-generated carriers is zero there and (10.76)
applies.

http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_9
http://dx.doi.org/10.1007/978-3-319-23880-7_10
http://dx.doi.org/10.1007/978-3-319-23880-7_10
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Fig. 22.17 (a) Schematic
cross section of pin-diode,
(b) profile of carrier
generation due to light
absorption and (c) schematic
band structure under reverse
bias. The generation of three
electron-hole pairs is shown;
subsequent drift (diffusive)
transport is indicated with
solid (dashed) arrows

(a)

(b)

(c)

at x = w is thus given by

jdiff = e Φ0 exp(−α w)
α Lp

1 + α Lp
+ e pn0

Dp

Lp
. (22.32)

The first term is due to the diffusion current of photo-generated carriers (10.76),
the second term due to thermally generated carriers (21.129). The total current
jtot = jdiff + jdr is given by

jtot = e Φ0

[
1 − exp(−α w)

1 + α Lp

]
+ e pn0

Dp

Lp
. (22.33)

The first term is due to the photocurrent, the second term is due to the diffusion
current known from the p+n-diode. In normal operation, the second can be neglected
compared to the first. The quantum efficiency is

η = jtot/e

Popt/hν
= (1 − R)

[
1 − exp(−α w)

1 + α Lp

]
. (22.34)

For a high quantum efficiency, of course low reflectance and high absorption coeffi-
cient, i.e. αw � 1, are necessary.

However, for w � 1/α the transit time through the depletion layer tr ≈ w/vs
(at sufficiently high field, vs being the drift-saturation velocity) increases too much.
The 3dB cutoff frequency f3 dB (Fig. 22.18) is

f3 dB ∼= 2.4

2π tr
∼= 0.4 vs

w
. (22.35)

http://dx.doi.org/10.1007/978-3-319-23880-7_10
http://dx.doi.org/10.1007/978-3-319-23880-7_21
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Fig. 22.18 Quantum
efficiency and 3dB cutoff
frequency of a Si pin-diode
at T = 300K for various
wavelengths of input
radiation. Adapted from
[1549]

Therefore a tradeoff exists between the quantum efficiency and the response speed
of the pin-photodiode (Fig. 22.18). Choosing w ∼= 1/α is a good compromise.

22.3.4 Position-Sensing Detector

In a position-sensing detector (PSD) two electrodes are placed at opposite edges of a
photodetector. The current output depends linearly on the beam position in between
the electrodes, similar to a voltage divider. If two pairs of electrodes, one on the
front and one on the back of the detector, are fabricated in orthogonal directions
(Fig. 22.19a), the beam position can be measured in both x and y directions.

22.3.5 MSM Photodiodes

AMSM photodiode consists of a piece of semiconductor between two Schottky con-
tacts (MS contacts). These are typically arranged laterally (as shown in Fig. 22.24b)
but will first be considered at the front and back of the semiconductor [1551]. The
band structure in thermodynamic equilibrium is shown in Fig. 22.20.

In the general case two different metals with two different barriers φn1, φn2 and
built-in voltageVD1,VD2 are considered. If a voltage is applied across theMSMdiode,
one of the junctions is biased in the forward, the other in the reverse direction. We
assume in Fig. 22.21 that the voltage biases the first contact in the reverse direction,
i.e. the ‘+’ pole is on the left contact. The applied voltage V is split between the two
contacts, the larger voltage will drop at the reverse-biased contact (here: V1 > V2)
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Fig. 22.19 (a) Scheme of two-dimensional position-sensing detector (PSD), (b) image of PSD.
From [1550]

Fig. 22.20 Band diagram of
a MSM structure with an
n-type semiconductor in
thermal equilibrium. In the
general case, two different
metals cause two different
Schottky barrier heights and
related depletion layer
widths. Adapted from [1551]

V = V1 + V2. (22.36)

The electron current arises from thermionic emission at contact 2. Due to current
continuity (without recombination since we inject majority charge carriers) this is
also the current through contact 1, i.e.

jn1 = jn2. (22.37)
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Fig. 22.21 (a) Band
diagram for a MSM structure
under bias (V < VRT), (b)
electric field distribution.
Adapted from [1551]

(a)

(b)

The reverse current at contact 1 is

jn1 = A∗
n T 2 exp (−βφn1) exp (βΔφn1)

[
1 − exp (−βV1)

]
, (22.38)

where Δφn1 is the barrier reduction due to the Schottky effect (Sects. 21.2.3
and (21.27)). The forward current at contact 2 is

jn2 = −A∗
n T 2 exp (−βφn2) exp (βΔφn2)

[
1 − exp (βV2)

]
. (22.39)

For a symmetric structure, i.e. φn1 = φn2 and VD1 = VD2 = VD, (22.37)–(22.39)
yield together with (21.27)

(
e3 ND

8π2 ε3s

)1/4 [
(VD + V1)

1/4 − (VD − V2)
1/4

] = 1

β
ln

[
exp (βV2) − 1

1 − exp (−βV1)

]
.

(22.40)

Together with (22.36) a numerical or graphical solution can be found. Initially
(for small voltages) the injected hole current (from contact 2) is much smaller than
the electron current and diffusion occurs in the neutral region.

The reach-through voltage VRT is reached when the width of the neutral region
is reduced to zero (Fig. 22.22a). At the juncture of the two depletion regions inside
the semiconductor material the electric field is zero and changes sign. For a larger
voltage VFB flat-band conditions are present at contact 2, i.e. the electric field is zero
at contact 2 (Fig. 22.22b). At even larger voltage VB breakdown occurs.

http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_21
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(a) (b) (c)

Fig. 22.22 Band diagram (upper parts) and electric field distribution (lower parts) in aMSMdiode
for various bias conditions: (a) at reach-through voltage VRT, (b) at flat-band voltage VFB and (c)
for V > VFB. Adapted from [1551]

At V = VRT we have

w1 =
[
2 εs

e ND
(V1 + VD1)

]1/2

(22.41a)

w2 =
[
2 εs

e ND
(VD2 − V2)

]1/2

(22.41b)

L = w1 + w2, (22.41c)

and therefore (with (22.36))

VRT = e ND

2 εs
L2 − L

[
2 e ND

εs
(VD2 − V2)

]
− ΔVD, (22.42)

with ΔVD = (VD1 − VD2), vanishing for a symmetric MSM structure. At and after
reach-through the electric field varies linearly from 0 to L within the semiconductor.
The point of zero electric field shifts towards contact 2. At the flat-band voltage this
point has reached the contact 2 and the width of the depletion layer at contact 2 is
zero. This condition leads (as long as no breakdown occurred) to

VFB = e ND

2 εs
L2 − ΔVD. (22.43)
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The maximum electric field is at contact 1 and is given (for V > VFB) by

Em1 = V + VFB + 2ΔVD

L
. (22.44)

If in a part of the structure the critical field EB for impact ionization is reached
(this will be at contact 1, since the field is highest there), the diode breaks down.
Therefore the breakdown voltage is given by

VB ≈ EB L − VFB − 2ΔVD. (22.45)

The current–voltage characteristic for a Si-MSM structure is shown in Fig. 22.23.
At small voltages only small currents flow since one contact is in reverse bias. The
hole current is much smaller than the electron current. Only those holes that diffuse
through the neutral region contribute to the hole current. After reach-through the
barrier φp2 + VD2 − V2 for hole injection is strongly reduced that leads to strong
hole injection. Beyond the flat-band voltage the hole current increases only weakly
since a lowering of the barrier occurs only via the Schottky effect. For high fields
(V > VFB, before breakdown) the hole current is

jp1 = A∗
p T 2 exp

(−βφp2
)
exp

(
βΔφp2

) = jp,s exp
(
βΔφp2

)
, (22.46)
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Fig. 22.23 Current–voltage characteristics of a Si MSM structure, ND = 4 × 1014 cm−3,
L = 12µm (thin, polished, 〈111〉-oriented wafer), T = 300K. (a) Theory for two different values
of φp2 , (b) experiment (for φp2 = 0.2V). Adapted from [1551]
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and the total current is

j = jn,s exp (βΔφn1) + jp,s exp
(
βΔφp2

)
, (22.47)

with jn,s = A∗
n T 2 exp (−βφn1) and jp,s = A∗

p T 2 exp
(−βφp2

)
.

In a MSM photodetector the metal contacts are typically formed in an interdigi-
tated structure on the semiconductor surface (Fig. 22.24). These contacts shield some
of the active area from photons. An increase in quantum efficiency can be achieved
with transparent contacts (e.g. ZnO or ITO) and an antireflection (AR) coating.

The dark current is given by (22.47) and is minimal when electron and hole
saturation currents are identical. This conditions leads to the optimal barrier height

φn = Eg − φph = 1

2
β−1 ln

(
me

mhh

)
+ 1

2
Eg (22.48)

close to middle of the band gap. For InP and optimal barrier φn = 0.645eV a dark
current of 0.36pA/cm2 is expected for a field of 10V/µm. For deviating barrier
height the current increases exponentially. The current–voltage characteristic of an
InGaAs:Fe MSM photodetector is shown in Fig. 22.25 for a dark environment and
various illumination levels.

The time-dependent response of a MSM photodetector depends on the drift time
of the carriers, i.e. the time that a created electron and hole need to arrive at their
respective contacts. In Fig. 22.26 a simulation is shown for a MSM detector. The
current has two components, a fast one due to the electrons and a slow one due

(b) +V +V- V

+-

(a)

InP:Fe substrate

InGaAs:Fe
active layer

(c) (d)

Fig. 22.24 Scheme of MSM photodetector with interdigital contacts in (a) plan view and (b) cross
section. In part (b), the electric field lines are shown schematically together with an electron–hole
pair ready to be separated. (c) Scheme of a MSMmesa structure, (d) SEM image of an InGaAs/InP
MSM mesa photodetector. Parts (c) and (d) adapted from [1552]
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Fig. 22.25 dc I–V
characteristic of an
InGaAs/InP MSM
photodetector
(InP:Fe/InGaAs:Fe/InP:Fe,
finger separation 1µm,
λ = 1.3µm) under
illumination for dark
environment (0µW) and
various illumination levels as
labeled. Adapted from
[1552]

Fig. 22.26 Simulation of the
time-dependent response of
an InGaAs:Fe MSM
photodetector to a short light
pulse. Adapted from [1552]

to the holes that have the lower mobility and smaller drift saturation velocity. A
similar dependence is found in experiment (Fig. 22.27a). For longer wavelengths the
detector is slower since they penetrate deeper into the material and thus the charge
carriers have a longer path to the contacts (cf. scheme in Fig. 22.24b). An important
role is played by the finger separation; smaller finger separation ensures a more rapid
carrier collection (Fig. 22.27b). In [1553] a bandwidth of 300GHz was demonstrated
for 100nm/100nm finger width and separation for LT-GaAs8 and bulk GaAs, limited
by the RC time constant. For 300nm/300nm fingers and a LT-GaAs a bandwidth of
510GHz (pulsewidth of 0.87ps)was reported, which is faster than the intrinsic transit
time (1.1ps) and not limited by the RC time constant (expected pulse width 0.52ps),
due to the recombination time (estimated to be 0.2ps).

22.3.6 Avalanche Photodiodes

In an avalanche photodiode (APD) intrinsic amplification due to carrier multiplica-
tion (through impact ionization) in a region with high electric field is used to increase
the photocurrent. The field is generated by a high reverse bias in the diode. In an ideal

8LT: grown at low temperature, i.e. containing many defects that reduce the carrier lifetime.
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Fig. 22.27 (a) Experimental
time-dependent response of
an InGaAs:Fe MSM
photodetector to a short light
pulse for three different
wavelengths, inset shows the
frequency response from a
Fourier transform. (b)
Response of the MSM for
two different finger widths
and separations (both 1 or
2µm, respectively), InGaAs
layer thickness 2µm,
λ = 1.3µm and bias voltage
10V. Adapted from [1552]

(a)

(b)

APD only one type of carrier is multiplied, resulting in the lowest noise. If electrons
are injected into the field region at x = 0 (Fig. 22.28a), the multiplication factor for
electrons is

Mn = exp(αn w), (22.49)

for αp = 0. Typically, both carrier types suffer multiplication. If the electron and
hole impact ionization coefficients are the same (αn = αp = α), the multiplication
factor for electrons and holes M is given by

M = 1

1 − α w
. (22.50)

The rms value of the current noise is the same as in the case of the pn-diode
(22.25), only that now the gain M is added

〈i2S〉 = 2 e
(
Iph + IB + ID

) 〈M2〉 B. (22.51)

The term 〈M2〉 is written as 〈M〉2 F(M) with F(M) = 〈M2〉/〈M〉2 being the excess
noise factor that describes the additional noise introduced by the random nature of
the impact ionization. For multiplication started with electron injection, it is given
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Fig. 22.28 Schematic band structure (a) and schematic device setup (b) of an avalanche photodiode
(APD). From [1047]
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Fig. 22.29 (a) Excess noise factor for various values of the ratio of ionization coefficients k or k′.
Adapted from [1554]. (b) Experimental results for F for a Si APD with 0.1µA primary current.
The empty (full) symbols are for short (long) wavelengths [primary hole (electron) current]. The
inset shows the schematic band diagram of the np-diode under reverse bias. Adapted from [1555]

by [1554]

F(M) = k M + (1 − k)

(
2 − 1

M

)
, (22.52)

with k = αp/αn. For hole injection starting the multiplication (22.52) holds with k
substituted by k′ = αn/αp. In Fig. 22.29a the excess noise factor is shown versus the
average multiplication for various values of k and k′.

Experimental data are shown in Fig. 22.29b for a Si APD. For short wavelengths
absorption is preferential at the surface (n-region) and we have the case of hole
injection. The data for the excess noise factor are fairly well fit with k′ ≈ 5. For
longer wavelengths, the data for electron injection are fit by k ≈ 0.2 = 1/k′.
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For a fully modulated signal the signal-to-noise ratio is given by

S/N = (e η Popt/hν)2/2

2 e
(
Iph + IB + ID

)
F(M) B + 4 kT B/(Req M2)

. (22.53)

If S/N is limited by thermal noise, the APD concept leads to a drastic improvement
of noise.

The APD can used for single photon detection; then the variation in pulse height
(with reasonable limits) plays no role for the count rate. The number of dark counts
can be reduced by cooling the APD. Using constant fraction triggering, also the
arrival time of the photon can be determined, allowing time resolution typically in
the 100ps regime.

A particular APD structure is known as a solid-state multiplier. It has separate
absorption and amplification regions (SAM structure). In the low-field region the
light is absorbed. One type of carrier is transported with the drift field Ed to the
multiplication region in which a large field Em is present and multiplication occurs.
In Fig. 22.30a a homo-APD with SAM structure is shown. Regions with different
electric field are created by a special doping profile.9 A π-p-π structure leads to
regions with homogeneous low and high field strengths.

The performance of a commercial silicon APD is depicted in Fig. 22.31. With
increasing reverse bias, both the dark current and the multiplication factor increase.
Before breakdown at about 77V, the best ratio of M and Idark is found. This particular
diode has a typical excess noise factor of F = 2 for M = 100. Using (22.52), this
shows that only one kind of carriers is multiplied.

In the case of a heterostructure-APDwith SAM structure (Fig. 22.30b) absorption
(of light with sufficiently long wavelength with an energy smaller the InP band gap)
takes place only in the InGaAs layer. Since no light is absorbed in the multiplication
region, the device functions similarly for front and back illumination. In [1557] a
multi-stage InGaAs-based APD on InP is described that is optimized for electron
multiplication in ten subsequent gain sections; a total gain of 103 is achieved with
an excess noise factor F of about 40, belonging to an effective ionization ratio of
k = 0.036.

22.3.7 Traveling-Wave Photodetectors

In a standard photodetector there was a tradeoff between the thickness of the absorp-
tion layer and the speed of the detector. In a traveling-wave photodetector the light
absorption occurs in a waveguide such that for sufficient length L all incident light
is absorbed. Complete absorption is achieved (‘long’ waveguide) if L � (Γ α)−1,
α being the absorption coefficient and Γ ≤ 1 being the optical confinement factor,

9Employing Poisson’s equation ∂(εs(x)E(x))/∂x = ρ(x).
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Fig. 22.30 (a) Homo-APD with SAM structure. (i) doping profile, (ii) electric field, (iii) photon
flux or electron–hole pair generation rate and (iv) schematic band diagram under reverse voltage
Vr with charge-carrier transport. The multiplication is for αn � αp. Adapted from [500]. (b) (i)
Scheme of an InP/InGaAs hetero-APD with SAM structure, (ii) doping profile and (iii) electric
field for small (dashed line) and large (solid line) reverse bias Vr . Adapted from [1047]

the geometrical overlap of the optical mode with the cross section of the absorbing
medium (cf. also Sect. 23.4.4).

The electrical connections are designed along this waveguide on the sides (copla-
nar layout, Fig. 22.32). The bandwidth limitation due to a RC time constant is now
replaced by the velocity match of the light wave vopt = c/n and the traveling elec-
tric wave in the contact lines vel ≈ 1/

√
LC. While the two waves travel along the

waveguide, energy is transferred from the light wave to the electric wave. The 3dB

http://dx.doi.org/10.1007/978-3-319-23880-7_23
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Fig. 22.32 Scheme of a
traveling-wave photodetector
with pin structure and
coplanar contacts

bandwidth due to velocitymismatchBvm (for impedance-matched, longwaveguides)
is given by [1558]

Bvm = Γ α

2π

vopt vel
vopt − vel

. (22.54)

For a MSM structure, whose electrode separation has been designed with a self-
aligned process (without extensive effort in lateral patterning) by an etch depth of a
few100nm (Fig. 22.33), 3dB cutoff frequencies beyond 500GHzhave been achieved
(Fig. 22.34). The quantum efficiency of this detector was still 8.1%.
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(a) (b)

Fig. 22.33 Scheme of a MSM traveling-wave photodetector in (a) cross section and (b) plan view.
Adapted from [1559]

(a)(a) (b)

Fig. 22.34 (a) Pulse response (FWHM = 0.8ps) and (b) frequency response (Fourier transform of
time response) of a MSM traveling-wave photodetector (bias 5V) for various illumination intensi-
ties, A: 1mW, B: 2.2mW. Adapted from [1559]

22.3.8 Charge Coupled Devices

The concept of the charge coupled device (CCD), an array of connected photodetec-
tors serving as an image sensor, was devised by W.S. Boyle and G.E. Smith [1560]
(Fig. 22.35) and realized [1561]. As textbook for further details [1562, 1563] may
serve.

A MIS diode (mostly a silicon-based MOS diode) can be designed as a light
detector. The diode is operated in deep depletion. When a large reverse voltage
is applied, initially a depletion layer is formed and the bands are strongly bent as
shown in Fig. 22.36b. We note that in this situation the semiconductor is not in
thermodynamic equilibrium (as it is in Fig. 22.36d) when the quasi-Fermi level is
constant throughout the semiconductor. The inversion charge has yet to build up.
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Fig. 22.35 First 8-bit charge
coupled device (1970). The
chip (size: 1.5 × 2.5mm2)
consists of 24 closely packed
MOS capacitors (narrow
rectangles in the center grid).
The thick rectangles at either
end of the grid are
input/output terminals

There are three mechanisms to generate the inversion charge. (a) generation–
recombination, (b) diffusion from the depletion-layer boundary and (c) carrier gen-
eration by light absorption. Mechanisms (a) and (b) represent dark currents for the
photodetector. The conductivity due to these two processes is shown in Fig. 22.37
and slowly builds up the inversion charge. Two temperature regimes are obvious; at
low temperatures the generation dominates (∝ ni ∝ exp

(−Eg/2kT
)
), at high tem-

peratures the diffusion (∝ n2
i ∝ exp

(−Eg/kT
)
). The latter process can be strongly

suppressed by cooling the device.
The gate voltage VG and the surface potential Ψs are related to each other via

VG − VFB = Vi + Ψs = e NA w

Ci
+ eNAw2

2εs
, (22.55)

wherew is thewidth of the depletion layer.wwill be larger thanwm in thermodynamic
equilibrium. The first term in the sum is |Qs|/Ci and the second is obtained by
integrating the Poisson equation for the constant charge density −eNA across the
depletion layer. The elimination of w yields

VG − VFB = Ψs + 1

Ci

√
2eεsNAΨs. (22.56)

If light is absorbed in the depletion layer (process (c)), the hole (for p-Si) drifts
towards the bulk material. The electron is stored as part of the signal charge Qsig

close to the oxide semiconductor interface (Fig. 22.36b).

VG − VFB = Qsig

Ci
+ eNAw

Ci
+ Ψs. (22.57)
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Fig. 22.36 Ideal MIS-diode
(with p-type semiconductor)
as photodetector (principle
of a CCD pixel). (a) Without
bias (see Fig. 21.29b).
(b) Immediately after an
external (reversely poled)
voltage V > 0 has been
applied, the surface potential
is Ψs = V and no charges
have moved yet. (c) Strong
depletion (still not in
thermodynamic equilibrium)
with signal charge and
reduced surface potential
Ψs < V . (d) The
semiconductor in
equilibrium (EF is constant)
with depletion and inversion
layer (see Fig. 21.33). For all
diagrams, V = V − i + Ψs
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Fig. 22.37 Conductivity of
a n-Si/SiO2-diode as a
function of temperature
(1/T ). The slope of the
dashed lines is (a) ∼0.56eV
(≈Eg/2) and (b) ∼1.17eV
(≈Eg). Adapted from [1564]
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Fig. 22.38 Surface potential
as a function of the signal
charge Qsig for various
values of the bias VG − VFB
as labeled for a SiO2/p-Si
diode with NA = 1015 cm−3

and an oxide thickness of
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As a consequence of the increase in signal charge the potential well becomes
shallower (22.57). For each gate voltage there is a maximum charge (well capacity).
The maximum signal charge is reached for Ψs ≈ 2ΨB (Fig. 22.38).

In a charge coupled device (CCD) many light-sensitive MIS diodes, as described
above, are fabricated in matrix form to create an image sensor. Upon application of
a gate voltage they accumulate charge depending on the local exposure to light. The
read out of this charge occurs by shifting the charge through the array to a read-out
circuit. Therefore charge is transferred from one pixel to the next. Several schemes
have been developed for this task. The three-phase clocking is shown schematically
in Fig. 22.39. Other clocking schemes involve four, two or only one electrode per
pixel [1566].
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Fig. 22.39 (a) Three-phase CCD. Each pixel has three electrodes that can be switched indepen-
dently (phases 1–3). (b, e, f) Schematic of CCDs with four, two or one phase, respectively. (c) (t1)
Charge accumulated after light exposure. A lateral potential well is formed along the row of pixels
by the voltages at the three electrodes, e.g. P1 = P3 = 5V, P2 = 10,V. (t2–t7) transfer of charge,
(t7) has the same voltages as (t1), the charge has been moved one pixel to the right. (d, g, h) Timing
schemes for 4-, 2- and 1-phase CCDs, respectively. From [1566]
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Fig. 22.40 (a) Efficiency of charge transfer with (solid line) and without (dashed line) the effect
of the fringing field. (b) Schematic plot of the CCD electrodes and bias with the fringing field for
a three-electrode CCD, oxide thickness 200nm, doping ND = 1015 cm−3. The electrode pitch is
4µm and the gap between electrodes is 200nm wide. Adapted from [1567]

Since the CCD sensor has many pixels (e.g. up to 4096) along a line, the charge
transfer must be highly efficient. The transfer of charge carriers occurs via thermal
(regular) diffusion, self-induced drift and the effect of the fringing field (inset of
Fig. 22.40). The time constant with which the charge carriers move due to diffusion
(in a p-type semiconductor) is

τth = 4 L2

π2 Dn
, (22.58)

where L is the length of the electrode. For a sufficiently large charge packet the self-
induced drift due to Coulomb repulsion is important. The decay of charge is then
given by

Q(t)

Q(0)
= t0

t + t0
, (22.59)

with t0 = πL3WeCi/(2μnQ(0)). We is the width of the electrode. This dependence
is shown as a dashed line in Fig. 22.40a. The last electrons are efficiently transferred
by the drift induced by the fringing field of the electrodes (solid line in Fig. 22.40a).
The origin of the fringing field is schematically shown in Fig.22.40b; the minimum
fringing field shown is 2×103 V/cm. In about 1–2ns practically all (1−10−5) charges
are transferred. This enables clock rates of several 10MHz.

For the clocking of theCCD the lateral variation of potential depthwith the applied
gate voltage is used. In Fig. 22.41 it is shown how a lateral variation of doping or
oxide thickness creates a lateral potential well. Such structures are used to confine
the row of pixels against the neighboring rows (channel stops, Fig. 22.42). In order
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Fig. 22.41 Creation of a lateral potential well (barrier) in a MIS structure with (a) varying doping
via diffusion or implantation and (b) varying (stepped) oxide thickness.Upper row shows schematic
geometry, lower row depicts schematic lateral variation of the surface potential
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Fig. 22.42 (a) Schematic image of channel isolation. Cross section for channel isolation by (b)
variation of oxide thickness, (c) highly doped region and (d) field effect. Adapted from [1568]

to avoid carrier loss at the interface between the oxide and the semiconductor a
buried-channel structure is used (Fig. 22.43).

For front illumination parts of the contact electrodes shield the active area of the
device. Higher sensitivity (in particular in the UV) is achieved for back illumination.
For this purpose the chip is thinned (polished). This process is expensive and makes
the chipmechanically less stable. For red/infrared wavelengths typically interference
fringes occur for such thinned chips due to the small thickness. An increase in effi-
ciency for front illumination can be achieved with an onchip microlens (Fig. 22.44).

For color imaging the CCD is covered with a three-color Bayer mask [1571]
(Fig. 22.45a). On average there are one blue and one red pixel and two green pix-
els since green is the most prominent color in typical lighting situations. Thus
each pixel delivers monochromatic information; RGB images are generated using
suitable image software. Alternatives in high-end products are the use of a beam
splitter, static color filters and three CCD chips, one for each color (Fig.22.45b),
or the time-sequential recording of three monochromatic images using one CCD
chip and a rotating color-filter wheel (Fig. 22.45c). Another method is to shift
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Fig. 22.43 (a) Schematic layers of MIS diode with buried-channel structure. Band diagram
(b) after application of reverse voltage VG and (c) with signal charge Qsig. Adapted from [1569]

(a)

(b)

Fig. 22.44 (a) Scheme for enhancement of CCD efficiency for front illumination by application
of an onchip microlens. (b) SEM image of an array of such microlenses. From [1570]

(by piezoelectric actors) the CCD by half or full pixels and take sequential exposures,
increasing spatial and color resolution for still objects.

22.3.9 Photodiode Arrays

Anarray of photodiodes is also suitable to create an image sensor.During illumination
each diode charges a capacitor that is read out with suitable electronics. Based on
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Fig. 22.45 (a) Arrangement of colors in a CCD Bayer [1571] color filter (‘R’: red, ‘G’: green, ‘B’:
blue). Color splitting with (b) static color filters and (c) rotating color wheel. Parts (b) and (c) from
[1566]

Fig. 22.46 (a) CMOS linear array sensor in a 8-pin package. (b) Block diagram, the built-in timing
generator allows operation only with start and clock pulse inputs. Reprinted with permission from
[1572]

CMOS technology (cf. Sect. 24.5.4) cheap image sensors can be made that show
currently, however, inferior performance to CCDs. The built-in electronics allows
simple outward connections (Fig. 22.46).

The three-color CCD image sensor did not offer RGB color information at each
pixel. Therefore the spatial resolution of a color image is not directly given by the
pixel distance. This is not a very dramatic drawback since human vision is more sen-
sitive to intensity contrast than color contrast. However, RGB color information for
each pixel would be desirable, giving higher resolution, in particular in professional
photography. Such a sensor has been fabricated employing the wavelength depen-
dence of the silicon absorption coefficient (Fig. 22.13). Blue light has the shortest
and red light the largest penetration depth. By stacking three photodiodes on top of
each other (Fig. 22.47) photocurrents at different penetration depth are recorded that
can be used to generate a RGB value for each pixel.

In Fig. 22.48a a 16-channel array of silicon avalanche photodiodes is shown. It
features a quantum efficiency of >80% between 760 and 910nm. The pixel size is
648 × 208µm2 on a 320µm pitch. The gain is 100 and the rise time 2ns.

The InGaAs photodiode array in Fig. 22.48b is hybridized with CMOS read-out
integrated circuits. It is useful for detection in the spectral range 0.8–1.7µm. The

http://dx.doi.org/10.1007/978-3-319-23880-7_24
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Fig. 22.47 (a) Scheme of image sensor with depth-dependent light detection. From [1573]. (b)
Schematic layer sequence for three-color pixel. ib, ig and ir denote the photocurrents for blue, green
and red light, respectively. Adapted from [1574]

Fig. 22.48 (a) Array of 16 silicon APDs. From [1575]. (b) 1024-pixel InGaAs photodiode array.
From [1576]

asymmetric diode size of 25 × 500µm is designed for use in the focal plane of a
monochromator.

Another special type of photodiode array is the four-quadrant detector. A light
beam generates four photocurrents Ia, Ib, Ic, Id of the respective parts (Fig. 22.49a).
A beam deviation in the horizontal or vertical direction can be detected from the
(signed) signals (Ia + Id) − (Ib + Ic) or (Ia + Ib) − (Ic + Id), respectively. We note
that these signals can also be normalized to the total beam intensity Ia + Ib + Ic + Id.

22.4 Solar Cells

Solar cells are light detectors, mostly photodiodes, that are optimized for the (large-
area) conversion of solar radiation (light) into electrical energy. A 1993 review of
the historic development of photovoltaics is given in [1578]. The latest data on solar
cell efficiencies are compiled in the Solar Cell Efficiency Tables [1579].
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cd
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Fig. 22.49 (a) Scheme of four-quadrant photodetector with sections ‘a’, ‘b’, ‘c’ and ‘d’, (b) image
of four-quadrant silicon photodetector with circuit board. Part (b) from [1577]

22.4.1 Solar Radiation

The sun has three major zones, the core with a temperature of 1.56 × 107 K and
a density of 100g/cm3 in which 40% of the mass is concentrated and 90% of the
energy is generated, the convective zone with a temperature of 1.3 × 105 K and a
density of 0.07g/cm3, and the photosphere with a temperature of 5800K and low
density (∼ 10−8 g/cm3). The radius is 6.96 × 108m and is about 100 times larger
than that of the earth (6.38 × 106m). The distance sun–earth is 1.496 × 1011 m.
The angle under which the sun disk appears on earth is 0.54◦. An energy density of
1367 ±7W/m2 arrives at the earth in front of its atmosphere.

This value and the according spectrum of the sun’s emission, which is similar to
a blackbody with temperature 5800K (Fig. 22.50), is termed air mass zero (AM0).
The total energy that reaches the earth from the sun is 1.8 × 1017W per year. This
value is 104 times the world’s primary energy need.

Air mass zero (AM0) is important for solar cells in satellites. When the solar
spectrum passes the earth’s atmosphere, it is changed with regard to its shape and
the total energy density due to gas absorption (ozone, water, CO2, . . .). Depending
on the meridian of the sun γ (Fig. 22.51), the spectrum on the surface of the earth
is termed AMx with x = 1/ sin γ. In spring and fall (March 21st and September
21st), Leipzig (51◦42′N latitude) has about AM1.61. At the summer (June 21st) and
winter (December 21st) solstices the air mass in Leipzig is AM1.13 (γ = 61.8◦) and
AM3.91 (γ = 14.8◦), respectively. Additionally, the duration of sunshine and thus
the light power density is regionally different across the earth due to climate and
weather (Fig. 22.52). For AM1.5, the incident power density is 844 W/m2.

The global radiation reaching a photovoltaic cell has three components: (i) the
direct radiation, (ii) diffuse radiation and (iii) reflected radiation.The relative amounts



22.4 Solar Cells 709

Fig. 22.50 Solar spectra (power per area and wavelength interval) for AM0 (black line, extraterres-
trial irradiance) and AM1.5 (sun at 41.8◦ elevation above horizon) for direct normal irradiance (blue
line) and global total irradiance (red line) on a sun facing surface (tilted 37◦ towards the equator).
Left (right) graph in log–log (linear) scales

Fig. 22.51 Schematic path
of sunlight through the
atmosphere and definition of
the air mass AMx
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and their spectra depend on details such as the climate (e.g. humidity) or the envi-
ronment (e.g. outdoors vs. urban).

22.4.2 Ideal Solar Cells

When a solar cell made from a semiconductor with a band gap Eg is irradiated by
the sun, only photons with hν > Eg contribute to the photocurrent and the output
power. The I–V characteristic under illumination (Fig. 22.53) is given by

I = Is
[
exp (βV) − 1

] − IL, (22.60)

with IL being the current due to generation of excess carriers by the absorption of the
sunlight. Assuming a simple n+p-diode solar cell model, the current consists of two
components: the depletion layer current jDL from carriers absorbed in the depletion
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(a)

(b)

Fig. 22.52 Global sunshine distribution in (a) January and (b) July. The sunshine fraction is the
actual number of bright sunshine hours over the potential number, and is thus expressed as a
percentage figure. The color scale reaches from 0 to 100%. The sunshine data are in a 0.5 ◦ grid
based on data from [1580]

layer (field region) and the diffusion current jD from absorption in the neutral region
(j = I/A).

For the drift current out of the depletion layer of width w it can be assumed that
it is collected fast and recombination plays no role. Thus (cmp. (22.31))

jDL(λ) = e nph(λ) [1 − R(λ)] [1 − exp(−α(λ) w)], (22.61)

where λ is the wavelength of the incident radiation, R the reflectance of the surface,
α the absorption coefficient and nph(λ) the photon flux (number of photons per area
and time) at the given wavelength. For a solar spectrum, an integral needs to be
performed over the spectral distribution:

jDL =
∫

jDL(λ) dλ, (22.62)

the total photon flux being nph = ∫
nph(λ) dλ.
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The diffusion current collected at the back contact is obtained from solving (10.71)
(now for electrons in p-type material) with the appropriate boundary conditions
(reversely bias depletion layer, np(w) = 0, Δnp(∞) = np(∞) − np0 = 0 [1581]):

jD(λ) = e nph(λ) [1 − R(λ)] α Ln

1 + α Ln
exp(−α w) + e n0

Dn

Ln
, (22.63)

Dropping the wavelength dependence and neglecting the dark term, the usual
formula is obtained,

jL = e nph (1 − R)

[
1 − exp(−α w)

1 + α Ln

]
, (22.64)

The last bracket represents the quantumefficiency [1582]. Themodel can be extended
for taking into account a non-zero surface recombination velocity at the back contact
at finite distance [1583].

Here a voltage independent photo-generated current IL is assumed. If the diffu-
sion length is small compared to the transport path, the carrier collection efficiency
ηc becomes voltage dependent [1582]. The reduction of the diffusion potential for
forward voltage decreases the carrier collection efficiency [1584], possibly to zero
close to the built-in voltage.

The saturation current density is given by (21.128) and (21.129)

js = Is
A

= e NC NV

(
1

NA

√
Dn

τn
+ 1

ND

√
Dp

τp

)
exp

(
− Eg

kT

)
, (22.65)

with A being the cell area.
The voltage at I = 0 is termed the open-circuit voltage Voc, the current at V = 0

is termed the short-circuit current Isc = IL (Fig. 22.53). Only a part of the rectangle
Isc × Voc can be used for power conversion. By choice of the load resistance RL, the
work point is set. At Im and Vm, the generated power Pm = ImVm is maximal. The
filling factor F is defined as the ratio

F = Im Vm

Isc Voc
. (22.66)

The open-circuit voltage is given by

Voc = 1

β
ln

(
IL
Is

+ 1

)
∼= 1

β
ln

(
IL
Is

)
(22.67)

and increases with increasing light power and decreasing dark current. The output
power is

P = I V = Is V (exp (βV) − 1) − IL V . (22.68)

http://dx.doi.org/10.1007/978-3-319-23880-7_10
http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_21
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Fig. 22.53 Schematic I–V
characteristics of a solar cell
under illumination (left
scale) and extracted power
(right scale). The grey area
is the maximum power
rectangle with Pm = ImVm
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The condition dP/dV = 0 yields the optimal voltage at which the solar cell has
to be operated and is given by the implicit equation

Vm = 1

β
ln

(
IL/Is + 1

1 + βVm

)
= Voc − 1

β
ln (1 + βVm) . (22.69)

The current at maximum power is

Im = IL

(
1 − 1 − βVm Is/IL

1 + βVm

)
∼= IL

(
1 − 1

βVm

)
. (22.70)

Em is the energy that is delivered per photon at the load resistor at the power
maximum. The maximum power is Pm = ILEm/e and Em is given by

Em
∼= e

[
Voc − 1

β
ln (1 + βVm) − 1

β

]
. (22.71)

The ideal solar cell has a (power) conversion efficiency η = Pm/Pin that can be
determined from Fig. 22.54a.

The right curve (1) in Fig. 22.54a shows the integral number nph of photons in
the solar spectrum (per area and time) with an energy larger than a given one (Eg).
For a given value of nph, the left curve (2) represents the value of Em. The efficiency
is the ratio of Emnph and the area under curve (1). The efficiency as a function of
the band gap is shown in Fig. 22.55a. It has a fairly broad maximum such that many
semiconductors can be used for solar cells, in principle. The maximum theoretical
efficiency for a single junction is 31% for nonconcentrated sunlight (AM1.5). This
limit corresponds to the classic Shockley–Queisser limit [1586–1588], assuming
radiative recombination as the only charge-carrier recombination mechanism. In
[1589], the limit for a single material is found to be 43% for an optimally tailored
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Adapted from [500]
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band structure that allows carrier multiplication by optically excited hot carriers. The
solar cell as a heat engine is dicussed in [1590].

When the sunlight is concentrated, e.g. by a lens, the efficiency increases
(Fig. 22.55b). The short-circuit current increases linearly. The effect is mostly due
to the increase of the open-circuit voltage. For C = 1000, the maximum theoretical
efficiency for a single-junction solar cell is 38%.

A further increase of efficiency can be achieved with multiple junctions using
various materials for absorption. In a tandem cell (two junctions), the upper layer
absorbs the higher-energy photons in a wide band gap material. The material with
the lower band gap makes use of the low-energy photons. Thus, the cell works with
two different values of Em (Fig. 22.54b). With band gaps of 1.56 and 0.84eV, an
efficiency of 50% can be reached theoretically. With three materials 56%, and for a
large number of materials 72% is the limit. Between the junctions, tunneling diodes
(Sect. 21.5.9) must be used to allow carrier transport through the entire structure.
It is a nontrivial task to fabricate multiple heterojunctions due to incompatibilities
of the lattice constants. Besides heteroepitaxy, wafer bonding can also be used for
fabrication. A lattice-matched InGaP/GaAs/InGaAsN cell seems a viable solution
for high-efficiency solar cells.

22.4.3 Real Solar Cells

For a real solar cell, the effect of parallel resistance Rsh (shunt resistance due to
leakage current, e.g. by local shorts of the solar cell) and serial resistance Rs (due to
ohmic loss) must be considered. The I–V characteristic is then (cf. (21.154))

ln

(
I + IL

Is
− V − IRs

IsRsh
+ 1

)
= β (V − I Rs) . (22.72)

The serial resistance affects the efficiency more strongly than the shunt resis-
tance (Fig. 22.56). Therefore, it is frequently enough to consider Rs only and use
(cf. Fig. 21.153)

I = Is exp (β(V − I Rs)) − IL. (22.73)

In the example of Fig. 22.56, a serial resistance of 5� reduces the filling factor by a
factor of about four.

At open circuit voltage the photo-generated carriers have nowhere to go; in an ideal
solar cell, the only process is the radiative recombination and the photon escape. Cer-
tainly, the internal quantum efficiency should be high and the non-radiative recom-
bination rate small compared to the radiative one (cf. Sect. 10.10). The open circuit
voltage and thus the energy conversion efficiency depends also on the light extrac-
tion efficiencyχex which will be discussed in greater detail in the context of LEDs
(Sect. 23.3.3). Based on [1592, 1593], the open circuit voltage V ′

oc of a real solar cell
is reduced (χex ≤ 1) from the ideal value Voc given in (22.67),

http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_10
http://dx.doi.org/10.1007/978-3-319-23880-7_23
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Fig. 22.56 I–V
characteristics of a solar cell
considering shunt and series
resistances Rs and Rsh,
respectively. The efficiency
of the real cell (shaded
power rectangle) is less than
30% of that of the ideal cell.
Adapted from [1591]
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Fig. 22.57 Increase of the
carrier collection efficiency
by a back surface field.
Adapted from [1594]
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22.4.4 Design Refinements

In order to collect electrons most efficiently, a back surface field is used (Fig.22.57).
A higher-doped region at the back contact creates a potential barrier and reflects
electrons back to the front contact.

An important point for optimization is the management of the reflection at the
solar cell surface. First, a dielectric antireflection (AR) layer (or multi-layers) can
be used. These layers should have a broad AR spectrum. Additionally, a textured
surface reduces reflection (Fig. 22.58d), giving reflected photons a second chance
for penetration (Fig. 22.58c). The reflectance of bare Si, 35%, can be reduced to
2%. An AM0 efficiency of over 15% was reached using textured multi-crystalline
cells. Alkaline KOH-based etches attack Si (001) anisotropically and yield pyrami-
dal structures (Fig. 22.58b) with {111} facets. Recently an acidic HF/HNO3-based
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Fig. 22.58 (a) SEM image of topology of acidically etchedmulti-crystalline siliconwafer. (b) SEM
image of alkaline etched mono-crystalline silicon wafer. (c) Exemplary light path. (d) Reflectance
of antireflection-coated flat (dashed line) and textured (solid line) surface). Parts (a) and (b) adapted
from [1596], part (d) adapted from [1597]

process has been established [1595], resulting in a worm-like surface pattern on
multi-crystalline silicon wafers (Fig. 22.58a) with superior anti-reflection properties.

During its course over the sky during the day, the sun changes its angle towards a
fixed solar cell.10 A tracking mechanism can optimize the angle of incidence during
the day and increase the overall efficiency of the solar cell (Fig. 22.59).

22.4.5 Modules

In order to cover a large area and supply certain values of output voltage and current,
several solar cells are connected into modules. Arrays are built up from several mod-
ules (Fig. 22.60). If solar cells are connected in parallel, the total current increases;
if they are connected in series, the output voltage increases. We note that in partially
shadowed modules the reverse characteristics of solar cells are important [1600,
1601]; local breakdown can lead to hot spots and irreversible degradation.

10We are of course aware that the earth rather rotates around the sun.
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Fig. 22.59 Annual average solar energy (in kWh/(m2 day)) for (a) an optimally tilted south-facing
fixed panel and (b) an optimally two-axis tracked panel (in mainland US). Adapted from [1598].
(c) Power generation of a solar cell versus time (in daytime hours) for a stationary setup facing the
sun at constant angle (solid line) and mounting with tracking (dashed line) to optimize the angle
towards the sun. Adapted from [1599]

Fig. 22.60 Schematic drawing of a solar cell (with contact grid), a module (36 cells) and an array
of ten modules
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22.4.6 Solar-Cell Types

First Generation Photovoltaics

Silicon is the most frequently used material for solar cells. Cells based on single-
crystalline silicon (wafers) have the highest efficiency but are the most expensive
(Fig. 22.62a). The efficiencies of various solar cells are compiled in Table22.1.
Polycrystalline (for large grains also called multi-crystalline) silicon (Fig. 22.62b) is
cheaper but offers less performance. Material design is oriented towards increasing
the grain size and/or reducing their electrical activity. Grain boundaries act as recom-
bination centers with a surface (i.e. interface) recombination velocity of 102 cm/s
[1602] for particular, electrically fairly inactive grain boundaries, several 103 cm/s
[1603], several 104 cm/s [1604] or even 105–107 cm/s [1605]. The grain boundaries
reduce the effective diffusion length and thus carriers recombine before they can
reach the contacts. A detailed theory of solar cell performance for polycrystalline
material has been worked out in [1604] and explains the reduction of efficiency with
decreasing grain size as shown in Fig. 22.61.

These solar cells are also called ‘first-generation’ photovoltaics. Thin sheets of
crystalline silicon drawn from a melt between two seed crystals in a modified CZ
growth (sheet silicon or ribbon silicon) allow cheaper production compared to cells
based on ‘traditional’ polished wafers cut from a large silicon rod. Silicon made
particularly for solar cell use is called ‘solar-grade’ silicon.

Second Generation Photovoltaics

Even cheaper are solar cells from amorphous silicon (Fig. 22.62c). Since silicon is
an indirect semiconductor, a fairly thick layer is needed for light absorption. If direct
band gap semiconductors are used, a thin layer (d ≈ 1µm) is sufficient for complete
light absorption. Such cells are called thin-film solar cells. A typical material class
used in this type of cell are chalcopyrites, such as CuInSe2 (CIS). The band gap
is around 1eV, which is not optimal. An improvement can be achieved by adding

Fig. 22.61 Theoretical
dependence of the effect of
grain size on efficiency of
polycrystalline solar cells
(solid line) with
experimental data points
(circles). Adapted from
[1604]
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Fig. 22.62 Various types of solar cells: (a) monocrystalline silicon solar cell, (b) polycrystalline
solar cell, (c) amorphous silicon solar cell. From [1700]

Table 22.1 Record efficiency of various solar cells (AM1.5, 1000W/cm2, 25◦ unless noted other-
wise)

Cell material/type Efficiency
(%)

Voc (V) jsc
(mA/cm2)

FF (%) Date m/y

Si (crystalline) 25.6 ± 0.5 0.740 41.8 82.7 2/2014

Si (polycrystalline) 20.8 ± 0.6 0.6626 39.03 80.3 11/2014

Si (amorphous) 10.2 ± 0.3 0.896 16.36 69.8 7/2014

GaAs (crystalline) 25.9 ± 0.8 1.038 29.4 84.7 12/2007

GaAs (thin film) 28.8 ± 0.9 1.122 29.68 86.5 5/2012

GaAs (polycrystalline) 18.4 ± 0.5 0.994 23.2 79.7 11/1995

2J (GaInP/GaAs) 30.3 2.488 14.22 85.6 4/1996

3J (GaInP/GaAs/Ge) 32.0 ± 1.5 2.622 14.4 85.0 1/2003

3J (GaInP/GaAs/InGaAs) 37.9 ± 1.2 3.065 14.27 86.7 2/2013

3J (conc., 240suns) 40.7 ± 2.4 2.911 3832 87.5 9/2006

4J (conc., 508suns) 46.0 ± 2.2 4.227 6498 85.1 10/2014

CIGS 20.5 ± 0.6 0.752 35.3 77.2 3/2014

CdTe 21.0 ± 0.4 0.876 30.25 79.4 8/2014

Dye sensitized 11.9 ± 0.4 0.793 19.4 71.4 9/2014

Organic (thin film) 11.0 ± 0.3 0.793 19.4 71.4 9/2014

Most data from [1579], additional data for 3J (conc.) [1606]
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Fig. 22.63 (a) Schematic cross section of a polycrystalline thin-film solar cell. (b) Rolled sheets
of CIS thin film solar cell on flexible Kapton foil. (c) SEM cross section of CIS thin-film solar cell.
Parts (b) and (c) reprinted with permission from [1611]

Ga and/or S which increases the band gap, Cu(In,Ga)(Se,S)2 (CIGS), to 1.2–1.6eV.
Using CIGS, an efficiency of over 19% has been reported in laboratory samples; 12–
13% seeming realistic for production [1607]. Also CdTe is a viable absorber mostly
sputtered on glass with over 16% efficiency demonstrated and 9–10% realistic in
production. Thin-film solar cells can be fabricated on glass substrate or on flexible
polymer substrate such as Kapton11 (Fig. 22.63a, b). Also here, optimization of the
grain size is important (Fig. 22.63b). As the front contact, a transparent conductive
oxide (TCO), such as ITO (InSnO2) or ZnO:Al, is used. If the front surface is given by
the glass substrate, as can be the case for CdTe/glass solar cells, the glass is actually
termed ‘superstrate’. Thin-film and amorphous silicon solar cells are also termed
‘second-generation’ photovoltaics. Also organic materials can be used for solar cells
[1608], promising low-cost production at acceptable performance, in 2004 2.5%
[1609] and in 2006 about 4% maximum efficiency [1610].

Third Generation Photovoltaics

‘Third-generation’ photovoltaics attempt to go beyond the 30% limit and comprise of
multi-junction solar cells, concentration of sunlight, use of hot-carrier excess energy
as discussed above and possibly other concepts including photon conversion [1612,
1613], intermediate band absorption [1614–1616], multi-exciton generation [1617]
or the use of quantum dots [1618].

11Kapton� is a polyimide and a product and registered trademark of DuPont.
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Fig. 22.64 Schematic layer stacking of multi-junction solar cells and expected efficiency. Adapted
from [1619]

In multi-junction cells the different absorber layers are stacked on the sub-
strate with increasing band gap and connected via (highly doped) tunneling junc-
tions (Sect. 21.5.9). Under 500-fold AM1.5 illumination a three junction (3J) cell
(GaInP/GaInAs/Ge) is expected to exhibit up to 41% efficiency, for 5 J 42% or up to
55% using GaInNAs and with 6 J up to 59% [1619, 1620] (Fig. 22.64). For a 3 J
cell the record efficiency is 40.7% (240suns) using the layer structure as shown in
Fig. 22.65 [1606]. Details on modeling of III–V multi-junction solar cells can be
found in [1621]. In a monolithic cell the absorbers must be tuned such that the same
current (Kirchhoff’s law) can pass through all layers. Multi-junction solar cells are
heteroepitaxial devices and thus expensive; the use of concentration is economically
mandatory.

A recent novel route is a tandem cell comprising of a bottom silicon cell and a top
perovskite cell. Organo-metal halide peroskites, e.g. of the ammonium trihalogen
plumbates type, R-N3PbI3, have exhibited quite high conversion efficiencies [1624,
1625] and can be tuned with regard to their absorption range.

22.4.7 Commercial Issues

The cost12 of producing photovoltaic (PV) modules, in constant dollars, has fallen
from as much as $50 per peak watt in 1980 to as little as $3 per peak watt in
2004.A projected cost of 0.2e/kWh in 2020, a third of the current cost, is realistic
and competitive in many applications. In 2002, photovoltaic power of 560MW was
installed worldwide. By the end of 2003, a total photovoltaic power of about 350MW
was installed in Germany. Thus, the PV power is 0.33% of the total installed electric
power of 106GW in Germany. The current market growth of 30% (worldwide) is
driven by crystalline silicon cells (95% in 2002).

12The following information is taken from [1626, 1627].

http://dx.doi.org/10.1007/978-3-319-23880-7_21
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(a)

(b)

Fig. 22.65 (a) Schematic layer stacking of three-junction (3J) solar cell. The step-graded buffer
(metamorphic buffer) changes the in-plane lattice constant for the following layers. Adapted from
[1622]. (b) Cross-section TEM image of metamorphic InGaAs buffer on Ge. Adapted from [1623]

The energy payback period is also dropping rapidly. For example, it takes today’s
typical crystalline silicon module about 4years to generate more energy than went
into making the module in the first place. The next generation of silicon modules,
whichwill employ a different grade of silicon and use thinner layers of semiconductor
material, will have an energy payback of about 2 years. And thin-film modules will
soon bring the payback down to one year or less. However, market growth of thin-
film modules is currently slow. This means that these modules will produce ‘free’
and clean energy for the remaining 29 years of their expected life.

PV technology can meet electricity demand on any scale. The solar energy
resource in a 100mile-square area of Nevada could supply the United States with
all its electricity (about 800GW), using modestly efficient (10%) commercial PV
modules. A more realistic scenario involves distributing these same PV systems
throughout the 50 states. Currently available sites, such as vacant land, parking lots,
and rooftops, could be used. The land requirement to produce 800GW would aver-
age out to be about 17 × 17miles per state. Alternatively, PV systems built in the
‘brownfields’, the estimated 5 million acres of abandoned industrial sites in the US,
could supply 90% of America’s current electricity. Solar power is expected to con-
tribute 10% of the US energy need in 2030. For Germany, more than 2% in 2020 is
probable.
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In 2001, PV module shipments in the US approached the 400MW mark, repre-
senting a $2.5 to $3 billion market. The US-based industry itself is now approaching
$1 billion per year and provides 25,000 jobs. It is expected to grow to the $10–$15
billion level in the next 20 years, providing 300,000 jobs by 2025.



Chapter 23
Electricity-to-Light Conversion

Abstract Light emitting diodes (LEDs) and laser diodes are the focus of this chapter.
For LEDsmaterials choices, the concepts of internal and external quantum efficiency
as well as device design are treated. Special devices such as white LEDs, quantum
dot and organic LEDs are introduced. For laser diodes the concepts of gain, loss
and threshold, various heterostructures for modern device design and laser emission
properties such as mode spectrum, far field, dynamics and tunability are discussed.
Finally special devices such as the hot hole laser, the cascade laser and semiconductor
optical amplifiers are mentioned.

23.1 Radiometric and Photometric Quantities

23.1.1 Radiometric Quantities

The radiometric quantities are derived from the radiant flux (power) Φe (or usually
simply Φ) that is the total power (energy per time) emitted by a source, measured
in Watts. The radiant intensity Ie is the radiant flux emitted by a point source into
a solid angle,1 measured in Watts per steradian (or W/sr). The irradiance Ee is the
radiant flux per area incident on a given plane, measured in W/m2. The radiance Le

is the radiant flux per area and solid angle as, e.g., emitted by an extended source,
measured in W/(m2 sr).

23.1.2 Photometric Quantities

The photometric quantities are related to the visual impression and are derived from
the radiometric quantities by weighting them with the V (λ) curve.

1A solid angle Ω is the ratio of the spherical surface area A and the square of the sphere’s radius r ,
i.e. Ω = A/r2.

© Springer International Publishing Switzerland 2016
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
DOI 10.1007/978-3-319-23880-7_23
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(a) (b)

Fig. 23.1 (a) Relative eye sensitivity curves for photopic (light adapted, solid line) and (dark
adapted, dashed line) vision. (b) Conversion of lumen to Watt for light- and dark-adapted vision

The luminous flux (luminosity or visible brightness) Φv of a source with the
radiant flux (spectral power distribution) Φ(λ) is given by

Φv = Km

∫ ∞

0
Φ(λ) V (λ) dλ, (23.1)

with Km = 683 lm/W. This formula is also the definition of the unit ‘lumen’. In
Fig. 23.1b, the conversion function2 V (λ) is shown for light and dark adapted vision.3

Further derived photometric quantities are luminous intensity (luminous flux per
solid angle), measured in candela (cd), the illuminance (luminous flux per area),
measured in lux (lx), and the luminance (luminous flux per area and solid angle).
The latter is particularly important if the radiation enters an optical system, e.g. for
refocusing.The radiometric andphotometric quantities are summarized inTable23.1.

2The V (λ) curve has been experimentally determined by letting several observers adjust (decrease)
the perceived brightness of a monochromatic light source at 555nm to that of light sources of
the same absolute radiation power at other wavelengths with so-called heterochromatic flicker
photometry. The ‘relative sensitivity curve for the CIE Standard Observer’ was determined in 1924.
The ‘standard observer’ is neither a real observer nor an average human observer. The curve has
shortcomings, e.g., due to the used spectral band width (20–30nm) of the light sources and the
comparison of spectral power instead of the photon flux.
3While photopic vision is due to cones, the scotopic (dark-adapted) vision is due to rods. Rods
are more than one thousand times as sensitive as the cones and can reportedly be triggered by
individual photons under optimal conditions. Rods predominate in the peripheral vision and are not
color sensitive.
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Table 23.1 Radiometric and photometric quantities and units

Radiometric Photometric

Quantity Symbol Unit Quantity Symbol Unit

Radiant flux Φe W Luminous flux Φv lm

Radiant
intensity

Ie W/sr Luminous
intensity

Iv cd

Irradiance Ee W/m2 Illuminance Ev lx

Radiance Le W/m2/sr Luminance Lv lm/m2/sr

The photometric units are lumen (lm), lux (lx = lm/m2) and candela (cd = lm/sr)

23.2 Scintillators

A scintillator (or phosphor) is a material that converts impacting high-energy radi-
ation into photons [1628]. Besides a high conversion efficiency, the spectrum and
decay time constant of the scintillator are important for display applications. For dis-
play purposes, the photons are directly used for forming the image for the observer.
For radiation detection, the photons are fed to a photomultiplier tube and counted.

The most prominent applications, involving the conversion of electrons, are the
screens of cathode ray tubes (CRT) (acceleration voltage >10kV) and of flat panel
devices, such as field-effect displays (using a low voltage for excitation, typically
<1kV) or plasma displays (using the UV light from the discharge of a plasma placed
between two electrodes for excitation). Further details on electroluminescent displays
can be found in [1629]. Other forms of radiation detected with scintillators areα-, β-,
and γ-radiation, X-rays and neutrons [1630]. Different excitation conditions require
different phosphors for optimal performance.

23.2.1 CIE Chromaticity Diagram

The CIE4 procedure converts the spectral power distribution (SPD) of light from
an object into a brightness parameter Y and two chromaticity coordinates x and y.
The chromaticity coordinates map the color5 with respect to hue and saturation on
the two-dimensional CIE chromaticity diagram. The procedure for obtaining the
chromaticity coordinates for a given colored object involves determination of its

4Commission Internationale de l’Éclairage. The color space can be described by different coordinate
systems, and the three most widely used color systems, Munsell, Ostwald, and CIE, describe the
color space with different parameters. The Munsell system uses hue, value, and chroma and the
Ostwald system uses dominant wavelength, purity, and luminance. The more precise CIE system
uses a parameter Y to measure brightness and parameters x and y to specify the chromaticity that
covers the properties hue and saturation on a two-dimensional chromaticity diagram.
5This definition is motivated by the color vision of the eye. Two light sources will have the same
color, even if they have different SPDs, when they evoke the same color impression to the human
eye.



728 23 Electricity-to-Light Conversion

(a) (b)

Fig. 23.2 (a) Color-matching functions x̄ , ȳ, and z̄ for the calculation of the CIE chromaticity,
(b) color-matching functions r̄ , ḡ, and b̄ for the calculation of RGB values

spectral power distribution P(λ) at each wavelength, multiplication by each of the
three color-matching functions x̄(λ), ȳ(λ), and z̄(λ) (Fig. 23.2a) and integration (or
summation) of the three tristimulus values X , Y , Z

X =
∫ 780 nm

380 nm
P(λ) x̄(λ) dλ (23.2a)

Y =
∫ 780 nm

380 nm
P(λ) ȳ(λ) dλ (23.2b)

Z =
∫ 780 nm

380 nm
P(λ) z̄(λ) dλ. (23.2c)

Y gives the brightness. The tristimulus values are normalized to yield the chro-
maticity coordinates, e.g. x = X/(X + Y + Z). x and y obtained in this way
are the chromaticity coordinates. The third coordinate z = 1 − x − y offers no
additional information and is redundant. Therefore, the color is represented in a
two-dimensional diagram, the CIE chromaticity diagram6 as shown in Fig. 23.3a.
White is represented by x = y = z = 1/3. In order to relate the differences between
colors as perceived by the human eye more closely to the geometrical distance in the
chart, a revision was made (Fig. 23.3b) with new coordinates

u′ = 4x/(−2x + 12y + 3) (23.3a)

v′ = 9y/(−2x + 12y + 3). (23.3b)

6The coloring of the chart is provided for an understanding of color relationships. CRT monitors
and printed materials cannot reproduce the full gamut of the color spectrum as perceived in human
vision. The color areas that are shown only depict rough categories and are not precise statements
of color.



23.2 Scintillators 729

Fig. 23.3 CIE chromaticity diagram from 1931 (a) in the coordinates x and y and from 1976
(b) in the coordinates u′ and v′ (23.3b). The curved upper boundary is called the ‘spectrum locus’ and
contains monochromatic colors, the straight line at the lower left is termed the ‘purple boundary’. In
the graph also the color of blackbody radiation is given, T = 5440K corresponds to x = y = 1/3.
‘A’, ‘B’, ‘C’, and ‘E’ are standard illuminants, ‘D65’ denotes daylight with color temperature
T = 6500K. (c) CIE chart with the color ranges of sRGB, CIE and NTSC. Part (c) adapted
from [1631]



730 23 Electricity-to-Light Conversion

Table 23.2 Primaries and white points for sRGB, CIE and NTSC

Primary Red Green Blue White

CIE 0.73467 0.26533 0.27376 0.71741 0.16658 0.00886 0.33333 0.33333

NTSC 0.6700 0.3300 0.2100 0.7100 0.1400 0.0800 0.3100 0.3160

sRGB 0.6400 0.3300 0.3000 0.6000 0.1500 0.0600 0.3127 0.3290

For CRTs the red-green-blue (RGB) color space is used.7 The color matching
functions for RGB values are shown in Fig. 23.2b. The RGB values are related to the
XYZ values according to

⎛
⎝ R

G
B

⎞
⎠ =

⎛
⎝ 2.36461 −0.89654 −0.46807

−0.51517 1.42641 0.08876
0.00520 −0.01441 1.00920

⎞
⎠

⎛
⎝ X

Y
Z

⎞
⎠ . (23.4)

The CIE RGB primaries from 1931 are at 700, 546.1, and 435.8nm with the
relative intensities 1.0, 4.5907, and 0.0601. A display device using three phosphors
can only display colors in the triangular area of the CIE chart between the three
chromaticity coordinates. For sRGB,8 the 1931 CIE primaries and the NTSC9 norm
the coordinates are given in Table23.2 and visualized in Fig. 23.3c. An optimal
coverage of the CIE chart involves monochromatic sources (for laser TV or LED
displays) at about 680, 520 and 440nm.

23.2.2 Display Applications

The once ubiquitous amber-colored monochrome displays are mostly fabricated
using ZnS:Mn [1629], having broad emission (540–680nm) with its spectral peak
at 585nm (x = 0.50, y = 0.50) with an efficiency of 2–4 lm/W. In color televi-
sion (and similar applications such as color computer monitors, tubes for aviation
use, projection television) the image is reproduced by selective and time-multiplexed
cathode excitation of three phosphors (blue, green and red) deposited on the inter-
nal face of the screen. The chromaticity coordinates of the standard CRT phosphors
P-22B, P-22G and P-22R are given in Table23.3. They cover about the color range

7RGB is an additive color system. However, printing devices use a subtractive color system. This
means that the ink absorbs a particular color, and the visible impression stems fromwhat is reflected
(not absorbed).When inks are combined, they absorb a combinationof colors, andhence the reflected
colors are reduced, or subtracted. The subtractive primaries are cyan, magenta and yellow (CMY)
and are related to RGB via (C, M, Y ) = (1 − R, 1 − G, 1 − B).
8Standard RGB color space as defined mainly by Hewlett-Packard and Microsoft, almost identical
to PAL/SECAM European television phosphors.
9National television standard colors, US norm.
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Table 23.3 CIE color
coordinates, peak emission
wavelength and decay time
(10%) of standard CRT
phosphors

Phosphor x y λp (nm) Decay
time

P-22B 0.148 0.062 440 ∼20µs

P-22G 0.310 0.594 540 ∼60µs

P-22R 0.661 0.332 625 1ms

labeled ‘sRGB’ in Fig. 23.3c. For blue and green ZnS:Ag (x = 0.157, y = 0.069),
ZnS:Ag,Cl, ZnS:Ag,Al and ZnS:Cu,Al (x = 0.312, y = 0.597), ZnS:Cu,Au,Al
are used as phosphors, respectively. Y2O2S:Eu (x = 0.624, y = 0.337) activated
with trivalent europium (Eu3+) facilitated such a gain in the brilliance of red over
ZnS:Ag (more than doubled it) that it has totally replaced it at about one fifth of the
cost. For reproducible image quality, precise grain-size control (median size for CRT
phosphors is about 8µm), dispersion control and surface treatment are necessary.
Flat-panel displays with their lower excitation voltage require different phosphors
for optimal efficiency.

23.2.3 Radiation Detection

The most commonly used scintillation detector for alpha measurements is ZnS acti-
vated with silver, ZnS:Ag. This material is not very transparent to light and is usually
prepared as a large number of crystals with sub-mm size attached with an adhesive
to a flat piece of plastic or other material. The flat screen is optically coupled to a
photomultiplier tube that is attached to associated electronics. The voltage and dis-
criminator levels are selected so that the detector is sensitive to the rather large pulses
from alpha interactions but insensitive to beta- or gamma-induced pulses. The alpha
particles deposit all of their energies in a small thickness of material compared to
beta and gamma radiations.

Scintillation detectors for beta radiation are often made from organic materials.
In an organic scintillator, the light emission occurs as a result of fluorescence when
a molecule relaxes from an excited level following excitation by energy absorption
from ionizing radiation.Molecules such as anthracene, trans-stilbene, para-terphenyl,
and phenyl oxazole derivatives are among the many organic species that have useful
scintillation properties. The organic molecules are dissolved in organic solvents and
used as liquid scintillators. A classic application is in the measurement of low-energy
beta radiation from, e.g. tritium, 14C, or 35S. In such cases, the sample containing
the radioactive beta emitter is dissolved in, or in some cases suspended in, the liquid
scintillation solution. The emitted beta radiation transfers energy through the solvent
to the scintillator molecule that emits light, subsequently detected by photomultiplier
tubes. Organic scintillator molecules can also be dissolved in an organic monomer
that can then be polymerized to produce a plastic scintillator in a wide variety of
shapes and sizes. Very thin scintillators have been used for alpha detection, somewhat
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Table 23.4 Emission peak
wavelength and decay time of
various scintillator materials

Material λp (nm) Decay time

Zn2SiO4:Mn 525 24ms

ZnS:Cu 543 35–100µs

CdWO4 475 5µs

CsI:Tl 540 1µs

CsI:Na 425 630ns

Y3Al5O12:Ce 550 65ns

Lu2SiO5:Ce 400 40ns

YAlO3:Ce 365 30ns

ZnO:Ga 385 2ns

thicker scintillators for beta detection. Large-volume plastic scintillators have been
used in gamma detection, particularly for dose-related measurements.

Other inorganic crystalline scintillators, especially sodium iodide activated with
thallium, NaI:Tl, have been used for gamma-ray energy measurements. Such detec-
tors can be grown as large single crystals that have a reasonably high efficiency for
absorbing all of the energy from incident gamma rays. There exists a rather large num-
ber of inorganic scintillators; some examples of these include cesium iodide activated
with thallium, CsI:Tl, bismuth germanate, Bi4Ge3O12, and barium fluoride, BaF2.
These are mostly used for gamma measurements but can also be prepared with thin
windows and have been used for charged particle (e.g. alpha and beta) counting. A
number of scintillator materials including tungstates like CdWO4 has been reviewed
in [1632].

In Table23.4, the peak emission wavelength and the characteristic decay time
are listed for a variety of scintillator materials. Direct semiconductors, although not
offering the highest efficiency, are particularly useful for high time resolution in, e.g.,
time-of-flight measurements or fast scanning electron microscopy.

23.2.4 Luminescence Mechanisms

Self-Trapped Excitons

In a strongly ionic crystal, such as NaI, a hole becomes localized to an atomic site via
the polaron effect. A spatially diffuse electron is attracted, and a self-trapped exciton
is formed that can recombine radiatively.

Self-Activated Scintillator

In such material, the luminescent species is a constituent of the crystal. The emission
involves an intraionic transition, e.g. 6p→6s in Bi3+ of Bi4Ge3O12, or a charge-
transfer transition in the case of (WO4)2− in CaWO4. At room temperature, nonra-
diative competing processes limit the efficiency.
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Activator Ions

For dopant ions such as Eu2+ in YO2S:Eu, Ce3+ in YAlO3:Ce or Tl+ in NaI:Tl, the
hole and electron excited by the radiation are sequentially trapped by the same ion
that then undergoes a radiative transition, in the case of Eu and Ce10 5d→4f, for Tl
3P0,1 →S0. CsI:Tl has one of the highest efficiencies of 64.8photons/keV [1633].

Core–Valence Luminescence

In somematerials, e.g., BaF2, CsF, BaLu2F8 the energy gap between the valence band
and the top core band is less than the fundamental band gap. A radiative transition
occurs when an electron from the valence band fills a hole in the top core band that
has been created by the radiation. The light yield is limited to about 2photons/keV.

Semiconductor Recombination Processes

Free excitons or excitons bound to impurities can recombine radiatively. This process
is most efficient at low temperatures. At room temperature, the emission is typically
much weaker (�10×) since excitons become unbound or dissociated. Highly doped
n-type semiconductors, e.g. CdS:In, exhibit recombination between donor-band elec-
trons and holes. ZnO:Gahas an efficiency of about 15photons/keVand a fast response
(with 2.4photons/keV emitted in the first 100ps). Luminescence can also stem from
donor–acceptor pair transitions, e.g. in PbI2 with an efficiency of 3photons/keV at
10K. Isoelectronic impurities such as nitrogen in GaP:N and tellurium in CdS:Te
attract an electron and subsequently a hole. In ZnS:Ag and ZnS:Cu (conduction)
band to trap recombination is dominant. In a codoping scheme like CdS:In,Te, In
supplies electrons in an impurity band that can recombine with holes trapped at Te.

23.3 Light-Emitting Diodes

23.3.1 Introduction

Light-emitting diodes (LEDs) are semiconductor devices in which injected carriers
recombine radiatively. The recombination process leading to light emission can be
of intrinsic nature, i.e. band–band recombination, or extrinsic, e.g. impurity-bound
excitons. Impurity-related luminescence can also be excited via impact excitation.
For an extensive treatment of LEDs see [1634], for a review of the early field [1635]
and for recent reviews [1636, 1637]. Mostly LEDs are pn-diodes although also some
MIS-based devices have been reported [1638, 1639].

10This transition is dipole allowed for Ce and partially forbidden for Eu.
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Fig. 23.4 Spectral coverage
by various semiconductor
materials. Reprinted with
permission from [500], c©
1981 Wiley

23.3.2 Spectral Ranges

Applications for LEDs can be sorted by the color of emission. In Fig. 23.4, the
standard sensitivity V (λ) of the human eye is shown (see Fig. 23.1a). In the visible
spectral region (about 400–750nm) the perceived brightness of the LED depends on
the eye sensitivity. It is largest in the green (at 555nm) and drops strongly towards
the red and blue.

The most important spectral regions and applications are:

• infrared (λ > 800nm): remote controls, optocouplers, low-cost data transmission,
IR interface

• visible: indicator LED, lighting11 (room, buildings, cars), white LED for broad
spectrum

• ultraviolet (λ < 400nm): pumping of phosphors for white LEDs, biotechnology

In Fig. 23.4, potentially useful semiconductors for the various spectral regions
are shown. The semiconductors that are currently used for the various colors of the
visible spectrum are

• red–yellow: Ga(As,P)/GaAs, now (Al,In,Ga)P/GaP
• yellow–green: GaAsP:N, GaP:N
• green–blue: SiC, now GaN, (In,Ga)N
• violet: GaN
• ultraviolet: (Al,Ga)N

11Penetration of white LEDs into the general lighting market could translate (globally) into cost
savings of $ 1011 or a reduction of power generation capacity of 120GW.
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23.3.3 Efficiencies

External Quantum Efficiency

The external (or total) quantum efficiency ηext is the number of photons emitted from
the device per injected electron–hole pair. It is given by the product of the internal
quantum efficiency ηint and the light extraction efficiency χex:

ηext = χex ηint. (23.5)

In a commercial device another factor, the packaging efficiency may enter which
accounts for photon loss due to packaging the LED dice into its housing.

Wall-Plug Efficiency

The wall-plug efficiency ηw is the power conversion ratio of the electrical power and
the light output Pout,

ηw = Pout

I V
= �ω

e V
ηext. (23.6)

At first it seems reasonable to assume that always ηw < 1. However, it has been
reported that at small current and at elevated temperature the wall-plug efficiency is
found larger than 100% due to the electrical work pumping heat from the lattice to
the photon field in a GaSb-based diode [1640]. The groundwork for such effect was
laid in [1641], essentially predicting that �ω > e V is possible.

Internal Quantum Efficiency

The internal quantum efficiency is the number of photons generated (inside the semi-
conductor) per injected electron–hole pair. High material quality, low defect density
and low trap concentration are important for a large value of ηint. The recombination
current in the pn-diode is given in (21.132).

Light Extraction Efficiency

The light extraction efficiency of the LED chip is ratio of the number of photons
leaving the device and the total number of generated photons.12 The geometry of the
LED is of prime importance to optimize χex. Due to the large index of refraction of
the semiconductors (ns ∼ 2.5–3.5), light can leave the semiconductor only under a
small angle θc from the surface normal due to total reflection (cf. (9.11) and see right
part of Fig. 9.2). Against air (n1 ≈ 1) the critical angle is

θc = sin−1 (1/ns). (23.7)

The critical angle for total reflection is 16◦ forGaAs and 17◦ forGaP.Additionally,
a portion of the photons that do not suffer total reflection is reflected back from the
surface with the reflectance R given by (cf. (9.15))

12Note that the light extraction efficiency is also important for solar cells, cf. Sect. 22.4.3.

http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_9
http://dx.doi.org/10.1007/978-3-319-23880-7_9
http://dx.doi.org/10.1007/978-3-319-23880-7_9
http://dx.doi.org/10.1007/978-3-319-23880-7_22
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R =
(

ns − 1

ns + 1

)2

. (23.8)

Wenote that the above formula is valid strictly for vertical incidence. For theGaAs/air
interface, the surface reflectance (for normal incidence) is about 30%. Thus, the light
extraction efficiency for a LED is given by (1–R) and the critical angle by

χex
∼= 4 n1 ns

(n1 + ns)2
(1 − cos θc) ≈ 4 ns

(ns + 1)2
(1 − cos θc) . (23.9)

The latter approximation is valid when the outer medium is air. For GaAs, the light
extraction efficiency is 0.7 × 4% ≈ 2.7%. Thus, for this simple geometry, only a
small fraction of generated photons can leave the device and contribute to the LED
emission.

23.3.4 Device Design

In the following subsections the strategies that have allowed significant improve-
ment of the extraction efficiency (Fig. 23.5) and thus LED performance are briefly
discussed. The record by 2014 for light extraction efficiency is 89% [1642], however
not for a mass-produced device.

Nonplanar Surfaces

With curved surfaces, the problem of total reflection can be (partially) circumvented
(Fig. 23.6). Spherically polished chips are feasible, but, very expensive. The epoxy
seal of the standard LED case (Fig. 23.7a) and its shape play a similar role, however,
with a smaller index of refraction than the semiconductor, and are important for the
beam shape.

Fig. 23.5 Historic
development of maximum
light extraction efficiency for
AlGaInP (red circles) and
(In,Ga)N (blue squares)
LEDs. Dashed lines are
guides to the eyes. Adapted
from [1637, 1643]
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Fig. 23.6 Form of various LED casings with (a) hemispherical, (b) truncated sphere and (c) par-
abolic geometry. Adapted from [1644]. (d) Emission characteristics for rectangular (i), hemispheric
(ii) and parabolic (iii) geometry. Adapted from [1645]

(a)
arent

bond

cup

(b)

+ -

lens

Fig. 23.7 (a) Standard LED casing (schematic drawing andmacrophoto), (b) high-powermounting
(schematic drawing and image of Luxeon� LED)

(b) (c) (d) (e)(a)

transparent
metal
mirroropaque

active

Fig. 23.8 (a) Standard LED layer sequence with opaque substrate (grey), active layer (checkered)
and transparent top, (b) thick window design with thick top layer (50–70µm). (c) Transparent
substrate (by rebonding, see Fig. 23.9), (d) chip shaping (cf. also Fig. 23.11). (e) Thin-film LED
with metal mirror (black) and rebonding (cf. also Fig. 23.12)

Thick-Window Chip Geometry

An increase in light extraction efficiency to about 10–12% can be achieved if the top
layer is fabricated with a much larger thickness (Fig. 23.8b) of 50–70µm instead of
a few µm. However, such approach is not scalable since larger device area would
demand even larger thickness.
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(a) (b)

Fig. 23.9 Comparison of light paths in a GaAsP-based LED with (a) opaque (GaAs) and (b)
transparent (GaP) substrate (side facets roughened). Adapted from [1646]

GaAs GaPGaAs

GaP window
AlGaInP DH

(a)

substrate

(b) (c)

AlAs

Fig. 23.10 Scheme of fabrication for red high brightness LED: (a) AlGaInP double heterostructure
(DH) with GaP window on GaAs substrate (growth with MOCVD). (b) Lift-off using HF etch of
sacrificial AlAs layer. (c) Wafer bonding on GaP (transparent for red light)

Transparent Substrate

Reflection of photons is not so detrimental if they are not lost later due to absorption in
the substrate. In Fig. 23.8, the evolution of LED chip design is shown schematically.
In Fig. 23.9, the light path is compared for opaque and transparent substrates. The
latter provides higher light extraction efficiency due to the ‘photon recycling’ effect.
Efficiencies of 20–25% are possible. In Fig. 23.10, the technological steps are shown
to fabricate a GaP LED with an AlGaInP active layer. The active layer is initially
grown on GaAs due to lattice-match conditions.

Nonrectangular Chip Geometry

If the chip is made with an inverted structure and mounted on a mirror, a high
light extraction efficiency (>50%) can be achieved. Typical commercial designs are
shown in Fig. 23.11.

The increase in quantum efficiency allows the devices to run on much higher
output power. While initially LEDs delivered power only in the mW regime, now
output power in the ∼1W regime is possible (high brightness LEDs). The higher
currents made a redesign of the LED mount towards better heat sinks neces-
sary (Fig. 23.7b). While the standard case has a thermal resistance of 220K/W
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(a)

(b)

(c)

Barracuda

(1998)

Transparent
substrate

(1994)

Prometheus

(2000)

Absorbing
substrate

(1991)

(d)

Fig. 23.11 Optimization of light exit by 3D design of the LED chip, (a) scheme, (b) emission
pattern comparison and (c) SEM image of the ATON chip. Reprinted with permission from [1647].
(d) Development stages towards the truncated inverted pyramid (Prometheus) chip. From [1648]

(chip size (0.25mm)2 for 0.05–0.1W and 0.2–2 lm), the high-power case has 15K/W
(chip size (0.5mm)2 for 0.5–2Wand 10–100 lm).An epoxy-free technique for encap-
sulation also enhances the color uniformity and maintains the brightness.
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(a) (b)

Fig. 23.12 (a) Scheme of thin-film flip-chip LED with microprisms. (b) image and luminescence
image of thin film AlInGaP LED (chip length: 320µm). Reprinted with permission from [1650]

Thin-Film LED

In the thin-film LED design [1649], as schematically shown in Fig. 23.12a, a metal
mirror is evaporated on the LED layers. In a flip-chip design, subsequently the metal
side is wafer bonded to another metallized substrate and the original substrate is
removed. Additionally, the LED surface can be patterned (before bonding) into an
(hexagonal) array of (hexagonal) microprism mesas with an insulating (e.g. silicon
nitride) layer with openings in order to optimize the current path. The microprisms
are optimized to allow efficient reflection of light towards the emitting surface. This
technology is scalable to large areas without loss in efficiency.

In order to avoid bonding from the top which leads to partial shielding of the
emitted radiation and is a mechanical process, contact schemes for flip-chip LEDs
havebeendevised for contactingboth the n- and thep-layer from the same side [1651].
In Fig. 23.13 a schematic cross-section and an emission image are shown. Here, the
n-contact runs through a via hole with insulated side walls. In the emission image
the array of via holes can be seen.

Bulk Flip-Chip

In theGaNmaterial system a LEDbased on a triangular chip with 400µmside length
using a bulk substrate with 150µm thickness has been presented that exhibits the so

(a)

n-GaN

p-GaN

active
InGaN
MQW

metal anode

ceramic submount

metal cathode

(b)

Fig. 23.13 (a) Scheme of thin-film flip-chip LED with rough surface and contacts from one side.
(b) Emission image of 1 × 1cm2 chip. Adapted from [1651]
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Fig. 23.14 Triangular GaN
LED chip with high
extraction efficiency. Both
the p- and n-contact are on
the bottom. Adapted
from [1642]

100µm

far highest extraction efficiency of almost 90% (Fig. 23.14) [1642, 1652]. The top
and all side facets are rough.

23.3.4.1 Cascaded LEDs

Similar to the use of tunneling junctions in multi-junction solar cells (Fig. 22.64),
the monolithic serial connection of several LED layers has been proposed [1653]
(Fig. 23.15). For a given output power P at forward voltage VF and current density j
of a single junction LED, ideally a LED with N identical stacks and N −1 tunneling
junctions provides the sameoutput power P at the N -fold forwardvoltage, as reported
for N = 2, 3 in [1654], and the current density j/N . Since the internal quantum
efficiency of LEDs decreases with increasing current density (droop), such stacked
LED design holds promise for increased wall-plug efficiency if the series resistance
of the tunneling junctions is small. The quantum efficiency of such device is then
larger than N times the efficiency of the single stack LED and thus way larger than
100% (similar to quantum cascade lasers, Sect. 23.4.16).

EC

EV

EC

EV

FnFp

FnFp

VF

VF

2VF

Fig. 23.15 Schematic band structure of cascaded LED. The grey area denotes an additional het-
erostructure for reduction of the series resistance of the tunnel junctions. Adapted from [1653]

http://dx.doi.org/10.1007/978-3-319-23880-7_22
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Fig. 23.16 Historic development of the luminous efficacy of semiconductor LEDs and OLEDs.
Based on [1655] with the addition of data on OLEDs and recent data on LEDs. The arrows on the
right indicate efficacy of various other light sources

Fig. 23.17 Historic
development of the flux (in
lumen) and cost (in $/lm) for
semiconductor LEDs. Data
from [1648]
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In Fig. 23.16, the historic development of the LED luminous efficacy (luminous
flux per electrical input power) is shown for various material systems. While the
luminosity has increased by a factor of 20 per decade in the last 40 years, the price
has decreased by a factor of ten per decade (Fig. 23.17). Currently, there is a need for
the development of efficient LEDs in the green spectral range since their luminosity
is small compared to devices for the blue and red spectral regions (Fig. 23.18).
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Fig. 23.18 Luminous
performance of various LED
materials in comparison with
other light sources. Adapted
from [1655]

Fig. 23.19 Different strategies to generate white light with LEDs. (a) Additive mixing of R, G, and
B LEDs, (b) blue LED and yellow phosphor, (c) UV LED (invisible) and R, G, and B phosphors.
From [1648]

23.3.5 White LEDs

There are different possibilities to generate white light with an LED as shown
schematically in Fig. 23.19. The highest color gamut and a tunable white point can
be achieved by combining a red, a green and a blue LED (Fig. 23.19a). Using a blue
LED and a yellow phosphor (Figs. 23.19b and 23.20a, b), a white spectrum can be
achieved that is, however, not very close to a blackbody spectrum (Fig. 23.20c). A
better color rendering can be obtainedwith the combination of two phosphors [1656].
With an UV LED that is itself invisible (and must be shielded so no UV radiation
leaves the LED), phosphors with various colors can be pumped (Fig. 23.19c). The
mix of phosphors determines the white point.

Using a blue-emitting LED based on (In,Ga)N material, phosphors (similar to
those used in fluorescence lamps) can be pumped. Blue light is converted into green,
yellow or red light such that the resulting total spectrum appears white to the human
eye. Also, a broad range of other colors can be designed (color on demand), e.g. pink
or particular corporate colors.

The color of a white LED depends on the operation conditions. In Fig. 23.21a
the intensity versus dc driving current characteristic of a white LED is shown. In
Fig. 23.21b the chromaticity coordinates are shown for various dc currents. A change
of wavelength with forward voltage occurs for the blue-emitting (In,Ga)N material
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Fig. 23.20 (a) Scheme and (b) image of color conversion Luxeon� LED. From [1648]. (c) Spec-
trum (solid line) of white LED with blue LED pumping a yellow phosphor together with eye-
sensitivity curve V (λ) (dashed line). Adapted from [1650]
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Fig. 23.21 (a) Luminous intensity of white LED (NSCW215) versus dc forward current. (b) CIE
chromaticity coordinates for various dc driving conditions as labeled. Data taken from [1657]

due to filling of low-energy states (Fig. 23.22). In order to avoid this effect, the LED
is driven with pulses of a fixed current amplitude and a repetition frequency that
is high enough to provide a flicker-free image to the human eye, e.g. 100Hz. The
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440 W

Fig. 23.22 (a–c) Electroluminescence intensity map of (In,Ga)N LED at different currents as
labeled. (d) Optical image of the LED chip (top view). (e–g) Wavelength images (wavelength of
spectral emission maximum) for different currents. Adapted from [1658]

intensity of the LED is modulated via the pulse width, i.e. between 0–10ms in this
case (PWM, pulsewidth modulation).

The direct light fromwhiteLEDs is visually appealing and cannot be distinguished
from a blackbody source of matching temperature. But since the spectral power
distribution of white LEDs is different from natural light, objects illuminated by
such light source can appear in ‘wrong’ colors. For the spectrum of Fig. 23.20c, in
particular green is reproduced poorly. A quantitative measure for the ability of a light
source to reproduce the colors of an illuminated object faithfully compared with a
natural (blackbody) light source is the color rendering index (CRI).

A major advantage of LEDs for display and lighting applications is their long
lifetime compared to halogen (about 2000h), xenon (10,000h) or fluorescent
(6000–10,000h) lights. Philips Lumileds projects (for white LUXEON® K2 LEDs)

Fig. 23.23 Lifetime for
70% lumen as a function of
solder temperature Ts (for
white Diamond Dragon®

LED) for various driving
currents (0.3, 0.7, 1.4 and
2.0A, solid lines from right
to left). The dashed line is
for low driving current and
Ts = Tj. Adapted
from [1662]
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70% lumen maintenance at given current (1A) at 50,000h for junction temperature
Tj ≤ 120◦ [1659]. Similar values are given by OSRAM [1662] for white high power
LEDs (Fig. 23.23). A current problem is the decrease of efficiency with increasing
current density termed droop, probably due to Auger recombination [1660, 1661].

23.3.6 Quantum Dot LEDs

Quantum dots are an interesting active medium for LEDs due to their spectroscopic
properties (Sect. 14.3.4).

Ultranarrow Spectral Emission

A LED based on a single QD exhibits a rather unique spectrum consisting of a single
spectral line, at least at low temperatures [1663], due to exciton recombination as
shown in Fig. 23.24. Such device can deliver single photons on demand and be a
photon source for quantum cryptographic communication. At higher current also
biexciton recombination appears. In [1664, 1665] the triggered emission of photon
pairs from cascade-likeXX andX recombination in a single dot and their polarization
entanglement is reported. Entanglement is related to degenerate X and XX emission
energy [1666] (cmp. Fig. 14.33).

(a)

(b)

(c)

Fig. 23.24 (a) Schematic cross-section of QD LED. Current is fed to a single QD via an oxide
aperture. (b) Plan-view SEM image of QD LED. c Electroluminescence (EL) spectrum (T =
10K, U = 1.65V, I = 0.87nA) of single InGaAs/GaAs QD LED (diameter of oxide aperture
0.85µm, thickness 60nm). The single line is due to (neutral) exciton recombination. The inset
shows dependence of EL spectrum on injection current; at higher currents a second peak due to
biexciton recombination (XX→X) appears. Adapted from [1667]

http://dx.doi.org/10.1007/978-3-319-23880-7_14
http://dx.doi.org/10.1007/978-3-319-23880-7_14
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Fig. 23.25 Electroluminescence spectrum of a quantum dot LED designed for broad spectral range
(at 5kA/cm2). Adapted from [1669]

Ultrabroad Spectral Emission

An LED based on the emission from a quantum dot ensemble exhibits a fairly broad
spectrum because of inhomogeneous broadening due to size fluctuations of the
quantum dots (cmp. Fig. 14.36). Additionally several ensembles of QDs with dif-
ferent mean emission wavelength can be incorporated in a device, e.g. in stacked
layers [1668]. This way ultrabroad electroluminescence spectra can be realized
(Fig. 23.25). Also emission on the ground and excited state can be used for broad
spectral emission.

23.3.7 Organic LEDs

An organic light emitting diode (OLED) is made from organic semiconductors. The
pioneering work was made by Tang and Van Slyke [1503, 1670]. Typical layer
sequences are depicted in Fig. 21.60. The light emission occurs through the anode
(and the transparent ITO layer) while the metal cathode is opaque. Two major con-
figurations are possible, emission through the transparent substrate (glass) or top
emission (Fig. 23.26).

The optimization of materials for the various functional layers is ongoing. The
emission layer (EML) is optimized for efficient radiative recombination for the design
wavelength or wavelength range. The highest efficacy of over 100 lm/W (Fig. 23.16)
is achieved using phosphorescent materials (Sect. 17.6). The contacts are optimized
for high carrier injection efficiency and the transport layers are optimized for high
conductivity.

End of 2007 a transparent white OLEDpanel was introduced [1671] (Fig. 23.27a).
Its transparency is 55% and shall be improved in the future. A crucial point is

http://dx.doi.org/10.1007/978-3-319-23880-7_14
http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_17
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(a) (b)

Fig. 23.26 Typical OLED design for (a) bottom and (b) top emission

Fig. 23.27 (a) Transparent OLED panel. From [1671]. (b) Flexible OLED display. From [1672].
(c) 3mm thin, 11 inch diagonal OLED TV. From [1673]

the protection of the organic films against moisture and air. The encapsulation by
glass is very good. Flexible OLED panels with polymer substrate and encapsulation
have been demonstrated (Fig. 23.27b). OLED technology is currently used for small
displays in digital cameras and cellular phones. It enables very thin TV panels, only
a few mm thick (Fig. 23.27c) entering the mass market in 2010. An increase of the
lifetime from 30,000 to beyond 50,000h is expected.
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Fig. 23.28 Images of the first semiconductor lasers, 1962: (a) GaAs laser, Lincoln Laboratories and
(b) GaInP laser, N. Holonyak and S.F. Bevacqua, Urbana Champaign. (c) Laser (at the end of gold
bond wire) mounted on Peltier heat sink and a TO chip, Universität Leipzig. (d) Size comparison
of an ant with a laser chip (underneath the bond wire)

23.4 Lasers

23.4.1 Introduction

Semiconductor lasers13 [1674, 1675] contain a zone (mostly called the active layer)
that has gain if sufficiently pumped and that overlaps with an optical wave. The wave
bounces back and forth in an optical cavity that leads to optical feedback. The part
of the wave that exits the semiconductor forms the laser beam. Some of the first
semiconductor lasers and a mounting design are shown in Fig.23.28.

13The term ‘laser’ is an acronym for ‘light amplification by stimulated emission of radiation’. The
amplification relies on stimulated emission, theoretically predicted by Einstein in 1917. The laser
concept was first explored in the microwave wavelength region (1954, MASER using ammonia,
Ch.H. Townes, Nobel prize 1964). The first optical laser (1958, US patent No. 2,929,922 awarded
1960, A.L. Schawlow, Ch.H. Townes) was the ruby laser developed in 1960 by Th. Maiman. A
device is a laser when it emits stimulated light. This light must neither be monochromatic nor be
emitted in a narrow, directed beam.
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Fig. 23.29 (a) Schematic drawing of edge-emitting semiconductor laser. (b) Schematic drawings
of vertical-cavity surface-emitting lasers with top emission (left) and emission through the substrate
(right). Black areas are metal contacts

Generally, two main geometrical laser types, edge emitters (Fig. 23.29a) and sur-
face emitters (Fig. 23.29b), are distinguished. The emission of the edge emitter exits
through cleaved {110} side facets14 (≈30% reflectance), of which an opposite pair
acts as a Fabry–Perot optical cavity. The surface emission is directed along (001),
since this is the (standard) growth direction of the heterostructure sequence making
up the laser. The mirrors in a vertical-cavity surface-emitting laser (VCSEL) are
made from dielectric Bragg mirrors (cf. Sect. 19.1.4) with typically R > 99.6%.
Using antireflection coating on one facet, semiconductor lasers can be set up with
an external cavity.15 If both facets are antireflection coated, feedback is missing and
the chip can be used as an optical amplifier (cf. Sect. 23.5).

Most lasers are pn-diodes and are then called laser diodes. They rely on the gain of
interband transitions and the emission wavelength is determined and (more or less)
given by the band gap of the semiconductor. The cascade laser [1676] (Sect. 23.4.16)
is a unipolar structure with a superlattice as active layer. Here, the intersubband
transitions (mostly in the conduction band but also in the valence band) carry the gain.
The emission wavelength depends on the subband separation and lies typically in the
far- and mid-infrared. Extensions to the THz regime and also to shorter wavelengths
are possible. A third type of laser is the ‘hot-hole’ laser (Sect. 23.4.17), typically
fabricated with p-doped Ge, which can be viewed as unipolar and functions only in
a magnetic field; its emission is in the THz regime.

23.4.2 Applications

In Fig. 23.30, the revenue in the worldwide diode laser market is shown. The drop
after 2000 is due to the burst of the ‘internet bubble’. Nondiode laser (gas, ruby,

14Or etched facets in possibly any direction.
15Such external cavities can be used for manipulation of the laser properties such as wavelength
tuning.

http://dx.doi.org/10.1007/978-3-319-23880-7_19
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Fig. 23.30 Revenue in
worldwide diode laser
market. Based on numbers
from [1677], data or 2015
estimated

excimer, …) revenue is currently stable at around 2 billion US$, thus semiconductor
lasers account for the largest share of all laser types sold.

The following applications rely on semiconductor lasers:

• optical communication,mostly optical fiber based (senders), typically at 10GBit/s,
in special situations also 40GBit/s data rate.

• optical information storage and retrieval (CD, DVD, BD16) with as short of a
wavelength as possible, as shown in Fig. 23.31, currently 405nm.

• pumping of solid-state lasers, typically 910 or 940nm for pumping Nd:YAG.
• portable projectors, laser TV, entertainment.
• laser pointers, see Fig. 23.32. A red laser pointer simply uses the collimated red
emission of a GaAs-based diode. In a green laser pointer, an infrared diode pumps
a Nd:YAG or Nd:YVO4 crystal. The emitted beam is then frequency doubled,
typically with a KTiOPO4 (KTP) crystal.

• medical instrumentswith a variety ofwavelengths in ophthalmology, dermatology,
cosmetics (hair removal, tattoo removal).

• various other uses, such as remote control, position detection, distance measure-
ment, printing, scientific instrumentation.

The market for photonic devices is much more dynamic than the electronics
market. An example is the rapid change of dominating laser applications. For diode
lasers, the two most prominent applications are telecommunication (77% market
share in 2000, 25% in 2003, 45% in 2008) and optical data storage (17% market
share in 2000, 60% in 2003, 44% in 2008).

1616 million 405nm laser diodes were shipped in 2006–2008. 85% of those are built into SONY’s
PS3, the rest into HD-DVD and other Blu-ray™disc (BD) players.
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Fig. 23.31 Evolution of optical data storage technology, ‘CD’: compact disk (laser: 780nm, pitch:
1.6µm, capacity: 0.7GB), ‘DVD’: digital versatile disk (laser: 635–650nm, pitch: 0.74µm, capac-
ity: 4.7GB for one layer), ‘BD’: ‘Blu-ray’ disk (laser: 405nm, pitch: 0.32µm, capacity: 27GB for
one layer)

Fig. 23.32 (a) Scheme of red laser pointer, (b) scheme of green laser pointer. Parts of a green laser
pointer: (c) pump laser diode, (d) YVO4 crystal, (e) KTP doubler

23.4.3 Gain

Due to current injection,17 a nonequilibrium carrier distribution is created. After fast
thermalization processes (phonon scattering), it canmostly described by quasi-Fermi

17Or due to optical pumping. If electrical contacts are not available, the laser action can be invoked
by supplying a high-intensity light beam, possibly in a stripe-like shape. For optically pumped
semiconductor lasers see Sect. 23.4.15.
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Fig. 23.33 Population (a) in thermodynamic equilibrium T = 0K, (b) under inversion for T = 0K,
(c) under inversion for T > 0K. Shaded areas are populated with electrons

levels. Sufficiently strong pumping leads to inversion, i.e. conduction-band states are
more strongly populated with electrons than valence-band states (Fig. 23.33). In this
case, the stimulated emission rate is stronger than the absorption rate (cf. Sect. 10.2.6).
The thermodynamic laser condition (cf. (10.23)) requires the difference of the quasi-
Fermi levels to be larger than the band gap.

Fn − Fp > Eg (23.10)

The gain is defined as the (frequency-dependent) coefficient g(�ω) that describes
the light intensity along a path L according to

I (L) = I (0) exp (g L) . (23.11)

The gain spectrum as a function of the photon energy �ω is given for non-k-
conserving recombination by (cf. (10.5) and (10.6))

g(�ω) =
∫

�ω−Eg

0
De(E)Dh(E ′)

[
fe(E) fh(E ′) − (1 − fe(E))(1 − fh(E ′))

]
dE,

(23.12)

with E ′ = �ω−Eg−E . The gain is positive for those photon energies for which light
is amplified and negative for those that are absorbed. In Fig. 23.34a, the electron and
hole concentrations are shown for GaAs as a function of the quasi-Fermi energies.
In Fig. 23.34b, the difference of the quasi-Fermi energies is shown as a function of
the carrier density (for neutrality n = p). The gain spectrum is shown in Fig. 23.34c

http://dx.doi.org/10.1007/978-3-319-23880-7_10
http://dx.doi.org/10.1007/978-3-319-23880-7_10
http://dx.doi.org/10.1007/978-3-319-23880-7_10
http://dx.doi.org/10.1007/978-3-319-23880-7_10
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(a) (b)

(c) (d)

Fig. 23.34 Gain in the two-bandmodel forGaAs. (a)Electron andhole concentrations at T = 300K
as a function of the quasi-Fermi energies counted relative to the band edges, i.e. Fn−EC and EV−Fp.
(b) Difference of quasi-Fermi levels as a function of carrier concentration (n = p) for GaAs at two
different temperatures. (c) Gain spectra according to (23.12) for n = 2×1018 and T = 300K (solid
line), increased carrier density n = 2.1 × 1018 and T = 300K (dashed line), higher temperature
n = 2 × 1018 and T = 314K (dash-dotted line) and same difference of the quasi-Fermi levels as
for the solid line, n = 2.1 × 1018 and T = 314K (dotted line). (d) Maximum gain (solid line) and
gain at a particular energy (dashed line, for photon energy Eg + 26.2meV for which the gain is
maximal for n = 2 × 1018 and T = 300K, see solid line in part (c))

for a simple two-band model.18 For a more elaborate discussion of such matters we
refer to [1678]. In the case of inversion, the gain is positive for energies between Eg

and Fn − Fp. At �ω = Fn − Fp, the gain is zero (transparency) and for larger ener-
gies negative (positive absorption coefficient). The agreement of experimental gain
spectra of quantum wells with theoretical considerations, including carrier collision
effects at the level of quantum kinetic theory in the Markovian limit, is very good
(Fig. 23.35a) [1679].

18One electron and one hole band are considered; the heavy and light hole bands are taken into
account via the mass according to (6.69).

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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(a) (b)

Fig. 23.35 (a) Gain spectra of a 6.8nm thick Ga0.41In0.59P/ (Al0.5Ga0.5)0.51In0.49P quantum well,
experimental data (symbols) and theory (lines) for three different sheet carrier densities n2D = 2.2,
2.7, and 3.2 × 1012 cm−2. (b) Maximum gain as a function of the separation of the quasi-Fermi
levels, experimental data (symbols) and theory (lines). Adapted from [1679]

For a given fixed energy, the gain increases with increasing pumping and increas-
ing carrier density n (Fig. 23.34d). For very small density, it is given as g(n → 0) =
−α. The gain rises around transparency approximately linearly with the pumping
intensity. At transparency carrier density ntr , the gain is zero. Therefore, the relation
g(n) can be approximated as (linear gain model)

g(n) ∼= α̂
n − ntr

ntr
. (23.13)

For large carrier density, the gain saturates (at a value similar to α). The onset of
positive gain is related to the separation of the quasi-Fermi levels being larger than
the band gap (23.10), Fig. 23.35b. The gain in quantum dot lasers [1680] has been
discussed in [1681].

23.4.4 Optical Mode

The lightwave that is amplifiedmust be guided in the laser.Anoptical cavity is needed
to provide optical feedback such that the photons travel several times through the
gainmedium and contribute to amplification.We explain the light-wavemanagement
for the edge emitter first:

Vertical Mode Guiding

In the course of the historical development of the semiconductor laser, the most
significant improvements (reduction of lasing threshold current) have been achieved
through the improvement of the overlap of the optical wave with the gain medium, as
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Fig. 23.36 Laser with (a) homojunction, (b) single heterostructure (SHS), (c) double heterostruc-
ture (‘DHS’), (d) reduction of threshold current with design progress (‘SHS’: d = 2µm, ‘DHS’:
d = 0.5µm). Adapted from [1682]

shown in Fig. 23.36. From homojunctions over the single heterojunction, eventually
the double heterostructure (DHS) design could reduce the laser threshold current
density to the 1kA/cm2 level.

The band diagram of a double heterostructure is shown in Fig. 23.37 for zero and
forward bias. In the DHS, the optical mode is guided by total reflection within the
low band gap center layer, which has a larger index of refraction than the outer,
large band gap layer.19 When the layer thickness is in the range of λ/nr, the form
of the optical mode must be determined from the (one-dimensional) wave equation
(Helmholtz equation) for the electrical field Ez

19A smaller band gap coincides for many cases with a larger index of refraction.
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Fig. 23.37 Schematic band diagramof a pn double heterostructure (DHS) diode (InP/InGaAsP/InP)
(a) before contact of thematerials, (b) in thermodynamic equilibrium (zero bias, dashed line is Fermi
level EF = const.), (c) with forward bias close to flat-band conditions, dashed lines are quasi-Fermi
levels

∂2Ez

∂z2
+ ω2 μ ε(z) Ez = 0. (23.14)

In Fig. 23.38a, the shape of the optical mode for GaAs/Al0.3Ga0.7As DHS with dif-
ferent GaAs thickness is shown.

The optical confinement factor Γ is the part of the wave that has geometri-
cal overlap with the gain medium, i.e. is subject to amplification. It is shown for
GaAs/AlxGa1−xAs DHS with different GaAs thickness and different Al concentra-
tion in Fig. 23.38b. The modal gain gmod that is responsible for light amplification in
the cavity consists of the material gain gmat due to inversion and the optical confine-
ment factor.

gmod = Γ gmat. (23.15)

In order to allow simultaneous optimization of the light mode and the carrier
confinement, the separate confinement heterostructure (SCH) has been designed.
Here, a single or multiple quantum well of a third material with even smaller band
gap is the active medium (Fig. 23.39a, b, d). A single quantum well has an optical
confinement factor of a few per cent only. It offers, however, efficient carrier capture
and efficient radiative recombination. An increase in the carrier capture efficiency
can be achieved using a graded index in the barrier (GRINSCH, Fig. 23.39c).



758 23 Electricity-to-Light Conversion

1.0

0.5

0
-1.0 -0.5 0 0.5 1.0

AlGaAs/
GaAs

0.1
0.075

0.2

(a) (b)

Fig. 23.38 (a) Optical mode (relative intensity) for various values of the thickness d of the active
layer as labeled of a GaAs/Al0.3Ga0.7As DHS laser, (b) Optical confinement factor Γ as a func-
tion of the thickness of the active layer and the Al concentration x of the barrier as labeled in a
GaAs/AlxGa1−xAs DHS laser. Adapted from [1674]
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Fig. 23.39 (a) Various geometries of the active layer of a DHS laser with quantum wells as active
medium, (i) single QW (separate confinement heterostructure, SCH), (ii) multiple QW SCH, and
(c) GRINSCH (graded-index SCH) structure. (b) Layer sequence for a separate confinement het-
erostructure laser

The thin wave-guiding layer leads to large divergence of the laser beam along the
vertical direction, typically about 90◦. The strong confinement of light also limits
the maximum achievable output power due to catastrophic optical damage (COD).
Several ideas have been realized to overcome this problem and achieve much smaller
divergence of about 18◦. Thewaveguide canbedesigned to be very thick (large optical
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Fig. 23.40 Scheme of gain-guided lasers with stripe contact: (a) oxide stripe, (b) proton implanted
with shadow mask from tungsten wire (∼10µm). Adapted from [1683]

cavity, LOC) that leads to an increase of threshold. Other schemes are insertion of a
low-index layer into the confinement layer, insertion of a high-index layer into the
cladding layer or the use of high-index quarter-wavelength reflecting layers [1684].

Lateral Mode Guiding

Lateral waveguiding can be achieved with gain guiding and index guiding (or a mix-
ture of the two). In the gain-guiding scheme (Fig. 23.40), the current path that is
defined by the stripe contact and the current spreading underneath it, defines the gain
region and therefore the volume of amplification that guides the optical wave. Since a
high carrier density reduces the indexof refraction, a competing antiguiding effect can
occur. For index guiding, the lateral light confinement is caused by a lateral increase
of the index of refraction. This indexmodulation can be achieved by using amesa-like
contact stripe (Fig. 23.41a). A shallow mesa reaches down into the upper cladding, a
deep mesa reaches down into or through the active layer. Possible problems with sur-
face recombination can be avoided by regrowth of the structure (Fig. 23.41b) with a
wide band gap material (compared to the active layer). Optimization of regrowth
is targeted to achieve a well-defined surface for subsequent contact processing.
A lateral pn-diode can be incorporated that avoids current spreading in the upper
part of the structure.

Depending on the width of the lateral mode, it can be monomode or multimode
(Fig. 23.42a, b). For laterally monomode lasers, the stripe width may only be a few
µm. In particular for such lasers, the current spreading must be controlled. Problems
can arise for wide stripe widths due to current filamentation and inhomogeneous
laser emission from the facet. Since the optical mode is typically more confined
in the growth direction than in the lateral direction, the far field is asymmetric
(Fig. 23.43a, b). The vertical axis has the higher divergence and is called the fast
axis. The lateral axis is called the slow axis. The asymmetric beam shape is detri-
mental when the laser needs to be coupled into an optical fiber or a symmetric beam
profile is needed for subsequent optics. The beam can be made symmetric using
special optic components such as anamorphic prisms (Fig. 23.43c) and graded-index
lenses. The beam from a laterally monomode laser is diffraction limited and can
therefore generally be refocused efficiently (beam quality M2 � 1).
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Fig. 23.41 Schematic cross section of index-guided lasers: (a) shallow ridge, (b) deep etch and
regrowth. Black areas are metal contacts

Fig. 23.42 Lateral near field
(a) and far field (b) of lasers
with various width S of the
injection stripe as labeled.
Adapted from [1685]
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Longitudinal Modes

The spectral positions of the laser modes for a cavity with length L is given by the
condition (cf. (19.34))

L = m λ

2 nr(λ)
, (23.16)

where m is a natural number and n(λ) is the dispersion of the index of refraction.
The distance of neighboring modes is given by (for large m)

http://dx.doi.org/10.1007/978-3-319-23880-7_19
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Fig. 23.43 (a) Schematics of the asymmetric far field of an edge emitter. Adapted from [500].
(b) Far-field distribution of violet GaN-based laser. Adapted from [1686]. (c) Correction of asym-
metric far field with a pair of anamorphic prisms

Δλ = λ2

2 nr L
(
1 − λ

nr

dnr
dλ

) . (23.17)

The dispersion dnr/dλ can sometimes be neglected.
The facets of edge-emitting lasers are typically cleaved. Cleaving bears the dan-

ger of mechanical breakage and tends to have poor reproducibility, low yield and
therefore high cost. Etched facets are another possibility to form the cavity mir-
ror. The etch process, typically reactive ion dry etching, must yield sufficiently
smooth surfaces to avoid scattering losses. A highly efficient distributedBraggmirror
(cf. Sect. 19.1.4) with only a few periods can be created by using the large index con-
trast between the semiconductor and air. As shown in Fig. 23.44, slabs can be etched
that make a Braggmirror with the air gaps [1687]. In this way, very short longitudinal
cavities can be made (≈10µm).

http://dx.doi.org/10.1007/978-3-319-23880-7_19
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(c)(b)

(a)

Fig. 23.44 SEM image of (a) an InP microlaser with third-order Bragg mirrors, (b) magnified
view of the front facet with three slabs, (c) a 12µm long microlaser with five third-order mirrors
on the rear side and three first-order mirrors on the front side with top contact. From [1688]; part
(b) reprinted with permission from [1687], c© 2001 AIP

23.4.5 Loss Mechanisms

While the light travels through the cavity, it is not only amplified but it also suffers
losses. The internal loss αi and the mirror loss αm contribute to the total loss αtot

αtot = αi + αm. (23.18)

The internal loss is due to absorption in the cladding, scattering at waveguide
inhomogeneities and possibly other processes. It can be written as

αi = α0 Γ + αg (1 − Γ ), (23.19)

where α0 is the loss coefficient in the active medium and αg is the loss coefficient
outside the active medium.

The mirror loss is due to the incomplete reflection of the optical wave at the
laser facets. This condition is necessary, however, to observe a laser beam outside
the cavity. R1 and R2 are the values of reflectance of the two facets, respectively.
An as-cleaved facet has a reflectance of about 30% (cf. (23.8)). Using dielectric
layers on the facets, the reflectance can be increased (high reflection, HR-coating) or
decreased (antireflection, AR-coating). One round-trip through the cavity of length
L has the length 2L . The intensity loss due to reflection at the facets is expressed via
exp (−2αmL) = R1 R2

αm = 1

2L
ln

(
1

R1 R2

)
. (23.20)
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If both mirrors have the same reflectance R, we have αm = −L−1 ln R. For R = 0.3
a 1mm cavity has a loss of 12cm−1. For the internal loss a typical value is 10cm−1,
very good waveguides go down to 1–2cm−1.

Lasing is only possible if the gain overcomes all losses (at least for one wave-
length), i.e.

gmod = gmat Γ ≥ αtot. (23.21)

23.4.6 Threshold

When the laser reaches threshold, the (material) gain is pinned at the threshold value

gthr = αi + αm

Γ
. (23.22)

Since g ∝ n, the carrier density is also pinned at its threshold value and does
not increase further with increasing injection current. Instead, additional carriers are
quickly converted into photons by stimulated emission. The threshold carrier density
is (using the linear gain model, cf. (23.13))

nthr = ntr + αi + αm

α̂ Γ
. (23.23)

For an active layer of thickness d , the threshold current density is

jthr ∼= e d nthr

τ (nthr)
, (23.24)

where τ (nthr) is the (minority) carrier lifetime at the threshold carrier density (cmp.
Sect. 10.10) from

τ (n) = 1

A + B n + C n2
. (23.25)

Using (23.23), we can write (for R = R1 = R2)

jthr = jtr + e d

τ α̂ Γ

(
αi − 1

L
ln R

)
, (23.26)

where the transparency current density is jtr = e d ntr/τ . Thus, the plot of jthr
versus 1/L (or the optical loss) should be linear and can be extrapolated towards the
transparency current density (cf. Fig. 23.45a).

Any additional increase of the current j leads to stimulated emission with the rate

rst = d vg gthr Nph, (23.27)

http://dx.doi.org/10.1007/978-3-319-23880-7_10
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(a) (b)

Fig. 23.45 (a) Threshold current density for (three-fold InGaAs/GaAs QD stack) laser (λ =
1150nm) at 10 ◦C with different cavity length versus the optical loss (∝ 1/L). The extrapolated
transparency current density is 21.5 ±0.9A/cm2. (b) Inverse external quantum efficiency versus
cavity length. The internal quantum efficiency determined from the plot is 91% and the internal
loss is 1.4cm−1

where vg is the group velocity (mostly c0/nr) and Nph is the photon density (per
length) in the cavity. The photon density increases linearly beyond the threshold

Nph = 1

e d vg gthr
( j − jthr) . (23.28)

The photon lifetime

1

τph
= vg (αi + αm) = vg Γ gthr (23.29)

is introduced that describes the loss rate of photons. vg αm describes the escape rate
of photons from the cavity into the laser beam(s). Therefore,

Nph = τph Γ

e d
( j − jthr) . (23.30)

Since the threshold depends on the carrier density, it is advantageous to reduce the
active volume further and further. In this way, the same amount of injected carriers
creates a larger carrier density. Figure23.46 shows the historic development of laser
threshold due to design improvements.
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Fig. 23.46 Historic
development of threshold
current density (at room
temperature, extrapolated for
infinite cavity length and
injection stripe width) for
various laser designs, ‘DH’:
double heterostructure,
‘SCH–QW’: separate
confinement heterostructure
with quantum wells. ‘QD’:
quantum dots. Dashed lines
are guides to the eye
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23.4.7 Spontaneous Emission Factor

The spontaneous emission factor β is the fraction of spontaneous emission (emit-
ted into all angles) that is emitted into laser modes. For Fabry–Perot lasers, β is
typically in the order of 10−4–10−5. The design of a microcavity can increase β
drastically by several orders of magnitude to ≈0.1 [1689] or above and thus reduce
the threshold current. The photon number as a function of the pump current can be
calculated from the laser rate equations and is depicted in Fig. 23.47. For β = 1,
all emitted power goes into the laser mode regardless of whether emission is spon-
taneous or stimulated. The definition of threshold in such ‘nonclassical’ lasers with
large β is discussed in detail in [1690].

Fig. 23.47 Photon number
versus pump current for a
model laser. Adapted
from [1691]
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23.4.8 Output Power

The output power is given by the product of photon energy, the photon density in the
cavity, the effective mode volume and the escape rate:

Pout = �ω Nph
L w d

Γ
vg αm. (23.31)

Thus, it is given by

Pout = �ω vg αm
τph

e
L w ( j − jthr) = �ω

e

αm

αm + αi
(I − Ithr) . (23.32)

To this equation, the factor ηint must be added. The internal quantum efficiency
describes the efficiency of the conversion of electron–hole pairs into photons (cmp.
(10.59)):

ηint = B n2 + vg gthr Nph

A n + B n2 + C n3 + vg gthr Nph
. (23.33)

All in all, now (see Fig. 23.48a)

Pout = �ω

e

αm

αm + αi
ηint (I − Ithr) . (23.34)

The differential (or slope) quantum efficiency, also called the external quantum
efficiency ηext, is the slope of the Pout curve versus the current in the lasing regime.
It is given by

ηext = dPout/dI

�ω/e
= ηint

αm

αm + αi
. (23.35)

The external quantum efficiency can also be written as

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

I r

InGaAs/
GaAs

(a) (b)

Fig. 23.48 (a) Typical P–I characteristic of a semiconductor laser. Adapted from [500]. (b) Output
power and total quantum efficiency of a quantum dot laser (3 stacks of InGaAs/GaAs QDs, L =
2mm, w = 200µm, λ = 1100nm, T = 293K) versus injection current

http://dx.doi.org/10.1007/978-3-319-23880-7_10
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1

ηext
= 1

ηint

(
1 + αi

αm

)
= 1

ηint
[1 − 2αi L ln (R1R2)] . (23.36)

Therefore, if η−1
ext is plotted for similar lasers with different cavity length (see

Fig. 23.45b), a straight line should arise from which the internal quantum efficiency
(extrapolation to L → 0) and the internal loss (∝ slope) can be determined experi-
mentally.

The threshold current for a given laser is determined from the P–I characteristic
via extrapolation of the linear regime as shown in Fig. 23.48a. Record values for
the threshold current density are often given for the limit L → ∞. Due to current
spreading, the threshold current density also depends on the width of the injection
stripe. Record low thresholds are therefore often given for the limit w → ∞.

The total quantum efficiency is given by

ηtot = Pout/I

�ω/e
. (23.37)

This quantity is shown in Fig. 23.48b for a laser as a function of the current. For a
linear P–I lasing characteristic, the total quantum efficiency converges towards the
external quantum efficiency for high currents because the low quantum efficiency
subthreshold regime no longer plays any role. Another important figure of merit is
the wall-plug efficiency ηw that describes the power conversion:

ηw = Pout

U I
. (23.38)

Additionally to the current balance discussed so far, typically a leakage current
exists that flows without contributing to recombination or lasing. Carriers not cap-
tured into or escaping from the active layers can contribute to this current. The present
record forwall-plug efficiency of high-power laser diodes is above 70%[1692, 1693],
employing careful control of band alignment (graded junctions, avoiding voltage
barriers), optical losses, Joule heating, spontaneous emission and carrier leakage. It
seems possible to achieve ηw of 80%.

The P–I characteristic is not linear to arbitrary high currents.Generally, the output
power will saturate or even decrease for increasing current. These effects can be due
to increasing leakage current, increasing internal loss at high current or temperature
effects, e.g. an increase of threshold with increasing temperature (cf. Sect. 23.4.9)
and therefore a reduction of total efficiency. All nonradiative losses will eventually
show up as heat in the laser that must be managed with a heat sink.

A radical effect is catastrophical optical damage (COD) at which the laser facet
is irreversible (partially) destructed. Antioxidation or protective layers can increase
the damage threshold to>20MW/cm2. The record power from a single edge emitter
is ∼12W (200µm stripe width). For a lateral monomode laser, cw power of about
1.2W has been reached from a 1480nm InGaAsP/InP double quantum-well lasers
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with 3–5µm stripes and 3mm cavity length [1694]. About 500mW can be coupled
into a single-mode fiber [1695].

23.4.9 Temperature Dependence

The threshold of a laser typically increases with increasing temperature as shown in
Fig. 23.49a. Empirically, in the vicinity of a temperature T1 the threshold follows an
exponential law (see Fig. 23.49b)

(a)

2

1

0
0 100 200

25°C

115°C

95°CGaAs/
AlGaAs

(b)

(c)
InGaAs/
GaAs
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4.5

4.0

3.5

3.0

50 100 150 200 250 300
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Fig. 23.49 (a) P–I characteristic (cwoutput power permirror facet) of stripe-buried heterostructure
laser at various temperatures of the heat sink between 25 ◦C and 115 ◦C in steps of 10K. (b)
Threshold current (in logarithmic scale) of this laser as a function of heat-sink temperature and
exponential fit (dashed line)withT0 = 110K.Parts (a) and (b) adapted from [1696]. (c) Temperature
dependence of the threshold current density of a quantum dot laser (3 stacks of InGaAs/GaAs QDs,
λ = 1150nm) with T0 (solid lines are fits) given in the figure
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jthr(T ) = jthr(T1) exp

(
T − T1

T0

)
∝ exp

(
T

T0

)
, (23.39)

with T0 being the so-called characteristic temperature.20 It is the inverse logarithmic
slope, T −1

0 = d ln jthr/dT .
T0 summarizes the temperature-dependent loss and the carrier redistribution in

k-space due to the change of the Fermi distributionwith temperature.With increasing
temperature, populated states below the quasi-Fermi level become unpopulated and
nonlasing states become populated. Therefore, the gain decreases with increasing
temperature. This redistribution must be compensated by an increase of the quasi-
Fermi energy, i.e. stronger pumping. This effect is present for (even ideal) bulk,
quantum well and quantum wire lasers. Only for quantum dots with a δ-like density
of states is the change of Fermi distribution irrelevant as long as excited states are
energetically well separated from the (lasing) ground state. In Fig. 23.49c, the thresh-
old of a quantum dot laser is indeed temperature independent (T0 = ∞) as long as
excited states are not thermally populated (for T < 170K for the present laser).

23.4.10 Mode Spectrum

In Fig. 23.50a, themode spectrumof a typical edge-emitting laser is shown. Below
threshold, the amplified spontaneous emission (ASE) spectrum exhibits a comb-like
structure due to the Fabry–Perot modes. Above threshold, some modes grow much
faster than others, possibly resulting in single longitudinal mode operation at high
injection. The relative strength of the strongest side mode is expressed through the
side-mode suppression ratio (SSR) in dB

SSR = 10 log

(
Imm

Ism

)
, (23.40)

where Imm (Ism) is the intensity of the maximum (strongest side) mode in the lasing
spectrum.

As a tendency a DHS or QW semiconductor laser above threshold develops a nar-
row spectrum since the pump power is channeled into one or few modes with large
gain. A quantum dot laser behaves differently when pumped largely above thresh-
old. Since the gain of individual QDs in an inhomogeneously broadened ensemble
(due to different QD sizes) is independent, a broad gain spectrum is present [1699].
The lasing spectrum takes a hat-like shape when homogeneous broadening is small
compared to the inhomogeneous broadening [1698, 1700] (Fig. 23.51) as predicted
theoretically [1699, 1701].

20Since T0 has the dimension of a temperature difference, it can be expressed in ◦C or K. For the
sake of unambiguity it should be given in K.
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Fig. 23.50 (a)Mode spectra of a Fabry–Perot laser, under, at and above threshold (Ithr = 13.5mA).
Adapted from [1047]. (b) Mode spectra of a cw DFB InGaAs/InP laser with 2mm cavity length at
various currents of 200, 400, . . . , 1400mA (Ithr = 65mA), SSR > 40dB at T = 293K. Adapted
from [1697], reproduced with permission from SPIE

23.4.11 Longitudinal Single-Mode Lasers

In order to achieve a high SSR or single longitudinal mode lasing, the feedback
must offer a higher wavelength selectivity than a simple mirror. A preferential feed-
back for certain modes can be obtained using a periodic dielectric structure that
‘fits’ to a particular wavelength, similar to a Bragg mirror. The periodic modulation
of the refractive index can be made within the cavity (distributed feedback, DFB,
Fig. 23.52a) or at the mirror (distributed reflection, DBR, Fig. 23.52b). In this way,
monochromatic lasers with SSR �30dB are possible (Fig. 23.50b).

It is possible to couple several hundred mW optical power of a laterally and
spectrally monomode laser into a monomode optical fiber [1702] (Fig. 23.53).
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Fig. 23.51 Lasing spectra of quantum dot laser (L = 1.2mm, stripe width w = 75µm) at room
temperature. The active medium is a three-fold stack of InGaAs/GaAs QDs. The current density as
labeled is given in units of the threshold current density ( jthr = 230A/cm2). Adapted from [1698]
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Fig. 23.52 Schematic drawing of (a) DFB (distributed feedback) and (b) DBR (distributed Bragg
reflection) lasers. The activemedium is schematically shown as a triple quantumwell, thewaveguide
is shown as a grey area

23.4.12 Tunability

The tunability of the emissionwavelength [1704] is important for several applications
such as wavelength division multiplexing21 and spectroscopy.

The simplest possibility to tune a laser is to vary its temperature and thus its band
gap. This method is particularly used for lead salt lasers in the mid-infrared region,22

as shown in Fig. 23.54.

21In order to make better use of the high bandwidth of the optical fiber several information channels
with closely lying wavelengths are transmitted.
22Note the anomalous positive coefficient dEg/dT as discussed in Sect. 6.7.

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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Fig. 23.53 (a) Output power of an InGaAsP/InP cw single-mode DFB laser at 1427nm with 2mm
cavity length from the facet and coupled to a single-mode fiber versus driving current (T = 293K).
The dashed line represents the coupling efficiency to the fiber (right scale). Adapted from [1702].
(b) Package with pigtail of fiber coupled 1550nm DFB laser with 40mW output power in the fiber.
From [1703]

(a)
n-Pb Sn Te:Bi

In

n-Pb Sn Te:Bi

p-PbTe:Tl

MgF mask2

Au

(b)20

15

10

5

0
0 50 100

20

15

10

5

0

j 
(k

A
/c

m
)2

PbTe/PbSnTe

Fig. 23.54 (a) Schematic drawing of PbTe lead salt laser. (b) Tuning characteristics of such laser:
Emission wavelength (left scale, filled circles: emission wavelength at cw threshold, empty circles:
emission maximum under pulsed operation) and cw threshold current density (right scale) as a
function of the heat-sink temperature. Symbols are experimental data, dashed lines are guides to
the eye. Adapted from [1705]

For monomode lasers, mode hopping, i.e. the discontinuous shift of lasing wave-
length (or gainmaximum) from onemode to the next, poses a problem for continuous
tuning, as shown in Fig. 23.55. The continuous shift of emission wavelength is due
to the temperature dependence of the index of refraction and subsequently the lon-
gitudinal modes. The index of refraction increases with increasing temperature at
typically ∼3 × 10−4 K−1. Generally, a red-shift is the consequence.
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Fig. 23.55 Wavelength as a
function of temperature
(with mode hopping) for a
GaAs-based DFB laser

(a)
(b)

1.52 1.54 1.56 1.58

0.3

0.2

0.1

0

R1 R2

Fig. 23.56 (a) Schematic representation of SGDBR (sampled-grating DBR) laser with four sec-
tions. Adapted from [1706]. (b) Reflectance of two sampled gratings DBR mirrors

Another possibility to vary the index of refraction (and thus the optical path length)
is a variation of the carrier density. The coefficient dnr/dn is about −10−20 cm3. In
a two-section laser, separate regions (with separately controlled currents) for gain
and tuning are present. The regions are separated with deep-etched trenches to avoid
crosstalk. The tuning range is limited to about 10nm. For amode-hopping free tuning,
the control of the phase in the cavity is important and requires an additional section
for the phase control. Such a three-section laser has separate regions (and current
control) for the reflection, phase and amplification (or gain) region.

Using sampled gratings, the tuning range can be strongly increased to about
100nm. A sampled grating is a nonperiodic lattice that has several (∼10) reflection
peaks. The laser structure has four sections (Fig. 23.56) with two mirrors that have
slightly different sampled gratings.Via the carrier densities in the twomirror sections,
different maxima can be brought to overlap (Vernier effect) and the position of the
selected maximum can be tuned over a wide spectral range (Fig. 23.57).
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(a)

(b)

Fig. 23.57 (a) Tuning curves of two sampled gratings DBR mirrors for the front and back mirror
current. (b) 27 wavelength channels (1531.12–1551.72nm) with a channel separation of 1nm.
Adapted from [1707]

23.4.13 Dynamics and Modulation

For transmission of information in the time domain, the laser intensity must be
modulated. This can be accomplished by direct modulation, i.e. modulation of the
injection current, or external modulators, for example using the voltage-induced shift
of the absorption spectrum due to QCSE (cf. Sect. 13.1.2). For direct modulation,
small- and large-signal modulation are distinguished. A detailed treatment of laser
dynamics and modulation can be found in [1708].

Laser Dynamics

The dynamical properties of the laser are described by the coupled rate equations for
the carrier density n and the photon density (per volume) S:

dn

dt
= j

e d
− n

τ (n)
− g(n, S) vg S (23.41a)

dS

dt
= Γ g(n, S) vg S + β B n2 − S

τph
. (23.41b)

http://dx.doi.org/10.1007/978-3-319-23880-7_13
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The first term in (23.41a) describes the electrical injection23 (=I/(e V )), the second
one the recombination (all channels) and the third one the carrier conversion to
photons through stimulated emission via the gain g. In the photon dynamics (23.41b),
the first term represents the gain term, the second one the photons in the laser mode
from the recombination (spontaneous emission, cmp. Sect. 23.4.7) and the third term
the photon loss (due to internal losses and the mirrors). The recombination rate
n/τ (n) is typically given by (23.25). The photon lifetime τph is given by (23.29). For
the gain various models are used, a simple one being (cmp. (23.13)):

g(n, S) = g′ n − nthr

1 + εS S
, (23.42)

g′ being the differential gain and εS being the gain compression coefficient due to
spectral hole burning.

Large-Signal Modulation

If a current pulse is fed to the laser, the laser radiation is emitted with a short time
delay, the so-called turn-on delay (TOD) time. This time is needed to build up the
carrier density for inversion. The time dependence of the density is (neglecting the
density dependence of the lifetime)

n(t) = I τ

e A d

[
1 − exp

(
− t

τ

)]
. (23.43)

The TOD time to reach the threshold density (using (23.24)) is

τTOD = τ ln

(
I

I − Ithr

)
. (23.44)

We note that τTOD > 0 for I > Ithr. Such a dependence is found experimentally
(Fig. 23.58). The turn-on delay time decreases with increasing pump current but
typically is at least 1ns. In order to circumvent this limitation for more than about
1GHz pulse repetition rate, the laser is biased slightly below threshold.

In Fig. 23.59a, the response (light emission) of a LED to a short current pulse is
shown schematically. The monotonously decreasing transient (that is more or less
exponential) corresponds to the carrier recombination dynamics. When a laser is
excited with a steep (long) current pulse, the response exhibits so-called relaxation
oscillations (RO) before the steady-state (cw) intensity level is reached (Fig. 23.59b).

In the laser, first the carrier density is built up. It surpasses the threshold density
that leads to a build-up of the photon density. The laser pulse depletes the carrier
density faster below threshold than the current can supply further carriers. Therefore,
the laser intensity drops below the cw level. From the solution of the coupled rate
equations for the electron and photon densities n and S (23.41a, b), the frequency of
the relaxation oscillations is found as

23This term can be multiplied by the injection efficiency ηinj to account for leakage currents.
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Fig. 23.58 Variation of
turn-on delay time with the
injected current for a laser at
room temperature. Adapted
from [1709]
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Fig. 23.59 Schematic response of (a) LED to current pulse and (b) of laser to current step

fRO = 1

2π

(
vg g′ S0

τph

)1/2

, (23.45)

where g′ is the differential gain as defined in (23.42) and S0 is the steady-state
photon density per volume that is proportional to the laser power P . The dependence
fRO ∝ S1/2

0 is also found experimentally (Fig. 23.60a). For higher power the relation
f 2RO ∝ S0 becomes non-linear (Fig. 23.60b) due to gain compression; in this case S0
is replaced with S0/(1 + εS S0) ∝ P/(1 + P/Psat), with Psat being the saturation
power.

Pattern Response

For digital data transmission, the laser is driven with pulse sequences (bit patterns).
The response to a random bit pattern is called an ‘eye pattern’ and is shown in
Fig. 23.61. The pattern consists of traces of the type shown in Fig. 23.59b. A clear
distinction with well-defined trigger thresholds between ‘on’- and ‘off’-states can
only be made if the eye formed by the overlay of all possible traces remains open.
From the eye patterns in Fig. 23.61, it can be seen that the RO overshoot can be
suppressed by driving the laser with a dc offset current well above threshold.
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Fig. 23.60 (a) Dependence of small-signal 3dB cutoff frequency f3dB (filled symbols) and relax-
ation oscillation frequency fRO (empty symbols) on the square root of the output power P for a
DFB-laser. Adapted from [1710]. (b) Relaxation oscillation frequency f 2RO versus power for an
InAs/GaAs QD laser. The solid line is a model including gain compression (Psat = 3.3mW), the
dashed line is the linear relation (23.45) for small power. Adapted from [1711]

Fig. 23.61 Eye pattern of a
single-mode VCSEL in
response to a 10Gb/s random
bit pattern. The patterns are
measured (a) with an offset
current well above threshold
and (b) with an offset current
above but close to threshold.
Adapted from [1712]
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Small-Signal Modulation

In small-signal modulation, the injection current I is varied periodically by a small
amount δ I with δ I 
 I in the lasing regime. The current modulation leads to a
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corresponding variation of the output intensity. The frequency response is limited by
the differential gain and the gain compression coefficient. The frequency response
shifts to higher frequency with increasing laser power as shown in Fig. 23.62b.

αFactor

Another important quantity is the α factor, also called the linewidth enhancement
factor [1713, 1714]. Due to the coupling of amplitude and phase fluctuations in the
laser, the linewidth Δ f is larger than expected.

Δ f = �ω vg Rspont ln R

8π Pout L
(1 + α2). (23.46)

The linewidth enhancement is described via (1 + α2) with

α = dnr/dn

dκ/dn
= −4π

λ

dnr/dn

g′ , (23.47)

where κ denotes the imaginary part of the index of refraction (9.4). Typical values
for α are between 1 and 10. The linewidth is inversely proportional to the output
power (Fig. 23.63).

23.4.14 Surface-Emitting Lasers

Surface-emitting lasers emit their beam normal to the surface. They can be fabricated
from horizontal (edge-) emitters by reflecting the beamwith a suitable mirror into the
surface direction. This technology requires tilted facets or micro-optical components
but allows for high power per area. In Fig. 23.64, a schematic cross section of a
horizontal-cavity surface-emitting laser (HCSEL) and the light emission from an

Fig. 23.62 Frequency
response of a DFB-laser for
various output powers as
labeled. Adapted
from [1710]
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Fig. 23.63 Linewidth Δ f of a cw GaAs/AlGaAs laser diode at various temperatures as a function
of the inverse output power P−1

out . At room temperature α ≈ 5. Adapted from [1715]
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Fig. 23.64 (a) Principle of a surface-emitting laser. Light generated in the active region is internally
reflected by the 45◦ angled mirror and directed through the substrate; ‘AR’: antireflection coating,
‘DBR’: epitaxial Bragg mirror. (b) Light emission from a 10×22 surface-emitting diode array. The
light emission appears as stripes due to the broad beam divergence in the vertical direction. Part (b)
reprinted with permission from [1716]

array of 220 such lasers are shown. The laser contains a 45◦ mirror that steers the
light through the substrate and a Bragg mirror to provide the cavity mirror. The facet
can also be fabricated such that the emission is to the top surface (Fig. 23.65). Another
possibility to couple the beam out of a horizontal cavity is a surface grating.

Now, surface-emitting lasers with vertical-cavity (VCSEL), as shown in
Fig. 23.29b, will be discussed. A detailed treatment can be found in [1718]. VCSELs
are of increasing importance after many issues regarding their technology and fabri-
cation have been solved. VCSEL fabrication is essentially a planar technology and
VCSELs can be fabricated as arrays (Fig. 23.67). An on-wafer test of their properties
is possible. They offer a symmetrical (or possibly a controlled asymmetrical) beam
profile (Fig. 23.66) with possible polarization control or fixation.
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(a) (b)

(c)
laser
ridge

Fig. 23.65 (a) Horizontal Fabry–Perot cavity InP-based laser with 1310nm emission length and
10mW output power for modulation at 2.5GB/s. The right facet is formed as DBR, emission is to
the left. The trapezoid area in the center bottom of the image is the bond pad for the top contact.
(b) Horizontal-cavity surface-emitting laser. Compared to (a), the right facet is replaced with a
45◦ mirror, leading to surface emission. (c) Schematic drawing of the tilted facet. Parts (a) and (b)
from [1717]

Fig. 23.66 In-plane near
field of a VCSEL with 6µm
oxide aperture at various
currents, (a) 3.0mA, (b)
6.2mA, (c) 14.7mA, (d)
18mA

The cavity is formed by two highly reflecting Bragg mirrors with a distance of
λ/2 or 3λ/2 forming a microcavity (see Sect. 19.1.7). A high index contrast can
be obtained from GaAs/AlAs Bragg mirrors in which the AlAs layers have been
selectively oxidized in a hot moist atmosphere. Pure semiconductor Bragg mirrors
suffer typically from small index contrast and require many pairs. This poses a
problem, e.g. for InP-based VCSELs. In Fig. 23.68, the distribution of light intensity
along a 3λ/2 cavity is shown. In the stop band of the mirrors, there is only one optical
mode, the cavity mode, that can propagate along the vertical (z) direction.

The current path through the active layer can be defined with an oxide aperture.
This aperture is fabricated by selective oxidation of an AlAs layer, leaving a circular
opening in the center of the VCSEL pillar as shown in Fig. 23.69. The current can
be injected through the mirrors if they are doped. Alternatively, the current can be
directly fed to the active layer by so-called intracavity contacts.

The emissionwavelength of aVCSEL can be shifted via a variation of temperature
or pump power. Tuning of the VCSEL emission can also be accomplished by leaving
an air gap between the cavity and the upper mirror [1722]. Applying a voltage to the

http://dx.doi.org/10.1007/978-3-319-23880-7_19
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Fig. 23.67 (a), (b) VCSEL arrays. Part (a) reprinted from [1719]with permission, part (b) reprinted
from [1720] with permission

Fig. 23.68 Simulation of the
longitudinal distribution of
the optical field in a VCSEL
structure. The active medium
are five quantum wells in the
center. Reproduced
from [1721] by permission
from the MRS Bulletin

(a) (b)

Fig. 23.69 (a) Schematic cross section of VCSEL with oxide aperture, (b) TEM image of cross
section. Reproduced from [1721] by permission from the MRS Bulletin

lever arm with the top mirror, the width of the air gap can be varied. This variation
leads to a shift of the cavity mode and therefore of the laser emission wavelength
(Fig. 23.70). A VCSEL with air gap and particularly a high contrast Bragg mirror is
achieved with InP/air as shown in Fig. 23.71.
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Fig. 23.70 (a) Schematic setup and (b) SEM image of VCSEL with air gap between active layer
and top Bragg mirror, (c) spectra for different tuning conditions (via the width of the air gap).
From [1723]
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Fig. 23.71 (a) VCSEL with air gap and (b) Bragg mirror with high dielectric contrast InP/air
interfaces. Reprinted with permission from [1724], c© 2002 IEEE

23.4.15 Optically Pumped Semiconductor Lasers

An easy way to pump semiconductor lasers is optical pumping. This technique is
similar to diode-pumped solid-state lasers (DPSS). A (semiconductor) pump diode
illuminates a suitable semiconductor structure (Fig. 23.72). The resonator is built
between the bottom Bragg mirror of the semiconductor and the output coupler. The
semiconductor structure contains suitable absorption layers (barriers) that absorb
the pump light and quantum wells that emit laser radiation. This radiation is intra-
cavity frequency doubled. In order to reach, e.g., a 488nm output laser beam, a
standard 808nm pump diode is employed. The InGaAs/GaAs quantum wells are
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designed to emit at 976nm. Other design wavelengths of the quantum wells allow
for other output wavelengths. This technology allows compact lasers with little heat
dissipation [1725]. The optically pumped semiconductor laser (OPSL) is also known
as a semiconductor disc laser.

23.4.16 Quantum Cascade Lasers

In a quantum cascade laser (QCL), the gain stems from an intersubband transition.
The concept was conceived in 1971 [1729, 1730] and realized in 1994 [1676]. In
Fig. 23.73a, the schematic conduction-band structure at operation is shown. The
injector supplies electrons into the active region. The electron is removed quickly
from the lower level in order to allow inversion. The electron is then extracted into the
next injector. The lasermedium consists of several such units as shown in Fig. 23.73b.
Since every unit can deliver a photon per electron (with efficiency η1), the total
quantum efficiency of N units η = N η1 can be larger than 1.

The emission wavelength is in the far- or mid-infrared, depending only on the
designed layer thicknesses and not on the band gap of the material (Fig. 23.73d). In
the mid-infrared, room-temperature operation has been achieved while operation in
the far-infrared requires cooling so far. Extensions to the THz-range and the infrared
spectral region (telecommunication wavelengths of 1.3 and 1.55µm) seem feasible.
The cascade laser concept can also be combined with the DFB technology to create
single-mode laser emission (Fig. 23.73d).
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(b)

Fig. 23.72 (a) Schematic setup of optically pumped semiconductor laser (OPSL). The semicon-
ductor chip consists of a Bragg mirror on the bottom, multiple quantum wells and an antireflection
coating on the top. Adapted from [1725]. (b) OPSL source (488nm, 20mW, footprint: 125 ×
70mm2). Reprinted with permission from [1726]
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23.4.17 Hot-Hole Lasers

The hot-hole laser,which ismostly realizedwith p-dopedGe, is based on a population
inversion between the light- and heavy-hole valence subbands. The laser operates
with crossed electric and magnetic fields (Voigt configuration, typically E = 0.5–
3kV/cm, B = 0.3–2T) and at cryogenic temperatures (T = 4–40K) [1731–1733].

A significant scattering process of hot carriers is interaction with optical phonons,
mainly optical phonon emission. This process has a threshold in carrier energy given
by the optical phonon energy. For sufficiently high electric fields and at low tempera-
ture, hot carriers acceleratewithout acoustical phonon interaction (ballistic transport)
along the crystallographic direction in which the electric field is applied. These hot
carriers reach the optical phonon energy and lose all their energy due to emission

(a)

(b)

(c)
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Fig. 23.73 (a) Schematic band diagram of quantum cascade laser. (b) Cross sectional TEM of
cascade layer sequence. The periodicity of the vertical layer sequence is 45nm. From [1727].
(c) Laser emission wavelengths and operation temperatures for various realized quantum cascade
lasers (squares: cw, circles: pulsed operation, solid symbols: InP-, empty symbols: GaAs-based).
Data from [1728]. (d) SEM image of a quantum cascade DFB laser (grating period: 1.6µm).
From [1728]
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of an optical phonon. They accelerate again, repeating this directional motion in
momentum space. This motion is called streaming motion.

For |E/B| ratios of about 1.5kV/cmT, the heavy holes are accelerated up to ener-
gies above the optical phonon energy (37meV in germanium) and consequently are
scattered strongly by these phonons. Under these conditions, a few per cent of the
heavy holes are scattered into the light-hole band. The light holes remain at much
lower energies and are accumulated at the bottom of the light-hole band below the
optical phonon energy as sketched in Fig. 23.74. The continuous pumping of heavy
holes into the light-hole band can lead to a population inversion. Consequently,
laser radiation is emitted from optical (radiative) intervalence-band transitions (cf.
Sect. 9.8.3). The emission wavelength is in the far-infrared around 100µm. Typi-
cal p-Ge lasers span the frequency range 1–4THz (300–70µm) [1734] and deliver
1–10W peak output power for 1cm3 typical active volume.

Since the applied electric field causes considerable heating, the temperature of
the laser crystal rises quickly, within a few µs, up to 40K. Then the laser action
stops. Thus the duration of the electric-field excitation is limited to 1–5µs (limiting
the emission power) and the repetition frequency is only a few Hertz due to the
necessary cooling. Research is underway towards high duty cycle (possibly cw)
operation by using smaller volumes and planar vertical-cavities [1735, 1736].

23.5 Semiconductor Optical Amplifiers

If the facets of a laser cavity are antireflection coated, a laser gainmedium can be used
as a semiconductor optical amplifier (SOA). A textbook on this subject is [1737].
Optical feedback from facets can also be avoided using tilted facets [1738].

A tapered amplifier geometry, as shown in Fig. 23.75a, allows for laterally
monomode input and a preservation of the lateral beam quality during the prop-
agation of the optical wave through the gain medium. The active medium is an
8nm compressively strained InGaAs quantum well. A typical taper angle is 5–10◦.

Fig. 23.74 Schematic cycle
of hole motion in a hot-hole
laser. Filled (empty) circles
represent populated
(unpopulated) hole states.
The solid lines represent
streaming motion of heavy
hole, the dashed line
represents scattering into the
light hole band. Arrows
denote radiative
intervalence-band transitions

h ph

kEV

hhlh

http://dx.doi.org/10.1007/978-3-319-23880-7_9
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Fig. 23.75 (a) Schematic geometry of tapered semiconductor amplifier. (b) Optical output power
versus amplifier current for various values of the optical input power, taper angle was 5◦. For zero
input power only spontaneous and amplified spontaneous emission is observed. Reprinted with
permission from [1739]

Fig. 23.76 Photographs of a MOPA arrangement of a laser (master oscillator, ‘MO’), glass lens
and tapered amplifier (power amplifier, ‘PA’) on a silicon micro-optical ‘bench’. Reprinted with
permission from [1740]

The input aperture is between 5 and 7µm. The amplifier length is 2040µm. More
than 20dB optical amplification can be obtained (Fig. 23.75b). The self-oscillation is
suppressed for currents up to 2A by AR facet coating of 10−4 in a 70nm band. The
wall-plug efficiency of the discussed amplifier is up to over 40%. If such an amplifier
is arranged together with a seed laser diode (master oscillator), the setup is called
MOPA (master oscillator power amplifier), as shown in Fig. 23.76. A modulated
input also leads to a modulated output.

Quantum dot arrays can be a useful gain medium in a SOA [1741, 1742] due to
their fast gain dynamics [1743] and broad spectrum (Sect. 23.3.6).



Chapter 24
Transistors

Frequently, I have been asked if an experiment I have planned is
pure or applied research; to me it is more important to know if
the experiment will yield new and probably enduring knowledge
about nature. If it is likely to yield such knowledge, it is, in my
opinion, good fundamental research; and this is much more
important than whether the motivation is purely esthetic
satisfaction on the part of the experimenter on the one hand or
the improvement of the stability of a high-power transistor on
the other.

W.B. Shockley [1744, 1745]

Abstract The device functionalities of bipolar, heterobipolar and field effect tran-
sistors (JFET, MESFET and MOSFET) are explained. Within physical models for
drift, diffusion and recombination given earlier in the book, the characteristics of
these devices are derived. Remarks on integrated circuits, miniaturization and thin
film transistors finish this chapter.

24.1 Introduction

Transistors1 are the key elements for electronic circuits such as amplifiers, memo-
ries and microprocessors. Transistors can be realized in bipolar technology (bipo-
lar junction transistor (BJT), Sect. 24.2) or as unipolar devices using the field effect
(field-effect transistor (FET), Sect. 24.3) [500, 1746]. The equivalent in vacuum-tube
technology to the transistor is the triode (Fig. 24.1a). Transistors can be optimized
for their properties in analog circuits such as linearity and frequency response or
their properties in digital circuits such as switching speed and power consumption.
Transistors for microwave applications are discussed in [1526]. Early commercial
models are shown in Fig. 24.2.

1The term ‘transistor’ was coined from the combination of ‘transconductance’ or ‘transfer’ and
‘varistor’ after initially such devices were termed ‘semiconductor triodes’. The major breakthrough
was achieved in 1947 when the first transistor was realized that showed gain (Figs. 1.9 and 24.1b).

© Springer International Publishing Switzerland 2016
M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics,
DOI 10.1007/978-3-319-23880-7_24
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(a) (b)
emitter

base

collector

Fig. 24.1 (a) Schematic image of a vacuum triode. The electron current flows from the heated
cathode to the anode when the latter is at a positive potential. The flow of electrons is controlled
with the grid voltage. (b) Bell Laboratories’ first (experimental) transistor, 1947

Fig. 24.2 (a) First commercial, developmental (point contact) transistor fromBTL (Bell Telephone
Laboratories) with access holes for adjustment of the whiskers pressing on a piece of Ge, diameter
7/32′′ = 5mm, 1948. (b) First high-performance silicon transistor (npn mesa technology), model
2N697 from Fairchild Semiconductor, 1958 (at $200, in 1960 $28.50). The product number is still
in use (now $0.95)

24.2 Bipolar Transistors

Bipolar transistors consist of a pnp or npn sequence (Fig. 24.3). The layers (or
parts) are named emitter (highly doped), base (thin, highly doped) and collector
(normal doping level). The transistor can be considered to consist of two diodes
(emitter–base and base–collector) back to back. However, the important point is that
the base is sufficiently thin (in relation to its minority carrier diffusion length) and
carriers from the emitter (which are minority carriers in the base) can dominantly
reach the collector by diffusion.

In Fig. 24.4, the three basic circuits with a transistor are shown. They are classified
by the common contact for the input and output circuit. The space charges and band
diagram for a pnp transistor in the base circuit configuration are depicted in Fig.24.5.
The emitter–base diode is switched in the forward direction to inject electrons into the
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Fig. 24.3 Schematic structure and circuit symbol for (a) pnp and (b) npn transistors
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Fig. 24.4 Basic transistor circuits, named after the common contact: (a) Common base circuit,
(b) common emitter circuit and (c) common collector circuit

Fig. 24.5 pnp transistor in
(a) base circuit. (b) Doping
profile and space charges
(abrupt approximation) and
(c) band diagram for typical
operation conditions
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base. The base–collector diode is switched in the reverse direction. The electrons that
diffuse through the base and reach the neutral region of the collector are transported
by the high drift field away from the base.
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24.2.1 Carrier Density and Currents

The modeling of transistors is a complex topic. We treat the transistor on the level
of the abrupt junction. As an approximation, we assume that all voltages drop at
the junctions. Series resistances, capacities and stray capacities and other parasitic
impedances are neglected at this point.

The major result is that the emitter–base current from the forward-biased
emitter–base diode will be transferred to the collector. The current flowing from
the base contact is small compared to the collector current. This explains the most
prominent property of the transistor, the current amplification.

For the neutral part of the base region of a pnp transistor, the stationary equations
for diffusion and continuity are

0 = DB
∂2 p

∂x2
− p − pB

τB
(24.1a)

jp = −eDB
∂ p

∂x
(24.1b)

jtot = jn + jp, (24.1c)

where pB is the equilibriumminority carrier density in the base. From the discussion
of the pn-diode, we know that at the boundary of the depletion layer the minority
carrier density is increased by exp(eV/kT ) (cf. (21.98a, b)). At the boundaries of
the emitter–base diode (for geometry see Fig. 24.5a)

δ p(0) = p(0) − pB = pB
[
exp (βVEB) − 1

]
(24.2a)

δn(−xE) = n(−xE) − nE = nE
[
exp (βVEB) − 1

]
, (24.2b)

where nE and pB are the equilibrium minority-carrier densities in the emitter and
base, respectively. Accordingly, at the boundaries of the base–collector diode we
have

δ p(w) = p(w) − pB = pB
[
exp (βVCB) − 1

]
(24.3a)

δn(xC) = n(xC) − nC = nC
[
exp (βVCB) − 1

]
. (24.3b)

These are the boundary conditions for the diffusion equations in the p-doped
layers and in the neutral region of the n-doped base. For the p-layers (with infinitely
long contacts), the solution is (similar to (21.124)) for x < −xE and x > −xC,
respectively

n(x) = nE + δn(−xE) exp

(
x + xE

LE

)
(24.4a)

n(x) = nC + δn(xC) exp

(
− x − xC

LC

)
. (24.4b)

http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_21
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LE and LC are the minority carrier (electron) diffusion lengths in the emitter and
collector, respectively. The solution for the hole density in the neutral region in the
base (0 < x < w) is

p(x) = pB +
[
δ p(w) − δ p(0) exp (−w/LB)

2 sinh (w/LB)

]
exp

(
x

LB

)

−
[
δ p(w) − δ p(0) exp (w/LB)

2 sinh (w/LB)

]
exp

(
− x

LB

)
. (24.5)

We shall denote the excess hole density at x = 0 and x = w as δ pE = δ p(0) and
δ pC = δ p(w), respectively. Typical (‘normal’) operation condition in the common
base circuit is that δ pC = 0 (Fig. 24.8a). In the ‘inverted’ configuration, the role of
emitter and collector are reversed and δ pE = 0. We can write (24.5) also as

p(x) = pB + δ pE
sinh [(w − x)/LB)]

sinh [w/LB]
+ δ pC

sinh [x/LB)]
sinh [w/LB]

. (24.6)

If the base is thick, i.e. w → ∞, or at least large compared to the diffusion length
(w/LB � 1), the carrier concentration is given by

p(x) = pB + δ p(0) exp

(
− x

LB

)
(24.7)

and does not depend on the collector. In this case there is no transistor effect. A
‘coupling’ between emitter and collector currents that are given by the derivative
∂ p/∂x at 0 and w, respectively, is only present for a sufficiently thin base.

From (24.6), the hole current densities at x = 0 and x = w are given as2

jEp = jp(0) = e
DB

LB

[
δ pE coth

(
w

LB

)
− δ pC csch

(
w

LB

)]
(24.8a)

jCp = jp(w) = e
DB

LB

[
δ pE csch

(
w

LB

)
− δ pC coth

(
w

LB

)]
. (24.8b)

From (24.4a, b), the electron current densities at x = −xE and x = xC are given
(with δnE = δn(−xE) and δnC = δn(xC)) by

jEn = jn(−xE) = e
DE

LE
δnE (24.9a)

jCn = jn(xC) = −e
DC

LC
δnC. (24.9b)

2coth x ≡ cosh x/ sinh x , cschx ≡ 1/ sinh x .
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The emitter current density is (similar to (21.127))

jE = jp(0) + jn(−xE)

= e
DB

LB

[
δ pE coth

(
w

LB

)
− δ pC csch

(
w

LB

)]
+ e

DE

LE
δnE. (24.10)

The collector current density is given as

jC = jp(w) + jn(xC)

= e
DB

LB

[
δ pE csch

(
w

LB

)
− δ pC coth

(
w

LB

)]
− e

DC

LC
δnC. (24.11)

In these equations, only the diffusion currents are considered. Additionally, the
recombination currents in the depletion layers must be considered, in particular at
small junction voltages.

24.2.2 Current Amplification

The emitter current consists of two parts, the hole current IpE injected from the
base and the electron current InE that flows from the emitter to the base (Fig. 24.5a).
Similarly, the collector current is made up from the hole and electron currents IpC
and IpC, respectively.

The total emitter current splits into the base and collector currents

IE = IB + IC. (24.12)

The amplification (gain) in common base circuits

α0 = hFB = ∂ IC
∂ IE

= ∂ IpE
∂ IE

∂ IpC
∂ IpE

∂ IC
∂ IpC

= γ αT M, (24.13)

where γ is the emitter efficiency, αT the base transport factor and M the collector
multiplication factor. Since the collector is normally operated below the threshold
for avalanche multiplication, M = 1.

The current amplification in the common emitter circuit is

β0 = hFE = ∂ IC
∂ IB

. (24.14)

Using (24.12), we find

β0 = ∂ IE
∂ IB

− 1 = ∂ IE
∂ IC

∂ IC
∂ IB

− 1 = 1

α0
β0 − 1 = α0

1 − α0
. (24.15)

http://dx.doi.org/10.1007/978-3-319-23880-7_21
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Since α0 is close to 1 for a well-designed transistor, β0 is a large number, e.g.
β0 = 99 for α0 = 0.99.

The emitter efficiency is (A denotes the device area)

γ = AjEp
IE

=
[
1 + nE

pB

DE

DB

LB

LE
tanh

(
w

LB

)]−1

. (24.16)

The base transport factor, i.e. the ratio of minority carriers reaching the collector
and the total number of injected minority carriers, is (for reverse bias |βUCB| � kT )

αT = jCp
jEp

= exp(βUEB) − 1 + coshw/LB

1 + (exp(βUEB) − 1) coshw/LB

≈ 1

cosh (w/LB)
≈ 1 − w2

2L2
B

. (24.17)

The first approximation is for βUEB � 1 (emitter diode injecting in forward direc-
tion), the second approximation is for w � LB. If the base length is a tenth of the
diffusion length, the base transport factor is αT > 0.995. M is also very close to 1;
for reverse bias UCB and w � LB we find

M ≈ 1 + w

LC

DC

DB

δnC

δ pC − δ pE
≈ 1 + w

LC

DC

DB

nC

pB
exp(−βUEB). (24.18)

Thus for w � LB, α0 is dominated by γ and given as (approximating (24.16))

α0 ≈ γ ≈ 1 − w

LE

nE

pB

DE

DB
. (24.19)

The gain β0 is then also determined by γ:

β0 = hFE ≈ γ

1 − γ
≈ 1

1 − γ
∝ NE

NB

LE

w
, (24.20)

NE and NB being the doping levels in the emitter and base, respectively. The base
and collector current are shown in Fig. 24.6 as a function of the emitter–base volt-
age, i.e. the voltage at the injection diode. The collector current is close to the
emitter–base diode current and displays a dependence ∝ exp(eVEB/kT ). The base
current shows a similar slope but is orders of magnitude smaller in amplitude. For
small forward voltages of the emitter–base diode, the current is typically dominated
by a nonradiative recombination current that flows through the base contact and has
an ideality factor (m in Fig. 24.6) close to 2.
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Fig. 24.6 Collector current
IC and base current IB as a
function of the emitter–base
voltage VEB (Gummel plot).
Adapted from [1747]
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24.2.3 Ebers–Moll Model

The Ebers–Moll model (Fig. 24.7) was developed in 1954 and is a relatively simple
transistor model that needs, at its simplest level (Fig. 24.7a) just three parameters.
It can (and must) be refined (Fig. 24.7b, c). The model considers two ideal diodes
(‘F’ (forward) and ‘R’ (reverse)) back to back, each feeding a current source. The
F diode represents the emitter–base diode and the R diode the collector–base diode.
The currents are

IF = IF0
[
exp (βVEB) − 1

]
(24.21a)

IR = IR0
[
exp (βVCB) − 1

]
. (24.21b)

Using (24.8a, b)–(24.11), the emitter and collector currents are

IE = â11
[
exp (βVEB) − 1

] + â12
[
exp (βVCB) − 1

]
(24.22a)

IC = â21
[
exp (βVEB) − 1

] + â22
[
exp (βVCB) − 1

]
, (24.22b)

with

â11 = eA

[
pB

DB

LB
coth

(
w

LB

)
+ nE

DE

LE

]
(24.23a)

â12 = −eApB
DB

LB
csch

(
w

LB

)
(24.23b)
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(a)

(b)

(c)

Fig. 24.7 Ebers–Moll model of a transistor, ‘E’: emitter, ‘C’: collector and ‘B’: base. Currents are
shown for a pnp transistor. (a) Basicmodel (grey area in (b, c)), (b)modelwith series resistances and
depletion-layer capacitances, (c) model additionally including the Early effect (VA: Early voltage)

â21 = eApB
DB

LB
csch

(
w

LB

)
= −â12 (24.23c)

â22 = −eA

[
pB

DB

LB
coth

(
w

LB

)
+ nC

DC

LC

]
. (24.23d)

The currents at the three contacts are

IE = IF − αI IR (24.24a)

IC = αN IF − IR (24.24b)

IB = (1 − αN)IF + (1 − αI)IR. (24.24c)

The last equation is obtained from (24.24a, b) using (24.12). By comparison with
(24.21a, b) and (24.23a–d) we find
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IF0 = â11 (24.25a)

IR0 = −â22 (24.25b)

αI = â12/IR0 (24.25c)

αN = â21/IF0 = −â12/IF0 = −αI IR0/IF0. (24.25d)

The constants αN and αI are the forward (‘normal’) (αN = α0 from (24.13)) and
reverse (‘inverted’) gains in the common base circuit, respectively. Both constants are
larger than zero. Typically,αN ≈ 0.98 . . . 0.998 � 1 andαI ≈ 0.5 . . . 0.9 < αN. The
model has three independent parameters, e.g. αN, IF0 and IR0. Equation (24.24a, b)
can be rewritten as

IE = αI IC + (1 − αI αN) IF (24.26a)

IC = αN IE − (1 − αI αN) IR. (24.26b)

Under normal operation we have

IE = IF (24.27a)

IC = αN IE. (24.27b)

The model can be refined and made more realistic by including the effect of series
resistances and depletion-layer capacitances, increasing the number of parameters
to eight. The Early effect (see p. 794) can be included by adding a further current
source. This level is the ‘standard’ Ebers–Moll model with a total of nine parameters.
Further parameters can be added. However, as is always the case with simulations,
there is a tradeoff between the simplicity of the model and to what detail a real
situation is approximated.

24.2.4 Current–Voltage Characteristics

In Fig. 24.8, the hole density in the base (of a pnp transistor) is shown for various
voltage conditions. In Fig. 24.9, the I–V characteristics of a bipolar transistor in
common base and common collector circuit are shown. In the common base circuit
(Fig. 24.9a), the collector current is practically equal to the emitter current and is
almost independent of the collector–base voltage. From (24.26b), the dependence of
the collector current on the collector–base voltage is given (within the Ebers–Moll
model) as

IC = αN IE − (1 − αIαN)IR0
[
exp (βVCB) − 1

]
. (24.28)

VCB is in the reverse direction. Therefore, the second term is zero for normal operating
conditions. Since αN � 1, the collector current is almost equal to the emitter current.
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Fig. 24.8 Hole density (linear scale) in the base region (the neutral part of the base ranges from 0
to w) of a pnp transistor for various voltages. (a) normal voltages, VCB = const. and various VEB
(in forward direction). (b) VEB = const. and various values of VCB. (c) Various values of VEB > 0,
VCB = 0. (d) Both pn-junctions in forward direction. (e) Conditions for IC0 and I ′

C0. (f) Both
junctions in reverse direction. Adapted from [500]
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(Fig. 24.4a) for various values of the emitter current as labeled. Adapted from [1748]. (b) Charac-
teristics in common emitter (CE) circuit (Fig. 24.4b). Adapted from [1749]

Even at VCB = 0 (the case of (Fig. 24.8c), holes are extracted from the base since
∂ p/∂x |x=w > 0.A small forward voltagemust be applied to the collector–base diode
in order to make the current zero, i.e. ∂ p/∂x |x=w = 0 (Fig. 24.8d). The collector
saturation current IC0 is measured with an open emitter side. This current is smaller
than the saturation current of the CB diode, since at the emitter side of the basis
a vanishing gradient of the hole density is present (Fig. 24.8e). This reduces the
gradient (and thus the current) at the collector side. The current IC0 is therefore
smaller than the collector current for shorted emitter–base contact (VEB = 0). At
high collector voltage, the current increases rapidly at BVCB0 due to breakdown of
the collector–base diode. It can also occur that the width of the neutral base region
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w becomes zero (punch-through). In this case, the emitter and collector are short-
circuited.

In the common emitter circuit (Fig. 24.9b), there is a high current amplification
IC/IB. Note that the collector current is given in mA and the base current in µA.
The current increases with increasing VCE because the base width w decreases and
β0 increases. There is no saturation of the I–V characteristics (Early effect [1750]).
Instead, the I–V curves look as if they start at a negative collector–emitter volt-
age, the so-called Early voltage VA. In the linear regime, the characteristic can be
approximated by

IC =
(
1 + VCE

VA

)
β0 IB. (24.29)

Here, β0 is the current gain for VCE ≈ 0.
The physical reason for the increase of the collector current with increasing VCE

is the increasing reverse voltage at the collector–base diode that causes the so-called
‘base-width modulation’, as shown in Fig. 24.8b. The expansion of the CB depletion
layer leads subsequently to a reduction of the neutral base widthw.w will be smaller
and smaller compared to the geometrical base width wB. When w is reduced, the
common base gain α0 (24.19) becomes closer to 1 and the current gain increases.
Therefore, the collector current increases with VCE for a given (fixed) base current.
The Early voltage is the coefficient of the increase of collector current with VCE,

β0 IB
VA

= ∂ IC
∂VCE

= ∂ IC
∂VCB

∂VCB

∂VCE
≈ ∂ IC

∂VCB
. (24.30)

For constant base current, the emitter-base voltage is almost constant and the approx-
imation in (24.30) holds. The dependence of the CB depletion layer width on the
base side xn

C on UCB is given by (21.106a) for a pnp-transistor. Typical values for the
Early voltage are 50–300V. Themodeling of the Early effect in the SPICE simulation
program is discussed in [1751].

For small collector–emitter voltage, the current quickly drops to zero. VCE is
typically split in such a way that the emitter–base diode is well biased forward and
the CB diode has a high reverse voltage. If VCE drops below a certain value (≈1V for
silicon transistors), there is no longer any bias at the CB diode. A further reduction
of VCE biases the CB diode in the forward direction and quickly brings the collector
current down to zero.

24.2.5 Basic Circuits

Common Base Circuit

In the common base configuration, there is no current amplification since the currents
flowing through emitter and base are almost the same. However, there is voltage gain
since the collector current causes a large voltage drop across the load resistor.

http://dx.doi.org/10.1007/978-3-319-23880-7_21
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Fig. 24.10 (a) Common base, (b) common emitter and (c) common collector circuits with external
loads

Common Emitter Circuit

The input resistance of the common emitter circuit (Fig. 24.10a) depends on the
emitter–base diode and varies between a value of the order of 100k� at small current
and a few � at larger current and high VEB. The voltage gain is

rV = VCE

VEB
= IC

VEB
RL, (24.31)

where RL is the load resistance in the output circuit (see Fig. 24.4b). The ratio
gm = IC/VEB is called the forward transconductance. Also, the differential transcon-
ductance g′

m = ∂ IC/∂VEB is used. The voltage gain of the common emitter circuit
is typically 102–103. Since current and voltage are amplified, this circuit has the
highest power gain.

If the input voltage VEB (U1 in Fig. 24.10a) is increased, the collector current rises.
This increase causes an increase of the voltage drop across the load resistance RL

and a decrease of the output voltage U2. Therefore, the phase of the input signal is
reversed and the amplifier is inverting.

Common Collector Circuit

In Fig. 24.10c, the collector is connected to mass for alternating currents. Input
and output current flow through the load resistance at which part of the input
voltage drops. The input voltage is divided between the load resistor RL and the
emitter–base diode. At the transistor, the voltage VBE = V1 − VRL is applied. If the
input voltage is increased, I2 increases. This leads to a larger voltage drop at the load
resistor and therefore to a decrease of VBE, working against the original increase. The
input resistance R1 is large despite a small load resistance, R1 ≈ β0RL. The input
voltage is larger than VRL, thus no voltage gain occurs (actually it is a little smaller
than 1). The current amplification is (β + 1). The output resistance R2 is small,
R2 = U2/I2 = RL ≈ R1/β0. Therefore, this circuit is also called an impedance
amplifier that allows high-impedance sources to be connected low-impedance loads.
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Since an increase of the input voltage leads to an increase of the output voltage that
is present at the emitter, this circuit is a direct amplifier and is also called an emitter
follower.

24.2.6 High-Frequency Properties

Transistors for amplification of high-frequency signals are typically chosen as npn
transistors since electrons, theminority carriers in the base, have highermobility than
holes. The active area and parasitic capacitance must be minimized. The emitter is
formed in the shape of a stripe, nowadays in the 100nm regime. The base width
is in the 10nm range. High p-doping of GaAs with low diffusion of the dopant is
accomplished with carbon. Defects that would short emitter and collector at such
thin base width must be avoided.

An important figure of merit is the cutoff frequency fT for which hFE is
unity in the common emitter configuration. The cutoff frequency is related to the
emitter–collector delay time τEC by

fT = 1

2π τEC
. (24.32)

The delay time is determined by the charging time of the emitter–base depletion
layer, the base capacitance, and the transport through the base–collector depletion
layer. It is favorable if all times are short and similar. It does not help to minimize
only one or two of the three processes since the longest time determines the transistor
performance.

Another important figure of merit is the maximum frequency with which the
transistor can oscillate in a feedback circuit with zero loss. This frequency is denoted
by fmax. Approximately,

fmax 

√

fT
8π RB CCB

, (24.33)

where RB is the base resistance and CCB is the collector–base capacitance. fmax is
larger than fT, by a factor of the order of three.

24.2.7 Heterojunction Bipolar Transistors

In a heterojunction bipolar transistor (HBT), the emitter–base diode is formed with a
heterostructure diode. The desired functionality is obtained when the emitter is made
from the higher-bandgapmaterial and the base from the lower-bandgapmaterial. The
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Fig. 24.11 Schematic band
diagram of a heterojunction
bipolar transistor

emitter base collector
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EC
Fn
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n-Al Ga Asx 1-x p-GaAs n-GaAs

schematic band diagram is shown in Fig. 24.11 (see Fig. 21.57c for the emitter–base
diode).

The higher discontinuity in the valence band, compared to a homojunction with
the base material, provides a higher barrier for hole transport from the base to the
emitter. Thus, the emitter efficiency is increased. Another advantage is the possibility
for higher doping of the base without loss of emitter efficiency. This reduces the base
series resistance and leads to better high-frequency behavior due to higher current
gain and a smaller RC time constant. Also, operation at higher temperature is possi-
ble when the emitter has a larger band gap. Current InP/InGaAs-based HBTs have
cutoff frequencies beyond 30GHz, SiGe-HBTs beyond 80GHz. The high-frequency
performance is influenced by the velocity-overshoot effect (cf. Sect. 8.4.3) [1752].

In Fig. 24.12, an InAlAs/InGaAs HBT is shown [1754]. The cutoff frequency is
90GHz. For the layer design, a fairly thick collectorwith lowdopingwas chosen. This
design allows a broad depletion layer with fairly small maximum electric field and
thus a high breakdown voltage of BVCE0 > 8.5V. The base is not too thin (80 instead
of maybe 60nm) to reduce the series resistance. A graded region between emitter
and base was chosen to avoid a spike occurring in the conduction band (Fig. 21.57b)
and keep the turn-on voltage low.

24.2.8 Light-Emitting Transistors

The base current has two components. One is the recombination current in the neutral
region of the emitter; this current can be suppressed in the HBT. The other is the
recombination in the base region itself.3 If quantum wells are introduced into the

3Also, a recombination current in the emitter–base depletion region is possible. However, since
in normal operating conditions this diode is forward biased, the depletion layer is short and the
associated recombination current is small, cf. p. 638.

http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_8
http://dx.doi.org/10.1007/978-3-319-23880-7_21
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Fig. 24.12 (a) Schematic layout of a high-frequency HBT and SEM images (b) without and
(c) with contacts. (d) Epitaxial layer sequence and (e) static performance data. Parts (a, b)
from [1753], parts (d, e) from [1754]

base region, this recombination can occur radiatively between electrons and holes
captured into the quantum well (Fig. 24.13). The spectrum exhibits two peaks from
the QWs and the GaAs barrier.

24.3 Field-Effect Transistors

Next to the bipolar transistors, the field-effect transistors (FET) are another large
class of transistors. FETs were conceptualized first but due to technological diffi-
culties with semiconductor surfaces, realized second. The principle is fairly simple:
A current flows through a channel from source to drain. The current is varied via the
channel conductivity upon the change of the gate voltage. The gate needs to make
a nonohmic contact to the semiconductor. Since the conductivity in the channel is a
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Fig. 24.13 Microscopic image of an InGaP/GaAs HBT with two 5-nm InGaAs/GaAs QWs in the
30-nm wide base at (a) zero base current and (b) at 1mA base current in the common emitter
configuration with Si CCD image of light emission. (c) Schematic band diagram of a HBT with a
single InGaAs/GaAs quantumwell in the base. Parts (a,b) from [1755], part (c) adapted from [1756]

property related to the majority charge carriers, FETs are called unipolar transistors.
FETs feature a higher input impedance than bipolar transistors, a good linearity, and
a negative temperature coefficient and thus a more homogeneous temperature distri-
bution. According to the structure of the gate diode we distinguish JFETs,MESFETs
and MOSFETs, as discussed in the following.

In the junction FET (JFET), the variation of channel conductivity is accomplished
via the extension of the depletion layer of the pn-junction formed by the gate and
the channel material (Fig. 24.14a). The JFET was analyzed by Schottky in 1952 [98]
and realized by Dacey and Ross in 1953 [99].

In aMESFET, ametal–semiconductor diode (Schottky diode) is used as rectifying
contact instead of a pn-diode. Otherwise, the principle is the same as that of the JFET.
After the proposal by Mead in 1966 [123], the first (epitaxial) GaAs MESFET was
realized by Hooper and Lehrer in 1967 [126]. TheMESFET offers some advantages,
such as the fabrication of the metal gate at lower temperature than necessary for the
(diffusion or epitaxy of the) pn-diode, lower resistance, good thermal contact. The
JFET can be made with a heterostructure gate to improve the frequency response.

In a MISFET, the gate diode is a metal–insulator–semiconductor diode (Fig.
24.14b). If the insulator is an oxide, the related FET is a MOSFET. When the gate is
put at a positive voltage (for a p-channel), an inversion layer is formed close to the
insulator–semiconductor interface. This layer is an n-conducting channel allowing
conduction between the two oppositely biased pn-diodes. It can carry a high current.
The MOSFET was theoretically envisioned early by Lilienfeld in 1925 [48] and
realized only in 1960 by Kahng and Atalla [111].
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Fig. 24.14 (a) Shockley’s model of a JFET. The dashed line represents themiddle of the symmetric
channel of total thickness 2a. The light grey area is the depletion layer with thickness h. The gate
length is L . The dark grey areas are ohmic metal contacts. Based on [99]. (b) Scheme of aMOSFET
with channel length L and oxide thickness d. The dark grey areas are ohmicmetal contacts. Adapted
from [500]

FETs come in ‘n’ and ‘p’ flavors, depending on the conductivity type of the
channel. For high-frequency applications, typically an n-channel is used due to the
higher mobility or drift velocity. In CMOS (complementary MOS) technology, both
n-FETs and p-FETs are integrated in high density, allowing the effective realization
of logic gates with minimized power consumption.

24.4 JFET and MESFET

24.4.1 General Principle

The principal characteristic of a JFET is shown in Fig. 24.15. At VD = 0 and
VG = 0, the transistor is in thermodynamic equilibrium and there are no net currents.
Underneath the gate diode, a depletion layer is present. If for zero gate voltage the
source–drain voltage is applied to the channel, the current increases linearly. The
positive voltage at the drain contact causes the expansion of the depletion layer of
the (reversely biased) gate–drain pn-diode. When the two (the upper and the lower)
depletion regionsmeet (pinch-off), the current saturates. The respective source–drain
voltage is denoted as VD,sat. For high gate–drain (reverse) voltage VD, breakdown
occurs with a strong increase of the source–drain current. A variation of the gate
voltage VG leads to a variation of the source–drain current. A reverse voltage leads
to a reduction of the saturation current and saturation at lower source–drain voltage.
For a certain gate voltage VP, the pinch-off voltage, no current can flow in the channel
any longer since pinch-off exists even for VD = 0.
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Fig. 24.15 (a) Principal characteristics of a JFET. The channel current ID is shown as a function
of the source–drain voltage VD for three different values of the (absolute value of the) gate voltage
VG. The saturation values VD,sat and ID,sat are indicated for one curve. The intersections with the
dash-dotted line yield the saturation voltage. Adapted from [500]. (b) Transfer behavior of a JFET
for two different carrier distributions, homogeneous (solid line) and δ-like (dashed line). The blue,
dash-dotted line is

√
ID/IP versus the gate voltage. After [1756, 1757]

24.4.2 Static Characteristics

Here,wewill calculate the general static behavior outlined in the previous section.We
assume a long channel (L � a), the abrupt approximation for the depletion layer, the
gradual channel approximation, i.e. the depletion layer depth changes slowly along x ,
and a field-independent, constant mobility. In this case, the two-dimensional Poisson
equation for the potential distribution V can be used by solving it along the y direction
(channel depth) for all x-positions (adiabatic approximation),

∂2V

∂y2
= −ρ(y)

εs
. (24.34)

The geometry is shown in the inset of Fig. 24.15b.
The depth h of the depletion layer in the abrupt approximation is given by (cf.

(21.107), reverse voltages are counted as positive here)

h =
√

2εs
eND

(Vbi + VG + V (x)). (24.35)

Here, we have assumed homogeneous doping, i.e. ND does not depend on
y (or x). The built-in voltage (for a p+n gate diode) is given by Vbi = β−1 ln (ND/ni)

(21.97a). The voltage V is the applied source–drain voltage in relation to the source.
The depth of the depletion layer at x = 0 (source) and x = L (drain) is given by

http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_21
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y1 = h(0) =
√

2 εs

e ND
(Vbi + VG) (24.36a)

y2 = h(L) =
√

2 εs

e ND
(Vbi + VG + VD). (24.36b)

The maximum value of h is a. Therefore, the pinch-off voltage VP, at which
VP = Vbi + VG + VD is such that h = a, is given by

VP = e ND a2

2 εs
. (24.37)

The (drift) current density along x is given by (cf. (8.53a))

jx = −e ND μn Ex = e ND μn
∂V

∂x
(24.38)

for the neutral part of the semiconductor. Therefore, the current in the upper half of
the channel is given by

ID = e ND μn
∂V (x)

∂x
Z [a − h(x)] , (24.39)

where Z is the width of the channel (Fig. 24.14a). Although it seems that ID depends
on x , it is of course constant along the channel due to Kirchhoff’s law.4 Using the
triviality

∫ L
0 ID dx = L ID and ∂V

∂x = ∂V
∂h

∂h
∂x with ∂V

∂h = eNDh/εs from (24.35), we
find from (24.39)

ID = e2 μn N 2
D Z a3

6 εs L

[
3

a2

(
y22 − y21

) − 2

a3

(
y31 − y32

)]
. (24.40)

4We neglect recombination, in particular since the current is a majority-carrier current.

http://dx.doi.org/10.1007/978-3-319-23880-7_8
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This equation can also be written, using (24.37) and

IP = e2 μn N 2
D Z a3

6 εs L
, (24.41)

as

ID = IP

[
3VD

VP
− 2

(Vbi + VG + VD)3/2 − (Vbi + VG)3/2

V 3/2
P

]

. (24.42)

The saturation current is reached for y2 = a or Vbi+VG+VD = VP and is given by

ID,sat = IP

[

1 − 3
Vbi + VG

VP
+ 2

(
Vbi + VG

VP

)3/2
]

. (24.43)

The dependence of the saturation current on (VG + Vbi)/VP is depicted in
Fig. 24.15b. For the threshold (gate) voltage of

VT = VP − Vbi, (24.44)

the saturation current is zero since then VD = 0.5 Around the threshold voltage, the
drain saturation current is given in lowest order of VG as

ID,sat ≈ 3 IP
4

(
VG − VT

VP

)2

. (24.45)

Thus, in order to experimentally determine the threshold voltage,
√

ID is plotted
versus the gate voltage and extrapolated to ID = 0 (dash-dotted line in Figs. 24.15
and 24.16).

The source–drain voltage at the saturation point decreases with decreasing satu-
ration current, shown as dashed parabola-like line in Fig. 24.15a.

If the charge-carrier distribution differs from the homogeneous distribution
assumed so far, a change of transistor properties arises, as shown in Fig. 24.15b
for a δ-like carrier distribution. The I–V characteristic is slightly less curved, but
not linear. A linear characteristic is only achievable in the drift velocity saturation
regime (cf. Sect. 24.4.4).

For high source–drain voltage VD > VP − Vbi − VG, the current remains essen-
tially at its saturation value. For very high source–drain voltage, breakdown in the
gate–drain diode can occur, when the maximum voltage, which is given by VG + VD

at the end of the channel, is equal to the breakdown voltage VB.

5The threshold voltage can also be obtained from the condition gD0 = 0 (cf. (24.49)).
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Fig. 24.16 Scheme (top), ID
versus VD (center) and I 1/2D
versus VG (bottom) I–V
characteristics for (a)
normally on (depletion) and
(b) normally off
(accumulation) n-type JFET.
Adapted from [500]
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The forward transconductance gm and the drain transconductance gD are given by

gm = ∂ ID
∂VG

= gmax

[√
Vbi + VG

VP
−

√
Vbi + VG + VD

VP

]

(24.46)

gD = ∂ ID
∂VD

= gmax

[

1 −
√

Vbi + VG + VD

VP

]

, (24.47)

where

gmax = 3 IP
VP

= e ND μ Z a

L
. (24.48)

The drain transconductance for VD → 0 (linear regime, dashed straight lines in
Fig. 24.15a) is given by

gD0 = gmax

[

1 −
√

Vbi + VG

VP

]

= gm,sat, (24.49)

which is equal6 to the forward transconductance in the saturation regime
gm,sat = ∂ ID,sat/∂VG.

6Technically, here gD0 = −gm,sat , however, we had counted VG positive for the reverse direction.
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Fig. 24.17 Circuit symbols
for various types of FETs

24.4.3 Normally on and Normally Off FETs

The JFET discussed so far had an n-conductive channel and was conductive at
VG = 0. It is termed an ‘n-type, normally on’ (or depletion) FET. If the channel is
p-conductive, the FET is called ‘p-type’. A FET that has a nonconductive channel
at VG = 0 is called ‘normally off’ (or accumulation) FET. In this case, the built-in
voltage must be large enough to cause pinch-off. For a positive gate voltage (in the
forward direction of the gate–drain diode), current begins to flow. The I–V charac-
teristics of the four FET-types are depicted in Fig. 24.16. The circuit symbols for the
four different FET types are shown in Fig. 24.17.

24.4.4 Field-Dependent Mobility

So far, we have considered FETs with long channels (L � a). This situation is
often not the case, in particular for high-integration or high-frequency applications.
For short channels, the I–V characteristics exhibit changes. The theory needs to be
modified to take into account, among other effects, the electric-field dependence of
the mobility (Fig. 8.10) that was discussed in Sect. 8.4.1.

Drift-Velocity Saturation

A material without negative differential mobility, such as Si or Ge, can be described
with a drift-velocity model

vd = μ E
1

1 + μ E/vs
. (24.50)

In this model, μ denotes the low-field (ohmic) mobility and vs the drift-saturation
velocity reached for E � vs/μ. The fraction in (24.50) describes the drift-velocity
saturation.

http://dx.doi.org/10.1007/978-3-319-23880-7_8
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Fig. 24.18 I–V characteristic (a) without consideration of drift saturation (z = 0) and (b) with
drift saturation (z = 3) for various values of (VG + Vbi)/VP = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8
as indicated at the right side. The intersections of the dashed line and the solid lines indicate the
beginning of saturation. Adapted from [1758]

By inserting (24.50) into (24.39), we obtain (for a n-channel)

ID = −e ND μn E(x)
1

1 + μ E(x)/vs
[a − h(x)] Z , (24.51)

and after a short calculation the drain current is given by (cf. (24.42))

ID = IP

(
1 + μ VG

vs L

)−1
[
3VD

VP
− 2

(Vbi + VG + VD)3/2 − (Vbi + VG)3/2

V 3/2
P

]

.

(24.52)

The factor 1/(1 + z) with z = μVG/vsL reduces the channel current due to
the drift saturation effect. The effect of the parameter z is depicted in Fig. 24.18
in comparison to z = 0, i.e. without the drift saturation effect (or vs → ∞). The
forward conductance gm,sat decreases with increasing z, as shown in Fig. 24.19.

Two-Region Model

In order to model the GaAs drift velocity versus field characteristic, a two-region
model is used. In the front region of the channel (region I), the field is small enough
and a constant mobility μ is used. In the back region of the channel (region II)
is the high-field region where a constant drift velocity vs is used. With increasing
source–drain voltage, the region II (I) increases (decreases) in length. The relative
width of region II is also increased with decreasing channel length.

Saturated-Drift Model

Here, the drift velocity is taken everywhere as vs, i.e. complete drift saturation. This
is a good approximation for short channels (high fields) that are in current saturation.
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Fig. 24.19 Decrease of
(saturated) forward
conductance with gate
voltage (according to
(24.49)) and parametric
dependence on z for z = 0,
0.5, 1, 2, 3, 5 and 10.
Adapted from [1758]
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In this case, the current is given by

ID = −e ND vs [a − h(x)] Z . (24.53)

Equation (24.53) is valid for homogeneous doping. For other doping profiles, the
current is given by

ID = vs Z
∫ a

h
ρ(y) dy. (24.54)

The forward conductance is given by

gm = vs Z εs

h(VG)
. (24.55)

The transistor is more linear if the depletion-layer depth only weakly depends
on the gate voltage. This can be accomplished with a doping profile with increasing
doping with depth. An increase with a power law and a step-wise or exponential
increase lead to a more linear I (V )-dependence. In the limit of δ-like doping, a
linear ID,sat versus VG relation develops. Indeed, FETs with graded or stepped doping
profiles exhibit improved linearity and are used for analog circuits.

Nonequilibrium Velocity

Below the electric field for which the drift velocity in GaAs peaks, the carriers can be
considered to be in equilibrium. If the field is higher, velocity overshoot (Sect. 24.4.4
and Fig. 8.13) occurs. The carriers have a higher velocity (and ballistic transport)
before they relax to the lower equilibrium (or steady-state) velocity after intervalley
scattering. This effect will shorten the transit time in short-channel FETs.

http://dx.doi.org/10.1007/978-3-319-23880-7_8
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24.4.5 High-Frequency Properties

Two factors limit the high-frequency performance of a FET: The transit time and the
RC time constant. The transit time tr is the time that the carrier needs to go from
source to drain. For the case of constant mobility (long channel) and constant drift
velocity (short channel), the transit time is given by (24.56a and b), respectively.

tr = L

μ E
≈ L2

μ VG
(24.56a)

tr = L

vs
. (24.56b)

For a 1-µm long gate in a GaAs FET, the transit time is of the order of 10ps. This
time is typically small compared to the RC time constant due to the capacitance CGS

and transconductance. The cutoff frequency is given by

fT = gm

2π CGS
. (24.57)

24.5 MOSFETs

The MOSFET has four terminals. In Fig. 24.14b, two n-type regions (source and
drain) are within a p-type substrate. The n-type channel (length L) forms underneath
aMIS diode. A forth electrode sets the substrate bias. The source electrode is consid-
ered to be at zero potential. The important parameters are the substrate doping NA,
the insulator thickness d and the depth rj of the n-type regions. Around theMOSFET
structure is an oxide to insulate the transistor from neighboring devices.

24.5.1 Operation Principle

When there is no applied gate voltage, only the saturation current of the pn-diode(s)
between source and drain flows. In thermodynamic equilibrium (Fig. 24.20c), the
necessary surface potential for inversion at the MIS diode is Ψ inv

s ≈ 2ΨB. If there
is a finite drain voltage, a current flows and there is no longer equilibrium. In this
case, the quasi-Fermi level of the electrons (or generally of the minority carriers) is
lowered and a higher gate voltage is needed to create inversion. The situation at the
drain is depicted in Fig. 24.21.

In nonequilibrium, the depletion layer width is a function of the drain voltage VD.
In order to reach strong inversion at the drain, the surface potential must be at least
Ψ inv
s ≈ VD + 2ΨB.
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Fig. 24.20 (a) Schematic
geometry of a MOSFET and
its band diagram for
(b) flat-band conditions for
zero gate voltage (and
VD = 0), (c) thermodynamic
equilibrium with reverse gate
voltage (weak inversion, still
VD = 0) and
(d) nonequilibrium with
nonzero drain voltage and
gate voltages (with most of
the channel being inverted,
the depletion region is
indicated). Adapted
from [1759]
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Fig. 24.21 Charge-carrier
distribution (top) and band
diagram (bottom) at the
inverted p-region of a
MOSFET for
(a) thermodynamic
equilibrium (VD = 0) and
(b) nonequilibrium at drain
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Fig. 24.22 (a) MOSFET
with inverted channel (dark
grey) of length L for small
source–drain voltage VD in
linear regime, (b) at the start
of saturation at pinch-off, (c)
in the saturation regime with
reduced channel length L ′.
The pinch-off point is
denoted by an arrow in (b)
and (c). The dashed lines
denote the extension of the
depletion region. Adapted
from [500]
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If the gate voltage is such that an inversion channel is present from source to
drain, a current will flow for a small drain voltage (Fig. 24.22a). Initially, the current
will increase linearly with VD, depending on the conductivity of the channel. With
increasing drain voltage, the quasi-Fermi level of the electrons is lowered until,
finally at VD = VD,sat, the inversion channel depth becomes zero (pinch-off at the
point denoted with an arrow in Fig. 24.22b). The current at this condition is denoted
as ID,sat. For a further increase of VD, the pinch-off point moves closer to the source
contact and the channel length (inverted region) is shortened (arrow in Fig. 24.22c).
The voltage at the pinch-off point remains VD,sat and thus the current in the channel
remains constant at ID,sat.

24.5.2 Current–Voltage Characteristics

We assume now that the potential V (y) varies along the channel from V = 0 at
y = 0 to V = VD at y = L . In the gradual-channel approximation, the voltage drop
Vi across the oxide is

Vi(y) = VG − Ψs(y), (24.58)
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where Ψs is the surface potential in the semiconductor (see Fig. 21.33). The total
charge induced in the semiconductor (per unit area) is, using (21.88), given by

Qs(y) = − [VG − Ψs(y)]Ci, (24.59)

with Ci being the insulator capacitance (per unit area), as given in (21.89).
The inversion surface potential can be approximated by Ψs(y) ≈ 2ΨB + V (y)

(see Fig. 24.21). With (21.93) the depletion-layer charge is

Qd(y) = −e NA wm = −√
2 εs e NA [2ΨB + V (y)], (24.60)

such that, using (24.59), the inversion layer charge is

Qn(y) = Qs(y) − Qd(y) (24.61)

= − [VG − V (y) − 2ΨB] Ci +
√
2 εs e NA [2ΨB + V (y)].

For the calculation of the drain current, we consider the increase of channel resis-
tance dR(y) along a line element dy of the channel. The integral of the conductivity
over the cross section A of the channel (width Z ) is

∫∫

A
σ(x, z)dx dz = −e μn

∫∫

A
n(x, z) dx dz = Z μn |Qn(y)|. (24.62)

Therefore,

dR(y) = dy
1

Z μn |Qn(y)| . (24.63)

Here we have assumed that the mobility is constant along the channel, i.e. not field
dependent. The change of voltage across the line element dx is

dV (y) = ID dR = ID dy

Z μn |Qn(y)| . (24.64)

We note the drain current is independent of x . Using (24.61) and performing the
integral of (24.64) from V (y = 0) = 0 to V (y = L) = VD, we find

ID = μn Ci
Z

L

{(
VG − 2ΨB − VD

2

)
− 2

3

√
2eεsNA

Ci

[
(VD + 2ΨB)3/2

− (2ΨB)3/2
] }

. (24.65)

This characteristic is depicted in Fig. 24.23a. In the linear regime (small drain
voltage, VD � (VG − VT)), the drain current is given by

http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_21
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Fig. 24.23 (a) Idealized I–V characteristics for aMOSFETwith constantmobility. The dashed line
visualizes the drain (saturation) voltage for which the current is equal to ID,sat . The solid lines are for
various values of the gate voltage VG − VT =1–10V. Adapted from [500] (b) I–V characteristics
taking into account the effect of field-dependent mobility (solid lines) in comparison to the constant-
mobility model (dashed lines) for various gate voltages as labeled. Adapted from [1760]

ID ∼= μn Ci
Z

L
(VG − VT) VD. (24.66)

The threshold voltage VT, i.e. the gate voltage for which the channel is opened
and a current can flow, is given for small drain voltage (linear regime) by

VT = 2ΨB +
√
4 e εs NA ΨB

Ci
. (24.67)

The transconductances in the linear regime are easily obtained as

gm = μn Ci
Z

L
VD (24.68a)

gD = μn Ci
Z

L
(VG − VT) . (24.68b)

The saturation current (for constant mobility) is approximately

ID,sat
∼= μn Ci

m Z

L
(VG − VT)

2 , (24.69)

where m depends on the doping concentration and is about 0.5 for low doping. For
low p-doping of the substrate, the threshold voltage in (24.69) for the saturation
regime is also given by (24.67). At higher doping, the threshold voltage becomes
dependent on the gate voltage. Ci denotes the insulator capacitance

Ci = εi/di. (24.70)
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The forward transconductance in the saturation regime is

gm,sat = μn Ci
2m Z

L
(VG − VT) . (24.71)

For constant drift velocity (Fig. 24.23b for field-dependent mobility), the satura-
tion current is given by

ID,sat = Z Ci vs (VG − VT) , (24.72)

and the forward transconductance in the saturation regime is

gm,sat = Z Ci vs. (24.73)

We note that the transistor properties depend on and can be separated into the
geometry factor (Z/L) and the material properties (μ Ci = μ εi/di).

The threshold voltage can be changed by the substrate bias VBS as (β = e/kT )

ΔVT = a√
β

(√
2ΨB + VBS − √

2ΨB

)
, (24.74)

with (LD being the Debye length (cf. 21.81b))

a = 2
εs

εi

d

LD
. (24.75)

Experimental data are shown in Fig. 24.24. For a Si/SiO2 gate diode, a = 1 for,
e.g. di = 10nm and NA = 1016 cm−3. For gate voltages below VT, the current is
given by the diffusion current, similar to a npn transistor. This regime is impor-
tant for low-voltage, low-power conditions. The related drain current is termed the
subthreshold current and is given by

Fig. 24.24 Experimental
subthreshold I–V
characteristic of a MOSFET
device with long channel
(15.5µm). Solid lines for
VD = 10V, dashed lines for
VD = 0.1V. Adapted
from [1761]
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ID = μn
Z a Ci n2

i

2 L β2 N 2
A

[
1 − exp (−βVD)

]
exp (−βΨs) (βΨs)

−1/2 . (24.76)

The drain current therefore increases exponentially with VG, as shown in
Fig. 24.24. VG is ly proportional to ΨB:

Ψs = (VG − VFB) − a2

2β

(√

1 + 4

a2
(βVG − βVFB − 1) − 1

)

, (24.77)

where VFB is the flat-band voltage of the gate MIS diode. The drain current is inde-
pendent of VD for VD � 3kT/e.

24.5.3 MOSFET Types

MOSFETs can have an n-type channel (on a p-substrate) or a p-channel (on an
n-type substrate). So far, we have discussed the normally off MOSFET. If there is a
conductive channel even without a gate voltage, the MOSFET is normally on. Here,
a negative gate voltage must be applied to close the channel. Therefore, similar to
the JFET, a total of four different types of MOSFET exist, see Fig. 24.25.

24.5.4 Complementary MOS

Complementary metal–oxide–semiconductor technology (CMOS) is the dominating
technology for highly integrated circuits. In such devices, MOSFETs with n-channel
(NMOS) and p-channel (PMOS) are used on the same chip. The basic structure of
logic circuits, the inverter, can be realized with a pair of NMOS and PMOS transis-
tors, as shown in Fig. 24.26a with two normally off transistors. The load capacitor
represents the capacitance of the following elements.

Fig. 24.25 The four
MOSFET types. (a)
Enhancement and (b)
depletion type with
n-channel (top row) and
p-channel (bottom row)
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Fig. 24.26 Circuit diagram of (a) inverter with n-type (bottom) and p-type (normally off, enhance-
ment mode) FETs and (b) inverter with p-type (bottom) and n-type (normally on, depletion mode)
FETs. (c) Inverter characteristic with the transistor thresholds indicated, (d) inverter characteristic
with middle voltage VM indicated. NML,H denotes the low- and high-noise margins, respectively,
i.e. the voltage by which the input voltage can fluctuate without leading to switching. (e) Compos-
ite layout (left panel) and cross-sectional view (right panel) of CMOS inverter. Part (e) adapted
from [1762]

If the input voltage is Vin = 0, the NMOS transistor is nonconductive (‘off’). The
(positive) voltage VDD is at the PMOS transistor source, thus the gate is negative in
relation to the source and the transistor is conductive (‘on’) since −VDD = VGp <

VTp < 0 (see Fig. 24.25). The current flows through the capacitor that becomes
charged to Vout = VDD. The current then subsides, since VD at the PMOS becomes
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zero. If the input voltage is set to VDD, theNMOS transistor has a positive gate–source
voltage larger than the threshold VTn < VGn = VDD and becomes conductive. The
charge from the capacitor flows over the NMOS to ground. The PMOS transistor has
zero gate–source voltage and is in the ‘off’ state. In this case, the voltage VDD drops
entirely across the PMOS and the capacitor is uncharged with Vout = 0.

In both its logic states, the CMOS inverter does not consume power. No current7

flows in either of the two steady states since one of the two transistors is in both cases
in the ‘off’ state. Current flows only during the switching operation. Therefore, the
CMOS scheme allows for low power consumption.

The middle voltage for which Vin = Vout can be calculated from the MOSFET
characteristics. Both are, for this condition, in saturation and the currents are given
by (cf. (24.69))

IDn = μn Cox
Zn

2Ln
(VM − VTn)

2 (24.78a)

IDp = μp Cox
Zp

2Lp

(
VDD − VM − VTp

)2
. (24.78b)

With γ = Zp

Zn

Ln
Lp

μp

(−μn)
, we find from IDn = −IDp,

VM = VTn + γ
(
VDD + VTp

)

1 + γ
. (24.79)

As gate material, often polycrystalline silicon (poly-Si) is used (cf. Fig. 21.28). It
is used instead of metals because its work function matches that of silicon closely.
Also, poly-Si is more resistant to temperature. Despite its high doping, the resistance
of poly-Si is two orders of magnitude larger than that of metals. Since it is easily
oxidized, it cannot be used with high-k oxide dielectrics.8

For optimized ohmic contacts on the n- and p-Si, different metals are used to
create a small barrier height (Fig. 21.23a) and low contact resistance (cf. Sect. 21.2.6).
Figure24.27 visualizes the band edges of silicon in relation to the work functions of
various metals (see Table21.1). For example, the work function of titanium matches
the electron affinity of n-Si closely. However, a direct deposition of Ti on Si results in
a Schottky barrier of 0.5eV [1415]. A surface passivation with a group-VI element
such as Se can help reduce this value to 0.19eV [1763].

In the latest generation of CMOS ICs the PMOS (NMOS) device has a built-
in compressive (tensile) channel strain for modifying the effective mass (cf. Sect.
6.10.2), both allowing higher drive current due to higher mobility. A detailed treat-
ment can be found in [1764].

7Except for the subthreshold current and other leakage currents. These need to be reduced further
since the dissipated power limits chip performance (speed and device density) and battery lifetime
in handheld applications.
8The term ‘high-k dielectric’ means a dielectric material with large dielectric constant ε.

http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_21
http://dx.doi.org/10.1007/978-3-319-23880-7_6
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Fig. 24.27 Silicon band edges in relation to different metals and their work functions

Fig. 24.28 ENIAC, the first electronic computer (J.P. Eckert, J.W. Mauchly, 1944/5). The images
show only a small part of the 18000 vacuum tubes

24.5.5 Large-Scale Integration

Historic Development

Compared to the first computers on the basis of vacuum tubes (triodes), e.g. ENIAC
(Fig. 24.28), today’s devices are extremely miniaturized and need many orders of
magnitude less power per operation. ENIAC needed 174kW of power. A compa-
rable computing power was reached in 1971 with the few cm2 large Intel 4004
microprocessor (Fig. 24.29b) consuming only several Watts with 2300 transistors. In
2004 about 42 million transistors were integrated in the Pentium 4 microprocessor
(Fig. 24.30). Also, memory chips started to become highly integrated (Fig. 24.29a).

The development of electronic circuit integration is empirically described by
Moore’s ‘law’ [1765] that has been valid since the 1970s. According to this law,



822 24 Transistors

Fig. 24.29 (a) IntelTM 11031KByte (1024memory cells) dynamic randomaccessmemory (RAM),
arranged in four grids with 32 rows and columns (1970), chip size: 2.9× 3.5mm2. (b) IntelTM 4004
microprocessor (1971), chip size: 2.8× 3.8mm2, circuit lines: 10µm, 2,300MOS transistors, clock
speed: 108kHz

the number of transistors doubles every 20 months (Fig. 24.31a). At the same time,
the performance has been improved by an increase of the clock speed (Fig. 24.31b).9

Interconnects

Moore’s second law says that the cost of production also doubles for each new chip
generation and is currently (2004) in the multi-billion US$ range. Most of the cost
saved by integration is due to efficient wiring (interconnects) of the components, in
2004 (65nm node) in eight layers above the active elements (transistors and capac-
itors) (Fig. 24.33), in 2008 (45nm node) in eleven layers. Plane-view images of the
first three layers of the interconnects are shown in Fig. 24.34. The Cu interconnects
are fabricatedwith the so-called damascene process [1766–1768]. Barrier layers (e.g.
TaN or TiN) are required to avoid out-diffusion of Cu into the silicon or other parts
of the circuit. Three effects limit the conductivity: The interconnect metal line width
and height approaches the mean free path of carriers (dCu ≈ 40nm) [633, 1769],
grain boundary scattering can limit mobility since grain size is reduced for thinner
lines, and the (high resistivity) barrier reduces space for the conductive part of the
metal line. In Fig. 24.32 the increase of the resistivity of copper with reduced dimen-
sion is shown as a function of film thickness t and for a 100nm-film as a function of
line width w. In a simplified approach, the line resistivity ρline is given as [1769]

ρline

ρ0
= 1 + 3

8
(1 − p)

(
d

t
+ d

w

)
, (24.80)

ρ0 denoting the bulk resistivity (1.7µ�cm for Cu), d being the mean free path (8.7)
and p being the electron scattering parameter (p = 0 for diffuse scattering).

9After year 2003 data for maximum clock rate are not for highest integration density processors.

http://dx.doi.org/10.1007/978-3-319-23880-7_8
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Fig. 24.30 The IntelTM Pentium 4 microprocessor (2000), circuit lines: 0.18µm, 42 million tran-
sistors, clock speed: 1.5GHz

In order to achieve the best high frequency performance the material between the
metal interconnects should have low dielectric constant (‘low-k’ dielectric). Alterna-
tive materials to the standard SiO2 (εr ≈ 4.1) are investigated such as SiOF (≈3.8),
SiCOH (≈3.0), porous materials (≈2.5) and air gaps [1770].

CMOS Scaling

Using planar technologies, LSI (large-scale integration), VLSI (very large-scale inte-
gration), ULSI (ultra large-scale integration) and further generations of devices have
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(a) (b)

Fig. 24.31 (a)Moore’s lawon the exponential increase of transistors per chip (for IntelTM processor
chips).Dashed line corresponds to doubling in 20months. (b) Historical increase ofmaximumclock
speed, dashed line is guide to the eye. Note the almost constant rate of 10MHz from the mid-1970s
to the mid-1980s and another plateau developing after 2000

Fig. 24.32 Resistivity of
copper at room temperature
for various film thickness
(solid circles), and for a
100nm-film as a function of
line width w (empty circles).
Solid lines are theoretical
dependence according to
(24.80). The dashed lines
indicate the limits for bulk
material (t → ∞) and for
large line thickness
(d = 100nm, w → ∞).
Adapted from [1769]

been conceived, driven by high-density electronic memory devices. Subsequently
also logic devices are produced with reduced device size.

The increase of the number of transistors per area requires the scaling of their
geometrical properties. This impacts many other properties of the transistor and
their scaling needs to be considered as well. From a general perspective, the physical
properties scale while the thermal energy kT remains constant for room-temperature
electronics.

If channel width Z and channel length L of a transistor are scaled down by a
factor of s > 1, Z ′ = Z/s and L ′ = L/s, the area obviously scales as A′ = A/s2.
In subsequent transistor generations s = √

2, i.e. doubling of the number of devices
per area. In order to maintain the aspect ratio of the device also the oxide thickness
(di) is scaled, t ′

ox = tox/s (‘classical scaling’).
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Fig. 24.33 Cross section through a logic chip (65nm technology, 35nm gate length) with eight
layers of dual damascene Cu interconnects (M1–M8) with low-k carbon-doped oxide (εr = 2.9)
inter-level dielectric above the active elements. Adapted from [1771]

Fig. 24.34 Plane-view of the first three interconnect layers of a 45nm node SRAM array
(Intel® Xeon®). In the image of the M1 layer the gate layer metal connects are shown in the inset,
framed with a white dashed line. Adapted from [1772]

The ultimate design criteria are maximum temperature and maximum power loss.
The maximum temperature needs to be obeyed, the worst case usually taken as
100 ◦C. The power loss per area, e.g. heating, needs to stay constant at an appropri-
ate maximum level around 200kW/m2 (Fig. 24.35b) unless higher (and more expen-
sive) efforts on cooling are made. At the same time the device performance needs to
be maintained if not improved, e.g. for lower power dissipation in battery operated
devices. Very important is the reduction of operation voltage VDD in order to keep
electric fields and power consumption small enough (Fig. 24.35). The power con-
sumption in stand-by mode Poff depends on VDD and the subthreshold (off) current

Poff = Wtot VDD Ioff , (24.81)
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(a) (b)

Fig. 24.35 Scaling of MOSFET parameters gate oxide thickness tox, power supply voltage VDD
(across source–drain), threshold voltage VT, total power loss per area P , gate capacitance per
channel width CG and inverter delay τ , the time required to propagate a transition through a single
inverter driving a second, identical inverter, commonly used as a means of gauging the speed of
CMOS transistors. Data for (a) from [1773] and for (b) selected from [1774]

whereWtot is the totalwidth of the turned-off devices and Ioff is the averageoff-current
per device per width. The latter increases exponentially with reduced threshold volt-
age VT,

Ioff = I0 exp

(
− e VT

n kT

)
, (24.82)

with ideality factor n ≈ 1.2 and I0 ≈1–10µA/µm [1773]. A well-functioning
MOSFET requires a ratio of VT/VDD of < 0.3.

The power consumption in active mode Pac depends also on the clock speed
(frequency f ) that increases with higher integration due to shorter gate length,

Pac = Csw V 2
DD f, (24.83)

whereCsw is the total node capacitance being charged and decharged in a clock cycle.
Historically the oxide thickness has been reduced less than the channel length

[1773] (Fig. 24.35a) leading to increased local fields. The reduction of the physical
gate oxide thickness is limited due to gate leakage through tunneling [1775]. While
for a gate voltage of 1.5V and oxide thickness tox = 3.6nm the leakage current is
only about 10−8 A/cm2, it is about 1A/cm2 for tox = 2.0nm and about 104 A/cm2

for tox = 1.0nm. Obviously variations of oxide thickness are more harmful at small
average thickness. 1.2nm physical SiO2 thickness has been used in the 90nm (gate
length) logic node.
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The technological solution for further reduction of oxide thickness is the use of
geometrically thicker layers, to suppress tunneling, with higher dielectric constant
(‘high-k dielectrics’), e.g. HfO2 [1776], to maintain reasonable gate capacitance per
gate width

CG = εox

tox
L , (24.84)

(cmp. (24.70)) at a value of about 1.0–1.5 fF/µm(Fig. 24.35b). For the 45nm technol-
ogy node a 0.7-fold reduction in electrical oxide thickness was achieved while reduc-
ing gate leakage 1000× for the PMOS and 25× for the NMOS transistors [1777].

Materials

The electronics industry is based on silicon as the material for transistors. However,
many other materials are incorporated in the technology. Traditionally silicon diox-
ide gate oxide is used, silicon nitride for insulation layers and polysilicon for gate
contacts. For wiring aluminum has been used. Silicides were introduced as contact
materials around 1986.

Progress was made with copper interconnects (IBM, 1997), replacing aluminum.
The better electrical and heat conductivity could previously not be used since Cu is
a deep level in Si (cf. Fig. 7.6). The key to success was an improved barrier technol-
ogy based on amorphous TaN- or TiN-based barrier layers to prevent the diffusion
of Cu into the silicon and dielectric layers. The first chip from series production,
incorporating the Cu technology, was the PowerPC 750 (400MHz) in 1998. Since
2000 high-k, i.e. large εr, Hf-containing gate dielectrics are used (Fig. 24.36). HfO2

has a dielectric constant of 25–30. 45nm node technology probably uses HfZrO,
HfSiO or HfSiON [1778] gate dielectrics with k ∼ 12 and an electrical thickness of
tox εSiO2/εox = 1.0nm.

Fig. 24.36 Cross-section
TEM image of 45nm node
PMOS transistor with high-k
Hf-containing gate oxide
(dark) above a thin SiO2
layer (white). The role of the
stressor SiGe pockets is
explained in Fig. 24.35.
Adapted from [1779]

http://dx.doi.org/10.1007/978-3-319-23880-7_7
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Germanium is reintroduced into mainstream semiconductor technology via SiGe
stressors in the source and drain for PMOS. Uniaxial compressive strain in the chan-
nel region leads to 30% increased saturation current [1780] mostly due to reduced
effective masses [658, 1781, 1782] (Sect. 8.3.11) for 90nm transistors. Similarly,
uniaxial tensile strain in NMOS, introduced by SiN caps or more recently tensile
trench contacts [1777], allows for 10% higher saturation current [1780] (Fig. 24.37).
The enhanced electron mobility is due to strain-induced splitting of the X-valley
and change of electron mass [1783]. Further improvement to 18% (NMOS) and

Fig. 24.37 Cross-section
TEM images of strained (a)
PMOS and (b) NMOS
transistors. Adapted
from [1784]. (c–f)
Modelling of strain
distribution: PMOS without
(c) and with (e) Si0.83Ge0.17
pockets, NMOS without (d)
and with (f) tensile cap layer.
Adapted from [1785]

(a) (b)

(c) (d)

(e) (f)

http://dx.doi.org/10.1007/978-3-319-23880-7_8
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(a) (b)

Fig. 24.38 Schematic of a (a) n-type and (b) p-type tunneling FET (TFET). D is reversely biased,
i.e. positive for NTFET and negative for PTFET. The grey areas represent the gate oxide, the arrows
denote the spatial position of tunneling (surface tunneling junction) for sufficient (NTFET: positive,
PTFET: negative) gate voltage

50% (PMOS) increase in ID,sat compared to unstrained Si have been made in 65nm
transistors [1771].

The end of the miniaturization has been theoretically predicted many times and
for various feature sizes. Today, only fundamental limits such as the size of an atom
seems to limit circuit design.10 Such limits (and the effects in nanostructures in the
few-nm regime) will be reached beyond 2010, projected at about 2020. Up to then,
it is probable that at least a few companies will follow the road map for further
miniaturization, as laid out by the Semiconductor Industry Association11 (SIA).

24.5.6 Tunneling FETs

A decisive parameter for FET performance is low leakage current. With shrinking
device dimensions it increases rapidly for conventional FET design. A novel type of
FET has thus been conceptualized, the tunneling FET (TFET) [1786]. It is a lateral
p-i-n diode with a MOS gate (Fig. 24.38). The leakage current is minimized due to
the reverse biased p-i-n structure. A low leakage current (per gate width) of less than
10−14 A/µm has been realized [1787, 1788]. The channel current is due to band-to-
band tunneling as in an Esaki diode (Sect. 21.5.9) and can be controlled by the gate
voltage [1789].The surface tunneling junction is close to the source electrode.Theuse
of germanium instead of silicon allows further performance enhancements [1790].

10Only commercial profit, rather than testing physical limits, drives the miniaturization. Insufficient
economic advantages or low yield of further chip generations possibly can limit or slow down large-
scale integration.
11www.semichips.org.

http://dx.doi.org/10.1007/978-3-319-23880-7_21
www.semichips.org
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Fig. 24.39 MOSFET with (a) floating gate and (b) MIOS structure

24.5.7 Nonvolatile Memories

Floating Gate Memories

When the gate electrode of a MOSFET is modified in such a way that a
(semi-)permanent charge can be stored in the gate, a nonvolatile electronic memory
can be fabricated. In the floating-gate structure (Fig. 24.39a), an insulator–metal–
insulator structure is used where charge is stored in the metal and cannot escape
through the insulating barriers. The ‘metal’ is often realized by poly-Si. In the MIOS
structure (Fig. 24.39b), the insulator–oxide interface is charged. The charge can be
removed by UV light (EPROM, erasable programmable read-only memory) or by
a sufficient voltage across the oxide at which the charge carriers can tunnel out
(Fowler–Nordheim tunneling) (EEPROM, E2PROM, electrically erasable program-
mable read-only memory).

Nowadays, a special type of EEPROM is used for the so-called flash memories.
The stored gate charge causes a change in the MOSFET threshold voltage and is
designed to switch between the on and off state. The storage time of the charge
can be of the order of 100 years. Since tunneling limits the charge retention, the
oxide must be sufficiently thick. In Fig. 24.40 a cross section of a 4Gb, 73nm SLC
(single-level cell) flash memory is shown. The lower insulator (tunneling oxide at
the channel) consist of 7.2nm SiO2, the upper insulator (insulator 1 in Fig. 24.39a) is
a 18nm thick oxide/nitride/oxide (ONO) stack. The floating gate has a 90 × 90nm2

footprint, is about 86nm high and consists of two polysilicon layers.
In a SLC memory the floating gate has two states, a certain charge value and

the erased state. In a MLC (multi-level cell) the gate can store several charge states
which can be sensed as different logic states, e.g. 22 = 4 states. This increases
the storage density, lowering cost per bit, but also increases the complexity. Typical
endurance of SLC is at least 106 program–erase cycles. SLC cells so far have about
ten times higher endurance (possible number of read–write cycles) and lower power
consumption thanMLC. Generally SLC flash memory is considered industrial grade
and MLC flash is considered consumer grade. Recently also triple level cells (TLC),
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(a) (b)

Fig. 24.40 Cross sections (a) perpendicular and (b) parallel to the control gate line of a 4Gb,
73nm SLC flash memory (Samsung K9F4G08U0M). ‘CG’ denotes the control gate, ‘FG’ the
floating gate, ‘TO’ the tunneling oxide, ‘ONO’ the oxide/nitride/oxide insulator stack, and ‘STI’
the shallow trench insulation. Adapted from [1772]

storing 3 bit (8 states) are commercialized, however the increased storage density
comes at high cost of reliability [1791].

The ultimate limit, explored currently, is to use a single electron charge to cause
such an effect in the single-electron transistor (SET).

Future Concepts

Memory concepts beyond the storage of free charges include information storage via

• the static polarization in a ferroelectric material (either crystalline or polymer)
(FeRAM [1792], Fig. 24.41a) which can be switched by an electric field.

• the phase change between amorphous and polycrystalline phases in a chalcogenide
layer (typically GeSb [1793] or Ge2Sb2Te5, GST [1794, 1795] with an α ↔ c
transition, Fig. 24.42) upon local heating (similar to a rewritable DVD) and the
related change is resistivity (PCM, phase change memory).

• the storage of magnetization direction (MRAM [1796, 1797]) and subsequent
resistance changeof amagneto-tunneling junction (MTJ)whose resistancedepends
on the relative magnetization (parallel or perpendicular) of two magnetic layers
separated by a thin tunneling insulator (Fig. 24.41b). The largest TMR (tunnel-
magnetoresistance) effect has been achieved with MgO as insulator [1797]. The
magnetization of the bottom magnetic layer of the MTJ is fixed. The magnetiza-
tion directions ±45◦ are written into the free layer with the magnetic fields of two
perpendicular high current wires in two subsequent back-end interconnect layers
sandwiching the MTJ.

• resistance change based on solid electrolytes (PMC, programmable metallization
cell memory). The lowering of the resistance is attained by the reduction of ions in
a fairly high resistivity electrolyte (e.g. from the system Cu,Ag–Ge–Se,S,O [1798,
1799] or oxides [1800]) to form a conducting bridge between the electrodes. The
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(a)
(b)

Fig. 24.41 (a) Cross-section TEM image of a cell from a Ramtron 4Mb FeRAM. The information
is stored in the electric polarization of a polycrystalline Pb(TixZr1−x )O3 (PZT) island, contacted
on the bottom and top with platinum and iridium oxide, respectively. Adapted from [1772]. (b)
Cross-section TEM of the magnetic tunneling junction from a Freescale 4.2Mb MRAM, located
between the M4 and M5 interconnect layers. The magnetization of the free layer can be switched,
that of the fixed layer remains constant. Adapted from [1772]

(a) (b)

Fig. 24.42 (a) Radial distribution function of ions in Ge2Sb2Te5 (GST) for various temperatures
(cmp. Fig. 3.14b). Adapted from [756]. (b) Atom arrangement in the amorphous phase of GST with
square units highlighted that nucleate crystallization. Adapted from [1795]

resistance is returned to the high value via the application of a reverse bias that
results in the breaking of the conducting pathway.

• resistance change in transition metal oxides such as perovskites, e.g. SrTiO3:Cr
[1801, 1802] or NiO:Ti (RRAM). Electrical pulses of opposite polarity switch the
resistance reversibly between a high- and a low-resistance state. Oxygen-vacancy

http://dx.doi.org/10.1007/978-3-319-23880-7_3
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drift modulates the valence of the mixed-valence transition-metal ion (e.g. Ti3+–
Ti4+) and thus the conducting state [1803].

• a molecular configuration change (e.g. redox reaction) between crossed wire lines
(molecular electronics [1804–1806]).

24.5.8 Heterojunction FETs

Several types of field-effect transistors have been devised that use heterojunctions
(HJFET).

HIGFET

As conducting channel, the two-dimensional electron gas at an undoped heteroin-
terface is used. Such a transistor is called a heterojunction insulating gate FET
(HIGFET). With forward or backward gate voltage, an electron or hole gas can
be created (channel enhancement mode), as visualized in Fig. 24.43. Thus, a com-
plementary logic can be realized. However, the p-channel suffers from low hole
mobility.

HEMT

If the top wide-bandgap layer is n-doped, a modulation-doped FET (MODFET) is
made (see Sect. 12.3.4). This structure is also called a HEMT (high electron mobil-
ity transistor) or TEGFET (two-dimensional electron gas FET) (Fig. 24.44). A thin
undoped AlGaAs spacer layer is introduced between the doped AlGaAs and the

(a) S G D

n+

undoped AlGaAs

si-GaAs

+

(b) V >0G
(c)

V <0G

(d)

Fig. 24.43 (a) Scheme of a HIGFET structure with metal gate and undoped AlGaAs/GaAs het-
erointerface on semi-insulating GaAs. The source and drain contacts are n-doped such that this
structure can be used as an n-HIGFET (see part (c)). (b) Band diagram for zero gate voltage. (c)
Band diagram for positive gate voltage and n-channel, (d) for negative gate voltage and p-channel

http://dx.doi.org/10.1007/978-3-319-23880-7_12
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(a) S G D

n+

n-AlGaAs

si-GaAs

undoped
AlGaAsn+

(b) (c) (d)
V >0G

V >0G

+ +
++

Fig. 24.44 (a) Scheme of a HEMT structure with n-AlGaAs/GaAs heterointerface on semi-
insulating GaAs. The source and drain contacts are n-doped such that this structure can be used as an
n-channel (normally-on) HEMT. The horizontal dashed line represents schematically the position
of the 2DEG at the heterointerface on the GaAs side. (b) Band diagram at zero gate voltage. (c)
Band diagram at positive gate voltage, increase of channel carrier concentration. (d) Band diagram
at even larger positive gate voltage, formation of conducting channel in the AlGaAs layer

undoped GaAs to reduce impurity scattering from carriers that tunnel into the bar-
rier. With increasing gate voltage, a parallel conduction channel in the AlGaAs is
opened. The natural idea would be to increase the Al fraction in the AlGaAs to
increase the quantum-well barrier height. Unfortunately, the barrier height is limited
to 160meV for an aluminum concentration of about 20%. For Al content higher
than about 22%, the DX center (cf. Sect. 7.7.6) forms a deep level such that the
apparent ionization energy increases drastically and no shallow donors can be used
for modulation doping. An improvement for the barrier conduction problem is the
use of δ-doping [1807], i.e. the introduction of a highly doped thin (mono-)layer
(Fig. 24.45), which results in higher channel carrier concentration.

(a) S G D

n+

undoped AlGaAs

si-GaAs

dopant
sheet

n+

(b)

+

Fig. 24.45 (a) Scheme of a δ-doped HEMT structure with AlGaAs/GaAs heterointerface on semi-
insulating GaAs. The source and drain contacts are n-doped such that this structure can be used as
an n-channel HEMT. The horizontal dashed line represents schematically the position of the 2DEG
in the GaAs layer. (b) Band diagram at zero gate voltage

http://dx.doi.org/10.1007/978-3-319-23880-7_7
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Fig. 24.46 (a) Scheme of a
PHEMT structure with
n-AlGaAs/InGaAs
heterointerface on
semi-insulating GaAs. The
source and drain contacts are
n-doped such that this
structure can be used as an
n-channel HEMT. The
horizontal dashed line
represents schematically the
position of the 2DEG in the
InGaAs layer. (b) Band
diagram at zero gate voltage

(a) S G D

n-AlGaAs

si-GaAs

undoped
AlGaAs

n+ n+ undoped
InGaAs

(b) ++

Pseudomorphic HEMTs

Instead of increasing the height of the barrier, the depth of the well can be increased
by using a low-bandgap material. On GaAs substrate, InGaAs is used (Fig. 24.46).
However, strain is introduced in this case and the InGaAs layer thickness is limited by
the onset of dislocation formation (cf. Sect. 5.4.1) (which reduces the channel mobil-
ity and the device reliability). For In0.15Ga0.85As (thickness about 10–20nm), a total
barrier height of about 400meV can be obtained. A barrier height of 500meV can
be reached with an InAlAs/InGaAs structure on InP (Fig. 24.47). The InAlAs does
not suffer from the problem related to DX centers. The channel indium concentra-
tion is typically 50%. The mobility increases with increasing indium concentration.
This InP-based HEMT structure is widely used in satellite receivers for its excellent
high-speed and low-noise properties in the 100–500GHz range and beyond.

However, the InP technology is economically less favorable than GaAs due to
smaller available substrate size and higher cost (2001: 4′′ InP substrate: $1000, 6′′
GaAs substrate: $450).

S G D

n-InAlAs

si-InP

undoped
InAlAs

n+ n+ undoped
InGaAs

n InGaAs+

Fig. 24.47 Scheme of a PHEMT structure with n-AlInAs/InGaAs/InAlAs structure on semi-
insulating InP. The source and drain contacts (with a highly doped InGaAs contact layer) are
an n-doped such that this structure can be used as an n-channel HEMT. The horizontal dashed line
represents schematically the position of the 2DEG in the InGaAs layer

http://dx.doi.org/10.1007/978-3-319-23880-7_5
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Metamorphic HEMTs

A unification of the InAlAs/InGaAs structure with the best figure of merit and the
GaAs substrate is achieved with themetamorphic HEMT (MHEMT). Here, a relaxed
buffer is used to bring the in-plane lattice constant from that of GaAs to about that
of InP. It is key that the defects occurring are confined to the relaxed buffer and do
not enter the active device structure (see Fig. 24.48). The relaxed buffer is typically
about 1µm thick. It can be grown, e.g. with a graded Inx (Ga,Al)1−xAs layer with x
= 0–42% or with a stepped structure with piecewise constant indium concentration
in each layer. It is important that a smooth interface of the channel is achieved in
order to avoid additional scattering mechanisms. For high-frequency operation, the
fabrication of a small gate length is important, as shown in Fig. 24.49 for a 70-nm gate
of a fT = 293GHz, fmax = 337GHz transistor [1808]. SiGe channels, providing
higher mobility than pure Si, can be fabricated using graded or stepped SiGe buffer
layers on Si substrate. With such Si-based MHEMTs frequencies up to 100GHz can
be achieved.

Fig. 24.48 Cross-sectional
TEM image of an
InAlAs/InGaAs MHEMT:
(a) Active layer with rms
surface roughness of 2.0nm
(from AFM), (b) graded
InGaAlAs buffer layer
(1.5µm) on GaAs substrate.
Adapted from [1809]

InAlAs
In Ga As

InAlAs
buffer

0.53 0.47

0.52 0.48

graded
InAlGaAs

buffer

(b)

(a)
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Fig. 24.49 Cross-sectional
TEM image of the 70-nm
gate of an InAlAs MHEMT
on GaAs substrate.
From [1808]

24.6 Thin-Film Transistors

Thin-film transistors (TFTs) are field-effect transistors with a channel formed as thin
film on insulating substrate. A detailed treatment is available in [1810]. TFTs are
typically fabricated as large-area arrays from thin layers of polycrystalline or amor-
phous silicon [1811] or organic semiconductors [1812–1815] on cheap substrates
such as glass. Their most prominent use is driving pixels in active-matrix displays
such as electroluminescence (EL) displays or twisted nematic liquid crystal displays
(LCD) [1816]. Various gates and gate geometries have been reported as depicted in
Fig. 24.50.

24.6.1 Annealing of Amorphous Silicon

Since the mobility in polycrystalline silicon is much higher (up to several hun-
dred cm2/Vs depending on grain size, see Sect. 8.3.8) than in amorphous silicon
(<1cm2/Vs), such material is much more desirable as channel in TFTs. However, it

(a) (b) (c) (d)

Fig. 24.50 Schematic geometries of TFTs: (a–c) MISFETs, (d) MESFET with (a, b) bottom gate
and (c, d) top gate. Semiconductor channel layer (light grey), insulating dielectric (dark grey) and
metals (black)

http://dx.doi.org/10.1007/978-3-319-23880-7_8
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requires high deposition temperatures. In order to achieve polycrystalline siliconwith
large grain size fromamorphous silicon films that can be deposited at low temperature
(down to room temperature) several schemes have been developed, the most impor-
tant being thermal annealing and (excimer) laser annealing (ELA). Crystallization
occurs by thermally activated nucleation and growth processes [1817]. Polycrys-
talline layers will small grain size can be made amorphous with implantation of Si
(self-implantation) and a subsequent optimized (re-)crystallization processes.

In laser annealing energy is locally introduced during short pulses (several 10ns
or even fs); subsequent material change occurs on a sub-µs time scale [1818]. Laser
induced crystallization enables the use of inexpensive low-temperature substrates,
such as plastic or glass, since it involves the ultrafast melting and resolidification of
the near-surface region of the sample, and minimal heating of the substrate. Local
processing is also possible using laser crystallization.

In Fig. 24.51 the effect of thermal annealing of amorphous silicon is shown. The
annealing time necessary to convert the amorphous phase completely to polycrys-
talline, e.g. 10h at 640 ◦C, depends largely on temperature as detailed in [1819,
1820] (Fig. 24.51a) with a large activation energy of 3.9eV. Also the final grain size
is temperature dependent (Fig. 24.51b).

The introduction of certain metals like Pd [1821], Al [1822], Au [1823] or
Ni [1824] induces crystallization and allows for much lower annealing tempera-
tures. Pd and Ni create silicides that play an important role for the grain nucleation
or growth front. Au and Al are solved in the bulk but have a similar effect. For
example, using Pd complete crystallization of a 150nm thick a-Si film deposited at
480 ◦C can be achieved by thermal annealing after 10h at only 500 ◦C [1825] (using
metal-induced lateral crystallization, MILC).

24.6.2 TFT Devices

Aschematic cross sectionof an amorphous silicon-basedTFT is shown inFig. 24.52a.
Carriers in amorphous silicon have a lowmobility typically less than 1cm2/Vs [1826,
1827]. As-grown polycrystalline silicon has a mobility of typically less than
10cm2/Vs. With the use of laser irradiation or thermal annealing, amorphous or
small-grain polycrystalline silicon layers can be recrystallized, increasing the mobil-
ity up to several 100cm2/Vs, improving transistor performance [1826, 1828, 1829].
However, for display applications a mobility of 10cm2/Vs is large enough.

The main optimization criteria for thin-film transistors are high on-off ratio, long-
term stability, good uniformity and reproducibility, and low cost. Recently, flexible
(on polymer substrate) and transparent TFTs (TFET, transparent FET), e.g.with poly-
crystalline ZnO or GaInZnO (GIZO) channel (Fig. 24.52b), are being investigated
for advanced applications such as all-transparent electronics and displays [1398,
1828–1832]. A compilation of recent results on transparent semiconducting oxide
(TSO) channel FETs can be found in [1834]. In Fig. 24.53 performance data for
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(a) (b) (c)

(d) (e)

Fig. 24.51 Thermal annealing of 100nm thick film of amorphous silicon (fabricated from LPCVD
and amorphized by 100keV Si+ implantation with a dose of 5 × 1015 cm−2). TEM images and
diffraction patterns (insets) for amorphized Si after (a) 4h, (b) 5.25h and (c) 7.1h annealing at
T = 630 ◦C. The crystalline fractions are 2, 28 and 87%, respectively. (d) Crystalline fraction as a
function of annealing time for various annealing temperatures as labeled. Symbols are experimental
data, solid lines depict theory consideringgrain nucleation andgrowth. (e) Final grain size for various
annealing temperature. Dashed line is exponential with a slope of 0.6eV. Adapted from [1819]

various TSO channel FETs are visualized. In Fig. 24.54 a transparent inverter based
on ZnO-MESFETs is depicted [1835].

24.6.3 OFETs

Organic field effect transistors (OFETs) [1837–1840] are transistors for which at
least the channel consists of an organic material. Most work is done on thin film
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(a) (b)

Fig. 24.52 (a) Schematic cross section of a top-gate amorphous silicon (a-Si) thin-film transistor
(MISFET) on glass substrate. (b) Schematic cross section of a transparent ZnO thin-film transistor
(MESFET)

(a) (b)

Fig. 24.53 (a) Field effect mobility and on/off current ratio for oxide channel transistors. Filled
squares represent MISFET transistors; open squares are for MESFETs from [1833]. The shaded
area indicates best performance. (b) Voltage swing for MISFETs (filled squares, subthreshold
voltage swing) andMESFET (empty square, above turn-on voltage from [1833])withTSOchannels.
The dashed line is guide to the eyes for the trend of best performance. The dash-dotted line indicates
the thermodynamic limit of about 60meV/decade for the swing [1836]. Adapted from [1834]

(a) (b)

Fig. 24.54 (a) Optical image of transparent MESFET inverter based on ZnO. The two rectangles
indicate the two gates. (b) Transfer characteristic for supply voltage VDD = 4V
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transistors, although some work on OFETs using bulk organic semiconductors has
been reported [1841, 1842]. Organic materials are also used for the insulator and the
contact materials. Often organic and flexible substrates are used. Applications are in
low cost electronics, e.g. for driving display pixels or RFID tags (typically operat-
ing at 13.56 or 900MHz). Processes like spin-on and printing can be used. Due to
their larger chemical stability against oxidation, mostly p-type channel materials are
used. The highest mobilities are reached for pentacene (6cm2/Vs) and sexithiophene
(1cm2/Vs); n-type organic semiconductors exhibit field mobility below 0.1cm2/Vs
[1838].



Appendix A
Tensors

A.1 Introduction

A physical quantity Tij...m with a total of k indices that is independent of translations
of the coordinate system and transforms with respect to all indices like a vector is
called a tensor of rank k.

Often, Einstein’s sum convention is used; a sum is built over indices with the same
symbol. For example, x′

i = Dij xj shall be read as x′
i = ∑3

j=1 Dij xj.

A.2 Rotation of Coordinate System

A rotation of the coordinate system is a transformation x → x′ that is written in
components as

x′
i = Dij xj. (A.1)

D is called the rotation matrix. The inverse of the rotation matrix is D−1 with

D−1
kl = Dlk, (A.2)

i.e. it is the transposed matrix D. The inverse transformation is xj = Dij x′
i . Thus,

Dij Dkj = δij. (A.3)

A simple example is the azimuthal rotation around the z-axis by an angle φ (in
the mathematically positive direction)

D =
⎛

⎝
cosφ − sin φ 0
sin φ cosφ 0
0 0 1

⎞

⎠ . (A.4)
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Fig. A.1 Rotation of a
coordinate system (x, y, z)
by the Euler angles (φ, θ,ψ)

into the system (X, Y , Z)
YZ

X

z

x

y

For the description of an arbitrary rotation (x, y, z) → (X, Y , Z), generally three
angles are necessary. Typically, the Euler angles (φ, θ,ψ) are used (Fig. A.1). First,
the system is rotated by φ around the z-axis. The y-axis becomes the u-axis. Then,
the system is tilted by θ around the u-axis and the z-axis becomes the Z-axis. Finally,
the system is rotated by ψ around the Z-axis.

The matrix for the general rotation by the Euler angles is

⎛

⎝
cosψ cos θ cosφ − sinψ sin φ − sin φ cos θ cosψ − cosφ sinψ sin θ cosψ
cosφ cos θ sinψ + sin φ cosψ − sinψ cos θ sin φ + cosψ cosφ sin θ sinψ

− cosφ sin θ sin φ sin θ cos θ

⎞

⎠ . (A.5)

A.3 Rank-n Tensors

Rank-0 Tensors

A tensor of rank 0 is also called a scalar. For example, the length v2
1 + v2

2 + v2
3 of the

vector v = (v1, v2, v3) is a scalar since it is invariant under rotation of the coordinate
system. However, ‘scalar’ is not equivalent to ‘number’ since, e.g. the number v2

1+v2
2

is not rotationally invariant.

Rank-1 Tensors

A tensor of rank 1 is a vector. It transforms under coordinate rotation D as

v′
i = Dij vj. (A.6)

Rank-2 Tensors

A tensor of rank 2 is also called a dyade and is a 3×3 matrix T that transforms under
coordinate rotation as

T ′
ij = Dik Djl Tkl. (A.7)

The physical meaning is the following: Two vectors s and r shall be related to
each other via si = Tij rj. This could be, e.g., the current j and the electric field E
that are connected via the tensor of conductivity σ, i.e. ji = σij Ej.
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Such an equation only makes physical sense if it is also valid in a (any) rotated
coordination system. The tensor T′ in the rotated coordinate system must fulfill
s′

i = T ′
ij r′

j . This implies the transformation law (A.7). s′
k = Dki si = Dki Tijrj and

also s′
k = T ′

km r′
m = T ′

km Dmj rj. Thus, T ′
km Dmj = Dki Tij since the previous relations

are valid for arbitrary r. Multiplication by Dlj yields T ′
km Dmj Dlj = T ′

km δml = T ′
kl =

Dki Dlj Tij.
The trace of a rank-2 tensor is defined as tr T = Tii = T11 + T22 + T33. It is a

scalar, i.e. invariant under coordinate rotation, since T ′
kk = DkiDkjTij = δijTij = Tii.

A rank-2 tensor can be separated into a symmetric part TS and an antisymmetric
part TA, i.e. T S

ji = TS
ij and TA

ji = −T A
ij with

T = TS + TA (A.8a)

TS
ij = Tij + Tji

2
(A.8b)

TA
ij = Tij − Tji

2
. (A.8c)

A rank-2 tensor can be separated into an isotropic (spherical) part TI and a devi-
atoric part TD. The isotropic part is invariant under coordinate rotation.

T = TI + TD (A.9a)

TI
ij = δij

tr T
3

(A.9b)

T D
ij = Tij − δij

tr T
3

. (A.9c)

The trace of T is the same as that of TI . The trace of TD is zero.

Rank-3 Tensors

A tensor of rank 3 transforms according to

T ′
ijk = Dil Djm DknTlmn. (A.10)

An example is the tensor e of piezoelectric constants that relates the rank-2 tensor
of the strains with the polarization vector P, i.e. Pi = eijk εjk .

Rank-4 Tensors

A tensor of rank 4 transforms according to

T ′
ijkl = Dim Djn Dko Dlp Tmnop. (A.11)

An example is the tensor C of elastic constants that relates the rank 2 tensors ε
and σ of the elastic strains and stresses, i.e. σij = Cijkl εkl.



Appendix B
Point and Space Groups

(See TablesB.1, B.2 and B.3.)

Table B.1 The 10 two-dimensional point groups in group and full and abbreviated international
notation

Group Notation Nsg Symmetry elements

Full Abbrev.

international

C1 1 1 1 C1

D1 1m m 3 C1, m

C2 2 2 1 C2

D2 2mm mm 4 C2, 2m

C3 3 3 1 C3

D3 3m 3m 2 C3, 3m

C4 4 4 1 C4

D4 4mm 4m 2 C4, 2m

C6 6 6 1 C6

D6 6mm 6m 1 C6, 6m

Nsg denotes the number of space groups
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848 Appendix B: Point and Space Groups

Table B.2 The 32 point groups in Schönfließ and international notation

System Class Nsg Symmetry elements

international Schönfließ

Triclinic 1

1̄

C1

Ci

1

1

E

E i

Monoclinic m

2

2/m

Cs

C2

C2h

3

4

6

E σh

E C2

E C2 i σh

Orthorhombic 2mm

222

mmm

C2v

D2

D2h

9

22

28

E C2 σ′
v σ′′

v

E C2 C′
2 C′′

2

E C2 C′
2 C′′

2 i σh σ′
v σ′′

v

Tetragonal 4

4̄

4/m

4mm

4̄2m

422

4/mmm

C4

S4
C4h

C4v

D2d

D4

D4h

6

2

6

10

12

12

20

E 2C4 C2

E 2S4 C2

E 2C4 C2 i 2S4 σh

E 2C4 C2 2σ′
v 2σd

E C2 C′
2 C′′

2 2σd 2S4
E 2C4 C2 2C′

2 2C′′
2

E 2C4 C2 2C′
2 2C′′

2 i 2S4 σh 2σ′
v 2σh

Trigonal
(rhombohedral)

3

3̄

3m

32

3̄m

C3

S6
C3v

D3

D3d

4

2

7

6

6

E 2C3

E 2C3 i 2S6
E 2C3 3σv

E 2C3 3C2

E 2C3 3C2 i 2S6 3σd

Hexagonal 6̄

6

6/m

6̄m2

6mm

622

6/mmm

C3h

C6

C6h

D3h

C6v

D6

D6h

6

1

2

6

4

4

4

E 2C3 σh 2S3
E 2C6 2C3 C2

E 2C6 2C3 C2 i 2S3 2S6 σh

E 2C3 3C2 σh 2S3 3σv

E 2C6 2C3 C2 3σv 3σd

E 2C6 2C3 C2 3C′
2 3C′′

2

E 2C6 2C3 C2 3C′
2 3C′′

2 i 2S3 2S6 σh 3σd 3σv

Cubic 23

m3

4̄3m

432

m3m

T

Th

Td

O

Oh

5

7

8

6

10

E 4C3 4C2
3 3C2

E 4C3 4C2
3 3C2 i 8S6 3σh

E 8C3 3C2 6σd 6S4
E 8C3 3C2 6C′

2 6C4

E 8C3 3C2 6C2 6C4 i 8S6 3σh 6σd 6S4

Nsg denotes the number of space groups
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Table B.3 Space group numbers and corresponding space group symbols in standard international
notation

1 P1 2 P1̄ 3 P2 4 P21 5 C2

6 Pm 7 Pc 8 Cm 9 Cc 10 P2/m

11 P21/m 12 C2/m 13 P2/c 14 P21/c 15 C2/c

16 P222 17 P2221 18 P21212 19 P212121 20 C2221
21 C222 22 F222 23 I222 24 I212121 25 Pmm2

26 Pmc21 27 Pcc2 28 Pma2 29 Pca21 30 Pnc2

31 Pmn21 32 Pba2 33 Pna21 34 Pnn2 35 Cmm2

36 Cmc21 37 Ccc2 38 Amm2 39 Abm2 40 Ama2

41 Aba2 42 Fmm2 43 Fdd2 44 Imm2 45 Iba2

46 Ima2 47 Pmmm 48 Pnnn 49 Pccm 50 Pban

51 Pmma 52 Pnna 53 Pmna 54 Pcca 55 Pbam

56 Pccn 57 Pbcm 58 Pnnm 59 Pmmn 60 Pbcn

61 Pbca 62 Pnma 63 Cmcm 64 Cmca 65 Cmmm

66 Cccm 67 Cmma 68 Ccca 69 Fmmm 70 Fddd

71 Immm 72 Ibam 73 Ibca 74 Imma 75 P4

76 P41 77 P42 78 P43 79 I4 80 I41
81 P4̄ 82 I4̄ 83 P4/m 84 P42/m 85 P4/n

86 P42/n 87 I4/m 88 I41/a 89 P422 90 P4212

91 P4122 92 P41212 93 P4222 94 P42212 95 P4322

96 P43212 97 I422 98 I4122 99 P4mm 100 P4bm

101 P42cm 102 P42nm 103 P4cc 104 P4nc 105 P42mc

106 P42bc 107 I4mm 108 I4cm 109 I41md 110 I41cd

111 P4̄2m 112 P4̄2c 113 P4̄21m 114 P 4̄21c 115 P4̄m2

116 P4̄c2 117 P4̄b2 118 P4̄n2 119 I4̄m2 120 I4̄c2

121 I4̄2m 122 I4̄2d 123 P4/mmm 124 P4/mcc 125 P4/nbm

126 P4/nnc 127 P4/mbm 128 P4/mnc 129 P4/nmm 130 P4/ncc

131 P42/mmc 132 P42/mcm 133 P42/nbc 134 P42/nnm 135 P42/mbc

136 P42/mnm 137 P42/nmc 138 P42/ncm 139 I4/mmm 140 I4/mcm

141 I41/amd 142 I41/acd 143 P3 144 P31 145 P32
146 R3 147 P3̄ 148 R3̄ 149 P312 150 P321

151 P3112 152 P3121 153 P3212 154 P3221 155 R32

156 P3m1 157 P31m 158 P3c1 159 P31c 160 R3m

161 R3c 162 P3̄1m 163 P3̄1c 164 P3̄m1 165 P3̄c1

166 R3̄m 167 R3̄c 168 P6 169 P61 170 P65
171 P62 172 P64 173 P63 174 P6̄ 175 P6/m

176 P63/m 177 P622 178 P6122 179 P6522 180 P6222

181 P6422 182 P6322 183 P6mm 184 P6cc 185 P63cm

186 P63mc 187 P6̄m2 188 P6̄c2 189 P6̄2m 190 P6̄2c

(continued)
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Table B.3 (continued)

191 P6/mmm 192 P6/mcc 193 P63/mcm 194 P63/mmc 195 P23

196 F23 197 I23 198 P213 199 I213 200 Pm3̄

201 Pn3̄ 202 Fm3̄ 203 Fd3̄ 204 Im3̄ 205 Pa3̄

206 Ia3̄ 207 P432 208 P4232 209 F432 210 F4132

211 I432 212 P4332 213 P4132 214 I4132 215 P4̄3m

216 F4̄3m 217 I4̄3m 218 P4̄3n 219 F4̄ 3c 220 I4̄3d

221 Pm3̄m 222 Pn3̄n 223 Pm3̄n 224 Pn3̄m 225 Fm3̄m

226 Fm3̄c 227 Fd3̄m 228 Fd3̄c 229 Im3̄m 230 Ia3̄d



Appendix C
Kramers–Kronig Relations

The Kramers–Kronig relations (KKR) are relations between the real and imaginary
part of the dielectric function. They are of a general nature and are based on the
properties of a complex, analytical response function f (ω) = f1(ω)+ if2(ω) fulfilling
the following conditions1:

• The poles of f (ω) are below the real axis.
• The integral of f (ω)/ω along a semicircle with infinite radius in the upper half of
the complex plane vanishes.

• The function f1(ω) is even and the function f2(ω) is odd for real values of the
argument.

The integral of f (s)/(s − ω)ds along the real axis and an infinite semicircle in
the upper half of the complex plane is zero because the path is a closed line. The
integral along a semicircle above the pole at s = ω yields −πif (ω), the integral over
the infinite semicircle is zero. Therefore the value of f (ω) is given by2

f (ω) = 1

πi
Pr

∫ ∞

−∞
f (s)

s − ω
ds. (C.1)

Equating the real and imaginary parts of (C.1) yields for the real part

f1(ω) = 1

π
Pr

∫ ∞

−∞
f2(s)

s − ω
ds. (C.2)

Splitting the integral into two parts
∫ ∞
0 and

∫ 0
−∞, going from s to −s in the latter

and using f2(−ω) = −f2(ω) and 1
s−ω

+ 1
s+ω

= 2s
s2−ω2 yields (C.3a)

1The requirements for the function f to which the KKR apply can be interpreted as that the function
must represent the Fourier transform of a linear and causal physical process.
2The Cauchy principal value Pr of the integral is the limit for δ → 0 of the sum of the integrals
over −∞ < s < ω − δ and ω + δ < s < ∞.
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852 Appendix C: Kramers–Kronig Relations

f1(ω) = 2

π
Pr

∫ ∞

0

s f2(s)

s2 − ω2
ds (C.3a)

f2(ω) = − 2

π
Pr

∫ ∞

0

f1(s)

s2 − ω2
ds. (C.3b)

In a similar way, (C.3b) is obtained. These two relations are the Kramers–Kronig
relations [1839, 1840]. They are most often applied to the dielectric function ε.
In this case, they apply to the susceptibility, i.e. f (ω) = χ(ω) = ε(ω)/ε0 − 1.
The susceptibility can be interpreted as the Fourier transform of the time-dependent
polarization in the semiconductor after an infinitely short pulsed electric field, i.e.
the impulse response of the polarization. For the dielectric function ε = ε1 + iε2, the
following KKR relations hold:

ε1(ω) = ε0 + 2

π
Pr

∫ ∞

0

s ε2(s)

s2 − ω2
ds (C.4a)

ε2(ω) = −2ω

π
Pr

∫ ∞

0

ε1(s) − ε0

s2 − ω2
ds. (C.4b)

The static dielectric constant is thus given by

ε(0) = ε0 + 2

π
Pr

∫ ∞

0

ε2(s)

s
ds. (C.5)

The integral does not diverge since ε2 is an odd function and zero at ω = 0.
Generally the jth momentum Mj of the imaginary part of the dielectric function is

Mj =
∫ ∞

0
ε2(ω)ωj dω. (C.6)

Thus, M−1 = π[ε(0) − ε0]/2.
Other KKRs are, e.g., the relation between the index of refraction nr and the

absorption coefficient α:

nr(λ) = 1

π
Pr

∫ ∞

0

α(s)

1 − s2/λ2
ds. (C.7)

If the imaginary (real) part of the dielectric function is known (for all frequen-
cies), the real (imaginary) part can be calculated via the KKR. If the dependence
is not known for the entire frequency range, assumptions about the dielectric func-
tion in the unknown spectral regions must be made that limits the reliability of the
transformation.



Appendix D
Oscillator Strength

The response of an oscillator to an electric field E is formulated with the dielectric
function. The resulting polarization P is related to the electric field via

P = ε0 χ E, (D.1)

with χ being the electric susceptibility, and the displacement field D is given by

D = ε0 E + P = ε0 ε E. (D.2)

Thus the (relative) dielectric constant is

ε = 1 + χ. (D.3)

We assume a harmonic oscillator model for an electron, i.e. an equation of motion
for the amplitude x = x0 exp(iωt)

m ẍ = −C x. (D.4)

The resonance frequency is ω2
0 = C/m. The presence of a harmonic electric field E

of frequency ω and amplitude E0 adds a force eE. Thus,

− m ω2 x = −m ω2
0 x + e E. (D.5)

The polarization ex0 is given by

ex0 = e2

m

1

ω2
0 − ω2

E0 = e2

m ω2
0

1

1 − ω2/ω2
0

E0. (D.6)
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854 Appendix D: Oscillator Strength

The pre-factor is called the (dimensionless) oscillator strength and will be denoted
as

f = e2

ε0 m ω2
0

(D.7)

in the following. The frequency-dependent dielectric function of the resonance is
thus

ε(ω) = 1 + f

1 − ω2/ω2
0

. (D.8)

In the low-frequency limit, the dielectric function is ε(0) = 1 + f , in the high-
frequency limit ε(∞) = 1.Theoscillator strength is the difference of ε for frequencies
below and above the resonance.

For all systems, the high-frequency limit of ε is 1. This means that χ = 0, i.e.
there are no more oscillators to be polarized. The low-frequency limit includes all
possible oscillators. If there are further oscillators between frequencies well above
ω0 and ω → ∞, these are summarized as the high-frequency dielectric constant
ε∞ > 1. Equation (D.8) then reads

ε(ω) = ε(∞) + f̂

1 − ω2/ω2
0

. (D.9)

The limit ε → ε(∞) is only valid for frequencies above ω0 but smaller than the
next resonance(s) at higher frequencies.3 Another common form is to include the
background dielectric constant via

ε(ω) = ε(∞)

[

1 + f

1 − ω2/ω2
0

]

. (D.10)

Obviously, f = f̂ /ε(∞), making the two forms equivalent.
In order to discuss the lineshape, not only for ε but also for the index of refraction

n∗ = nr + iκ = √
ε, we introduce damping to our calculation by adding a term

−mΓ ẋ to the left side of (D.5). This term is something like a ‘friction’ and would
cause the oscillation amplitude to decay exponentially with a time constant τ = 2/Γ
without external stimulus. The dielectric constant is

ε(ω) = ε(∞)

[

1 + f

1 − (ω2 + iωΓ )/ω2
0

]

= ε′ + iε′′. (D.11)

The real and imaginary part fulfill the Kramers–Kronig relations (C.3a) and
(C.3b). For the oscillator strength, the regimes of large oscillator strength (f ∼ 1) and
small oscillator strength (f � 1) are distinguished. For the damping, two regimes

3For ω going to infinite values (beyond the X-ray regime), ε always goes towards one.
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(a) (b)

(c) (d)

(e) (f)

Fig. D.1 Real (solid lines) and imaginary (dashed lines) parts of the dielectric constant (a, c, e)
and index of refraction (b, d, f) (D.11) for oscillator strength f = 1 and various values of damping:
(a, b) Γ = 10−2ω0, (c, d) Γ = 10−1ω0, and (e, f) Γ = ω0

should be distinguished: Small damping (Γ � ω0) and strong damping (Γ � ω0).
Typical lineshapes are shown in Figs. D.1 and D.2.

For small oscillator strength, i.e. f � 1, the index of refraction n∗ = √
ε = nr + iκ

is given by (n∞ = √
ε(∞))
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(a) (b)

(c) (d)

(e) (f)

Fig. D.2 Real (solid lines) and imaginary (dashed lines) parts of the dielectric constant (a, c, e) and
index of refraction (b, d, f) (D.11) for oscillator strength f = 10−1 and various values of damping:
(a, b) Γ = 10−2ω0, (c, d) Γ = 10−1ω0, and (e, f) Γ = ω0

nr = n∞
[

1 + f

2

ω2
0 (ω2

0 − ω2)

(ω2
0 − ω2)2 + Γ 2 ω2

]

(D.12a)

κ = n∞
f

2

Γ ω0 (ω2
0 − ω2)

(ω2
0 − ω2)2 + Γ 2 ω2

. (D.12b)
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For small detuning from the resonance frequency, i.e. ω = ω0 + δω with
|δω|/ω0 � 1, the index of refraction is given by

nr = n∞
[

1 − f

4

ω0 δω

(δω)2 + Γ 2/4

]

(D.13a)

κ = n∞
f

4

ω0 Γ/2

(δω)2 + Γ 2/4
. (D.13b)

The maximum absorption is given as

αm = 2
ω0

c
κ(ω0) = f

ω2
0

Γ

n∞
c

. (D.14)

For zero damping, the dielectric function has a zero at

ω′
0 = ω0

√
1 + f ≈ ω0

(

1 + f

2

)

. (D.15)

The latter approximation is valid for f � 1. In the region between ω0 and ω′
0, the

real part of the index of refraction is very small (for the physically unrealistic case
of Γ ≡ 0 it is exactly zero since ε < 0). The reflectance (for vertical incidence
R = [(1 − n∗)/(1 + n∗)]2) in this region (width: f ω0/2) is thus very high. For larger
damping (and small oscillator strength), this effect is washed out.

The frequency ωε′′,max of the maximum of the imaginary part of ε′′ of the dielectric
function (Γ̂ = Γ/ω0) is

ω2
ε′′,max = ω2

0
2 − Γ̂ 2 +

√
16 − 4Γ̂ 2 + Γ̂ 4

6
≈ ω2

0

[

1 −
(

Γ

2ω0

)2
]

. (D.16)

The approximation is valid for small damping Γ � ω0. In this case, the detuned
frequency of the maximum is close to ω0 (Fig. D.3). The frequency position of the
maximum of tan δ = ε′′/ε′ is

ω2
tan δ,max = ω2

0
2 + f − Γ̂ 2 + Λ2

6
(D.17)

Λ2 =
√

12 (1 + f ) +
(
2 + f − Γ̂ 2

)2
.
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Fig. D.3 Frequency position
of the maximum of ε′′ as a
function of the damping

The value of tan δ at its maximum is (Λ has the same meaning as in (D.17))

(tan δ)max =
−3

√
3
2 f Γ̂

√

2 + f − Γ̂ 2 + Λ2

−8 − 8 f + f 2 − 4 Γ̂ 2 − 2 f Γ̂ 2 + Γ̂ 4 +
(
2 + f − Γ̂ 2

)
Λ2

. (D.18)



Appendix E
Quantum Statistics

E.1 Introduction

Bosons are particles with integer spin s = n, fermions are particles with spin
s = n + 1/2 with n being an integer including zero. The fundamental quantum-
mechanical property of the wavefunction of a system with N such particles is that
under exchange of any two particles, the wavefunction is symmetric in the case of
bosons and antisymmetric in the case of fermions. For two particles, these conditions
read

Ψ (q1, q2) = Ψ (q2, q1) (E.1a)

Ψ (q1, q2) = −Ψ (q2, q1), (E.1b)

where (E.1a) holds for bosons and (E.1b) holds for fermions. The variables qi denote
the coordinates and spin of the ith particle. The Pauli principle allows bosons to
populate the same single particle state with an arbitrary number of particles (at least
more than one). For fermions, the exclusion principle holds that each single particle
state can only be populated once.

E.2 Partition Sum

We consider a gas of N identical particles in a volume V in equilibrium at a temper-
ature T . The possible quantum-mechanical states of a particle is denoted as r. The
energy of a particle in the state r is εr , the number of particles in the state r is nr .

For vanishing interaction of the particles, the total energy of the gas in the state R
(with nr particles in the state r) is

ER =
∑

r

nr εr . (E.2)
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The sum runs over all possible states r. The total number of particles imposes the
condition

N =
∑

r

nr . (E.3)

In order to calculate the thermodynamic potentials, the partition sum Z needs to
be calculated

Z =
∑

R

exp(−βER), (E.4)

with β = 1/(kT). The sum runs over all possible microscopic states R of the gas,
i.e. all combinations of the nr that fulfill (E.3). The probability PS to find the system
in a particular state S is given by (canonical ensemble)

PS = exp(−βES)

Z
. (E.5)

The average number n̄s of particles in a state s is given by

n̄s =
∑

R ns exp(−βER)

Z
= − 1

βZ

∂Z

∂εs
= − 1

β

∂ ln Z

∂εs
. (E.6)

We note that the average deviation (Δns)2 = n2
s − n̄2

s = n2
s − n̄2

s is given by

(Δns)2 = 1

β2

∂2 ln Z

∂ε2s
= − 1

β

∂n̄s

∂εs
. (E.7)

In the Bose–Einstein statistics (for bosons), the particles are fundamentally indis-
tinguishable. Thus, a set of (n1, n2, . . .) uniquely describes the system. In the case of
fermions, for each state nr is either 0 or 1. In both cases, (E.3) needs to be fulfilled.

E.3 Photon Statistics

This case is the Bose–Einstein statistics (cf. (E.24)) with undefined particle number.
We rewrite (E.6) as

n̄s =
∑

ns
ns exp(−βnsεs)

∑(s)
n1,n2,...

exp(−β(n1ε1 + n2ε2 + . . .))
∑

ns
exp(−βnsεs)

∑(s)
n1,n2,...

exp(−β(n1ε1 + n2ε2 + . . .))
, (E.8)

where
∑(s) denotes a summation that does not include the index s. In the case of

photons, the values nr can take any value (integers including zero) without restriction
and therefore the sums

∑(s) in the numerator and denominator of (E.8) are identical.
After some calculation we find
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n̄s = − 1

β

∂

∂εs
ln

( ∞∑

ns=0

exp(−βnsεs)

)

. (E.9)

The argument of the logarithm is a geometrical series with the limit
[1− exp(−βεs)

]−1
. This leads to the so-called Planck distribution

n̄s = 1

exp(βεs) − 1
. (E.10)

E.4 Fermi–Dirac Statistics

Now, the particle number is fixed to N . For the sum
∑(s) from (E.6), we introduce

the term ZS(M)

Zs(M) =
∑

n1,n2,...

(s) exp(−β(n1ε1 + n2ε2 + . . .)), (E.11)

when M particles are to be distributed over all states except s (
∑(s)

r nr = M). M is
either N − 1 if ns = 1 and N if ns = 0. Using Zs, we can write

n̄s = 1
Zs(N)

Zs(N−1) exp(βεs) + 1
. (E.12)

We evaluate Zs(N − 1)

ln Zs(N − ΔN) = ln Zs(N) − ∂ ln Zs

∂N
|N ΔN, (E.13)

or
Zs(N − ΔN) = Zs(N) exp(−γsΔN), (E.14)

with

γs = ∂ ln Zs

∂N
. (E.15)

Since Zs runs over many states, the derivative is approximately equal to

γ = ∂ ln Z

∂N
, (E.16)
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as will be shown below. Thus, we obtained so far

n̄s = 1

exp(γ + βεs) + 1
. (E.17)

Equation (E.3) holds also for the average values n̄s, i.e.

N =
∑

r

n̄r =
∑

r

1

exp(γ + βεs) + 1
, (E.18)

from which the value of γ can be calculated. Given that the free energy is given as
F = −kT ln Z , we find that

γ = − 1

kT

∂F

∂N
= −βμ , (E.19)

where μ is the chemical potential by definition. Therefore, the distribution function
for the Fermi–Dirac statistics (also called the Fermi function) is

n̄s = 1

exp(β(εs − μ)) + 1
. (E.20)

Now, we briefly revisit the approximation γ = γs. Exactly, γ fulfills

γ = γs − ns
∂γ

∂N
. (E.21)

Thus, the approximation is valid if ns
∂γ
∂N � γ. Since ns < 1, this means that the

chemical potential does not change significantly upon addition of another particle.
The Fermi–Dirac distribution function (E.20) for electrons is typically written as

fe(E) = 1

exp
(E−EF

kT

) + 1
, (E.22)

where k (or kB) denotes the Boltzmann constant, T is the temperature, and EF is
the Fermi level, which is called the chemical potential μ in thermodynamics. The
Fermi distribution is shown in Fig. E.1 for various parameters. The distribution
function gives the probability that a state at energy E is populated in thermodynamic
equilibrium. ForE = EF the population is 1/2 for all temperatures. At (the unrealistic
case of) T = 0, the function makes a step from 1 (for E < EF) to 0.

The high-energy tail of the Fermi distribution, i.e. for E − EF � kT , can be
approximated by the Boltzmann distribution:

fe(E) ∼= exp

(

−E − EF

kT

)

. (E.23)
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(a) (b)

(c) (d)

Fig. E.1 Fermi function for (a, b) different temperatures (for EF = 1.0eV) and (c) for different
chemical potentials (for T = 300K). (d) Fermi function (solid lines) compared with Boltzmann
approximation (dashed lines) for various temperatures and EF = 1.0eV on semilogarithmic plot

E.5 Bose–Einstein Distribution

Executing (E.8) with the approximation γ = γs, the Bose–Einstein distribution is
found to be

n̄s = 1

exp(β(εs − μ)) − 1
. (E.24)



Appendix F
Kronig–Penney Model

The Kronig–Penney model [64] is a simple, one-dimensional analytically solvable
model that visualizes the effect of the periodic potential on the dispersion relation of
electrons, i.e. the formation of a band structure.

A one-dimensional periodic hard-wall potential of finite height is assumed
(Fig. F.1a). The well width is a, the barrier width b and thus the period P = a + b.
The potential is zero in the well (regions (0, a) + nP) and +U0 in the barrier. The
Schrödinger equation

− �
2

2m

∂2Ψ

∂x2
+ U(x) Ψ (x) = E Ψ (x) (F.1)

has to be solved. The solutions for a single hard-wall potential well are well known.
In the well, they have oscillatory character, i.e. Ψ ∝ exp (ikx) with real k. In the
barrier, they have exponential character, i.e. Ψ ∝ exp (kx) with real k. Thus we
chose

Ψ (x) = A exp (iKx) + B exp (−iKx) (F.2a)

Ψ (x) = C exp (κx) + D exp (−κx) . (F.2b)

The wavefunction from (F.2a) is for the well between 0 and a with E = �
2K2/2m.

The wavefunction from (F.2b) is for the barrier between a and a + b with U0 − E =
�
2κ2/2m. From the periodicity and Bloch’s theorem the wavefunction at x = −b

must have the form Ψ (−b) = exp(−ikP) Ψ (a), i.e. between the two wavefunctions
is only a phase factor. The wavevector k of the Bloch function (plane-wave part of
the solution) is a new quantity and must be carefully distinguished from K and κ.

Both K and κ are real numbers. As boundary conditions, the continuity of Ψ and
Ψ ′ are used.4 At x = 0 and x = a this yields

4Generally, Ψ ′/m should be continuous, however, in the present example the mass is assumed
constant throughout the structure.
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(a)

(b) (c)

(d) (e)

Fig. F.1 (a) One-dimensional periodic hard-wall potential (Kronig–Penney model). (b) Tran-
scendental function B(K) from (F.5) for β = 5. The dashed lines indicate the [−1, 1] interval
for which solutions exist for (F.5). (c) Band gap between first and second subband (in units of
EX = �

2π2/(2ma2)) as a function of β. For smaller β the band gap is ∝ β. For thick barriers
(β → ∞) the band gap saturates towards 3EX as expected for uncoupled wells. (d, e) The resulting
energy dispersion (in units of EX) as a function of the superlattice wavevector k for (d) β = 5 and
(e) β = 20 in (F.5). The dashed lines are the free-electron dispersion (for β = 0) (see Fig. 6.2a)

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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A + B = C + D (F.3a)

iKA − iKB = κC − κD (F.3b)

A exp(iKa) + B exp(−iKa) = C exp(κa) + D exp(−κa) (F.3c)

iKA exp(iKa)− iKB exp(−iKa) = κCexp(κa) − κDexp(−κa). (F.3d)

The continuity of Ψ and Ψ ′ at x = −b is used in the left sides of (F.3c, d).
A nontrivial solution arises only if the determinant of the coefficient matrix is

zero. This leads (after some tedious algebra) to

cos(kP) =
[
κ2 − K2

2κK

]

sinh(κb) sin(Ka) + cosh(κb) cos(Ka). (F.4)

Further simplification can be reached by letting the barrier thickness b→0 and
U0 → ∞. Then P → a. The limit, however, is performed in such a way that the
barrier ‘strength’ U0b ∝ κ2b remains constant and finite. Equation (F.4) then reads
(for κb → 0: sinh(κb) → κb and coth(κb) → 1):

cos(ka) = β
sin(Ka)

Ka
+ cos(Ka) = B(K). (F.5)

The coupling strength β = κ2ba/2 represents the strength of the barrier. Equa-
tion (F.5) only has a solution if the right side is in the interval [−1, 1] (Fig. F.1b).
The function sin(x)/x oscillates with decreasing amplitude such that for sufficiently
high values of Ka a solution can always be found. The resulting dispersion is shown
in Fig. F.1c. The dispersion is different from the free-electron dispersion and has
several separated bands. The band gaps are related to the K values, i.e. energies for
which (F.5) cannot be fulfilled. At the zone boundary (k = π/a) the bands are split
and the tangent is horizontal (dE/dk = 0). The form of the dispersion is similar to
the arccos function.

For large coupling between the potential wells (small β, β � 1) the band gap
E12 between the first and the second subband at the X-point is E12 = 4β/π2EX

with EX = �
2π2/(2ma2). In this case, the width of the subbands is wide. For small

coupling (largeβ) the band gapE12 converges towards 3EX as expected for decoupled
potential wells with energy levels En = EXn2 and the width of the bands is small.



Appendix G
The k · p Perturbation Theory

The solutions of the Schrödinger equation (cf. Sect. 6.2.1)

H Ψnk(r) =
(

− �
2

2m
∇2 + U(r)

)

Ψnk(r) = En(k) Ψnk(r), (G.1)

with a lattice periodic potential U, i.e. U(r) = U(r + R) for direct lattice vectors R,
are Bloch waves of the form

Ψnk(r) = exp(i k r) unk(r), (G.2)

with the lattice periodic Bloch function unk(r) = unk(r + R).
Inserting the Bloch wave into (G.1), the following equation is obtained for the

periodic Bloch function:

(

− �
2

2m
∇2 + U(r) + �

m
k · p

)

unk(r) =
(

En(k) − �
2k2

2m

)

unk(r). (G.3)

For simplicity, we assume a band edge En(0) at k = 0. In its vicinity, the k · p
term can be treated as a perturbation. The dispersion for a nondegenerate band5 is
given up to second order in k

En(k) = En(0) +
3∑

i,j=1

⎛

⎝ �
2

2m
δij + �

2

m

∑

l �=n

pi
nl pj

ln

En(0) − El(0)

⎞

⎠ ki kj, (G.4)

with l running over other, so-called remote bands. The momentum matrix element
is given by pi

nl = 〈un0|pi|ul0〉 (cf. (6.35)). The coefficients in front of the quadratic

5Apart from the spin degeneracy.
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terms are the components of the dimensionless inverse effective-mass tensor (cf.
(6.39))

( m

m∗
)

ij
= δij + 2

m

∑

l �=n

pi
nl pj

ln

En(0) − El(0)
. (G.5)

For degenerate bands, the pi
nn′ vanish when n and n′ belong to the degenerate set

and also the first-order correction is zero. In the Löwdin perturbation theory [1841],
the bands are separated into the close-by degenerate or nearly degenerate bands and
the remote bands. The effect of the remote bands is taken into account by an effective
perturbation

k · p + k · p
∑

l �=n

|l〉〈l|
En(0) − El(0)

k · p, (G.6)

with the index l running over all bands not being in the degenerate set. The dispersion
relation is obtained by diagonalization of the Hamiltonian (G.3) in the degenerate
basis but with the perturbation given by (G.6).

The spin-orbit interaction [1244] adds an additional term

Hso = �

4m2 c2
(σ × ∇U) p (G.7)

to the Hamiltonian, where σ are the Pauli spin matrices and c the vacuum speed of
light. In the Schrödinger equation for the Bloch functions two new terms arise:

(

− �
2

2m
∇2 + U(r) + �

4m2c2
(σ × ∇U) p

+ �

m
k

[

p + �

4m2c2
(σ × ∇U)

])

unk(r) =
(

En(k) − �
2k2

2m

)

unk(r). (G.8)

The linear term in k is again treated as a perturbation. The first spin-orbit term in
(G.8) is lattice periodic, thus the solutions at k = 0 are still periodic Bloch functions,
however, different ones from previously. If the band edge is not degenerate, the
momentum operator in (G.3) is simply replaced by

π = p + �

4m2 c2
(σ × ∇U) , (G.9)

and the band edge is still parabolic. For a degenerate band edge, the effect can be
more profound, in particular it can lead to the lifting of a degeneracy.

In the 8-band Kane model [441], four bands (lowest conduction band, heavy,
light and split-off hole band) are treated explicitly and the others through Löwdin
perturbation theory. The basis is chosen to be diagonal in the spin-orbit interaction
leaving the spin-orbit interaction Δ0 as parameter. The band- edge Bloch functions
are denoted as |i ↑〉, where the index i = s, x, y, z labels the symmetry of the different

http://dx.doi.org/10.1007/978-3-319-23880-7_6
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Table G.1 Basis set that
diagonalizes the spin-orbit
interaction

|J, mj〉 Wavefunction Symmetry

| 12 , 1
2 〉 i|s ↑〉 Γ6

| 12 ,− 1
2 〉 i|s ↓〉 Γ6

| 32 , 3
2 〉 1√

2
|(x + iy) ↑〉 Γ8

| 32 , 1
2 〉 1√

6
|(x + iy) ↓〉 −

√
2
3 |z ↑〉 Γ8

| 32 ,− 1
2 〉 − 1√

6
|(x − iy) ↑〉 −

√
2
3 |z ↓〉 Γ8

| 32 ,− 3
2 〉 1√

2
|(x − iy) ↑〉 Γ8

| 12 , 1
2 〉 1√

3
|(x + iy) ↓〉 +

√
1
3 |z ↑〉 Γ7

| 12 ,− 1
2 〉 − 1√

3
|(x − iy) ↑〉 +

√
1
3 |z ↓〉 Γ7

bands. The linear combinations that diagonalize the spin-orbit interaction are given
in Table G.1. The band gap and the spin-orbit interaction are given by

Eg = EΓ6 − EΓ8 (G.10a)

Δ0 = EΓ8 − EΓ7 . (G.10b)

The Hamiltonian in the basis states of Table G.1 is given by

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k2 + Eg 0
√
2Pk+ −

√
2
3Pkz −

√
2
3Pk− 0

√
1
3Pkz −

√
4
3Pk−

0 k2 + Eg 0
√

2
3Pk+ −

√
2
3Pkz

√
2Pk−

√
4
3Pk+

√
1
3Pkz√

2Pk− 0 k2 0 0 0 0 0

−
√

2
3Pkz

√
2
3Pk− 0 k2 0 0 0 0

−
√

2
3Pk+ −

√
2
3Pkz 0 0 k2 0 0 0

0
√
2Pk+ 0 0 0 k2 0 0√

1
3Pkz

√
4
3Pk− 0 0 0 0 k2 − Δ0 0

−
√

4
3Pk+

√
1
3Pkz 0 0 0 0 0 k2 − Δ0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(G.11)

with the energy measured from the valence-band edge in units of �
2/(2m) and

1

2
i �P = 〈s|πx|x〉 = 〈s|πy|y〉 = 〈s|πz|z〉 (G.12a)

k± = kx ± iky. (G.12b)
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The inclusion of remote bands renormalizes the above Hamiltonian to

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Dk2 + Eg 0
√
2Pk+ −

√
2
3Pkz −

√
2
3Pk− 0

√
1
3Pkz −

√
4
3Pk−

0 Dk2 + Eg 0
√

2
3Pk+ −

√
2
3Pkz

√
2Pk−

√
4
3Pk+

√
1
3Pkz√

2Pk− 0 Hh R S 0 i√
2
R −i

√
2S

−
√

2
3Pkz

√
2
3Pk− R∗ Hl 0 S Hh−Hl√

2i
i
√

3
2R

−
√

2
3Pk+ −

√
2
3Pkz S∗ 0 Hl −R −i

√
3
2R∗ Hh−Hl√

2i

0
√
2Pk+ 0 S∗ −R∗ Hh −i

√
2S∗ − i√

2
R∗

√
1
3Pkz

√
4
3Pk− − i√

2
R∗ −Hh−Hl√

2i
i
√

3
2R i

√
2S Hh+Hl√

2
− Δ0 0

−
√

4
3Pk+

√
1
3Pkz i

√
2S∗ −i

√
3
2R∗ −Hh−Hl√

2i
i√
2
R 0 Hh+Hl√

2
− Δ0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(G.13)

with

D = 1 + 2

m

∑

l �=n

|〈s|πx|l〉|2
Eg − El(0)

(G.14a)

γ′
1 =

⎡

⎣1 + 2

m

∑

l �=n

|px
xl|2

En(0) − El(0)

⎤

⎦ − 2P2

3Eg
(G.14b)

γ′
2 =

⎡

⎣1 + 2

m

∑

l �=n

|py
xl|2

En(0) − El(0)

⎤

⎦ − P2

3Eg
(G.14c)

γ′
3 =

⎡

⎣ 2

m

∑

l �=n

px
xlp

y
ly + py

xlp
x
ly

En(0) − El(0)

⎤

⎦ − P2

3Eg
(G.14d)

Hh = (γ′
1 + γ′

2)(k
2
x + k2y ) + (γ′

1 − 2γ′
2)k

2
z (G.14e)

Hl = (γ′
1 − γ′

2)(k
2
x + k2y ) + (γ′

1 + 2γ′
2)k

2
z (G.14f)

R = −2
√
3γ′

3k−kz (G.14g)

S = √
3γ′

2(k
2
x − k2y ) + 2

√
3γ′

3ikxky. (G.14h)

The Hamiltonian in the presence of inhomogeneous strain is given in [463]. The
hole bands decouple from the conduction band forEg → ∞ (six-bandmodel [1082]).
The heavy and light holes can be treated separately for Δ0 → ∞ (Luttinger Hamil-
tonian). For the Γ8 states, the Hamiltonian is then given by

⎡

⎢
⎢
⎣

Hh R S 0
R∗ Hl 0 S
S∗ 0 Hl −R
0 S∗ −R∗ Hh

⎤

⎥
⎥
⎦ . (G.15)



Appendix H
Effective-Mass Theory

The effective-mass theory or approximation (EMA), also termed the envelope func-
tion approximation, is widely used for calculating the electronic properties of carriers
in potentials in an otherwise periodic crystal. The strength of the method is that the
complexities of the periodic potential are hidden in the effective-mass tensor m∗

ij.
The effective-mass theory is a useful approximation for the treatment of shallow
impurities (Sect. 7.5) or quantum wells (Sect. 12.3.2) with a potential that is slowly
varying with respect to the scale of the lattice constant.

For the lattice-periodic potential, the Schrödinger equation

H0 Ψnk = En(k) Ψnk (H.1)

is solved by the Bloch wave Ψnk. With a perturbing potential V , the Schrödinger
equation reads

(H0 + V ) Ψnk = En(k) Ψnk. (H.2)

According to Wannier’s theorem [1842], the solution is approximated by the
solution of the

(En(−i∇) + V ) Φn = E Φn. (H.3)

The dispersion relation is expanded to second order as described in Appendix G. The
function Φn is termed the envelope function since it varies slowly compared to the
lattice constant and the exact wavefunction is approximated (in lowest order) by

Ψ (r) = Φn(r) exp (i k r) un0(r). (H.4)
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Appendix I
Boltzmann Transport Theory

I.1 Boltzmann Transport Equation

The Boltzmann treatment of transport in semiconductors goes beyond the relaxation
time approximation (cmp. Sect.sec:cond) and contains this approach as its simplest
approximation. The distribution function of carriers f (r, p, t) is considered with
regard to their momentum p = (px, py, pz), their position (r) = (x, y, z) and time t.
Via the dispersion relation(s) the momentum distribution also determines the energy
distribution.

In thermodynamical equilibrium, the distribution function shall be termed f0(p).
In a homogeneous semiconductor it should be independent of r, not depend explicitly
on time and the momentum distribution be such that the resulting energy distribution
should match the Fermi-Dirac distribution.

In non-equilibrium, the flow of electrons and heat is determined by the external
forces F (electrical and magnetic fields) and the scattering of charge carriers via var-
ious processes (termed here collisions). In a (non-equilibrium) steady-state situation
with constant forces, the distribution function f is constant in time; thus in a given
time interval δt the change δf is zero,

δf

δt
= 0. (I.1)

Within the time interval δt the momenta change as p → p+F δt and the coordinates
as r → r + p/m∗ δt. We assume here for simplicity an isotropic mass and also
the particle energy given by E = p2/(2m∗). The condition (I.1) written in partial
derivatives reads

(
∂

∂t
+ 1

m∗ p · ∇r + F · ∇p

)

f (p, r, t) = 0. (I.2)
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The force may be taken as the Lorentz force. So far no collisions have been consid-
ered. Without giving an explicit form for the microscopic details of the collisions,
the change of the distribution function due to collisions is written as

(
∂f

∂t

)

coll

. (I.3)

Assuming that only two-particle collisions play a role, sample boundaries play no
role and that position and velocity of particles are uncorrelated, the collision term
can be written as

(
∂f

∂t

)

coll

=
∫∫∫

[f (p′, r, t) P(p′, p) − f (p, r, t) P(p, p′)] dp′. (I.4)

with P(p, p′) being the transition probability per time that a momentum p is changed
into p′ by collisions. The collision integral must be calculated explicitly using micro-
scopic and eventually quantummechanical models. This leads now to the Boltzmann
transport equation

(
∂

∂t
+ 1

m∗ p · ∇r + F · ∇p

)

f (p, r, t) =
(

∂f

∂t

)

coll

. (I.5)

Under certain circumstances, the collision term can be effectively written as (for
a homogeneous semiconductor and homogeneous fields, neglecting the spatial de-
pendence of f ) (

∂f

∂t

)

coll

= − f (p) − f0
τ (p)

. (I.6)

Compared to the relaxation time approximation, the major difference on the level
of (I.6) here is the consideration of the momentum (and energy) dependence of the
distribution function and the relaxation time.

I.2 Conductivity

In thermodynamical equilibrium the number of electronic states per unit volume
associated with an element dp = dpx dpy dpz, including spin degeneracy of 2 is

2

h3
f0(p) dp. (I.7)

In the presence of an electric field E, which we assume here in x-direction, a steady-
state current will arise and the number of electronic states changes to

2

h3
f (p) dp, (I.8)
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making the (electron) current density (along x-direction)

jx = −2 e

h3

∫∫∫

vx [f (p) − f0(p)] dp. (I.9)

This is a generalization of (8.4). The Boltzmann transport equation (I.5) with (I.6)
simplifies to

− f (p) − f0
τ (p)

= −e Ex
∂f

∂px
≈ −e Ex

∂f0
∂px

. (I.10)

The last approximation is valid for small fields and makes jx proportional to Ex

(ohmic regime). The derivative with respect to px is converted to a derivative with
respect to energy, yielding

f (p) − f0
τ (p)

= e vx Ex
∂f0
∂E

. (I.11)

We note that for the Fermi–Dirac distribution (E.22) f0(E):

∂f0
∂E

= − 1

kT
f0 [1 − f0] , (I.12)

and in the case of a non-degenerate semiconductor (Boltzmann approximation), the
right-hand side simplyfies to

∂f0
∂E

≈ − 1

kT
f0 = − 1

kT
exp

(

−E − EF

kT

)

, (I.13)

Now the current density is given as

jx = −2 e2

h3
Ex

∫∫∫

v2
x τ (p)

∂f0
∂E

dp. (I.14)

If we assume that τ depends only on the momentum and not its direction,6 and
replace v2

x by v2/3 assuming isotropy, the integral reads7

jx = −8π e2

3 h3
Ex

∫ ∞

0
v2 τ (p)

∂f0
∂E

p2 dp. (I.15)

The quantity 8π p2dp f0/h3 (cmp. I.7) denotes the number dn of electrons with mo-
mentum in the range dp. Thus the integral can also be written as (in Boltzmann
approximation)

6This might be incorrect e.g. for piezoelectric scattering.
7Using dp = 4π p2 dp.

http://dx.doi.org/10.1007/978-3-319-23880-7_8
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jx = e2

3 kT
Ex

∫ ∞

0
v2 τ dn. (I.16)

Denoting the average of a quantity a over the electron distribution with 〈a〉 according
to

〈a〉 =
∫

a dn

n
, (I.17)

the equation (I.16) can be written as

jx = n e2

3 kT
Ex 〈v2τ 〉. (I.18)

Using m∗〈v2〉 = 3 kT , we thus have obtained

σ = n e2

m∗
〈v2τ 〉
〈v2〉 , (I.19)

and with σ = n (−e)μ (for electrons), the mobility

μ = − e

m∗
〈v2τ 〉
〈v2〉 . (I.20)

For degenerate semiconductors, similar as for metals, the derivative of f0 in (I.15)
has a significant value only in the few-kT vicinity of the Fermi level. In an approx-
imation we can evaluate the integral by replacing E3/2 and τ by their values at the
Fermi level and find8 (using (6.66))

σ = jx
Ex

= n e2 τF

m∗ . (I.21)

Starting again with (I.15), using the density of states (6.67) in the form (per
volume)

D(E) = m∗ 8π

h3

√
2m∗E, (I.22)

and dp/dE = √
2m∗/E we write

jx = −e2

3
Ex

∫ ∞

0
D(E) v2 τ (E)

∂f0
∂E

dE. (I.23)

8
∫ ∞
0

∂f0
∂E dE = −1 + [1 + exp(EF/kT)]−1 ≈ −1 for EF � kT .

http://dx.doi.org/10.1007/978-3-319-23880-7_6
http://dx.doi.org/10.1007/978-3-319-23880-7_6
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Using an energy-dependent mobility, in the spirit of (I.20) defined as

μ(E) = −e
v2 τ (E)

3 kT
, (I.24)

the conductivity can be written in a generalized form integrating over single electron
states [1843] (neglecting correlation effects):

σ = e
∫

D(E)μ(E) kT
∂f0
∂E

dE

= −e
∫

D(E)μ(E) f0(E) [1 − f0(E)] dE. (I.25)

I.3 Hall Effect

Treating the Hall effect with the Boltzmann transport equation and making the as-
sumptions of isotropy, one obtains (cmp. (13.12) and (13.21))

RH = 1

q n

〈v2τ 2〉 〈v2〉
〈v2τ 〉2 . (I.26)

The Hall mobility determined from the Hall coefficient is

μH = σ RH = e

m∗
〈v2τ 2〉
〈v2τ 〉2 , (I.27)

and thus different from the field mobility (I.20).

I.4 Thermopower

The electronic energy transported per electron is E − EF. Writing (I.25) as σ =∫
σ(E) dE, the weighing factor for electrons at energy E contributing to conduction

is σ(E) dE/σ. Therefore the Seebeck coefficient (thermopower) can be written [721]

S = −k

e

∫ (
E − EF

kT

)
σ(E)

σ
dE. (I.28)

or

S = −k

e

∫
D(E)μ(E) [(E − EF)/kT ]f (1 − f ) dE

∫
D(E)μ(E) f (1 − f ) dE

. (I.29)

http://dx.doi.org/10.1007/978-3-319-23880-7_13
http://dx.doi.org/10.1007/978-3-319-23880-7_13
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For band conduction the thermopower is obtained by integrating (I.29) for elec-
trons (Sn) and holes (Sp) (using the Boltzmann approximation) as [721]

Sn = −k

e

(
EC − EF

kT
+ AC

)

(I.30a)

Sp = k

e

(
EF − EV

kT
+ AV

)

, (I.30b)

where Ai are constants depending on the energy dependence of the density of states
and the mobility,

AC =
∫ ∞
0 (E′/kT)σ(E′) dE′

∫ ∞
0 σ(E′) dE′ , E′ = E − EC (I.31a)

AV =
∫ 0
−∞(E′/kT)σ(E′) dE′

∫ 0
−∞ σ(E′) dE′ , E′ = EV − E. (I.31b)

If the product of the density of states and the mobility Dμ depends on the energy like
Eγ , the constant is A = 1 + γ (for γ > −1). For a parabolic band (D ∝ E1/2) and
acoustic deformation potential scattering μ ∝ E−1/2 (Sect. 8.3.4), A=1; for moderate
ionized impurity scattering μ ∝ E3/2 (Sect. 8.3.3) and A = 3.

For two-band conduction, when electrons and holes contribute to transport,

S = Sn σn + Sp σp

σn + σp
. (I.32)

At low temperatures the interaction of the phonon flow with the current via
electron-phonon scattering (phonon-drag effect) leads to an increase of thermopower
[723, 1844–1846].

http://dx.doi.org/10.1007/978-3-319-23880-7_8
http://dx.doi.org/10.1007/978-3-319-23880-7_8


Appendix J
Noise

Noise is a general phenomenon effecting every measurement process and the perfor-
mance of semiconductor devices [1847–1852]. Eventually, always a signal-to-noise
ratio is measured instead of a ‘signal’. Electrical noise fundamentally limits the
sensitivity and resolution of communication, navigation, measurement, and other
electronic systems [1850].

Behind the fluctuating signal standmicroscopic classical and quantummechanical
processes that inherently contain randomness. From the physical standpoint, seem-
ingly constant physical quantities even in thermodynamical equilibrium such as the
free carrier density or the density of carriers on a trap are subject to fluctuations, e.g.
leading to generation-recombination noise. Also the random motion of carriers, in
equilibrium without net charge transport, leads to fluctuations, e.g. thermal noise on
a resistor.

In this appendix necessary definitions, somemathematical basics and simple phys-
ical examples regarding noise are given.

J.1 Fluctuating Signals

The noisy signal under consideration can be ‘analog’, for example in the case of a
fluctuating current, voltage or power or it can be ‘digital’ for example a photon count
rate.

Let A(t) be an analog signal that fluctuates in time. Even under constant exper-
imental conditions, it will fluctuate due to possibly many reasons, at least due to
thermal fluctuations. We note that another, identically set-up experiment will have
another signal B(t). The time average (of first moment) of the signal within a time
interval 2T (symmetric around t = 0) is defined as

〈A〉T = 1

2 T

∫ T

−T
A(t) dt. (J.1)

© Springer International Publishing Switzerland 2016
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The time average of the signal 〈A〉 in general is the limit for large times,

〈A〉 = limT→∞
1

2 T

∫ T

−T
A(t) dt. (J.2)

Two identical experiments will (should) share the same limits, i.e. 〈A〉 = 〈B〉. The
fluctuation or noise of A is defined as a(t) via

a(t) = A(t) − 〈A〉, (J.3)

thus evidently 〈a〉 = 0. For an identical but different experiment, a(t) �= b(t) as
stated before.

The variance σ2 (or second moment) of the signal is the average of the squared
fluctuation,

σ2 = 〈a2〉 = limT→∞
1

2 T

∫ T

−T
a(t)2 dt = 〈A2〉 − 〈A〉2. (J.4)

The effective value of the noise quantity a is the square root of the variance, also
termed the ‘root mean square’ (or rms-value),

σ = 〈a2〉1/2 =
√

〈A2〉 − 〈A〉2. (J.5)

The quantity σ2 is a measure of the noise power, where 〈A〉2 is a measure of the dc
power.9

In a measurement procedure, the noise of a signal can be reduced by integrating
or averaging over time; however, the time for a specific measurement is always finite
and maybe constricted by many conditions. Given a fixed (finite) averaging time of
T0, the measured signals AT0 in a series of such subsequent identical measurements
will still exhibit a fluctuation. How large this remaining fluctuation is depends on the
choice of T0 and the noise spectrum discussed below.

In the case of a digital signal, e.g. the count rate of a photomultiplier or from
a scintillator, the signal consists of (integer) numbers N(ti) aggregated at times ti,
i = 0, 1, . . . , m. The average is then defined as

〈N〉 = limm→∞
1

m

m∑

i=0

N(ti). (J.6)

9Imagine a fluctuating current I(t) = 〈I〉 + i(t) leading to Joule heating (∝ I2) at a resistor.
Comparing the heating from I and 〈I〉 = 〈I〉 (from a low noise current source) can yield the noise
power. Also 〈i2〉 could be determined by first compensating I with 〈I〉 (from a low noise current
source) and then measuring the temperature increase at the resistor.
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The definition of the variance and rms are analog to this definition. A well known
result for photon counting, based on the Poisson statistics of classical light is σ2 =
〈N〉 = N̄ .

J.2 Correlations

If a measurable quantity is subject to two fluctuating quantities a1(t) and a2(t), the
time average of a1 + a2 is

〈(a1 + a2)
2〉 = 〈a2

1〉 + 〈a2
2〉 + 2〈a1 a2〉. (J.7)

The third term is the decisive one; the correlation coefficient of noise quantities a1
and a2 is defined as

c12 = 〈a1 a2〉
√

a2
1 a2

2

= 〈a1 a2〉
σ1 σ2

. (J.8)

If the two noise quantities are independent of each other they are termed uncorrelated
and c12 = 0. In the following it will become clear that this is a necessary but not
sufficient condition for two noise sources to be uncorrelated. In the case c12 = 0, the
noise powers of the two processes are simply added,

〈(a1 + a2)
2〉 = 〈a2

1〉 + 〈a2
2〉. (J.9)

This concept can be generalized to several noise sources.
A more general concept to determine correlation of two functions a1 and a2 is the

cross correlation function, defined by

ρ12(τ ) = 〈a1(t) a2(t + τ )〉, (J.10)

which is the average of function a1 and time-shifted function a2. Often t = 0 is
used when the nature of the fluctuations does not change with time. An important
time-shift is τ = 0, and it follows that

c12 = ρ12(0)

σ1 σ2
, (J.11)

Two noise quantities a1 and a2 are uncorrelated if ρ12(τ ) = 0 holds for all times τ ;
thus c12 = 0 is a special but important case.10

10A simply example of correlated noise sources with c12 = 0 are the voltages at a resistor and a
capacitance in series; the fact that they are 90◦ out of phase makes c12 = 0 although the fluctuations
of the voltages, due to fluctuations of the driving current, are obviously correlated.
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If a1 and a2 are the same function, i.e. a = a1 = a2, (J.10) becomes the auto
correlation function,

ρ(τ ) = 〈a(t) a(t + τ )〉, (J.12)

In stationary processes the auto correlation function must be symmetric with regard
to τ ,

ρ(τ ) = ρ(−τ ). (J.13)

The value at τ = 0 is
ρ(0) = 〈a2〉 = σ2. (J.14)

Typically, ρ(τ → ∞) = 0 in a statistic (non-repetitive) process. For uncorrelated
processes, the auto correlation function of the sum, is the sum of the individual auto
correlation functions.

J.3 Noise spectrum

Since the function a(t) is not known, the noise spectrum cannot be calculated from
its Fourier transform. However, this is also unnecessary since we are not interested
in the Fourier transform of a itself but rather the spectral power density for a given
frequency W (ν), with ∫ ∞

0
W (ν) dν = 〈a2〉. (J.15)

Since the quantity 〈a2〉 is finite and the spectral power density W (ν) is positive, for
high frequencies, W (ν) must decrease to zero. Starting from the auto correlation
function ρ, its Fourier transform shall be denoted w,

w(ν) =
∫ ∞

−∞
ρ(τ ) exp(−2π i ν τ ) dτ . (J.16)

Also,

ρ(τ ) =
∫ ∞

−∞
w(ν) exp(2π i ν τ ) dν. (J.17)

Using τ = 0 in this equation, we have obtained an equation similar to (J.15). With
(J.12) w(ν) can be identified as a spectral power density. Due to (J.13), w is a real
and even function and we find for the noise power spectrum W in (J.15) W = 2w

(Wiener-Khintchine theorem),

W (ν) = 2
∫ ∞

−∞
ρ(τ ) exp(−2π i ν τ ) dτ = 4

∫ ∞

0
ρ(τ ) cos(−2π ν τ ) dτ . (J.18)
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The noise power is practically measured in a finite frequency range, often in a narrow
band of width B (with varying central frequency). If the frequency dependence of W
can be neglected within B around the frequency ν0, the variance is given by

〈a2〉(ν0, B) =
∫ ν0+B/2

ν0−B/2
W (ν) dν ≈ W (ν0) B. (J.19)

Typical noise mechanisms and spectra are discussed in the following sections.

J.3.1 Thermal Noise

Finite temperature induces randommotion of particles, e.g. as known from the theory
of ideal gases and diffusion. In the case of charge carriers suchmotions lead to fluctu-
ations of current or at a resistor to fluctuation of voltage. This happens also in the case
of zero bias (no external fields). Such ‘thermal noise’ at a resistor was experimentally
found by Johnson [1529, 1530] and theoretically derived by Nyquist [1531].

Using the general result fromLangevin theory ofmotion under a fluctuating force,
the mobility11 is given as

μ(ω) = e

kT

∫ ∞

0
〈v(t) v(0)〉 exp(iωt) dt. (J.20)

Now we restrict ourselves to times much longer than the relaxation time constant,
and subsequently to frequencies much smaller than 1/τ . In this case the conductivity
σ(ω) = e n μ(ω) does not depend on frequency and can be taken as its low frequency
limit σ0 (cmp. Sect. 8.5). In a conductor (resistor) of length L and cross section A
shall be N electrons (n = N (A L)). With the electron velocities vi(t), the current is

I(t) = e

L

∑

i

vi(t). (J.21)

Without external field, 〈vi(t)〉 = 0 and 〈I(t)〉 = 0 and we name this fluctuating
current i(t). If all electrons move independently of each other,

〈i(τ ) i(0)〉 = N
e2

L2
〈v(τ ) v(0)〉. (J.22)

The power spectrum of i(t) is according to (J.18),

11In the Langevin theory the mobility is the ratio of velocity v and the force K , here the mobility is
the ratio of v and the field E with K = −e E.

http://dx.doi.org/10.1007/978-3-319-23880-7_8
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W (ω) = 2
∫ ∞

−∞
〈i(τ ) i(0)〉 exp(iωτ ) dτ = 4N

e2

L2

∫ ∞

0
〈v(τ ) v(0)〉 exp(iωτ ) dτ

= 4
N e2

L2

μ kT

e
= 4

N e2

L2

σ0 kT A L

e2 N
= 4σ0

A

L
kT . (J.23)

Then, using the conductance G = R−1 = σ0 A/L, we find the frequency independent
spectral power

W = 4 kT G. (J.24)

Therefore the fluctuation of the current induced by the thermal motion is

〈i2〉 = 4 kT G B, (J.25)

and the variance of the fluctuating voltage at a resistorwith resistanceR in a frequency
range B is (i = u/R)

〈u2〉 = 4 kT R B. (J.26)

At room temperature (T0 = 293K), the quantity k T0 is about 26meV; in the con-
text here, the unitWs=W/Hz is the appropriate one, and k T0 = 4.04 ×10−21W/Hz.
This represents a fundamental limit to noise in devices. Since the power density is
independent of frequency, this noise is ‘white’ noise. The formulas (J.26) and (J.25)
are valid for frequencies h ν � kT ; for larger frequencies the quantum nature of
electromagnetic radiation and photon statistics play a role. For practical purposes
even cooled devices at T = 4K fulfill the limit condition for frequencies up in the
100GHz regime. In the cases of heated electron (or hole) gases (cmp. Fig. 10.3), the
lattice temperature must be replaced by the temperature of the carrier gas.

For a RC low pass, the power spectrum Wi = 4 kT G at the resistor is converted
using u2 = |Z|2 i2 to Wu = 4 kT R/[1 + (ω R C)2].

J.3.2 1/f Noise

For many processes a frequency dependent noise spectral power following a να-
law is found with α close to −1. Such noise is termed ‘pink noise’, 1/f -noise or
Flicker noise. Themicroscopic reasons for such behavior can bemanifold and various
models have been proposed [1853, 1854]. As an example the noise spectrum of a
RuO2 thick film resistor is depicted in Fig. J.1a; for this system, the fluctuation of
tunneling current in metal-insulator-metal units was used to explain the observed
frequency (and temperature) dependence of the 1/f -noise. At high frequencies, the
1/f spectral power vanishes and other noise sources such as thermal noise dominate,
as depicted in Fig. J.1b for an a-Si thin film transistor. The 1/f -dependence of the
noise spectral power (of a carbon sheet resistor) has been detected for frequencies
down to 3 × 10−6 Hz [1855].

http://dx.doi.org/10.1007/978-3-319-23880-7_10
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Fig. J.1 (a) Noise current density spectrum of a ruthenium oxide resistor (at T = 300K and current
of I = 1mA), experimental data (symbols) and 1/f -dependency (dashed line).Adapted from [1856].
(b) Noise current density spectrum of an amorphous silicon thin film transistor, experimental data
(symbols) for various source-drain voltages, thermal noise (horizontal blue dashed line) and 1/f -
dependency (red dashed lines). Adapted from [1857]

J.3.3 Shot Noise

A dc current 〈i〉 = I0 through a resistor is a sequence of electron transfers from one
contact to the other. The transit time ttr is given by the length L and the drift velocity
vD as ttr = L/vD = L2/(μ V ). The event times of these transits are random and thus
lead to a noise (ac) component on top of the dc current. This is termed ‘shot’ noise,
after the crackling arrival of shot pellets on a target. For low frequencies (f � t−1

tr ),
the noise power is

W = 2 e I0, (J.27)

and the current noise thus is given by

〈i2〉 = 2 e I0 B, (J.28)

This noise term has been first found for vacuum diodes in the saturation regimewhich
also serve as noise normals according to (J.28). It is important for the validity of (J.28)
that in each event a full charge e is transferred. The situation in a semiconductor diode
is more complicated since various currents contribute; if scattering events occur
during transit, also fractional transferred charges can occur. The reverse current of
an asymmetric diode if originating from the lowly doped region is due to carriers
crossing the depletion layer. If generation in the depletion layer plays no role, the
noise is also determined by the shot noise (J.28).

The maximal noise level (J.28) is present in absence of all correlations (Poisson
process), both in the injection process as well as in the subsequent transport. Such
value has been found, e.g., for intrinsic germanium in [1858] and in the limit of large
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Fig. J.2 Noise of
semi-insulating (dark) CdTe
detector at T = 323K (at a
frequency of about 1–2kHz
when 1/f -noise plays no
role). Experimental data
(symbols) and detailed theory
(black line). The dashed blue
line represents the thermal
noise (J.25), the dashed red
line the shot noise (J.28).
Adapted from [1859]
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currents for CdTe detectors [1859] (Fig. J.2). In a metallic conductor (or degenerate
semiconductor) the noise is reduced to a third of that value due to correlations in-
duced by the Pauli exclusion principle [1860]. The modification in non-degenerate
semiconductors on length scales intermediate between the elastic and inelastic mean
free paths is discussed in [1861]. The case of shot noise in semiconductors in the
presence of transport of electrons and holes has been treated in [1858–1862].

J.3.4 Generation-Recombination Noise

It is a semiconductor specific property that the carrier density is subject to fluctuations
due to generation and recombination.12 A fluctuation inmajority carrier density leads
to a change of conductivity whichwill lead to a change in current if a constant voltage
is applied. Typical examples of transitions leading to a fluctuation of the carrier
density are between bands and localized levels and in between the conduction and
valence bands. Usually, the sample remains neutral. Detailed treatments are given
in [1863, 1864].

A simple example is the effect of carrier number fluctuation due to transitions
between a conduction band and donor levels. This ismanifested in the noise spectrum
of a n-Si sample at T = 78K (Fig. J.3a) with the plateau at 106–107 Hz on top of
the 1/f noise [1865] (The plateau at 108–109 Hz is due to velocity fluctuations). The
spectral power of the generation-recombination noise contribution is given by

W = I20
〈δn2〉
〈n〉2

4 τ0

1 + (ω τ0)2
, (J.29)

12A metal exhibits a constant carrier density.
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Fig. J.3 (a) Current noise spectrum of n-type Si (T = 78K, n = 3 × 1013 cm−3) for an electric
field of E = 200V/cm along the 〈100〉 direction, in relative units to the noise spectrum for E = 0.
The dashed blue line indicates the level of thermal noise, The arrow labeled ‘GR’ denotes the
contribution of generation-recombination noise. Adapted from [1865]. (b) Voltage noise power
times frequency of a GaAsMESFET. Experimental data (symbols) and fit (solid line) including two
generation-recombination noise terms of the type (J.29) (times ω) for two different traps. Adapted
from [1866]

where τ0 is the characteristic relaxation time, 〈n〉 = n̄ is the average carrier density
(average carrier number per given volume) and 〈δn2〉 = 〈(n − n̄)2〉 is the fluctuation
of the carrier density. In order to better visualize the generation-recombination noise
with respect to the 1/f noise, the quantity W × ω can be plotted (Fig. J.3b) which
takes the shape of a peak (for logarithmic frequency axis) [1866].

For a partially compensated semiconductor with ND > NA it is found (if holes
can be neglected) [1864]

〈δn2〉
〈n〉 =

[

1 + n̄ ND

(n̄ + NA) (ND − NA − n̄)

]−1

≤ 1. (J.30)

The fluctuation 〈δn2〉/〈n〉2 is typically smaller than the Poisson value of 1; such
sub-Poissonian statistics is typical of a repulsive correlation. For the case ND �
NA [1864], (J.30) simplifies to

〈δn2〉
〈n〉2 =

[

1 + ND

ND − n̄

]−1

= ND − n̄

2ND − n̄
. (J.31)

In the ambipolar regime, typically close to intrinsic conditions, when only free
electrons and holes are important, it is found [1864] (μn < 0)

〈δn2〉
〈n〉2 = n̄2 p̄ (μp − μn)

2

(n̄ + p̄) (p̄ μp − n̄ μn)2
. (J.32)
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which simplifies to
〈δn2〉
〈n〉2 = 1

2
. (J.33)

in the intrinsic case (n̄ = p̄).
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Index

A
Absorption, 291, 295, 346, 350, 655, 675,

680, 699
atmospheric, 708
band–band, 299
bleaching, 247
bound exciton, 317, 319
coefficient, see coefficient, absorption
free-carrier, 296, 328, 448
impurity, 323
inter-valley, 335
intervalence-band, 334
intra-band, 336
lattice, 337
negative, 321
optical, 246
phonon, 305
schematic spectrum, 296
selfabsorption, 365
spectrum, 302, 430, 438
two-photon, 302, 311, 322

Absorption edge, 306
optical, 166
shift, 321

Acceleration, 178
Acceptor, 211, 218, 220

binding energy, 220
charged, 220
double, 240
energy, 220
neutral, 221, 366

Accumulation, 617
Admittance spectroscopy, 595
Air gap, 780
Air mass, 708
Alkali halogenides, 276
Alloy, 72, 110, 252, 505, 612

broadening, see broadening, alloy
phonon, see phonon, alloy
quaternary, 73
random, 72, 359
ternary, 65, 72, 172

Amplification, 350, 755, 773, 786
current, see current, amplification
light, 749
region, 695

Amplifier
optical, 750, 785
power, 786

Angle
Brewster, 295
critical, 294, 735
Euler, 844
off-cut, 390
taper, 785

Anharmonicity, 492
Annealing, 53, 81, 151

laser, 838
thermal, 838

Anode, 583
Anticrossing, 315, 420, 562, 563
Antidot, 460
Antiphase domain, see domain, antiphase
Approximation

abrupt, 589, 626, 805
adiabatic, 39, 805
Boltzmann, 204, 205, 217, 607
Born–Oppenheimer, 39, 364
electric dipole, 297
envelope function, 417
gradual channel, 805
harmonic, 111
quasi-cubic, 189
relaxation time, 256, 275, 328, 876
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two-band, 323
virtual crystal, 77, 170
WKB, 376

Atmosphere, 708
Auger process, 368
Autocompensation, 226
Autodoping, 229
Auxetic, 136
Avalanche multiplication, 645, 678, 792
Average, 881

B
Background radiation, 683
Band

alignment, 416
bending, 424, 587, 617
conduction, 28, 162, 376

minimum, 163, 172
diagram, 788

diode, 584, 616
discontinuity, 417, 419
edge, 324
filled, 183, 207
gap, 29, 162, 167, 168, 178, 207, 464,
497, 867
engineering, 416
fundamental, 305
negative, 189
photonic, 545–564
renormalization, 320
temperature dependence, 174
zero, 189, 507

impurity, 230
lineup, 415
mixing, 192, 420, 473, 675
parabolic, 301
remote, 869, 870
splitting, 34
staggered lineup, 416
straddled lineup, 416
tail, 129, 307
tilted, 437
valence, 28, 162, 784

fine structure, 188
Band structure, 153–193, 297, 523

chalcopyrites, 165
delafossites, 166
direct, 163, 172
extrema, 195
indirect, 163, 172, 321
lead salt, 163
multivalley, 270

perovskites, 167
photonic, 552
projected, 392
rocksalt, 164
spinels, 166
strained, 190
theory, 6

Bandwidth, 673, 683, 697, 885
Bardeen model, 584, 588
Barrier, 375, 419, 424

Coulomb, 474
finite, 421
height, 419, 603
reduction, 594
Schottky, 586
triangular, 376

Base, 42, 788
diatomic, 42, 130
monoatomic, 42
width, 798

Beam profile, 759, 779
Benzene, 30, 515
Biexciton, 483, 484
Binodal, 74
Bipolaron, 521
Birefringence, 292, 328, 449
Blackbody, 673
Bloch

function, see function, Bloch
oscillation, see oscillation, Bloch

Bloch’s theorem, 154
Bohr radius, 211
Boltzmann

approximation, see approximation,
Boltzmann

constant, see constant, Boltzmann
distribution, see distribution, Boltzmann
transport equation, 875

Bond
angle, 52
breaking, 150
covalent, 25
dangling, 52, 388
elastic, 111
electron pair, 26
homopolar, 34
ionic, 32
length, 34, 52, 77, 82, 136, 171
metallic, 36
mixed, 33
partially ionic, 129
sp2, 29
sp3, 26
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strength, 168
strong, 409
tetrahedral, 28, 211
van-der-Waals, 37

Bose–Einstein
distribution, see distribution, Bose–
Einstein

statistics, 860
Boson, 859
Bottleneck, 315
Boule, 401
Boundary

additional ∼ condition, 316
antiphase domain, 107
condition, 112, 379, 419, 461, 471, 548,
589, 620, 628, 790, 865

depletion layer, 699, 790
grain, see grain boundary
inversion domain, 107, 410
periodic ∼ condition, 112
sample, 457

Bow-tie, 223, 569
Bowing, 77

parameter, 170
Bragg mirror, 550, 750, 761, 780
Breakdown, 644, 680, 688, 797

voltage, see voltage, breakdown
Brightness, 727, 728

high, 738
perceived, 734
visible, 726

Brillouin zone, 70, 112, 113, 156, 386, 523
cubic

body-centered, 71
face centered, 71
simple, 71

hexagonally close packed, 71
orthorhombic, 71, 166
paths, 72
points, see point
size, 300

Broadening, 129
alloy, 358
inhomogeneous, 429, 457, 486
phonon, 313
Stark, 325

Buffer, 409
graded, 836
metamorphic, 722
relaxed, 836

Bulk modulus, 136
Burger’s vector, 96, 147
Burstein–Moss shift, 332

C
Capacitance, 595, 603, 623, 632

insulator, 623
parasitic, 800

Capture, 464
barrier, 246
cross section, 371

Carrier
capture, 235, 370
concentration, 204

intrinsic, 207
density, 343, 449

equilibrium, 349
excess, 349, 379
nonequilibrium, 350

excess, 368, 464
excess ∼ profile, 379
free, 329
freeze-out, 216
hot, 714
injection, 234, 343
itinerant charge, 509
lifetime, see lifetime, carrier
majority, 583, 598
minority, 583, 626
release, 370
threshold ∼ density, 763

Catalysis, 385, 400
Catastrophical optical damage, 758, 767
Cathodoluminescence, 464
Cavity

empty, 562
external, 750
Fabry–Perot, 562, 750
hexagonal, 571
micro-, see microcavity
mirror, 562
mode, 562
optical, 749
resonance, 568
short, 761

Cell
central ∼ correction, 228, 324
elementary, 43
internal parameter, 56, 77, 490
photoelectrochemical, 670
primitive elementary, 43
primitive unit, 64
solar, see solar cell
tandem, 714
unit, 43, 489
Wigner–Seitz, 43, 70

Chalcogenide, 57, 831
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atoms, 238
europium, 505
glass, 242
impurity, 239
lead, 163

Chalcopyrite structure, see structure
Channel, 512, 802

buried, 704
depth, 805
edge, 457
inversion, 814
isolation, 704
length, 804, 824
long, 812
n-type, 818
p-type, 818
short, 811
stop, 703
strain, 820
width, 806, 824

Charge
conservation, 372
deficit, 459
density, 424
effective, 35
elementary, 236
excess, 343
fixed, 211
image, 423, 593
inversion, 622, 698
ionic, 625
maximum, 701
neutrality, 620, 622
packet, 703
polarization, 489
relative shift, 489
retention, 830
sign, 449
signal, 699
state, 236
storage, 661
surface, 586
transfer, 424

Charge coupled device, 14, 698–706
Chemical shift, 324
Chromaticity, 727
Circuit

common base, 788, 796, 798
common collector, 796, 799
common emitter, 792, 798, 799
equivalent, 644, 658, 673, 683
feedback, 800
integrated, 10, 14, 818

millimeter-wave, 655
open, 286, 711
optoelectronic integrated, 558
read-out, 701, 706
short, 289, 711

Cleaving, 150, 387, 465, 761
Clock speed, 826
Cluster, 72

size, 508
Clustering, 72, 110
CMOS technology, 706, 818–829
Coating

antireflection, 691, 762, 785
high-reflection, 762

Coefficient
absorption, 296, 301, 304, 329, 380, 706,
852

Auger recombination, 368
bimolecular recombination, 348
correlation, 883
diffusion, 249, 282
distribution, 89, 94
elastic, 133
electron ionization, 273
gain compression, 775, 778
hole ionization, 273
impact ionization, 693
negative temperature, 803
Peltier, 286

sign, 289
Seebeck, 879
segregation, 89
stiffness, 134
temperature, 645, 647, 658
thermal expansion, 132, 142, 174, 413
transmission, 547
two-photon absorption, 323

Coincident site lattice, 106
Collector, 788
Collision, 876
Colloid, 478, 487
Color space, 730
Commensurability, 460
Compensation, 223, 247, 366
Composite fermion, 459
Compound

binary, 35
carbon, 29, 515
I–VII, 32
II–VI, 33
ionic, 33

Compressibility, 136
Condensation, 321
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Bose–Einstein, 321
bosonic, 322

Conduction
band, see band, conduction
heat, 284–285
hole, 221
intrinsic, 207, 218
n-type, 221
ohmic, 208
p-type, 221
two-band, 444, 880

Conductivity, 203, 256–257, 521, 670, 699,
876

channel, 474, 802
complex, 275, 328
heat, 284
longitudinal, 457
metal, 257
one-dimensional, 457
type, 229
zero-field, 454

Configuration
atomic, 236
coordinate, 242
electron, see electron, configuration

Confinement
energy, see energy
potential, see potential
spatial, 302

Constant
Boltzmann, 862
damping, 275
dielectric, 131, 211, 337, 394, 423

high frequency, 131
negative, 332
static, 131

effective Richardson, 608
elastic, 112, 134
fine-structure, 456
force, 114, 117, 124, 125, 242
Fröhlich coupling, 276
lattice, see lattice, constant
normalization, 154
Poisson, 142
Richardson, 600, 603
spring, 112
static dielectric, 590
von-Klitzing, 455

Contact
back, 715
base, 790
intracavity, 780
lines, 696

metal–semiconductor, 7, 583–615
nonohmic, 802
Ohmic, 584, 611–613, 820
resistance, 584, 611
Schottky, 7, 62, 686
transparent, 691

Continuity equation, 284
Convolution, 429
Cooler

thermoelectric, 289
Coordination number, 43
Correlation, 883
Coulomb

blockade, 474
charging energy, 475
correlation, 311
gauge, 297
staircase, 474

Coupling, 791
antiferromagnetic, 506
capacitive, 473
ferromagnetic, 509
intervalley, 324
nanostructures, 461
phonon–plasmon, 340
strong, 562
weak, 562

Crack, 103, 413
Crescent, 463
Critical thickness, see thickness, critical
Crystal

class, 46
nobel gas, 37
structure, 13

Curie–Weiss law, 495
Current

amplification, 792
dark, 678, 683, 691, 699, 711
diffusion, 282, 681
divergence, 284
excess, 664, 666
leakage, 714
particle, 282
photo-, 672, 709
photogenerated, 681
recombination, see recombination, cur-
rent

saturation, 600, 609, 807
short-circuit, 711
spreading, 767
transparency, 763
tunneling, 223, 608, 664
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Curvature, 141, 159, 178, 182, 315, 373, 463,
647, 736

C–V spectroscopy, 595, 596, 603
Cyclotron

frequency, 442, 449
motion, 256, 441, 460
orbit, 450, 460
resonance, 181

D
De Broglie wavelength, 461
De Haas–van Alphén effect, 451
Debye length, 620, 631, 817
Decay

hyperbolic, 350
time, 350

Defect, 72, 81–110, 146
acceptor, 220
annihilation, 103
antisite, 82, 238, 247
area, 81
density, 410
diffusion, 88
donor, 211
double acceptor, 240
double donor, 238
EL2, 247
electronic states, 203–253
etching induced, 477
Frenkel, 82
interstitial, 82, 229, 237, 247, 252
isoelectronic, 249
line, 81, 96, 558
metastable, 81
nucleation, 415
pair, 92, 223
passivation, 251
point, 81, 229, 373, 558
symmetry, 241
thermodynamics, 83
vacancy, 82

Deformation
volume, 170

Degeneracy, 85, 117, 220, 244, 451, 474
holes, 420
Kramer’s, 159
spin, 195, 214, 222, 456, 531
valley, 200, 215, 452, 531

Delafossite structure, see structure
Demodulation, 655
Density of modes, 551, 567
Density of states, 195–201, 204, 420, 424,

450, 451, 461, 522

amorphous semiconductor, 196
band-edge, 372
conduction-band edge, 205
δ-like, 457
joint, 299, 429
surface, 584, 587
two-dimensional, 200
valence-band edge, 205

Depletion, 617
deep, 698

Depletion layer, 208, 586, 680
width, 591, 630

Depolarization, 489
Deposition

chemical vapor, 400
pulsed laser, 400

Detailed balance, 343, 347
Detectivity, 673, 677, 680
Deuterium, 510
Device

charge coupled, see charge coupled de-
vice

cooling, 256
high-power, 256
high-speed, 247
optoelectronic, 291
performance, 208
photonic, 291
reliability, 835
two-terminal, 583

Diagram
chromaticity, 727

Diamond structure, see structure
Dielectric constant, see constant, dielectric
Dielectric function, see function, dielectric
Diffraction, 293–296

reflection high energy electron, 400
Diffusion, 255, 282–283, 464, 598, 607, 628,

699, 703, 788
equation, 379
lateral, 431, 674
length, 379
pair ∼ mechanism, 88
point defects, 85
surface, 400

Dimer, 388
Diode, 255, 583–650

backward, 666
bipolar, 583, 626–648

I–V characteristics, 633–644
fast-recovery, 660
Gunn, 269, 667
heterostructure, 626, 649, 661, 800
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ideal characteristic, 600
laser, see laser
light-emitting, 399, 733–743

application, 734
white, 743

metal–insulator–semiconductor, 584,
615–626

metal–oxide–semiconductor, 452, 615
metal–semiconductor, 583
nonideal MIS, 624
one-sided, 636, 640
photo-, see photodiode
pin, 662
pn-junction, 583
Schottky, 484, 584

I–V characteristics, 598–610
step-recovery, 661
tunneling, 663
unipolar, 583
Zener, 658

Dipole moment, 439
Dirac particle, 536
Direction

growth ∼, 750
polar, 106
surface ∼, 778

Dislocation, 96, 401
60◦, 96
α, β, 96
core, 96, 148
density, 148
edge, 96
half-loop, 147
line, 96
misfit, 96, 146, 412
partial, 98, 105
screw, 96
spacing, 106
threading, 147

Disorder, 51, 77, 110, 128, 171, 196, 302,
307, 451, 603

cation, 58
configurational, 84
isotope, 356, 358

Dispersion
free electron, 178
linear, 315
quadratic, 315
spatial, 292, 314

Dispersion relation, 177, 178, 331, 420, 548,
867

branch, 114, 118, 339
free electron, 156

hole, 184
lattice vibration, 111
linear chain, 113, 116
parabolic, 159

Displacement, 96, 112, 140, 246, 262, 491
atomic, 241
ion, 275
parameter, 58

Display, 727
application, 730
electroluminescence, 837
field-effect, 727
liquid crystal, 837
plasma, 727

Distortion
tetragonal, 145, 480

Distribution
binomial, 359
Boltzmann, 862
Bose–Einstein, 262, 347, 863
degenerate, 204, 332
Fermi–Dirac, 204, 428, 862
Gaussian, 429, 603
momentum, 875
nondegenerate, 204
Planck, 861
spectral power, 727

Domain
antiphase, 106, 408
high field, 667
inversion, 106
polarization, 496

Donor, 211
–acceptor pair, 366
binding energy, 211
deep, 247
double, 238
empty, 215
fine structure, 216
ionization energy, 211, 216
ionized, 214
neutral, 214, 366
populated, 215
shallow, 211

Dopant, 370, 425
Doping, 82, 209, 211–233, 329, 520, 703

concentration, 595
depth profile, 596
glass, 478
modulation, 266, 425, 451, 834
profile, 659, 811

Drain, 802
Drift, 255, 598, 684, 699
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self-induced, 703
time, 691

Droop, 741, 746
Droplet, 478
Drude theory, 449, 453
DX center, 245, 834

E
Early effect, 796, 798
Ebers–Moll model, 794, 796
Effect

field, 375
Hall, see Hall, effect
Jahn–Teller, see Jahn–Teller effect
polaronic, 276
quantum Hall, see Hall, effect
Stark, see Stark effect
thermoelectric, 286

Effective mass, see mass, effective
Effective-mass

impurity, 213, 235
theory, 211, 873

Efficiency
conversion, 712, 727
differential, 766
emitter, 792
external, 766
external quantum, 735
internal quantum, 735, 766
light extraction, 714, 735
maximum solar cell, 712
packaging, 735
quantum, 477, 525, 672, 680
total quantum, 735, 767
wall-plug, 735, 767, 786

Einstein relation, 283
EL2 defect, see defect, EL2
Elasticity, 132
Electroabsorption, 613
Electroluminescence, 3, 837
Electromagnetic spectrum, 291
Electron

affinity, 210, 519, 586
conduction, 36
configuration, 26, 505
density, 204
dispersion, 177
distribution function, 204
equation of motion, 177
mass, see mass, electron
trap, 371
valence, 36, 153

wave packet, 177
Electron gas

free, 199
one-dimensional, 200
three-dimensional, 199, 449
two-dimensional, 200, 259, 424, 451,
460

Electron–hole droplet, 321
Electronegativity, 34, 338
Electrophotography, 674
Ellipsometry, 449
Emission

amplified spontaneous, 769
directional, 561
field, 598, 609
pattern, 570
phonon, 305
probability, 375
spontaneous, 344, 545
stimulated, 297, 347, 350
thermally activated, 375
thermionic, 598, 599, 677
thermionic field, 609

Emission rate, see rate, emission
Emitter, 788

follower, 800
Empty lattice, see lattice, empty
Energy

activation, 88, 253
barrier, 242
capture, 245
charging, 245
confinement, 419
conservation, 304
correlation, 320
Coulomb, 242
Coulomb charging, see Coulomb
defect formation, 81
density, 256
Dirac, 533, 535
dissipation, 457
elastic, 133
electrostatic, 473
exchange, 320
free, 236, 494
gap, 29, 30, 158
ionization, 211, 375, 519
kinetic, 157
loss, 269
Madelung, 32
optoelectronic, 439
parameter, 179
radiation, 562
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Rydberg, 213, 309
strain, see strain, energy
surface, 387, 478
thermal, 262
zero-point, 37

Enthalpy, 84
formation, 84, 87, 237
free, 83, 237
migration, 87
mixing, 74

Entropy, 84, 244, 494
configurational, 74
disorder, 84
formation, 84

Envelope function, see function, envelope
Epitaxial relationship, 405
Epitaxy

liquid phase, 400
metalorganic vapor phase, 400
molecular beam, 400
thin film, 400

Equilibrium
crystal shape, 388
state, 343
stationary, 607
thermodynamic, 204, 207, 234, 235,
347–349, 368, 371, 372, 424, 584, 862

Etch, 100, 402
pit, 100
RCA, 402
Shiraki, 402

Etching, 477
anisotropic, 107, 462
plasma, 101
reactive ion, 101, 477, 761
thermal, 402
wet chemical, 477

Excitation
external, 343
neutral, 349
optical, 246

Exciton, 7, 296, 309–312, 523
binding energy, 309, 422
bound, 317

absorption, see absorption
recombination, see recombination

bright, 314
charged, 319, 482
correlation, 439
dark, 314
delocalized, 431
dynamics, 429
free, 351, 359

Frenkel, 523
interchain, 524
intrachain, 524
ionization, 439, 441
localized, 431
longitudinal, 314
ortho-, 313
oscillator strength, 310
para-, 313
polariton, 313
radius, 309
recombination, 351
scattering states, 311
self-trapped, 732
transverse, 314
volume, 359

Exclusion principle, 859
Exhaustion, 218

regime, 226
Eye pattern, 776

F
Facet

cleaved, 465, 750
etched, 761
laser, 762
side, 463
tilted, 778

Faceting, 392
Factor

base transport, 792
collector multiplication, 792
fractional filling, 458
ideality, 601, 604, 793
linewidth enhancement, 778
optical confinement, 695
quality, 559, 568
Sommerfeld, 311
spontaneous emission, 765

Fano resonance, 326
Far field, 759
Feedback

distributed, 770
loop, 400
optical, 749

Fermi
energy, 450
function, see function, Fermi
integral, 204, 205, 283
intrinsic ∼ level, 208, 222, 617
level, 216, 218, 222, 225, 333, 373, 424,
452, 485, 584, 614, 862
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gradient, 282
liquid, 321
local quasi ∼ level, 235
quasi ∼ level, 234, 347, 350, 598, 698,
812

sphere, 256
surface, 450
vector, 450

Fermi–Dirac
distribution, see distribution, Fermi–
Dirac

Fermi–Dirac statistics, 236, 237, 861
Fermion, 859
Fermi’s golden rule, 297, 545, 567
Ferroelectricity, 489, 490
Ferromagnet

Heisenberg, 506
Fick’s law, 282
Field

built-in, 613
crossed electric and magnetic, 784
crystal, 248
displacement, 131, 853
drift, 789
effect, see effect, field
electric, 177, 255, 273, 276, 282, 328,
437, 590

electromagnetic, 297
external, 437
fringing, 703
high magnetic, 453
homogeneous, 439
internal electric, 255
macroscopic electric, 129
magnetic, 177, 181, 256, 302, 325, 441

static, 328
piezoelectric, 262, 473
ring, 647
strength, 695
strong electric, 375
surface, 620
time dependent electric, 328
transverse electric, 441

Filling factor, 49, 711
Finesse, 559
Flip-flop, 10
Flow

heat, 284
Fluctuation, 75, 359, 429, 431, 881

amplitude, 778
phase, 778
quantum dot size, 486
vacuum, 545

Fluorescence, 522
Flux

luminous, 726
radiant, 725

Focal plane array, 677
Force, 178

dissipative, 275
image, 593
Lorentz, 441, 453, 876
restoring, 132, 492
van-der-Waals, 32

Force constant, see constant, force
Fourier

coefficient, 156, 157
series, 156
transform, 851
transformation, 66

Franck–Condon principle, 364
Franz–Keldysh oscillation, see oscillation,

Franz–Keldysh
Freeze-out

regime, 218
Frequency

cutoff, 800
high, 800, 812, 836
mixing, 655

Fresnel formulas, 294, 550
Friction, 256
Fröhlich coupling constant, see constant,

Fröhlich coupling
Function

auto correlation, 884
Bessel, 472
Bloch, 154, 179, 235, 297, 314, 417, 421,
869

Boltzmann, 430
color matching, 728
cross correlation, 883
dielectric, 131, 132, 297, 329, 563, 851,
854

distribution, 876
envelope, 417, 873
error-, 430
Fermi, 204, 347, 862
Hankel, 472
spherical harmonic, 471
static dielectric, 493
work, see work function

G
Gain, 678, 749, 769

differential, 776, 778
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maximum, 772
Gate, 473, 802

charge, 830
contact, 512
voltage, 452, 474, 699

Gauge invariance, 457
Generation–recombination, 699

noise, see noise
g-factor, 441
Gibbs–Thomson effect, 478
Ginzburg–Landau theory, 493
Glide plane, 96
Glide reflection, 45
Grain

boundary, 41, 105, 252
boundary, small-angle, 105
size, 51, 720, 731, 837

Graphene, 16
Grating, 675

sampled, 773
Group

point, 43, 386, 847, 848
space, 45, 386, 405, 847, 849
theory, 41, 160

Growth
Czochralski, 401
Frank-van der Merwe, 404
kinetics, 228
methods, 400
mode, 403
pseudomorphic, 141
rate, see rate, growth
spiral, 96
Stranski-Krastanow, 404, 478
template, 477
Volmer-Weber, 404

Guard ring, 647
Gunn element, 667

H
Halbleiter, 4
Hall

bar, 455, 460
coefficient, 443, 455

sign, 445
constant, 444
current, 457
effect, 246, 441–447, 879

anomalous, 511
electrical, 449
fractional quantum, 458
integral quantized, 455

optical, 449
quantized, 14, 453
quantum, 399

factor, 447
plateau, 455, 458
quantum ∼ liquid, 457
resistivity, 457, 460

Hayne’s rule, 353
Heat

capacity, 494
conduction, see conduction, heat
latent, 494
sink, 289, 738, 749, 767
transport, see transport, heat

Heavy metal, 525
Helmholtz equation, 546
Heteroepitaxy, 132, 137, 501
Heterointerface, 451

graded, 650
Heterojunction, 714, 833
Heterostructure, 14, 434, 455, 478, 565

type-I, 416
type-II, 416

Hexagonality index, 65
Hole, 183–190

capture, 373
concept, 183
density, 204, 222
dispersion, 183, 420
dispersion relation, see dispersion rela-
tion, hole

effective mass, 184
gas, 509
heavy, 184, 420
light, 184, 420
mass, see mass, hole
split-off, 184, 272, 302

HOMO, 30, 519
Hopping, 276
Hopping transport, see transport, hopping
Huang–Rhys parameter, see parameter,

Huang–Rhys
Hue, 727
Hund’s rule, 507
Hybridization

p–d, 509
sp2, 30, 515, 529
sp3, 26

Hydrogen, 211, 251, 356, 510
atom, 439
model, 309
molecule, 25, 319
problem, 213
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Hydrogenation, 52
Hysteresis, 489, 496, 509

I
Ideality factor, see factor, ideality
Illuminance, 726
Illumination, 671, 691, 695, 704, 709
Image charge, see charge, image
Image sensor, 677, 701, 705
Impact ionization, 271, 368, 645, 692
Impedance, 655, 697

amplifier, 799
input, 803

Impurity, 82, 101, 203, 252, 324, 351, 370
amphoteric, 228
background, 223
band, see band, impurity
binding energy, 422
charged, 325
concentration, 203
hardening, 101
incorporation, 228
isoelectronic, 318, 733
isovalent, 82
magnetic, 507
shallow, 211

In-situ
control, 400
monitoring, 400

Inclusion, 59
Incompressible, 457
Index of refraction, 293, 329, 852
Insulator, 584, 615, 617, 622

topological, 395
Interaction

antiferromagnetic, 508
atom–cavity, 562
Coulomb, 32, 211, 309, 422, 458, 461
dipole–dipole, 37
double exchange, 509
electron–phonon, 39, 174, 276, 297–299
electrostatic, 32, 39
exchange, 314, 321
gap, 508
hyperfine, 214, 236, 242
indirect exchange, 509
London, 37
many-body, 459
nearest-neighbor, 506
parameter, 74
Ruderman–Kittel–Kasuya–Yoshida, 509
spin-orbit, 184, 441, 512, 525, 870

superexchange, 506, 508
van-der-Waals, 37, 516

Interconnect, 822
Interface, 146, 422, 490, 499, 617, 699

flat, 431
geometry, 399
heterostructure, 584
planar, 293, 399
plane, 420, 598
single hetero-, 417, 424
state, 614

Interstitial, see defect
Inversion, 44, 106, 160, 617, 784

center, 498
charge, see charge, inversion
strong, 621
weak, 621

Inversion domain, see domain, inversion
Inverted opal, 556
Inverter, 820
Ionicity, 35, 136, 168, 338
Ionization, 324, 628

exciton, see exciton
photothermal, 324

Iron, 95, 107, 237, 249
Irradiance, 725
Irradiation, 373
Island growth, 478
Isomer shift, 228
Isotope, 110, 228, 285, 356

effect on phonon, 120

J
Jahn–Teller effect, 82, 241, 242

dynamic, 242
Joule heating, 286, 289
Junction

abrupt, 626
deep, 647
graded, 767
hyperabrupt, 659
multiple, 714
one-sided, 626, 632

K
Kane model, 870
Keating criterion, 135
Kick-out mechanism, 88
Kink, 390
Kirchhoff’s law, 806
Klein paradox, 536
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k · p theory, 179, 869–872
Kramer’s degeneracy, see degeneracy,

Kramer’s
Kramers–Kronig relation, 292, 299, 851–

852, 854
Kronig–Penney model, 156, 169, 424, 865

L
Lambert–Beer’s law, 295, 684
Lamé’s constant, 136
Landau level, see level, Landau
Large scale integration, 821
Laser, 11, 255, 399, 749–785

cascade, 750
condition

thermodynamic, 350
diode, 750
double heterostructure, 11, 12
edge emitting, 750
horizontal cavity surface-emitting, 778
hot hole, 784
lead salt, 771
modulation, 774
monochromatic, 770
monomode, 770
multisection, 773
optically pumped, 782
output power, 766
quantum cascade, 783
surface-emitting, 750, 778
tunable, 771, 780
two-section, 773
vertical-cavity surface-emitting, 562,
779

zero-threshold, 546
Lattice

1D Bravais, 112
2D Bravais, 46
3D Bravais, 46
body-centered cubic, 48
Bravais, 42, 46, 386
constant, 77, 112, 117, 141, 168
empty, 155
expansion, 174
face-centered cubic, 48
hexagonally close packed, 49
ionic, 275
match, 172
mismatch, 132, 141, 412
period, 460
point, 42, 43, 113
reciprocal, 66–70, 154

relaxation, 82, 241, 246
simple cubic, 47
site, 228
temperature, 268, 322
vibration, 111–132

Lattice matched, 412
Laughlin theory, 459
Layer

active, 749
amorphous, 406
depletion, see depletion layer
inversion, 452, 455, 803
nucleation, 405
semi-insulating, 236
sequence, 417
space-charge, 586
spacer, 833
wetting, 404

Level
deep, 197, 211, 235, 326, 660
Landau, 449, 451, 452, 455, 459, 508
midgap, 373, 377
occupancy, 242
quantized, 419

Lifetime, 349, 374, 431
carrier, 672
minority carrier, 350, 373, 655
phosphorescent, 525
photon, 764
triplet, 522

Lift-off, 143
Light-emitting diode, see diode
Linear chain

diatomic, 115
monoatomic, 112

Lithography, 477
Localization, 457

light, 558
Löwdin perturbation theory, 870
Loss, 762

internal, 762
mirror, 762

LST relation, see Lyddane–Sachs–Teller re-
lation

Luminance, 726
Luminescence, 358, 522

decay, 568
impurity, 733
mechanism, 732
negative, 348

Luminosity, 726
LUMO, 30, 519, 522
Luttinger Hamiltonian, 872
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Luttinger parameter, see parameter, Lut-
tinger

Lyddane–Sachs–Teller relation, 132, 337

M
Macfarlane–Roberts plot, 305
Madelung constant, 33
Magnetic moment, 507
Magnetoresistance, 451, 452
Magnetotransport, 441, 460
Mask, 410
Mass, 112, 117

anisotropic, 324, 441
carrier, 449
density of states, 181, 200, 205
effective, 159, 178, 182, 211, 259, 371,
419, 420

effective conductivity, 257
electron, 180
hole, 185
isotropic, 181
longitudinal, 181
nonparabolicity, 181
polaron, 275
reduced, 338, 437
strain effect, 193
transverse, 181, 420

Mass-action law, 206
Matrix element, 297, 298, 304, 347, 421, 477

bulk momentum, 179
dipole, 675
k-dependence, 179
momentum, 179, 298, 869

Matthiesen rule, 259
Maxwell’s equations, 293, 554
Mean free path, 257, 460
Memory, 787, 821

flash, 830
nonvolatile, 830

Metalorganic, 400, 525
Microcavity, 322, 559, 568, 765, 780
Microdisc, 565
Micropillar, 568
Microscopy

scanning tunneling, 219, 222
secondary electron, 464

Midgap level, 323
Miller indices, 67

wurtzite, 68
Miniband, 424
Minigap, 424
Mirror operation, 44

Miscibility gap, 72
Mobility, 258, 425, 449, 460, 598, 800, 837,

879
channel, 835
edge, 431, 457
extremely high, 399
high, 453
high electron, 259
hole, 259
metal, 259
negative differential, 809
optical carrier, 448
surface, 409
temperature dependence, 264

Mobility edge, 280
Mode

chaotic, 569
defect, 558, 561
evanescent, 569
gap, 127
hopping, 772
localized vibrational, 84, 124–253
longitudinal phonon plasmon, 340
normal, 38
optical, 116, 545
out of plane, 529
single longitudinal, 769
soft phonon, 492
spectrum, 769
stretching, 522
volume, 568
whispering gallery, 566, 568, 571

Modulation
large-signal, 775
pulsewidth, 745
small-signal, 777

Momentum
angular, 302, 420, 471
conservation, 298
cyrstal, 177
matrix element, see matrix element
orbital, 324
orbital angular, 184
total angular, 184

Monolayer, 390, 400, 417, 431
Moore’s law, 821
Mott transition, see transition, Mott
Multiexciton, 483
Multiferroics, 489
Multiplication

region, 695
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N
Nanobelt, 467
Nanohelix, 143
Nanolaser, 466
Nanoscroll, 143, 145
Nanostructure, 461–829
Nanotube, 143

BN, 541
carbon, 536
metallic, 540

Nanowhisker, 465, 469
Negative-U center, 242
Neutrality, 207

charge, see charge, neutrality
condition, 208, 218, 224
constraint, 236

Newton’s law, 177
Nobel Prize, 12, 15, 399, 663
Noise, 881

1/f , 886
equivalent power, 673, 681
excess, 693
Flicker, 886
generation–recombination, 673
generation-recombination, 888
shot, 683, 887
source, 683
thermal, 673, 683, 695, 885
white, 886

Nonequilibrium, 234, 343
thermodynamic, 235

Nonlinear optics, 323, 496, 546
Nonparabolicity, 439
Nonpolar, 262, 501
Nucleation, 405, 838

dislocation, 147
Number

atomic order, 82, 358
complexion, 84
order number, 54

O
Ohm’s law, 257
Orbital, 28

antibinding, 29
antisymmetric, 26
bonding, 29
highest populated, 30
lowest unoccupied, 30
overlap, 111
symmetric, 26

Order

antiferromagnetic long-range, 508
long-range, 51
spontaneous magnetic, 505
stacking, 56, 64

Ordering, 77
CuAu, 80
CuPt, 77
in-plane, 481

Orientation, 253
random in-plane, 406

Oscillation
Bloch, 256
Franz–Keldysh, 439
Shubnikov–de Haas, 451, 452
Weiss, 460

Oscillator, 10, 269
harmonic, 38, 111, 449, 471, 475, 853
local, 655
master, 786
strength, 127, 299, 314, 337, 675, 853–
858
exciton, see exciton

voltage-controlled, 658
Ostwald ripening, 478
Overgrowth

cleaved-edge, 465
epitaxial lateral, 410

Overlap
geometrical, 696

Oxide
aperture, 780
high-k dielectrics, 820
transparent conductive, 4, 575–579

P
Parabola, 181
Paramagnetic ion, 505
Parameter

s, 35, 105
Heisenberg exchange, 506
Huang–Rhys, 364
Luttinger, 185

Partition sum, 859
Passivation, 52
Peak-to-valley ratio, 666
Peltier effect, 255, 289
Periodic system, 21, 26, 211
Phase, 96, 106, 117, 773

Bloch, 549
change, 831
cubic, 490
diagram, 74, 321
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factor, 548, 865
ferroelectric, 490, 494
metastable, 65, 163
opposite, 129
ordered, 110
orthorhombic, 491, 496
paraelectric, 490, 493
paramagnetic, 508
rhombohedral, 496
separation, 74
shift, 459
spin glass, 508
tetragonal, 167, 490, 496
transition, 51, 56, 172, 321, 490, 493

first-order, 495
second-order, 493

trigonal, 491
Phonon, 39, 112, 123, 304

absorption, 376
acoustic, 117, 261, 315
alloy, 127

one-mode, 127
two-mode, 127

average temperature, 176
Bose–Einstein model, 176
broadening, 313
dispersion, 118, 176
emission, 368
energy, 433
infrared active, 296
LA, 117
LO, 117, 132, 262, 276
long wavelength, 132
optical, 117, 176, 337, 341

emission, 269
replica, 522
soft, 492
TA, 117
TO, 132

Phonon-drag, 289, 880
Phosphor, 727, 730, 743
Phosphorescence, 522
Photocatalysis, 385, 669
Photoconductivity, 527

persistent, 246
Photoconductor, 670, 674
Photodetector, 236, 255

FIR, 324
quantum well intersubband, 675
traveling wave, 695

Photodiode, 680–708
array, 705
avalanche, 680, 692–695, 706

bipolar, 681
metal–semiconductor–metal, 686
pin, 684
stacking, 706

Photometry, 725
Photon

counting, 645
Photoresistor, 583
Piezoelectricity, 489, 498
Pinch-off, 804, 806, 809, 814
Planar technology, 10, 583, 677, 779, 823
Planck’s law, 347
Plane

high index, 390
Plasma, 727

frequency, 331, 341, 448
Plasmon, 332, 393
Plastic flow, 147
Pnictide, 57
Point

critical, 299, 300, 308
crossover, 245
defect, see defect, point
Dirac, 530, 534, 540
F, 166
Γ , 70, 114, 116, 117, 162, 167, 305
group, see group, point
K, 72
L, 72, 163, 172
M, 167
saddle, 300
X, 72, 117, 163, 172

Poisson
equation, 424, 589, 620, 628, 805
ratio, 136
statistics, 883

Polariton, 322, 339
lower branch, 315
surface plasmon, 393

Polarizability, 338
Polarization, 131, 294, 314, 421, 675, 852

circular, 302, 512
electric, 262, 489
ferroelectric, 62
light, 323
p, 294
s, 294
spin, 509
spontaneous, 77, 489
TE, 422
time-dependent, 129
TM, 422

Polaron, 275, 521, 732
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small, 277
Poling, 496, 617

periodic, 496
Polyhedra, 43
Polymer, 30

chain, 519
Polytypism, 64
Poole–Frenkel effect, 375
Population, 371

inverted, 350
Position sensing detector, 686
Potential

asymmetric, 111, 675
atomic interaction, 111
built-in, 587
chemical, 237, 862
confinement, 419
Coulomb, 156
crystal, 156
distribution, 593
double well, 169
external, 591
fluctuation, 431
hard wall, 865
harmonic, 112
hydrostatic deformation, 191, 261
inversion surface, 815
ion core, 211
lateral ∼ well, 703
Lennard–Jones, 37
long-range Coulomb, 375
minimum, 429
optical deformation, 192
periodic, 6, 153, 211
piezoelectric, 503
pure Coulomb, 324
screened Coulomb, 260
short range, 211
triangular, 424
two-dimensional well, 468
well

three-dimensional, 471
Power

maximum, 712
noise, 885
output, 711
spectral, 727
thermoelectric, 286
total, 725

Pre-breakdown, 644
Precipitate, 226
Precursor, 400
Pressure, 84, 132

high, 14
hydrostatic, 56
partial, 228
vapor, 478

Process
activation, 241
causal, 851

Processing temperature, 576
Propagation

direction, 422
Punch-through, 798
Purcell effect, 562, 567
Purity, 203
Pyroelectricity, 489
Pyrolysis, 400

Q
Quadrupole, 503, 569
Quality factor, see factor, quality
Quantum

box, see quantum, dot
dot, 139, 201, 431, 461, 471–675

charge tunable, 484
cleaved-edge overgrowth, 465
cubic, 472
lens-shape, 477
pyramidal, 473
self-assembled, 476, 477
spherical, 472
stack, 480

efficiency, see efficiency, quantum
electrodynamics, 562
magnetic flux, 457, 458
well, 200, 322, 417, 439, 801

coupled, 424
energy level, 417
multiple, 417
sidewall, 463
vertical, 464

wire, 139, 200, 461, 462
cleaved-edge overgrowth, 465
T-shaped, 465
V-groove, 462

Quantum dot, see quantum, dot
Quantum Hall effect, see Hall, effect
Quantum statistics, 859–863
Quantum wire, see quantum, wire
Quarter-Wave stack, 550
Quasicrystal, 44
Quasi-Fermi level, see Fermi, level
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R
Rabi frequency, 562, 563
Radiance, 725
Radiometry, 725
Radius

self-limited, 463
Random bit pattern, 776
Random walk, 282
Rashba effect, 512
Rate

Auger recombination, 368
capture, 371
emission, 371, 375
escape, 677, 764
generation, 284, 343, 671
growth, 400
net recombination, 347
pulling, 401
recombination, 284, 348
thermal Auger generation, 368
thermal generation, 348
tunneling, 377

Recombination, 223, 343–381, 512, 522,
598, 623, 655, 669, 801

Auger, 368
band–band, 344
band–impurity, 370
bimolecular, 348
bound-exciton, 351
center, 373, 661
current, 377, 735
donor–acceptor pair, 366
dynamics, 349
excitons, 351
free-exciton, 351
lineshape, 429
nonradiative, 105, 235, 793
quantum well, 427
radiative, 399, 523, 733
rate, see rate, recombination
spectrum, 483
spontaneous, 344
surface, 377
velocity, 608

Rectification, 2, 7, 653
Rectifier

metal–semiconductor, 7
point contact, 7

Reflectance, 295, 338
Reflection, 291, 293–296, 773

anisotropy spectroscopy, 400
distributed, 770
low, 685

total, 294, 569, 735
Region

space-charge, 586
Relaxation

carrier, 343
plastic, 146, 480
time-constant, see time-constant, relax-
ation

Resharpening, 463
Resistance

negative differential, 666, 667
serial, 714
shunt, 714

Resistivity, 257
high, 247
negative differential, 269
transverse, 455

Resonator
deformed, 567, 568
microscopic, 565
spiral, 569

Responsivity, 683
Reststrahlenbande, 338, 340
Richardson constant, see constant, Richard-

son
Rocksalt structure, see structure
Rotation, 44, 106, 261, 843

general, 844
improper, 44

Roughness, 403, 569

S
Saturation, 727

electron density, 217
Scalar, 844
Scattering, 441, 456, 875, 880

deformation potential, 261
elastic ∼ process, 261
grain boundary, 264
hot-carrier, 784
impurity, 834
inelastic, 262
intervalley, 811
ionized impurity, 260, 425
matrix, 548
microscopic process, 259
orbit, 460
phonon, 328
piezoelectric potential, 262
polar optical, 262
process, 256
Rutherford, 260
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spin, 512
theory, 546
time, 445

Schönfließ notation, 44
Schottky

barrier, see barrier, Schottky
Schottky effect, 593
Schottky–Mott model, 584
Schrödinger equation, 154, 157, 418, 424,

438, 461, 547, 869
Scintillation detector, 731
Scintillator, 727
Scrolling, 143

direction, 145
Second-harmonic generation, 496, 655
Seebeck effect, 255, 286
Selection rule, 302, 421

optical, 422
polarization, 675

Self-assembly, 478
Self-consistent, 424
Semiconductor, 4

alloy, 170
amorphous, 41, 51–52, 173, 196, 252,
308, 837

compound, 9, 56, 163
diluted magnetic, 505
doped, 207
elemental, 163, 168
ferroelectric, 492
history, 1
II–VI, 168, 262
III–V, 168
indirect, 305, 370
inhomogeneous, 255
intrinsic, 207
lead salts, 174
magnetic, 62, 505
nonpolar, 262
organic, 29, 515–613
oxide, 400
polarized, 489
polycrystalline, 41, 51
properties, 18
semi-insulating, 247
small band gap, 259
small-gap, 207
wide band gap, 208, 505, 509, 612
wide-gap, 207

Semipolar, 411, 501
Shell structure, see structure, shell
Shockley–Read–Hall kinetics, 348, 370
Shubnikov–de Haas effect, 452

Side-mode suppression ratio, 769
Signal-to-noise ratio, 673, 683, 695, 881
Singularity, 141, 195, 300

Fermi-edge, 428
van-Hove, 195, 299

Snapback time, 661
Snellius’ law, 294
Sol-gel process, 478
Solar

cell, 2, 255, 707–723
spectrum, 708

Solid-state multiplier, 695
Solubility, 76, 93, 94, 233, 248
Source, 802
Space group, see group, space
Space-charge region, 589, 619, 626

capacitance, 595, 623
Spectroscopy

deep level transient, 246
Mössbauer, 228
Raman, 433

Spectrum
noise, 884

Spin, 160, 184, 302, 507
alignment, 512
glass, 508
LED, 512
nuclear, 214, 356
polarization, 397
rotation, 512
splitting, see splitting, spin
total, 313
transistor, 511, 512

Spinodal, 75
decomposition, 75

Spin-orbit interaction, 160, 396, 870
Spintronics, 505, 511
Splitting, 241, 356

crystal field, 188
Rabi, 563
spin, 160, 441, 455
valley-orbit, 356
Zeeman, 325, 356

Stacking, 49
vertical, 463, 480

Stacking fault, 98, 103
energy, 105
extrinsic, 103
intrinsic, 103

Stark effect
quantum confined, 439, 501, 774
second-order, 439

State
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dark, 525
edge, 457
extended, 457
localized, 457
macroscopic quantum, 457
midgap surface, 588
triplet, 525

Step, 390
bunch, 390
monoatomic, 106
surface, 402

Stirling’s formula, 85
Stoichiometry, 72, 229
Stokes shift, 430, 603
Stoney’s formula, 143
Strain, 134, 262, 412, 675

bending, 144
biaxial, 137, 141, 192
compressive, 137, 192
distribution, 140, 473
energy, 133, 145, 149, 480
homogeneous, 190
hydrostatic, 191, 193
inhomogeneous, 190, 321, 872
in-plane, 501
large, 190
management, 143
microscopic, 58
misfit, 148
plastic relaxation, 96
random, 356
relaxation, 412, 480
shear, 137, 192, 498
small, 190
tensile, 137, 192
tensile surface, 480
tensor, 261
three-dimensional, 139, 473

Streaming motion, 785
Stress, 134, 253, 412

external, 489
–strain relation, 133, 134, 136
superposition, 140
uniaxial, 501

Structure
band, see band structure
chalcopyrite, 57
CsCl, 53
delafossite, 61
diamond, 54, 150, 171
dielectric, 545
field-ring, 647
fluorite, 61

interdigitated, 691
NiAs, 62
orthorhombic, 33
periodically poled, 496
perovskite, 61, 490
pseudomorphic, 412
rocksalt, 33, 53, 63, 172
shell, 475, 584
spinel, 59
tetragonal, 33
wurtzite, 56, 172
zincblende, 33, 55, 106, 150, 169, 172

Subband, 200, 451, 675
edge, 420, 421, 424

Sublattice, 55, 367, 505
anion, 56
cation, 56

Substrate
bending, 137, 141
compliant, 412
curved, 403
hetero-, 405
homo-, 405
patterned, 410
polished, 403
rotation, 400
transparent, 738

Sun, 708
Superconductivity, 39
Superlattice, 72, 256, 417, 420, 424–425,

750
buffer layer, 403
isotope, 433

Surface, 385–397
energy, 387
index, 588
passiviation, 385
phonon, 392
plasmon, 393
reconstruction, 388
resonance, 395
state, 395
vicinal, 390

Susceptibility, 852
electric, 853
magnetic, 451
nonlinear third-order electric dipole, 323

Switch, 236
Symmetry

inversion, 160
mirror, 439
reduction, 241
surface, 386
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tetrahedral, 324
time reversal, 159, 396
trigonal, 245

T
Tail

carrier distribution, 591
exponential, 437
states, 451, 457
Urbach, 307, see also Urbach tail

Taylor series, 283
Temperature

blackbody, 673
characteristic, 769
Curie, 493, 505, 509
Curie–Weiss, 496
Debye, 262
difference, 289
electron, 268
gradient, 255, 284
lattice, 268, 886
local, 235

Tensor, 843, 845
conductivity, 453
dielectric

magneto-optic, 449
dielectric function, 292
effective-mass, 178, 213, 873
nonlinear third-order electric dipole sus-
ceptibility, 323

resistivity, 454
Terrace, 390
Theory

Drude, see Drude theory
effective mass, see effective mass, theory
Laughlin, see Laughlin theory
perturbation, 241
time-dependent perturbation, 297

Thermal instability, 644
Thermalization, 430, 603

incomplete, 431
Thermopower, 286, 879
Thickness

barrier, 424, 867
critical, 145–466
film, 148
oxide, 703
quantum well, 417, 429

Thomson heating, 289
Threshold, 763
Tilt, 105
Time constant, 343, 349, 595, 623, 703, 801

decay, 727
LO phonon emission, 269
RC, 696
relaxation, 256, 259
reorientation, 242

Transconductance, 799, 808, 816
differential, 799

Transistor, 7, 255, 787–841
bipolar, 10, 788–802
effect, 14
field effect, 5, 7, 802
heterobipolar, 399, 800
high electron mobility, 399, 833
JFET, 10
junction field effect, 7, 804
light-emitting, 801
MESFET, 7, 12, 804
MOSFET, 5, 11, 455, 812
organic, 839
planar, 11
point contact, 8
spin, see spin, transistor
thin film, 838

Transit time, 685, 811, 812
Transition

band–band, 299
dipole, 314
direct, 300
displacement, 492
donor–acceptor pair, 366, 733
forbidden, 311
indirect, 304
intersubband, 783
metal, 507
metal–insulator, 230, 233, 265, 280
Mott, 431
optical, 179, 188, 296, 324, 344, 482, 567
probability, 297

Transmission, 291
Transparency, 763
Transport, 255–289, 473

ballistic, 256, 598, 784
Boltzmann theory, 875
charge, 255
coupled heat and charge, 286
diode current, 598
heat, 284
heat energy, 255
high frequency, 275
high-field, 268
hopping, 278, 447, 521, 522
ionic, 281
low-Field, 258
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magneto-, see magnetotransport
Trap, 375

filled, 371
multilevel, 374
surface, 587

Trion, 319, 483, 485
Tuning range, 773
Tunneling, 14, 419, 424, 429, 598, 608, 645,

648, 677
assisted, 376
current, 474
direct, 376
Fowler–Nordheim, 830
inelastic, 666
phonon-assisted, 377
photon-assisted, 377, 439
rate, see rate, tunneling
Zener, 7

Turn-on delay time, 775
Twin, 103

boundary, 103
lamella, 103

Twist, 105, 468
Two-electron satellite, 355
Two-photon process, 297

U
Umklapp process, 124
Unit cell, see cell, unit

volume, 179
Urbach tail, 307

V
Vacancy, 81, 229, 236, 244, 247
Vacuum, 465

level, 584
tube, 2, 5, 583, 787, 821
ultrahigh, 400

Valence band, see band, valence
Valley

current, 477, 664
L, 270
X, 324

Van-der-Pauw geometry, 442
Van-Hove singularity, see singularity, van-

Hove
Varactor, 658
Variable range hopping, 278
Variance, 882
Varshi’s formula, 175
Vector

antiphase, 106

Burger’s, see Burger’s vector
displacement, 133
in-plane wave, 421
line, 96
potential, 140, 297
reciprocal lattice, 156
translation, 42
wave, 158

Vegard’s law, 77
Velocity

average carrier, 256
drift saturation, 269, 685, 807
effective diffusion, 608
group, 114, 177, 547
light, 329
match, 696
maximum, 257
maximum drift, 269
mismatch, 697
overshoot, 271
phase, 114
sound, 114, 262
surface recombination, 377, 380
thermal, 371, 600

Vernier effect, 773
Void, 82
Voltage

bias, 594
breakdown, 646, 656, 690, 801
built-in, 596, 626
diffusion, 587
flat-band, 625, 689
gain, 799
gate, see gate, voltage
maximum reverse, 645
open-circuit, 711
pinch-off, 804
reach-through, 688
reference, 658
regulator, 656
threshold, 816
turn-on, 801

Vortex, 459

W
Wafer, 400

bonding, 433, 714, 738, 740
breakage, 151
diameter, 402
edge, 151
epiready, 403
flat, 401
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Wannier’s theorem, 873
Warping, 185, 220
Wave

acoustic, 114
compression, 261
electromagnetic, 328
equation, 156, 328, 546
evanescent, 394
longitudinal, 112
plane, 114, 154, 437
shear, 261, 262
sound, 114
standing, 114, 158
transverse, 112
traveling, 695
vector, 329

Wavefunction
d, 223
many-electron, 459
overlap, 424, 461, 477
strongly localized, 235

Waveguide, 552, 558, 561, 695, 758, 763,
771

plasmon, 332
Weiss oscillation, see oscillation, Weiss
Well capacity, 701
Wiedemann–Franz law, 284
Wiener-Khintchine theorem, 884
Work function, 584, 587, 614, 616
Wurtzite structure, see structure

Y
Young’s modulus, 136

Z
Zincblende, 160
Zincblende structure, see structure
Zone

boundary, 116, 157, 256, 867
vicinity, 159

Brillouin, see Brillouin zone
reduced scheme, 154
scheme, 154

ZT -value, 289
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